
PhD-FSTC-2018-64
The Faculty of Sciences, Technology and Communication

DISSERTATION
Defence held on 05/10/2018 in Luxembourg

to obtain the degree of
 

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG
EN PHYSIQUE

by

Riccardo RAO
Born on 23 April 1989 in Naples (Italy)

CONSERVATION LAWS IN
NONEQUILIBRIUM THERMODYNAMICS:

STOCHASTIC PROCESSES,
CHEMICAL REACTION NETWORKS, AND

INFORMATION PROCESSING

Dissertation defence committee

Dr Massimiliano Esposito, dissertation supervisor
Professor, Université du Luxembourg

Dr Pierre Gaspard
Professor, Université Libre de Bruxelles

Dr Ludger Wirtz, Chairman
Professor, Université du Luxembourg

Dr Thomas E. Ouldridge
Imperial College London

Dr Alexander Skupin, Vice Chairman
Université du Luxembourg





to Ann





The scientist worthy of his name . . . experiences in front of his work the same
feeling as the artist; his pleasure is as great and of the same nature.

— Henri Poincaré





A B S T R A C T

Thermodynamics has a long history. It was established during the 19th

century as a phenomenological theory grasping the principles underlying
heat engines. In the 20th and 21st centuries its range of applicability was
extended to nonequilibrium stochastic and chemical processes. However a
systematic procedure to identify the thermodynamic forces at work in these
systems was lacking. In this thesis, we provide one by making use of conser-
vation laws. Of particular importance are the conservation laws which are
broken when putting the system in contact with different reservoirs (ther-
mostats or chemostats). These laws depend on the internal structure of the
system and are specific to each system. We introduce a systematic proce-
dure to identify them and show how they shape the entropy production (i.e.
the dissipation) into fundamental contributions. Each of these provides pre-
cious insight on how to drive and control the system out of equilibrium. We
first present our results at the level of phenomenological thermodynamics.
We then show that they can be systematically derived for various dynamics:
Markov jump processes used in stochastic thermodynamics, also including
the chemical master equation, and deterministic chemical rate equations
with and without diffusion, which are used to describe chemical reaction
networks. Generalized nonequilibrium Landauer principles ensue form our
theory. They predict that the minimal thermodynamic cost necessary to
transform the system from an arbitrary nonequilibrium state to another can
be expressed in terms of information metrics such as relative entropies be-
tween the equilibrium and nonequilibrium states of the system.
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Thermodynamics is a funny subject. The first time you go through it, you do not
understand it at all. The second time you go through it, you think you understand
it, except for one or two points. The third time you go through it, you know you do
not understand it, but by that time you are so used to the subject, it doesn’t bother

you anymore.

— Arnold Sommerfeld

I N T R O D U C T I O N
Understanding the detailed functioning of life and its distinctive features

is one of the greatest challenges of contemporary science. This is clearly the
consequence of the enormous complexity that living systems have achieved
through billions of years of evolution. It is also clear, however, that the
functioning of these systems is based on energy and information process-
ing. The former allows living organisms to sustain themselves, the latter
to evolve. We aim at understanding these processings, as we believe it is
important to understand life. To do so, nonequilibrium thermodynamics is
the well suited, but systematic and rigorous descriptions are necessary to
tame the complexity of living organisms.

In this thesis, we provide a generic and systematic description of arbitrary
nonequilibrium processes. This is achieved using conservation laws, as they
carry information about the topological structure of the process and allow
more informative descriptions. This framework is also specialized to two
relevant classes of processes: stochastic Markov jump processes, and chemi-
cal processes modelled as chemical reaction networks. We also demonstrate
how thermodynamics of information processing naturally fits in our descrip-
tion.

We start by introducing thermodynamics and its recent developments
from a historical perspective, and then summarize and motivate further the
contributions of this thesis.

thermodynamics: a historical perspective
The development of heat engines, namely machines able to perform work

by extracting power from heat, indisputably triggered the industrial revolu-
tion [1]. The major improvement regarding their performances was made
by J. Watt, who had the idea of spatially separating the cooling system (the
cold reservoir) from the heat source (the hot reservoir). Hence, at the turn of
the 19th century, engines had reached a high level of sophistication, but the
fundamental principles underlying their functioning were still unknown. In
1824, S. Carnot publishes his celebrated work Reflections on the Motive Power
of Fire and on Machines Fitted to Develop that Power [2], thus overturning the
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2 introduction

situation. Rarely in the history of science, technological innovation was the
spark of a new scientific theory: thermodynamics, as it would have been later
called by W. Thomson.

Carnot managed to abstract the functioning of heat engines, by conceiv-
ing an ideal set of operations, the Carnot cycle, describing a systematic ex-
traction of work. He realized that this extraction requires the transfer of heat
between two reservoirs, at least: a heat source (the hot reservoir) and a heat
sink (the cold reservoir), as they produce the necessary fall of caloric, akin to
a fall of water powering hydraulic engines. We recall that his argument was
based on the theory of caloric, according to which heat is a mass-less, inde-
structible, and hence conserved substance exchanged by systems at different
temperatures. Driving his engine in a reversible manner, i.e. quasi-statically
between equilibrium states, he derived the maximum efficiency that any
heat engine can achieve: that in which no caloric flows in the sink without
performing work, the Carnot’s efficiency. Notably, his derivation was based
mainly on one uncontested observation: it must be impossible to create per-
petual motion of any kind.

The First Law
At Carnot’s times, the most endorsed theory of heat was that of caloric,

which was put forward by Lavoisier and Laplace during the prior century.
In the past, some people questioned this theory in favour of kinetic theories
of heat, according to which mechanical energy and heat are equivalent and
can be converted one into the other1. However, their argument were merely
based on empirical observations, e.g. the heat continuously produced by
friction during the boring of cannons. In contrast, the caloric theory could
still qualitatively, and somehow quantitatively, explain many phenomena
like that of latent heat or the expansion of materials when their temperature
is increased.

It was thanks to the subtle but sound theoretical argument put forward by
J.R. von Mayer, and the exceptional experimental measurements obtained
by J.P. Joule that equivalence between mechanical energy and heat was fi-
nally recognized. Like many before him, Mayer was guided to his conclu-
sion by empirical observations, the most intriguing of which regarded the
heat which had to be produced by animals to keep their body tempera-
ture constant. In contrast to others, he put his argument in a mathematical
framework and derived a quantitative value for the mechanical equivalent
of one unit of heat: it was calculated as the difference between the spe-
cific heat at constant pressure and that at constant volume. On the other
hand, Joule quantitatively measured this value. His idea was to evaluate
the increase of temperature of some system when some controlled and re-
producible amount of mechanical work was spent to heat the system. In
his first experiment, work was spent to produce an electric current which
subsequently heated a surrounding vessel filled with water. In his second
experiment, work was spent to produce motion in a vessel of water, and the
heat was released by friction.

H. von Helmholtz theoretically extended the equivalence of mechanical
energy and heat to electromagnetic phenomena, thus establishing the prin-
ciple of conservation of energy [3], i.e. the first law of thermodynamics

∆U = Q+W (1)

1 The most prominent scholar sustaining this novel theory Count Rumford.
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where ∆U are internal energy changes of a thermodynamic system, W is
the work that the system does on its environment, e.g. lifting a weight or
charging a battery, whereas Q is the heat exchanged with the environment.

The Second Law
It thus became clear that Carnot’s idea of work production in terms of

caloric transfer had to be revised and reconciled with the equivalence of
heat and mechanical energy. W. Thomson, also known as Lord Kelvin, made
the first step by unveiling a subtle constraint on the overall flow of heat in
reversible cyclic operations

∑

r

Qr

Tr
= 0 , (2)

where Qr is the heat reversibly exchanged with the r-th reservoir. In doing
so, he introduced the absolute scale of temperatures, T > 0, i.e. a scale which
is independent from any property of the working substance. Using Thom-
son’s results, R. Clausius made the two decisive steps. First, he understood
that heat transfer between reservoirs and heat conversion into work happen
at the same time in heat engine, and can be both regarded as heat transforma-
tion. In irreversible cyclic processes, the heat transferred between reservoirs
always exceeds that converted in work, and he called the difference between
the two uncompensated heat, nowadays called total entropy change or entropy
production. Second, he introduced the concept of entropy S to describe the
thermal content and the molecular arrangement of the thermodynamic sys-
tem. In this way he could go beyond cyclic transformations, and generalize
Eq. (2) to

∆S =
∑

r

Qr

Tr
+ Σ , (3)

where Σ > 0 is the entropy production, which vanishes solely for reversible
transformations. This equation is a mathematical formulation of the second
law of thermodynamics,

Heat can never pass from a colder to a warmer body without
some other change, connected therewith, occurring at the same
time.

Chemical and Irreversible Processes
During the early development of thermodynamics, chemical processes

were left quite aside. J.W. Gibbs first introduced the chemical potential to
quantify the energetic content of a molecule in a mixture of chemicals, and
used it to define the thermodynamic potentials ruling these mixtures [4].
Several decades later, this enabled T. de Donder to approach the study of
chemical reacting mixtures from a thermodynamic standpoint. He proposed
the concept of affinity to characterize the chemical force irreversibly driving
chemical reactions and related it to the uncompensated heat established
by Clausius [5]. In the meantime, L. Onsager gave a first formulation of
nonequilibrium thermodynamics for small perturbations close to equilib-
rium, the so called linear regime. He thus established his celebrated reciprocal
relations, which are universal symmetries that the phenomenological coeffi-
cients coupling currents to thermodynamic forces (e.g. electrical currents to
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voltage drops, chemical currents to affinities, heat currents to thermal gra-
dients) must obey [6, 7]. These relationships and the ensuing theory of irre-
versible processes, were later extended by H. Casimir, J. Meixner, P. Mazur,
S. de Groot, and I. Prigogine [8]. The last, who perpetuated the Brussels
School founded by de Donder, introduced the assumption of local equilib-
rium to describe irreversible processes in terms of equilibrium quantities [9,
10]. In doing so, he pioneered the connections between thermodynamics
and kinetics of chemical reacting mixtures [11].

Thermodynamics of Computation
The development of thermodynamics was clearly followed by new ques-

tions and paradoxes. Among the most remarkable, J.C. Maxwell conceived
the existence of an intelligent being who was able to exploit thermal fluctu-
ations to violate the second law of thermodynamics. For a gas in two boxes
separated by a tiny gate, this demon would do so by opening the gate in such
a way that fast—and thus hot—molecules are gathered on one side and slow
ones—cold molecules—on the other. Later, L. Szilard designed an engine in
which Maxwell’s demon could extract work from a single heat reservoir. But
he also realized that the acquisition of information regarding the fluctuat-
ing state of the system should come at the same cost as that extracted by
the engine, hence not violating the second law [12]. L.N. Brillouin indeed
conceived a measurement apparatus which would work at the same cost as
that extracted, but he used a specific model rather than an abstract argument
[13]. The crucial intuition of Szilard and Brillouin was that information is
not unrelated from thermodynamics.

In 1961, R. Landauer showed that information processing has an intrinsic
thermodynamics cost [14, 15]. He demonstrated that the erasure of a bit
of information changes the system entropy and hence entails a release of
heat. Therefore, in agreement with the first law, erasure must have an intrin-
sic thermodynamic cost—at least for isoenergetic bit states. This principle
was named after Landauer, as well as the aforementioned bound. Several
decades later, C. Bennett revisited the Szilard’s engine at the light of Lan-
dauer’s result [16] and argued that: since the demon needs to erase the
information previously acquired in order perform the next one, the work
spent in the erasure compensates for that acquired, and the second law is
not violated. His argument was based on the fact that he could conceive
some specific conditions for which measurement was costless.

Chemical Reaction Network Theory and Stochastic Thermodynamics
During the second half of the 20th century, biological processes drew a

significant part of the attention, which increased and diversified the studies
on chemical kinetics and thermodynamics.

One the one hand, the first unsuccessful attempt to establish general
dynamical and thermodynamic principles for systems of reacting chemi-
cal species [17, 18] triggered the interest of mathematicians. Feinberg [19],
and Horn and Jackson [20], formulated a rigorous mathematical description
of deterministic chemical reaction networks, i.e. systems of arbitrary number
of chemically reacting species whose concentrations are described by deter-
ministic rate equations. In doing so they established chemical reaction network
theory, an applied mathematical theory which aims at modelling chemical
processes and understanding what are the connection between the topo-
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logical properties of the network of reactions and its dynamical behaviour.
Indeed, their major result was the discovery of a large class of chemical net-
works whose dynamics is completely determined by their topology, which
they called complex-balanced networks.

On the other side, the interest toward bio-chemical processes also required
the development of stochastic descriptions, since many of these processes
involve low number of molecules, and hence they are highly fluctuating.
These are well described in terms of master equation or chemical master equa-
tion [21–23], which describe, for instance, the probability of observing a
molecule in a certain chemical state or the probability of observing a certain
population of molecules. Among the first, T.L. Hill and coworkers investi-
gated bio-catalysts as small fluctuating machines and introduced the con-
cept of free energy transduction to describe the average work performed by
a chemical force to drive another flow of chemicals against its spontaneous
direction [24, 25]. Networks of bio-chemical reactions were investigated by
Oster and coworkers [26–28], but all these studies were limited to steady-
state processes described in terms of linear chemical reaction networks. The
stochastic as well as the deterministic dynamics of these networks is de-
scribed by linear rate equations for either probabilities or concentrations.

Inspired by these seminal works, J. Schnakenberg understood the crucial
role played by cycles—i.e. cyclic sets of transitions or reactions—for charac-
terizing the steady-state thermodynamics of generic Markov jump processes.
Based on a graph-theoretical approach, he provided the first systematic cy-
cle decomposition of the average entropy production rate [29]—which has
been recently extended to nonsteady-state regimes in Ref. [30]. Beyond
linear networks, the Brussels school, as well as many others, addressed
the thermodynamics of nonlinear chemical reaction networks described by
chemical master equation [31, 32]. Yet, they were mainly focused on steady
states and on the relationship between the stochastic and deterministic de-
scription [33–35].

Nevertheless, these works played a seminal role during the first decade of
the 21st century for the development of Stochastic Thermodynamics [36–39],
which is a rigorous nonequilibrium thermodynamic description for systems
obeying Markovian stochastic dynamics. Within this framework, the first
and second law of thermodynamics could be formulated for stochastic tra-
jectories of systems subject to large fluctuations [40–42]. Remarkably, the
entropy production need not be always positive at this level [43, 44]. This
is manifest in fluctuation theorems, for which stochastic thermodynamics pro-
vided a unifying framework, see e.g. Ref. [38, 45, 46] and references therein.
These relations express fundamental symmetries that the fluctuations of
some thermodynamic observables satisfy arbitrarily far from equilibrium.
For instance, the detailed fluctuation theorem for the entropy production
reads

P(Σ)

P†(−Σ)
= expΣ , (4)

where P(Σ) is the probability of observing Σ entropy production in a given
process, and P†(−Σ) is that of observing −Σ in a conjugated process, e.g.
the time-reversed one, see Sec. [3.4, p. 78]. Hence, observing negative en-
tropy production is possible, but these fluctuations are exponentially hard
to observe.

Stochastic thermodynamics also provided a fresh view on many aspects of
thermodynamics. It enabled to formulate the first thermodynamic descrip-
tions of stochastic chemical reaction networks [47–49], as well as to study
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their fluctuations at the steady state [50, 51]. The performance of molecular
machines like pumps, motors, enzymes, and information-handling systems
could be systematically analysed [52–56], thus extending the seminal works
by Hill. The fluctuations of efficiency in generic stochastic processes were
addressed, thus showing that Carnot’s efficiency can be reached in nonre-
versible processes, but its probability is the smallest among all possible val-
ues [57–60]. Since stochastic thermodynamics naturally encompasses infor-
mation theory, thermodynamics of computation found the ideal framework
in which its concept could be systematically formulated [61–69]. In this way,
clearer—if not definite—answers could be given to the apparent violation of
the second law of Szilard’s engine [70]. General thermodynamic principles
of information processing at the cellular level could also be investigated [71–
75].

conservation laws and thermodynamics
Despite these huge advances, the role of conservation laws in nonequi-

librium thermodynamics remained thus far ignored. Conservation laws
identify quantities which are conserved during the interaction between the
system and its environment. These globally conserved quantities are spe-
cific for each thermodynamic system, and carry information about how the
system globally exchanges system quantities, e.g. energy and particles, with
its environment. In other words, they carry information about the detailed
topological structure of the system plus reservoirs. As we will show, their im-
portance is manifold. On a theoretical level, they enable to formulate generic
yet system-specific nonequilibrium thermodynamic descriptions. Indeed, by
combining conservation laws with the first and second law of thermody-
namics one can provide informative descriptions about the way in which the
system exchanges energy and dissipates. These laws allow to identify the
maximal set of independent nonconservative forces, which are gradients of
intensive fields created by the coupling with multiple reservoirs, e.g. differ-
ences of temperature or chemical potential. These forces are the fingerprint
of nonequilibrium processes, i.e. processes not relaxing to thermodynamic
equilibrium. When these forces vanish, conservation laws determine the po-
tential which is maximized at equilibrium. On a practical level, the analysis
of conservation laws for specific systems fosters a deeper understanding of
these. For instance, let us regard a thermodynamic system as an engine fu-
elled by some forces, e.g. temperature or chemical potential gradients, and
performing work against other load forces. A clearer comprehension of the
fundamental thermodynamic forces coupled to the system thus simplifies
the recognition of fuel and load forces, and hence simplifies performance
analyses. This is especially important for large biochemical processes, e.g.
metabolic ones, whose complexity prevents a first-sight understanding.

In this thesis, we introduce a systematic procedure to identify conserva-
tion laws, we reformulate nonequilibrium thermodynamics by making use
of them, and we demonstrate their importance. This program will be first
carried out at a phenomenological level of description, and then for two
classes of systems: generic systems described by Markov jump processes
and chemical reaction networks. The phenomenological level will enable us
to appreciate the role of conservation laws in absolute terms, since no spe-
cific dynamics will be considered. This level provides the fundamental the-
oretical structure that any thermodynamic system must be compatible with.
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Markov jump processes allow us to introduce conservation laws in the large
class of systems described by stochastic thermodynamics: e.g. molecular mo-
tors, pumps, and small quantum devices. For chemical reaction networks,
we will show that conservation laws are necessary to establish a rigorous
nonequilibrium thermodynamic description, and to relate this description
to chemical reaction network theory.

We have already mentioned that information processing can be regarded
as a thermodynamic process. Since our description is highly general, we will
be able to generalize Landauer’s bound to arbitrary information processing
and for arbitrary dynamics. For chemical reaction networks, this paves the
way for thermodynamics of information in chemical computing, namely
chemical systems designed for computational purposes [76–78].

This thesis is structured in two parts. In the first one, we address the role
of conservation laws in generic nonequilibrium thermodynamic processes.
In Ch. 1, we introduce the fundamental laws of thermodynamics as well as
a phenomenological thermodynamic description based on conservation laws.
In Ch. 2, we consider stochastic Markov jump processes. This chapter con-
sists of two reprinted Articles: Refs. [79, 80]. In the second part of this thesis,
we specialize the aforementioned description to chemical reaction networks.
In Chs. 3, 4, and 5, we formalize the phenomenological, stochastic, and sev-
eral form of deterministic descriptions, respectively. The last two chapters
consists of several reprinted Articles: Refs. [81–85].
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Part I

T H E R M O DY N A M I C S Y S T E M S FA R F R O M
E Q U I L I B R I U M





1 P H E N O M E N O LO G I C A L
D E S C R I P T I O N

In this chapter, we establish a phenomenological formulation of nonequi-
librium thermodynamics that accounts for conservation laws. This formula-
tion provides the fundamental structure that we will recover in the stochas-
tic description discussed in the next chapter.

The plan of this chapter is as follows, we first review equilibrium thermo-
dynamics, Sec. 1.1, the fundamental laws of thermodynamics, Sec. 1.2, and
illustrate the importance of conservation laws using a series of very simple
examples, Sec. 1.3. In Sec. 1.4, we describe systems coupled to multiple
reservoirs without using conservation laws, while in Sec. 1.5, we introduce
a systematic procedure to identify these laws and reformulate our thermo-
dynamic description. In Sec. 1.6, we provide the connection between ther-
modynamics and information processing by generalizing the Landauer’s
bound to arbitrary isothermal processes. Finally, in Sec. 1.7, we discuss
equilibrium states in extensive systems.

notation All nonexact one-forms are denoted using d̄. The Boltzmann
constant kB as well as the gas constant R are set to 1 throughout the thesis.

1.1 equilibrium states
Equilibrium states of thermodynamic systems are completely determined

by the values of some system quantities, U and {Xκ } for κ = 1, . . . , Nκ, and
do not depend at all by the history of the system. Among these quantities,
the internal energy U plays a prominent role in our discussion, whereas
typical instances of others system quantities are the volume V and number
of particles N. In addition to U and {Xκ }, we postulate the existence of
a quantity, the entropy S, which takes its maximum value at equilibrium.
Its equilibrium value, denoted by S, is solely determined by the system
quantities, S = S (U, {Xκ }), and has the following property: Equilibrium
entropy changes due to internal energy changes at fixed {Xκ } are always
positive and define inverse temperatures:

1

T
≡ β :=

∂S

∂U

)

{Xκ }

> 0 . (5)

This property allows us to write the entropy as function of the internal
energy, U = U (S, {Xκ }). The thermodynamic description having S, resp.
U, as main quantity is referred to as the entropy representation, resp. energy
representation, of thermodynamics [1]. We will use both in this chapter, as
we will see that the former better describes the phenomenology related to
the first law whereas the latter that related to the second law.

We now imagine that the equilibrium system undergoes a process which
infinitesimally changes its system quantities. The changes of internal energy

15
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system quantity, Xκ energetic intensive field, gκ

volume, V (negative) pressure, −p
particles number, N chemical potential, µ
magnetization, M magnetic field, H

Table 1: Examples of system quantity–intensive field conjugated pairs.

(resp. equilibrium entropy) define the energetic (resp. entropic) intensive
fields {gκ } (resp. {−βgκ }):

dS = βdU−β
∑
κgκdXκ (6)

dU = TdS+
∑
κgκdXκ , (7)

where

gκ :=
∂U

∂Xκ

)

S,{Xκ ′ }κ ′ 6=κ

= −T
∂S

∂Xκ

)

U,{Xκ ′ }κ ′ 6=κ

. (8)

They quantify the amount of energy (resp. entropy) that needs to be sup-
plied externally to vary Xκ while keeping all other system quantities un-
changed. Table 1 summarizes some gκ–Xκ conjugated pairs.

1.2 fundamental laws of thermodynamics
We now introduce the phenomenological laws of thermodynamics. To

do so, we consider a system exchanging energy U and {Xκ } with with Nr
reservoirs, which we label by r. Reservoirs are regarded as large equilibrium
system whose properties are unaffected by the coupling with the system.
The system is not necessarily at equilibrium, but the conservation of system
quantities requires that the following balance equations hold

dU = ∂U+ d̄iU+
∑
rd̄rU (9a)

dXκ = ∂Xκ + d̄iX
κ +
∑
rd̄rX

κ , for all κ . (9b)

where the exact derivative, d·, denotes the overall changes in the system.
For each balance, the first term on the rhs, ∂·, quantifies the variations due to
external driving, namely purely mechanical manipulations. The second term,
d̄i·, denote the changes due internal transformations, which transform some
system quantities into some other, e.g. chemical reactions. Finally, the third
term, d̄r·, are the variations due to the exchange with the r-th reservoir.

The first contribution in the internal energy balance is the work due to
the external driving,

∂U = ∂W , (10)

which might also be determined by the manipulations of some other system
quantities. For instance, in macroscopic systems, the mechanical work follows
from controlled changes of volume, ∂Wmech = {∂U/∂V}∂V ≡ pmech∂V . We
will refer to this type of work as driving work contributions.

Regarding the reservoirs, their thermodynamic properties in the intensive
fields, βr (or equivalently Tr) and {g(κ,r) }. They may possibly change due
to external driving, and their variations are denoted using ∂. Processes occur-
ring without any form of external driving, ∂· = 0, are said undriven.
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1.2.1 The First Law
Since each reservoir is at equilibrium, Eq. (7) holds for the changes of

system quantities in the reservoirs,

d̄rU = d̄rQ+
∑
κgκd̄rXκ (11)

where

d̄rQ = Trd̄rS (12)

is minus the heat flow in the r-th reservoir. Inserting this equation in the
energy balance (9a) we obtain the traditional expression of the first law of
thermodynamics

dU = ∂W +
∑

r,κ
d̄rWκ + d̄Q (13)

where

d̄Q :=
∑
rd̄rQ (14)

is the overall heat flow, and

d̄rWκ := g(κ,r)d̄rXκ (15)

are autonomous work contributions [2]. This type of work accounts for energy
changes due to autonomous exchanges of system quantities with the reser-
voirs. The chemical work is a contribution of this type, d̄Wchem =

∑
rµrd̄rN,

see Ch. 3, [1, Eq. 2.9]. We also emphasize that in our general setting d̄Q
does not account solely for thermal heat (i.e. the heat exchanged with ther-
mal reservoirs), but also other form of heat exchanged with other types
of reservoirs, see for instance Eq. [(64) and (65), p. 118] in the context of
chemical reaction networks. In this respect, we remark that the common
identification of heat as solely the thermal energy exchanged with a ther-
mal reservoir is no more than a point of view. On the one hand, it is already
clear that the definition of heat flow in nonequilibrium thermodynamics is
not unique [3, Sec. III.3]. On the other hand, if one conceive thermodynam-
ics as a science of symmetries rather than of mere transformation of energy,
one can build thermodynamic systems in which internal energy plays no
role and nonetheless heat is well defined [4].

1.2.2 The Second Law
In addition to the balance of system quantities, thermodynamics estab-

lishes the unbalance of entropy,

d̄Σ = dS− ∂S−
∑
rβr d̄rQ = dS− ∂S+

∑
rd̄rS > 0 , (16)

where d̄Σ is the entropy production. It is the sum of the entropy change
in the system not due to driving, (d − ∂)S, plus the sum of heat flows in
the reservoirs times their inverse temperatures. Similar to the internal en-
ergy, entropy changes due to driving might be caused by manipulations of
other system quantities. According to the second law of thermodynamics, d̄Σ
is always non-negative and vanishes only for reversible processes. Since
all reservoirs are constantly at equilibrium, we can use Eq. (11)—or equiva-
lently (6)—to recast the last term

d̄Σ = dS− ∂S−
∑
r

[
βrd̄rU−βr

∑
κg(κ,r)d̄rXκ

]
> 0 . (17)
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Reservoir

βr
−βrµr

System

U

N

Figure 1: Schematic illustration of the system considered in the Example 1.

In this form, the dissipation is related to the changes of system quantities in
the reservoirs.

1.3 conservation laws: illustrative exam-
ples

We now introduce and illustrate the role of conservation laws using a
series of three examples.

1.3.1 Example 1. System in contact with one reservoir
Let us consider an undriven system exchanging internal energy and par-

ticles with a reservoir at inverse temperature βr and chemical potential µr,
see Fig. 1. For the sake of simplicity, the related system quantities U and
N are subject to neither internal transformations nor external driving, and
hence their balance equations read

dU = d̄rU , and dN = d̄rN . (18)

By combining these balances and using the equilibrium properties of the
reservoir, Eq. (11), we obtain

dH = d̄rQ (19)

where

H := U− µrN (20)

is reminiscent of the thermodynamic potential obtained as a Legendre trans-
form of U wrt N. It is however a nonequilibrium potential, since the system
in not necessarily at equilibrium. This potential can be understood as the
portion of internal energy which is not attributed to its chemical composi-
tion, and its changes quantify the heat flow during the process [2].

Dissipation is quantified by the entropy production, Eq. (17),

d̄Σ = dS−βr (d̄rU− µrd̄rN) , (21)

which combined with the other balances, Eq. (18), gives

d̄Σ = dΦ , (22)
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where

Φ := S−βr (U− µrN) , (23)

is reminiscent of the Massieu potential corresponding to the grand poten-
tial. We recall that Massieu potentials are thermodynamic potentials in the
entropy representation [1, Secs. 5-4 and 19-1] [5, Sec. 3.13]. In our case, Φ
can be regarded as the part of entropy which is attributed to neither its ther-
mal nor chemical composition. In other words, it quantify the entropy freely
produced, as its variations determine the entropy production.

At equilibrium, d̄Σ = 0 implies that dΦeq = 0. Since the system is at
equilibrium, its entropy changes reads as in Eq. (6), and we obtain

0 = dΦeq = (β−βr)dU− (µ− µr)dN . (24)

Since the changes of U and N are independent, this equation requires that
β = βr and µ = µr, namely the system temperature and chemical potential
equal those of the reservoirs.

In this first example, we recovered traditional equilibrium thermodynam-
ics from a nonequilibrium description.

1.3.2 Example 1+1/2. Driven System in contact with one reservoir
For the sake of illustrating the effect of driving, let us imagine that the

internal energy and the chemical potential of the reservoirs are manipulated
by an (not clearly identified) external agent: ∂U 6= 0, ∂S 6= 0, and ∂µr 6= 0.
The balance of energy now reads

dU = ∂U+ d̄rU , (25)

and by combining it with the balance for N and Eq. (11) we obtain

dH = ∂H+ d̄rQ , (26)

where we have used Eq. (20) and the identity d (µrN) = ∂µrN+ µrdN. The
second term on the rhs is distintive of driving,

∂H = ∂U− ∂µrN , (27)

as it accounts for the manipulation of energy and chemical potential of the
reservoir. It is clear, though, that these contributions have completely differ-
ent nature: The first accounts for direct changes of energy, while the second
changes the energy indirectly by changing the thermodynamic properties of
the reservoir. Despite this important difference, we will refer to both terms
as driving work.

Analogously, for the entropy balance we obtain

d̄Σ = dΦ− ∂Φ , (28)

where Φ is given as in Eq. (23) and teh second term on the rhs reads

∂Φ = ∂S−βr∂U+ ∂µrN . (29)

The latter term accounts for the dissipation due the driving mechanisms.
In this example we showed that driving introduces a new work and dis-

sipative contributions. It is clear that they must vanish at equilibrium, else
the entropy production would be different from zero.
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Figure 2: Schematic illustration of the system considered in the Example 2.

1.3.3 Example 2. System in contact with multiple reservoirs
Let us consider the same system as in Example 1 (no driving), but now ex-

changing energy and matter with three reservoirs, each with its own fields,
as in see Fig. 2. The balance equations for these quantities read

dU =

3∑

r=1

d̄rU , and dN =

3∑

r=1

d̄rN . (30)

By combining these equations and using the equilibrium properties of the
reservoirs, we get

dH =

3∑

r=2

(
µr − µ1

)
d̄rN + d̄Q (31)

where

H := U− µ1N . (32)

is a nonequilibrium potential similar to those discussed in the previous ex-
ample. We used the first reservoir as a reference, and its chemical potential
appears in this potential. The first term on the rhs of Eq. (31) vanishes in
presence of only one reservoir, cf. Eq. (19), and quantifies the energetic cost
of transferring particles between the first and the other two reservoirs. In
Eq. (31), d̄Q =

∑
rd̄rQ is the total heat flow.

Concerning the entropy balance, the entropy production now reads

d̄Σ = dS−
3∑

r=1

βr (d̄rU− µrd̄rN) , (33)

which combined with the other balances gives

d̄Σ = dΦ+

3∑

r=2

(
β1 −βr

)
d̄rU+

3∑

r=2

(
βrµr −β1µ1

)
d̄rN , (34)

where

Φ := S−β1 (U− µ1N) , (35)

is the nonequilibrium Massieu potential corresponding to the grand poten-
tial. The first term is the dissipative contribution due to overall changes of
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Figure 3: Schematic illustration of the system considered in the Example 3.

system quantities and uses the thermodynamic properties of first reservoirs
as a reference. Since the system is coupled to three reservoirs and each of
them tries to impose its own equilibrium, four nonconservative force–flow
contributions arise. They quantify the dissipation due to the flow of thermal
and chemical energy between the first reservoir and the other two.

For the system to be at equilibrium, d̄Σ = 0, all nonconservative forces
need to vanish independently, which follows when β1 = β2 = β3 and
µ1 = µ2 = µ3. The changes of Massieu potential also need to vanish, which
entails that the system intensive fields equal those of the reservoirs: β = β1
and µ = µ1.

In this second example we saw that in presence of multiple reservoirs, en-
ergetic and dissipative contributions due to exchanges of system quantities
with the reservoirs arise. We now remark that we said nothing about the
properties of the system, which has been treated as a black box. The question
which we will answer in the next section is in which way the knowledge of
its specifications improves this thermodynamic description.

1.3.4 Example 3: System-specific description: conservation laws
We now consider the system described in the previous example, but a

detailed inspection inform us that the system is divided into an upper and
a lower part, see Fig. 3. The former exchanges energy and particles with the
first reservoir, while the latter with the other two reservoirs. Only thermal
energy can be transferred between these parts as particle transfers are for-
bidden. This revealed constraint introduces a new balance equation since
the number of particles in the upper and lower part of the system, Nu and
Nd respectively, are now separately conserved:

dNu = d̄1Nu , and dNd =

3∑

r=2

d̄rNd . (36)

The total number of particles is clearly recovered as N = Nu +Nd. Upon
combination of these balances with the energy balance and the first law of
thermodynamics, Eq. (13), we obtain

dH =
(
µ3 − µ2

)
d̄3N + d̄rQ , (37)

where

H := U− µ1N
u − µ2N

d (38)
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is a system-specific nonequilibrium potential. Notice that we have now used
the chemical potentials of the first and the second reservoir as a reference.
The first term on the rhs is the energetic cost associated to the transfer of
particle between the second and the third reservoirs.

Analogously, the knowledge of the additional balance allows to recast the
entropy production into

d̄Σ = dΦ− ∂Φ+

3∑

r=2

(
β1 −βr

)
d̄rU+

(
β3µ3 −β2µ2

)
d̄3N , (39)

where

Φ := S−
(
β1U−β1µ1N

u −β2µ2N
d) , (40)

is the nonequilibrium Massieu potential corresponding to a system-specific
grand potential. By comparing Eqs. (34) and (39) we notice that the Massieu
potential contains an additional term, which comes from the additional bal-
ance. In contrast, the number of nonconservative dissipative contributions
is decreased by one, since the additional constraint prevents some particle
flows. In summary, one nonconservative contribution is recognized as a
conservative one and it is included in the potential.

For the system to be at equilibrium, the three nonconservative forces must
independently vanish, which implies that: β1 = β2 = β3 =: βr and µ2 = µ3.
Notice that now that we have more information about the system, we learn
that µ1 need not be equal to µ2 and µ3. Finally, dΦeq = 0, implies that
β = β1, µu = µ1 and µd = µ2. In other words, the system temperature
equals that of the reservoirs, the upper part of the system is characterized
by a chemical potential equilibrated with that of the first reservoir, and the
lower part by one equilibrated with the second and third reservoir.

We now argue that the system quantities U, Nu, and Nd, can be regarded
as a particular class of conserved quantities in two respects. First, they are
system-specific—not all systems are split in two parts. Second, they do not
change due to internal transformations. Hence, if the system were isolated,
d̄r· = ∂=̇0, they would be constants, but the driving or the coupling with
the reservoirs breaks them. We will refer to the conservation laws corre-
sponding to these type of conserved quantities as broken conservation laws.
The benefit of identifying these laws is clear from this example: they allow
us to clearly separate the nonconservative energetic and dissipative contri-
butions from the conservative ones. Additionally, they allow to accurately
determine what are the conditions so that the system is at equilibrium.

1.4 systems in contact with multiple reser-
voirs

We now proceed to construct a formulation of nonequilibrium thermody-
namics which generalizes the observations drawn in the previous examples.
In this section, we generalize the case of the second example, in which the
system is treated as a black box and no system-specific conservation law is
used. For the purpose of identifying the different energetic and dissipative
contributions, we will combine the balances of system quantities with the
first and second law of thermodynamics.
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Choosing the first reservoir as a reference, we can rewrite Eq. (9b) as

d1Xκ = dXκ − ∂Xκ − d̄iX
κ −
∑

r6=1
drXκ . (41)

Since

d
(
g(κ,r)X

κ
)
= dg(κ,r)X

κ + g(κ,r)dXκ = ∂g(κ,r)X
κ + g(κ,r)dXκ , (42)

the previous equation can be combined with the energy balance, Eq. (9a), to
give

dH = d̄iH+ ∂H+
∑

κ,r6=1

(
g(κ,r) − g(1,κ)

)
drXκ + d̄Q . (43)

where we introduced the nonequilibrium generalized enthalpy,

H := U−
∑
κg(κ,1)X

κ . (44)

Indeed, H recalls the thermodynamic potential obtained as a Legendre
transform of U wrt all other system quantities. It is clearly defined up
to a closed zero-form ϕ, dϕ = 0, which we omit for brevity. Equation (43)
combines the changes of all system quantities in one balance. The first term
on the rhs quantifies the overall nonequilibrium enthalpy changes due to
internal transformations, whereas the second those due to external manipu-
lations. The third term accounts for the transfer of Xκ from the first reservoir
to the r-th, and the last one is the overall heat flow.

As for the energy balance, we now combine the entropy balance with
all other balances. By choosing again the first reservoir as a reference, we
obtain

d̄Σ = dΦ− d̄iΦ−∂Φ+
∑

r

(
β1−βr

)
d̄rU+

∑

r,κ

(
βrg(κ,r) −β1g(κ,1)

)
d̄rXκ ,

(45)

where

Φ := S−β1

(
U−
∑
κg(κ,1)X

κ
)
≡ S−β1H (46)

is reminiscent of a Massieu potential obtained as a Legendre transform of
the entropy with respect to all other system quantities. In contrast to the
terms appearing in Eq. (43), those in Eq. (45) are dissipative contributions
rather than enthalpic changes. The first two terms quantify the dissipation
due to overall changes of system quantities and those due to internal trans-
formations, respectively. The third term characterizes the dissipation corre-
sponding to the external manipulations, whereas the fourth and fifth term
quantify that due to the exchange of thermal energy and Xκ between the
first and the r-th reservoir. These nonconservative force–flow contributions
are the distinctive feature of systems coupled to multiple reservoirs. Since
each of them tries to impose its own equilibrium the system is in general
prevented from reaching equilibrium.

At this level of description, equilibrium (d̄Σ = 0) is reached when the
following conditions are satisfied. (i) all reservoirs have the same intensive
fields, βr = β1 and g(κ,r) = g(κ,1) for all r, since in this way all non-
conservative force–flow contribution vanish. (ii) external manipulations are
stopped ∂Φ = 0. (iii) the changes of Φ due to internal transformations van-
ish, d̄iΦeq = 0. Finally, (iv) the overall changes of Φ vanish, dΦeq = 0. At
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equilibrium, system entropy changes can be written as in Eq. (6), and hence
the latter requirement reads

0 = dΦeq = (β−β1)dU−
∑
κ

(
gκ − g(κ,1)

)
dXκ , (47)

where β and {gκ } are the intensive fields of the system at equilibrium. Since
the changes of all system quantities are independent, this equation implies
that β = β1, and gκ = g(κ,1) for all κ. In other words, all system fields
become well defined and equal to those of the reservoirs. We notice that
the requirement (iii) is not written in terms of properties of the intensive
fields—as for the conditions (i) and (iv)—, but rather as a condition on the
internal state of the system, which cannot be elucidate further. This is a
consequence of treating the system as a black box.

We described in this section a black-box description of nonequilibrium ther-
modynamics: we made no mention of the properties of the system. Combin-
ing the balances of system quantities give us incomplete information about
both the nature of the different energetic and dissipative contributions, and
the conditions for equilibrium, which cannot be completely characterized in
terms of properties of the reservoirs.

1.5 system-specific thermodynamics
In this section, we will reconsider the problem of identifying the energetic

and dissipative contributions characterizing a given process, but we will
make use of the properties of the system. These properties are encoded in
its topological structure and determine its broken conservation laws. We
will thus introduce a systematic procedure to identify them. But to do so,
we first rewrite the laws of thermodynamics in a more compact way.

We define the index y := (r, κ̄) as that labelling the system quantity κ̄ ex-
changed with the reservoir r. The index κ̄ labels all system quantities including
the internal energy. The changes of each system quantity due to each reser-
voir can be thus encoded in a vector of exchange one-forms { d̄Xy := d̄rXκ̄ }.
Similarly, we collect all intensive fields in a vector, {gy := g(r,κ̄) }, where
g(r,U) = −1. We denote by βy the inverse temperature of the reservoir cor-
responding to y: βy = βr for y = (r, κ̄). First and second law, Eqs. (13) and
(16), can be thus recast into

0 = d̄Q+ ∂W +
∑
ygyd̄Xy (48)

d̄Σ = dS− ∂S+
∑
yβygyd̄Xy > 0 . (49)

1.5.1 Cyclic Transformations and Broken Conservation Laws
We define instantaneous cyclic transformations, denoted by γ, as any system

transformation which does not involve driving, ∂· = 0, and in which the
microscopic state of the system is overall unchanged. It is clear that all
exact one-forms vanish along these transformations, i.e.

∮

γ
dO = 0 , for any state observable O . (50)

For instance, a cyclic transformation for the system in Sec. 1.3.4 is one in
which nmolecules enter in the lower part part of the system from the second
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reservoir and then exit from the third one. Notice that cyclic transformations
encode the topological structure of the system.

We introduce broken conservation laws, as y-space vectors `y, satisfying

∑
y`y

∮

γ
d̄Xy = 0 , for all γ . (51)

Broken conservation laws identify broken conserved quantities, whose balance
is given by

dL = ∂L+
∑
y`yd̄Xy . (52)

These equations can be understood as follows. Equation (51) identifies a
combination of exchange terms which leaves the internal state of the system
unchanged upon any instantaneous cyclic transformation. This combination
must correspond to an exact one-form, dL :=

∑
y`yd̄Xy, which generalizes

to Eq. (52) when L is externally manipulated. Clearly, L is defined up to a
zero-form. Notice that the changes of L are due to either external manip-
ulations or the coupling with the reservoirs, and not to internal transfor-
mations. If the system were isolated, L would be conserved in the system,
dL = 0, which motivates a posteriori the name broken conserved quantity.

A complete set of broken conservation laws is defined as a maximal set
of independent vectors in the y-space which satisfy Eq. (51), and we denote
it by { `λy }, for λ = 1, . . . , Nλ. The corresponding conserved quantities are
denoted by {Lλ }. System quantities that are not subject to internal transfor-
mations are trivial cases of broken conserved quantities. Their balance is
recovered for `κ̄

′
(r,κ̄) = δ

κ̄ ′
κ̄ .

1.5.2 System-specific Energy and Entropy balance
We now proceed to reformulate the laws of thermodynamics using the

broken conserved quantities. Since { `λ } are linearly independent, it is al-
ways possible to identify Nλ exchanged quantities, labelled by yp, such that
the matrix whose row vectors are { `λyp }, for λ = 1, . . . , Nλ, is nonsingular.

We denote by { ¯̀yp
λ }, for λ = 1, . . . , Nλ, the column vector of the correspond-

ing inverse matrix. All other exchanged quantities are denoted by yf. There-
fore, Eq. (52) can be recast into

d̄Xyp =
∑
λ

¯̀yp
λ (dLλ − ∂Lλ) −

∑
λ

¯̀yp
λ

∑
yf
`λyf

d̄Xyf , (53)

i.e. the changes of yp can be related to the changes of the set of conserved
quantities, {dLλ } and {∂Lλ }, and the remaining exchange terms, { d̄Xyf }.
Using this equation, the first law, Eq. (48), can be recast into

dH = ∂H+
∑
yf
Kyf d̄X

yf + d̄Q , (54)

where

H := −
∑
λgλLλ (55)

is a system-specific nonequilibrium generalized enthalpy,

gλ :=
∑
yp
gyp`

yp
λ (56)

are the energetic intensive fields conjugated to the conservation laws, and

Kyf := gyf −
∑
λgλ`

λ
yf

. (57)
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are differences of intensive fields. Concerning the second law, Eq. (49), using
Eq. (53), we obtain

d̄Σ = dΦ− ∂Φ+
∑
yf
Fyf d̄X

yf (58)

where

Φ := S−
∑
λfλLλ (59)

is a system-specific nonequilibrium Massieu potential, and

fλ := −
∑
yp
βypgyp`

yp
λ (60)

are the entropic intensive fields conjugated to the conservation laws. The
nonconservative forces read

Fyf := βyfgyf +
∑
λfλ`

λ
yf

. (61)

Equations (54) and (58) are the main result of this chapter. The funda-
mental enthalpic and dissipative contributions, i.e. internal, driving, and
transport between reservoirs, are completely separated, thanks to the use
of conservation laws. The driving term ∂H (resp. −∂Φ) quantifies the en-
thalpic cost (resp. dissipation) of external manipulations, and vanish in
nondriven systems. The nonconservative force–flow terms Kyf d̄X

yf (resp.
Fyf d̄X

yf ) quantify the enthalpic cost (resp. the dissipation) of transporting
system quantities from some reservoir to some other. Finally the conserva-
tive term dΦ appearing in the entropy balance accounts for the dissipation
due to internal transformations. Wrt Eq. (43) and (45) we notice that: (i) the
contributions due to internal transformation are disappeared; (ii) the terms
appearing in the potentials H and Φ now account for broken conservation
laws, which are invariant under internal transformations; (iii) the noncon-
servative forces now account for both the presence of constraints prevent-
ing the flow between some reservoirs (as seen in the illustrative example)
and the possibility that internal transformations create pathways between
reservoirs of different system quantities (see example in Part ii). In this
respect, { Fyf } is a set of fundamental nonconservative forces as they are max-
imal and independent: if and only if they all vanish, the system can relax
to equilibrium when undriven. Indeed, since all contributions in Eq. (58)
are independent one another, they must independently vanish at thermody-
namic equilibrium, d̄Σ = 0. Specifically, Fyf = 0 for all yf, means that the
reservoirs do not develop gradients of intensive fields which create flows
across the system. ∂Φ = 0 requires that the system is not manipulated, and
dΦeq = 0 implies that all system intensive fields { fsλ } are well defined and
equilibrated with those of the reservoirs { fλ }.

We point out that the relationship between the fundamental forces { Fyf }

and {Kyf }, Eqs. (57) and (61), is nontrivial:

Fyf =
∑
yp

[
βyf −βyp

]
gyp

∑
λ`
yp
λ `

λ
yf

+βyfKyf . (62)

This entails that Fyf = 0 < Kyf = 0, and therefore {Kyf } cannot be inter-
preted as fundamental forces: they could vanish in a system prevented from
reaching equilibrium, as well as be finite in a system relaxing to equilibrium.

We finally emphasize that Eqs. (54) and (58) hold for arbitrary systems
and arbitrarily far from equilibrium. They are based on the laws of ther-
modynamics, on the fact that the reservoirs are at equilibrium, and on the
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possibility of attributing system quantities and entropy to the overall system.
In Chs. 2, 4, and 5 we will discuss several classes of micro- and macro-scopic
dynamics for which these results are recovered.

We conclude our main discussion with two important remarks and then
consider some specific classes of processes.

remark The decompositions in Eqs. (54) and (58) are not unique since
they depend on the partitioning of y in yp and yf. We recall that not all
partitioning are allowed since `λyp needs to be nonsingular, but Nyp = Nλ
and Nyf = Ny −Nλ.

remark A detailed inspection of the system could reveal that the system
is characterized by some constants of motion, or unbroken conservation laws,
namely a set of closed zero-forms {Lυ } for υ = 1, . . . , Nυ, such that dLυ = 0.
We have already mentioned that all conservation laws are defined up to a
closed zero-form. Let us therefore consider the following gauge transforma-
tion of the conserved quantities

Lλ → Lλ +
∑
υΩ

λ
υLυ (63)

where {Ωλυ } are real coefficients. It is clear that

dLλ → dLλ , (64)

but the changes of system-specific potentials are not left unchanged

dH→ dH−
∑
λ∂gλ

∑
υΩ

λ
υLυ

dΦ→ dΦ−
∑
λ∂fλ

∑
υΩ

λ
υLυ .

(65)

Crucially, the extra gauge terms appearing on the rhs disappear in the en-
ergy and entropy balances, Eqs. (54) and (58), since it cancels with term
arising from the driving terms. We have thus shown that the potentials and
the related driving terms are defined up to a gauge, which overall does not
affect any balance equation. Notice also that the gauge term disappears
from the energy and entropy balances, Eqs. (54) and (58), for nondriven
systems as well as under cyclic transformations.

1.5.3 Isothermal Processes
For isothermal processes all reservoirs are characterized by the same in-

verse temperature, βr, and hence the entropy balance, Eq. (49), can be writ-
ten as

d̄Σ = dS+βr
∑
ygyd̄Xy > 0 . (66)

By making use of conservation laws, we obtain

d̄Σ = dΦ− ∂Φ+βr
∑
yf
Kyf d̄X

yf , (67)

where the system-specific Massieu potential becomes

Φ = S−βrH . (68)

Indeed, the entropic intensive fields conjugated to conservation laws can be
written in terms of the energetic ones,

fλ = −βrgλ , (69)

and Eq. (62) guarantees that Fyf = βrKyf . Therefore, only for isothermal
processes Fyf = 0⇔ Kyf = 0, which implies that also {Kyf } can be regarded
as fundamental forces.
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1.5.4 Adiabatic Processes
In adiabatic processes no heat is exchanged, d̄Q = 0, and hence the energy

balance reads
∑
ygyd̄Xy = dH− ∂H−

∑
yf
Kyf d̄X

yf = 0 (70)

whereas the entropy one

d̄Σ = dS . (71)

Since heat is not exchanged, all kind of thermal and chemical reservoirs
do not appear. The exchanged system quantities are restricted to purely
mechanical ones like for instance the volume.

1.6 nonequilibrium landauer principle
We now reconsider Eq. (58) from an information theoretical perspective,

and for the sake of simplicity we consider isothermal processes, Eq. (67).
We have already mentioned that when all fundamental forces vanish and
the variations of intensive fields are stopped, the overall dissipation is d̄Σ =

dΦ > 0 and it vanishes at equilibrium, dΦeq = 0. Therefore, we can assume
that Φ is maximized at equilibrium, and we rewrite it as

Φ = Φeq −D , (72)

where Φeq is the equilibrium potential maximizing Φ, and the generalized
relative entropy D > 0 quantifies the deviation of Φ from equilibrium: the
larger D is, the further the system is from equilibrium, and it vanishes solely
at equilibrium. By combining this equation with Eq. (67), we can recast the
latter into

−∂Φirr +βr
∑
yf
Kyf d̄X

yf = dD+ d̄Σ > dD , (73)

where

−∂Φirr = dΦeq − ∂Φ = ∂
(
Φeq −Φ

)
(74)

is an irreversible driving dissipative contribution—notice its gauge invariance.
In the last equality, dΦeq = ∂Φeq, accounts for the fact that the equilibrium
state changes because of the external manipulation.

Equation (73) is an important result which relates the dissipative cost
of transforming the system via either external driving or nonconservative
forces, to its deviation from equilibrium, D. Since the total entropy change
is always positive, dD determines the minimal dissipative cost of this trans-
formation. It is negative (entropy released by the system) when approach-
ing equilibrium, and positive (entropy flowing in the system) when moving
away from it. If we multiply both sides by Tr, and integrate Eq. (73) over a
process, we obtain

−Tr

∫
∂Φirr +

∑
yf

∫
Kyf d̄X

yf = Tr∆D+ Tr

∫
d̄Σ > Tr∆D . (75)

In this form, the lhs represents the work, either due to driving or nonconser-
vative mechanisms, that is spent to transform the system from two arbitrary
nonequilibrium states. The difference Tr∆D thus quantifies the minimal
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thermodynamic cost of transforming the system. For systems starting at
equilibrium, Tr∆D = TrDfinal > 0 quantifies the minimal cost of structuring
the final nonequilibrium state. In contrast, for system relaxing to equilib-
rium, Tr∆D = −TrDinitial 6 0 quantifies the maximum amount of work that
can be extracted during the relaxation. For transformations between equilib-
rium states (Kyf = 0 for all yf), we recover the classic result, −Tr

∫
∂Φirr > 0.

We will refer to the bound on the work contributions expressed in Eq. (75)
as nonequilibrium Landauer principle, but we postpone the justification for
this name to the next chapter, where we specialize it to stochastic processes.
We finally remark that a generalization of this principle to nonisothermal
processes is possible but requires care, as we explain in the reprinted article
at p. 37.

1.7 equilibrium states of extensive systems
We conclude this section by discussing the equilibrium Massieu potential

for those systems whose equilibrium entropy is extensive: if the system is
scaled by a, then the equilibrium entropy scales by a as well. In other words,
S satisfies Euler equation

S({aLλ } , {aLυ }) = aS({Lλ } , {Lυ }) , for any a . (76)

where {Lυ } is a set of unbroken conserved quantities, i.e. system quantities
which are not exchanged with the reservoirs: dLυ = 0. Taking the derivative
wrt a and imposing a = 1, we recover Euler theorem,

S({Lλ } , {Lυ }) =
∑
λf

s
λLλ +

∑
υf

s
υLυ . (77)

Since the system is at equilibrium with its reservoirs, { fsλ } must be equal to
those in Eq. (60). We can thus write the system-specific equilibrium Massieu
potential as

Φeq =
∑
υf

s
υLυ . (78)

In conclusions, when assuming that the equilibrium entropy is extensive
the equilibrium Massieu potential becomes a combination of unbroken con-
served quantities.
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2 S TO C H A S T I C D E S C R I P T I O N
In Ch. 1 we established a phenomenological description of generic ther-

modynamic systems far from equilibrium. We made no mention of the mi-
croscopic dynamics which determines the evolution of the system. Nonethe-
less, conservation laws enabled us to clearly separate the various types of
energetic and dissipative contributions.

We have already introduced stochastic thermodynamics as a nonequilib-
rium thermodynamic description for systems whose stochastic dynamics
is Markovian. In the following reprinted Article, we present the first gen-
eral formulation of stochastic thermodynamics for Markov jump processes
which makes full use of conservation laws. In this setting, the microscopic
configurations of the system are described as states {n } whereas the transi-
tions from one state to another, { e }, are stochastic events. The evolution in
time of the probability of finding the system in the state n, pn, is ruled by
the master equation, Eqs. [(1), p. 38] and [(5), 73], whose timeless expression
reads

dpn =
∑
eD
n
e d̄ζe , (79)

where the incidence matrix D encodes how the states are connected by tran-
sitions, and { d̄ζe } are the extent of transitions that count their occurrence.
At an average level, the values of the system quantities are replaced by their
averages, e.g. Xκ =

∑
nX
κ
npn, where Xκn is the value of the system quantity

in the state n. Their balance equations, Eq. (9), can be thus written as

dXκ =
∑
ndXκnpn +

∑
e

∑
nX
κ
nD

n
e d̄ζe

=
∑
n∂X

κ
npn +

∑
e (δiX

κ
e +
∑
rδrX

κ
e) d̄ζe

(80)

where dXκn = ∂Xκn are changes due to driving, while δiX
κ
e and δrXκe encode

the changes due to internal transformations and exchanges with the reser-
voir r along the transition e, see Eqs. [(5), p. 39] and [(62), p. 83]. The average
system entropy is given by Gibbs–Shannon expression

S =
∑
npn (Sn − lnpn) , (81)

where Sn is the internal entropy of the state n, Eq. [(78), p. 87]. The con-
nection between the stochastic dynamics (79) and thermodynamics (80) lies
the local detailed balance property, Eqs. [(6) and (7), p. 40] and [(65) and (66),
p. 84]. In its timeless formulation, it relates the ratio of forward and back-
ward extent of transition to the entropy production along the latter, i.e. the
affinity, see Eqs. (17) and (49),

ln
d̄ζe

d̄ζ−e
=
∑
yβygyδX

y
e +
∑
n (Sn − pn)D

n
e = δΣe ≡ Ae , (82)

where δXye := δrX
κ̄
e follows the notation introduced in Sec. 1.5. Once the

fundamental laws of thermodynamics are built on top of the stochastic dy-
namics, we can use the procedure described in Sec. 1.5.1 to identify bro-
ken conservation laws, Eqs. [(10) and (11), p. 41] and [(63) and (64), p. 84].
Using the balances of the corresponding conserved quantities we are thus
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Figure 4: Schematic illustration of the erasure of one bit of information. The bit is
modeled as a double-well potential, in which each well correspond to a
logic state. We have no prior knowledge of the information stored in the
bit, and hence the probability to find it in 0 or 1 is equally likely. Since the
wells have the same energy and shape, the system is at equilibrium. At
the end of the erasure procedure, the system is in a nonequilibrium state,
as it is in 0 (or equivalently 1) with probability 1.

able to reproduce the phenomenological description discussed in Sec. 1.5,
see Sec. [5.1–2 p. 49]. Importantly, our stochastic formulation provides
us with a clearer understanding of the dissipative entropy production con-
tributions in Eq. (58). Indeed, we show that each of them is distinctive
for a class of processes: dΦ for relaxation to equilibrium, −∂Φ for time-
dependently driven processes, and { Fyf d̄X

yf } for nonequilibrium steady
states, see Tab. [3, p. 46].

The stochastic thermodynamic formulation of the nonequilibrium Lan-
dauer principle discussed in Sec. 1.6 is also derived, Sec. [5.3–4 p 50]. Here,
the generalized relative entropy introduced in Eq. (72) assumes an informa-
tion theoretical significance, as we show it to be a relative entropy [1]

D ≡ D(p‖pref) =
∑

n

pn ln
pn

p
eq
n

> 0 . (83)

This quantity can be regarded a measure of the dissimilarity between the
nonequilibrium probability mass function pn and peq

n , which is the equilib-
rium probability mass function obtained when turning off the fundamental
forces, Fyf = 0 for all yf, stopping the driving, −∂Φ = 0, and letting the
system relax to equilibrium.

We now mention that the specialization of Eq. (75) to closed isothermal
stochastic processes (no matter exchange) first appeared in the framework of
stochastic thermodynamics as a generalization to nonequilibrium conditions
of the Landauer principle [2, 3]. In its original formulation, this principle
quantifies the minimal cost of erasing a bit of information, which can be
regarded as a process of transforming a bit from an equilibrium state (bit
equally likely to be found in 0 or 1) to a nonequilibrium state (bit found
with probability one in 0), see Fig. 4. Equations (73) and (75), generalize
this principle to any form of isothermal information processing, and for this
reason we keep calling it nonequilibrium Landauer principle. In Eqs. [(74) and
(76), p. 50], this principle is specialized to arbitrary isothermal stochastic
processes.

We also formulate our nonequilibrium thermodynamic description at the
level of single stochastic trajectories. At this level, all thermodynamic quan-
tities described in Ch. 1 can be regarded as fluctuating quantities rather than
averages Sec. [3.1–2, p. 45]. The importance of our entropy production de-
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composition, Eqs. (58) and [(36), p. 45], will be emphasized as we show that
the fluctuating expressions of −∂Φ and { Fyf d̄X

yf } satisfy a fluctuation the-
orem, Eq. [(55), p. 47]. We recall that these relations are symmetries that the
fluctuations of some thermodynamic observables obey arbitrarily far from
equilibrium, see Eq. (4).

We further elaborate on fluctuation theorems in the second reprinted Ar-
ticle, p. 71, in which a unifying perspective on several of these relations
is presented. This unification hinges on the following entropy production
decomposition

d̄Σ =
∑
eA

ref
e d̄ζe︸ ︷︷ ︸

=: d̄Σnc

+
∑
npn∂ψ

ref
n︸ ︷︷ ︸

=: d̄Σd

−dD(p‖pref) (84)

[(14)–(19), pp. 75–76], which is achieved when introducing a reference prob-
ability mass function, pref

n = exp−ψref
n , and the related affinities

Aref
e := ln

d̄ζref
e

d̄ζref
−e

= ln
d̄ζe

d̄ζ−e
+
∑
n

(
ψref
n − lnpn

)
Dne (85)

[(12) and (13), p. 74]. As we demonstrate, several known entropy produc-
tion decompositions follow when considering specific references, pref

n . For
instance, the decompositions in Eqs. (16) and (49) ensue when choosing
the equilibrium probability mass function of the isolated and open system,
Secs. [7–8, pp. 86–89]. As a major result, we show that when (i) the system is
initially prepared in pref

n , and (ii) pref
n is determined solely by the parameters

controlling the dynamics, then d̄Σd and d̄Σnc satisfy a fluctuation theorem,
Eq. [(32), p. 77]. The fluctuation theorem for −∂Φ and { Fyf d̄X

yf } Eq. [(55),
p. 47] is recovered as a special case.
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Abstract
Starting from themost general formulation of stochastic thermodynamics—i.e. a thermodynamically
consistent nonautonomous stochastic dynamics describing systems in contact with several reservoirs
—wedefine a procedure to identify the conservative and theminimal set of nonconservative
contributions in the entropy production. The former is expressed as the difference between changes
caused by time-dependent drivings and a generalized potential difference. The latter is a sumover the
minimal set offlux-force contributions controlling the dissipative flows across the system.When the
system is initially prepared at equilibrium (e.g. by turning off drivings and forces), a finite-time
detailed fluctuation theoremholds for the different contributions. Our approach relies on identifying
the complete set of conserved quantities and can be viewed as the extension of the theory of generalized
Gibbs ensembles to nonequilibrium situations.

1. Introduction

Stochastic thermodynamics provides a rigorous formulation of nonequilibrium thermodynamics for open
systems described byMarkovian dynamics [1–4]. Thermodynamic quantities fluctuate and the first and second
law of thermodynamics can be formulated along single stochastic trajectories.Most notably, entropy-
production fluctuations exhibit a universal symmetry, called fluctuation theorem (FT). This latter implies,
among other things, that the average entropy production is non-negative. Besides being conceptually new, this
framework has been shown experimentally relevant inmany different contexts [5]. It also provides a solid
ground to analyze energy conversion [3, 6, 7], the cost of information processing [8–12], and speed-accuracy
trade-offs [13, 14] in small systems operating far from equilibrium.

In stochastic thermodynamics, the dynamics is expressed in terms ofMarkovian rates describing transition
probabilities per unit time between states. The thermodynamics, on the other hand, assigns conserved quantities
to each system state (e.g. energy and particle number). Thismeans that transitions among states entail an
exchange of these conserved quantities between the system and the reservoirs. The core assumption providing
the connection between dynamics and thermodynamics is local detailed balance. It states that the log ratio of
each forward and backward transition rate corresponds to the entropy changes in the reservoirs caused by the
exchange of the conserved quantities (divided by the Boltzmann constant). These changes are expressed as the
product of the entropic intensive fields characterizing the reservoirs (e.g. inverse temperature, chemical
potential divided by temperature) and the corresponding changes of conserved quantities in the reservoirs, in
accordance to the fundamental relation of equilibrium thermodynamics in the entropy representation.
Microscopically, the local detailed balance arises from the assumption that the reservoirs are at equilibrium [15].

In this paper, we ask a few simple questions which lie at the heart of nonequilibrium thermodynamics.We
consider a system subject to time-dependent drivings—i.e. nonautonomous—and in contact withmultiple
reservoirs.What is themost fundamental representation of the EP for such a system? In otherwords, howmany
independent nonconservative forcesmultiplied by their conjugated flux appear in the EP?Which
thermodynamic potential is extremized by the dynamics in absence of drivingwhen the forces are set to zero?
Howdo generic time-dependent drivings affect the EP? Surprisingly, up to now, no systematic procedure exists
to answer these questions.We provide one in this paper based on a systematic identification of conserved
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quantities.While some of them are obvious from the start (e.g. energy and particle number) the others are
system specific and depend on theway inwhich reservoirs are coupled to the system and on the topology of the
network of transitions.

Themain outcome of our analysis is a rewriting of the EP, equation (36), which identifies three types of
contributions: a driving contribution caused by the nonautonomousmechanisms, a change of a generalized
Massieu potential, and aflow contributionmade of a sumover a fundamental set offlux-force contributions.
For autonomous systems relaxing to equilibrium—all forcesmust be zero—thefirst and the third contributions
vanish and the dynamicsmaximizes the potential. This amounts to a dynamical realization of themaximization
of the Shannon entropy under the constrains of conserved quantities, which is commonly done by handwhen
deriving generalizedGibbs distributions. For (autonomous) steady-state dynamics, the first two contributions
vanish andwe recover the results of [16], showing that conservation laws reduce the number of forces created by
the reservoirs. The key achievement of this paper is to demonstrate that conservation laws are essential to achieve
a general and systematic treatment of stochastic thermodynamics.

Important results ensue.We show that system-specific conservation laws can cause the forces to depend on
systemquantities and not only on intensive fields.We derive themost general formulation offinite-time detailed
FTs expressed in terms ofmeasurable quantities. This result amounts tomake use of conservation laws on the FT
derived in [17].We identify theminimal cost required formaking a transformation fromone system state to
another one. In doing sowe generalize tomultiple reservoirs the nonequilibriumLandauer’s principle derived in
[18–20].We also apply ourmethod to four differentmodels which reveal different implications of our theory.

This paper is organized as follows. In section 2we derive an abstract formulation of stochastic
thermodynamics.We then describe the procedure to identify all conserved quantities, whichwe use to rewrite
the local detailed balance in terms of potential and (nonconservative)flow contributions. In section 3we use the
above decomposition to establish balance equations along stochastic trajectories, which allow us to formulate
ourfinite-time detailed FT, section 4. In section 5we discuss the ensemble average description of our EP
decompositions, as well as the nonequilibriumLandauer’s principle. Four detailed applications conclude our
analysis in section 6. Thefirst is referenced systematically throughout the paper to illustrate our results. It
describes two quantumdots coupled to three reservoirs. The second describes a quantumpoint contact tightly
coupled to a quantumdot and shows that thermodynamic forces can depend on system features. The third is a
molecularmotor exemplifying the differences between conservative and nonconservative forces in relation to
the topology of the network used tomodel it. The last one is a randomized grid illustrating that our formalism
becomes essential when analyzingmore complex systems.

2. Edge level descpription

After formulating stochastic thermodynamics for continuous-timeMarkov jumpprocesses from a graph-
theoretical perspective, we describe the general procedure to identify conservative and nonconservative
contributions to the local detailed balance.

2.1. Stochastic dynamics
Weconsider an externally driven open system characterized by a discrete number of states, whichwe label by n.

Allowed transitions between pairs of states, ¬
n

n m, are described by directed edges, nº ( )e nm, . The index
n = 1, ... labels different types of transitions between the same pair of states, e.g. transitions due to different
reservoirs. The time evolution of the probability offinding the system in the state n, º ( )p p tn n , is governed by
themaster equation

å= á ñ ( )p D Jd , 1t n
e

e
n e

which is herewritten as a continuity equation. Indeed, the incidencematrixD,

+

-

⎧
⎨⎪
⎩⎪

≔
⟶
⟵ ( )D

n

n

1 if

1 if
0 otherwise

, 2e
n

e

e

associates each edge to the pair of states that it connects. It thus encodes the network topology. On the
graph identified by { }n and { }e , it can be thought of as a (negative) divergence operator when acting on edge-
space vectors—as in themaster equation (1)—or as a gradient operator when acting on state-space vectors. The
ensemble averaged edge probability currents,

á ñ = ( )( )J w p , 3e
e o e

2
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are expressed in terms of the transition rates, º{ ( )}w w te e , which describe the probability per unit time of
observing a transition along the edge e. The function

( ) ≔ ⟵ ( )o e m m, for , 4
e

maps each edge into the state fromwhich it originates. For thermodynamic consistency, each transition
nº ( )e nm, withfinite ratewehas a corresponding backward transition n- º ( )e mn, with afinite rate -w e.

The stochastic dynamics is assumed to be ergodic at any time.

Notation. Fromnowon, upper–lower indices and Einstein summation notationwill be used: repeated upper–
lower indices implies the summation over all the allowed values for those indices. Themeaning of all the indices
thatwill be used is summarized in table 1. Time derivatives are denoted by ‘dt ’ or ‘¶t ’whereas the overdot ‘ ˙ ’ is
reserved for rates of change of quantities that are not exact time derivatives.We also take the Boltzmann constant
kB equal to 1.

2.2. Stochastic thermodynamics
Physically, each system state, n, is characterized by given values of some system quantities, k{ }Yn , for

Nk = ¼ k1, , , which encompass the internal energy,En, and possibly additional ones, see table 2 for some
examples. Thesemust be regarded as conserved quantities in the total system, as their change in the system is
always balanced by an opposite change in the reservoirs. Indeed, when labeling the reservoirs with { }r , for

N= ¼r 1, , r , the balance equation for kY can bewritten as

å d- º =k k k k
¢

¢
      ( )( )Y Y Y D Y . 5n m n e

n

r
e

r

rsystem

,

reservoir

where d k( )Ye
r, quantifies theflowof kY supplied by the reservoir r to the system along the transition e. For the

purpose of our discussion, we introduce the index k= ( )y r, , i.e. the conserved quantity kY exchangedwith the
reservoir r, and define thematrix dY whose entries are d dº k{ }( )Y Ye

y
e

r, . Enforcingmicroscopic reversibility, one
concludes that d d= - -Y Ye

y
e

y . As afirst remark,more than one reservoirmay be involved in each transition, see

Table 1. Summary of the indices used throughout the paper and the
object they label.

Index Label for Number

n State Nn

e Transition Ne

k Systemquantity Nk
r Reservoir Nr

kº ( )y r, Conserved quantity kY from reservoir r Ny

α Cycle Na

λ Conservation law and conserved quantity Nl
yp ‘Potential’ y Nl

yf ‘Force’ y N N- ly

ρ Symmetry Nr

η Fundamental cycle N N-a r

N N= - ly

Table 2.Examples of systemquantity-intensive field
conjugated pairs in the entropy representation [21,
sections 2 and 3]. b ≔ T1r r denotes the inverse
temperature of the reservoir. Since charges are carried
by particles, the conjugated pair b-( )Q V,n r r is usually
embedded in b m-( )N ,n r r , see e.g. [22, section
1.7.2, 23].

System quantity kY Intensive field k( )f r,

Energy,En Inverse temperature, br

Particles number,Nn Chemical potential, b m- r r

Charge,Qn Electric potential, b- Vr r

Displacement,Xn Generic force, b- kr r

Angle, qn Torque, b t- r r

3
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figure 1 and the application in section 6.2. As a second remark, the conserved quantitiesmay not be solely k{ }Y ,
since additional onesmay arise due to the topological properties of the system, aswewill see in the next
subsection.

Each reservoir r is characterized by a set of entropic intensive fields, k{ }( )f r, for Nk = ¼ k1, , , which are
conjugated to the exchange of the systemquantities k{ }Y [21, sections 2 and 3]. A short list of kY – k( )f r,

conjugated pairs is reported in table 2. The thermodynamic consistency of the stochastic dynamics is ensured by
the local detailed balance property,

d= - +
-

( )w

w
f Y S Dln . 6e

e
y e

y
n e

n

It relates the log ratio of the forward and backward transition rates to the entropy change generated in the
reservoirs, i.e.minus the entropyflow d-{ }f Yy e

y . The second termon the rhs is the internal entropy change
occurring during the transition, since Sn denotes the internal entropy of the state n. This point is further
evidencedwhenwriting the entropy balance along a transition

å å d= - + -
k

k
k

- -

⎧⎨⎩
⎫⎬⎭ [ ] ( )( )

( )
( )

( )w p

w p
f Y S p Dln ln , 7

e o e

e o e r
r e

r
n n e

n
,

,

which expresses the edge EP, the lhs, as the entropy change in each reservoir r plus the system entropy change,
the rhs. See section 6.1.1 for explicit examples of dY and { }fy .

In themost general formulation, the internal entropy S, the conserved quantities k{ }Y (hence d{ }Ye
y ), and

their conjugated fields { }fy , change in time. Physically, thismodeling corresponds to two possible ways of

controlling a system: either through k{ }Y or Swhich characterize the system states, or through { }fy which

characterize the properties of the reservoirs. Throughout the paper, we use theword ‘driving’ to describe any of
these time-dependent controls, while we refer to those systems that are not time-dependently driven as
autonomous.

2.3. Network-specific conserved quantities
Wenow specify the procedure to identify the complete set of conserved quantities of a system. In doing so, we
extend the results of [16]. For this purpose, let a{ }C for Na = ¼ a1, , , be an independent set of network cycles.
Algebraically, a{ }C is amaximal set of independent vectors in Dker ,

=a ( )D C n0, for all , 8e
n e

inwhich atmost one entry in each forward–backward transition pair is nonzero. SinceD is -{ }1, 0, 1 -valued,

a{ }C can always be chosen in such away that their entries are { }0, 1 . In this representation, their 1-entries

Figure 1.Pictorial representation of a system coupled to several reservoirs. Transitionsmay involvemore than one reservoir and
exchange between reservoirs.Work reservoirs are also taken into account.

4
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identify sets of transitions forming loops. In the examples, wewill represent cycles using the set of forward
transitions only, and negative entries denote transitions along the backward direction.We denote thematrix
whose columns are a{ }C by º a{ }C Ce .

Bymultiplying thematrices dY andC, we obtain theM-matrix [16]:

da a≔ ( )M Y C . 9y
e
y e

This fundamentalmatrix encodes the physical topology of the system. It describes theways inwhich the
conserved quantities k{ }Y are exchanged between the reservoirs across the system, as its entries quantify the
influx of { }y along each cycle,α. The physical topology is clearly build on top of the network topology encoded
inC.

The basis vectors of the Mcoker , are defined as the system conservation laws. They are denoted by lℓ{ } for
Nl = ¼ l1, , whereNl ≔ Mdim coker and satisfy

d a= =l
a

l
aℓ ℓ ( )Y C M 0, for all . 10y e

y e
y

y

From (8), this implies that d Îl ^ℓ ( )Y Dker . Since º^( )D Dker coim , one can introduce a set of states-space
vectors l{ }L —i.e. state variables in the states space—which aremapped into dlℓ{ }Y by the transpose ofD:

å åd d= ºl l

k
k
l k

⎧⎨⎩
⎫⎬⎭ℓ ℓ ( )( ) ( )L D Y Y . 11n e

n
y e

y

r
r e

r
,

,

The properties of the incidencematrix guarantee that each lL is defined up to a reference value, see e.g. [24,
section 6.2].We thus confirm that l{ }L are conserved quantities since equation (11) are their balance equations:
the lhs identifies the change of l{ }L in the system,while the rhs expresses their change in the reservoirs. The
thermodynamic implications of shifting the reference values of l{ }L are discussed in section 3.

Importantly, the vector space spanned by the conserved quantities, l{ }L , encompasses the systemquantities
k{ }Y . They correspond to dº =k

k
k

k
k

¢ ¢ℓ ℓ( )y r, , so that the balance equation (5) are recovered. The remaining
conservation laws arise from the interplay between the specific topology of the network,C, and its couplingwith
the reservoirs, dY , andwewill refer to them as nontrivial. Only for these, the row vector ℓ may depend on time
sinceM is a function of time, see section 6.1.2 and the application in section 6.2.

Variations in time of the systemquantities k{ }Y induce changes in thematrixM. If these changes cause a
modification of the size of its cokernel, i.e. a change in the number of conserved quantities, we say that the
physical topologywas altered.We emphasize that these changes are not caused by changes in the network
topology since this latter remains unaltered. An example of physical topology transformation is given in
section 6.1.2 and in the application in section 6.4, while one of network topology is discussed in section 6.3.

Remark.The introduction of the conserved quantities is akin to that of scalar potentials for irrotationalfields in
continuous space. Indeed, the vector dlℓ Y replaces the field, DT plays the role of the gradient operator, and lL
becomes the potential. The condition expressed by equation (10) is that of irrotationalfields, as it tells us that
dlℓ Y vanishes along all loops.

2.4. Network-specific local detailed balance
Wenowmake use of the conserved quantities, l{ }L , to separate the conservative contributions in the local
detailed balance (6) from the nonconservative ones. This central result will provide the basis for our EP
decomposition in section 3.

We start by splitting the set { }y into two groups: a ‘potential’ one { }yp , and a ‘force’ one { }yf . Thefirstmust be

constructedwithNl elements such that thematrix whose entries are lℓ{ }yp
is nonsingular.We denote the entries

of the inverse of the lattermatrix by lℓ{ }yp . Crucially, since the rank of thematrix whose rows are lℓ{ } isNl, it is
always possible to identify a set of { }yp . However, itmay not be unique and different sets have different physical

interpretations, see sections 6.1.3 and 6.1.6 as well as the following sections. The second group, { }yf , is
constructedwith the remainingN N- ly elements of { }y .

With the above prescription, we canwrite the entries d{ }Ye
yp as functions of d{ }Ye

yf and l{ }Ln by inverting
lℓ{ }yp

in equation (11),

d d= -l
l

l
lℓ ℓ ℓ ( )Y L D Y . 12e

y y
n e

n y
y e

yp p p

f

f

The local detailed balance (6) can thus be rewritten as

f d= +
-

( )w

w
D Yln . 13e

e
n e

n
y e

y
f

f
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Thefirst contribution is conservative since it derives from the potential

f - l
l≔ ( )S F L , 14n n n

where

l lℓ≔ ( )F f 15y

y

p

p

is a linear combination of entropic intensive fields. Since fn is the entropy of the state nminus a linear
combination of conserved quantities, it can be viewed as theMassieu potential of the state n. (We recall that
Massieu potentials are the thermodynamic potentials of the entropy representation, see e.g. [21, section 5-4]. In
contrast, the nonconservative fundamental forces,

 -l
lℓ ℓ≔ ( )f f , 16y y

y
y yf p

p

f f

are caused by the presence ofmultiple reservoirs. Aswewill show, they control the currents of systemquantities
through the system. Importantly, ‘fundamental’must be understood as a property of the set of these forces, since
they are independent and inminimal number.

The identification of fn and { }yf
and their relationwith the local detailed balance, equation (13), is the key

result of our paper andwe summarize the procedure we used infigure 2. The complete set of conservation laws
played an essential role in this identification.

We saw that driving in the systemquantities k{ }Y , may induce changes in the physical topology, whereas the
driving in the reservoir properties, { }fy —aswell as in the entropy, S—is unable to do so. Since these changes

modify the cokernel ofM, fn and { }yf
aremodified aswell: when conservation laws are broken new

Figure 2. Schematic representation of our local detailed balance decomposition, whichwe summarize as follows. On the one hand, the
system is characterized by those systemquantities which are exchangedwith the reservoirs along transitions, as well as by the
topological properties of its network of transitions. The former is accounted for by thematrix of exchanged conserved quantities dY ,
while the latter by the incidencematrix,D, equation (2), which determines thematrix of cycles,C, equation (8)These twomatrices
combined give theM-matrix, equation (9), which encodes the physical topology of the system andwhose cokernel identifies the
complete set of conservation laws and conserved quantities, equations (10) and (11). On the other hand, the reservoirs are
characterized by entropic intensive fields, { }fy , which combinedwith thematrix of exchanged conserved quantities, dY , gives the
local detailed balanced, equation (6). Having identified all conservation laws, the variables y can be split into ‘potential’ y, { }yp , and

‘force’ y, { }yf . The first group identifies aMassieu potential for each state n, fn, equation (14), while the second one identifies the
fundamental forces, equation (16). These two set of thermodynamic quantities are thus combined in the local detailed balanced, (13).

6
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fundamental forces emerge, and vice versa the emergence of conservation laws breaks some fundamental forces
and creates additional terms in fn, see section 6.1.3.

Even in absence of topological changes, the formof fn and { }yf
may change in presence of driving. It is clear

that fn changes when S,
k{ }Y , or { }fyp

change, see equation (14). In turn, each fundamental force yf
depends on

both fyf
and { }fyp

, see equation (16). But in presence of nontrivial conservation laws, theymay also depend on

the systemquantities k{ }Y via the vectors lℓ{ } , see section 6.1.3 and the application in section 6.2. Notice that
while driving not caused by temperatures solely affects a given intensivefield, driving via temperature, say b ¢r ,
affects all thefields associated to ¢r , namely k ¢{ }( )f r, for Nk = k1, , , see table 2.

2.5. Fundamental cycles
Wenow express our conservative–nonconservative forces decomposition of the local detailed balance in terms
of cycle affinities. This provides the basis onwhich our potential-cycle affinities EP decomposition hinges on,
section 3.3.

The thermodynamic forces acting along cycles are referred to as cycle affinities. Using the local detailed
balance (13), they read

 =a a a
-

≔ ( )C
w

w
Mln . 17e e

e
y

y
f

f

As observed in [16], different cyclesmay be connected to the same set of reservoirs, thus carrying the same cycle
affinity. These are regarded as symmetries and they correspond to bases of Mker , yr{ } for

Nr = ¼ r ≕ M1, , dimker ,

y =a r
a ( )M y0, for all , 18y

as their entries identify sets of cycles which, once completed, leave the state of the reservoirs unchanged. A
notable consequence is that the affinities corresponding to these sets of cycles are zero irrespective of the fields
{ }fy . The rank-nullity theorem applied to thematrixM allows us to relate the number of symmetries to the
number of conservation laws [16]

N N N N- = -l a r ( ). 19y

Notice that, while theNy andNa arefixed for a given system,Nl, and henceNr, can change due to changes in the
physical topology. From equation (19)we thus learn that for any broken (resp. created) conservation law, a
symmetrymust break (resp. be created), see section 6.1.4 and the application in section 6.4.

The symmetries given by equation (18) lead us to identifyN N N-h a r≔ cycles, labeled by η, which
correspond to linearly independent columns ofM. These cycles can be thought of as physically independent,
since they cannot be combined to form cycles that leave the reservoirs unchanged upon completion. In other
words, they are theminimal subset of cycles whose affinity is nonzero for a generic choice of the fields { }fy

(specific choices of { }fy can alwaysmake any cycle affinity equal to zero).We refer to these cycles as fundamental

cycles and to their affinities as fundamental affinities. The fact that thematrix whose entries are h{ }M yf is square
and nonsingular, see appendix A, allows us to see the one-to-one correspondence between fundamental forces,
equation (16), and these affinities,

 = h
h ( )M , 20y yf f

where h{ }M yf
are the entries of the inversematrix of that having h{ }M yf as entries. In terms of h{ }, the local

detailed balance, equation (13), reads

f z= + h
h

-
( )w

w
Dln , 21e

e
n e

n
e

where

z dh h≔ ( )M Y 22e y e
y

f

f

quantifies the contribution of each transition e to the current along the fundamental cycle η as well as all those
cycles which are physically dependent on η. Algebraically, the row vectors of ζ, zh{ } , are dual to the physically
independent cycles, h{ }C ,

z d d= = =h
h

h
h

h
h h

h
¢ ¢ ¢ ¢ ( )C M Y C M M . 23e

e
y e

y e
y

y

f

f

f

f

Equation (21) is another key result of our paper, which expresses the conservative–nonconservative local
detailed balance decomposition in terms of fundamental affinities. Importantly, the affinities h{ }depend on
time both via { }fy and k{ }Y , where the latter originates from theM-matrix, equation (17). Differently from
{ }yf

, they always have the dimension of an entropy.
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Remark.Our set of fundamental cycles differs from that constructedwith spanning trees and discussed by
Schnakenberg in [25]. Algebraically, our set is notmerely in Dker , but rather in ⧹D Mker ker . Furthermore, it
is not constructed from the spanning trees of the graph.

2.6.Detailed-balanced networks
Wenow focus on a specific class of dynamics called detailed balanced. These dynamics are such that either there
are no forces = Æ({ } )yf or these are zero,

 = - =l
lℓ ℓ¯ ( )f f 0, 24y y

y
y yf p

p

f f

— equivalently the affinities are zero, see equation (17). A driven detailed-balanced dynamics implies that the
drivingmust keep the forces equal to zero at all times, while changing the potential fn. An autonomous detailed-
balanced dynamics will always relax to an equilibriumdistribution [26, 27]

f= - F{ } ( )p exp , 25
n n
eq

eq

defined by the detailed balance property: = - -( ) ( )w p w pe o e e o e
eq eq , for all e. The last term, Feq, is the logarithmof the

partition function

å fF
⎧⎨⎩

⎫⎬⎭≔ { } ( )ln exp , 26
m

meq

and can be identified as an equilibriumMassieu potential [21, sections 5-4 and 19-1, 28, section3.13].
We nowpoint out that one can transform a nondetailed-balance dynamics with the potential fn into a

detailed-balanced dynamics with the same potential, if one can turn off the forces—set them to zero—without
changing the potential. This is is always possible through an appropriate choice of thefields { }fyf

, viz.

= l
lℓ ℓ¯f fy y

y
y

f p

p

f
, except for the following cases: when there are fyf

such that b= ¢fy r
f

(i.e. fyf
is the field conjugated

with the exchange of energy with the reservoir ¢r ) and ¢r is among the reservoirs involved in { }yp , then turning off

the corresponding force yf
via fyf

willmodify { }fyp
and in turn fn. Due to their importance for our FT,

section 4, we label thesefields by ¢{ }yf , to discriminate them from the other ones, denoted by { }yf .Wefinally
observe that for isothermal processes all thermal gradients vanish beforehand, and one realizes that  =¢ 0yf

for

all ¢yf , see e.g. sections 6.3 and 6.4. Therefore, turning off the forces never changes the potential.

Remark.The equilibriumdistribution, equation (25), is clearly the same onewould obtain using amaximum
entropy approach [28, section 3.17, 29]. Indeed, the distributionmaximizing the entropy functional constrained
by given values of the average conserved quantities á ñ =l l{ }L L ,

 å å å= - - - - -l
l l

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟[ ] [ ] ( )p p S p a p a p L Lln 1 , 27

n
n n n

n
n

n
n n

is given by

* = - -l
l{ } ( )p S a L aexp . 28

n n n

This is the equilibriumdistribution, equation (25), when the Lagrangemultipliers are given by = Fa eq and
=l la F , see equations (14) and (26).

3. Trajectory level description

Wenowbring our description from the level of edges to trajectories. A stochastic trajectory of duration t, nt , is
defined as a set of transitions { }ei sequentially occurring at times { }ti starting from n0 at time 0. If not otherwise
stated, the transitions index i runs from i=1 to the last transition prior to time t,Nt , whereas the state at time
t Î [ ]t0, is denoted by tn . The values of S, k{ }Y , and { }fy between time 0 and an arbitrary time t are all encoded

in the protocol pt , for t Î [ ]t0, .
Wefirst derive the balance for the conserved quantities, equation (11). The conservative and

nonconservative contributions identified at the level of single transitions via the local detailed balance,
equations (13) and (21), are then used to decompose the trajectory EP into its three fundamental contributions.
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3.1. Balance of conserved quantities
Since the conserved quantities are state variables their change along a trajectory for a given protocol reads

ò t t t tD = - = ¶ +l l l
t

l l
= t[ ] ( ) ( ) { ( )∣ ( ) ( )} ( )nL L t L L L D J0 d . 29t n n

t

n n n n e
n e

0
t 0

Thefirst termon the rhs accounts for the instantaneous changes due to the time-dependent driving, while the
second accounts for thefinite changes due to stochastic transitions, since

åt d d t -( ) ≔ ( ) ( )J t 30e

i
e
e

ii

are the trajectory-dependent instantaneous currents at time τ. Using the edge-wise balance, equation (11), we
can recast the above equation into

ò t t t tD = ¶ +l
t

l l
= t ℓ[ ] { ( )∣ ( ) ( )} ( )nL L Id , 31t

t

n n n y
y

0

where the physical currents

t d t t( ) ≔ ( ) ( ) ( )I Y J , 32y
e
y e

quantify the instantaneous influx of y at time t.

3.2. Entropy balance
The trajectory entropy balance is given by

ò òt t
t
t

t t d t tS = - = - + - -
-

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥[ ] ( ) ( )

( )
( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( )

n J
w

w

p t

p
f Y J S S

p t

p
d ln ln

0
d ln

0
.

33

t

t
e e

e

n

n

t

y e
y e

n n
n

n0 0

t
t

t

0

0

0

As for the edge-wise balance, equation (7), the lhs is the EP, while the first and second termon the rhs are the
entropy change of the reservoirs and the entropy change of the system [25, 30]. Using our decomposition of the
local detailed balance, equation (13), we can recast the latter equality into

ò t f t t t tS = - + +[ ] ( )
( ) { ( ) ( ) ( ) ( )} ( )n

p t

p
D J Iln

0
d . 34t

n

n

t

n e
n e

y
y

0

t

0

f
f

Since fn is a state variable, its variations along the trajectory can bewritten as

òf f f t f t t f tD = - = + ¶t = t[ ] ( ) ( ) { ( ) ( ) ( )∣ } ( )n t D J0 d . 35t n n

t

n e
n e

n n n
0

t 0

By combining equations (34) and (35), we can recast the trajectory EP in

å sS = + DF +[ ] [ ] [ ] [ ] ( )n n n nv , 36t t t
y

y t

f

f

where

ò t f t- ¶t = t[ ] ≔ ( )∣ ( )nv d , 37t

t

n n n
0

DF = F - F[ ] ( ) ( ) ( )n t 0 , 38t n nt 0

òs t t t[ ] ≔ ( ) ( ) ( )n Id , 39y t

t

y y
0

f f f

with

fF -≔ ( )pln . 40n n n

Equation (36), is themajor result of our paper. It shows the EP decomposed into a time-dependent driving
contribution, a potential difference, and aminimal set of flux-force terms. Thefirst termonly arises in presence
of time-dependent driving. It quantifies the entropy dissipatedwhen fn ismodified andwe refer to it as the
driving contribution. The second term is entirely conservative as it involves a difference between the final and
initial stochasticMassieu potential, equation (40)The last terms are nonconservative and prevent the systems
from reaching equilibrium. Each s [ ]ny tf

quantifies the entropy produced by the flowof { }yf , andwe refer to
them as flow contributions.

To developmore physical intuition of each single term,we nowdiscuss them separately and consider some
specific cases.Whenwriting the rate of driving contribution explicitly, equation (37), one obtains

f-¶ = -¶ + ¶ + ¶t t t l
l

l t
l ( )S F L F L . 41n n n n
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When all lℓ{ } are independent from systemquantities, the terms, ¶t l l{ }F L n, , account for the entropy
dissipated during themanipulation of the intensive fields { }fyp

, equation (15). In contrast, ¶l t l{ }F L n, and

-¶tSn characterize the dissipation due to the directmanipulation of the systemquantities. Clearly, the changes
of those fields that do not appear in fn do not contribute to [ ]nv t .

For autonomous processes, the EP becomes

 S = DF +[ ] [ ] [ ] ( )n n n , 42t t y
y

tf
f

where

 ò t t[ ] ≔ ( ) ( )n Id , 43y
t

t
y

0
f f

are the currents of { }yf integrated along the trajectory. The difference between thefinal and initial stochastic
Massieu potential captures the dissipation due to changes of the internal state of the system. For finite-
dimensional autonomous processes, it is typically subextensive in time and negligible with respect to the
nonconservative terms for long trajectories

 S =
¥[ ] [ ] ( )n n . 44t

t
y

y
tf

f

The nonconservative flow contributions, equations (39) and (44), quantify the dissipation due to the flowof
conserved quantities across the network. Finally, for autonomous detailed-balanced systems, the nonconserva-
tive terms vanish, in agreementwith the fact that these systems exhibit no netflows, and the EP becomes

S = DF[ ] [ ] ( )n n . 45t t

Table 3 summarizes the contributions of the EP for these commonprocesses.We nowproceedwith three
remarks.

Remark.Wehave already discussed the possibility of physical topologymodifications due to driving, which
consequently alter fn and { }yf

. For protocols crossing points in which thesemodifications occur, the trajectory
must be decomposed into subtrajectories characterized by the same physical-topology. For each of these, our
decomposition (36) applies.

Remark.The contributions of the EP in equation (36) depend on the choice of { }yp and { }yf .When aiming at

quantifying the dissipation of a physical system, some choicesmay bemore convenient than others depending
on the experimental apparatus, see e.g. section 6.1.6. This freedom can be thought of as a gauge of the EP. In the
long time limit, it only affects the flow contributions and it can be understood as a particular case of the gauge
freedoms discussed in [31, 32], which hinge on graph-theoretical arguments.

Remark.The driving contribution v and the nonequilibriumMassieu potential Fn are defined up to a gauge.
This is evidencedwhen transforming the state variables l{ }L according to

 +l
l
l l l
¢

¢( ) ( ) ( )L t U L t u 1 , 46n n n

where l
l
¢{ }U identify a nonsingularmatrix, l{ }u arefinite coefficients, and { }1n a vector whose entries are 1. The

first term can be considered as a basis change of Mcoker ,

l
l
l l
¢

¢ℓ ℓ ( )U , 47y y

while the second as a reference shift of lL . Under the transformation (47), the fields (15) transform as

l l l
l

¢
¢( ) ( ) ( )F t F t U , 48

where d= =l
l

l
l

l
l

l
l

l
l¢


¢

 
¢U U U U , thus guaranteeing that scalar products are preserved. As a consequence, the

stochasticMassieu potential, equation (40), and the rate of driving contribution, equation (41), transform as

Table 3.Entropy production for commonprocesses. ‘0’
denotes vanishing or negligible contribution,NESS is the
acronymof nonequilibrium steady state.

Dynamics v DF σ

Autonomous 0

NESS 0 0

Driven detailed-balanced 0

Autonomous detailed-balanced 0 0
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f fF  F - - ¶  -¶ + ¶( ) ( ) ( ) ( ) ( ) ( ) ( )f ft t t t t t1 , and 1 , 49n n n t n t n t n

where

l l
l l

¢
¢( ) ≔ ( ) ( )f t F t U u . 50

Crucially, neither the local detailed balance (13)nor the EP (69) are affected, as the physical process is not altered.
If only a basis change is considered, =l{ }u 0 , then =( )f t 0, and both Fn and v are left unvaried. Finally, for
cyclic protocols, one readily sees that the drivingwork over a period is gauge invariant, since ( )f t is
nonfluctuating.

The above gauge is akin to that affecting the potential-work connection andwhich led to several debates, see
[33] and references therein. The problem is rooted inwhat is experimentallymeasured, as different experimental
set-ups constrain to different gauge choices [33].We presented a general formulation of the gauge issue, by
considering reference shifts of any conserved quantity, and not only of energy.

3.3. Entropy balance along fundamental cycles
An equivalent decomposition of the EP, equation (33), can be achieved using the potential-affinities
decomposition of the local detailed balance, equation (21)

å gS = + DF +
h

h[ ] [ ] [ ] [ ] ( )n n n nv . 51t t t t

Here,

òg t t z th h h[ ] ≔ ( ) ( ) ( )n Jd , 52t

t

e
e

0
,

quantify the dissipation along the fundamental cycles, as z th{ ( )}Je
e

, , for Nh = ¼ h1, , , are the corresponding
instantaneous currents, equation (22) For autonomous processes, the EP becomes

 S = DF + h
h[ ] [ ] [ ] ( )n n n , 53t t t

where

 ò t z th h[ ] ≔ ( ) ( )n Jd 54t

t

e
e

0

measure the total circulation along h{ }.

4. Finite-time detailed FT

The driving and flow contributions of the EP, equation (36), are now shown to satisfy a finite-time detailed FT.
This constitutes another crucial result of our paper which generalizes previous FT formulations expressed in
terms of physical currents.

We consider a forward process of duration t defined as follows. The system is initially prepared in an
equilibrium state characterized by fn

eqi, equation (25). The latter state corresponds to the equilibriumprotocol pi

inwhich f p f=( )n ni
eqi and naturally  p ={ ( ) }0y if

. At time t = 0 the protocol pt , for  t t0 , is activated.
It is arbitrary except at the boundaries, t = 0 and t, where the following requirementsmust be satisfied: at time
0, theMassieu potential corresponding to p0 must be the same as that of the initial equilibrium state, i.e.
f p f=( )n n0

eqi. As a consequence, the fields p{ ( )}fy 0
f

can take arbitrarily values (i.e. they can be different from
p{ ( )}fy i

f
), while the other ones cannot: p p=¢ ¢{ ( ) ( )}f fy y0 i

f f
. This implies that  p{ ( )}y 0f

can be nonzerowhile

 p =¢{ ( ) }0y 0f
. Analogously, the protocol at time tmust be such that  p =¢( ) 0y tf

for all ¢yf while  { }yf
can be

arbitrary. This condition guarantees that theMassieu potential f p( )n t identifies the equilibrium state
corresponding to the equilibriumprotocol pf : f p f f p= =( ) ( )n n n tf

eqf and vanishing forces  p ={ ( ) }0y ff
.We

can thus introduce the backward process as that inwhich the system is initially prepared in the equilibrium state
given by pf , andwhich is driven by the time-reversed protocol, p pt t-≔†

t , see figure 3.
The finite-time detailed FT states that the forward and backward process are related by

å
s

s
s

- -
= + + DF

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

( { })
( { }) ( )†
P v

P v
v

,

,
exp , 55

t y

t y y
y eq

f

f f

f

where s( { })P v,t yf
is the probability of observing a driving contribution of the EP equal to v, and flowones s{ }yf

along the forward process. Instead, s- -( { })†P v,t yf
is the probability of observing a driving contribution equal

to-v, andflowones s-{ }yf
along the backward process. The difference of equilibriumMassieu potentials,

equation (26),
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DF = F - F ( ), 56eq eq eqf i

refers to thefinal and initial equilibriumdistributions.When averaging over all possible values of v and s{ }yf
, the

integral FT ensues

å s- - = DF
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

{ } ( )vexp exp . 57
y

y eq

f

f

Weprove equation (55) in appendix B using a generating function techniquewhich is new to our knowledge.
We nowdiscuss insightful special cases of our general FTs.Wefirst consider those processes in which

 =¢ 0yf
for all ¢yf and at all times—isothermal processes are a notable instance—the protocol can terminate

without restrictions since f pt( )n always identifies an equilibrium state. If, in addition, the protocol keeps the
potential fn constant, viz. v=0, the FT (55) reads

å
s

s
s

-
=

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

({ })
({ }) ( )†

P

P
exp . 58

t y

t y y
y

f

f f

f

Yet amore detailed case is when the process is autonomous, for whichwe have




 
-

=
({ })

({ }) { } ( )P

P
exp , 59t

y

t
y y

y
f

f
f

f

written in terms of integrated currents of { }yf , equation (43). The latter FT can be seen as the result of having a
constant protocol with nonvanishing the fundamental forces  { }yf

—but vanishing  ¢{ }yf
—operating on a

system initially prepared at equilibrium. Since nothing distinguishes the forward process from the backward
one, the lhs is the ratio of the same probability distribution but at opposite values of { }yf , see application in
section 6.3.

Instead, for detailed-balanced systemswe recover a Jarzynski–Crooks-like FT [34, 35] generalized to any
formof time-dependent driving

-
= + DF

( )
( ) { } ( )†

P v

P v
vexp . 60t

t
eq

Toprovide a physical interpretation of the argument of the exponential on the rhs of equation (55), let us
observe that once the protocol terminates, all fundamental forces can be switched off and the system relaxes to
the equilibrium initial condition of the backward process. During the relaxation, neither vnor s{ }yf

evolve and
the EP is equal to F - Fneq tf

, equation (45). Therefore, the argument of the exponential can be interpreted as the
dissipation of thefictitious composite process ‘forward process+ relaxation to equilibrium’.

Remark.Aswe discussed in equation (41), the driving contribution consists of several subcontributions, one for
each time-dependent parameter appearing in fn.We formulated the finite-time FT (55) for thewhole v, but it
can be equivalently expressed for the single subcontributions, see section 6.1.8.

FT forflow contributions along fundamental cycles
The FT (55) can also be expressed in terms of the flow contributions along the fundamental cycles gh{ } instead of
s{ }yf

Figure 3. Schematic representation of the forward and backward processes.
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å
g

g
g

- -
= + + DFh

h h
h

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

( { })
( { }) ( )†
P v

P v
v

,

,
exp . 61

t

t
eq

Its proof is discussed in appendix B. The restrictions on p0 and pt that we expressed in terms of { }yf
can be re-

expressed in terms of h{ }via equation (20). For autonomous processes one canwrite the FT for the integrated
currents along fundamental cycles, equation (54),




 
-

=
h

h h
h({ })

({ }) { } ( )P

P
exp , 62t

t

see equation (59).

5. Ensemble average level description

Wenowdiscuss our results at the ensemble average level and derive a general formulation of the nonequilibrium
Landauer’s principle.

5.1. Balance of conserved quantities
Using themaster equation (1) and the edge-wise balance (11), the balance equation for the average rates of
changes of conserved quantities reads

å º á ñ = á ñ + á ñl l l l
⎡
⎣⎢

⎤
⎦⎥ ℓ˙ ( )L p L L Id d , 63t

n
n n t y

y

where á ñ å ¶l l˙ ≔L L pn t n n is the average change due to the driving, and

dá ñ á ñ≔ ( )I Y J 64y
e
y e

are the average currents of { }y , see equations (3) and (32). Hence, the second term in equation (63),

å å dá ñ = á ñl

k
k
l k

⎧⎨⎩
⎫⎬⎭ℓ ℓ ( )( ) ( )I Y J , 65y

y

r
r e

r e
,

,

accounts for the average flowof the conserved quantities in the reservoirs. Obviously, the balances (63) can also
be obtained by averaging the trajectory balances (31) along all stochastic trajectories.

5.2. Entropy balance
In contrast to conserved quantities, entropy is not conserved. The EP ratemeasures this nonconservation and is
always non-negative

åáSñ =
- -

˙ ( )( )
( )
( )

w p
w p

w p
ln 0. 66

e
e o e

e o e

e o e

The EP decomposition in driving, conservative and flow contributions at the ensemble level, can be obtained by
averaging equation (36). Alternatively, one can rewrite equation (66) as

áSñ = - á ñ + - á ñ˙ [ ] ( )f I S p D Jln , 67y
y

n n e
n e

wherewe used the local detailed balance property (6) and the definition of average physical current (64). Thefirst
term is the average entropy flow rate, while the second is the rate of change of the average system entropy. Using
the splitting of the set { }y explained in section 2, the physical currents of { }yp can be expressed as

á ñ = á ñ - á ñ - á ñl
l l lℓ ℓ[ ˙ ] ( )I L L Id , 68y y

t y
yp

p

f
f

wherewe partially inverted equation (63).When combinedwith equation (67), the EP rate can bewritten as

å sáSñ = á ñ + áFñ + á ñ˙ ˙ ˙ ( )v d , 69t
y

y

f

f

where fá ñ = -å ¶v̇ pn t n n is the driving contribution, sá ñ = á ñ˙ Iy y yf f f
the flow contributions, and

åáFñ = F ( )p 70
n

n n

the nonequilibriumMassieu potential.
Following a similar reasoning, and using the local detailed balance decomposition in terms of fundamental

affinities, equation (21), we obtain the EP rate decomposed as
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å gáSñ = á ñ + áFñ + á ñ
h

h˙ ˙ ˙ ( )v d , 71t

where g zá ñ = á ñh h h˙ Je
e

, are theflow contributions along the fundamental cycles.

5.3. Nonequilibriummassieu potential
In detailed-balanced systems, the nonequilibriumMassieu potential takes itsmaximumvalue at equilibrium,
equation (25), where it becomes the equilibriumMassieu potential, equation (26). Indeed,

 F - áFñ = áF - Fñ = ( ) ( )p p 0, 72eq eq
eq

where

 å( ) ≔ ( )p p p
p

p
ln 73

n
n

n

n

eq
eq

is the relative entropy between the nonequilibriumdistribution and the equilibriumonewhich quantifies the
distance from equilibrium.

Remark. For autonomous detailed-balanced networks, the difference of equilibrium and nonequilibrium initial
Massieu potential, equation (72), gives the average dissipation during the relaxation to equilibrium,

 áSñ = ( ( ) )p t p 00 eq . On the one hand, this shows how theMaxEnt principlementioned in section 2.6 is

embedded in the stochastic thermodynamic description (see also [36]). On the other hand, it underlines that its
validity is limited to detailed-balanced systems.

5.4. NonequilibriumLandauer’s principle
Wenow express equation (69) in terms of a well defined equilibriumdistribution, obtained by turning off the
forces withoutmodifying the potential fn.We already discussed that this procedure is alwayswell defined for
isothermal systems but requiresmore care for nonisothermal systems. Combining equations (69) and (72), one
finds that

 å sáSñ = á ñ - + á ñ˙ ˙ ( ) ˙ ( )v p pd , 74t
y

yirr
eq

f

f

wherewe introduced the average irreversible driving contribution

á ñ á ñ + F˙ ≔ ˙ ( )v v d . 75tirr eq

Notice that the above contribution is not affected by the gauge discussed in section 3. Integrating equation (74)
over timewe get

å sá ñ + á ñ = D + áSñ( ) ( )v p p . 76
y

yirr eq

f

f

This relation generalizes the nonequilibriumLandauer’s principle, which is typically derived for driven detailed-
balance systems, sá ñ = 0yf

, [20]—see also [18, 19, 36]—andwhich is used as the basis to study thermodynamics
of information processing [11]. It shows that not only driving but alsoflowEPmust be consumed tomove a
system away from equilibrium, as depicted infigure 4, and that theminimal cost for doing so is precisely
measured by the change in relative entropy. For driven detailed-balanced protocols connecting two equilibrium
states, we recover the classical result that á ñ = áSñv̇ 0irr .

5.5. Relationwith previous EPdecompositions
Wenowbriefly comment on the differences between our EP rate decomposition and other decompositions
found in the literature.

In [17], the obvious conserved quantities k{ }Y are used to express the EP rate in terms of a driving, a
conservative, and a nonconservative term. Thefirst two are expressed in terms of aMassieu potential based on
theNk obvious conserved quantities, k{ }Y , while the last is a sumofN N- ky flux-force contributions. Afinite-
time FT solely expressed in terms of physical observable ensues. In ourwork, by taking allNl conserved
quantities—trivial and nontrivial—into account, the nonconservative term is reduced to a sumofN N- ly

fundamentalflux-force contributions, and the newMassieu potential entering the driving and conservative
contribution takes all conservation laws into account. This has two crucial consequences for the ensuing FT: (i)
our class of equilibriumdistributions is broader since it is determined imposing a lower number of constraints,
equation (24) (i.e.N N- ly vanishing forces instead ofN N- ky ); (ii) the final value of the protocolmust be
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constrained as discussed in section 4 since the newMassieu potential does not always identifies an equilibrium
distribution.

In [16] the authors analyzed the reduction offlux-force contributions for systems at steady state, where the
conservative contribution is absent. Our decomposition (69) generalizes these results to nonautonomous
systems in transient regimes.

In [25, 37], decompositions based on graph-theoretic techniques are proposed, and the ensuing FTs are
studied in [38, 39], respectively. The nonconservative termof the EP rate is expressed as the sumofNa cycle flux–
affinity contributions. These are typically in large number, see e.g. sections 6.3 and 6.4.Our decomposition (71)
demonstrates that only a subset ofN N N N- = -a r ly fundamental cycleflux–affinity contributions are
necessary and sufficient to characterize the aforementioned term,whereNr is the number of symmetries.

Yet a different EP decomposition is the adiabatic–nonadiabatic one [40–44]. Here, the driving and
conservative terms arise from the stochastic potential Y -≔ { }p plnn n n

ss , which accounts for themismatch
between the actual and the steady-state probability distribution. Instead, the nonconservative contribution
quantifies the break of detailed balance of the steady state.Hence, the steady-state probability distribution plays
the role of a reference distribution in the sameway that the equilibriumone (obtained by setting the forces to
zero) does for our decomposition. This is particularly clear when comparing [40, equation (21)] to equation (74).
Naturally, the equilibriumdistribution ismuchmore accessible than the steady-state one and implies that our
decomposition is expressed in terms of physicallymeasurable quantities.

6. Applications

Wenow analyze fourmodel-systems: a double quantumdot (QD), a QD coupled to a quantumpoint contact
(QPC), amolecularmotor, and a randomized grid.

6.1.DoubleQD
Thismodel has been extensively used in the past [45–47] andwewill analyze it step by step following the order of
themain text to illustrate of our formalism and ourmain results.

6.1.1. Setup
The two single-level QDs is depicted infigure 5(a), whereas the energy landscape and the network of transitions
are shown infigures 5(b) and (c), respectively. Electrons can enter empty dots from the reservoirs but cannot
jump fromone dot to the other.When the two dots are occupied, an interaction energy, u, arises.

The network topology is encoded in the incidencematrix, whose representation in terms of the forward
transitions reads

=

- - -
- -

-

+ + + + + +

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ( )D

1 1 1 0 0 0
1 0 0 0 1 1
0 1 1 1 0 0
0 0 0 1 1 1

. 77

1 2 3 4 5 6

00
10
01
11

Figure 4. Schematic representation of the transformation between twononequilibriumprobability distributions. The protocolmust
leave the potential fn unchanged upon turning off of the forces at all times. This ensures that fn always identifies an equilibrium
distribution (green curve) obtained by turning off the forces, shutting down the driving and letting the system relax (dashed gray
curves). The nonequilibrium transformation—the blue curve—can be thus comparedwith the equilibriumone.
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Energy,En, and total number of electrons,Nn, characterize each system state:



 

= =
= =
= =
= + + = ( )

E N
E N
E N
E u N

0, 0,
, 1,
, 1,

, 2, 78

00 00

01 d 01

10 u 10

11 u d 11

where thefirst entry in n refers to the occupancy of the upper dot while the second to the lower. The entries of the
matrix dY corresponding to the forward transitions are

 

 

 

d =

+

+

+

+ + + + + +

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
( )

( )
( )
( )
( )
( )
( )

Y

u

u

u

0 0 0 0
1 0 0 1 0 0
0 0 0 0
0 1 0 0 1 0
0 0 0 0
0 0 1 0 0 1

, 79

E

N

E

N

E

N

1 2 3 4 5 6

, 1

, 1

, 2

, 2

, 3

, 3

u u

d d

d d

see figure 5(c), whereas the entries related to backward transition are equal to the negative of the forward. For
instance, along thefirst transition the system gains u energy and 1 electron from the reservoir 1. The vector of
entropic intensivefields is given by

b b m b b m b b m= - - -( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

f . 80

E N E N E N, 1 , 1 , 2 , 2 , 3 , 3

1 1 1 2 2 2 3 3 3

Since theQDs and the electrons have no internal entropy, =S 0n for all n, the local detailed balance property,
equation (6), can be easily recovered from the product d-f Y . From a stochastic dynamics perspective, the latter
property arises when considering fermionic transition rates: d= G + -( { })w f Y1 expe e y e

y 1 and

d d= G +-
-{ }( { })w f Y f Yexp 1 expe e y e

y
y e

y 1 for electrons entering and leaving the dot.

6.1.2. Conservation laws
Wenow illustrate the identification of the full set of conservation laws. An independent set of cycles of this
network,figure 5(c), is stacked in thematrix

= - -
-

-

+
+
+
+
+
+

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )C

1 0 0
0 1 0
1 1 0
1 0 0

0 0 1
1 0 1

, 81

1 2 3

1

2

3

4

5

6

and corresponds to the cycles depicted infigure 6. Thenegative entries denote transitions performed in the
backwarddirection. Thematrix encoding the physical topology,M, readily follows from theproduct of dY andC,

Figure 5.DoubleQDcoupled to three reservoirs and coupledwith each other via a capacitor. Transitions related to thefirst reservoir
are depicted in bluewhile those related to the second and third one by green and red, respectively. (a)Pictorial representation of the
system. The upper dot u is coupled to thefirst reservoir, while the lower dot d is coupled to the second and third reservoir. The
reservoirs exchange energy and electrons with the dots, which cannot hostmore than one electron. (b)Energy landscape of the dot.
Importantly, when both dots are occupied, 11, a repulsive energy u adds to the occupied dots energies, u and d. (c)Transition
network of themodel.
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 

 

=

-

+

- - -
- -

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )

( )

( )
( )
( )
( )

( )

M

u

u

u u

0 0
0 0 0
0
0 1 1

0 1 1

. 82

E, 3

E

N

E

N

N

1 2 3

, 1

, 1

, 2

, 2

, 3

d d

d d

Its cokernel is spanned by

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

a1 0 1 0 1 0 , 83

E N E N E N

E

, 1 , 1 , 2 , 2 , 3 , 3

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

b0 1 0 0 0 0 , 83
E N E N E N, 1 , 1 , 2 , 2 , 3 , 3

u

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

c0 0 0 1 0 1 . 83

E N E N E N, 1 , 1 , 2 , 2 , 3 , 3

d

Thefirst vector identifies the energy state variable,En,

     d = + + + º
+ + + + + +

ℓ ( ) { } ( )Y u u u E D . 84E
n e

n
1 2 3 4 5 6

u d d u d d

The other two, instead, give the occupancy of the upper and lower dots, Nn
u and Nn

d,

d = º
+ + + + + +

ℓ ( ) { }Y N D1 0 0 1 0 0 ,n e

1 2 3 4 5 6
u u n

d = º
+ + + + + +

ℓ ( ) { } ( )Y N D0 1 1 0 1 1 . 85n e

1 2 3 4 5 6

d d n

Aposteriori, we see that these conservation laws arise from the fact that no electron transfer fromone dot to the
other is allowed. The total occupancy of the system,Nn, is recovered from the sumof the last two vectors. Despite
ℓ u and ℓ d are nontrivial conservation laws, they do not depend on any systemquantity, equation (78)1.

Let us now imagine that the interaction energy between the two dots is switched off, i.e. u 0. Two
conservation laws emerge in addition to those in equation (83):

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) a0 0 1 0 1 0 , 86

E N E N E N, 1 , 1 , 2 , 2 , 3 , 3

E,d

= -ℓ ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

b0 0 1 0 0 . 86

E N E N E N, 1 , 1 , 2 , 2 , 3 , 3
t

d

Thefirst is related to the upper–lowerQDdecoupling, as it corresponds to the conservation of energy of the
lower dot

   d = º
+ + + + + +

ℓ ( ) { } ( )( ) Y E D0 0 . 87E
n e

n

1 2 3 4 5 6

,d
d d d d

d

The conservation of energy in the upper dot is obtained as the difference between equations (83a) and (86a), and
reads

Figure 6.The independent set of cycles corresponding to the columns ofC in equation (81)Thefirst corresponds to the sequence
‘electron in u electron in d electron out of u electron out of d ’, inwhich the lowerQD is populated by the third reservoir. The
second and third cycle correspond to theflowof one electron from the second reservoir to the third one, when the upperQD is empty
andfilled, respectively.

1
Onemay argue that the above statementmight be due the fact that wefixed the electron occupancy of eachQD to one, equation (78).

However, the same conclusion is reachedwhen assuming: =N 000 , n=N01 d, n=N10 u, and n n= +N11 u d, for some positive integer
values nu and nd.
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 d = º
+ + + + + +

ℓ ( ) { } ( )( ) Y E D0 0 0 0 . 88E
n e

n
1 2 3 4 5 6

,u
u u

u

The second one, equation (86b), arises from the tight coupling between the transport of energy andmatter
through the second dot. Since ℓ t is in dcoker Y,

d = º
+ + + + + +

ℓ ( ) { } ( )Y L D0 0 0 0 0 0 , 89n e
n

1 2 3 4 5 6

t t

the conserved quantity Ln
t is a constant for all n, which can be chosen arbitrarily. Notice the dependence on the

systemquantity d of the nontrivial conservation law (86b).We thus showed that changes of systemquantities (u
in our case) canmodify the properties ofM, and hence the set of conservation laws—without changing the
network topology.

6.1.3.Massieu potential and fundamental forces
Wenowprovide the expressions of fn and yf

for the generic case ¹u 0. Therefore, we split the set { }y in
={ } {( ) ( ) ( )}y E N N, 1 , , 1 , , 2p and ={ } {( ) ( ) ( )}y E E N, 2 , , 3 , , 3f . From equation (83)we see the validity of

this splitting, as thematrix whose entries are lℓ{ }yp
is an identitymatrix. Thefields conjugatedwith the complete

set of conservation laws, equation (15), are

b b m b m= = - = - ( )F F F, , , 90E 1 u 1 1 d 2 2

fromwhich theMassieu potential of the state n, equation (14), follows

f b b m b m= - + + ( )E N N . 91n n n n1 1 1
u

2 2
d

Instead, the fundamental forces, equation (16), are given by

 b b= - ( )( ) a, 92E,2 1 2

 b b= - ( )( ) b, 92E,3 1 3

 b m b m= - ( )( ) c. 92N ,3 3 3 2 2

Thefirst two forces rule the energy flowing into the first reservoir from the second and third one, respectively,
whereas the third force rules the electrons flowing from the third to the second reservoir.

Concerning theway the changes of fn and { }yf
are intertwined, we see that the former depends on b1, m1,

m2, and b2, which arises from ( )f N ,2 . Therefore, while the changes of b=( )f E,3 3 and b m= -( )f N ,3 3 3 only affect
the related forces, the changes of b=( )f E,2 2 affect both ( )E,2 and fn. Since the vectors of conservation laws
(83c) do not depend on either En orNn, see section 6.1.2, the forces do not depend on systemquantities.

Alternatively, onemay split the set { }y in ={ } {( ) ( ) ( )}y N E N, 1 , , 2 , , 3p and

={ } {( ) ( ) ( )}y E N E, 1 , , 2 , , 3f .With this choice, we obtain

f b b m b m= - + + ( )E N N , 93n n n n2 1 1
u

3 3
d

and

 b b= - ( )( ) a, 94E,1 2 1

 b m b m= - ( )( ) b, 94N ,2 2 2 3 3

 b b= - ( )( ) c. 94E,3 2 3

With respect to the previous decomposition, we here consider the forces ruling the energy flow from thefirst and
third reservoir, and the electrons flow from the second reservoir.

Let us now reconsider the case of vanishing interaction energy, u=0, as in section 6.1.2. Thefive
conservation laws that we consider are En, En

d, Nn
u, Nn

d, Ln
t, andwe choose to split { }y as

={ } {( ) ( ) ( ) ( ) ( )}y E N E N E, 1 , , 1 , , 2 , , 2 , , 3p and ={ } {( )}y N , 3f . The potential follows

f b b m b m b b b b b b= - + + - - - - - -˜ [ ( ) ] ( ) ( ) ( )E N N E L , 95n n n n n n1 1 1
u

2 2 2 3 d
d

3 1
d

3 2
t

whereas the only force is

  b m b m= - - -˜ ( ) ( ) ( )( ) . 96N ,3 3 3 d 2 2 d

We see that the creation of two conservation laws destroyed twononconservative forces, equations (92a) and
(92b), whose expression can be spotted in the new potential, equation (95). Notice also how the emergence of the
nontrivial conservation law (86b)makes the fundamental force dependent on the systemquantity d.

6.1.4. Symmetries and fundamental cycles
The two single-level QDhas no symmetries for ¹u 0, since itsM-matrix (82)has empty kernel. Its three cycle
affinities, equations (81) and (17), are thus fundamental and read
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 b b= - ( )u u a, 971 1 3

  b m b m= - - -( ) ( ) ( )b, 972 3 d 3 2 d 2

  b m b m= + - - + -( ) ( ) ( )u u c, 973 3 d 3 2 d 2

while thematrix relating fundamental cycles to edges, equation (22), is given by

   
   
   

z =
+ +

- - - - - - -
+

+ + + + + +

h
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

u u
u u u

u u

0 0
0 0
0 0

1
. 98

1 2 3 4 5 6

1
2
3

e

d d d d

d d d d

d d d d

In sharp contrast with the fundamental forces, equation (92), the fundamental affinities depend both on the
fields and the systemquantities.

As the interaction energy is turned off, two symmetries emerge:

y = ( ) ( )a1 0 0 , 99
1 2 3

1

y = -( ) ( )b0 1 1 , 99
1 2 3

2

in agreementwith the creation of two conservation laws, see equations (19) and (86). They informus that since
theQDs are decoupled: (i) the cycle 1 does not produces changes in the reservoirs, i.e. its affinity is zero
irrespective of the entries of f ; (ii) the cycle 2 and 3 are physically dependent since the flowof electrons from the
second to the third reservoir is the samewith empty andfilled upper dot. Choosing the third cycle as the
fundamental one, its affinity reads as ̃( )N ,3 in equation (96), whereas thematrix of cycle contributions, see
equation (22) and section 6.1.3, becomes

z = - -
+ + + + + +

( ) ( )0 0 1 0 0 1 . 100e

1 2 3 4 5 6

3

Notice that both the transition+3—which belongs to the cycle 2—and+6—which belongs to the cycle 3—
contribute to the current along the fundamental cycle 3.

6.1.5. Detailed-balance dynamics
From equation (92), we see that the dynamics of the twoQDs is detailed balancedwhen b b b= =1 2 3 and
m m=2 3. In this case theMassieu potential of state n, equation (91), is given by

f b m m= - - -( ) ( )E N N . 101n n n n1 1
u

2
d

The only element distinguishing the latter from that in equation (91) is the fact that b b=2 1, which arises from
 =( ) 0E,2 . Therefore, a nondetailed-balanced dynamics described by the decomposition (91) and (92) can
becomedetailed-balancewithout changing fn as long as  =( ) 0E,2 . Instead, the decomposition in equations (93)
and (94c) requires both ( )E,1 and ( )E,3 to be zero.

6.1.6. EP decomposition
For the sake of illustrating our EP decomposition let us assume that only En, m2, and b3 change in time.
According to the expressions of fn and { }yf

derived in section 6.1.3, we can distinguish two driving
contributions of the EP, equations (37) and (41):

= +[ ] [ ] [ ] ( )( )n n nv v v , 102t t N tE ,2

where thefirst term,

òb t t¶t t[ ] ≔ ( )∣ ( )nv Ed , 103E t

t

n n1
0

is usually referred to asmechanical work in stochastic thermodynamics (up to b1), while the second,

òb t m t- ¶t t
[ ] ≔ ( ) ( )( ) nv Nd , 104N t

t

n,2 2
0

2
d

is the entropy dissipated due to the change of the chemical potential of the second reservoir. Theflow
contributions, equation (39), are instead given by

 òs t t=[ ] ( ) ( )( ) ( ) ( )n I ad , 105E t E

t

E,2 ,2
0

,2

òs t t t=[ ] ( ) ( ) ( )( ) ( ) ( )n I bd , 105E t

t

E E,3
0

,3 ,3
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òs t t t=[ ] ( ) ( ) ( )( ) ( ) ( )n I cd , 105N t

t

N N,3
0

,3 ,3

where, the forces are given in equation (92), while the instantaneous currents of yf are

 = - + + -+ - + -[ ] ( )[ ] ( )( )I J J u J J a, 106E,2 d
2 2

d
5 5

 = - + + -+ - + -[ ] ( )[ ] ( )( )I J J u J J b, 106E,3 d
3 3

d
6 6

= - + -+ - + - ( )( )I J J J J c. 106N ,3
3 3 6 6

We thus see that thefirst and the second flow contribution, equations (105a) and (105b), quantify the dissipation
due to the energyflowing from the second and third reservoir to the first, respectively. Analogously, the third
contribution, equation (105c), characterizes the EP due to theflowof electrons from the third reservoir to the
second. The EP is thus the sumof the terms in equations (102) and (105)plus a difference of stochasticMassieu
potential, equations (91) and (40).We notice that the change in time of b3 is accounted for by the second and
third flows, equations (105b) and (105c), while not by a driving contribution, as b3 does not contribute to fn,
equation (91)

It is worth noting that, from an experimental point of view, the driving contribution demands information
on the states of the trajectory. Instead, the flow contributions require themeasurement of the energyflow in the
second and third reservoir and the electronflow in the third. Let us now compare the above decompositionwith
that based on a different choice of { }y y,p f , e.g. the second onemade in section 6.1.3. In this case the driving
contribution reads,

= +[ ] [ ] [ ] ( )( )n n nv v v , 107t E t E t,3

where

òm t b t- ¶t t
[ ] ≔ ( ) ( )( ) nv Nd . 108E t

t

n,3 3
0

3
d

Theflow contributions read as in equation (102)with forces given in equation (94c) and other expressions for
the currents. Now, themeasurement of the energyflow in thefirst and third reservoir, as well as the electron flow
in the second reservoir, are required to quantify these terms in experiments.

Tomake the difference between the two choices even sharper, one can easily see that if the only quantity
changing in time is m2, the driving contribution of the second choice vanisheswhile that of thefirst does not.
Therefore, depending on the physical system and the experimental apparatus, one choicemay bemore
convenient than another when it comes to estimating the dissipation.

6.1.7. EP decomposition along fundamental cycles
For the scenario described in the previous subsection, section 6.1.6, the flow contributions along fundamental
cycles (52) read

òg t t z t=[ ] ( ) ( ) ( )n J ad , 109t

t

e
e

1
0

1 1,

òg t t z t=[ ] ( ) ( ) ( )n J bd , 109t

t

e
e

2
0

2 2,

òg t t z t=[ ] ( ) ( ) ( )n J cd , 109t

t

e
e

3
0

3 3,

where the affinities are given in equation (97) and the cycle-edge couplingmatrix ζ in equation (98). Concerning
their physical interpretation, thefirst contribution corresponds to the flowof energy from the third reservoir to
thefirst, while the last two to the entropy dissipatedwhen transferring electrons from the second reservoir to the
thirdwith empty andfilled upper dot, respectively.

6.1.8. Finite-time detailed FT
Wenow illustrate the conditions underwhich our FT applies to the coupledQDs. The processmust start from
equilibrium, equation (25): all forces vanish and the potential is given in equation (101). As the protocol is
activated, itmust leave the fields appearing in fn, equation (91), (b1, b b=( )2 1 , m1, and m2) unchanged, but all
the others can be set to arbitrary values. Subsequently, all fields and systemquantities controlled by pt , for

t< < t0 , can change arbitrarily, until time t, inwhich the force in equation (92a)must be turned off. This
condition guarantees that the potential at time t is of the form in equation (101), thus identifying a new
equilibrium state.When the above force vanishes at all times, one can formulate FTs like those in equations (58)
and (59).

To simplify the application of the FT let us consider the conditions described in section 6.1.6, with the
further simplification that all temperatures are equal and constant: onlyEn and m2 change in time. Since b b=2 1
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at all times, we do not need toworry about how the protocol terminates and the FT reads

s
s

s
- - -

= + + + DF
( )

( ) { } ( )( ) ( )
† ( ) ( )

( ) ( )
P v v

P v v
v v

, ,

, ,
exp , 110

t E N N

t E N N
E N N

,2 ,3

,2 ,3
,2 ,3 eq

where the different contributions are given in equations (103), (104), and (105c). Notice that the contributions of
v appear separately in the above expression, but one can equivalently express the FT in terms of the full driving
work v, equation (102), as in themain discussion.

6.1.9. FT for flow contributions along fundamental cycles
We saw in the previous example that the force ( )E,2 , equation (92a), must be zero at time 0 and t for the validity
of the FT (55), and at all times for the FTs (58) and (59). Using equation (20) in combinationwith the inverse of
the submatrix of (82)whose entries are h{ }M yf ,




= - - -
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

( ) ( ) ( )

M u
u

1 1 0
1 0

1 0

1
, 111

E E N, 2 , 3 , 3

1
2
3

d

d

we conclude that the above requirement becomes

  - + = ( )0, 1121 2 3

in terms of fundamental affinities, equation (97). Once identified the above condition, the application of the FT
readily follows.

6.2.QD coupled to aQPC
Wenow consider a simplified description of a two levels QD coupled to a thermal reservoir and aQPC, figure 7.
For a detailed analysis of this class of systemswe refer to [48]. The interest of thismodel is twofold, it shows how
single transitions can trigger exchanges involvingmultiple reservoir, and it also provides a further instance of a
fundamental force which depends on systemquantities due to nontrivial conservation laws.

The two states of theQD, l for ‘low’ and h for ‘high’, are characterized by different energies but the same
number of electrons

= = = = ( )E E N N0, , 1, 1. 113l h l h

The transition between these states can occur following either a phononic interactionwith the first reservoir,±1,
or following electron tunneling from the second to the third reservoir,±2. Along the latter transition, an
electronwith energy +u leaves the second reservoir and enters the thirdwith energy u. Thematrix of
exchanged conserved quantities, dY , thus reads




d =
+

-
-

+ +

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

( )
( )
( )
( )
( )

Y
u

u

0
0
0 1
0
0 1

, 114

E

E

N

E

N

1 2

, 1

, 2

, 2

, 3

, 3

Figure 7.Model ofQD coupledwith a thermal reservoir and a pair of particle reservoirsmodeling aQPC. The electron can jump to the
excited state following either a phononic interactionwith thefirst reservoir or an interactionwith theQPC. The latter involves an
electron current from the second to the third reservoir.
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while the vector of intensive fields is

b b b m b b m= - -( ) ( )
( ) ( ) ( ) ( ) ( )

f . 115

E E N E N, 1 , 2 , 2 , 3 , 3

1 2 2 2 3 3 3

The nontrivial local detailed balance property for the second transition follows from d-f Y , and reads

b m b m= - + - + -+

-
( ) ( ) ( )w

w
u uln . 1162

2
2 2 3 3

TheM-matrix,




=
- -

-

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟ ( )
( )
( )
( )
( )
( )

M
u

u
1

1

117

E

E

N

E

N

1

, 1

, 2

, 2

, 3

, 3

follows from the product of dY , equation (114), and thematrix of cycles,

=
-

+
+ ( ) ( )C 1

1
. 118

1

1

2

Its four-dimensional cokernel is spanned by

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )

a1 1 0 1 0 , 119

E E N E N

E

, 1 , 2 , 2 , 3 , 3

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )

b0 0 1 0 1 , 119

E E N E N

N

, 1 , 2 , 2 , 3 , 3

= - -ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )

u c0 1 0 0 , 119

E E N E N, 1 , 2 , 2 , 3 , 3

3

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )

u d0 0 1 0 . 119

E E N E N, 1 , 2 , 2 , 3 , 3

4

Thefirst two conservation laws are clearly the energy and the number of particles, equation (113), since
 d =ℓ ( )Y ,E and d =ℓ ( )Y 0, 0N . For the other two, d d= =ℓ ℓ ( )Y Y 0, 03 4 implies that the related conserved

quantities are constants, i.e. they do not depend on n.Mindful of the gauge freedomdescribed in section 3we
can set the conserved quantities related to ℓ N , ℓ 3, and ℓ 4 to zero.When ( )E, 1 is set as ‘force’ y, the field related
to the energy conservation law

 m b m b= + - - -[( ) ( ) ] ( )F u u , 120E 2 2 3 3

determine the values of the nonequilibriumMassieu potential, f = -F En E n. Concerning the nonconservative
contributions, the fundamental force and the fundamental affinity read

 b= - = ( )( ) F . 121E E,1 1 1

Due to the emergence of nontrivial conservation laws, equations (119c) and (119d), the fundamental force
depends on a systemquantity. In detailed balance dynamics,  =( ) 0E,1 , andwe readily recover f b= - En n1 .

6.3.Molecularmotor
Wenow turn to the thermodynamic description of amolecularmotormoving along a single dimension, see
[49, 50]. Beside providing an instance of awork reservoir, thismodel also illustrates how changes in the topology
of the network can convert a conservative force into a nonconservative one.

Themotor conformations and transitions are described infigure 8. It can step against amechanical force k
thanks to the chemical force produced by the hydrolysis of ATP into ADP, which are exchangedwith reservoirs
at chemical potential mATP and mADP.We label each state of the process by = ( )n m x, , while each transition by
ex, where Î { }e 1, 2, 3, 4, 5, 6, 7 refers to the transitions at a given position Îx . The systemquantities are
the internal energy, =En m, the total number of ATP plus ADP molecules attached to themotor, =N Nn m,
and the position, =X xln where l is the size of a step. Importantly, each internal state is characterized by an
internal entropy =S sn m.
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Thematrix of exchanged conserved quantities for the transitions at given position x is written as

             

d =

- - - - - - -

- -

+ + + + + + +

Æ Æ Æ Æ Æ Æ Æ Æ⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟

( )

( )
( )
( )
( )

122

Y

E
N
N
X l

, ATP
, ADP

0 0 0 1 0 0 1
0 1 0 0 1 0 0

0 0 0 0 0 0

,

1 2 3 4 5 6 7

x

TD DT T TD D T DT D T DT D T TD D

x x x x x x x

whereas the fullmatrix is given by d d d d= - +( )Y Y Y Y... ...x x x1 1 . On the other side, the row vector of
intensive variables reads

b bm bm b= - - -( ) ( )
( ) ( ) ( ) ( )

f k . 123

E N N X, ATP , ADP

ATP ADP

Differently from all previous cases, the local detailed balance of the step transitions involves thework reservoir,
b-( )X k, ,

 b= - - - + -+

-
[( ) ] ( ) ( )w

w
kl s sln . 1241

1
TD DT TD DT

x

x

Notice that the interpretation of the first term asminus entropyflow still holds:  - -+ ≔ ( )q kl1 TD DTx
is the

heat of transition, since the last term isminus thework that themechanical force exerts on the system [51, 52].
It is easily shown that the subnetwork at given x contains exactly one cycle cx,

=

+
+
+
+
+
+
+

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
( )C

0
1
1
1
1
1
1

, 125

c

x
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7

x

x

x

x

x

x

x

x

which entails the intake of two ATPmolecules and the release of two ADP ones

d =
-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟≔ ( )

( )
( )
( )
( )

M Y C

0
2
2

0

, 126

c

E

N

N

X

, ATP

, ADPx x x

x

irrespective of the position x. The fullM-matrix has thus an infinite-number of columns equal to equation (126),
and its three-dimensional cokernel is spanned by

=ℓ ( ) ( )
( ) ( ) ( ) ( )

a1 0 0 0 , 127

E N N X

E

, ATP , ADP

=ℓ ( ) ( )
( ) ( ) ( ) ( )

b0 1 1 0 , 127

E N N X

N

, ATP , ADP

Figure 8.Network of transitions describing the chemomechanical steppingof themotor,where xdenotes the generic position along the
stepping support. Themolecularmotor has six internal conformations distinguished by the state of the trailing, ∣·∣, and leading, ñ∣· ,motor
foot: ATP-bound (T), ADP-bound (D), or unbound (∅). Yellowarrowsdenote stepping transitions, + º ñ  ñ +{ ∣ ∣ ∣ ∣ }1 D T T Dx x x 1 ,
alongwhich themechanical force k acts (positive valuedrive the system toward increasing x). Internal transitionsmay entail the exchange
of ATP and ADP moleculeswithparticle reservoirs (green arrows) or the hydrolysis of ATP into ADP (blue arrows). The latter only
exchange energywith the thermal reservoir at inverse temperatureβ.
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=ℓ ( ) ( )
( ) ( ) ( ) ( )

c0 0 0 1 , 127

E N N X

X

, ATP , ADP

which clearly corresponds to the three systemquantities, En,Nn, andXn, respectively. As far as the symmetries
are concerned, the intersection between its infinite-dimensional column vector space and its (infinite-
dimensional) kernel is one-dimensional, in agreement with the observation that all cycles { }cx are physically
dependent on one. In otherwords, there is an infinity of symmetries and all cycles carry the same cycle affinity

 b m m= -( ) ( )2 , 128ATP ADP

which is thus regarded as the fundamental one.
To illustrate our EP decomposition, we use ( )N , ATP as set of yf , while leaving {( ) ( ) ( )}E N X, , ADP , as yp.

Guided by equations (14) and (15), the potential reads

f w b= + ( )kX , 129n n n

where

w b bm- +≔ ( )S E N , 130n n n nADP

is theMassieu potential corresponding to the grand potential. The fundamental forces, equation (16), consist
solely of

 b m m= -( ) ( )( ) . 131N ,ATP ATP ADP

The EP along a stochastic trajectorywith autonomous protocol, equation (36), is

b m mS = - + DF[ ] ( ) [ ] [ ] ( )n n n , 132t t tATP ADP ATP

where

 ò òåt d t t t t t t= - + -
=-¥

¥
+ - + -[ ] ≔ ( ) [ ( ) ( ) ( ) ( )] ( )( )n Y J J J J Jd d 133t

t

e
N e

x

t

ATP
0

,ATP

0

4 4 7 7x x x x

is the total number of ATP moleculesflowing into the system, whileΦ is the stochasticMassieu potential related
to equation (129). Since there is only one fundamental force, the EP in terms of fundamental affinities reads
exactly as equation (132)

To illustrate the finite-time detailed FT, let us imagine a systemwith afinite number of positions
N=x 1, ..., x. The potential (129) thus defines a physical equilibrium state, equation (25), achievedwhen the

force is turned off: m m=ATP ADP. At time 0, the autonomous protocol with m m¹ATP ADP (butwith the same mADP

as at equilibrium) is activated and the systemmoves far from equilibrium.Notice that any change of mATP leaves
fn unaltered and the process can be stopped at any time.Hence, the probability of observing the intake of ATP

ATPmolecules up to time t satisfies




b m m
-

= -
( )

( ) { ( ) } ( )P

P
exp , 134t

t

ATP

ATP
ATP ADP ATP

see equation (59).
To formulate a FTwhich explicitly counts the number of steps, we have tomake a step backward and regard

the conservative term bkl in the local detailed balance, equation (124), as an additional force contribution,
rather than as part of the potential one. Under this condition the EP can be recast into

 b m m bS = - + + DW[ ] ( ) [ ] [ ] [ ] ( )n n n nk , 135t t t tATP ADP ATP

where

wW = - ( )pln 136n n n

is the stochasticMassieu potential corresponding to equation (130), while

 -[ ] ≔ ( )n X X 137t n nt 0

the total distance traveled by themotor. If the system is initially prepared in the grandcanonical equilibrium state
—achieved by turning off both the external force k and the fundamental force ( )N ,ATP —the FT reads

 
 

 b m m b
- -

= - +
( )

( ) { ( ) } ( )P

P
k

,

,
exp . 138t

t

ATP

ATP
ATP ADP ATP

Tightly coupledmodel.As an example of change of network topology,wenowconsider the tightly coupled
description inwhich the transitions { }5, 6, 7 are absent, and thenetwork becomes a one-dimensional chainof
states. Since there are no cycles thewhole row space of dY spans the conservation laws,which can thus bewritten as
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=ℓ ( ) ( )
( ) ( ) ( ) ( )

a1 0 0 0 , 139

E N N X, ATP , ADP
E

=ℓ ( ) ( )
( ) ( ) ( ) ( )

b0 1 0 0 , 139

E N N X, ATP , ADP

ATP

=ℓ ( ) ( )
( ) ( ) ( ) ( )

c0 0 1 0 , 139

E N N X, ATP , ADP
ADP

=ℓ ( ) ( )
( ) ( ) ( ) ( )

d0 0 0 1 . 139

E N N X, ATP , ADP
X

With respect to the previousmodel, the number of ATP and ADPmolecules are separately conserved quantities,
equations (139b) and (139c). The set of fundamental forces is emptywhile the potential reads

f b m m= - - - -( ) ( )S E N N kX , 140n n n n n nATP
ATP

ADP
ADP

thusmaking the dissipation equal to

S = DF[ ] [ ] ( )n n . 141t t

Therefore, the change of network topology achieved by removing transitions creating cycles, prevents the
reservoirs from creating forces. The potential will be thus describedwith themaximumamount of conserved
quantities, one for each y.

Alternative description.An alternative description of the chemomechanical process is obtainedwhen
periodic boundary conditions are imposed, figure 9.One additional cycle is created,
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+
+
+
+
+
+
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⎝
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see equation (125), and theM-matrix now reads

- -

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟≔ ( )

( )
( )
( )
( )

M

l

0 0
2 1
2 1

0

, 143

E

N

N

X

, ATP

, ADP

c a

As a consequence, the spatial conservation law, (127c), is lost and the nonequilibriumMassieu potential
becomes wn, equations (130) and (136). However, the set of fundamental forces gains one element,

Figure 9.Alternative description of the chemomechanical stepping process in figure 8. The kinetics and thermodynamics of the
internal transitions is unchanged, while the step transitions reset the internalmotor state.
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 b= ( )( ) k, 144X

which is conjugated to the traveled distance:

 ò òt d t t t t= -+ -[ ] ≔ ( ) [ ( ) ( )] ( )( )n Y J l J Jd d . 145t

t

e
X e

t

0 0

1 1x x

Hence, the expression of the EP and the formulation of the finite-time detailed FT read as in equations (135) and
(138), respectively.

In conclusion, the periodic boundary condition can be viewed as a change of network topology inwhich one
conservation law is lost and a fundamental force emerges.

6.4. Randomized grid
As afinal illustration, we consider a particle hopping between states positioned at the nodes of a two-
dimensional grid, = ( )n x z, for N= ¼x z, 1, , . The transitions along the edges are triggered by randomly
distributedwork reservoirs. Thismodel provides an example of systemswhich could not be analyzed
thermodynamically without resorting to our systematic procedure. It also shows howphysical topological
alterationsmay give rise to symmetry changes which in turn affects the thermodynamics.

The states are characterized by a spatial coordinate = +X a x a zn x z , and jumps are only allowed between
nearest neighbors:  x x 1or  z z 1. The system is isothermal and each transition is ruled by a force

b= -( )f kX r r, , which is initially drawn randomly from a set ofNr reservoirs. The dY -matrix relating transitions
to reservoirs is given by

d =
 = 

 = 

⎧
⎨⎪

⎩⎪
⟶
⟶ ( )Y

a e x x

a e z z

if 1

if 1
0 otherwise

, 146e
r

r

r
x

z

i.e. if e is triggered by thework reservoir r, then dYe
r is equal toax oraz depending on the direction of the

transition.
As an example, we consider the 3×3 grid coupled to 5 reservoirs depicted infigure 10.We omit to report

thematrices dY andC as they can be easily inferred form equation (146) and the picture, andmove on to theM-
matrix, which reads

=

-
- -
-

-
- -

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
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a a a
a a a a

a
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0 0 0

0 0 0
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X

X

1 2 3 4

, 1
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, 3

, 4

, 5

x x x

x z x z

z

z

z x x z x

Its one-dimensional cokernel is spanned by the vector

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )
1 1 1 1 1 148

X X X X X

X

, 1 , 2 , 3 , 4 , 5

which corresponds to the global conserved quantityXn. In contrast, its kernel is empty denoting the absence of
symmetries. Setting b- k1 as ‘potential’field, yp, the nonequilibriumpotential reads

Figure 10. Illustration of a 3×3 grid with nearest-neighbor transitions triggered by a reservoir chosen at random among five. The
color of each transition corresponds to a different reservoir: 1, yellow; 2, green; 3, purple; 4, blue; and 5, red.
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f b= ( )k X , 149n n1

while the fundamental forces are equal to

 b= - =( ) ( )( ) k k r, for 2, ..., 5. 150X r r, 1

The trajectory EP can be thus expressed as

å sS = + + DF
=

[ ] [ ] [ ] [ ] ( )n n n nv , 151t t
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r t t
2

5

where

òb t t t- ¶t = t[ ] ≔ [ ( ) ( )]∣ ( )nv k X ad , 152t

t

n n n
0

1

òs b t t t t-[ ] ≔ [ ( ) ( )] ( ) ( )n k k I bd . 152r t

t

r r
0

1

In order to show the emergence of a symmetry following a change of physical topology, let us now assume
that = =a a ax z and carry on the same analysis as before. TheM-matrix nowbecomes,

=

-
-

-
-
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⎝

⎜
⎜
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a
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0
0 0
0 0 0

0 0 0
0 0 0
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X

X

X

X

, 1

, 2

, 3

, 5

1 2 3 4

whose kernel and cokernel are one and two-dimensional, respectively. The symmetries are given by

y = ( ) ( )0 1 0 1 , 154
1 2 3 4

and tell us that the second and fourth cycles are not physically independent, as they are coupled to the same
reservoirs and all displacements are the same. The basis of Mcoker ,

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )

a1 1 1 1 1 , 155

X X X X X

X

, 1 , 2 , 3 , 4 , 5

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )

b0 0 1 0 1 155

X X X X X

V

, 1 , 2 , 3 , 4 , 5

identifies two state variables, thefirst of which is the global conserved quantity,Xn, whereas the second is

= ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

V a a a a a0 0 0 0 2 156n

0, 0 1, 0 0, 1 2, 0 1, 1 0, 2 2, 1 1, 2 2, 2

whose interpretation is not obvious. It arises from the fact that x- and z-transitions are indistinguishable and the
reservoirs 3 and 5 split the states into three groups, see figure 11, which are identified by different values ofVn,
equation (156).We can set ( )X , 1 and ( )X , 3 as the reservoirs of the set { }yp , according towhich theMassieu
potential of the state n reads

f b= + -[ ( ) ] ( )k X k k V . 157n n n1 3 1

Figure 11. Illustration of the randomized grid infigure 10 for = =a a ax z . The grid is split into three groups of states by the
transitions corresponding to the third (purple) andfifth (red) reservoir: {( ) ( ) ( ) ( )}0, 0 , 1, 0 , 0, 1 , 2, 0 , {( ) ( ) ( ) ( )}1, 1 , 0, 2 , 2, 1 , 1, 2 ,
and {( )}2, 2 .
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The number of fundamental forces is thus reduced,

 b b= - ( )( ) k k a, 158X,2 2 1

 b b= - ( )( ) k k b, 158X,4 4 1

 b b= - ( )( ) k k c. 158X,5 5 3

The EP can be easily written.
Thismodel exemplifies the emergence of nontrivial conservation lawswhose identification is not

straightforward, andmotivates the need for a systematic procedure capable of separating the conservative
contributions to the EP from the nonconservative ones.

7. Conclusions and perspectives

The central achievement of this paper is to show that the EP of an open systemdescribed by stochastic
thermodynamics is shaped by theway conserved quantities constrain the exchanges between the system and the
reservoirs. Some of these conserved quantities are the obvious oneswhich do not depend on the systemdetails
(e.g. energy, particle number). But we provide a systematic procedure to identify the nontrivial oneswhich
depend on the system topology. As a result, we can split the EP into three fundamental contributions, one solely
caused by the time-dependent drivings, another expressed as the change of a nonequilibriumMassieu potential,
and a third onewhich contains the fundamental set offlux and forces. Table 3 indicates which of these
contributions play a role in different known processes.We also showed how tomake use of this decomposition
to derive afinite-time detailed FT solely expressed in terms of physical quantities, as well as to asses the cost of
manipulating nonequilibrium states via time-dependent driving andnonconservative forces.

We believe that this work provides a comprehensive formulation of stochastic thermodynamics. Our
framework can be systematically used to study any specificmodel (aswe illustrated on several examples) and
demonstrates the crucial importance of conservation laws in thermodynamics, at, as well as out of, equilibrium.
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AppendixA. Proof of the one-to-one correspondence between fundamental forces and
fundamental affinities

Weneed to prove that that thematrix whose entries are h{ }M yf is nonsingular given the following hypotheses: (i)
the vectors labeled by ηwhose entries are h{ }M y , for N= ¼y 1, , y , are linearly independent; (ii)

+ =l
a

l
aℓ ℓM M 0y

y
y

y

f
f

p

p for allλ andα, where thematrix whose entries are lℓ{ }yf
is nonsingular. Let us now assume

by contradiction that h{ }M yf is singular, and let us denote by h{ }x the entries of a non-null vector such that
=h

hM x 0yf for all yf .We can thus construct a vector a{ }x having as entries corresponding to η, h{ }x , and zero for
the others.Hence, =a

aM x 0yf for all yf . From the equation in the second hypothesis, we get

+ = =l
a

a l
a

a l
h

hℓ ℓ ℓM x M x M x 0.y
y

y
y

y
y

p

p

f
f

p

p

Since thematrix whose entries are lℓ{ }yp
is nonsingular, wemust conclude that =h

hM x 0
yp for all yp, and thus

=h
hM x 0y for all y, in contradictionwith the hypothesis (i).

Appendix B. Proof of thefinite-time detailed FTs

Wenow give the proof of thefinite time detailed FTs (55) usingmoment generating functions. Alternatively, it
can be proved using the approach developed in [53]. For our purposes, we change our notation for a bracket
operatorial one.
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Let s( { })P n v, ,t yf
be the joint probability of observing a trajectory ending in the state n alongwhich the

driving contribution is vwhile theflowones are s{ }yf
. The above probabilities, one for each n, are stacked in the

ket s ñ∣ ( { })P v,t yf
. The time evolution of themoment generating function of the above probabilities,

ò x x s x x s sL ñ - - ñ∣ ( { }) ≔ { }∣ ( { }) ( )v v P v, d d exp , , B1t y
y

y
y

y t yd df

f

f
f

f f

is ruled by the biased stochastic dynamics

x x x x x xL ñ = L ñ∣ ( { }) ( { })∣ ( { }) ( )d , , , , B2t t y t y t yd d df f f

where the entries of the biased generator are given by

 åx x x d d d d d x f d= - + + ¶-( { }) { { } } ( )( ) ( ) ( )w Y, exp . B3nm t y
e

e
y

y y e n o e m o e n m m o e t m n m, d , , , , , d ,
f

f
f f

Because of the local detailed balance (13), the stochastic generator satisfies the following symmetry

   x x x x= --( { }) ( { }) ( ), , 1 , B4t y t t y t
T

d
1

df f

where the entries of t are given by

 f d≔ { } ( )exp . B5nm t m n m, ,

Also, the initial condition is given by the equilibriumdistribution (25), which reads

x xL ñ = ñ = ñ∣ ( { }) ∣ ∣ ( )p Z, 1 , B6y0 d eq 0 0
f i

where F≔ { }Z exp0 eqi
is the partition function. The ket ñ∣1 refers to the vector in the state spacewhose entries

are all equal to one.
In order to proceed further, it is convenient tofirst prove a preliminary result. Let us consider the generic

biased dynamics, e.g. equation (B2),

x x xL ñ = L ñ∣ ( ) ( )∣ ( ) ( )d , B7t t t t

whose initial condition is xL ñ = ñ∣ ( ) ∣ ( )p 00 . A formal solution of equation (B7) is x xL ñ = ñ∣ ( ) ( ) ∣ ( )p 0t t , where

the time-evolution operator reads   òx t x= t+ { }( ) ( )exp dt
t

0
, + being the time-ordering operator.We

clearly have   x x x=( ) ( ) ( )dt t t t . Let us now consider the following transformed evolution operator

   x x-˜ ( ) ≔ ( ) ( ), B8t t t
1

0

t being a generic invertible operator. Its dynamics is ruled by the following biased stochastic dynamics

              x x x x x x x= + = + º- - - -˜ ( ) ( ) ( ) { ( ) } ˜ ( ) ˜ ( ) ˜ ( ) ( )d d d d , B9t t t t t t t t t t t t t t t t t
1

0
1

0
1 1

which allows us to conclude that the transformed time-evolution operator is given by

  òx t x= t+ { }˜ ( ) ˜ ( ) ( )exp d . B10
t

0

From equations (B8)–(B10)wededuce that

        òx t x= +t t t t t t
-

+
- -{ }( ) [ ( ) ] ( )exp d d . B11t t

t
1

0
0

1 1

Wecan now come back to our specific biased stochastic dynamics (B2). Themoment generating function of
s( { })P v,t yf

is thus given by

 

  x x x x x x x xL = á L ñ = á ñ = -( { }) ∣ ( { }) ∣ ( { }) ∣ ( { })

( )
Z

Z

Z

Z
, 1 , 1 , 1 1 , 1 ,

B12

t y t y t y
t

t
t t y

t
d d d 0 0

1
d 0

0
f f f f

where  x x( { }),t yd f
is the time-evolution operator of the biased stochastic dynamics (B2). The requirement

imposed on pt—discussed in themain text—ensures that á ∣ Z1 t t with F≔ { }Z expt eqf
is the equilibrium

initial distribution of the backward process á ∣peqf
. Using the relation in equation (B11), the above term can be

rewritten as

     ò t x x= ¶ + DFt t t t t t+
- -{ }[ ( { }) ] { } ( )p exp d , 1 exp , B13

t

yeq
0

1 1
d eq

f f

whereDF º Z Zln teq 0. Since   f¶ = -¶t t t
- { }diag t n

1 the first term in square bracket can be added to the
diagonal entries of the second term, thus giving
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   ò t x x= - DFt t t+
-{ }[ ( { }) ] { } ( )p exp d 1, 1 exp . B14

t

yeq
0

1
d eq

f f

The symmetry (B4) allowus to recast the latter into

 ò t x x= - - DFt+ { }( { }) { } ( )p exp d 1, 1 1 exp . B15
t

yeq
0

T
d eq

f f

The crucial step comes aswe transform the integration variable from τ to t t= -† t . Accordingly, the time-
ordering operator, +, becomes an anti-time-ordering one -, while the diagonal entries of the biased
generator, equation (B3), become

 å

å

x x t d x f t

t d x f t

= - + ¶ -

= - - ¶ -

t t

t

- -( { }) ( ) [ ( )]
( ) [ ( )] ( )

† ( ) ( ) †

† ( ) †

† †

†

w t t

w t t

,

, B16

mm t y
e

e m o e t m

e
e m o e m

, d , d

, d

f

fromwhichwe conclude that

  x x x x x x= - -t t t- -( { }) ( { }) ≕ ( { }) ( )†† † †, , , . B17nm t y nm t y nm y, d , d , df f f

Above, x x
t

( { })†
† , yd f

is the biased generator of the dynamics subject to the time-reversed protocol, p†, i.e. the
dynamics of the backward process. Equation (B15) thus becomes

 ò t x x= - - DFt- { }( { }) { } ( )† †
†p exp d 1 , 1 1 exp . B18

t

yeq
0

T
d eq

f f

Upon a global transposition, we canwrite

 ò t x x= - - DF
t+ { }( { }) { } ( )† †

† p1 exp d 1 , 1 exp , B19
t

y
0

d eq eq
f f

wherewe also used the relationship between transposition and time-ordering

  =+ -

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )A A , B20

i
t

i
t

T
T

i i

inwhichAt is a generic operator. From the last expression, we readily obtain

 x x x x=á - - ñ DF = L - - DF∣ ( { })∣ { } ( { }) { } ( )† †p1 1 , 1 exp 1 , 1 exp , B21t y t yd eq eq d eq
f f f

where x xL ( { })† ,t yd f
is themoment generating function of s( { })†P v, yf

. Summarizing, we have the following
symmetry

x x x xL = L - - DF( { }) ( { }) { } ( )†, 1 , 1 exp , B22t y t yd d eq
f f

whose inverse Laplace transform gives the FT

å
s

s
s

- -
= + + DF

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

( { })
( { }) ( )†
P v

P v
v

,

,
exp . B23

t y

t y y
y eq

f

f f

f

B.1. Fundamental cycles
Thefinite-time detailed FT forflow contributions along fundamental cycles, equation (61), follows the same
logic andmathematical steps described above. Themoment generating functionwhich nowmust be taken into
account is

ò x x g x x g gL ñ - - ñh
h

h
h

h h∣ ( { }) ≔ { }∣ ( { }) ( )v v P v, d d exp , , B24t td d

which is ruled by the biased generator whose entries are

 åx x x z d d d d x f d= - + + ¶h
h

h h -( { }) { { } } ( )( ) ( ) ( )w, exp . B25nm t
e

e e n o e m o e n m m o e t m n m, d , , , , , d ,

The symmetry of the latter generator—on top ofwhich the proof is constructed—is based on the expression of
the local detailed balance given in equation (13),

   x x x x= -h h
-( { }) ( { }) ( ), , 1 , B26t t t t

T
d

1
d

where the entries of t are given in equation (B5). Following the steps from equation (B12) to equation (B22),
with the above definitions and equations, equations (B24)–(B26), proves the FT in equation (61).
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Abstract: We present a general method to identify an arbitrary number of fluctuating quantities which
satisfy a detailed fluctuation theorem for all times within the framework of time-inhomogeneous
Markovian jump processes. In doing so, we provide a unified perspective on many fluctuation
theorems derived in the literature. By complementing the stochastic dynamics with a thermodynamic
structure (i.e., using stochastic thermodynamics), we also express these fluctuating quantities in terms
of physical observables.

Keywords: stochastic thermodynamics; fluctuation theorem; Markov jump process; entropy
production; graph theory; conservation laws

PACS: 02.50.Ga; 05.70.Ln

1. Introduction

The discovery of different fluctuation theorems (FTs) over the last two decades constitutes a major
progress in nonequilibrium physics [1–6]. These relations are exact constraints that some fluctuating
quantities satisfy arbitrarily far from equilibrium. They have been verified experimentally in many
different contexts, ranging from biophysics to electronic circuits [7]. However, they come in different
forms: detailed fluctuation theorems (DFTs) or integral fluctuation theorems (IFTs), and concern
various types of quantities. Understanding how they are related and to what extent they involve
mathematical quantities or interesting physical observables can be challenging.

The aim of this paper is to provide a simple yet elegant method to identify a class of finite-time
DFTs for time-inhomogeneous Markovian jump processes. The method is based on splitting the
entropy production (EP) in three contributions by introducing a reference probability mass function
(PMF). The latter is parametrized by the time-dependent driving protocol, which renders the dynamics
time-inhomogeneous. The first contribution quantifies the EP as if the system were in the reference
PMF, the second the extent to which the reference PMF changes with the driving protocol, and the
last the mismatch between the actual and the reference PMF. We show that when the system is
initially prepared in the reference PMF, the joint probability distribution for the first two terms always
satisfies a DFT. We then show that various known DFTs can be immediately recovered as special cases.
We emphasize at which level our results make contact with physics and also clarify the nontrivial
connection between DFTs and EP fluctuations. Our EP splitting is also shown to be connected to
information theory. Indeed, it can be used to derive a generalized Landauer principle identifying
the minimal cost needed to move the actual PMF away from the reference PMF. While unifying,
we emphasize that our approach by no means encompasses all previously derived FTs and that other
FT generalizations have been made (e.g., [5,8–11]).

Entropy 2018, 20, 635; doi:10.3390/e20090635 www.mdpi.com/journal/entropy
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The plan of this paper is as follows. Time-inhomogeneous Markov jump processes are introduced
in Section 2. Our main results are presented in Section 3: We first introduce the EP as a quantifier of
detailed balance breaking, and we then show that by choosing a reference PMF, a splitting of the EP
ensues. This enables us to identify the fluctuating quantities satisfying a DFT and an IFT when the
system is initially prepared in the reference PMF. While IFTs hold for arbitrary reference PMFs, DFTs
require reference PMFs to be solely determined by the driving protocol encoding the time dependence
of the rates. The EP decomposition is also shown to lead to a generalized Landauer principle.
The remaining sections are devoted to selecting specific reference PMFs and showing that they give rise
to interesting mathematics or physics: In Section 4 the steady-state PMF of the Markov jump process
is chosen, giving rise to the adiabatic–nonadiabatic split of the EP [12]. In Section 5 the equilibrium
PMF of a spanning tree of the graph defined by the Markov jump process is chosen, and gives rise to
a cycle–cocycle decomposition of the EP [13]. Physics is introduced in Section 6, and the properties
that the Markov jump process must satisfy to describe the thermodynamics of an open system are
described. In Section 7 the microcanonical distribution is chosen as the reference PMF, leading to the
splitting of the EP into system and reservoir entropy change. Finally, in Section 8, the generalized Gibbs
equilibrium PMF is chosen as a reference and leads to a conservative–nonconservative splitting of the
EP [14]. Conclusions are finally drawn, and some technical proofs are discussed in the appendices.

2. Markov Jump Process

We introduce time-inhomogeneous Markovian jump processes and set the notation.
We consider an externally driven open system described by a finite number of states, which we

label by n. Allowed transitions between pairs of states are identified by directed edges,

e ≡ (nm, ν) , for n ν←− m, (1)

where the label ν indexes different transitions between the same pair of states (e.g., transitions due
to different reservoirs). The evolution in time of the probability of finding the system in the state n,
pn ≡ pn(t), is ruled by the master equation (ME):

dt pn = ∑mWnm pm, (2)

where the elements of the rate matrix are represented as

Wnm = ∑ewe

{
δn,t(e)δm,o(e) − δn,mδm,o(e)

}
. (3)

The latter is written in terms of stochastic transition rates, {we }, and the functions

o(e) := m , and t(e) := n , for e = (nm, ν), (4)

which map each transition to the state from which it originates (origin) and to which it leads (target),
respectively. The off-diagonal entries of the rate matrix (the first term in brackets) give the probability
per unit time to transition from m to n. The diagonal ones (second term in brackets) are the escape
rates denoting the probability per unit time of leaving the state m. For thermodynamic consistency,
we assume that each transition e ≡ (nm, ν) is reversible, namely if we is finite, the corresponding
backward transition −e ≡ (mn, ν) is allowed and additionally has a finite rate w−e. For simplicity,
we also assume that the rate matrix is irreducible at all times, so that the stochastic dynamics is
ensured to be ergodic. The Markov jump process is said to be time-inhomogeneous when the transition
rates depend on time. The driving protocol value πt determines the values of all rates at time t,
{we ≡ we(πt) }.
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The ME (2) can be rewritten as a continuity equation:

dt pn = ∑eDn
e 〈je〉, (5)

where we introduced the averaged transition probability fluxes,

〈je〉 = we po(e), (6)

and the incidence matrix D,

Dn
e := δn,t(e) − δn,o(e) =





+1 if e−→ n,

−1 if e←− n,

0 otherwise,

(7)

which couples each transition to the pair of states that it connects, and hence encodes the network
topology. On the graph identified by the vertices { n } and the edges { e }, it can be viewed as a
(negative) divergence operator when acting on edge-space vectors—as in the ME (5)—or as a gradient
operator when acting on vertex-space vectors. It satisfies the symmetry Dn

−e = −Dn
e .

Example

Let us consider the Markov jump process on the network in Figure 1, in which only the six forward
transitions are depicted. It is characterized by four states, { 00, 01, 10, 11 }, connected by transitions as
described by the incidence matrix:

D =




+1 +2 +3 +4 +5 +6

00 −1 −1 −1 0 0 0
10 1 0 0 0 −1 −1
01 0 1 1 −1 0 0
11 0 0 0 1 1 1


. (8)

Backward transitions are obtained from Dn
−e = −Dn

e .

00

10

01

11

+4

+2
+3

+1

+6
+5

Figure 1. Illustration of a network of transitions.

Notation

From now on, upper–lower indices and Einstein summation notation will be used: repeated
upper–lower indices implies the summation over all the allowed values for those indices.
Time derivatives are denoted by “dt” or “∂t”, whereas the overdot “ ˙ ” is reserved for rates of
change of quantities that are not exact time derivatives of state functions. We also take the Boltzmann
constant kB equal to 1.

3. General Results

This section constitutes the core of the paper. The main results are presented in their most
general form.
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3.1. EP Decomposition at the Ensemble Average Level

After defining the ensemble-averaged EP, we will show how to generically decompose it in terms
of a reference PMF.

A PMF pn satisfies the detailed-balance property if and only if

we po(e) = w−e po(−e) , for all transitions e. (9)

This implies that all net transition probability currents vanish: 〈je〉 − 〈j−e〉 = 0. The central
quantity that we will consider is the EP rate:

〈Σ̇〉 = 1
2 Ae

[
〈je〉 − 〈j−e〉

]
= Ae〈je〉 ≥ 0, (10)

where the affinities are given by

Ae = ln
we po(e)

w−e po(−e)
. (11)

It is a measure of the amount by which the system breaks detailed balance or, equivalently,
time-reversal symmetry. Indeed, its form ensures that it is always non-negative and vanishes if and
only if Equation (9) holds. Notice that A−e = −Ae. As we will see in Section 7, in physical systems the
EP quantifies the total entropy change in the system plus environment [15].

We now decompose the EP rate into two contributions using a generic PMF pref
n ≡ pref

n (t) as a
reference. We make no assumption about the properties of pref

n at this stage, and define the reference
potential and the reference affinities as

ψref
n := − ln pref

n (12)

and

Aref
e := ln

we pref
o(e)

w−e pref
o(−e)

= ln
we

w−e
+ ψref

n Dn
e , (13)

respectively. The former can be thought of as the entropy associated to pref
n —i.e., its self-information—,

whereas the latter measures the extent by which pref
n breaks detailed balance. By merely adding and

subtracting ψref
n Dn

e from the EP rate, the latter can be formally decomposed as

〈Σ̇〉 = 〈Σ̇nc〉+ 〈Σ̇c〉 ≥ 0, (14)

where the reference nonconservative contribution is an EP with affinities replaced by reference affinities:

〈Σ̇nc〉 := Aref
e 〈je〉, (15)

and the reference conservative contribution is

〈Σ̇c〉 := −∑ndt pn ln
{

pn/pref
n

}
. (16)

Using the ME (5), it can be further decomposed as

〈Σ̇c〉 = −dtD(p‖pref) + 〈Σ̇d〉, (17)

where the first term quantifies the change in time of the dissimilarity between pn and pref
n , since

D(p‖pref) := ∑n pn ln
{

pn/pref
n

}
(18)
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is a relative entropy, whereas the second term,

〈Σ̇d〉 := −∑n pndt ln pref
n = ∑n pndtψ

ref
n , (19)

accounts for possible time-dependent changes of the reference state, and we name it the driving
contribution. The reason for this name will become clear later, as we will request pref

n to depend
parametrically on time only via the driving protocol (i.e., pref

n (t) = pref
n (πt)).

Using these equations, one can easily rearrange Equation (14) into

〈Σ̇d〉+ 〈Σ̇nc〉 ≥ dtD(p‖pref). (20)

When pref
n (t) = pref

n (πt), one can interpret this equation as follows. The lhs describes the EP
contribution due to the time-dependent protocol, 〈Σ̇d〉, and to the break of detailed balance required
to sustain the reference PMF, 〈Σ̇nc〉. When positive, the rhs thus represents the minimal cost (ideally
achieved at vanishing EP) to move the PMF further away from the reference PMF. When negative,
its absolute value becomes the maximal amount by which the two EP contributions can decrease,
as the PMF approaches the reference PMF. This result can be seen as a mathematical generalization of
the Landauer principle, as it provides a connection between an information-theoretical measure of the
dissimilarity between two PMFs and the driving and break of detailed balance needed to achieve it.
Its precise physical formulation, discussed in detail in [14], is obtain when expressing Equation (20) in
terms of the reference PMF used in Section 8.

3.2. EP Decomposition at the Trajectory Level

We now perform the analogue of the EP decomposition (14) at the level of single stochastic
trajectories.

A stochastic trajectory of duration t, nt, is defined as a set of transitions {ei} sequentially occurring
at times {ti} starting from n0 at time 0. If not stated otherwise, the transitions index i runs from i = 1
to the last transition prior to time t, Nt, whereas the state at time τ ∈ [0, t] is denoted by nτ . The whole
trajectory is encoded in the instantaneous fluxes,

je(τ) := ∑iδe,ei δ(τ − ti), (21)

as they encode the transitions that occur and their timing. Its corresponding trajectory probability
measure is given by

P[nt; πt] =
Nt

∏
i=1

wei (πti )
Nt

∏
i=0

exp
{
−
∫ ti+1

ti
dτ ∑ewe(πτ)δnτ ,o(e)

}
, (22)

where the first term accounts for the probability of transitioning along the edges, while the second
accounts for the probability that the system spends { ti+1 − ti } time in the state { nti }. When averaging
Equation (21) over all stochastic trajectories, we obtain the averaged fluxes, Equation (6),

〈je(τ)〉 =
∫
Dnt P[nt; πt] pn0(0) je(τ), (23)

where
∫
Dnt denotes the integration over all stochastic trajectories.

The change along nt of a state function like ψref
n can be expressed as

∆ψref[nt] = ψref
nt (t)− ψref

n0
(0) =

∫ t

0
dτ

{[
dτψref

n (τ)
]∣∣∣

n=nτ

+ ψref
n (τ) Dn

e je(τ)

}
. (24)
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The first term on the rhs accounts for the instantaneous changes of pref
n , while the second accounts

for its finite changes due to stochastic transitions. Analogously, the trajectory EP—which is not a state
function—can be written as

Σ[nt; πt] =
∫ t

0
dτ je(τ) ln

we(πτ)

w−e(πτ)
− ln

pnt(t)
pn0(0)

. (25)

Adding and subtracting the terms of Equation (24) from the EP, we readily obtain the fluctuating
expressions of the nonconservative and conservative contributions of the EP,

Σ[nt; πt] = Σnc[nt; πt] + Σc[nt]. (26)

The former reads
Σnc[nt; πt] =

∫ t
0 dτ Aref

e (τ) je(τ), (27)

while for the latter
Σc[nt] = −∆D[nt] + Σd[nt], (28)

where

∆D[nt] := ln
pnt(t)
pref

nt (t)
− ln

pn0(0)
pref

n0 (0)
(29)

and

Σd[nt] :=
∫ t

0
dτ
[
dτψref

n (τ)
]∣∣∣

n=nτ

. (30)

We emphasize that Equation (26) holds for any reference PMF pref
n exactly as it was for its

ensemble-averaged rate counterpart, Equation (14).

3.3. Fluctuation Theorems

We proceed to show that a class of FTs ensue from the decomposition (14)–(26). To do so, we
now need to assume that the reference PMF depends instantaneously solely on the protocol value
pref

n (τ) = pref
n (πτ). In other words, pref

n at time τ is completely determined by {we(πτ) }. This justifies
a posteriori the name driving contribution for Equation (19). Various instances of such PMFs will be
provided in the following sections. We define a forward process where the system is initially prepared in
pn(0) = pref

n (π0) at a value of the protocol π0 and then evolves under the Markov jump process driven
by a protocol πτ , for τ ∈ [0, t]. The corresponding backward process, denoted with “ † ”, is defined as
follows: the system is initially prepared in the reference PMF corresponding to the final value of the
forward process, p†

n(0) = pref
n (πt), and then evolves under the Markov jump process driven by the

forward protocol reversed in time,

π†
τ := πt−τ , for τ ∈ [0, t], (31)

see Figure 2.

reference: π0

pn(0) = expψref
n (π0)

noneq.forward protocol: πτ

backward protocol: π†
τ = πt−τ

pn(t)

reference: πt

p†
n(0) = expψref

n (πt)

Figure 2. Schematic representation of the forward and backward processes related by our detailed
fluctuation theorem (DFT).
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Our main result is that the forward and backward process are related by the following
finite-time DFT:

Pt(Σd, Σnc)

P†
t (−Σd,−Σnc)

= exp {Σd + Σnc} . (32)

Here Pt(Σd, Σnc) is the probability of observing a driving contribution to the EP Σd and a
nonconservative one Σnc along the forward process. Instead, P†

t (−Σd,−Σnc) is the probability
of observing a driving contribution equal to −Σd, and a nonconservative one −Σnc along the
backward process.

We now mention two direct implications of our DFT. First, by marginalizing the joint probability,
one easily verifies that the sum of nonconservative and driving EP contributions also satisfies a DFT:

Pt(Σd + Σnc)

P†
t (−Σd − Σnc)

= exp {Σd + Σnc} . (33)

Second, when averaging Equation (32) over all possible values of Σd and Σnc, an IFT ensues:

〈exp {−Σd − Σnc}〉 = 1. (34)

The proofs of Equations (32)–(34) are given in Appendix A, and use the generating function
techniques developed in References [12,14].

We note that the IFT holds for any reference PMF regardless of the requirement that
pref

n (τ) = pref
n (πτ) (see Appendix A). In contrast, this requirement must hold for the DFT,

else the probability P†
t (Σd, Σnc) would no longer describe a physical backward process in which

solely the protocol function is time reversed. Indeed, if one considers an arbitrary pref
n , the backward

process corresponds to not only reversing the protocol, but also the stochastic dynamics itself
(see Equation (A23)).

Another noteworthy observation is that the fluctuating quantity Σd + Σnc can be seen as the ratio
between the probabilities to observe a trajectory nt along the forward process, Equation (22), and the
probability to observe the time-reversed trajectory along the backward process:

Σnc[nt; πt] + Σd[nt; πt] = ln
P[nt; πt] pref

n0
(π0)

P[n†
t ; π†

t ] pref
nt (πt)

. (35)

The latter trajectory is denoted by n†
t . It starts from nt, and it is defined by:

j† e(τ) := ∑iδe,−ei δ(t− τ − ti). (36)

This result follows using Equation (22) and the observation that the contribution due to the
waiting times vanish in the ratio on the rhs. It can also be used to prove the DFT in two alternative
ways, the first inspired by Reference [16] and the second using trajectory probabilities (see Appendix B).
These proofs rely on the fact that both the driving and the nonconservative EP contributions satisfy the
involution property:

Σnc[n†
t ; π†

t ] = −Σnc[nt; πt] , and Σd[n
†
t ; π†

t ] = −Σd[nt; πt], (37)

viz. the change of Σd and Σnc for the backward trajectory along the backward process is minus the
change along the forward trajectory of the forward process. This result follows from direct calculation
on Equations (27) and (30) (see Appendix B).

Finally, let us get back to the generalized Landauer principle for systems initially prepared in
the reference state, as we did in this subsection for the FTs to hold. Using Equation (20), we see that
the arguments of the FTs (33) and (34) (i.e., the driving and the nonconservative contribution to the
EP) can be interpreted, on average, as the cost to generate a dissimilarity (or a lag) between the actual
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and the reference PMF at the end of the forward protocol. A special case of this result is discussed in
Reference [17].

3.4. EP Fluctuations

We now discuss the properties of the fluctuating EP and its relation to the previously derived FTs.
An IFT for the EP always holds

〈exp {−Σ}〉 = 1, (38)

regardless of the initial condition [18]. In our framework, this can be seen as the result of choosing the
actual pn(τ) as the reference for the IFT (34).

In contrast, a general DFT for the EP does not hold. This can be easily understood at the level of
trajectory probabilities. Indeed, the fluctuating EP can be written as the ratio of forward and backward
probabilities as in (35), but the initial condition of the forward process is arbitrary and that of the
backward process is the final PMF of the forward process,

Σ[nt; πt] = ln
P[nt; πt] pn0(0)
P[n†

t ; π†
t ] pnt(t)

. (39)

As a result, the involution property is generally lost, Σ[n†
t ; π†

t ] 6= −Σ[nt; πt], since p†
n0
(t) 6= pn0(0),

and hence the DFT is also lost [18].
However, in special cases the fluctuating quantity Σd + Σnc which satisfies a DFT can be

interpreted as an EP. This happens if at the end of the forward (respectively backward) process,
the protocol stops changing in time in such a way that the system relaxes from pnt to an equilibrium
pref

nt (respectively from p†
n(t) to an equilibrium pref

n (π0)) and thus without contributing to either Σd or
to Σnc (even at the trajectory level). In such cases, Σd + Σnc can be seen as the EP of the extended process
including the relaxation. On average, it is greater or equal than the EP of the same process without the
relaxation, since the non-negative EP during the relaxation is given by D(p(t)‖pref(πt)) ≥ 0.

3.5. A Gauge Theory Perspective

We now show that the decomposition in Equation (14) can be interpreted as the consequence of
the gauge freedom discussed by Polettini in Reference [19]. Indeed, in this reference he shows that the
following gauge transformation leaves the stochastic dynamics (5) and the EP rate (10) unchanged:

pn → pn exp ψn , we → we exp−ψo(e) , Dn
e → Dn

e exp ψn , and ∑n → ∑n exp−ψn. (40)

When considering a gauge term ψn changing in time, one needs also to shift the time
derivative as:

dt → dt − ∂t, (41)

where ∂t behaves as a normal time derivative but it acts only on ψn. Let us now consider the EP rate
rewritten as

〈Σ̇〉 = 〈je〉 ln
we

w−e
+ dt∑n pn [− ln pn] . (42)

One readily sees that the transformation(40)–(41) changes the first term into the nonconservative
term, Equation (15), whereas the second into the conservative one, Equation (16). We finally note that
connections between gauge transformations and FTs were also discussed in References [8,20].

This concludes the presentation of our main results. In the following, we will consider various
specific choices for pref

n which solely depend on the driving protocol and thus give rise to DFTs. Each of
them will provide a specific meaning to Σnc and Σc. Table 1 summarizes the reference potential, affinity,
and conservative contribution for these different choices.
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Table 1. Summary of the reference potentials, affinities, and conservative EP contributions for the
specific references discussed in the text. The nonconservative EP contribution follows from 〈Σ̇nc〉 =
Aref

e 〈je〉, whereas the driving one from 〈Σ̇d〉 = ∑n pndtψ
ref
n . Overall, 〈Σ̇〉 = 〈Σ̇nc〉+ 〈Σ̇c〉 = 〈Σ̇nc〉+

〈Σ̇d〉 − dtD(p‖pref), where D is the relative entropy.

Decomposition ψref
n Aref

e 〈Σ̇c〉

adiabatic–nonadiabatic − ln pss
n ln

we pss
o(e)

w−e pss
o(−e)

−〈je〉Dn
e ln {pn/pss

n }

cycle–cocycle − ln
{

∏e∈Tn
we − Z

}
{

0 , if e ∈ T ,
Ae , if e ∈ T ∗ ∑e∈T 〈Je〉 Ae

system–reservoir Smc − Sn δSr
e = − fyδXy

e [Sn − ln pn] Dn
e 〈je〉

conservative–nonconservative Φgg −
[
Sn − FλLλ

n

]
Fyf δXyf

e

[
Sn − FλLλ

n − ln pn

]
Dn

e 〈je〉

4. Adiabatic–Nonadiabatic Decomposition

We now provide a first instance of reference PMF based on the fixed point of the Markov
jump process.

The Perron–Frobenius theorem ensures that the ME (5) has, at all times, a unique instantaneous
steady-state PMF

∑mWnm(πt)pss
m(πt) = 0 , for all n and t. (43)

When using this PMF as the reference, pref
n = pss

n , we recover the adiabatic–nonadiabatic EP
rate decomposition [12,16,21–24]. More specifically, the nonconservative term gives the adiabatic
contribution which is zero only if the steady state satisfies detailed balance, and the conservative
term gives the nonadiabatic contribution which characterizes transient and driving effects. A specific
feature of this decomposition is that both terms are non-negative, as proved in Appendix C: 〈Σ̇nc〉 ≥ 0
and 〈Σ̇c〉 ≥ 0. In turn, the nonadiabatic contribution decomposes into a relative entropy term and a
driving one.

Provided that the forward and backward processes start in the steady state corresponding to
the initial value of the respective protocol, the general DFT and IFT derived in Equation (32) and
Equation (34) hold for the adiabatic and driving contributions of the adiabatic–nonadiabatic EP
decomposition [12,21].

In detailed-balanced systems, the adiabatic contribution is vanishing, 〈Σ̇a〉 = 0, and we obtain a
FT for the sole driving contribution:

Pt(Σd)

P†
t (−Σd)

= exp Σd. (44)

The celebrated Crooks’ DFT [25–27] and Jarzynski’s IFT [28] are of this type.

4.1. Additional FTs

Due to the particular mathematical properties of the steady-state PMF, additional FTs for the
adiabatic and driving terms ensue. These are not covered by our main DFT, Equation (32), and their
proofs are discussed in Appendix D.

For the former, the forward process is produced by the original dynamics initially prepared in an
arbitrary PMF. The backward process instead has the same initial PMF and the same driving protocol
as the forward process, but the dynamics is governed by the rates

ŵe := w−e pss
o(−e)/pss

o(e). (45)
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At any time, the following DFT relates the two processes,

Pt(Σa)

P̂t(−Σa)
= exp Σa, (46)

where P̂ (−Σa) is the probability of observing −Σa adiabatic EP during the backward process.
The Speck–Seifert IFT for the housekeeping heat is the IFT version of this DFT [29].

For the driving term, the forward process is again produced by the original dynamics, but now
initially prepared in a steady state. The backward process is instead produced by the rates (45) with
time-reversed driving protocol and the system must initially be prepared in a steady state. Under these
conditions, one has

Pt(Σd)

P̂†
t (−Σd)

= exp Σd, (47)

where P̂†(−Σd) is the probability of observing −Σd driving EP during the backward process.
The Hatano–Sasa IFT [30] is the IFT version of this DFT.

5. Cycle–Cocycle Decomposition

We proceed by providing a second instance of reference PMF based on the equilibrium PMF for a
spanning tree of the graph defined by the incidence matrix of the Markov jump process.

We partition the edges of the graph into two disjoint subsets: T and T ∗. The former identifies a
spanning tree, namely a minimal subset of paired edges, (e,−e), that connects all states. These edges
are called cochords. All the other edges form T ∗, and are called chords. Equivalently, T is a maximal
subset of edges that does not enclose any cycle—the trivial loops composed by forward and backward
transitions, (e,−e), are not regarded as cycles. The graph obtained by combining T and e ∈ T ∗
identifies one and only one cycle, denoted by Ce, for e ∈ T ∗. Algebraically, cycles are characterized as:

∑
e′∈Ce

Dn
e′ = ∑

e′
Dn

e′ Ce′
e = 0 , for all n, (48)

where { Ce′
e }, for e ∈ T ∗, represent the vectors in the edge space whose entries are all zero except for

those corresponding to the edges of the cycle, which are equal to one.
We now note that if T were the sole allowed transitions, the PMF defined as follows would be an

equilibrium steady state [15]:

pst
n (πt) :=

1
Z ∏

e∈Tn

we(πt), (49)

where Z = ∑m ∏e∈Tm we is a normalization factor, and Tn denotes the spanning tree rooted in n, namely
the set of edges of T that are oriented towards the state n. Indeed, pst

n would satisfy the property of
detailed balance, Equation (9):

we pst
o(e) =

we

Z ∏
e′∈To(e)

we′ =
w−e

Z ∏
e′∈To(−e)

we′ = w−e pst
o(−e) , for all e ∈ T . (50)

We now pick this equilibrium PMF as a reference for our EP decomposition, pref
n = pst

n . However,
in order to derive the specific expressions for 〈Σ̇nc〉 and 〈Σ̇c〉, the following result is necessary: the edge
probability fluxes can be decomposed as

〈je〉 = ∑
e′∈T
〈Je′〉E e

e′ + ∑
e′∈T ∗

〈Je′〉Ce
e′ , (51)

where { Ee } denotes the canonical basis of the edge vector space: E e′
e = δe′

e [31]. Algebraically,
this decomposition hinges on the fact that the set { Ce }e∈T ∗ ∪ { Ee }e∈T is a basis of the edge vector
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space [13]. Note that for e ∈ T ∗, the only nonvanishing contribution in Equation (51) comes from
the cycle identified by e, and hence 〈je〉 = 〈Je〉. The coefficients { 〈Je〉 } are called cocycle fluxes for
the cochords, e ∈ T , and cycle fluxes for the chords, e ∈ T ∗. They can be understood as follows [13]:
removing a pair of edges, e and −e, from the spanning tree (e,−e ∈ T ) disconnects two blocks of states.
The cocycle flux { 〈Je〉 } of that edge is the probability flowing from the block identified by the origin
of e, o(e), to that identified by the target of e, t(e). Instead, the cycle flux { 〈Je〉 } of an edge, e ∈ T ∗,
quantifies the probability flowing along the cycle formed by adding that edge to the spanning tree.
Graphical illustrations of cocycle and cycle currents, 〈J e〉 − 〈J −e〉, can be found in Reference [13].

We can now proceed with our main task. Using Equations (48) and (49), we verify that

ψref
n Dn

e =

{
− ln {we/w−e} , if e ∈ T ,

− ln {we/w−e}+Ae , if e ∈ T ∗,
(52)

where
Ae = ∑e′Ce′

e ln {we′/w−e′} , for e ∈ T ∗ (53)

is the cycle affinity related to Ce. It follows that

Aref
e = ln

we

w−e
+ ψref

n Dn
e =

{
0 , if e ∈ T ,

Ae , if e ∈ T ∗,
(54)

from which the nonconservative contribution readily follows:

〈Σ̇nc〉 = ∑
e∈T ∗
Ae〈je〉 = ∑

e∈T ∗
Ae〈Je〉. (55)

In the last equality, we used the property of cycle fluxes discussed after Equation (51). Hence,
the nonconservative contribution accounts for the dissipation along network cycles. In turn, combining
Equation (16) with Equations (51) and (52), one obtains the conservative contribution

〈Σ̇c〉 = ∑
e∈T

Ae〈Je〉, (56)

which accounts for the dissipation along cocycles. Using these last two results, the EP
decomposition (14) becomes the cycle–cocycle decomposition found in Reference [13]:

〈Σ̇〉 = ∑
e∈T ∗
Ae〈je〉+ ∑

e∈T
Ae〈Je〉. (57)

As for all decompositions, the conservative contribution—here the cocycle one—vanishes at
steady state in the absence of driving. The cycle contribution instead disappears in detailed-balanced
systems, when all the cycle affinities vanish. This statement is indeed the Kolmogorov criterion for
detailed balance [32,33].

The fluxes decomposition Equation (51) is also valid at the trajectory level, where the cycle and
cocycle fluxes become fluctuating instantaneous fluxes, { Je }. Obviously, the same holds true for
the cycle–cocycle EP decomposition. Therefore, if the system is in an equilibrium PMF of type (49)
at the beginning of the forward and the backward process, a DFT and an IFT hold by applying
Equations (32) and (34). Note that the fluctuating quantity appearing in the DFT, Σd + Σnc, can be
interpreted as the EP of the extended process in which, at time t, the driving is stopped, all transitions
in T ∗ are shut down, and the system is allowed to relax to equilibrium—which is the initial PMF of the
backward process.
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It is worth mentioning that one can easily extend the formulation of our DFT by considering
the joint probability distribution for each subcontribution of Σd and Σna antisymmetrical under time
reversal. This can be shown using either the proof in Appendix B [16], or that in Appendix A [14].
In the case of the cycle–cocycle decomposition, it would lead to

Pt(Σd, {Ae (je − j−e) }e∈T ∗)
P†

t (−Σd, {−Ae (je − j−e) }e∈T ∗)
= exp

{
Σd + ∑

e∈T ∗
Ae je

}
, (58)

which is a generalization of the DFT derived in Reference [34] to time-inhomogeneous systems. In turn,
the latter is a generalization of the steady-state DFT derived by Andrieux and Gaspard in Reference [35]
to finite times.

Example

A spanning tree for the network in Figure 1 is depicted in Figure 3a. The cycles defined by the
corresponding chords are depicted in Figure 3b. Algebraically, these cycles are represented as

C =




−4 +2 +5

+1 1 0 0
+2 0 1 0
+3 −1 −1 0
+4 −1 0 0
+5 0 0 1
+6 1 0 −1




, (59)

where the negative entries must be regarded as transitions performed in the backward direction.
The corresponding affinities, which determine the nonconservative contribution (55), hence read:

A−4 = ln
w+1w+6w−4w−3

w−1w−6w+4w+3
, A+2 = ln

w+2w−3

w−2w+3
, and A+5 = ln

w+5w−6

w−5w+6
. (60)

The affinities corresponding to the cycles taken in the backward direction follow fromA−e = −Ae.
Regarding the expression of the cocycle fluxes, it can be checked that they are equal to

〈J+1〉 = 〈j+1〉 − 〈j−4〉 , 〈J+3〉 = 〈j+3〉 − 〈j−2〉 − 〈j+4〉 , 〈J+6〉 = 〈j+6〉 − 〈j−5〉 − 〈j−4〉 ,

〈J−1〉 = 〈j−1〉 − 〈j+4〉 , 〈J−3〉 = 〈j−3〉 − 〈j+2〉 − 〈j−4〉 , 〈J−6〉 = 〈j−6〉 − 〈j+5〉 − 〈j+4〉
(61)

by expanding Equation (57) into Equation (10).
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(a) Spanning Tree
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Figure 3. (a) Spanning tree, and (b) corresponding cycles for the network in Figure 1.
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6. Stochastic Thermodynamics

The results obtained until this point are mathematical and have a priori no connection to physics.
We now specify the conditions under which a Markov jump process describes the dynamics of an
open physical system in contact with multiple reservoirs. This will enable us to introduce physically
motivated decompositions and derive DFTs with a clear thermodynamic interpretation.

Each system state, n, is now characterized by given values of some system quantities, {Xκ
n },

for κ = 1, . . . , Nκ , which include the internal energy, En, and possibly additional ones (see Table 2 for
some examples). These must be regarded as globally conserved quantities, as their change in the system
is always balanced by an opposite change in the reservoirs. When labeling the reservoirs with { r },
for r = 1, . . . ,Nr, the balance equation for Xκ along the transition e can be written as:

Xκ
n′D

n′
e = δiXκ

e + ∑rδX(κ,r)
e . (62)

Table 2. Examples of system quantity–intensive field conjugated pairs in the entropy representation.
βr := 1/Tr denotes the inverse temperature of the reservoir. Since charges are carried by particles,
the conjugated pair (Qn,−βrVr) is usually embedded in (Nn,−βrµr).

System Quantity Xκ Intensive Field f(κ,r)

energy, En inverse temperature, βr
particles number, Nn chemical potential, −βrµr
charge, Qn electric potential, −βrVr
displacement, Xn generic force, −βrkr
angle, θn torque, −βrτr

The lhs is the overall change in the system, whereas δiXκ
e denotes the changes due to internal

transformations (e.g., chemical reactions [36,37]), and δX(κ,r)
e quantifies the amount of Xκ supplied by

the reservoir r to the system along the transition e. For the purposes of our discussion, we introduce
the index y = (κ, r)—i.e., the conserved quantity Xκ exchanged with the reservoir r—and define the matrix
δX whose entries are { δXy

e ≡ δX(κ,r)
e }. All indices used in the following discussion are summarized

in Table 3. Microscopic reversibility requires that δXy
e = −δXy

−e. Note that more than one reservoir
may be involved in each transition (see Figure 4).

V...

β1

β...
β4

β2

µ4

system

reservoirs

β3
µ3

e

δX (E,2)
e

k1

Figure 4. Pictorial representation of a system coupled to several reservoirs. Transitions may involve
more than one reservoir and exchange between reservoirs. Work reservoirs are also taken into account.
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Table 3. Summary of the indices used throughout the paper and the object they label.

Index Label for Number

n state Nn
e transition Ne
κ system quantity Nκ

r reservoir Nr
y ≡ (κ, r) conserved quantity Xκ from reservoir r Ny

λ conservation law and conserved quantity Nλ

yp “potential” y Nλ

yf “force” y Ny −Nλ

In addition to the trivial set of conserved quantities {Xκ }, the system may be characterized by
some additional ones, which are specific for each system. We now sketch the systematic procedure to
identify these quantities and the corresponding conservation laws [14,38]. Algebraically, conservation
laws can be identified as a maximal set of independent vectors in the y-space, { `λ }, for λ = 1, . . . , Nλ,
such that

`λ
y δXy

e′ Ce′
e = 0 , for all cycles, i.e., for all e ∈ T ∗. (63)

Indeed, the quantities { `λ
y δXy

e }, for λ = 1, . . . , Nλ, are combinations of exchange contributions
{ δXy

e }, for y = 1, . . . , Nλ, which vanish along all cycles. They must therefore identify some state
variables, { Lλ }, for λ = 1, . . . , Ny, in the same way curl-free vector fields are conservative and
identify scalar potentials:

Lλ
n Dn

e = `λ
y δXy

e ≡ ∑r

{
∑κ`

λ
(κ,r) δX(κ,r)

e

}
. (64)

This equation can be regarded as the balance equation for the conserved quantities. In the absence
of internal transformations, δiXκ

e , trivial conservation laws correspond to `κ
y ≡ `κ

(κ′ ,r) = δκ
κ′ , so that the

balance Equations (62) are recovered. Notice that each Lλ is defined up to a reference value.
Each reservoir r is characterized by a set of entropic intensive fields conjugated to the exchange

of the system quantities {Xκ }, { f(κ,r) } for κ = 1, . . . , Nκ (e.g., [39] § 2-3). A short list of Xκ– f(κ,r)
conjugated pairs is reported in Table 2. The thermodynamic consistency of the stochastic dynamics is
ensured by the local detailed balance,

ln
we

w−e
= − fyδXy

e + SnDn
e . (65)

It relates the log ratio of the forward and backward transition rates to the entropy change in
the reservoirs resulting from the transfer of system quantities during that transition. This entropy
change is evaluated using equilibrium thermodynamics (in the reservoirs), and reads { δSr

e = − fyδXy
e }.

The second term on the rhs is the internal entropy change occurring during the transition, as Sn

quantifies the internal entropy of the state n. This term can be seen as the outcome of a coarse-graining
procedure over a finer description in which multiple states with the same system quantities are
collected in one single n [40]. Using Equation (65), the affinities, Equation (11), can be rewritten as:

Ae = ∑r

[
−∑κ f(κ,r)δX(κ,r)

e

]
+ [Sn − ln pn] Dn

e . (66)

This relation shows that the affinity is the entropy change in all reservoirs plus the system entropy
change. In other words, while Equation (64) characterizes the balance of the conserved quantities
along the transitions, Equation (66) characterizes the corresponding lack of balance for entropy, namely
the second law.

As for the transition rates, the changes in time of the internal entropy S, the conserved quantities
{Xκ } (hence { δXy

e }), and their conjugated fields { fy }, are all encoded in the protocol function πt.
Physically, this modeling describes the two possible ways of controlling a system: either through
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{Xκ } or S which characterize the system states, or through { fy } which characterize the properties of
the reservoirs.

Example

We illustrate the role of system-specific conservation laws by considering the double quantum
dot (QD) depicted in Figure 5a [41–43], whose network of transition and energy landscape are drawn
in Figures 1 and 5b, respectively. Electrons can enter empty dots from the reservoirs, but cannot jump
from one dot to the other. When the two dots are occupied, an interaction energy, u, arises. Energy, En,
and total number of electrons, Nn, characterize each state of the system:

E00 = 0 , E10 = εu , E01 = εd , E11 = εu + εd + u ,

N00 = 0 , N10 = 1 , N01 = 1 , N11 = 2,
(67)

where the first entry in n refers to the occupancy of the upper dot, and the second to the lower.
The entries of the matrix δX for the forward transitions are:

δX =




+1 +2 +3 +4 +5 +6

(E,1) εu 0 0 εu + u 0 0
(N,1) 1 0 0 1 0 0
(E,2) 0 εd 0 0 εd + u 0
(N,2) 0 1 0 0 1 0
(E,3) 0 0 εd 0 0 εd + u
(N,3) 0 0 1 0 0 1




(68)

(see Figure 1), whereas the entries related to backward transition follow from δXy
−e = −δXy

e .
For instance, along the first transition the system gains εu energy and 1 electron from the reservoir 1.
The vector of entropic intensive fields is given by

f =
( (E,1) (N,1) (E,2) (N,2) (E,3) (N,3)

β1 −β1µ1 β2 −β2µ2 β3 −β3µ3

)
. (69)

β1

µ1

β2

µ2

β3

µ3

u

d

(a) Scheme
00

11

01

10 εu

εd

εd + εu + u

+1 +3+2

+4 +6+5

(b) Energy Landscape

Figure 5. Double coupled quantum dot (QD) in contact with three reservoirs. Transitions related to the
first reservoir are depicted using solid lines, while those related to the second and third ones using
dashed and dotted lines, respectively. The graphical rule was applied to the network of transitions in
Figure 1. (a) Pictorial representation of the system. The upper dot u is in contact with the first reservoir,
while the lower dot d with the second and third reservoirs. Energy and electrons are exchanged, but
the dots cannot host more than one electron. (b) Energy landscape of the dot. When both dots are
occupied, 11, a repulsive energy u adds to the occupied dots energies, εu and εd.
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Since the QDs and the electrons have no internal entropy, Sn = 0 for all n, the local detailed balance
property, Equation (65), can be easily recovered from the product − f δX. From a stochastic dynamics
perspective, this property arises when considering fermionic transition rates, namely we = Γe(1 +

exp{ fyδXy
e })−1 and w−e = Γe exp{ fyδXy

e }(1 + exp{ fyδXy
e })−1 for electrons entering and leaving

the dot.
A maximal set of independent vectors in y-space satisfying Equation (63) is composed of

`E =
( (E,1) (N,1) (E,2) (N,2) (E,3) (N,3)

1 0 1 0 1 0
)

,

`u =
( (E,1) (N,1) (E,2) (N,2) (E,3) (N,3)

0 1 0 0 0 0
)

,

`d =
( (E,1) (N,1) (E,2) (N,2) (E,3) (N,3)

0 0 0 1 0 1
)

.

(70)

The first vector identifies the energy state variable, En:

`EδX =
( +1 +2 +3 +4 +5 +6

εu εd εd εu + u εd + u εd + u
)
≡ { EnDn

e } . (71)

The other two instead give the occupancy of the upper and lower dots, Nu
n and Nd

n :

`uδX =
( +1 +2 +3 +4 +5 +6

1 0 0 1 0 0
)
≡ {Nu

n Dn
e } ,

`dδX =
( +1 +2 +3 +4 +5 +6

0 1 1 0 1 1
)
≡ {Nd

n Dn
e } .

(72)

A posteriori, we see that these conservation laws arise from the fact that no electron transfer from
one dot to the other is allowed. The total occupancy of the system, Nn, is recovered from the sum of
the last two vectors.

Now that a nonequilibrium thermodynamics has been built on top of the Markov jump process,
we can proceed by considering two physical relevant pref

n .

7. System–Reservoirs Decomposition

We start by considering a microcanonical PMF as reference:

pref
n = pmc

n := exp {Sn − Smc}, (73)

where
Smc = ln ∑m exp Sm (74)

is the Boltzmann’s equilibrium entropy. With this choice, the reference affinities become sums of entropy
changes in the reservoirs

Aref
e = δSr

e = − fyδXy
e , (75)

and hence the nonconservative contribution becomes the rate of entropy change in all reservoirs

〈Σ̇nc〉 = 〈Ṡr〉 = − fyδXy
e 〈je〉. (76)
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For the conservative contribution, one instead obtains:

〈Σ̇c〉 = [Sn − ln pn] Dn
e 〈je〉. (77)

Using Equation (17), it can be rewritten in terms of the Gibbs–Shannon entropy,

〈S〉 = ∑n pn [Sn − ln pn] (78)

and the Boltzmann entropy. Indeed,

D(p‖pmc) = Smc − 〈S〉 (79)

and
〈Σ̇d〉 = dtSmc −∑n pndtSn, (80)

so that

〈Σ̇c〉 = dt〈S〉 −∑n pndtSn. (81)

The conservative contribution thus contains changes in the system entropy caused by the
dynamics and the external drive.

The EP decomposition (14) with Equations (76) and (81) is thus the well-known system–reservoir
decomposition (i.e., the traditional entropy balance). Since the same decomposition holds at the trajectory
level, if the initial PMF of the forward and backward processes are microcanonical, the DFT and IFT
hold by applying Equations (32) and (34). When the driving does not affect the internal entropy of
the system states { Sn }, the DFT and IFT hold for the reservoir entropy alone. Finally, the fluctuating
quantity appearing in the DFT, Σd + Σnc, can be interpreted as the EP of the extended process in which,
at time t, the driving is stopped, all temperatures are raised to infinity, βr → 0, and the system is
allowed to relax to equilibrium—the initial PMF of the backward process.

8. Conservative–Nonconservative Decomposition

We now turn to a reference PMF which accounts for conservation laws: the generalized Gibbs PMF.
To characterize this PMFs, we observe that since { `λ } are linearly independent (otherwise we

would have linearly dependent conserved quantities), one can always identify a set of y’s, denoted by
{ yp }, such that the matrix whose rows are { `λ

yp }, for λ = 1, . . . , Nλ, is nonsingular. We denote by

{ `yp
λ } for λ = 1, . . . , Nλ, the columns of the inverse matrix. All other y’s are denoted by { yf }. Using

the splitting { yp }–{ yf } and the properties of { `λ
yp }, in combination with the balance equation for

conserved quantities, Equation (64), the local detailed balance (65) can be decomposed as

ln
we

w−e
= Fyf δXyf

e +
[
Sn − FλLλ

n

]
Dn

e , (82)

where
Fλ = fyp`

yp
λ (83)

are the system-specific intensive fields conjugated to the conserved quantities, and

Fyf := Fλ `
λ
yf
− fyf (84)

are differences of intensive fields called nonconservative fundamental forces. Indeed, these nonconservative
forces are responsible for breaking detailed balance. When they all vanish, Fyf = 0 for all yf, the system
is indeed detailed balanced and the PMF
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pgg
n := exp

{
Sn − FλLλ

n −Φgg

}
, (85)

with Φgg := ln ∑n exp
{

Sn − FλLλ
n
}

, satisfies the detailed balance property (9). The potential
corresponding to Equation (85), ψ

gg
n , is minus the Massieu potential which is constructed by using

all conservation laws (e.g. [39] §§ 5-4 and 19-1, [44] § 3.13). Choosing the PMF (85) as a reference,
pref

n = pgg
n , the reference affinity straightforwardly ensues from Equation (82),

Aref
e = Agg

e = Fyf δXyf
e . (86)

Hence,
〈Σ̇nc〉 = Fyf〈Iyf〉, (87)

where
〈Iyf〉 = δXyf

e 〈je〉 (88)

are the fundamental currents conjugated to the forces. For the conservative contribution, one obtains

〈Σ̇c〉 =
[
Sn − FλLλ

n − ln pn

]
Dn

e 〈je〉. (89)

When written as in Equation (17), its two contributions are:

D(p‖pgg) = Φgg −∑n pn

[
Sn − FλLλ

n − ln pn

]
, (90)

which relates the equilibrium Massieu potential to its averaged nonequilibrium counterpart; and

〈Σ̇d〉 = dtΦgg −∑n pndt

[
Sn − FλLλ

n − ln pn

]
, (91)

which quantifies the dissipation due to external manipulations of { Sn }, the fields { Fλ }, and the
conserved quantities { Lλ }. We emphasize that since ψ

gg
n encompasses all conserved quantities, 〈Σ̇c〉

captures all dissipative contributions due to conservative forces. Hence, 〈Σ̇nc〉 consists of a minimal
number, Ny − Nλ, of purely nonconservative contributions. The EP decomposition Equation (14)
with Equations (87) and (89) is the conservative–nonconservative decomposition of the EP obtained in
Reference [14].

The conservative–nonconservative splitting of the EP can also be made at the trajectory level.
Hence, if the initial condition of the forward and backward process is of the form (85), the DFT and
IFT given by Equations (32) and (34) hold.

Here too, the fluctuating quantity appearing in the DFT, Σd + Σnc, can be interpreted as the EP
of an extended process including relaxation, but for nonisothermal processes the procedure can be
significantly more involved. The details of this discussion can be found in Reference [14].

Example

We now provide the expressions of ψref
n and Aref

e for the double QD discussed in the previous
example (Figure 5). Therefore, we split the set { y } in { yp } = { (E, 1), (N, 1), (N, 2) } and { yf } =
{ (E, 2), (E, 3), (N, 3) }, which is valid since the matrix whose entries are { `λ

yp } is an identity matrix
(see Equation (70)). The fields conjugated with the complete set of conservation laws, Equation (83), are:

FE = β1 , Fu = −β1µ1 , and Fd = −β2µ2, (92)

from which the reference potential of the state n, Equation (85), follows

ψ
gg
n = Φgg −

[
−β1En + β1µ1Nu

n + β2µ2Nd
n

]
. (93)
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Instead, the fundamental forces, Equation (84), are given by

F(E,2) = β1 − β2 , F(E,3) = β1 − β3 , and F(N,3) = β3µ3 − β2µ2, (94)

from which the reference affinities follow (Equation (86)). The first two forces drive the energy flowing
into the first reservoir from the second and third ones, respectively, whereas the third force drives the
electrons flowing from the third to the second reservoir.

9. Conclusions

In this paper, we presented a general method to construct DFTs for Markov jump processes.
The strategy to identify the fluctuating quantities which satisfy the DFT consists of splitting the EP
in two by making use of a reference PMF. The choice of the reference PMF is arbitrary for IFTs, but
must solely depend on the driving protocol for DFTs. Out of the infinite number of FTs that can
be considered, we tried to select those that have interesting mathematical properties or that can be
expressed in terms of physical quantities when the Markov jump process is complemented with a
thermodynamic structure. Table 1 summarizes the terms of to the EP for each of our choices. We also
emphasized that the EP always satisfies an IFT but generically not a DFT. Connections to information
theory were also made by formulating a generalized Landauer principle.

We do not claim to have been exhaustive, and many other reference PMFs may be interesting.
We can mention at least two more interesting cases. By considering the steady-state PMF which is
obtained when removing some edges from the graph (but not all chords as in Section 5), the marginal
thermodynamic theory presented in References [45,46] emerges. One can also consider a reference
PMF in between the microcanonical PMF, which takes no conserved quantity into account, and the
generalized Gibbs one, which takes them all into account. This happens for instance when only the
obvious conserved quantities are accounted for, {Xκ }, as discussed in Reference [47]. In this case,
one uses the fields of a given reservoir to define the reference equilibrium potential

ψref
n = Φ−

[
Sn −∑κ f(κ,1)δXκ

n

]
,

where Φ is determined by the normalization. The number of nonconservative forces appearing in
〈Σ̇nc〉 will be Ny −Nκ . However, in case additional conservation laws are present (Nλ > Nκ), some of
these forces are dependent on others and their number will be larger than the minimal, Ny −Nλ.
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Appendix A. Moment Generating Function Dynamics and Proofs of the FTs

We describe the moment generating function (MGF) technique that we use to prove the finite
time DFTs (32) [14].

Appendix A.1. MGF Dynamics

Let Pt(n, δO) be the joint probability of observing a trajectory ending in the state n along which
the change of a generic observable, O, is δO. The changes of O along edges are denoted as { δOe },
whereas the changes due to time-dependent driving while in the state n as Ȯn. In order to write an
evolution equation for this probability, let us expand it as:

Pt+dt(n, δO) ' ∑eweδn,t(e) Pt

(
o(e), δO− δOe − Ȯo(e)dt

)
dt +

[
1−∑eweδn,o(e)dt

]
Pt(n, δO− Ȯndt). (A1)

The first term accounts for transitions leading to the state n and completing the change of O,
whereas the second describes the probability of completing the change of O while dwelling in the
state n (and not leaving it). When keeping only the linear term in dt and performing the limit dt→ 0,
we get:

dtPt(n, δO) = ∑eweδn,t(e) Pt (o(e), δO− δOe)−∑eweδn,o(e) Pt(n, δO)− Ȯn∂δOPt(n, δO). (A2)

Rather than working with this differential equation, it is much more convenient to deal with the
bilateral Laplace transform of pt(n, δO), that is, the MGF up to a sign,

Λn,t(q) :=
∫ ∞
−∞d δO exp {−qδO} Pt(n, δO), (A3)

since its evolution equation is akin to an ME, Equation (2):

dtΛn,t(q) = ∑mWnm,t(q)Λm,t(q), (A4)

where the biased rate matrix reads

Wnm,t(q) = ∑ewe

{
exp {−qδOe} δn,t(e)δm,o(e) − δn,mδm,o(e)

}
− q Ȯnδn,m. (A5)

The field q is usually referred to as a counting field. This equation is obtained by combining
Equations (A2) and (A3), and its initial condition must be Λn,0(δO) = pn(0). Note that Equation (A4)
is not an ME, since ∑nΛn,t(δO) is not conserved.

For later convenience, we recast Equation (A4) into a bracket notation:

dt |Λt(q)〉 =Wt(q) |Λt(q)〉 , (A6)

and we proceed to prove a preliminary result. A formal solution of Equation (A4) is |Λt(q)〉 =

Ut(q) |P(0)〉, where the time-evolution operator reads Ut(q) = T+ exp
∫ t

0 dτWτ(q), T+ being the
time-ordering operator. We clearly have dtUt(q) = Wt(q)Ut(q). Let us now consider the following
transformed evolution operator:

Ũt(q) := X−1
t Ut(q)X0, (A7)

Xt being a generic time-dependent invertible operator. Its dynamics is ruled by the following
biased stochastic dynamics:

dtŨt(q) = dtX−1
t Ut(q)X0 +X−1

t dtUt(q)X0 =
{

dtX−1
t Xt +X−1

t Wt(q)Xt

}
Ũt(q) ≡ W̃t(q) Ũt(q), (A8)

which allows us to conclude that the transformed time-evolution operator is given by

Ũ (q) = T+ exp
∫ t

0 dτ W̃τ(q). (A9)
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From Equations (A7), (A8), and (A9), we deduce that

X−1
t Ut(q)X0 = T+ exp

∫ t
0 dτ

[
dτX−1

τ Xτ +X−1
τ Wτ(q)Xτ

]
. (A10)

Appendix A.2. Proof of the DFT

To prove the DFT (32), we briefly recall its two assumptions: (i) the reference PMF depends on
time solely via the protocol function; (ii) for both the forward and backward processes, the system is
initially prepared in a reference PMF. Let Pt(n, Σd, Σnc) be the joint probability of observing a trajectory
ending in the state n along which the driving contribution is Σd, while the nonconservative one is Σnc.
The above probabilities, one for each n, are stacked in the ket |Pt(Σd, Σnc)〉. The time evolution of the
related MGF,

|Λt(qd, qnc)〉 :=
∫ ∞
−∞dΣddΣnc exp {−qdΣd − qncΣnc} |Pt(Σd, Σnc)〉 , (A11)

is ruled by the biased stochastic dynamics, Equation (A4),

dt |Λt(qd, qnc)〉 =Wt(qd, qnc) |Λt(qd, qnc)〉 , (A12)

where the entries of the biased generator are given by

Wnm(qd, qnc) = ∑ewe
{

exp
{
−qnc Aref

e

}
δn,t(e)δm,o(e) − δn,mδm,o(e)

}
− qddtψmδn,m. (A13)

Using the definition of reference affinity, Equation (13), one can see that the rate matrix satisfies
the following symmetry:

WT
t (qd, qnc) = P−1

t Wt(qd, 1− qnc)Pt, (A14)

where the entries of Pt are given by

Pnm,t := exp
{
−ψref

m (πt)
}

δn,m, (A15)

and “ T ” denotes the transposition. Additionally, the initial condition is given by the reference PMF:

|Λ0(qd, qnc)〉 = |pref
0 〉 = P0 |1〉 . (A16)

|1〉 denotes the vector in the state space whose entries are all equal to one.
Using the formal solution of Equation (A12), the MGF of Pt(Σd, Σnc) can be written as:

Λt(qd, qnc) = 〈1|Λt(qd, qnc)〉 = 〈1|Ut(qd, qnc)P0|1〉 = 〈1|PtP−1
t Ut(qd, qnc)P0|1〉 , (A17)

where Ut(qd, qnc) is the related time-evolution operator. Using the relation in Equation (A10), the last
term can be recast into

Λt(qd, qnc) = 〈pref
t |T+ exp

{∫ t
0 dτ

[
dτP−1

τ Pτ + P−1
τ Wτ(qd, qnc)Pτ

]}
|1〉 . (A18)

Since dτP−1
τ Pτ = diag

{
dτψref

n

}
, the first term in square brackets can be added to the diagonal

entries of the second term, thus giving

Λt(qd, qnc) = 〈pref
t |T+ exp

{∫ t
0 dτ

[
P−1

τ Wτ(qd − 1, qnc)Pτ

]}
|1〉 . (A19)

The symmetry (A14) allows us to recast the latter into

Λt(qd, qnc) = 〈pref
t |T+ exp

{∫ t
0 dτWT

τ (qd − 1, 1− qnc)
}
|1〉 . (A20)
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The crucial step comes as we time-reverse the integration variable: τ → t− τ. Accordingly, the
time-ordering operator, T+, becomes an anti-time-ordering one, T−, while the diagonal entries of the
biased generator become

Wmm,t−τ(qd, qnc) = −∑ewe(πt−τ) δm,o(e) − qd dt−τψref
m (πt−τ)

= −∑ewe(π
†
τ) δm,o(e) + qd dτψref

m (π†
τ),

(A21)

from which we conclude that

Wnm,t−τ(qd, qnc) = W†
nm,τ(−qd, qnc). (A22)

Crucially, the assumption that ψref
n depends on time via πτ ensures that W†

τ (qd, qnc) can
be regarded as the biased generator of the dynamics subject to the time-reversed protocol
(i.e., the dynamics of the backward process). If we considered an arbitrary pref

n (i.e., the forward process
would start from an arbitrary PMF), thenW†

τ (qd, qnc) would be the rate matrix of the time-reversed
stochastic dynamics:

0 = ∑m [δnmdt−τ −Wnm(πt−τ)] pm = ∑m

[
−δnmdτ −Wnm(π

†
τ)
]

pm, (A23)

which is unphysical. Equation (A20) thus becomes

Λt(qd, qnc) = 〈pref
t |T− exp

{∫ t
0 dτW†

τ
T
(1− qd, 1− qnc)

}
|1〉 . (A24)

Upon a global transposition, we can write

Λt(qd, qnc) = 〈1|T+ exp
{∫ t

0 dτW†
τ (1− qd, 1− qnc)

}
|pref

t 〉 , (A25)

where we also used the relationship between transposition and time-ordering

T+

(
∏i A

T
ti

)
= (T−∏i Ati )

T , (A26)

in which At is a generic operator. From the last expression, we readily obtain the symmetry that we
are looking for:

Λt(qd, qnc) = Λ†
t (1− qd, 1− qnc) , (A27)

where Λ†
t (qd, qnc) is the MGF of P†

t (Σd, Σnc). Indeed, its inverse Laplace transform gives the DFT in
Equation (32).

Appendix A.3. Proof of the DFT for the Sum of Driving and Nonconservative EP

Let us define Σs := Σd + Σnc as the sum of the driving and nonconservative EP contributions.
A straightforward calculation leads from (32) to the DFT for Σs, Equation (33):

Pt(Σs) =
∫

dΣddΣnc Pt(Σd, Σnc) δ (Σs − Σd − Σnc) =
∫

dΣd Pt(Σd, Σs − Σd)

= exp Σs
∫

dΣd P†
t (−Σd, Σd − Σs) = P†

t (−Σs) exp Σs.
(A28)

Appendix A.4. Proof of the IFT

We now prove the IFT (34) using the MGF technique developed in Reference [12]. We have already
mentioned that the dynamics (A12) does not describe a stochastic process, since the normalization is
not preserved. However, for qd = qnc = 1, the biased generator (A13) can be written as:

Wnm(1, 1) =
[
∑ewe pref

o(e)
{

δn,o(e)δm,t(e) − δn,mδm,o(e)
}
+ dt pref

n δn,m

] 1
pref

m
, (A29)
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from which it readily follows that

dt |pref〉 =W(1, 1) |pref〉 (A30)

viz. pref
n is the solution of the biased dynamics (A12) for qd = qnc = 1. The normalization condition

thus demands that

1 = 〈1|Λt(1, 1)〉 =
∫ ∞
−∞dΣddΣnc exp {−Σd − Σnc} 〈1|Pt(Σd, Σnc)〉 ≡ 〈exp {−Σd − Σnc}〉, (A31)

which is the IFT in Equation (34). Note that we do not assume any specific property for pref
n in

this context.

Appendix B. Alternative Proofs of the DFT

We here show two alternative proofs of the DFT (32) which rely on the involution
property (37). For the nonadiabatic contribution, this property can be proved as follows. By time-reversing
Equation (27), τ → t− τ, we obtain

Σnc[nt; πt] =
∫ t

0 dτ Aref
e (πτ) je(τ) =

∫ t
0 dτ Aref

e (πt−τ) je(t− τ). (A32)

Since Aref
e is solely determined by the state of protocol at each instant of time, the reference

affinities correspond to those of the backward process, Aref
e (πt−τ) = Aref

e (π†
τ). Using the property that

je(t− τ) = j†−e(τ), see Equation (36), and Aref
e = −Aref

−e, we finally obtain

Σnc[nt; πt] = −
∫ t

0 dτ Aref
e (π†

τ) j† e(τ) = −Σnc[n†
t ; π†

t ]. (A33)

Concerning the driving contribution, Equation (30), we obtain

Σd[nt; πt] =
∫ t

0
dτ
[
dτψref

n (πτ)
]∣∣∣

n=nτ

=
∫ t

0
dτ
[
−dτψref

n (πt−τ)
]∣∣∣

n=nt−τ

. (A34)

It is here again crucial that ψref
n depends solely on the protocol value, so that ψref

n (πt−τ) = ψref
n (π†

τ).
Therefore,

Σd[nt; πt] = −
∫ t

0
dτ
[
dτψref

n (π†
τ)
]∣∣∣

n=n†
τ

= −Σd[n
†
t ; π†

t ]. (A35)

Appendix B.1. Alternative Proof 1

Inspired by Reference [16], we here use an alternative approach to derive the symmetry of the
MGF which underlies our DFT, Equation (A27). In terms of trajectory probabilities, the MGF (A11) can
be written as:

Λt(qd, qnc) =
∫
Dnt P[nt; πt] pref

n0
(π0) exp {−qdΣd[nt; πt]− qncΣnc[nt; πt]} . (A36)

Using the relation between the EP contributions and the stochastic trajectories in forward and
backward processes, Equation (35), we can recast the MGF into

Λt(qd, qnc) =
∫
Dnt P[n†

t ; π†
t ] pref

nt (πt) exp {(1− qd)Σd[nt; πt] + (1− qnc)Σnc[nt; πt]} , (A37)

so that using the property of involution, Equation (37), we get

Λt(qd, qnc) =
∫
Dnt P[n†

t ; π†
t ] pref

nt (πt) exp
{
− (1− qd)Σd[n

†
t ; π†

t ]− (1− qnc)Σnc[n†
t ; π†

t ]
}

. (A38)
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Hence, changing and renaming the integration variable, nt → n†
t , and using the fact that the

Jacobian determinant of this transformation is one, we finally get

Λt(qd, qnc) =
∫
Dnt P[nt; π†

t ] pref
nt (πt) exp

{
− (1− qd)Σd[nt; π†

t ]− (1− qnc)Σnc[nt; π†
t ]
}

= Λ†
t (1− qd, 1− qnc) ,

(A39)

which proves Equation (A27). With respect to the previous proof, this one is based on Equation (35) and
on the property of involution, which follow from the specifications of forward and backward processes.

Appendix B.2. Alternative Proof 2

The joint probability distribution Pt(Σd, Σnc) written in terms of trajectory probabilities,
Equation (22), reads

Pt(Σd, Σnc) =
∫
Dnt P[nt; πt] pref

n0
(π0) δ (Σd[nt; πt]− Σd) δ (Σnc[nt; πt]− Σnc) . (A40)

Using Equation (35) and then the involution property (37), we finally obtain the DFT (32):

Pt(Σd, Σnc) = exp {Σd + Σnc}
∫
Dnt P[n†

t ; π†
t ] pref

nt
(πt) δ (Σd[nt; πt]− Σd) δ (Σnc[nt; πt]− Σnc)

= exp {Σd + Σnc}
∫
Dnt P[n†

t ; π†
t ] pref

nt
(πt) δ

(
−Σd[n

†
t ; π†

t ]− Σd

)
δ
(
−Σnc[n†

t ; π†
t ]− Σnc

)

= exp {Σd + Σnc} P†
t (−Σd,−Σnc).

(A41)

Appendix C. Adiabatic and Nonadiabatic Contributions

We now prove that both the adiabatic and nonadiabatic EP rates are non-negative. Concerning
the adiabatic contribution, using the log-inequality, − ln x ≥ 1− x, one obtains

〈Σ̇a〉 = ∑
e

we po(e) ln
we pss

o(e)

w−e pss
o(−e)

≥∑
e

we po(e)

[
1−

w−e pss
o(−e)

we pss
o(e)

]

= ∑
e

[
we pss

o(e) − w−e pss
o(−e)

] po(e)
pss
o(e)

= ∑
e,n

De
nwe pss

o(e)

[
− pn

pss
n

]
= 0.

(A42)

The last equality follows from the definition of steady-state PMF, Equation (43). For the
nonadiabatic, instead, using the same inequality and similar algebraic steps, one obtains:

〈Σ̇na〉 = ∑
e

we po(e) ln
po(e)pss

o(−e)

pss
o(e)po(−e)

≥∑
e

we po(e)

[
1−

pss
o(e)po(−e)

po(e)pss
o(−e)

]

= ∑
e

[
we pss

o(e) − w−e pss
o(−e)

] po(e)
pss
o(e)

= 0.
(A43)

Appendix D. Proofs of the DFTs for the Adiabatic and Driving EP Contributions

We here prove the DFTs in Equations (46) and (47) using the same MGF technique described in
Appendix A.

Appendix D.1. Proof of the DFT for the Adiabatic Contribution

The biased generator ruling the sole adiabatic term reads:

Wnm(qa) = ∑ewe

{
exp {−qa Ass

e } δn,t(e)δm,o(e) − δn,mδm,o(e)

}
. (A44)
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It satisfies the following symmetry:

W(qa) = Ŵ(1− qa), (A45)

where Ŵ(qa) is the biased generator of the fictitious dynamics ruled by the rates in Equation (45).
Crucially, pss

n is also the steady state of this dynamics:

∑eDn
e ŵe pss

o(e) = ∑m ∑eŵe

{
δn,t(e)δm,o(e) − δn,mδm,o(e)

}
pss

m = 0 , for all n. (A46)

This fact guarantees that the escape rates of the fictitious dynamics coincide with those of the
original ones:

−∑eŵeδn,mδm,o(e) = −∑eweδn,mδm,o(e) , for all n. (A47)

We can now proceed to prove the FT (46):

Λt(qa) = 〈1|Λt(qa)〉 = 〈1|Ut(qa)|p〉 = 〈1|T+ exp
{∫ t

0 dτWτ(qa)
}
|p〉

= 〈1|T+ exp
{∫ t

0 dτ Ŵτ(1− qa)
}
|p〉 .

(A48)

In the last equality, we made use of the symmetry in Equation (A45). Following the same
mathematical steps backward, we readily get

Λt(qa) = Λ̂t(1− qa), (A49)

from which the DFT in Equation (46) ensues.

Appendix D.2. Proof of the DFT for the Driving Contribution

Concerning the DFT of the driving term, Equation (47), the generator of the related biased
dynamics reads:

Wnm(qd) = ∑ewe

{
δn,t(e)δm,o(e) − δn,mδm,o(e)

}
− qddtψ

ss
m δn,m, (A50)

and it satisfies the following symmetry:

ŴT
t (qd, qnc) = P−1

t Wt(qd, 1− qnc)Pt, (A51)

where Pt := diag {exp−ψss
m}. The finite-time DFT ensues when following the mathematical steps of

the main proof and using Equation (A51) at the step at Equation (A20).
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C H E M I C A L LY R E A C T I N G S Y S T E M S FA R F R O M
E Q U I L I B R I U M





3 P H E N O M E N O LO G I C A L
D E S C R I P T I O N

We now specialize the phenomenological description discussed in Ch. 1
to chemical reactions networks. As for the previous part, this description
provides the theoretical structure underlying the thermodynamics of any
chemical reaction networks. This structure will indeed be recovered in the
stochastic and deterministic dynamics introduced in the following chapters.

The plan of the chapter is as follows. In Sec. 3.1, chemical reaction net-
works are introduced, while in Sec. 3.2, we present a black-box thermody-
namic description. Broken conservation laws are introduced in Sec. 3.3,
which contains the main result of this chapter. We conclude with an exam-
ple, Sec. 3.4.

3.1 chemical reaction networks
We consider an isobaric and isothermal dilute solution of reacting chem-

ical species, which we label by σ and whose abundances are denoted by
{Nσ }. The chemical reaction network is described by

∑

σ

Sσ+ρσ
+ρ−−⇀↽−−
−ρ

∑

σ

Sσ−ρσ , (86)

where the stoichiometric coefficients Sσ+ρ and Sσ−ρ quantify the amount of
species participating in each reaction. Notice that all reactions are reversible,
and for each pair

+ρ−−⇀↽−−
−ρ

, +ρ (resp. −ρ) denotes the forward (resp. backward)

reaction. Among all species, we distinguish the internal ones, x, from the
external ones, also called chemostatted, y: σ ≡ {x,y}. The abundances of the
internal species can only change due to reactions, and hence their balance
equations read

dNx = d̄iN
x =
∑
ρSxρ d̄ξρ , (87)

where

Sσρ := Sσ−ρ − Sσ+ρ (88)

denotes the stoichiometric matrix of the chemical reaction network. Crucially,
S encodes the coupling between species and reactions, and hence the topo-
logical properties of the chemical reaction network. The extent in which
each reaction occurs is quantified by the extents of reaction { d̄ξρ }. In con-
trast to x, each chemostatted species y is exchanged with a chemical reservoir,
called chemostat, and the balance equations for their abundances read

dNy = d̄iN
y + d̄rN

y =
∑
ρSyρ d̄ξρ + d̄rN

y , (89)

where { d̄rN
y } quantify the changes due to particle exchanges. We denote

by {µy } the chemical potentials of the reservoirs, i.e. the energetic intensive
fields conjugated to Ny. Their variations due to external manipulations are
again denoted by dµy = ∂µy.
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Since the solution is isobaric and isothermal, pressure and temperature
do not change, ∂pr = ∂Tr = 0. External driving in internal energy, volume,
and particle abundances are also absent, ∂U = ∂V = ∂Nσ = 0 for all σ. The
hypothesis of diluteness guarantees that the changes of abundances do not
affect the overall volume, which is determined only by the solvent and can
be considered as almost constant, dV ' 0.

3.2 thermodynamics
We first discuss a phenomenological nonequilibrium thermodynamic de-

scription in which only the balances of energy, volume and chemical abun-
dance are taken into account. Therefore, by combining the balances of en-
ergy and volume, the first law, Eq. (13), can be rewritten as

dH = d̄Q+ d̄Wchem , (90)

where

H = U+ pV (91)

is the system enthalpy, and

d̄Wchem =
∑
yµyd̄rN

y (92)

is the chemical work, which quantifies the free energy exchanged with the
chemostats. Concerning the second law, Eq. (16), we obtain

d̄Σ = −βrdG+βrd̄Wchem , (93)

where

G = H− Tr S (94)

is the Gibbs potential. By combining these laws with the balances of chemostat-
ted species abundances, we obtain

d
[
H−
∑
yµyN

y
]
= −
∑
ρ

(∑
yµySyρ

)
d̄ξρ −

∑
y∂µyN

y + d̄rQ (95)

d̄Σ = −βd
[
G−
∑
yµyN

y
]
−β
∑
ρ

(∑
yµySyρ

)
d̄ξρ −β

∑
y∂µyN

y > 0 .

(96)

We recognize these expressions as special cases of Eqs. (43) and (45), respec-
tively, in which the nonconservative contributions are absent. This is clearly
a consequence of considering only one reservoir per chemostatted species,
as well as only one thermal and volumetric reservoir. Notice the presence
of the terms involving internal reactions, which account for the energy and
entropy changes as these occur.

For the system to be at equilibrium, the driving must be stopped ∂µy = 0

for all y, and all terms conjugated to the extents of reaction must vanish
independently,

∑
yµyS

y
ρ = 0 for all ρ. We notice that at this level of descrip-

tion, the internal conditions for equilibrium is specified by Nρ conditions.
As previously done for generic thermodynamic systems, we will reduce the
number of this conditions using conservation laws.
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3.3 system-specific thermodynamics
We now identify the broken conservation laws and derive a system-specific

nonequilibrium thermodynamic description for chemical reaction networks,
like in Sec. 1.5.

For chemical reaction network, broken conservation laws are defined as a
maximal set of independent vectors, { `λy } for λ = 1, . . .Nλ, satisfying

∑
y`
λ
y

∮

γ
d̄rN

y = 0 , for any instantaneous cyclic transformation γ , (97)

see Eq. (51). The fact that d̄rU and d̄rV do not appear, follows from the fact
that we are considering thermal exchanges and volume changes as disen-
tangled from the reaction dynamics. Concerning thermal changes, we are
neglecting, for instance, relativistic effects in which chemostatted species
disintegrate into thermal energy. Concerning volume changes, we have al-
ready mentioned that since the solution is dilute, changes of abundances do
not change the volume. Therefore, the related conserved quantities follow
from

dLλ =
∑
y`
λ
yd̄rN

y (98)

as for the general case, Eq. (52).
We now follow the same procedure detailed in Sec. 1.5 and decompose

the chemostatted species into potential y, {yp }, and force y, {yf }. The first
law, Eq. (95), can be thus rewritten as

dH = ∂H+Kyf d̄rN
yf + d̄Q , (99)

where

H = H−
∑
yp
µyp

∑
λ`
yp
λ Lλ (100)

is a nonequilibrium semi-grand enthalpy, and

Kyf = µyf − µyp

∑
λ`
yp
λ `

λ
yf

(101)

are fundamental nonconservative forces. The second law, instead, reads

d̄Σ = βr

[
−dG+ ∂H+

∑
yf
Kyf d̄rN

yf
]
> 0 , (102)

where

G = H− Tr S (103)

is a nonequilibrium semi-grand Gibbs potential [1]. Semi-grand stands for the
fact that the system is open wrt a restricted set of species: the chemostatted.

Equations (99) and (102) specialize Eqs. (54) and (58) to chemical reaction
networks. They are the major result of this chapter. In the entropy balance,
the conservative contribution, −βrdG, quantifies the dissipation due to over-
all chemical free energy changes in the system. In both balances, instead,

∂H = −
∑
yp
∂µyp

∑
λ`
yp
λ Lλ (104)

is the chemical free energy spent by the external agent to manipulate the
chemical potentials of the chemostatted species, which we called driving
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work. To fully understand the physical meaning of {Kyf d̄rN
yf }, for yf =

1, . . . , Ny − Nλ, we need to observe that chemical reactions may give rise to
cyclic transformations which allow some chemostatted species to be trans-
formed into some others. In other words, chemical reactions may create
pathways between reservoirs of different external species. The stoichiom-
etry of a maximal independent set of these pathways is captured by the
coefficients multiplying the chemical potentials in Eq. (101),

νyyf
:=

{
1 if y = yf ,
−
∑
λ`
y
λ`
λ
yf

if y ∈ {yp } ,
(105)

where the sign determines whether the species enters (+) or leaves (-) the
system. Therefore, {Kyf d̄rN

yf } quantify the work spent by the reservoirs
to sustain flows of chemicals across the system. We emphasize that these
nonconservative terms can be identified solely thanks to conservation laws,
cf. Eq. (96).

At equilibrium, the chemical reaction network is nondriven ∂µy = 0 for
all y, and all fundamental forces must vanish, which implies that

µyf = µyp

∑
λ`
yp
λ `

λ
yf

, for all yf . (106)

These Nyf conditions replace those Nρ > Nyf expressed for internal reac-
tions, Eq. (96). The requirement dGeq = 0 and Eq. (6) implies that

0 =
∑
yp

(
µs
yp − µyp

)∑
λ`
yp
λ dLλ , (107)

which in turn constrains the chemical potentials of the yp species in the
systems, {µs

yp }, to be equal to those of the chemostats.

3.3.1 Stoichiometric Cycles and Broken Conservation Laws
The stoichiometric structure of chemical reaction networks allows to iden-

tify broken conservation laws in a way simpler than Eq. (97) [2]. We now
prove that that if and only if `y 6= 0 satisfies Eq. (97), than it exists an x-
species-space vector `x such that

∑
y`ySyρ +

∑
x`xSxρ = 0 . (108)

viz. (`x, `y) ∈ coker S. In order to do so, we first prove some preliminary
results.

We define stoichiometric cycle of the instantaneous cyclic transformation
γ, denoted by cγ, as the ρ-space vectors whose entries quantify the overall
extent of reactions along γ,

cργ :=

∮

γ
d̄ξρ . (109)

Let { cη } for η = 1, . . . , Nη be a maximal set of independent stoichiomet-
ric cycles. By taking the cyclic transformations of the balance of chemical
abundances, Eqs. (87) and (89), along {η } we obtain

∑
ρSxρc

ρ
η = 0

∑
ρSyρc

ρ
η = −

∮

η
d̄rN

y ,
(110)
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Figure 5: Chemical reaction network taken as an example.

from which we deduce that { cη } is a basis of ker Sx—otherwise the set { cη }
would not be either maximal or independent. Combining this equation with
the definition of broken conservation law, Eq. (97), the latter can be recast
into

∑

y,ρ
`y Syρc

ρ
η = 0 , for all η . (111)

We can now proceed to prove that Eqs. (97) and (111) are equivalent to
Eq. (108).

On the one hand, if ` 6= 0 satisfies Eq. (97)–(111), than the vector
∑
y,ρ`y S

y
ρ

belongs to (ker Sx)⊥ ≡ coim Sx. Therefore, there exists a x-species-space vec-
tor {−`x } such that

∑
y`ySyρ = −

∑
x`xSxρ . (112)

which is equivalent to Eq. (108). Clearly, `x is defined up to a linear combi-
nation of vectors in coker Sx.

On the other hand, if Eq. (108) is true, then

0 =
∑

y,ρ
`ySyρc

ρ
η +
∑

x,ρ
`xSxρc

ρ
η =
∑

y,ρ
`ySyρc

ρ
η , for all η , (113)

as in Eq. (111).
In conclusion, since Eq. (97) and (108) are equivalent, and `x in Eq. (108)

is defined up to a vector in coker Sx, an independent set of broken conser-
vation laws, { `λ }, for λ = 1, . . . , Nλ, can be determined as a basis of the
quotient space coker S/ coker Sx.

3.4 example
To illustrate the main results of this chapter, let us consider the enzy-

matic chemical reaction network in Fig. 5. The chemical species are parti-
tioned into internal, the enzyme complexes {E, E∗, E∗∗ }, and external, the
substrates {A, B }. The stoichiometric matrix reads

S =




+1 +2 +3 +4

E −1 1 −1 1

E∗ 1 −1 0 0

E∗∗ 0 0 1 −1

A −1 0 0 1

B 0 1 −1 0




. (114)
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This chemical reaction network is characterized by one broken conservation
law

` =
( A B

1 1
)

, (115)

which can be intuitively understood as follows: for any given amount of
A injected along a cyclic transformation,

∮
d̄rN

A, the same amount of B
must be expelled,

∮
d̄rN

B = −
∮

d̄rN
A, see Eq. (97). The related conserved

quantity L is the total amount of molecules A and B present in the chemical
reaction network, where we need to account for those present in the enzyme
complexes E∗ and E∗∗, too: L = NA +NB +NE∗ +NE∗∗ . Indeed one can
readily check using Eq. (114) that dL = d̄iL+ d̄rL = d̄rL = d̄rN

A + d̄rN
B.

We mention that broken conservation laws can also be identified from the
cokernel of S, as discussed in Sec. 3.3.1, and illustrated in the examples [1
and 3, pp. 113 and 115] and [1, 3, and 4, pp. 146 and 148].

By regarding the species A as yp whereas B as yf, the system-specific
expression of the first and second law, Eqs. (99) and (102), can be formulated.
The nonequilibrium semi-grand enthalpy (100) reads

H = H− µAL , (116)

whereas the nonconservative work contribution is

KB d̄rN
B = (µB − µA) d̄rN

B . (117)

The latter quantifies the cost of maintaining the flow of chemical across
the network induced by the gradient of chemical potentials. The driving
work ∂H as well as the nonequilibrium semi-grand Gibbs potential G readily
follow, and the overall entropy production reads

dΣ = βr

[
−dG− ∂µAL+KB d̄rN

B
]

. (118)

The illustration of this decomposition for a slightly more complex chemi-
cal reaction network is discussed in Sec. [VIII, p. 131].
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4 S TO C H A S T I C D E S C R I P T I O N
In the previous chapter, we established a phenomenological thermody-

namic description of chemical reaction networks. In the following preprinted
article, we will show the connection between this description and a stochas-
tic one based on the chemical master equation [1, 2], which is crucial for
describing biochemical processes occurring at low particle numbers, like
many cellular processes. From a theoretical point of view, connecting phe-
nomenological and stochastic description shows that the laws of chemical
kinetics are consistent with thermodynamics at a very fundamental level of
description.

To provide the link between the phenomenological and stochastic descrip-
tion, we observe that timeless expression of the chemical master equation
[(11), p. 113] reads

dpn =
∑
ρ [d̄ζ+ρ(n− S+ρ) − d̄ζ−ρ(n) − d̄ζ+ρ(n) + d̄ζ−ρ(n+ S+ρ)] , (119)

where n is a vector counting the number of molecules of each species, pn
is the probability of observing n, and { d̄ζ±ρ(n) } are the extents of reaction
from each state n. The species abundances, {Nσ }, can be regarded as the
average numbers of molecules, which in vectorial form read N =

∑
nnpn,

and their balance, Eqs. (87) and (87), can be recovered as follows. We pre-
liminary observe that using the chemical master equation, one obtains

dN =
∑
nndpn =

∑
ρSρ
∑
n [d̄ζ+ρ(n) − d̄ζ−ρ(n)] . (120)

We now distinguish those internal reactions which do not entail any exchange
of chemostatted species, { ρi }, from those exchange reactions which model the
exchange of each chemostatted species with its corresponding chemostat,
{ ρe }: { ρ } ≡ { ρi }∪ { ρi }, see Sec. [IIA, p. 112]. We thus recover Eqs. (87) and
(89) when replacing

d̄ξρi =
∑
n

[
d̄ζ+ρi(n) − d̄ζ−ρi(n)

]
and

d̄rNy =
∑
ρe

Syρ
∑
n [d̄ζ+ρe(n) − d̄ζ−ρe(n)]

(121)

in the previous equation. As for generic Markov jump processes, the con-
nection between stochastic dynamics and thermodynamics lies in the local
detailed balance property, which—in a timeless formulation—relates the ra-
tio of forward and backward stochastic extent of reaction, to the entropy
production along the reaction, i.e. the affinity. As we will show, this rela-
tion is true for elementary reactions, and—in a timeless formulation—can
be written either using the Eq. (93) (Eq. [(53) and (56), p. 117]),

ln
d̄ζ+ρ(n)

d̄ζ−ρ(n+ S+ρ)
= −βr

[
∆ρG(n) +

∑
yµySyρ

]
, (122)

in terms of differences of Gibbs free energy along reactions {∆ρG(n) }, see
Eq. [(47), p. 117], or using Eq. (16) (Eq. [(75), p. 119])

ln
d̄ζ+ρ(n)

d̄ζ−ρ(n+ S+ρ)
= −βrd̄Qthr +βrd̄Qchm +∆ρS(n) , (123)
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where d̄Qthr and d̄Qchm are the heat exchanged with the thermal and chem-
ical reservoirs, while ∆ρS(n) is the internal entropy change.

By introducing conservation laws, we will thus reproduce the semigrand
enthalpy and entropy balance, Eqs. (99) and (102), both at the level of
stochastic trajectories, Eqs. [(101), p. 122] and [(115), p. 123], and ensem-
ble averages, Eqs. [(174), p. 129] and [(175), p. 130]. We further emphasize
the importance of our formulation as we show that the driving and noncon-
servative work contributions, ∂H and {Kyf d̄N

yf }, satisfy a FT, Eq. [(156),
p. 128], in contrast to other forms of work like the chemical one, d̄Wchem,
Eq. (92), see Sec. [VD, pp. 119–120]. We finally specialize the nonequilibrium
Landauer principle to stochastic chemical reaction networks, Eqs. [(178) and
(180), p. 130].

references for chapter 4
[1] D. A. McQuarrie, “Stochastic Approach to Chemical Kinetics”, J.

Appl. Probab. 4.3 (1967), 413.

[2] D. T. Gillespie, “A rigorous derivation of the chemical master equa-
tion”, Physica A 188.1–3 (1992), 404–425.

http://dx.doi.org/10.2307/3212214
http://dx.doi.org/10.1016/0378-4371(92)90283-V
http://dx.doi.org/10.1016/0378-4371(92)90283-V


The following article is preprinted from
[R. Rao and M. Esposito (arXiv 1805.12077), submitted].

The page numbers placed in the outer margins provide a continuous pagi-
nation throughout the thesis.





Conservation Laws and Work Fluctuation Relations in Chemical Reaction Networks
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We formulate a nonequilibrium thermodynamic description for open chemical reaction networks
(CRN) described by a chemical master equation. The topological properties of the CRN and its
conservation laws are shown to play a crucial role. They are used to decompose the entropy
production into a potential change and two work contributions, the first due to time dependent
changes in the externally controlled chemostats concentrations and the second due to flows maintained
across the system by nonconservative forces. These two works jointly satisfy a Jarzynski and Crooks
fluctuation theorem. In absence of work, the potential is minimized by the dynamics as the system
relaxes to equilibrium and its equilibrium value coincides with the maximum entropy principle. A
generalized Landauer’s principle also holds: the minimal work needed to create a nonequilibrium
state is the relative entropy of that state to its equilibrium value reached in absence of any work.

PACS numbers: 05.70.Ln, 87.16.Yc

I. INTRODUCTION

Nonequilibrium thermodynamic descriptions of
stochastic (bio-)chemical processes have long since been
developed. Among the first, T.L. Hill and coworkers
studied bio-catalysts as small fluctuating machines op-
erating at steady-state. They introduced the concept of
free energy transduction and analyzed how one form of
chemical work can drive another one against its sponta-
neous direction [1, 2]. The importance of decomposing
currents into network cycles (i.e. cyclic sets of tran-
sitions) was already emphasized. These results were
however limited to steady-state systems described by
linear chemical reaction networks (CRN). The stochastic
as well as the deterministic dynamics of these CRNs
is described by the same linear rate equations for, re-
spectively, probabilities or concentrations. They model
for instance conformational changes of an enzyme or
of a membrane transporter. Inspired by these seminal
works, J. Schnakenberg formulated a steady-state ther-
modynamics for generic Markov jump processes and
provided a systematic cycle decomposition for the en-
tropy production (EP) rate [3]. He considered in particu-
lar the stochastic description in terms of the Chemical
Master Equation (CME) [4, 5] of nonlinear chemical reac-
tion networks, i.e. CRNs described at the deterministic
level by nonlinear rate equations for concentrations. The
Brussels school, J. Ross and many others, focused on
the connection between the thermodynamic description
resulting from the stochastic and the deterministic dy-
namics [6–9].

With the advent of Stochastic Thermodynamics [10–
13], the focus moved to the study of fluctuations, rather
then focusing on the first two moments. Gaspard first
showed that EP fluctuations in nonlinear CRNs at steady
state satisfy a fluctuation theorem (FT) [14]. This result

was later expressed in terms of currents along Schnaken-
berg cycles [15, 16]. Fluctuations in complex chemical
dynamics such as bistability was analyzed, amongst oth-
ers, by Qian and coworkers [17–19]. A first formulation
of stochastic thermodynamics for CRNs beyond steady
state was done by Schmiedl and Seifert in Ref. [20].

Despite this long history none of these descriptions
made use of the specific topology of the CRN encoded in
its stoichiometric matrix. Mathematicians know however
that the CRN topology plays an important role on its de-
terministic [21, 22] as well as stochastic dynamics [23, 24].
But the question of how it affects the thermodynamic
description was only studied recently: for deterministic
dynamics in Refs. [25, 26], while for stochastic dynamics
at steady state in [27]. In this paper we address this
question in full generality for CRNs whose dynamics is
stochastic. We will do so by presenting a formulation
of stochastic thermodynamics for CRNs which system-
atically makes use of the conservation laws. Doing so
leads to a significantly more informative thermodynamic
description. In particular, we decompose the EP into
three fundamental dissipative contributions: a newly de-
fined potential change, a driving work contribution due
to time dependent changes in the externally controlled
chemostats concentrations, and a nonconservative work
contribution due to a minimal set of flows maintained
across the system by nonconservative forces. In contrast
to the traditional chemical work given by minus the free
energy change in the chemostats, these two new work
contributions are shown to jointly satisfy a finite-time
detailed and integral FT, when the CRN is initially pre-
pared in an equilibrium state. In turn, the importance
of the potential lies in the fact it is minimized by the
relaxation dynamics towards equilibrium in absence of
the first two work contributions, i.e. when the system
is detailed-balanced. It can be seen as a Legendre trans-
form with respect to those conservation laws that are bro-
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ken by the chemostats. At equilibrium it coincides with
the potential obtained from maximizing entropy with
broken conservation laws as constrains. We also discuss
the connection of our findings to absolute irreversibil-
ity [28], to free energy transduction in nonlinear CRNs,
and to cycle decompositions of the entropy production.
Finally, we derive a nonequilibrium Landauer’s prin-
ciple for the driving and nonconservative work which
generalizes the previous ones to nondetailed-balanced
dynamics [29, 30].

Outline The paper is organized as follows. In § II
(Stochastic Dynamics and CRN Topology) we review
the stochastic description of closed and open CRNs and
introduce conservation laws and stoichiometric cycles.
In § III (Stochastic Thermodynamics) the connection
with thermodynamics is made. The stochastic reaction
rates are expressed in terms of Gibbs potentials via the
equilibrium distribution of the closed CRN. Enthalpy
and entropy balance are defined along stochastic tra-
jectories and Jarzynski-like FTs for the chemical work
are discussed. In § IV (CRN-Specific Stochastic Thermo-
dynamics) the EP is partitioned into its three contribu-
tions. In § V (Semigrand Gibbs Potential) we analyze
open detailed balanced CRNs, more specifically their
relaxation to equilibrium as chemostats are successively
introduced. In § VI (Fluctuation Theorems), finite-time
detailed FTs for the driving and nonconservative work
are derived. In § VII (Ensemble Average Rates Descrip-
tion) the ensemble averaged description is presented
and the nonequilibrium Landauer’s principle is derived.
Finally in § VIII, our results are applied on a simple
model which clarify the importance of our formulation
for free energy transduction. Throughout the paper,
our formalism is illustrated using a simple enzymatic
scheme, whereas some technical derivations are given
in appendices.

II. STOCHASTIC DYNAMICS AND CRN TOPOLOGY

A. CRNs

We consider a homogeneous, isobaric, and isothermal
ideal dilute solution made of Nz chemical species, encoded
in a vector z. Their integer-valued population n changes
due to internal reactions which we label by { ρi } for
ρi = ±1, . . . ,±Ni,

νρi · z
kρi−−−⇀↽−−−
k−ρi

ν−ρi · z . (1)

In open CRNs, the population of a subset of species,
named exchanged species and denoted by y where
z ≡ (x, y), varies also due to exchanges with external
chemostats denoted by Y. Their effect is modeled by ex-
change reactions, {ρe} for ρe = ±1, . . . ,±Ny, see Fig. 1,

species symbol number abundance

internal
{ x Nx nx

}
nexchanged y Ny ny

chemostatted Y Ny [Y]

TABLE I. In the second column the symbols used for the
various species are listed. The corresponding total number of
entries and symbols used to denote their abundance are given
in the third and fourth column, respectively. The first column
summarizes the name used to refer to these species, while the
last one recalls the symbol used to collect the abundances of
the internal species. Internal species, x and y, are characterized
by low populations, n. The population of x can change only
because of reactions, whereas that of y are also exchanged
with chemostats, which are identified by Y, Eq. (1).

Chemical Network

Environment

Ae

Be

k+1

k-1
A + E E*

E + B

k+2

k-2

k-3

k+3

k-4

k+4

E**

k+a

k-a

k-b

k+b

FIG. 1. Pictorial representation of an open CRN modeling an
enzymatic scheme. More details are given in Example 1

ν
y
ρe · y

kρe−−−⇀↽−−−
k−ρe

νY
ρe ·Y . (2)

The non-negative integer-valued vectors {νρ ≡ (νx
ρ,νy

ρ)}
for ρ ∈ {ρi}∪ {ρe}, encode the stoichiometric coefficients of
each reaction. Note that each entry of νy

ρe and νY
ρe is

nonzero and equal to one only if it corresponds to the
species exchanged by ρe. Note also that all reactions are
assumed elementary and reversible. The different types of
species are summarized in Tab. I.

The topology of the CRN is encoded in its stoichiomet-
ric vectors,

Sρ := ν−ρ − νρ , and SY
ρ := νY

−ρ − ν
Y
ρ . (3)

The former quantifies the change of population induced
by a give reaction ρ, whereas the latter the correspond-
ing amount of chemostatted species that is exchanged.
By definition, Sρ = −S−ρ and SY

ρ = −SY
−ρ. Collect-

ing the column vectors Sρ (resp. SY
ρ) corresponding to

arbitrarily-chosen forward reactions defines the inter-
nal (resp. external) stoichiometric matrix denoted by S

(resp. SY). It is not difficult to see that these can be
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decomposed as

S ≡
(
Si Se

)
≡
(

Sx
i O

S
y
i S

y
e

)
, (4)

and

SY ≡
(
SY

i SY
e
)
≡
(
O −S

y
e
)

. (5)

In closed CRNs all exchange reactions disappear and
the stoichiometric matrix reduces to Si.

Remark Previous works on thermodynamics of
CRNs, e.g. Refs. [20, 25, 26, 31], describe open CRNs
by assuming that the exchanged species y are so abun-
dant that they can be regarded as particle reservoirs
within the system. As a result the exchange reactions
are disregarded, y are treated as chemostatted, and the
stoichiometric matrices read

Salt = Sx
i , and SY

alt = S
y
i . (6)

In the closed CRNs, the stoichiometric matrix becomes
(Salt, SY

alt)
T . As we will see, the two approach are for-

mally very similar, but the former has the advantage
of preserving the number of internal species when the
CRN is chemostatted. This makes it more suitable for a
stochastic description.

Example 1. For the open CRN in Fig. 1,

x = (E, E∗, E∗∗) ,
y = (A, B) ,
Y = (Ae, Be)

(7)

and

n = (nE,nE∗ ,nE∗∗ ,nA,nB)
T . (8)

Internal reactions, ρi = ±1, . . . ,±4, are distinguished
from the exchange ones, ρe = ±a,±b. The stoichiomet-
ric matrix reads

S =




+1 +2 +3 +4 +a +b

E −1 1 −1 1 0 0

E∗ 1 −1 0 0 0 0

E∗∗ 0 0 1 −1 0 0

A −1 0 0 1 1 0

B 0 1 −1 0 0 1




. (9)

and

SY =

( +1 +2 +3 +4 +a +b

Ae 0 0 0 0 −1 0

Be 0 0 0 0 0 −1

)
. (10)

Henceforth, we will use the following notation

a! =
∏
iai! , a·b =

∏
ia
bi
i , and c·b = c

∑
ibi ,

for generic vectors a and b, and for a generic constant
c. “lna” must be read as a vector whose entries are the
logarithm of the entries of a. Finally, 1 denotes a vector
whose entries are all equal to 1.

B. Chemical Master Equation

In our stochastic description, n is treated as a fluctuat-
ing variable and all reactions are regarded as stochastic
events. The probability of finding the CRN in the state
n at time t is denoted by pn ≡ pn(t) and its evolution
is ruled by the CME [4, 5, 32]

dtpn =
∑
ρ

{
w−ρ(n+ Sρ)pn+Sρ −wρ(n)pn

}

=
∑
mWnmpm ,

(11)

where the stochastic generator reads

Wnm =
∑
ρwρ(m)

{
δn,m+Sρ − δn,m

}
. (12)

Since all reactions are assumed elementary, we consider
mass-action stochastic reaction rates

wρ(n) := kρ
V

V ·νρ
[Y]·ν

Y
ρ

n!
(n− νρ)!

. (13)

where {kρ} denote the rate constants. The dependence on
the volume V ensures the correct scaling when taking the
large particle limit and guarantees that {kρ} are the same
as in deterministic descriptions [33]. The chemostats
concentrations [Y] only appear in exchange reactions ρe
and quantify the concentration of the exchanged species
in the chemostats. Hence, they are real-valued, nonfluc-
tuating, and unaffected by the occurrence of exchange
reactions. We assume that [Y] can change over time in a
way that is encoded in the driving protocol πt. This may
describe for instance, the controlled injection of certain
molecules across a cell membrane. In such situations the
CRN is said to be subjected to a “driving”. In absence
of driving the CRNs is instead said to be autonomous.

Equilibrium probability distributions are of crucial impor-
tance for our discussion. They satisfy the detailed balance
property

wρ(n)p
eq
n = w−ρ(n+ Sρ)p

eq
n+Sρ , for all ρ ,n . (14)

This means that the probability current of any reaction
ρ occurring from any state n vanishes. Stochastic CRNs
which admit a steady-state probability distribution satis-
fying Eq. (14) are referred to as detailed balanced. Their
stochastic thermodynamics will be analyzed in § V.

Example 2. For the CRN in Fig. 1, the transition rates
are

w+1 = k+1nAnE , w−1 = k−1nE∗ ,
w+2 = k+2nE∗ , w−2 = k−2nEnB ,
w+3 = k+3nEnB , w−3 = k−3nE∗∗ ,
w+4 = k+4nE∗∗ , w−4 = k−4nEnA ,
w+a = k+a[Ae] , w−a = k−anA ,
w+b = k+b[Be] , w−b = k−bnB .

(15)
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C. Stochastic Trajectories

A stochastic trajectory of duration t, nt, is defined
as a set of reactions {ρi} sequentially occurring at times
{ti} starting from n0 at time t0. Such trajectories can be
generated by a Stochastic Simulation Algorithm [34]. Given
the initial state, a trajectory is completely characterized
by the counter

jρ(n, τ) :=
∑
iδρρiδnntiδ(τ− ti) , (16)

that encodes which reaction occurs (ρi), from which
state it occurs (nti), and at which time (ti). If not oth-
erwise stated, the transition index i runs from i = 1

to the last transition prior to time t, Nt, and must not
be confused with the label of the internal reactions, “i”.
The instantaneous reaction currents

Jρ(τ) :=
∑
njρ(n, τ) =

∑
iδρρiδ(τ− ti) . (17)

quantify the instantaneous rate of occurrence of each
reaction irrespectively of the state from which it occurs.
Additionally, we denote the population of the CRN at
time τ ∈ [t0 = 0, t] by nτ.

The probability of a trajectory reads

P[nt] =

Nt∏

i=0

exp
{
−

∫ti+1
ti

dτ
∑
ρwρ(nτ, τ)

}

×
Nt∏

i=1

wρi(nti , ti) , (18)

where tNt+1 := t is the final time of the trajectory. The
first term accounts for the probability that the system
spends {ti+1 − ti} time in the state {nti }, while the sec-
ond accounts for the probability of transitioning. When
averaging Eq. (16) over all stochastic trajectories, we
obtain the transition rates, Eq. (13),

〈jρ(n, τ)〉 = wρ(n, τ)pn(τ) . (19)

Changes of state observables O(n) ≡ O(n, t) along
trajectories can be written as

∆O[nt] = O(nt, t) −O(n0, 0)

=

∫t

0
dτ
{
[∂τO(n, τ)]|nτ +

∑

n,ρ
∆ρO(n, τ) jρ(n, τ)

}
. (20)

The first term inside the integral accounts for the con-
tinuous changes due to the time dependent protocol
πt, while the second accounts for finite changes along
reactions, see Fig. 2,

∆ρO(n, τ) := O(n+ Sρ, τ) −O(n, τ) . (21)

In contrast, changes of a generic observable read

δX[nt] =

∫t

0
dτ
{ [

Ẋ(n, τ)
]∣∣
nτ

+
∑

n,ρ
δXρ(n, τ) jρ(n, τ)

}
.

t

O

t1 t2 t3 t4 . . .

FIG. 2. Pictorial representation of the change of a state
variable observable O along a trajectory. The orange dashed
curves represent the changes due to the protocol—first term in
Eq. (20)—while vertical blue lines changes due to reactions—
second term in Eq. (20).

(22)

where Ẋ(n,πτ) denotes its change due to driving while
dwelling in the state n, and δXρ(n,πτ) denotes its
change along the reaction ρ occurring from n. Hence-
forth, we will use the overdot “ ˙ ” to denote rates of
change of observable which are not time derivatives.

D. Conservation Laws

The topological properties of CRNs are encoded in
the matrices S and SY and can be identified via their
cokernels and kernels. Conservation laws ` are defined as
vectors in coker S,

` · Sρ = 0 , for all ρ . (23)

They identify conserved quantities, called components
[35]

Ln := ` ·n . (24)

Despite the fact that Ln depends on the stochastic vari-
able n, the probability of observing any particular value
L,

P(L) :=
∑
npn δ[Ln,L] , (25)

is constant over time, i.e. dtP(L) = 0. The δ is a Kro-
necker delta. More generally, any observable of type
O(Ln) does not fluctuate,

dt
∑
npn O(Ln) = 0 , (26)

as a direct consequence of the fact that ∆ρO(Ln) = 0.
Clearly, P(L) can be deduced from the initial conditions
pn(0) and only those states for which P(Ln, 0) is non-
vanishing have a finite probability of being observed
during the subsequent stochastic dynamics.

In closed CRNs, conservation laws (23) follow from

`x · Sx
ρi
+ `y · Sy

ρi = 0 , for all ρi . (27)
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We denote a set of linearly independent conservation
laws of the closed CRN by {`λ}, and the corresponding
components by

{
Lλn := `λ ·n

}
, for λ = 1, . . . , Nλ. The

choice of this set is not unique, and different choices
have different physical meanings. This set is never
empty since the total mass is always conserved. The
latter corresponds to a ` whose entries are the masses of
each species. Physically, the conservation laws of closed
CRNs can always be chosen so as to correspond to moi-
eties, which are parts of molecules exchanged between
species along reactions or subject to isomerization [36].

For open CRNs, the condition identifying conserva-
tion laws, Eq. (23), becomes

`x · Sx
ρi
+ `y · Sy

ρi = 0 , for all ρi , (28a)

`y · Sy
ρe = 0 , for all ρe . (28b)

We now recall that for all ρe there is one and only one
exchanged species for which the corresponding entry
of Sy

ρe is different from zero. Hence, Eq. (28b) demands
that `y = 0 and Eq. (28) become `x · Sx

ρi
= 0 for all ρi.

Crucially, any set of independent conservation laws
(28), labeled as {`λu }, for λu = 1, . . . , Nλu < Nλ, can be re-
garded as a subset of the conservation laws of the closed
CRN, {`λ} ≡ {`λu }∪ {`λb }, since they satisfy Eq. (27), too.
In view of this, we call them unbroken conservation laws.
The remaining independent conservation laws, labeled
as {`λb } and referred to as broken, satisfy Eq. (27) while
not Eq. (28). They involve exchanged species, `yλb

6= 0,
hence `yλb

· Sy
ρe 6= 0 and the probability distribution of

any set {Lλb
n ≡ `λb ·n},

P({Lλb }) :=
∑
npn
∏
λb
δ
[
L
λb
n ,Lλb

]
, (29)

changes in time.
Summarizing, in open CRNs, the chemostatting

breaks a subset of the conservation laws of the cor-
responding closed CRN, {`λb }. Only the probability
distribution of the unbroken components {Lλu

n ≡ `λu ·n},

P({Lλu }) :=
∑
npn
∏
λu
δ
[
Lλu
n ,Lλu

]
, (30)

is invariant and completely determined by the initial
probability distribution pn(0). The state space identi-
fied by one particular set of values for {Lλu } is called
stoichiometric compatibility class.

Example 3. The CRN in Fig. 1 has two conservation
laws,

`E =
( E E∗ E∗∗ A B

1 1 1 0 0
)

, (31a)

`b =
( E E∗ E∗∗ A B

0 1 1 1 1
)

, (31b)

among which the second is broken. The unbroken
conservation law identifies the enzyme moiety and cor-
responds to the total number of enzyme molecules pop-
ulating the CRN, LE

n = nE + nE∗ + nE∗∗ . Instead, the
broken one identifies the moiety A—or equivalently B—,
Lb
n = nE∗ +nE∗∗ +nA +nB.

E. Stoichiometric Cycles

We can now set the stage for the thermodynamic de-
scription based on a stoichiometric cycle decomposition.
This section, as well as the other ones discussing cycles,
may be omitted at a first reading.

Additional information about the CRN topology is
provided by the stoichiometric cycles c = {cρ} as they are
vectors in ker S. Equivalently, these satisfy

∑
ρSρcρ = 0 , (32)

and at most one entry for each forward–backward transi-
tion pair is nonzero. Since S is integer-valued, any c can
always be chosen non-negative-integer-valued. In this
way, its entries denote the number of times each transi-
tion occurs along a transformation which overall leaves
the state n unchanged. Alternatively, a stoichiometric
cycle can be seen as a set of reactions {ρc1, ρc2, . . . , ρcNc }

identifying a closed loop in the state space

n→ n+ Sρc1 → · · · → n+

Nc∑

i=1

Sρci = n , (33)

where
∑Nc
i=1 Sρci =

∑
ρ Sρcρ = 0.

We now relate cycles of the closed and open CRNs
as previously done for conservation laws. In the closed
CRN, the stoichiometric cycles are given by

∑
ρi

Sx
ρi
cρi = 0 (34a)

∑
ρi

Sy
ρicρi = 0 . (34b)

All the entries associated to the exchange reactions are
taken equal to 0: cρe = 0, for all ρe. Let us denote by
{cα}, for α = 1, . . . , Nα, a set of independent stoichio-
metric cycles of the closed CRN.

In the open CRN, the condition identifying cycles,
Eq. (32), reads

∑
ρi

Sx
ρi
cρi = 0 (35a)

∑
ρi

Sy
ρicρi +

∑
ρe

Sy
ρecρe = 0 . (35b)

Since the cycles of the closed CRN satisfy Eq. (35),
they can be regarded as a subset of an independent set
of cycles for the open CRN, {cα, cη}. We refer to the
additional cycles {cη}, for η = 1, . . . , Nη, as emergent.
They are characterized by at least one nonzero entry for
{ρe}, and the vectors

CY
η :=

∑
ρ

(
− SY

ρ

)
cηρ =

∑
ρe

Sy
ρec

η
ρe 6= 0 (36)
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quantify the amount of exchanged species flowing in the
system from the corresponding chemostats upon com-
pletion of cη. As the concentrations of the chemostats
are unaffected by the exchange of particles with the sys-
tem, the emergent stoichiometric cycles can be thought
of as pathways transferring chemicals across chemostats
while leaving the internal state of the CRN unchanged.

As first proved in Ref. [25], by applying the rank–
nullity theorem to the stoichiometric matrices of the
open and closed CRNs, one can show that

Ny = Nλb +Nη . (37)

In words, for any exchanged species either a conserva-
tion law is broken, or an emergent cycle is created.

Example 4. The CRN in Fig. 1 has one cycle

cint =
( +1 +2 +3 +4 +a +b

1 1 1 1 0 0
)

, (38)

and one emergent cycle

cext =
( +1 +2 +3 +4 +a +b

1 1 0 0 1 −1
)

. (39)

Negative entries must be interpreted as reactions occur-
ring in the backward direction. The latter cycle corre-
sponds to the injection of one molecule of A, its con-
version into one of B passing via E∗, and its ejection,

Cext =
( A B

1 −1
)

. (40)

We can also check the validity of Eq. (37), as the num-
ber of chemostats, 2, equals the number of broken con-
servation laws, 1, see Ex. 3, plus the number of emergent
cycles, 1, Eq. (39).

Remark Stoichiometric cycles must be distinguished
from graph-theoretic cycles, also called loops see e.g.
Ref. [3]. To elucidate this point, we note that the net-
work of transitions of a CRN can be regarded as a semi-
infinite graph whose vertices are the accessible states n,
whereas the directed edges are identified by the possi-
ble reactions—which are encoded in the stoichiometric
matrix, S. Therefore, loops are recursive appearance of
stoichiometric cycles, as in Eq. (33). However, they may
not be complete at the boundaries of the graph (low n)
due to peculiar topological properties of the CRN, see
e.g. Ref. [27]. These observations will be used later to
relate different approaches for cycle decomposition of
thermodynamic quantities.

III. STOCHASTIC THERMODYNAMICS

We now build a nonequilibrium thermodynamic de-
scription on top of the stochastic dynamics. In addi-
tion to the elementarity of all reactions, our description

hinges on the hypothesis of local equilibrium [37]: if all
reactions could be instantaneously shut down, we would
observe an equilibrium mixture of inert species at all
times. Alternatively, the equilibration of temperature
and spatial distributions of molecules is much faster
than any reaction time scale. Hence, the nonequilib-
rium nature of the CRN is solely due to nonequilibrated
populations of species.

A. Equilibrium of Closed CRNs

Equilibrium statistical mechanics requires that the
equilibrium distribution of a closed CRN with given
values of {Lλ} reads

peq(n|{Lλ}) =
exp {−βgn}

Z({Lλ})

∏
λδ
[
Lλn,Lλ

]
, (41)

where

gn = (µ◦ − 1kBT lnns) ·n+ kBT lnn! (42)

is the Gibbs free energy of the state n derived in App. A.
The first term quantifies the energetic contribution of
each single molecule: µ◦ ≡ µ◦(T) is the vector of
standard-state chemical potentials, whereas −1kBT lnns is
an entropic contribution—constant for all species—since
ns is the population of the solvent. The last term is
purely entropic and accounts for the indistinguishability
of molecules of the same species. In Eq. (41),

Z ({Lλ}) =
∑
m exp {−βgm}

∏
λδ
[
Lλm,Lλ

]
(43)

is the partition function, while β = 1/(kBT). When
taking into account an ensemble of components, P({Lλ}),
Eq. (41) allows us to write

p
eq
n =

∑
{Lλ}

peq(n|{Lλ})P({Lλ})

= peq(n|{Lλn})P({L
λ
n}) ,

(44)

which can be regarded as a constrained equilibrium distri-
bution. Hence peq(n|{Lλn}) is the conditional probability
of observing n given the stoichiometric compatibility
class it identifies.

Equation (44) can also be written as

p
eq
n = exp

{
−β
[
gn −Geq({L

λ
n})
]}

, (45)

in terms of the equilibrium Gibbs potential of the CRN

Geq({Lλ}) = kBT lnP({Lλ}) − kBT lnZ({Lλ}) . (46)

It is worth emphasizing that Geq({Lλ}) is function solely
of the set of components, and that Geq({L

λ
n}) needs to be

understood as Geq evaluated in {Lλn}. Invoking the hy-
pothesis of local equilibrium, we extend Geq to arbitrary
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probability distributions pn, and we call it stochastic
Gibbs potential,

G(n) := kBT lnpn + gn . (47)

For closed CRNs at equilibrium, using Eq. (44), G(n)
reduces to Geq in Eq. (46). Also, its average value, the
nonequilibrium Gibbs potential

〈G〉 =∑npn [kBT lnpn + gn] , (48)

takes its minimum value at equilibrium

〈G〉−∑{Lλ}
P({Lλ})Geq({Lλ}) =

〈
G−Geq

〉

= kBT
∑
npn ln

pn

p
eq
n

≡ kBT D(p‖peq) > 0 .

(49)

In the first equality, we used
∑

{Lλ}
P({Lλ})Geq({Lλ})

=
∑

{Lλ}

[∑
npn
∏
λδ
[
Lλn,Lλ

]]
Geq({Lλ})

=
∑
npnGeq({L

λ
n}) .

(50)

In the last equality of Eq. (49), D(p‖peq) is the relative
entropy of the transient probability distribution pn with
respect to the equilibrium one peq

n . It is always posi-
tive and vanishes only when pn = p

eq
n . We will see

later (§ VII) that Eq. (49) quantifies exactly the average
dissipation of the relaxation to equilibrium.

B. Local Detailed Balance

The zero-th of thermodynamics for CRNs requires that
closed CRNs relax to equilibrium. To ensure this, one
combines the dynamical requirement for detailed bal-
ance, Eq. (14), with the equilibrium distribution, Eq. (44).
As a result, the local detailed balance ensues

ln
wρi(n)

w−ρi(n+ Sρi)
= −β∆ρign , (51)

see Eq. (21). In agreement with deterministic descrip-
tions, see e.g. Ref. [26], we recover the relation between
the rate constants and the standard-state chemical po-
tentials

ln
kρi

k−ρi

= −β (µ◦ − kBT1 ln[s]) · Sρi , (52)

in which [s] := ns/V denotes the concentration of sol-
vent. The local detailed balance (51) should be regarded
as a fundamental property of the stochastic reaction
rates of elementary reactions valid beyond closed CRNs.
This central concept is well known in stochastic thermo-
dynamics because it provides the connection between

stochastic dynamics and nonequilibrium thermodynam-
ics.

In open CRNs, the local detailed balance

ln
wρ(n)

w−ρ(n+ Sρ)
= −β

(
∆ρgn + µY · SY

ρ

)
(53)

generalizes Eq. (51), where

µY = µ◦Y + kBT ln {[Y]/[s]} (54)

are the chemical potentials of the chemostats. The first
contribution accounts for the Gibbs free energy change
of the internal species, while the second one for the
Gibbs free energy exchanged with the chemostats.

We introduce the transition affinities which quantify
the force acting along each transition

Aρ(n) = kBT ln
wρ(n)pn

w−ρ(n+ Sρ)pn+Sρ
. (55)

They measure the distance from detailed balance (14),
where they all vanish. Using Eq. (53), they can be rewrit-
ten in terms of differences of stochastic Gibbs potential
(47),

Aρ(n) = −∆ρG(n) + µY ·
(
− SY

ρ

)
. (56)

This fundamental relation reveals the thermodynamic
nature of the dynamical forces acting along reaction. Its
early formulation for determistic chemical kinetics is
due to de Donder [38].

We will prove in § VII that our theoretical framework
based on Eq. (53) guarantees that closed CRNs described
by a CME (11) relax to equilibrium, Eq. (44): the aver-
age potential 〈G〉 is minimized by the dynamics during
the relaxation and hence plays the role of a Lyapunov
function. We now turn our attention to the enthalpy and
entropy balance along stochastic trajectories.

C. Enthalpy and Entropy Balance

The stochastic entropy of the CRNs follows from the
derivative of the stochastic Gibbs potential (47) with
respect to the temperature,

S(n) = −

(
∂G

∂T

)

n

= −kB lnpn + sn . (57)

The last term on the rhs is the entropy of the state n,

sn = −

(
∂g

∂T

)

n

= (s◦ + kB lnns) ·n− kB lnn! . (58)

It accounts for both the entropic contribution carried by
each species, i.e. the standard entropies of formation

s◦ = −

(
∂µ◦

∂T

)

n

, (59)
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as well as the entropic contribution due to the multiplic-
ity of indistinguishable states. When averaged, the first
term in Eq. (57) gives the Gibbs–Shannon entropy. The
enthalpy follows from

H(n) = G(n) + TS(n) = gn + Tsn = h ·n , (60)

where

h = µ◦ + Ts◦ = h◦ (61)

denotes the vector of standard enthalpies of formation, in
agreement with traditional thermodynamics of ideal
dilute solutions [35]. Likewise, the chemical potentials
of the chemostats, Eq. (54), will be decomposed in terms

of enthalpic and entropic contributions,

µY = hY − TsY , (62)

where hY = h◦Y and sY = s◦Y − kB ln {[Y]/[s]}.
To recover the enthalpy balance along stochastic tra-

jectories, we write the change of enthalpy as the sum of
its changes due to reactions,

∆H[nt] = H(nt) −H(n0)

=

∫t

0
dτ
∑

n,ρ
∆ρH(n) jρ(n, τ) ,

(63)

where

∆ρH(n) = h · Sρ = h · Sρ +hY · SY
ρ︸ ︷︷ ︸

=: Qthr
ρ

+ TsY ·
(
− SY

ρ

)
︸ ︷︷ ︸
=: Qchm

ρ︸ ︷︷ ︸
=: Qρ

+µY ·
(
− SY

ρ

)
︸ ︷︷ ︸

=:Wc
ρ

, for alln . (64)

We used Eqs. (20), (61) and (62). The first two contri-
butions, Qthr

ρ , account for the heat of reaction, i.e. the
heat reversibly flowing from the thermal reservoir (the
solvent). The third term characterizes the heat reversibly
flowing from the chemostats,Qchm

ρ . The first three terms,
Qρ, integrated along the trajectory quantify the total heat
flow

Q[nt] =

∫t

0
dτ
{∑

ρQ
thr
ρ Jρ(τ) + TsY(τ) · IY(τ)

}
, (65)

where the instantaneous external currents

IY(τ) :=
∑
ρ

(
− SY

ρ

)
Jρ(τ) (66)

gives the amount of exchanged species injected in the
CRN at each time, see Eq. (17).

The last term in Eq. (64), Wc
ρ, quantifies the Gibbs free

energy exchanged with the chemostats. Once integrated,
it gives the chemical work

Wc[nt] =

∫t

0
dτµY(τ) · IY(τ) . (67)

From Eqs. (63)–(67), the enthalpy balance along a trajec-
tory follows

∆H[nt] = Q[nt] +Wc[nt] . (68)

To recover the entropy balance along stochastic trajectories, we notice that since the entropy is a state function, its
change along a trajectory reads,

∆S[nt] =

∫t

0
dτ
{
[−∂τkB lnpn(τ)]|nτ +

∑

n,ρ
∆ρS(n) jρ(n, τ)

}
. (69)

as seen in Eq. (20). The changes along transitions can be recast into

T∆ρS(n) = T∆ρsn − kBT ln
pn+Sρ

pn

= h · Sρ +hY · SY
ρ + TsY ·

(
− SY

ρ

)
︸ ︷︷ ︸

= Qρ

−

[
∆ρgn + kBT ln

pn+Sρ

pn

]

︸ ︷︷ ︸
= ∆ρG(n)

+µY ·
(
− SY

ρ

)
︸ ︷︷ ︸

=Wc
ρ

︸ ︷︷ ︸
= Aρ(n)

,
(70)

where we have used Eq. (60). As highlighted with underbraces, the first three terms are the heat flow along reactions,
while the last three correspond to the affinity of transition, Eq. (56). When integrating over the whole trajectory, we
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recover the entropy balance

∆S[nt] =
1
TQ[nt] + Σ[nt] , (71)

where the EP (times the temperature) reads

TΣ[nt] =

∫t

0
dτ
{
[−∂τkBT lnpn(τ)]|nτ +

∑

n,ρ
Aρ(n, τ) jρ(n, τ)

}
(72a)

= kBT ln
pn0(0)

pnt(t)
+

∫t

0
dτ jρ(n, τ) kBT ln

wρ(n, τ)
w−ρ(n+ Sρ, τ)

(72b)

=Wc[nt] −∆G[nt] . (72c)

The second equality follows from the definition of affin-
ity, Eq. (55), when integrating the changes of the proba-
bility distribution. Instead, the third one readily follows
from the relationship between affinity and Gibbs poten-
tial, Eq. (56). Mindful of Eq. (18), the EP can be rewritten
as the ratio of the probability of observing the trajectory
nt under a forward dynamics driven by a protocol πt,
over the probability of observing the backward trajec-
tory n†t under a dynamics driven by the time-reversed
protocol π† such that π†τ := πt−τ:

TΣ[nt] = kBT ln
pn0(0)P[nt]

pnt(t)P[n
†
t,π†]

. (73)

This central result in stochastic thermodynamics [12,
39] was formulated for CRNs in Ref. [20] and clearly
shows that the EP measures the statistical asymmetry of
a trajectory under time reversal. It implies that the EP
satisfies the following integral FT

〈exp {−Σ/kB}〉 = 1 , (74)

where the ensamble average 〈·〉 runs over all trajectories.
It represents a refinement of the second law of ther-
modynamics at the trajectory level. Using the Jensen’s
inequality, the second law ensues: 〈Σ〉 > 0.

Remark Using Eqs. (61) and (62), the local detailed
balance, Eq. (53), can be rewritten as

ln
wρ(n)

w−ρ(n+ Sρ)
= −βQthr

ρ + sY · SY
ρ +∆ρsn . (75)

The first term is the entropy change in the thermal bath,
the second one the entropy change in the chemostats,
whereas the last one the internal entropy change of the
CRN.

Remark Chemical work and Gibbs potential are de-
fined up to a gauge, which accounts for the choice of
the standard state chemical potentials. Indeed, let us
consider the following transformation,

µ◦ → µ◦ +
∑
λaλ`λ

µ◦Y → µ◦Y +
∑
λaλ`

y
λ ,

(76)

where the second term is a linear combination of con-
servation laws. This transformation leaves affinities (56)
and EP (73) unchanged, while transforming both the
chemical work (68), and the Gibbs potential (47). The
former changes as

Wc[nt]→Wc[nt] +
∑
λb
aλb`

y
λb
· IY[nt] , (77)

where

IY[nt] =

∫t

0
dτ IY(τ) , (78)

are the integrated currents of exchanged species flowing
in the system. Likewise, the Gibbs potential becomes

G(n)→ G(n) +
∑
λaλL

λ
n . (79)

Using the properties of conservation laws, § II D, it is
easy to verify that

∆Lλu [nt] = 0 , ∆Lλb [nt] = `
y
λb
· IY[nt] , (80)

which confirms that the gauge terms cancels in the EP,
Eq. (72c).

Alternatively, one can apply the transformation (81)
to either (h,hY)

T or (s◦, s◦Y)
T and investigate how the

terms in the entropy balance (71) change. In the former
case, one can easily verify that both Q[nt] and S(n) are
unaltered. In the latter case, instead,

S(n)→ S(n) +
∑
λaλL

λ
n

Q[nt]→ Q[nt] + T
∑
λb
aλb`

y
λb
· IY[nt] .

(81)

Further discussions on the gauge arising in the work–
potential connection will be given in § V C.

D. FT for the Chemical Work
and comparison with previous results

When combining the EP FT (74) with Eq. (72c) we
immediately obtain the integral FT for the chemical
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work

〈exp {−β(Wc −∆G)}〉 = 1 . (82)

However, a Jarzynski-like integral FTs [40–43] for the
chemical work—i.e. expressions such as 〈exp {−βWc}〉 =
exp
{
−β∆Geq

}
—do not ensue. This kind of relation

would require ∆G to be a nonfluctuating quantity so
that it can be moved out of the average. However, due
to broken conservation laws G fluctuates along any tra-
jectory of open CRNs. Let us consider a generic process
in which the CRNs is initially closed and at equilibrium,
Eq. (44), with a Gibbs free energy

∑
{Lλ}

P({Lλ})Geq({Lλ}).
The CRN is then open and driven according to some
time-dependent protocol, πτ for τ ∈ [0, t]. At time t the
CRN is closed again, and let to relax to a new equilib-
rium distribution peqt

n . Since the chemostatting proce-
dure unavoidably breaks some conservation laws, the
accessible state space suddenly increases. The final dis-
tribution of broken components, P({Lλb }; t), will thus
have a support broader than that of the initial distribu-
tion, P({Lλb }; 0), see e.g. Fig. 3. This is an instance of
absolute irreversibility [28]. Namely, when the EP (73) is
integrated over all trajectories to obtain the FT (74), there
are some backward trajectories whose corresponding
forward probability is vanishing. These are the trajec-
tories leading to values of the broken components not
in supp

{
P({Lλb }; 0)

}
. Since the EP of these trajectories

diverges negatively the expression of the integral FTs
(74), as well as (82), is invalidated, but can be replaced
by 〈exp {−Σ/kB}〉 = 1− λS, where 0 6 λS 6 1 measures
the probability of those backward trajectories whose
forward one has zero probability [28].

Hence, let us assume that supp
{
P({Lλb }; 0)

}
spans

all possible values of {Lλb }, so that no absolute irre-
versibility occurs. By conditioning the average in Eq. (82)
upon observation of specific initial and final components
(〈·〉{Lλ},{L ′λ}) we obtain

∑
{Lλ}

∑
{L ′λ}

P({Lλ}; 0)P({L ′λ}, t)

exp
{
β[Geqt({L

′
λ}) −Geq0({Lλ})]

}

〈exp {−βWc}〉{Lλ},{L ′λ} = 1 . (83)

However, this equation cannot be simplified further:
since the Gibbs potential depends on the broken compo-
nents, it fluctuates during the transient dynamics and
an average over all components must be taken. As a
resut, no Jarzynski FT for the chemical work in the Gibbs
ensemble can be derived.

We now mention that the Authors of Ref. [20] derive
a Jarzynski relation for the chemical work by using the
grandcanonical ensemble [20, Eq. (61)]. Translated into
our notation, their result reads

〈exp {−β[Wc −∆(µ
eq ·n)]}〉 = exp

{
−β∆Geq

}
, (84)
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FIG. 3. Illustration of the evolution of the probability distribu-
tion of the broken components associated to Eq. (31b) in the
CRNs in Fig. 1. As the CRN evolves, the state space enlarges,
as the stochastic dynamics explores states corresponding to
different broken components, Lb. The four distribution are
obtained by means of 106 trajectories simulated using the
stochastic simulation algorithm. All rate constants are equal
to 1, whereas the concentrations of the chemostatted species
are [Ae] = 17 and [Be] = 10. The value of the enzyme moiety
is LE = 5.

where the initial and final equilibrium states are grand-
canonical:

p
eq
n = exp

{
β
[
Geq − gn + µeq ·n

]}
. (85)

The grand potential is defined as

G := G− µeq ·n , (86)

and µeq are implicitly defined by

µ
eq
x · Sx

ρi
+ µ

eq
y · Sy

ρi = 0 , for all ρi , (87)

[20, Eq. (27)]. The absence of the exchange transition is
due to a different form of chemostatting, see remark in
§ II A. Concerning Eq. (84), we observe that the grand-
canonical potential is more suitable to describe CRNs
in which all species are chemostatted and µeq are their
chemical potentials. However, in the vast majority of real
CRNs, only a restricted set of species needs to be mod-
elled as chemostatted. On top of that, the physical inter-
pretation of the contribution −∆(µeq ·n) remains unclear.
In our next sections we will show that a systematic use
of conservation laws leads to the identification of the
potential which best describes the equilibrium of CRNs
in which not all species are treated as chemostatted. It
will also ensue the definition of new work contributions,
whose physical interpreation is transparent.
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IV. CRN-SPECIFIC STOCHASTIC
THERMODYNAMICS

We now proceed with our main results. Making use
of the conservation laws identified in section § II D,
we decompose the EP into three fundamental contri-
butions: a potential difference, a contribution due to
time-dependent driving, and a minimal set of contribu-
tions due to nonconservative chemical forces. To do so,
we first decompose the local detailed balance and then
proceed with the EP.

A. Entropy Production

We start our EP decomposition by partitioning the
set of chemostatted species Y into two groups, denoted
by Yp and Yf. Likewise, the corresponding exchanged
species are denoted by yp and yf, respectively. The for-
mer group is composed by a minimal set of chemostatted
species which—when starting from the closed CRN—
break all broken conservation laws. In other words,
each entry of Yp breaks exactly one distinct conserva-
tion law. The remaining chemostatted species form the
latter group. For a given CRN, our partitioning is not
unique but the number of yp and yf is uniquely defined:
Nyp = Nλb and Nyf = Ny −Nλb , respectively, see Ex. 5.

We now notice that the linear independence of {`λ}

implies that the matrix whose rows are {`
yp
λb
} is nonsin-

gular. We will denote by {`
yp
λb
} the column vectors of the

inverse of the latter matrix. By making use of this crucial
property, we can recast the identity

∆ρL
λb
n ≡ `λb · Sρ ≡ `xλb

· Sx
ρ + `

yp
λb
· Syp
ρ + `

yf
λb
· Syf
ρ (88)

into

S
yp
ρ = ∆ρM

yp
n −

∑
λb
`

yp
λb

{
`xλb
· Sx
ρ + `

yf
λb
· Syf
ρ

}
, (89)

where

M
yp
n :=

∑
λb
`

yp
λb
L
λb
n . (90)

Mindful that SY
ρ = −Sy

ρ and `xλb
· Sx
ρe = 0 for all ρe,

one can use Eq. (89) to rewrite the chemical work along
reactions as

−µY · SY
ρ = ∆ρ

[
µYp ·M

yp
n

]
−FYf · S

Yf
ρ , (91)

where

FYf := µYf − µYp ·
∑
λb
`

yp
λb
`

yf
λb

. (92)

A reformulation of the local detailed balance Eq. (53)
readly ensues

ln
wρ(n)

w−ρ(n+ Sρ)
= −β

(
∆ρgn +FYf · S

Yf
ρ

)
, (93)

where

gn := gn − µYp ·M
yp
n . (94)

We now argue that the expression of the latter poten-
tial is reminiscent of a Legendre transform of gn with
respect to M

yp
n , in which µYp are the conjugated inten-

sive fields. To reveal the physical meaning of M
yp
n , let

us consider the case in which the broken conservation
laws correspond to moieties, see § II D, and hence each
species can be thought of as a composition of these.
Through yp, some combinations of these moieties are
exchanged with the environment. The entries of M

yp
n

quantify the total abundance of these combinations in
state n, hence we refer to M

yp
n as the moieties population

vector. In view of this and the fact that (in general) not
all moieties are exchanged, one can interpret gn as a
semigrand Gibbs free energy [35]. Note also that, from the
definition of broken conservation law, Eq. (27), it follows
that ∆ρiM

yp
n = 0, for all ρi—viz. internal reactions never

create or destroy moieties—whereas only for ρe we have
that ∆ρeM

yp
n 6= 0—viz. exchange reactions introduce or

remove moieties. We also mention that an alternative
interpretation of gn can be given once we rewrite it as

gn := gn −
∑
λb
fλbL

λb
n , (95)

where

fλb := µYp · `
yp
λb

. (96)

In this form gn is reminiscent of a Legendre transform
with respect to the broken components {L

λb
n }, in which

{fλb } are the conjugated intensive fields.
In contrast to the first term appearing on the rhs of

Eq. (93), the second one is composed by an independent
and minimal set of nonconservative terms: if and only
if Fyf = 0, for yf = 1, . . . , Nyf , then the rhs of Eq. (93) is
conservative. In this case, the CRN is detailed-balanced
since the steady-state probability distribution defined by
p

eq
n ∝ exp {−βgn} satisfies the detailed balance property,

Eq. (14). In physical terms, each Fyf identifies a chemi-
cal potential gradient imposed by some chemostats on
the CRN which prevent the latter from relaxing to equi-
librium. Hence we refer to {Fyf } as fundamental chemical
forces. Equation (93) is our first major result.

To proceed with our EP decomsposition, we combine
Eqs. (72b) and (93),

TΣ[nt] = kBT ln
pn0(0)

pnt(t)

−

∫t

0
dτ
∑

ρ,n
∆ρgn(τ) jρ(n, τ) +

∑
yf
Wnc
yf
[nt] , (97)

where

Wnc
yf
[nt] :=

∫t

0
dτFyf(τ)Iyf(τ) . (98)
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{Iyf(τ)}, for yf = 1, . . . , Nyf , denote the entries of the
instantaneous external currents corresponding to Yf,
Eq. (66). We now recall that gn is a state function, hence

∆g[nt] =Wd[nt] +

∫t

0
dτ
∑

ρ,n
∆ρgn(τ) jρ(n, τ) , (99)

where

Wd[nt] :=

∫t

0
dτ [∂τgn(τ)]|nτ

=

∫t

0
dτ
[
−∂τµYp(τ) ·M

yp
n

]∣∣∣
nτ

.
(100)

Therefore, combining Eqs. (97) and (99) we obtain

TΣ[nt] = −∆G[nt] +Wd[nt] +
∑
yf
Wnc
yf
[nt] , (101)

where the first term is the difference of the stochastic
semigrand Gibbs potential

G(n) := kBT lnpn + gn . (102)

Equation (101) is the main result of our paper. The
first term on the rhs constitutes the conservative force
contribution of the EP. The second term, Eq. (100), arises
in presence of time-dependent driving and quantifies
the work spent to manipulate the free energy landscape
of the CRN via the chemical potentials µYp . We refer to
it as driving work. Finally, for each exchanged species Yf,
a nonconservative force contribution (98) arises. Each
Wnc
yf
[nt] quantifies the work spent by the chemostats to

sustain a flow of chemicals across the CRN, and we refer
to them as nonconservative chemical work contributions.
Equation (101) holds for an arbitrary CRN, yet it is CRN-
specific, as it accounts for the topological properties
of the CRN, i.e. the conservation laws. To gain more
intuition, we now focus on specific classes of CRNs,
whose resulting decomposition is summarized in Tab. II.
In Secs. VI and VII we will further explore the physical
consequences of Eq. (101), whereas in Ex. 5 and in § VIII
we evaluate Wd and {Wnc

yf
} for specific models.

Autonomous Detailed-Balanced CRNs: The CRN is au-
tonomous and all fundamental forces vanish. The trajec-
tory EP becomes minus a potential difference,

TΣ[nt] = −∆G[nt] . (103)

We will prove in § VII that this is the class of open CRNs
which relax to equilibrium and in which the average po-
tential 〈G〉 is minimized at equilibrium by the dynamics
described by CME (11).

Unconditionally Detailed-Balanced CRNs: The set of
species Yf is empty—i.e. each exchanged species breaks
a conservation law—and no force arises. Hence, these
CRNs are detailed-balanced irrespective of the values of
µY, but the time-dependent driving prevents them from
reaching equilibrium, and their EP reads

TΣ[nt] = −∆G[nt] +Wd[nt] . (104)

dynamics −∆G Wd Wnc

autonomous detailed-balanced X 0 0
unconditionally detailed-balanced X X 0

autonomous X 0 X
NESS 0 0 X

TABLE II. Entropy production for specific processes. “0” (resp.
“X”) denotes a vanishing (resp. a finite) contribution. NESS is
the acronym for nonequilibrium steady state.

Autonomous CRNs: The driving work vanishes and
the forces are constant in time. Hence, the EP becomes

TΣ[nt] = −∆G[nt] +
∑
yf
FyfIyf [nt] . (105)

The nonconservative chemical work display a typical
current–force structure. In the long time limit, ∆G[nt] is
typically subextensive in time, and we obtain

TΣ[nt]
t→∞
=
∑
yf
FyfIyf [nt] . (106)

In other words, the EP is dominated by the dissipative
flows of chemicals across the CRN.

Remark For CRN with infinite number of species and
reactions—e.g. aggregation–fragmentation and polymer-
ization processes [44–46]—the CRN may undergo steady
growth regimes in which ∆G is not subextensive in time
and cannot be neglected in long-time limit.

Remark Our EP decomposition is not unique and dif-
ferent expressions for gn and FYf correspond to different
choices for the paritioning of Yp and Yf.

Example 5. For the open CRN in Fig. 1, the chemostat-
ted species can be splitted into Yp and Yf in two
possible—and trivial—ways: either A is regarded as
the species breaking the conservation law (31b), or B.
We consider the former choice, yp = (A) and yf = (B).
Since `bA = 1, the only entry of the moiety vector reads,

MA
n = nE∗ +nE∗∗ +nA +nB = Lb

n , (107)

which is equal to the total abundance of the A–B moi-
ety. The intensive variable conjugated to the broken
conservation law is equal to the chemical potential of
Ae,

fb = µAe
. (108)

The potential thus readily follows from Eq. (94)—or
equivalently Eq. (95)—,

gn = gn − µAe
MA
n . (109)

The instantaneous driving work rate associated to any
manipulation of the latter potential is

Ẇd(n) = −∂tµAe
MA
n . (110)
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Chemical Network

Environment

Ae

Be

A + E E*

E + BE**

μA
Wd

Wnc

FIG. 4. Pictorial illustration of the work contributions. The
driving one arises when the chemical potential of the chemo-
stat Ae changes in time. The nonconservative chemical work,
instead, characterizes the sustained conversion of A into B.

Once integrated over a trajectory, it gives the driving
work, Eq. (100). Since yf = (B), the conjugated funda-
mental chemical force reads

FBe
= µBe

− µAe
. (111)

and the instantaneous dissipative contribution due to
this force is

Ẇnc
Be

= FBe
IBe

, (112)

where IBe
= J+b − J−b. When integrated over a trajectory,

it measures the work spent to sustain a current between
Ae and Be across the CRN. A pictorial illustration of the
work contributions is given in Fig. 4. The trajectory EP
thus reads

TΣ[nt] =

∫t

0
dτ
[
− ∂τµAe

(τ)MA
n

]∣∣
nτ

−∆G[nt]

+

∫t

0
dτFBe

(τ)IBe
(τ) . (113)

B. Energy Balance

In Eq. (101), the CRN-specific work contributions,
Wd and {Wnc

yf
}, emerge as dissipative contributions. To

strengthen their interpretation as work contributions,
we now show that they can also be described as part of
an energy balance. For this purpose, let

H(n) := H(n) − µYp ·M
yp
n = G(n) + TS(n) (114)

be the semigrand enthalpy, which can be regarded as a
CRN-specific form of energy. When combining this po-
tential with the enthalpy and entropy balances, Eqs. (68),
(71) and (101), we obtain

∆H[nt] = Q[nt] +Wd[nt] +
∑
yf
Wnc
yf
[nt] . (115)

Now, we clearly see the role of Wd and {Wnc
yf
} as work

contributions, as they are opposed to the heat flow, Q.
On the one hand, Wd is the energy spent by an external
agent to manipulate the chemostats and does not involve
an exchange of any extensive quantity between the CRN
and chemostats. On the other hand, {Wnc

yf
} accounts for

the energy flowing between different chemostats that is
mediated by the CRN.

C. Equilibrium of open CRNs

We have already seen that in absence of fundamental
forces, the rhs of the local detailed balance (93) becomes
a state function difference. The steady-state probability
distribution

peq(n|{Lλu }) =
exp {−βgn}

Z({Lλu })

∏
λu
δ
[
Lλu
n ,Lλu

]
. (116)

satisfies the detailed balance property (53) and therefore
characterizes the equilibrium of open CRNs. Not acci-
dentally, the relationship between the partition function
Z({Lλu }) and that of closed CRNs, Eq. (43),

Z({Lλu }) =
∑
m exp {−βgm}

∏
λu
δ
[
Lλu
m ,Lλu

]
(117)

=
∑

{Lλb
} exp

{
β
∑
λb
fλbLλb

}
Z({Lλ}) , (118)

is akin to that between canonical and grandcanonical
partition functions, see e.g. [47]. With an ensemble of
unbroken components, P({Lλu }), the constrained equilib-
rium distribution reads

p
eq
n :=

∑
{Lλb

} peq(n|{Lλu })P({Lλu })

= peq(n|{L
λu
n })P({Lλu

n }) ,
(119)

where peq(n|{L
λu
n }) is the probability distribution of ob-

serving the state n given its stoichiometric compatibility
class. Eq. (119) thus generalizes the equilibrium proba-
bility distribution (44) to open CRNs.

Importantly, the average semigrand Gibbs potential
(102) takes its minimum value at peq

n , Eq. (119), where it
reduces to the equilibrium semigrand Gibbs potential,

Geq({Lλu }) = −kBT lnZ({Lλu }) + kBT lnP({Lλu }) , (120)

averaged over P({Lλu }). Indeed,

〈G〉−∑{Lλu }
P({Lλu })Geq({Lλu }) = 〈G− Geq〉

= kBT D(p‖peq) > 0 .
(121)
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The first equality follows from the fact that Geq is non-
fluctuating, since it depends solely on the unbroken
components. As for the Gibbs free energy in closed
CRNs, we will show later (§ VII) that Eq. (121) quan-
tifies the average dissipation during the relaxation to
equilibrium.

D. Dissipation Balance along Stoichiometric Cycles

We can now formulate the EP decomposition in term
of stoichiometric cycles affinities. These are defined as
the sum of the transition affinities along stoichiometric
cycles {c ≡ ρc1, ρc1, . . . , ρcNc },

A := Aρc1(n) +Aρc2(n+ Sρc1) + . . .

· · ·+AρcNc(n+
∑Nc−1
j=1 Sρcj) .

(122)

Using Eq. (56), and the fact that −∆ρG(n) vanishes when
summed over the loop c, we obtain

A = −µY ·
Nc∑

i=1

SY
ρci

= −µY ·
∑
ρSY
ρcρ . (123)

Since
∑
ρSY
ρc
α
ρ = 0, those evaluated along the stochio-

metric cycles of the closed CRN, {cα}, always vanish. In
contrast, those along the emergent cycles, {cη}, do not
vanish in general,

Aη = µY ·CY
η , (124)

see Eq. (36). These affinities can be thus understood
as the chemical potential gradient imposed by the
chemostats on the cycle.

To rewrite the EP (101) in terms {Aη}, let us highlight
their relationship with the fundamental forces,

Aη = FYf ·C
Yf
η , (125)

which is obtained when summing the local detailed
balance (93) along {cη} as in Eq. (122). Since the matrix
whose columns are {C

Yf
η } is square and nonsingular—as

it can be deduced from the linear independence of the
set of emergent cycles—, we can invert it and write

FYf =
∑
ηC

Yf
η Aη , (126)

where {C
Yf
η } denote the rows of the inverse matrix. This

relation clarifies the one-to-one correspondence which
lies between {Fyf } and {Aη}. Inserting the last expression
in the local detailed balance, Eq. (93), we obtain

ln
wρ(n)

w−ρ(n+ Sρ)
= −β

(
∆ρgn −

∑
ηAηζη,ρ

)
, (127)

where the coefficients

ζη,ρ := −C
Yf
η · SYf

ρ (128)

quantify how much each reaction contributes to the
emergent cycles. Algebraically, the row vectors {ζη} are
dual to the cycles, {cη},

ζη ·cη
′
= −
∑
ρC

Yf
η ·SYf

ρ c
η ′
ρ = C

Yf
η ·CYf

η ′ = δη,η ′ . (129)

As previously done for Eq. (101), when integrating
the trajectory EP (72b) with the local detailed balance
(127) we obtain

TΣ[nt] = −∆G[nt] +Wd[nt] +
∑
ηΓη[nt] . (130)

The stochastic semigrand Gibbs potential and the driv-
ing work read as in Eqs. (102) and (100), respectively.
For each emergent stoichiometric cycle,

Γη[nt] :=

∫t

0
dτAη(τ)

∑
ρζη,ρJρ(τ) . (131)

quantifies the chemical work spent to sustain the related
cyclic flow of chemicals. For autonomous CRNs

TΣ[nt] = −∆G[nt] +
∑
ηAηJη[nt] , (132)

where

Jη[nt] :=

∫t

0
dτ
∑
ρζη,ρJρ(τ) (133)

quantifies the integrated current along the cycle η. In the
long-time limit, in which ∆G[nt] is negligible, we obtain

TΣ[nt]
t→∞
=
∑
ηAηJη[nt] . (134)

When all emergent cycle affinities vanish—as well as
when no emergent cycle is created—, the CRN becomes
detailed-balanced, in agreement with the Kolmogorov–
Wegscheider condition [48–50].

Remark An alternative approach that can be used
for cycle EP decompositions is the graph-theoretic one
based on the identification of the loops appearing in the
network of transitions [3, 51]. Once these loops are iden-
tified, they can be sorted according to the chemostats
they are coupled to, as these determine their affinity, see
Eq. (122). Equivalently, loops are classified according to
the stoichiometric cycle they correspond to. In Ref. [52],
a graph-theoretic approach based on loop affinities led
to the expression analogous to Eq. (134). In contrast, our
cycles EP decomposition is based on a stoichiometric
approach: emergent cycles are directly identified by the
kernels of Si and S.

This observation points out the redundancy which
is intrinsic in bare graph-theoretic EP decompositions:
many loops may be coupled to the same set of reservoirs
and thus carry the same affinity, while many others
may carry a vanishing affinity—for CRN these latter
are those corresponding to stoichiometric cycles of the
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closed network, { cα }. For generic networks, a system-
atic way of identifying these so-called symmetries was
derived in Ref. [53], whereas in Ref. [54] they are used
to formulate generic thermodynamic—rather than mere
graph-theoretic—EP decompositions.

Example 6. Trivially, the emergent cycle affinity corre-
sponding to the emergent stoichiometric cycle (39) reads

A = µBe
− µAe

= FBe
. (135)

The contributions to the corresponding cycle current
follows from Eq. (128),

ζT =
( +1 +2 +3 +4 +a +b

0 0 0 0 0 −1
)

. (136)

The entries corresponding to the backward reactions are
minus those of the forward. Notice that, since the CRN
has exactly one emergent cycle, the force and cycle EP
decompositions are identical, see Eq. (125).

V. SEMIGRAND GIBBS POTENTIAL

We here further elaborate on equilibrium distribu-
tions and semigrand Gibbs potentials by addressing
three points: (i) the relationship between Eq. (119), and
the equilibrium distributions as expressed in chemical
reaction network theory; (ii) the role of conservation
laws for characterizing the dissipation of CRNs subject
to sequential introduction of exchanged species; (iii) the
gauge freedom intrinsic to the definition of driving work.
This section can be skipped at a first read.

A. Equilibrium Distributions in
Chemical Reaction Network Theory

In Ref. [23] (see also [55]) equilibrium distributions of
CRNs are proven to be multi-Poissonian

peq(n|{Lλu }) =
exp
{
n · ln

{
[z]eqV

}}

n!Z({Lλu })

∏
λu
δ
[
Lλu
n ,Lλu

]
,

(137)

where [z]eq is the equilibrium concentration distribution
of the same CRN described by a set of deterministic
rate equations. Z({Lλu }) is again a normalizing factor.
To highlight the relationship between this equation and
Eqs. (119) and (85), we need to recall that, for determin-
istic CRNs, thermodynamic equilibrium is defined by
the fact that chemical potential differences along all reac-
tions vanish, Eqs. (87) and (A7). As observed in Ref. [26],
this entails that

µeq =
∑
λfλ`λ , (138)

where {fλ} are real coefficients depending on µY and
{Lλu }. Those related to the broken components, {fλb }, are
indeed those appearing in Eq. (96). From Eq. (A7) we
therefore have

ln
{
[z]eqV

}
= −β (µ◦ − kBT lnns −

∑
λfλ`λ) , (139)

from which

n · ln
{
[z]eqV

}
− lnn! = −β (gn − µeq ·n)

= −β
(
gn −

∑
λu
fλuL

λu
n

) (140)

ensues. At this point, Eqs. (85), (116), and (137) ap-
pear identical up to

∑
λu
fλuL

λu
n . However, since this

term appears both at the nominator of Eq. (137) and in
Z({Lλu }), it cancels. This shows the connection between
the CRN theoretical and thermodynamic expression of
equilibrium distributions.

B. Hierarchies of Equilibriums

We here show that when starting from a closed CRN,
a sequential introduction of exchange reactions that keep
the CRN detailed balanced drives it down in semigrand
Gibbs potential by equilibrating previously constrained
degrees of freedom: the conservation laws, see Fig. 5.
Let us imagine a closed CRN whose initial probability
distribution is pn(0) =

∑
{Lλ}

p0(n|{Lλ})P0({Lλ}), where
P0({Lλ}) =

∏
λ P
λ
0(Lλ), i.e. different components are

independently distributed. As it relax to equilibrium,
P0({Lλ}) will not change, while p0(n|{Lλ}) will relax to
Eq. (41). The average dissipation is

T 〈Σ〉 = −∆ 〈G〉 =∑{Lλ}
P0({Lλ})

[
kBT
∑
np(n|{Lλ}) ln

p(n|{Lλ})

peq(n|{Lλ})

]
≡∑{Lλ}

P0({Lλ})
[
−∆ 〈G({Lλ})〉

]
. (141)

This expression is obtained when combining the properties of the Gibbs potential, Eq. (49), with the equilibrium
distribution of closed CRNs, Eq. (44). It shows that the average drop of Gibbs free energy can be expressed as the
weighted average of the drops of Gibbs free energy at given components, −∆ 〈G({Lλ})〉.

We now open the CRN by chemostatting one species. Hence, one conservation law is broken, e.g. the total mass
`λ1 , and the CRN relaxes to a new equilibrium, Eq. (119). Clearly, Pλ0(Lλ), for λ 6= λ1, will not change during the
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relaxation, and we can rewrite the new equilibrium as

p
(λ1)
eq (n) =

exp
{
−βgn +βfλ1L

λ1
n

}

Zλ1({L
λ
n}λ6=λ1)

∏

λ6=λ1
Pλ0(L

λ
n) =

exp {−βgn}

Z({Lλn})︸ ︷︷ ︸
= peq(n|{L

λ
n})

Z({Lλn}) exp
{
βfλ1L

λ1
n

}

Zλ1({L
λ
n}λ6=λ1)︸ ︷︷ ︸

=: Peq(L
λ1
n |{Lλn}λ6=λ1)

∏

λ6=λ1
Pλ0(L

λ
n) . (142)

The first term is the equilibrium distribution of the closed CRN, while the second can be interpreted as the
equilibrium distribution of the broken component, for given unbroken component. In other words, the final
equilibrium can be understood as a closed CRN equilibrium with an equilibrium probability distribution over the
broken component. Hence, the average amount of semigrand Gibbs free energy, Gλ1(n) = G(n) − fλ1L

λ1
n , dissipated

during the relaxation can be written as

−∆
〈
Gλ1

〉
= kBT

∑

n

peq(n|{L
λ
n})
∏
λP
λ
0(L

λ
n) ln

P
λ1
0 (Lλ1n )

Peq(L
λ1
n |{Lλn}λ6=λ1)

, (143)

upon application of Eqs. (121) with the distributions (44) and (142). When rewriting this expression as a sum over
all values of the components and performing the summation over the states of peq(n|{L

λ}) we finally obtain

−∆
〈
Gλ1

〉
=

∑

{Lλ}λ6=λ1

Pλ0(Lλ)


∑

Lλ1

P
λ1
0 (Lλ1)kBT ln

P
λ1
0 (Lλ1)

Peq(Lλ1 |{Lλ}λ6=λ1)




=
∑

{Lλ}λ6=λ1

Pλ0(Lλ)
[
−∆

〈
Gλ1({Lλ}λ6=λ1)

〉]
.

(144)

In the first line we recognize the relative entropy be-
tween the initial probability of the broken component,
P
λ1
0 (Lλ1), and the equilibrium one, Peq(Lλ1 |{Lλ}λ6=λ1).

It it is equal to the difference of semigrand Gibbs free
energy at given component, as highlighted in the sec-
ond line. We thus see that the dissipation following
the relaxation from one equilibrium to the other is com-
pletely characterized by the equilibration of the initially
constrained degrees of freedom.

This procedure can of course be repeated when a
further species is chemostatted and it breaks another
conservation law. The dissipation is quantified by a dif-
ference of semigrand Gibbs free energy, which accounts
for the relaxation of the degree of freedom which has
been released. When the chemostatting breaks all con-
servation laws without generating fundamental forces,
the CRN finally reaches the global minimum of available
semigrand Gibbs free energy, Fig. 5. In this case, the
potential becomes the grand potential used in Ref. [20]
and discussed in § III D, cf. Eqs. (86), (138), (102), and
(95).

C. Wd–G Gauge

The driving work and the stochastic semigrand Gibbs
potential are defined up to a gauge—distinct from that

transient nonequilibrium state

closed CN equilibrium

open CN equilibrium: λ1 broken

open CN equilibrium: λ1, . . . , λn broken

open CN equilibrium: all conservation laws broken

Gλ1 minimized

Gλ1,...,λn minimized

G“all”λ minimized

Gminimized

FIG. 5. Pictorial representation of the hierarchy of equilibrium
states and the semigrand Gibbs free energy drops following the
relaxation to equilibrium when conservation laws are broken.

involving G and Wc—, which corresponds to the choice
of the components. Let us consider a basis change in the
space of conservation laws

`λ → ` ′λ =
∑
λ ′Ωλλ ′`λ ′ , (145)

with Ωλuλb = 0 for all λu, λb, so that the unbroken ones
preserve their properties. Accordingly, the conjugated
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intensive variables transform as

fλ → f ′λ =
∑
λ ′fλ ′Ωλ ′λ , (146)

see Eq. (138), where Ω denotes the inverse of Ω. We
now notice that when the sum involves only the broken
conservation laws, such a bilinear form becomes

∑
λb
fλb`λb →

∑
λb
fλb`λb −

∑
λu
fλu`λu , (147)

where

fλu :=
∑

λ ′uλ ′b

fλ ′b
Ωλ ′bλ

′
u
Ωλ ′uλu . (148)

Therefore, the instantaneous driving work rate (the in-
tegrand of Eq. (100) rewritten with Eq. (96)), and the
semigrand potential, become

Ẇd(n)→ Ẇd(n) +
∑
λu
∂tfλuL

λu
n , (149)

and

G(n)→ G(n) +
∑
λu
fλuL

λu
n , (150)

respectively. In contrast, the nonconservative forces—
and thus the nonconconservative work—is left invariant

FYf → FYf +
∑
λu
fλu`

yf
λu

= FYf , (151)

since `yf
λu

= 0. Crucially, the gauge terms inWd and −∆G
cancel and the EP is unaltered. After all, the physical
process is not modified. Notice also that since the gauge
term is nonfluctuating, it vanishes for cyclic protocols
when integrated over a period.

We thus conclude that driving work and semigrand
Gibbs potential are not univocally defined as they are
affected by a gauge freedom. The gauge affecting the
potential–work connection in stochastic thermodynam-
ics led to debates, see Ref. [56] and references therein. As
observed in the latter reference, the problem is rooted in
what can be experimentally measured as work, as differ-
ent experimental set-ups entail different gauge choices.
In our chemical framework, different choices of the bro-
ken components, involve expressions of the work in
which different species appear and whose abundances
need to be measured to estimate the work.

Example 7. To illustrate the potential–work gauge we
use the CRN in Fig. 1. Let us consider the transformation
of the set conservation laws, Eq. (31), identified by the
matrix

Ω =

(
1 −1
0 1

)
, (152)

according to which the conservation laws become

` ′E = `E =
( E E∗ E∗∗ A B

1 1 1 0 0
)

, (153a)

` ′b = `b − `E =
( E E∗ E∗∗ A B

−1 0 0 1 1
)

. (153b)

forw
ard

: π
τ

back
ward

: π
†
τ

equilibrium:
gn(π0)

noneq: gn(πt)

equilibrium:
gn(πt)

relaxation:
{Fy = 0}

FIG. 6. Schematic representation of the forward and back-
ward processes. The relaxation to the equilibrium obtained by
shutting down the driving and turning off the forces at time
t (resp. 0) for the forward (resp. backward) process, merely
relates the two processes but it is irrelevant for the FT.

Using Eqs. (108), the gauge term reads

fλu(πt) = µA(πt) (154)

from which we can easily derive the expression for the
new driving work rate

Ẇd(n) = (nE −nA −nB)∂tµA . (155)

The semigrand Gibbs free energy easily follows. We can
now highlight the difference between the two definitions
of driving work, Eqs. (110) and (155): while the first
entails the measurement of the population of A, B, and
of the activated complexes E∗ and E∗∗, the latter entails
that of A, B, and of the free enzyme E. The values of
the two expressions will differ but for cyclic protocols
integrated over a period.

VI. FLUCTUATION THEOREMS

We now proceed to show that the driving work and
the nonconservative chemical work satisfy a finite-time
detailed FT. The FT holds for any process, referred to as
forward, if the open CRN is initially prepared at equilib-
rium, Eq. (119). For the sake of simplicity, and without
loss of generality, we assume that the initial distribution
of unbroken components is P({Lλu

n }) =
∏
λu
δ
[
Lλu
n ,Lλu

]
,

and we denote by π0 the initial value of the protocol,
which corresponds to equilibrium. At time 0, the driv-
ing is activated and the CRN evolves controlled by the
protocol πτ, for τ ∈ [0, t]. The corresponding backward
process is again initially prepared at the equilibrium—
where all forces vanish—, but the chemical potentials
µYp must have the same value they have at time t in
the forward process. This guarantees that gn(t) rules
the equilibrium distribution. The backward process is
driven by the time-reversed protocol, π†τ := πt−τ, for
τ ∈ [0, t].
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The finite-time detailed FT establishes the relationship
between the forward and backward process

Pt(Wd, {Wnc
yf
})

P
†
t(−Wd, {−Wnc

yf
})

= exp
{
β
(
Wd +

∑
yf
Wnc
yf

−∆Geq
)}

,

(156)

where Pt(Wd, {Wnc
yf
}) is the probability of observing Wd

driving work and {Wnc
yf
} nonconservative contributions

along the forward process, Eqs. (100) and (98). Instead,
P
†
t(−Wd, {−Wnc

yf
}) is the probability of observing −Wd

driving work and {−Wnc
yf
} nonconservative contributions

along the backward process. Finally,

∆Geq = −kBT ln
Z(πt, {Lλu })

Z(π0, {Lλu })
, (157)

is the difference of equilibrium semigrand Gibbs poten-
tial between the backward and forward initial equilib-
rium states. When integrating this expression over all
possible values of Wd and {Wnc

yf
} we recover a Jarzynski-

like integral FT
〈

exp
{
−β
(
Wd +

∑
yf
Wnc
yf

)}〉
= exp

{
−β∆Geq

}
. (158)

The proof of the FT (156) is given in App. B, and it
hinges on the generating function techniques presented
in Ref. [54].

We now investigate some interesting specific cases of
the FT (156). In unconditionally detailed-balance CRNs,
the nonconservative work vanish and we obtain the
Crooks’ FT formulated for CRNs [57–60],

Pt(Wd)

P
†
t(−Wd)

= exp
{
β
(
Wd −∆Geq

)}
. (159)

Instead, for autonomous processes, the FT can be formu-
lated as follows

Pt({Iyf })

Pt({−Iyf })
= exp

{
β
∑
yf
FyfIyf

}
. (160)

The FT in Eq. (156) is inspired by an analogous result
derived in Refs. [54, 61] in the context of generic Markov
jump processes. The importance of our result is mani-
fold. It holds for processes of finite duration t, and it is
expressed in terms of measurable chemical quantities.
Its only constraint is the initial state, which must be
equilibrium. It reveals the most appropriate boundary
conditions under which Jarzynski–Crooks-like FTs can
be formulated for CRNs: equilibrium distribution of
open CRNs. Most important, it evidences the merits of
our stoichiometric approach based on the identification
of conservation laws: it allowed us to characterize the
potential describing the equilibrium distribution of open
CRNs, and to formulate the decomposition of the EP
which supports our FTs, Eq. (101).

Remark A physical interpretation of the argument of
the exponential, Eq. (156), follows from the following
observation: if, at time t, the driving is stopped and
the fundamental forces (92) turned off—viz. set to zero
by an appropriate choice of µ∗Yf

:= µYp ·
∑
λb
`

yp
λb
`

yf
λb

—
the CRN relaxes to the initial condition of the back-
ward process. During the relaxation neither Wd nor
{Wnc
yf
} are performed and the related EP is TΣrelax =

G(n,πt) + kBT lnZ(πt, {Lλu }). The argument of the expo-
nential can thus be interpreted as the EP of the fictitious
combined process “forward process + relaxation to the
final equilibrium”.

Remark For autonomous CRNs and arbitrary initial
conditions, the steady-state FT follows

P({İyf })

P({−İyf })

t→∞
= exp

{
tβ
∑
yf
Fyf İyf

}
, (161)

where P({İyf }) is the probability of observing average
rates of fundamental external currents

{
1
t

∫t
0 dτ Iyf(τ)

}

equal to {İyf }. Eq. (161) can be proved using the large
deviation technique used in Ref. [14] in combination
with the local detailed balance (93).

FT along Stoichiometric Cycles

An alternative yet equivalent formulation of the FT
(156) is that given in terms of nonconservative contri-
butions along emergent stoichiometric cycles, Eq. (131):

Pt(Wd, {Γη})

P
†
t(−Wd, {−Γη})

= exp
{
β
(
Wd +

∑
ηΓη −∆Geq

)}
,

(162)

where Pt(Wd, {Γη}) is the probability of observing Wd
driving work and {Γη} nonconservative contributions
along the forward process. We discuss its proof App. B.

Remark As for the fundamental currents, the local
detailed balance (127) can be used to prove a steady-state
FT for currents along emergent stoichiometric cycles

P({J̇η})

P({−J̇η})

t→∞
= exp

{
tβ
∑
ηAηJ̇η

}
, (163)

which is valid for autonomous CRNs and arbitrary
initial conditions. P({J̇η}) is the probability of ob-
serving average rates of emergent cycle currents{
1
t

∫t
0 dτ
∑
ρζη,ρJρ(τ)

}
equal to {J̇η}. In contrast to the

analogous FT obtained in Ref. [15], Eq. (163) is achieved
using a stoichiometric approach based on the identifica-
tion of stoichiometric cycles. For this reason, it accounts
for the minimal set of nonzero macroscopic affinities.
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VII. ENSEMBLE AVERAGE RATES DESCRIPTION

We now summarize our main results for ensemble
average rates and discuss the relaxation to equilibrium
of detailed-balanced CRNs. We also highlight the dif-
ference between an approach that does and does not
take into account the topology of the CRN. We do so by
recapitulating the procedure to decompose the EP into
its fundamental contributions. We end by formulating a
nonequilibrium Landauer’s principle.

A. Traditional Description

Enthalpy Balance The enthalpy balance follows from
the time derivative of the average enthalpy, Eq. (60),

dt
∑
npn(h ·n) ≡ dt〈H〉 = 〈Q̇〉+ 〈Ẇc〉 . (164)

It characterizes the average rate of change of enthalpy in
the same way Eq. (68) characterizes the enthalpy change
along stochastic trajectories. The average heat flow rate
is given by

〈Q̇〉 = 〈Q̇thr〉+ 〈Q̇chm〉 . (165)

The first term quantifies the average rate of heat of reac-
tion,

〈Q̇thr〉 =∑ρ
[
h · Sρ +hY · SY

ρ

]
〈Jρ〉 , (166)

where 〈Jρ〉 =
∑
nwρ(n)pn is the average reaction cur-

rent. The second term is the average heat flow in the
chemostats,

〈Q̇chm〉 = TsY · 〈IY〉 , (167)

where 〈IY〉 =
∑
ρ(−SY

ρ)〈Jρ〉 are the average external
currents, Eq. (19). and the —the second term on the rhs.
Instead, the ensamble average chemical work rate,

〈Ẇc〉 = µY · 〈IY〉 , (168)

quantifies the average rate of exchange of Gibbs free
energy with the chemostats.

Entropy Production Rate At the ensemble average
level, the second law of thermodynamics manifests itself
in the non-negative average EP rate

〈Σ̇〉 = dt〈S〉− 1
T 〈Q̇〉

= kB
∑

n,ρ
wρ(n)pn ln

wρ(n)pn
wρ(n+ Sρ)pn+Sρ

> 0 . (169)

where 〈S〉 =∑n pnS(n), Eq. (57). Using the expression
for the transition affinity, Eq. (56), it can be recast into,

T〈Σ̇〉 = 〈Ẇc〉− dt〈G〉 , (170)

where the chemical work rate and the average Gibbs
potential are given in Eqs. (168) and (48), respectively.
Equivalently, Eqs. (164), (169), and (170) can be obtained
by directly averaging Eqs. (68), (72a), and (72c), respec-
tively, over all stochastic trajectories.

For closed CRNs, Eq. (170) reduces to dt〈G〉 =
−T〈Σ̇〉 6 0. This relation, together with Eq. (49),
shows that: (i) 〈G〉 is a Lyapunov function, and hence
that closed CRNs relax to equilibrium, Eq. (44); (ii)
〈G〉−∑{Lλ}

P({Lλ})Geq({Lλ}) = T〈Σ〉 is the average dis-
sipation during the relaxation to equilibrium.

B. CRN-specific Description

Entropy Production Rate We now summarize the pro-
cedure to recover the EP decomposition (101) at the
ensemble average level. (i) Identify the broken and un-
broken conservation laws, {`λu , `λb }, § II D. (ii) Identify a
set of Nλb exchanged species, yp, for which the matrix
whose rows are {`

yp
λb
} is nonsingular. The columns of

its inverse are denoted by {`
yp
λ }. Physically, each species

yp breaks exactly one conservation law. The remaining
exchanged species form the set denoted by yf. (iii) The
nonequilibrium semigrand Gibbs potential follows from the
average of Eq. (102),

〈G〉 =∑npn [kBT lnpn + gn] . (171)

It depends on the vector 〈Myp〉 which describes the av-
erage population of the combination of moieties whose
conservation is broken by the chemostats, § II D and
Eq. (90). (iv) The change in time of 〈g〉 due to the time-
dependent driving describes the average driving work
rate, Eq. (100),

〈Ẇd〉 = −∂tµYp · 〈Myp〉 . (172)

It quantifies the average amount of work spent to change
the chemical potentials of the chemostats Yp. (v) The
second group of exchanged species, yf, is used to iden-
tify the minimal set of fundamental chemical forces,
FYf ≡ {Fyf }, Eq. (92). The average nonconservative chem-
ical work rate follows from the product of these forces
and their corresponding instantaneous external currents,
Eq. (66)

〈Ẇnc
yf
〉 := Fyf〈Iyf〉 . (173)

They quantify the average work per unit time spent to
sustain a net current of species yf across the CRN. (vi)
The average EP rate decomposed as in Eq. (101) finally
follows from Eqs. (171), (172), and (173)

T〈Σ̇〉 = −dt〈G〉+ 〈Ẇd〉+
∑
yf
〈Ẇnc
yf
〉 . (174)

Its three fundamental contributions appear: a conserva-
tive force contribution, a time-dependent driving contri-
bution, a minimal set of nonconservative terms.
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For open autonomous detailed-balanced CRNs, FYf =
0, dtµYp = 0, and hence Eq. (174) reduces to dt〈G〉 =
−T〈Σ̇〉 6 0. Mindful of Eq. (121), this relation shows
that: (i) 〈G〉 is a Lyapunov function, and hence that
these CRNs relax to equilibrium, Eq. (119); (ii) 〈G〉 −∑

{Lλu }
P({Lλu })Geq({Lλu }) = T〈Σ〉 is the average dissipa-

tion during the relaxation to equilibrium.
Enthalpy Balance By averaging Eq. (115), the CRN-

specific average enthalpy balance also ensues

dt〈H〉 = 〈Q̇〉+ 〈Ẇd〉+
∑
yf
〈Ẇnc
yf
〉 , (175)

which strenghten the interpretation of 〈Ẇd〉 and {〈Ẇnc
yf
〉}

as average work rate contributions.

C. Average EP along Stoichiometric Cycles

The average EP decomposition expressed in terms of
emergent cycles currents and affinities can be achieved
through an analogous recipe. (i) Identify broken and
unbroken conservation laws, {`λu , `λb }, as well as stoi-
chiometric and emergent stoichiometric cycles, {cα, cη}
§§ II D and II E. Steps (ii)–(iv) as above. (v) Identify the
emergent stoichiometric cycles affinities, Eq. (124), as
well as their corresponding average currents

∑
ρζη,ρ〈Jρ〉,

Eq. (128). (vi) The average EP rate follows from
Eqs. (171), (172), and the emergent stoichiometric cy-
cles currents and affinities,

T〈Σ̇〉 = −dt〈G〉+ 〈Ẇd〉+
∑
η〈Γ̇η〉 , (176)

where,

〈Γ̇η〉 = Aη
∑
ρζη,ρ〈Jρ〉 , (177)

as in Eqs. (130) and (131).

D. Nonequilibrium Landauer’s Principle

We can now formulate the nonequilibrium Landauer’s
principle for the driving and nonconservative work. We
have already seen that when the driving is stopped and
all forces are turned off, the CRN relaxes to equilibrium
by minimizing the nonequilibrium semigrand Gibbs
potential. Equation (121) can be thus combined with
Eq. (174) to give

〈Ẇirr
d 〉+

∑
yf
〈Ẇnc
yf
〉 = kBT dtD(p‖peq) + T〈Σ̇〉 . (178)

where

〈Ẇirr
d 〉 := 〈Ẇd〉− dt

∑
{Lλu }

P({Lλu })Geq({Lλu }) , (179)

is the irreversible driving work rate. We emphasize that
this work is gauge invariant, see § V C. Integrating over
time, we obtain

〈Wirr
d 〉+

∑
yf
〈Wnc
yf
〉 = kBT ∆D(p‖peq) + T 〈Σ〉 . (180)

eq. driving

noneq. driv
ing

relaxation

pn(t0)

pn(t)

p
eq0
n

p
eqt
n

FIG. 7. Pictorial representation of the transformation between
two nonequilibrium probability distributions. The nonequilib-
rium transformation (blue line) is compared with the equilib-
rium one (green line). The latter is obtained by shutting down
the driving and turning off the forces at each time (dashed
gray lines).

This fundamental result shows that the minimal cost
for transforming a CRN from an arbitrary nonequilib-
rium state to another is bounded by a difference of
relative entropies, as depicted in Fig. 7. The transfor-
mation may involve either time-dependent driving, or
relaxation to steady states, or both. It generalizes the
early result obtained in Refs. [29, 62, 63] to nondetailed
balanced CRNs (see also Refs. [54, 64]). For uncon-
ditionally detailed-balanced CRNs, we recover the re-
sult first obtained in Ref. [26] for deterministic CRNs:
〈Wirr

d 〉 = kBT ∆D(p‖peq) + T 〈Σ〉.
Remark To obtain the Landauer’s principle for 〈Ẇd〉

and {〈Ẇnc
yf
〉}, the equilibrium states of the open CRN

have been used as reference states, see Fig. 7. Alterna-
tively, one could use the equilibrium states of the closed
CRN, which are obtained by shutting down all exchange
reactions. If one does so and uses Eq. (170), an analo-
gous Landauer’s principle for the chemical work can be
derived,

〈Wirr
c 〉 = kBT ∆D(p‖peq) + T 〈Σ〉 , (181)

where

〈Wirr
c 〉 := 〈Wc〉−∆

[∑
{Lλ}

P({Lλ})Geq({Lλ})
]

, (182)

is the irreversible chemical work. The traditional ther-
modynamic work relation 〈Wirr

c 〉 > 0 is recovered for
processes whose initial and final condition are equilib-
rium states.

E. Connection with Deterministic Descriptions

For CRNs with very abundant populations of species,
a deterministic dynamical description in terms of non-
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linear rate equations is justified. The correspond-
ing nonequilibrium thermodynamics was analyzed in
Ref. [26], where the counterparts of Eqs. (164), (170), and
(104), can be found. Following a procedure similar to
that described in this paper, one can also formulate the
deterministic analog of the EP decomposition (174).

One can also recover the deterministic thermodynamic
description from the stochastic one by performing the
limit n � 1 and assuming that pn ' δn,N, i.e. the
distribution is very peaked around the population that
is solution of the rate equations, N, see App. A.

We thus conclude with two remarks.

Remark Not all results valid for stochastic CRNs hold
for the deterministic ones. An example is provided by
the adiabatic–nonadiabatic EP decomposition introduced in
Ref. [65] for generic stochastic processes: it is valid for
deterministic CRNs only for complex-balanced CRNs, see
Refs. [26, 66].

Remark As briefly mentioned in § II A, there is an
alternative way of modeling open CRNs in which the
exchanged species y are treated as particle reservoir with
very large population. All main results of our paper—
i.e. the EP decomposition (101), the finite-time detailed
FT (156), and the Landauer’s principle (180)—still hold.
The only difference lies in the fact that the different
definitions of stoichiometric matrices, Eq. (6), also en-
tail slightly different definitions of broken conservation
law. Besides that, the recipe described in § VII B can be
followed in the same way.

VIII. APPLICATION

We now illustrate our EP decompositions (101) and
(130) on a CRN displaying more than one fundamen-
tal force, which thus allows us to introduce the phe-
nomenology of free energy transduction. We consider
the following active catalytic mechanism

T + E
k+1−−⇀↽−− ET

k+5−−⇀↽−− ED
k+4−−⇀↽−− E + D

ET + S
k+2−−⇀↽−− E∗

k+3−−⇀↽−− ED + P .
(183)

It describes the T-driven catalysis of S into P, having D
as a byproduct, see Fig. 8. All substrates and products
are regarded as exchanged species,

S −−⇀↽−−
k+s

Se , P −−⇀↽−−
k+p

Pe , T −−⇀↽−−
k+t

Te , D −−⇀↽−−
k+d

De . (184)

Chemical Network

Environment

PeSe

De
E

ET ED

E*

Te

T D

PS

FIG. 8. Pictorial illustration of the open CRN in Eqs. (183)
and (184), from which one can see the more clearly the active
catalytic mechanism.

The stoichiometric matrix of the open CRN reads




+1 +2 +3 +4 +5 +s +p +t +d

E −1 0 0 1 0 0 0 0 0

ET 1 −1 0 0 −1 0 0 0 0

E∗ 0 1 −1 0 0 0 0 0 0

ED 0 0 1 −1 1 0 0 0 0

S 0 −1 0 0 0 1 0 0 0

P 0 0 1 0 0 0 1 0 0

T −1 0 0 0 0 0 0 1 0

D 0 0 0 1 0 0 0 0 1

Se 0 0 0 0 0 −1 0 0 0

Pe 0 0 0 0 0 0 −1 0 0

Te 0 0 0 0 0 0 0 −1 0

De 0 0 0 0 0 0 0 0 −1




, (185)

in which the stoichiometric matrix of the closed CRN is
highlighted.

We now follow the recipe described in § VII, and
characterize all terms of Eq. (101). (i) The closed CRN
has three independent conservation laws:

`E =
( E ET E∗ ED S P D T Se Pe Te De

1 1 1 1 0 0 0 0 0 0 0 0
)

, (186a)

`S =
( E ET E∗ ED S P D T Se Pe Te De

0 0 1 0 1 1 0 0 1 1 0 0
)

, (186b)

`T =
( E ET E∗ ED S P D T Se Pe Te De

0 1 1 1 0 0 1 1 0 0 1 1
)

. (186c)

The first corresponds to the enzyme moiety and it is
unbroken in the open CRN. In contrast, the last two
correspond to the moieties S–P and T–D, which are
broken in the open CRN. (ii) We choose Se and Te as
chemostatted species Yp, since the entries of `S and `T
corresponding to these species identify a nonsingular
matrix—it is an identity matrix. (iii) The moieties popu-
lation vector reads

M
yp
n =

(
Se nE∗ +nS +nP
Te nET +nE∗ +nED +nT +nD

)
, (187)
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from which the semigrand Gibbs potential G follows,
Eqs. (102) and (171). (iv) The driving work rate follows
from the scalar product of the vector above and

−∂tµYp =

(
Se −∂tµSe
Te −∂tµTe

)
, (188)

Eqs. (100) and (172). (v) The chemostatted species Pe
and De form the set Yf and determine the fundamental
forces,

FYf =

(
FPe
FDe

)
=

(
Pe µPe

− µSe
De µDe

− µTe

)
, (189)

Eq. (92). Together with the instantaneous external cur-
rents

IYf =

(
IPe
IDe

)
=

(
Pe J+p − J−p
De J+d − J−d

)
, (190)

they identify the nonconservative contributions, Eq. (98).
The first one, FPeIPe , characterizes the work spent to
convert S into P, while the second, FDe

IDe
, that due to

the consumption of T. The sum of these terms and the
driving work integrated over time contribute to the EP
as in Eq. (101).

The similar EP decomposition written in terms of non-
conservative contributions along stoichiometric cycles
follows when these latter are identified. The kernel of
stoichiometric matrix of the closed CRN is empty, while
that of the open is spanned by

cT1 =
( +1 +2 +3 +4 +5 +s +p +t +d

1 0 0 1 1 0 0 1 −1
)

, (191a)

cT2 =
( +1 +2 +3 +4 +5 +s +p +t +d

1 1 1 1 0 1 −1 1 −1
)

, (191b)

which are regarded as emergent stoichiometric cycles.
Along the first, the enzyme converts one molecule of T
into one of D, while for the second it processes T and S
and produces D and P,

CT1 =
( Se Pe Te De

0 0 1 −1
)

, (192a)

CT2 =
( Se Pe Te De

1 −1 1 −1
)

. (192b)

At this point we can proceed from step (v) and deter-
mine the affinities,

A1 = µTe
− µDe

(193a)

A2 = µTe
+ µSe

− µDe
− µPe

, (193b)

as well as the related instantaneous reaction currents,

J1 = J+p − J−p − J+d − J−d (194a)

J2 = J−p − J+p . (194b)

The nonconservative work follows from the products
A1J1 and A2J2, and the decomposition in Eq. (130)
can be thus expressed. The former characterizes the
dissipation due to the futile consumption of T, since S
is not converted into P. The latter, instead, is the work
spent to convert T and S into D and P.

This system can be used to illustrate free energy trans-
duction when one considers the autonomous regime
where FDe

< 0, FPe
> 0, but 〈Ẇnc

De
〉 > −〈Ẇnc

Pe
〉 > 0.

Namely, the external current of Pe flows towards the
chemostat, 〈IPe

〉 < 0 (Pe produced), despite the fact that
its force is positive, FPe

> 0. This can happen thanks to
the free energy provided by the conversion of Te into
De, 〈Ẇnc

De
〉 > 0. In Fig. 9 we illustrate the behavior of

the average external currents and work contributions
as function of time when the transducer in Fig. 8 is
smoothly switched from a nontransducing regime to
a transduction one. At early times, FDe

= 0, FPe
> 0,

and one observes only a consumption of Pe: 〈IPe
〉 > 0

and 〈IDe
〉 ' 0 (respectively, orange and blue curves in

Fig. 9a). Consequently, the nonconservative work con-
tributions are 〈Ẇnc

Pe
〉 > 0 and 〈Ẇnc

De
〉 = 0 (respectively,

orange and blue curves in Fig. 9b). In contrast, when the
motive fundamental force FDe

is switched on (at large
times), the current 〈IPe

〉 turns negative whereas the mo-
tive current 〈IPe

〉 allignes itself with its corresponding
force. We thus observe 〈Ẇnc

De
〉 > −〈Ẇnc

Pe
〉 > 0. At in-

termediate times, driving work is extracted following
the smooth increase of the motive force (green curve in
Fig. 9b).

IX. CONCLUSIONS AND PERSPECTIVES

In this paper we presented a thorough description
of nonequilibrium thermodynamics of stochastic CRNs.
The fundamental results of traditional irreversible chem-
ical thermodynamics (viz. enthalpy and entropy balance)
are formulated at the level of single trajectories, Eqs. (60)
and (71). By making use of the CRN topology and by
identifying conservation laws we decompose the EP into
two fundamental work contributions and a semigrand
potential difference, Eqs. (101) and (174). The driving
work describes the thermodynamic cost of manipulat-
ing the CRN by changing the chemical potentials of its
chemostats. Instead, the nonconservative work quanti-
fies the cost of sustaining chemical currents through the
CRN. These currents prevent the CRN from reaching
equilibrium, but when the related fundamental forces
vanish (and the chemical potentials of the reservoirs
are kept constant in time), the CRN relaxes to equilib-
rium by minimizing the semigrand Gibbs potential. We
elucidate the relationship between this thermodynamic
potential and the dynamical potentials used in chemical
reaction network theory. Our EP decomposition written
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FIG. 9. (a) average external currents and (b) average work rates vs. time, for the CRN in Fig. 8. The plots are obtained using 104

trajectories generated via the stochastic simulation algorithm. To simplify the illustration, all substrate and products are treated as
chemostatted species. The concentrations of Se, Pe, and De are kept constant [[Se] = 10, [Pe] = 70, and [De] = 10] whereas that of
Te increases according to a logistic function: [Te] = [Te]max/(1+ exp {−κ(t− t0)}) [[Te]max = 200, κ = 20, t0 = 1.5]. This mimics
the process in which the force that sustain the active catalysis, FDe

, is switched on from 0 to a finite value after t0. The change
of chemical potential µTe

is plotted in red in the inset. The choice of the rate constants is as follows: k+1 = 103; k+2 = 103;
k+3 = 103; k+4 = 103; k+5 = 102; whereas the backward rates are obtained by means of Eq. (52) using the following values for
the standard state chemical potentials: µ◦E = 1; µ◦ET = 3; µ◦E∗ = 4; µ◦ED = 2; µ◦Se

= 1; µ◦Pe
= 2; µ◦Te

= 10; µ◦De
= 1. Since reactions are

unimolecular the constant term −kBT1 ln[s] is ignored. Finally, kBT = 1 and the value of the enzyme moiety is LE = 10.

in terms of stoichiometric cycles affinities generalizes
previous decompositions formulated for linear CRNs or
steady-state dynamics.

Two detailed FTs follow from our EP decompositions,
Eqs. (156) and (162). They are valid at any time and en-
tirely expressed in terms of physical quantities. Hence,
they offer the possibility of validating experimentally
our findings, and, from a wider perspective, of validat-
ing the foundations of stochastic thermodynamics be-
yond electronic devices or colloidal particles [67, 68]. Fi-
nally, we derive a nonequilibrium Landauer’s principle
for the work contributions, Eq. (180), which quantifies
the minimum thermodynamic cost involved in trans-
formations between arbitrary nonequilibrium states. In
contrast to early formulations of the latter principle, we
consider not only the cost of external manipulations, but
also that related to sustained currents across the system.

Our EP decomposition identifies the fundamental dis-
sipative contributions in CRNs of arbitrary complexity,
and it can be thus used to analyze free energy con-
version in CRNs beyond single biocatalysts, molecular
motors, or sensory systems, which are usually described
by linear CRNs [69–72]. The nonconservative work con-
tributions capture Hill’s idea of free energy transduc-
tion and extend it to nonlinear CRNs with an arbitrary
number of chemical forces. [As illustrated in § VIII,
transduction occurs whenever one contribution becomes
negative, thus requiring the other ones to be positive
and larger than the former in absolute value by virtue

of the second law of thermodynamics.] In turn, the driv-
ing work contribution allows to generalize transduction
to CRNs with reservoirs externally controlled in time.
Hence, our framework can be used to analyze pumping
in CRNs [73, 74], namely mechanisms whose periodic
external control sustains a chemical current against its
spontaneous direction.

In biochemical information-handling systems [71, 75,
76] and chemical computing [77–79], information is
stored and processed at the molecular level. Early
applications of the nonequilibrium Landauer’s princi-
ple proved successful for characterizing the thermody-
namic cost of information processing in simple mecha-
nisms [80, 81]. Our generalization of the work principle
could be thus used to analyze biochemical information-
handling systems of far greater complexity. This en-
deavor is important in the light of the current under-
standing that biological systems have developed by opti-
mizing the gathering and representation of information
[82, 83].

Noise is known to play an important role in many
biochemical processes. Since a complete stochastic de-
scription remains both analytically and computationally
demanding, developing hybrid stochastic–deterministic
descriptions would be of great importance [26, 84, 85].
Also, many of these processes are regulated by enzymes,
thus extending the present theory beyond mass-action
kinetics, as already done for deterministic CRNs [86], is
also necessary.
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Appendix A: Thermodynamic Potentials

Using equilibrium statistical mechanics, we derive
the equilibrium Gibbs free energy of a CRN in a given
state n. We refer the reader to Refs. [87–89] for similar
approaches.

We regard the reacting species, labelled by σ =
1, . . . , Nz, as solutes of a an ideal dilute solution in a
closed vessel. Since the solvent, s, is much more abun-
dant than the solutes, ns �

∑
σ nσ. As in ideal so-

lutions, interactions among solutes are negligible, and
the partition function of the whole solution Q(T ,n,ns)
can be written as the product of single species partition
functions, q ≡ {qσ(T)} and qs, [87, Ch. 9],

Q(T ,n,ns) =
(ns +

∑
σnσ)!

ns!
∏
σnσ!

qs(ns)
∏

σ

qnσσ . (A1)

q ≡ {qσ(T)} depends on temperature and on solutes–
solvent interactions. The combinatorial term counts the
different distinguishable configurations of molecules,
and can be approximated as

(ns +
∑
σnσ)!

ns!
∏
σnσ!

'∏σ
nnσs

nσ!
≡ n

·n
s
n!

(A2)

using Stirling’s formula and the high relative abundance
of the solvent. Using Eq. (A1), the Gibbs free energy of a
given state n is thus given by

gn = −kBT lnQ(T ,n,ns)

= (µ◦ − 1kBT lnns) ·n+ kBT lnn! + gs ,
(A3)

where

µ◦ := −kBT lnq (A4)

can be identified as standard chemical potentials. Since
the contribution deriving from the solvent, gs :=

−kBT lnqs(ns), is constant, it can be set to zero without
loss of generality. Hence, the Gibbs free energy changes
along internal reactions are

∆ρig = gn+Sρi
− gn

= (µ◦ − 1kBT lnns) · Sρi + kBT ln
{
(n+ Sρi)!/n!

}
.
(A5)

Thermodynamic Limit For V � 1, n � 1, and finite
[z] = n/V , the Gibbs potential (A3) becomes

gn/V ' µ · [z] − kBT [z] · 1 , (A6)

where

µ = µ◦ + kBT ln {[z]/[s]} (A7)

are the chemical potentials of solutes in an ideal dilute
solution, and [s] = ns/V is the concentration of solvent.
We thus recover the Gibbs free energy density of ideal
dilute solutions, see e.g. [47, 90].

When applying the same limit to the Gibbs free energy
differences, Eq. (A5), we recover the Gibbs free energies of
reaction,

∆ρig ' µ · Sρi . (A8)

This result also justifies the form of the second term in
the local detailed balance of exchange reactions, Eq. (53).

Summarizing, gn given in Eq. (A3) characterizes the
free energy of each CRN state. In the thermodynamic
limit, the traditional potentials of ideal dilute solutions
are recovered.

Appendix B: Proofs of Detailed Fluctuation Theorems

To prove the finite time detailed FTs (156) we use a
moment generating functions and change the notation
in favor of a bracket one using operators.

Let Pt(n,Wd, {Wnc
yf
}) be the joint probability of observ-

ing a trajectory ending in the state n along which the
driving work is Wd while the nonconservative contribu-
tions are {Wnc

yf
}. These probabilities, one for each n, are

stacked in the ket |Pt(Wd, {Wnc
yf
})〉. The time evolution

of their moment generating function,

|Λt(ξd, {ξyf })〉 :=
∫

dWd
∏
yf

dWnc
yf

exp
{
−ξdWd −

∑
yf
ξyfW

nc
yf

}
|Pt(Wd, {Wnc

yf
})〉 , (B1)

is ruled by the biased stochastic dynamics

dt |Λt(ξd, {ξyf })〉 = Wt(ξd, {ξyf }) |Λt(ξd, {ξyf })〉 , (B2)
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where the entries of the biased generator are given by

Wmn,t(ξd, { ξyf }) =
∑
ρwρ(n)

{
exp
{
−
∑
yf
ξyfFyf

(
− S

yf
ρ

)}
δm,n+Sρ − δm,n

}
− ξd∂tgmδn,m . (B3)

We denoted the entries of SYf
ρ as {S

yf
ρ }. As a consequence of the local detailed balance (93), the stochastic generator

satisfies the following symmetry

WTt (ξd, {ξyf }) = B−1
t Wt(ξd, {1− ξyf })Bt , (B4)

where the entries of Bt are given by

Bnm,t := exp {−βgm(t)} δn,m . (B5)

Introducing the partition function for the generic equilibrium state identified by the protocol at time τ, Zτ ≡
Z(πτ, {Lλu }) = exp{−βGeqτ }, the initial condition can be written as

|Λ0(ξd, {ξyf })〉 = |peq0〉 = B0/Z0 |1〉 . (B6)

The ket |1〉 refers to the vector in the state space whose entries are all equal to one.
In order to proceed further, it is convenient to first prove a preliminary result. Let us consider the generic biased

dynamics, e.g. Eq. (B2),

dt |Λt(ξ)〉 = Wt(ξ) |Λt(ξ)〉 , (B7)

whose initial condition is |Λ0(ξ)〉 = |p(0)〉. A formal solution of Eq. (B7) is |Λt(ξ)〉 = Ut(ξ) |p(0)〉, where the

time-evolution operator reads Ut(ξ) = T+ exp
{∫t
0 dτWτ(ξ)

}
, T+ being the time-ordering operator. We clearly have

dtUt(ξ) = Wt(ξ)Ut(ξ). Let us now consider the following transformed evolution operator

Ũt(ξ) := X−1
t Ut(ξ)X0 , (B8)

Xt being a generic invertible operator. Its dynamics is ruled by the following biased stochastic dynamics

dtŨt(ξ) = dtX−1
t Ut(ξ)X0 +X−1

t dtUt(ξ)X0 =
{

dtX−1
t Xt +X−1

t Wt(ξ)Xt

}
Ũt(ξ) ≡ W̃t(ξ) Ũt(ξ) , (B9)

which allows us to conclude that the transformed time-evolution operator is given by

Ũ(ξ) = T+ exp
{∫t

0
dτ W̃τ(ξ)

}
. (B10)

From Eqs. (B8), (B9) and (B10) we deduce that

X−1
t Ut(ξ)X0 = T+ exp

{∫t

0
dτ
[
dτX−1

τ Xτ +X−1
τ Wτ(ξ)Xτ

]}
. (B11)

We can now come back to our specific biased stochastic dynamics (B2). The moment generating function of
Pt(Wd, {Wnc

yf
}) is given by

Λt(ξd, {ξyf }) = 〈1|Λt(ξd, {ξyf })〉 = 〈1|Ut(ξd, {ξyf })B0/Z0|1〉 = 〈1|
Bt

Zt
B−1
t Ut(ξd, {ξyf })B0|1〉

Zt

Z0
, (B12)

where Ut(ξd, {ξyf }) is the time-evolution operator of the biased stochastic dynamics (B2). Note that 〈1| Bt/Zt is the
equilibrium initial distribution of the backward process 〈peqt |. Using the relation in Eq. (B11), the last term can be
rewritten as

= 〈peqt |T+ exp
{∫t

0
dτ
[
∂τB

−1
τ Bτ +B−1

τ Wτ(ξd, {ξyf })Bτ

]}
|1〉 exp

{
−β∆Geq

}
, (B13)
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where ∆Geq is defined in Eq. (157). Since ∂τB−1
τ Bτ = diag {∂τgn} the first term in square bracket can be added to

the diagonal entries of the second term, thus giving

= 〈peqt |T+ exp
{∫t

0
dτ
[
B−1
τ Wτ(ξd − 1, {ξyf })Bτ

]}
|1〉 exp

{
−β∆Geq

}
. (B14)

The symmetry (B4) allow us to recast the latter into

= 〈peqt |T+ exp
{∫t

0
dτWTτ

(
ξd − 1, {1− ξyf }

)}
|1〉 exp

{
−β∆Geq

}
. (B15)

The crucial step comes as we transform the integration variable from τ to τ† = t− τ. Accordingly, the time-ordering
operator, T+, becomes an anti-time-ordering one T−, while the diagonal entries of the biased generator become

Wmm,t−τ†(ξd, {ξyf }) =
∑
ρwρ(m, t− τ†) + ξd ∂τ†gm(t− τ†) (B16)

from which we conclude that

Wnm,t−τ†(ξd, {ξyf }) = Wnm,t−τ†(−ξd, {ξyf }) =: W†
nm,τ†(−ξd, {ξyf }) . (B17)

W
†
τ†(ξd, {ξyf }) is the biased generator of the dynamics subject to the time-reversed protocol, π†, i.e. the dynamics of

the backward process. Equation (B15) thus becomes

= 〈peqt |T− exp
{∫t

0
dτ†W†

τ†
T (
1− ξd, {1− ξyf }

)}
|1〉 exp

{
−β∆Geq

}
. (B18)

Upon a global transposition, we can write

= 〈1|T+ exp
{∫t

0
dτ†W†

τ†
(
1− ξd, {1− ξyf }

)}
|peqt〉 exp

{
−β∆Geq

}
, (B19)

where we also used the relationship between transposition and time-ordering

T+

(∏
iA
T
ti

)
=
(
T−
∏
iAti

)T , (B20)

in which At is a generic operator. From the last expression, we readily obtain

= 〈1|U†t
(
1− ξd, {1− ξyf }

)
|peqt〉 exp

{
−β∆Geq

}

= Λ†t
(
1− ξd, {1− ξyf }

)
exp
{
−β∆Geq

}
,

(B21)

where Λ†t
(
ξd, {ξyf }

)
is the moment generating function of P†t(Wd, {Wnc

yf
}). Summarizing, we have the following

symmetry

Λt(ξd, {ξyf }) = Λ
†
t

(
1− ξd, {1− ξyf }

)
exp
{
−β∆Geq

}
, (B22)

whose inverse Laplace transform gives the FT in Eq. (156).

Fluctuation Theorem for Emergent Stoichiometric Cycles Currents

The finite-time detailed FT for nonconservative contributions along fundamental cycles, Eq. (162), follows the
same logic and mathematical steps described above. The moment generating function which now must be taken
into account is

|Λt(ξd, {ξη})〉 :=
∫

dWd
∏
ηdΓη exp

{
−ξdWd −

∑
ηξηΓη

}
|Pt(Wd, {Γη})〉 , (B23)
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which is ruled by the biased generator whose entries are

Wmn,t(ξd, { ξη }) =
∑
ρwρ(n)

{
exp
{
−
∑
ηξηAηζη,ρ

}
δm,n+Sρ − δm,n

}
− ξd∂tgmδn,m . (B24)

The symmetry of the latter generator—on top of which the proof is constructed—is based on the expression of the
local detailed balance given in Eq. (93),

WTt (ξd, {ξη}) = B−1
t Wt(ξd, {1− ξη})Bt , (B25)

where the entries of Bt are given in Eq. (B5). Following the steps from Eq. (B12) to Eq. (B22), with the definitions
and equations in Eqs. (B23)–(B25), proves the FT in Eq. (162).
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5 D E T E R M I N I S T I C D E S C R I P T I O N
In the previous chapter we established a rigorous stochastic thermody-

namic description for chemical reaction networks. This description is im-
portant for those processes involving low particle numbers, but in those
circumstances in which particle numbers are high, e.g. metabolic networks,
stochastic descriptions are either unfeasible or unnecessary. It might be un-
feasible because the CME is both extremely hard to solve analytically and
very demanding to compute numerically. It might be unnecessary because
high particle numbers—n � 1—allow mean field descriptions in terms
of rate equations or reaction–diffusion equations for concentration distri-
butions, which are indeed easier to solve, at least numerically.

In this chapter, we introduce the thermodynamic description for two
fundamental mean field types of dynamics: rate equations and reaction–
diffusion equations, Secs. 5.1 and 5.2. In Sec. 5.3, we introduce a thermody-
namically coarse-graining which enable to simplify descriptions of chemical
reaction networks involving enzymatic reactions.

5.1 spatially homogeneous processes
In the following reprinted article, p. 145, we present a nonequilibrium

thermodynamic description for deterministic chemical reaction networks
described by rate equations. The timeless expression of these equation is
exactly as in Eqs. (87) and (87), where {Nx } and {Ny } need to be regarded
as concentrations homogeneously distributed in space, see Eqs. [(9) and
(10), p. 148]. We mention that with respect to the description in Ch. 3 the
concentrations of the chemostatted species are directly controlled by the
chemostats, i.e. they can be regarded as chemical reservoirs within the sys-
tem. Hence, in contrast to the description in Ch. 4 all reactions are internal,
and those involving chemostatted species also involve a flow of chemostats
which restores their concentrations.

Our approach is inspired by stochastic thermodynamics as we build the
thermodynamic description on top of the dynamics. The connection be-
tween these two lies in the local detailed balance property, which—in a
timeless formulation—relates the ratio of forward and backward extent of
reactions to the overall Gibbs free energy change, Eqs. (93) and [(48) and
(50), p. 153–154],

ln
d̄ξ+ρ(N)

d̄ξ−ρ(N)
= −βr

[∑
xµ

s
x(N

x)Sxρ +
∑
yµy(N

y)Syρ

]
. (124)

Notice that internal Gibbs free energy changes are quantified as differences
of internal species chemical potential. It is a consequence of the local equi-
librium hypothesis, according to which all spatial and thermal degrees of
freedom are at equilibrium except for the overall concentrations. Hence, we
can characterize the energetic state of the network using well defined chem-
ical potentials, whose expression follows from the theory of ideal dilute
solutions, Eq. [(45), p. 153].
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In contrast to previous thermodynamic description of chemical processes,
ours is set up on a mathematically rigorous network description. We can
thus formalize the energy and entropy balances (Eqs. (90) and (93)) for arbi-
trary chemical networks, Eqs. [(68) and (65), p. 155], and, using conservation
laws, we can characterize the thermodynamics of open networks relaxing
to equilibrium in absence of driving, i.e. detailed-balanced networks, Sec. [V,
pp. 158–160]. We also bridge the gap between chemical thermodynamics
and (i) chemical reaction network theory and (ii) information processing.
Concerning the former, we characterize the thermodynamic properties of
complex-balanced networks [1–3], which are a class of networks whose spe-
cific topological properties completely determine their dynamic behaviour,
Sec. [IIE and IV, pp. 151–153 and 157–158]. Regarding the latter, we for first
formulate the nonequilibrium Landauer principle (Eqs. (73) and (75)) for de-
terministic descriptions, Eqs. [(82) and (101), pp. 156 and 160]. Remarkably,
the generalized relative entropy D, Eq. (72), becomes the Lyapunov function
of detailed- and complex-balanced networks introduced by Shear [3, 4],

D ≡ D
(
N‖Neq

)
=
∑

σ

[
Nσ ln

Nσ

Nσeq
−Nσ +Nσeq

]
> 0 , (125)

see Eq. [(75), p. 156]. It has the same properties of the relative entropy
for probability distributions: it is always positive and vanishes only when
N = Neq. It thus quantifies the distance from equilibrium, as formalized in
Eq. (72).

In the second reprinted article, p. 171, the technique of analysing con-
servation laws is applied to monomer exchange dynamics [5]. Our aim is
to model the action of a class of enzymes, called disproportionating enzymes,
active in polysaccharides metabolism [6–8]. In these networks the species
are polymers, which can be of any size, and hence the chemical reaction
network is infinite dimensional. This gives rise to dynamical behaviours
usually absent in ordinary chemical reaction networks, like for instance con-
tinuous growth. Conservation laws allow us to clearly identify when these
behaviours manifest.

5.2 spatially inhomogeneous processes
The cases described so far assumed that the concentrations of reacting

species were homogeneously distributed in the reaction vessel. However,
this is not always a good approximation, and when it is not, diffusion
must be taken into account: the rate equations must be replaced by reaction–
diffusion equations. These equations may give rise to interesting phenomenolo-
gies, like for instance Turing patterns and travelling waves, which are sta-
tionary and propagating inhomogeneous spatial distribution of concentra-
tions, respectively [9, Sec. 19.5]. These phenomena appear in several biolog-
ical processes like organs and tissues formation [10], and cellular rhythms
regulations via calcium waves [11].

In the article reprinted at p. 185 we provide a complete nonequilibrium
thermodynamic description of reaction–diffusion systems. The connection
between the phenomenological and dynamical description is understood
once the reaction–diffusion equation, Eq. [(1), p. 185], are formulated in a
timeless fashion

dNσ(r) = −∇ · d̄Ξσ(r) +∑ρSσρ d̄ξρ(r) + d̄rN
σ(r) . (126)
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In this equation, Nσ(r) is the local concentration and the first term on the
rhs quantifies the rate at which diffusion changes it. The other two terms
on the rhs are the reaction and exchange terms already mentioned, where
the latter is different from zero solely for the chemostatted species and in
those regions of space where the reservoirs are located. The balances of
abundances, Eqs. (87) and (89), follows when integrating Eq. (126) over the
volume of the reaction vessel V . Indeed, {Nσ }, { d̄ξρ }, and { d̄rNσ } are the
overall abundances, extents of reaction, and exchange terms, respectively,

Nσ =

∫

V
drNσ(r) , d̄ξρ =

∫

V
dr d̄ξρ(r) , d̄rN

σ =

∫

V
dr d̄rN

σ(r) . (127)

The first therm on the rhs of Eq. (126) vanishes when integrated over all
space. We can thus identify conservation laws Eq. [(8), p. 187], and ex-
hibit the entropy production decomposition in terms of conservative, driv-
ing, and nonconservative contributions, Eqs. (102) and [(12), p. 187], where
the details of the derivation are reported in the supplementary material at
p. 191. In this context, the conservative term, −dG, can be interpreted as
the cost of structuring spatial distributions of molecules, the driving work,
∂H, that of manipulating them, and finally the nonconservative chemical
works, {Kyf d̄rN

yf }, that of sustaining them. The minimal costs of struc-
turing, manipulating, and sustaining these distributions is quantified by a
nonequilibrium Landauer principle, Eqs. (75) and [(14), p. 187]. In this for-
mulation, the generalized relative entropy becomes

D ≡ D
(
N‖Neq

)
=

∫

V
dr
∑

σ

[
Nσ(r) ln

Nσ(r)

Nσeq
−Nσ(r) +Nσeq

]
> 0 , (128)

which measures how dissimilar a concentration distribution is from an ho-
mogeneous equilibrium one, Eq. [(4), p. 186].

5.3 coarse–grained processes
Elementary reactions is one the assumption underpinning both the stochas-

tic and the deterministic thermodynamic descriptions introduced thus far.
However, it is very well known that the majority of reactions in biochemical
systems are catalysed by enzymes. An accurate description of enzyme catal-
ysed reactions in terms of elementary reactions would require a detailed
description of each individual step. Unfortunately, this is quite unfeasible
for two main reasons. First, all intermediate reaction steps are difficult to
identify for each enzyme. Second, biochemical networks, e.g. metabolic net-
works, typically involve a vast number of different enzymes which overall
catalyse several hundreds of reactions. Including each intermediate elemen-
tary step for each enzymes would enormously raise the complexity of the de-
scription. We thus need a thermodynamically consistent way of accounting
for enzymatic reactions, i.e. a thermodynamically consistent coarse-graining
scheme. In the Article reprinted at p. 201 we provide such a procedure.

The idea of this procedure is as follows (Sec. [2, p. 202], and Fig. [1,
p. 202]). First, the enzymatic scheme is isolated and treated as a chemi-
cal reaction network: all enzyme complexes are regarded as internal species
while all substrates and products as chemostatted. At this point, we observe
that in the same way reactions create pathways between reservoirs in generic
networks, Sec. (3.3), enzymes create pathways transforming substrates into
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products. Therefore, the stoichiometry of these transformations must be
given by Eq. (105)—this emphasizes once more the importance of conser-
vation laws. These overall transformations determine the coarse-grained
reactions which replace the enzymatic steps. Their currents, or extent of
reaction, can be obtained by means of the graph-theoretical method first in-
troduced by Kirchhoff [12, 13], whereas their affinity is given by the funda-
mental forces, Eq. (101). As an important result, we also show that the local
detailed balance as written in Eq. (124), is in general invalid at the coarse-
grained level: it is valid solely for those enzymatic schemes characterized by
one fundamental force, i.e. one pathway between substrates and products.
Importantly, this clarifies previous misconceptions about its validity, cf. [14].
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We build a rigorous nonequilibrium thermodynamic description for open chemical reaction networks of
elementary reactions. Their dynamics is described by deterministic rate equations with mass action
kinetics. Our most general framework considers open networks driven by time-dependent chemostats.
The energy and entropy balances are established and a nonequilibrium Gibbs free energy is introduced.
The difference between this latter and its equilibrium form represents the minimal work done by the
chemostats to bring the network to its nonequilibrium state. It is minimized in nondriven detailed-balanced
networks (i.e., networks that relax to equilibrium states) and has an interesting information-theoretic
interpretation. We further show that the entropy production of complex-balanced networks (i.e., networks
that relax to special kinds of nonequilibrium steady states) splits into two non-negative contributions: one
characterizing the dissipation of the nonequilibrium steady state and the other the transients due to
relaxation and driving. Our theory lays the path to study time-dependent energy and information
transduction in biochemical networks.
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I. INTRODUCTION

Thermodynamics of chemical reactions has a long
history. The second half of the 19th century witnessed
the dawn of the modern studies on thermodynamics of
chemical mixtures. It is indeed at that time that Gibbs
introduced the concept of chemical potential and used it to
define the thermodynamic potentials of noninteracting
mixtures [1]. Several decades later, this enabled de
Donder to approach the study of chemical reacting mixtures
from a thermodynamic standpoint. He proposed the
concept of affinity to characterize the chemical force
irreversibly driving chemical reactions and related it to
the thermodynamic properties of mixtures established by
Gibbs [2]. Prigogine, who perpetuated the Brussels School
founded by de Donder, introduced the assumption of local
equilibrium to describe irreversible processes in terms of
equilibrium quantities [3,4]. In doing so, he pioneered the
connections between thermodynamics and kinetics of
chemical reacting mixtures [5].
During the second half of the 20th century, part of the

attention moved to systems with small particle numbers
which are ill described by “deterministic” rate equations.
The Brussels School, as well as other groups, produced
various studies on the nonequilibrium thermodynamics of

chemical systems [6–11] using a stochastic description
based on the (chemical) master equation [12,13]. These
studies played an important role during the first decade of
the 21st century for the development of stochastic thermo-
dynamics, a theory that systematically establishes a non-
equilibrium thermodynamic description for systems
obeying stochastic dynamics [14–17], including chemical
reaction networks (CRNs) [18–22].
Another significant part of the attention moved to the

thermodynamic description of biochemical reactions in
terms of deterministic rate equations [23,24]. This is not
so surprising since living systems are the paramount
example of nonequilibrium processes and they are powered
by chemical reactions. The fact that metabolic processes
involve thousands of coupled reactions also emphasized
the importance of a network description [25–27]. While
complex dynamical behaviors such as oscillations were
analyzed in small CRNs [28,29], most studies on large
biochemical networks focused on the steady-state dynamics.
Very few studies considered the thermodynamic properties
of CRNs [30–33]. One of the first nonequilibrium thermo-
dynamic descriptions of open biochemical networks was
proposed in Ref. [34]. However, it did not take advantage of
chemical reaction network theory, which connects the net-
work topology to its dynamical behavior and which was
extensively studied by mathematicians during the 1970s
[35–37] (this theory was also later extended to stochastic
dynamics [38–41]). As far as we know, the first and single
study that related the nonequilibrium thermodynamics of
CRNs to their topology is Ref. [22], still restricting itself to
steady states.
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In this paper, we consider the most general setting for the
study of CRNs, namely, open networks driven by chemo-
statted concentrations that may change over time. To the
best of our knowledge, this was never considered before. In
this way, steady-state properties as well as transient ones
are captured. Hence, in the same way that stochastic
thermodynamics is built on top of stochastic dynamics,
we systematically build a nonequilibrium thermodynamic
description of CRNs on top of deterministic chemical rate
equations. In doing so, we establish the energy and entropy
balance and introduce the nonequilibrium entropy of the
CRN as well as its nonequilibrium Gibbs free energy. We
show the latter to bear an information-theoretical interpre-
tation similar to that of stochastic thermodynamics [42–45]
and to be related to the dynamical potentials derived by
mathematicians. We also show the relation between the
minimal chemical work necessary to manipulate the CRNs
far from equilibrium and the nonequilibrium Gibbs free
energy. Our theory embeds both the Prigoginian approach
to thermodynamics of irreversible processes [5] and the
thermodynamics of biochemical reactions [23]. Making full
use of the mathematical chemical reaction network theory,
we further analyze the thermodynamic behavior of two
important classes of CRNs: detailed-balanced networks
and complex-balanced networks. In the absence of time-
dependent driving, the former converges to thermodynamic
equilibrium by minimizing their nonequilibrium Gibbs free
energy. In contrast, the latter converges to a specific class of
nonequilibrium steady states and always allows for an
adiabatic–nonadiabatic separation of their entropy produc-
tion, which is analogous to that found in stochastic
thermodynamics [46–50]. Recently, a result similar to
the latter was independently found in Ref. [51].

A. Outline and notation

The paper is organized as follows. After introducing
the necessary concepts in chemical kinetics and chemical
reaction network theory, Sec. II, the nonequilibrium
thermodynamic description is established in Sec. III.
As in stochastic thermodynamics, we build it on top
of the dynamics and formulate the entropy and energy
balance, Secs. III D and III E. Chemical work and non-
equilibrium Gibbs free energy are also defined, and the
information-theoretic content of the latter is discussed.
The special properties of detailed-balanced and of com-
plex-balanced networks are considered in Secs. V and IV,
respectively. Conclusions and perspectives are drawn in
Sec. VI, while some technical derivations are detailed in
the appendixes.
We now proceed by fixing the notation. We consider a

system composed of reacting chemical species Xσ , each
of which is identified by an index σ ∈ S, where S is the
set of all indices or species. The species populations
change due to elementary reactions, i.e., all reacting
species and reactions must be resolved (none can be

hidden), and all reactions must be reversible, i.e., each
forward reaction þρ has a corresponding backward
reaction −ρ. Each pair of forward-backward reactions
is a reaction pathway denoted by ρ ∈ R. The orientation
of the set of reaction pathways R is arbitrary. Hence, a
generic CRN is represented as

X
σ

∇σþρXσ ⇌
kþρ

k−ρ

X
σ

∇σ
−ρXσ: ð1Þ

The constants kþρ (k−ρ) are the rate constants of the
forward (backward) reactions. The stoichiometric coef-
ficients −∇σþρ and ∇σ

−ρ identify the number of molecules
of Xσ involved in each forward reaction þρ (the
stoichiometric coefficients of the backward reactions have
opposite signs). Once stacked into two non-negative
matrices, ∇þ ¼ f∇σþρg and ∇− ¼ f∇σ

−ρg, they define
the integer-valued stoichiometric matrix

∇≡∇− −∇þ: ð2Þ

The reason for the choice of the symbol “∇” will become
clear later.
Example 1.—The stoichiometric matrix of the CRN

depicted in Fig. 1 is

∇ ¼

0
BBBBBB@

−1 0

2 0

1 −1
0 −1
0 1

1
CCCCCCA
: ð3Þ

□

FIG. 1. Representation of a closed CRN. The chemical species
are fXa;…; Xeg. The two reaction pathways are labeled by 1 and
2. The nonzero stoichiometric coefficients are −∇a

þ1 ¼ −1,
∇b

−1 ¼ 2, and ∇c
−1 ¼ 1 for the first forward reaction and

−∇c
þ2 ¼ −1, −∇d

þ2 ¼ −1, and ∇e
−2 ¼ 1 for the second one.

Since the network is closed, no chemical species is exchanged
with the environment.
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Physical quantities associated with species and reactions
are represented in upper-lower indices vectorial notation.
Upper and lower indexed quantities have the same physical
values, e.g., Zi ¼ Zi, ∀i. We use the Einstein summation
notation: repeated upper-lower indices implies the summa-
tion over all the allowed values for those indices—e.g.,
σ ∈ S for species and ρ ∈ R for reactions. Given two
arbitrary vectorial quantities a ¼ faig and b ¼ fbig, the
following notation is used:

aibi ≡Y
i

aibi :

Finally, given the matrix C, whose elements are fCi
jg, the

elements of the transposed matrix CT are fCj
ig.

The time derivative of a physical quantity A is denoted
by dtA, its steady state value by an overbar A, and its
equilibrium value by Aeq or Aeq. We reserve the overdot _A
to denote the rate of change of quantities that are not exact
time derivatives.

II. DYNAMICS OF CRNS

In this section, we formulate the mathematical descrip-
tion of CRNs [52,53] in a suitable way for a thermo-
dynamic analysis. We introduce closed and open CRNs
and show how to drive these latter in a time-dependent
way. We then define conservation laws and cycles and
review the dynamical properties of two important classes
of CRNs: detailed-balanced networks and complex-
balanced networks.
We consider a chemical system in which the reacting

species fXσg are part of a homogeneous and ideal dilute
solution: the reactions proceed slowly compared to
diffusion and the solvent is much more abundant than
the reacting species. Temperature T and pressure p are
kept constant. Since the volume of the solution V is
overwhelmingly dominated by the solvent, it is assumed
constant. The species abundances are large enough so
that the molecule’s discreteness can be neglected. Thus,
at any time t, the system state is well described by the
molar concentration distribution fZσ ≡ Nσ=Vg, where Nσ

is the molarity of the species Xσ .
The reaction kinetics is controlled by the reaction

rate functions J�ρðfZσgÞ, which measure the rate of
occurrence of reactions and satisfy the mass action
kinetics [52,54,55]:

J�ρ ≡ J�ρðfZσgÞ ¼ k�ρZσ∇�ρ
σ : ð4Þ

The net concentration current along a reaction pathway ρ
is thus given by

Jρ ≡ Jþρ − J−ρ ¼ kþρZσ∇þρ
σ − k−ρZσ∇−ρ

σ : ð5Þ

Example 2.—For the CRN in Fig. 1 the currents are

J1 ¼ kþ1Za − k−1ðZbÞ2Zc;

J2 ¼ kþ2ZcZd − k−2Ze: ð6Þ

□

A. Closed CRNs

A closed CRN does not exchange any chemical species
with the environment. Hence, the species concentrations
vary solely due to chemical reactions and satisfy the rate
equations

dtZσ ¼ ∇σ
ρJρ; ∀σ ∈ S: ð7Þ

Since rate equations are nonlinear, complex dynamical
behaviors may emerge [29]. The fact that the rate equations
[Eq. (7)] can be thought of as a continuity equation for the
concentration, where the stoichiometric matrix ∇ [Eq. (2)]
acts as a discrete differential operator, explains the choice
of the symbol “∇” for the stoichiometric matrix [56].

B. Driven CRNs

In open CRNs, matter is exchanged with the environ-
ment via reservoirs that control the concentrations of some
specific species, Fig. 2. These externally controlled species
are said to be chemostatted, while the reservoirs controlling
them are called chemostats. The chemostatting procedure
may mimic various types of controls by the environment.
For instance, a direct control could be implemented via
external reactions (not belonging to the CRN) or via
abundant species whose concentrations are negligibly
affected by the CRN reactions within relevant time scales.
An indirect control may be achieved via semipermeable
membranes or by controlled injection of chemicals in
continuous stirred-tank reactors.

FIG. 2. Representation of an open CRN. With respect to the
CRN in Fig. 1, the species Xa and Xe are chemostatted, hence,
represented as Ya and Ye. The green boxes on the sides represent
the reservoirs of chemostatted species.
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Among the chemical species, the chemostatted ones are
denoted by the indices σy ∈ Sy, and the internal ones by
σx ∈ Sx (S ≡ Sx ∪ Sy). Also, the part of the stoichiometric
matrix related to the internal (chemostatted) species is
denoted by ∇X ¼ f∇σx

ρ g (∇Y ¼ f∇σy
ρ g).

Example 3.—When chemostatting the CRN in Fig. 1 as
in Fig. 2 the stoichiometric matrix Eq. (3) splits into

∇X ¼

0
B@

2 0

1 −1
0 −1

1
CA; ∇Y ¼

�−1 0

0 1

�
: ð8Þ

□

In nondriven open CRNs, the chemostatted species
have constant concentrations, i.e., fdtZσy ¼ 0g. In driven
open CRNs, the chemostatted concentrations change over
time according to some time-dependent protocol πðtÞ:
fZσy ≡ Zσy(πðtÞ)g. The changes of the internal species
are solely due to reactions and satisfy the rate equations

dtZσx ¼ ∇σx
ρ Jρ; ∀σx ∈ Sx: ð9Þ

Instead, the changes of chemostatted species fdtZσyg are
not only given by the species formation rates f∇σy

ρ Jρg but
must in addition contain the external currents fIσyg,
which quantify the rate at which chemostatted species
enter into the CRN (negative if chemostatted species
leave the CRN),

dtZσy ¼ ∇σy
ρ Jρ þ Iσy ; ∀σy ∈ Sy: ð10Þ

This latter equation is not a differential equation since the
chemostatted concentrations fZσyg are not dynamical
variables. It shows that the external control of the
chemostatted concentration is not necessarily direct, via
the chemostatted concentrations, but can also be indi-
rectly controlled via the external currents. We note that
Eq. (10) is the dynamical expression of the decomposi-
tion of changes of species populations in internal-external
introduced by de Donder (see Secs. 4.1 and 15.2
of Ref. [57]).
A steady-state distribution fZσxg, if it exists, must satisfy

∇σx
ρ Jρ ¼ 0; ∀σx ∈ Sx; ð11aÞ

∇σy
ρ Jρ þ Iσy ¼ 0; ∀σy ∈ Sy; ð11bÞ

for given chemostatted concentrations fZσyg.

C. Conservation laws

In a closed CRN, a conservation law l ¼ flσg is a left
null eigenvector of the stoichiometric matrix ∇ [23,25]:

lσ∇σ
ρ ¼ 0; ∀ρ ∈ R: ð12Þ

Conservation laws identify conserved quantities L≡ lσZσ,
called components [23,25], which satisfy

dtL ¼ lσdtZσ ¼ 0: ð13Þ

We denote a set of independent conservation laws of the
closed network by flλg and the corresponding components
by fLλ ≡ lλ

σZσg. The choice of this set is not unique, and
different choices have different physical meanings. This set
is never empty since the total mass is always conserved.
Physically, conservation laws are often related to parts of
molecules, called moieties [58], which are exchanged
between different species and/or subject to isomerization
(see Example 4).
In an open CRN, since only fZσxg are dynamical

variables, the conservation laws become the left null
eigenvectors of the stoichiometric matrix of the internal
species ∇X. Stated differently, when starting from the
closed CRN, the chemostatting procedure may break a
subset of the conservation laws of the closed network flλg
[56]. For example, when the first chemostat is introduced
the total mass conservation law is always broken. Within
the set flλg, we label the broken ones by λb and the
unbroken ones by λu. The broken conservation laws are
characterized by

lλb
σx∇σx

ρ|fflfflffl{zfflfflffl}
≠0

þ lλb
σy∇σy

ρ ¼ 0; ∀ρ ∈ R; ð14Þ

where the first term is nonvanishing for at least one ρ ∈ R.
The broken components fLλb ≡ lλb

σ Zσg are no longer
constant over time. On the other hand, the unbroken
conservation laws are characterized by

lλu
σx∇σx

ρ|fflfflffl{zfflfflffl}
¼0

þ lλu
σy∇σy

ρ ¼ 0; ∀ρ ∈ R; ð15Þ

where the first term vanishes for all ρ ∈ R. Therefore, the
unbroken components fLλu ≡ lλu

σ Zσg remain constant over
time. Without loss of generality, we choose the set flλg
such that the entries related to the chemostatted species
vanish, lλu

σy ¼ 0, ∀ λu, σy.
Example 4.—For the CRN in Fig. 1, an independent set

of conservation laws is

l1 ¼ ð 2 1 0 0 0 Þ;
l2 ¼ ð 0 0 0 1 1 Þ;
l3 ¼ ð 0 1

2
−1 1 0 Þ: ð16Þ

When chemostatting as in Fig. 2, the first two conservation
laws break while the last one remains unbroken. We also
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note that this set is chosen so that the unbroken conserva-
tion law satisfies l3

a ¼ l3
e ¼ 0. When considering the

specific implementation in Fig. 3 of the CRN in Fig. 2,
we see that the first two conservation laws in Eq. (16)
represent the conservation of the concentrations of the
moiety H and C, respectively. Instead, the third conserva-
tion law in Eq. (16) does not have a straightforward
interpretation. It is related to the fact that when the species
H or C are produced, also O must be produced and vice
versa. □

D. Detailed-balanced networks

A steady state [Eq. (11)] is said to be an equilibrium state
fZσ

eqg if it satisfies the detailed-balance property [[57],
§ 9.4], i.e., all concentration currents Eq. (5) vanish:

Jρeq ≡ JρðfZσ
eqgÞ ¼ 0; ∀ρ ∈ R: ð17Þ

For open networks, this means that the external currents,
Eq. (11b), must also vanish, fIσyeq ¼ 0g. By virtue of mass
action kinetics, Eq. (4), the detailed-balance property
Eq. (17) can be rewritten as

kþρ

k−ρ
¼ Zσ

eq
∇ρ

σ ; ∀ρ ∈ R: ð18Þ

A CRN is said to be detailed balanced if, for given
kinetics fk�ρg and chemostatting fZσyg, its dynamics
exhibits an equilibrium steady state, Eq. (17). For each
set of unbroken components fLλug—which are given by
the initial condition and constrain the space where the
dynamics dwells—the equilibrium distribution is globally
stable [59]. Equivalently, detailed-balanced networks
always relax to an equilibrium state, which for a given
kinetics and chemostatting is unique and depends on the
unbroken components only; see also Sec. V.
Closed CRNs must be detailed balanced. This statement

can be seen as the zeroth law for CRNs. Consequently,
rather than considering Eq. (18) as a property of the
equilibrium distribution, we impose it as a property that

the rate constants must satisfy and call it a local detailed-
balance property. It is a universal property of elementary
reactions that holds regardless of the network state. Indeed,
while the equilibrium distribution depends on the compo-
nents, the rhs of Eq. (18) does not. This point will become
explicit after introducing the thermodynamic structure,
Eq. (88) in Sec. V. The local detailed-balance property
will be rewritten in a thermodynamic form in Sec. III B,
Eq. (50).
In open nondriven CRNs, the chemostatting procedure

may prevent the system from reaching an equilibrium state.
To express this scenario algebraically, we now introduce
the concepts of emergent cycle and cycle affinity.
A cycle ~c ¼ f~cρg is a right null eigenvector of the

stoichiometric matrix [56], namely,

∇σ
ρ ~cρ ¼ 0; ∀σ ∈ S: ð19Þ

Since ∇ is integer valued, ~c can always be rescaled to
only contain integer coefficients. In this representation,
its entries denote the number of times each reaction
occurs (negative signs identify reactions occurring in
backward direction) along a transformation that overall
leaves the concentration distributions fZσg unchanged; see
Example 5. We denote by f~cαg a set of linearly independent
cycles. An emergent cycle c ¼ fcρg is defined algebrai-
cally as [56]

∇σx
ρ cρ ¼ 0; ∀σx ∈ Sx;

∇σy
ρ cρ ≠ 0; for at least one σy ∈ Sy: ð20Þ

In its integer-valued representation, the entries of c denote
the number of times each reaction occurs along a trans-
formation that overall leaves the concentrations of the
internal species fZσxg unchanged while changing the
concentrations of the chemostatted species by an amount
∇σy

ρ cρ. These latter are, however, immediately restored to
their prior values due to the injection of −∇σy

ρ cρ molecules
of Xσy performed by the chemostats. Emergent cycles are,
thus, pathways transferring chemicals across chemostats
while leaving the internal state of the CRN unchanged. We
denote by fcεg a set of linearly independent emergent
cycles.
When chemostatting an initially closed CRN, for each

species that is chemostatted, either a conservation law
breaks—as mentioned in Sec. II C—or an independent
emergent cycle arises [56]. This follows from the rank
nullity theorem for the stoichiometric matrices ∇ and ∇X,
which ensures that the number of chemostatted species jSyj
equals the number of broken conservation laws jλbj plus
the number of independent emergent cycles jεj: jSyj ¼
jλbj þ jεj. Importantly, the rise of emergent cycles is a
topological feature: it depends on the species that are
chemostatted, but not on the chemostatted concentrations.

FIG. 3. Specific implementation of the CRN in Fig. 2.
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We also note that emergent cycles are modeled as “flux
modes” in the context of metabolic networks [60–62].
Example 5.—To illustrate the concepts of cycles and

emergent cycles, we use the following CRN [56]:

ð21Þ

whose Y1 and Y2 species are chemostatted. The stoichio-
metric matrix decomposes as

∇X ¼

0
B@

−1 1 −1 1

1 −1 0 0

0 0 1 −1

1
CA;

∇Y ¼
�−1 0 0 1

0 1 −1 0

�
: ð22Þ

The set of linearly independent cycles, Eq. (19), consists of
only one cycle, which can be written as

~c ¼ ð 1 1 1 1 ÞT: ð23Þ

As the CRN is chemostatted, one linearly independent
emergent cycle Eq. (20) arises:

c ¼ ð 1 1 −1 −1 ÞT: ð24Þ

We now see that if each reaction occurs a number of times
given by the entry of the cycle Eq. (23), the CRN goes back
to the initial state, no matter which one it is. On the other
hand, when the emergent cycle Eq. (24) is performed, the
state of the internal species does not change, while two
molecules of Y1 are annihilated and two of Y2 are created.
However, since the chemostats restore their initial values,
the overall result of c is to transfer two Y1, transformed in
Y2, from the first to the second chemostat.
The closed version of this CRN has two independent

conservation laws,

l1 ¼ ð 0 1 1 1 1 Þ;
l2 ¼ ð 1 1 1 0 0 Þ; ð25Þ

the first of which, l1, is broken following the chemostatting
of any of the two species Y1 or Y2. The other chemostatted
species, instead, gives rise to the emergent cycle
Eq. (24), so that the relationship jSyj ¼ jλbj þ jεj is
satisfied. □

Any cycle ~cα and emergent cycle cε bears a cycle
affinity [56],

~Aα ¼ ~cραRT ln
Jþρ

J−ρ
; ð26Þ

Aε ¼ cρεRT ln
Jþρ

J−ρ
: ð27Þ

From the definition of cycle, Eq. (19), and current, Eq. (5),
and the local detailed balance, Eq. (18), it follows that the
cycle affinities along the cycles Eq. (19) vanish, f ~Aα ¼ 0g,
and that the cycle affinities along the emergent cycles
depend on only the chemostatted concentrations

Aε ¼ cρεRT ln
kþρ

k−ρ
Z
−∇σy

ρ
σy : ð28Þ

Since emergent cycles are pathways connecting different
chemostats, the emergent affinities quantify the chemical
forces acting along the cycles. This point will become
clearer later, when the thermodynamic expressions of the
emergent cycle affinities fAεg is given, Eq. (49).
A CRN is detailed balanced if and only if all the

emergent cycle affinities fAεg vanish. This condition is
equivalent to the Wegscheider condition [59]. This happens
when the chemostatted concentrations fit an equilibrium
distribution. As a special case, unconditionally detailed-
balanced networks are open CRNs with no emergent cycle.
Therefore, they are detailed balanced for any choice of the
chemostatted concentrations. Consequently, even when a
time-dependent driving acts on such a CRN and prevents it
from reaching an equilibrium state, a well-defined equi-
librium state exists at any time: the equilibrium state to
which the CRN would relax if the time-dependent driving
were stopped.
Example 6.—Any CRN with one chemostatted species

only (jSyj ¼ 1) is unconditionally detailed balanced.
Indeed, as mentioned in Sec. II C, the first chemostatted
species always breaks the mass conservation law jλbj ¼ 1,
and, thus, no emergent cycle arises, jεj ¼ jSyj − jλbj ¼ 0.
The open CRN in Fig. 2 is an example of an

unconditionally detailed-balanced network with two che-
mostatted species, since the chemostatting breaks two
conservation laws; see Example 4. Indeed, a nonequili-
brium steady state would require a continuous injection
of Ya and ejection of Ye (or vice versa). But this would
necessarily result in a continuous production of Xb and
consumption of Xd, which is in contradiction with the
steady-state assumption. □

Finally, a tacit assumption in the above discussion is that
the network involves a finite number of species and
reactions, i.e., the CRN is finite dimensional. Infinite-
dimensional CRNs can exhibit long-time behaviors

RICCARDO RAO and MASSIMILIANO ESPOSITO PHYS. REV. X 6, 041064 (2016)

041064-6

150



different from equilibrium even in the absence of emergent
cycles [63].

E. Complex-balanced networks

To discuss complex-balanced networks and complex-
balanced distributions, we first introduce the notion of
complex in open CRNs.
A complex is a group of species that combines in a

reaction as products or as reactants. Each side of Eq. (1)
defines a complex, but different reactions might involve the
same complex. We label complexes by γ ∈ C, where C is the
set of complexes.
Example 7.—Let us consider the following CRN [64]

Xa⇌
kþ1

k−1
Xb;

Xa þ Xb ⇌
kþ2

k−2
2Xb⇌

kþ3

k−3
Xc: ð29Þ

The set of complexes is C ¼ fXa; Xb; Xa þ Xb; 2Xb; Xcg,
and the complex 2Xb is involved in both the second and
third reaction. □

The notion of complex allows us to decompose the
stoichiometric matrix ∇ as

∇σ
ρ ¼ Γσ

γ∂γ
ρ: ð30Þ

We call Γ ¼ fΓσ
γg the composition matrix [35,37]. Its

entries Γσ
γ are the stoichiometric number of species Xσ

in the complex γ. The composition matrix encodes the
structure of each complex in terms of species; see Example
8. The matrix ∂ ¼ f∂γ

ρg denotes the incidence matrix of the
CRN, whose entries are given by

∂γ
ρ ¼

8<
:

1 if γ is the product complex of þ ρ

−1 if γ is the reactant complex of þ ρ

0 otherwise:

ð31Þ

The incidence matrix encodes the structure of the network
at the level of complexes, i.e., how complexes are con-
nected by reactions. If we think of complexes as network
nodes, the incidence matrix associates an edge to each
reaction pathway and the resulting topological structure is a
reaction graph, see, e.g., Fig. 1 and Eqs. (21) and (29). The
stoichiometric matrix instead encodes the structure of
the network at the level of species. If we think of species
as the network nodes, the stoichiometric matrix does not
define a graph, since reaction connects more than a pair of
species, in general. The structure originating is rather a
hypergraph [56,65] or, equivalently, a Petri net [66,67].
Example 8.—The composition matrix and the incidence

matrix of the CRN in Eq. (29) are

Γ ¼

0
BB@

1 0 1 0 0

0 1 1 2 0

0 0 0 0 1

1
CA; ∂¼

0
BBBBBB@

−1 0 0

1 0 0

0 −1 0

0 1 −1
0 0 1

1
CCCCCCA
;

ð32Þ

where the complexes are ordered as in Example 7.
The corresponding reaction hypergraph is

ð33Þ

where only the forward reactions are depicted. □

In an open CRN, we regroup all complexes γ ∈ C of the
closed CRN that have the same stoichiometry for the internal
species (i.e., all complexes with the same internal part of the
composition matrix ΓX

γ regardless of the chemostatted part
ΓY
γ ) in sets denoted by Cj, for j ¼ 1; 2;…. Complexes of the

closed network made solely of chemostatted species in the
open CRN are all regrouped in the same complex C0. This
allows one to decompose the internal species stoichiometric
matrix as

∇σx
ρ ¼ Γσx

j ∂j
ρ: ð34Þ

where fΓσx
j ≡ Γσx

γ ; for γ ∈ Cjg are the entries of the com-
position matrix corresponding to the internal species, and
f∂j

ρ ≡P
γ∈Cj∂γ

ρg are the entries of the incidence matrix
describing the network of regrouped complexes. This
regrouping corresponds to the—equivalent—CRN made
of only internal species with the effective rate constant

fk�ρZσy∇�ρ
σy g ruling each reaction.

Example 9.—Let us consider the CRN Eq. (29) where the
species Xa and Xc are chemostatted. The five complexes of
the closed network, see Example 7, are regrouped as
C0 ¼ fXa; Xcg, C1 ¼ fXb; Xb þ Xag, and C2 ¼ f2Xbg. In
terms of these groups of complexes, the composition matrix
and incidence matrix are

ΓX ¼ ð 0 1 2 Þ; ∂C ¼

0
B@

−1 0 1

1 −1 0

0 1 −1

1
CA; ð35Þ

which corresponds to the effective representation
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ð36Þ

□

A steady-state distribution fZσxg (11) is said to be
complex balanced if the net current flowing in each group
of complexes Cj vanishes, i.e., if the currents fJρg satisfy

∂j
ρJρ ≡

X
γ∈Cj

∂γ
ρ Jρ ¼ 0; ∀j: ð37Þ

Complex-balanced steady states are, therefore, a subclass
of steady states Eq. (11a) that include equilibrium ones,
Eq. (17), as a special case:

Γσx
j ∂j

ρ Jρ|{z}
¼0 iff Detailed-Balanced Steady State|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0 iff Complex-Balanced Steady State|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0 for generic steady states

: ð38Þ

While for generic steady states only the internal species
formation rates vanish, for complex-balanced ones the
complex formation rates also vanish.
For a fixed kinetics (fk�ρg) and chemostatting (Sy and

fZσyg), a CRN is complex balanced if its dynamics exhibits
a complex-balanced steady state, Eq. (37) [35,36]. The
complex-balanced distribution Eq. (37) depends on the
unbroken components fLλug, which can be inferred from
the initial conditions, and is always globally stable [68].
Hence, complex-balanced networks always relax to a—
complex-balanced—steady state. Detailed-balanced net-
works are a subclass of complex-balanced networks.
Whether or not a CRN is complex balanced depends on

the network topology (∇), the kinetics (fk�ρg), and the
chemostatting (Sy and fZσyg). For any given network
topology and set of chemostatted species Sy, one can

always find a set of effective rate constants fk�ρZσy∇�ρ
σy g

that makes that CRN complex balanced [37]. However, for
some CRNs, this set coincides with the one that makes the
CRN detailed balanced [69]. A characterization of the set of
effective rate constants that make a CRN complex balanced
is reported in Refs. [37,69].
Deficiency-zero CRNs are a class of CRNs that are

complex balanced irrespective of the effective kinetics

fk�ρZσy∇�ρ
σy g [35–37]. The network deficiency is a topo-

logical property of the CRN, which we briefly discuss in
Appendix D; see Refs. [22,52,53] for more details.
Consequently, regardless of the way in which a defi-
ciency-zero CRN is driven in time, it will always remain

complex balanced. Throughout this paper, we refer to these
CRNs as unconditionally complex balanced, as in the
seminal work [35].
Example 10.—The open CRN, Eq. (36), has a single

steady state Zb for any given set of rate constants and
chemostatted concentrations Za and Zc [64], defined by
Eq. (11a):

dtZb ¼ J1 þ J2 − 2J3

¼ kþ1Za − k−1Zb þ kþ2ZaZb − k−2ðZbÞ2
þ 2k−3Zc − 2kþ3ðZbÞ2 ¼ 0: ð39Þ

If the stronger condition Eq. (37) holds,

J3 − J1 ¼ 0 ðgroup C0Þ;
J1 − J2 ¼ 0 ðgroup C1Þ;
J2 − J3 ¼ 0 ðgroup C2Þ; ð40Þ

which is equivalent to

kþ1Za − k−1Zb ¼ kþ2ZaZb − k−2ðZbÞ2
¼ kþ3ðZbÞ2 − k−3Zc; ð41Þ

the steady state is complex balanced. Yet, if the steady-state
currents are all independently vanishing,

J1 ¼ J2 ¼ J3 ¼ 0; ð42Þ

i.e., Eq. (41) is equal to zero, then the steady state is
detailed balanced.
When, for simplicity, all rate constants are taken as 1, the

complex-balanced set of quadratic equations, Eq. (41),
admits a positive solution Zb only if Za ¼ 2 − Zc

(0 < Zc < 2) or Za ¼ ffiffiffiffiffi
Zc

p
. The former case corresponds

to a genuine complex-balanced state, Zb ¼ 1 with currents
J1 ¼ J2 ¼ J3 ¼ 1 − Zc, while the second corresponds to a
detailed-balance state, Zb ¼ ffiffiffiffiffi

Zc
p

with vanishing currents.
When, for example, Za ¼ 1 and Zc ¼ 4, neither of the two
previous conditions holds: the nonequilibrium steady state
is Zb ¼ ffiffiffi

3
p

with currents J1 ¼ 1 −
ffiffiffi
3

p
, J2 ¼ −3þ ffiffiffi

3
p

,
and J3 ¼ −1. □

Example 11.—Let us now consider the following open
CRN [22]:

Ya ⇌
kþ1

k−1
Xb ⇌

kþ2

k−2
Xc þ Xd ⇌

kþ3

k−3
Ye; ð43Þ

where the species Ya and Ye are chemostatted. Out of
the four complexes of the closed network,
fYa; Xb; Xc þ Xd; Yeg, two are grouped into C0 ¼
fYa; Yeg and the other two remain C1 ¼ fXbg and
C2 ¼ fXc þ Xdg. The effective representation of this open
CRN is
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ð44Þ

This network is deficiency zero and, hence, unconditionally
complex balanced [22]. Therefore, given any set of rate
constants k�1, k�2, and k�3, and the chemostatted con-
centrations Za and Ze, the steady state of this CRN is
complex balanced, i.e., the steady state always satisfies a
set of condition like those in Eq. (40). Indeed, contrary to
Example 10, steady-state currents fJ1; J2; J3g different
from each other cannot exist since they would induce a
growth or decrease of some concentrations. □

III. THERMODYNAMICS OF
CHEMICAL NETWORKS

Using local equilibrium, here we build the connection
between the dynamics and the nonequilibrium thermody-
namics for arbitrary CRNs. In the spirit of stochastic
thermodynamics, we derive an energy and entropy balance,
and express the dissipation of the CRN as the difference
between the chemical work done by the reservoirs on the
CRN and its change in nonequilibrium free energy. We,
finally, discuss the information-theoretical content of the
nonequilibrium free energy and its relation to the dynami-
cal potentials used in chemical reaction network theory.

A. Local equilibrium

Since we consider homogeneous reaction mixtures in
ideal dilute solutions, the assumption of local equilibrium
(Ref. [57], Sec. 15.1, and Ref. [70]) means that the
equilibration following any reaction event is much faster
than any reaction time scale. Thus, what is assumed is that
the nonequilibrium nature of the thermodynamic descrip-
tion is solely due to the reaction mechanisms. If all
reactions could be instantaneously shut down, the state
of the whole CRN would immediately become an equili-
brated ideal mixture of species. As a result, all the intensive
thermodynamic variables are well defined and equal every-
where in the system. The temperature T is set by the
solvent, which acts as a thermal bath, while the pressure p
is set by the environment the solution is exposed to. As a
result, each chemical species is characterized by a chemical
potential (Ref. [23], Sec. III. 1),

μσ ¼ μ∘σ þ RT ln
Zσ

Ztot
; ∀σ ∈ S; ð45Þ

where R denotes the gas constant and fμ∘σ ≡ μ∘σðTÞg are the
standard-state chemical potentials, which depend on the
temperature and on the nature of the solvent. The total

concentration of the solution is denoted by Ztot ¼P
σZ

σ þ Z0, where Z0 is the concentration of the solvent.
We assume for simplicity that the solvent does not react
with the solutes. In case it does, our results still hold
provided one treats the solvent as a nondriven chemostatted
species, as discussed in Appendix A. Since the solvent is
much more abundant than the solutes, the total concen-
tration is almost equal to that of the solvent which is a
constant, Ztot ≃ Z0. Without loss of generality, the constant
term −RT lnZtot ≃ −RT lnZ0 in Eq. (45) is absorbed in the
standard-state chemical potentials. Consequently, many
equations appear with nonmatching dimensions. We also
emphasize that standard-state quantities, denoted with “∘”,
are defined as those measured in ideal conditions, at
standard pressure (p∘ ¼ 100 kPa) and molar concentration
(Z∘

σ ¼ 1 mol=dm3), but not at a standard temperature
(Ref. [71], p. 61).
Because of the assumption of local equilibrium and

homogeneous reaction mixture, the densities of all
extensive thermodynamic quantities are well defined
and equal everywhere in the system. With a slight abuse
of notation, we use the same symbol and name for
densities as for their corresponding extensive quantity.
For example, S is the molar entropy divided by the
volume of the solution, but we denote it as entropy. We
apply the same logic to rates of change. For example, we
call entropy production rate the molar entropy production
density rate.

B. Affinities, emergent affinities,
and local detailed balance

The thermodynamic forces driving reactions are given
by differences of chemical potential [Eq. (45)],

ΔrGρ ≡∇σ
ρμσ; ð46Þ

also called Gibbs free energies of reaction (Ref. [23],
Sec. III. 2, and Ref. [57], Sec. IX.3). Since these must all
vanish at equilibrium, ∇σ

ρμ
eq
σ ¼ 0, ∀ρ, we have

ΔrGρ ¼ −RT∇σ
ρ ln

Zσ

Zeq
σ
: ð47Þ

The local detailed balance, Eq. (18)] allows us to express
these thermodynamic forces in terms of reaction affinities,

Aρ ≡ RT ln
Jþρ

J−ρ
¼ −ΔrGρ; ð48Þ

which quantify the kinetic force acting along each reaction
pathway (Ref. [57], Sec. IV.1.3).
The change of Gibbs free energy along emergent cycles,

Aε ¼ −cρεΔrGρ ¼ −cρε∇σy
ρ μσy ; ð49Þ
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gives the external thermodynamic forces the network is
coupled to, as we see in Eq. (61), and thus provides a
thermodynamic meaning to the cycle affinities Eq. (28).
Combining the detailed-balance property Eq. (18)

and the equilibrium condition on the affinities Aeq
ρ ¼ 0

[Eq. (46)], we can relate the Gibbs free energies of reaction
to the rate constants

kþρ

k−ρ
¼ exp

�
−
ΔrG∘

ρ

RT

�
; ð50Þ

where ΔrG∘
ρ ≡∇σ

ρμ
∘
σ . This relation is the thermodynamic

counterpart of the local detailed balance Eq. (18). It plays
the same role as in stochastic thermodynamics, namely,
connecting the thermodynamic description to the stochastic
dynamics. We emphasize that the local detailed-balance
property as well as the local equilibrium assumption by
no mean imply that the CRN operates close to equili-
brium. Their importance is to assign well-defined equilib-
rium potentials to the states of the CRN, which are
then connected by the nonequilibrium mechanisms, i.e.,
reactions.

C. Enthalpies and entropies of reaction

To identify the heat produced by the CRN, we need to
distinguish the enthalpic change produced by each reaction
from the entropic one. We consider the decomposition
of the standard-state chemical potentials (Ref. [23],
Sec. III. 2):

μ∘σ ¼ h∘σ − Ts∘σ: ð51Þ

The standard enthalpies of formation fh∘σg take into
account the enthalpic contributions carried by each species
(Ref. [23], Sec. III. 2, and Ref. [72], Sec. X.4.2). Enthalpy
changes caused by reactions give the enthalpies of reaction
(Ref. [23], Sec. III. 2, and Ref. [57], Sec. II. 4),

ΔrHρ ¼ ∇σ
ρh∘σ; ð52Þ

which at constant pressure measure the heat of reaction.
This is the content of the Hess law (see, e.g., Ref. [72],
Sec. X.4.1). The standard entropies of formation fs∘σg take
into account the internal entropic contribution carried by
each species under standard-state conditions (Ref. [23],
Sec. III. 2). Using Eq. (51), the chemical potentials Eq. (45)
can be rewritten as

μσ ¼ h∘σ − Tðs∘σ − R lnZσÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
≡sσ

: ð53Þ

The entropies of formation fsσ ≡ s∘σ − R lnZσg account for
the entropic contribution of each species in the CRN
(Ref. [23], Sec. III. 2). Entropy changes along reactions
are given by

ΔrSρ ¼ ∇σ
ρsσ; ð54Þ

called entropies of reaction [[23] § 3.2].

D. Entropy balance

1. Entropy production rate

The entropy production rate is a non-negative measure of
the break of detailed balance in each chemical reaction. Its
typical form is given by (Ref. [8] and Ref. [57], Sec. IX.5)

T _Si ≡ RTðJþρ − J−ρÞ ln
Jþρ

J−ρ
≥ 0; ð55Þ

because (1) it is non-negative and vanishes only at
equilibrium, i.e., when the detailed-balance property
Eq. (17) is satisfied, and (2) it vanishes to first order
around equilibrium, thus allowing for quasistatic reversible
transformations. Indeed, defining

Zσ − Zσ
eq

Zσ
eq

¼ ϵσ; jϵσj ≪ 1; ∀σ ∈ S; ð56Þ

we find that

_Si ¼ Eσ
σ0ϵ

σ0ϵσ þ Oðϵ3Þ; ð57Þ

where E≡ fEσ
σ0g is a positive semidefinite symmetric

matrix.
Furthermore, it can be rewritten in a thermodynamically

appealing way using [Eq. (48)]

T _Si ¼ −JρΔrGρ: ð58Þ

It can be further expressed as the sum of two distinct
contributions [56]:

T _Si ¼ −μσxdtZ
σx|fflfflfflfflfflffl{zfflfflfflfflfflffl}

≡T _Sx

−μσyðdtZσy − IσyÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡T _Sy

: ð59Þ

The first term is due to changes in the internal species and
thus vanishes at steady state. The second term is due to the
chemostats. It takes into account both the exchange of
chemostatted species and the time-dependent driving of
their concentration. If the system reaches a nonequilibrium
steady state, the external currents fIσyg do not vanish and
the entropy production reads

T _Si ¼ Iσyμσy : ð60Þ

This expression can be rewritten as a bilinear form of
emergent cycle affinities fAεg Eq. (49) and currents along
the emergent cycle fJ ε ≡ cερJρg [56]
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T _Si ¼ J εAε; ð61Þ

which clearly emphasizes the crucial role of emergent
cycles in steady-state dissipation.

2. Entropy flow rate

The entropy flow rate measures the reversible entropy
changes in the environment due to exchange processes with
the system [57]. Using the expressions for the enthalpy of
reaction Eq. (52) and entropy of formation Eq. (53), we
express the entropy flow rate as

T _Se ≡ JρΔrHρ|fflfflfflffl{zfflfflfflffl}
≡ _Q

þ IσyTsσy : ð62Þ

The first contribution is the heat flow rate (positive if heat is
absorbed by the system). When divided by temperature, it
measures minus the entropy changes in the thermal bath.
The second contribution accounts for minus the entropy
change in the chemostats.

3. System entropy

The entropy of the ideal dilute solution constituting the
CRN is given by (see Appendix A)

S ¼ Zσsσ þ RZS þ S0: ð63Þ

The total concentration term,

ZS ≡X
σ∈S

Zσ; ð64Þ

and the constant S0 together represent the entropic con-
tribution of the solvent. S0 may also account for the entropy
of chemical species not involved in the reactions. We also
prove in Appedix B that the entropy [Eq. (63)] can be
obtained as a large particle limit of the stochastic entropy
of CRNs.
S would be an equilibrium entropy if the reactions could

all be shut down. But in the presence of reactions, it
becomes the nonequilibrium entropy of the CRN. Indeed,
Using eqs. (53), (58), and (62), we find that its change can
be expressed as

dtS ¼ sσdtZσ þ Zσdtsσ þ RdtZS

¼ sσdtZσ

¼ JρΔrSρ þ Iσysσy

¼ _Si þ _Se: ð65Þ

This relation is the nonequilibrium formulation of the
second law of thermodynamics for CRNs. It demonstrates
that the non-negative entropy production Eq. (55) measures

the entropy changes in the system plus those in the
reservoirs (thermal and chemostats) [57].

E. Energy balance

1. First law of thermodynamics

Since the CRN is kept at constant pressure p, its enthalpy

H ¼ Zσh∘σ þH0 ð66Þ

is equal to the CRN internal energy, up to a constant.
Indeed, the enthalpy H is a density which, when written in
terms of the internal energy (density) U, readsH ¼ U þ p.
Using the rate equations (9) and (10), the enthalpy rate of

change can be expressed as the sum of the heat flow rate,
defined in Eq. (62), and the enthalpy of formation exchange
rate:

dtH ¼ h∘σdtZσ ¼ _Qþ Iσyh∘σy : ð67Þ

Equivalently, it can be rewritten in terms of the entropy
flow rate Eq. (62) as (Ref. [57], Sec. IV.1.2)

dtH ¼ T _Se þ Iσyμσy : ð68Þ

The last term on the rhs of Eq. (68) is the free energy
exchanged with the chemostats. It represents the chemical
work rate performed by the chemostats on the CRN
[21,23]:

_Wc ≡ Iσyμσy : ð69Þ

Either Eq. (67) or (68) may be considered as the non-
equilibrium formulation of the first law of thermodynamics
for CRNs. The former has the advantage to solely focus on
energy exchanges. The latter contains entropic contribu-
tions but is appealing because it involves the chemical
work Eq. (69).

2. Nonequilibrium Gibbs free energy

We are now in the position to introduce the thermody-
namic potential regulating CRNs. The Gibbs free energy of
ideal dilute solutions reads

G≡H − TS ¼ Zσμσ − RTZS þ G0: ð70Þ

As for entropy, the total concentration term −RTZS and the
constant G0 represent the contribution of the solvent (see
Appendix A). Furthermore, in the presence of reactions, G
becomes the nonequilibrium Gibbs free energy of CRNs.
We now show that the nonequilibrium Gibbs free

energy of a closed CRN is always greater than or equal
to its corresponding equilibrium form. A generic non-
equilibrium concentration distribution fZσg is character-
ized by the set of components fLλ ¼ lλ

σZσg. Let fZσ
eqg be

NONEQUILIBRIUM THERMODYNAMICS OF CHEMICAL … PHYS. REV. X 6, 041064 (2016)

041064-11

155



the corresponding equilibrium distribution defined by the
detailed-balance property Eq. (18) and characterized by the
same set of components fLλg [a formal expression for
the equilibrium distribution is given in Eq. (88)]. At
equilibrium, the Gibbs free energy Eq. (70) reads

Geq ¼ Zσ
eqμ

eq
σ − RTZS

eq þ G0: ð71Þ

As we discuss in Sec. III B, the equilibrium chemical
potentials must satisfy ∇σ

ρμ
eq
σ ¼ 0. We deduce that μeqσ must

be a linear combination of the closed system conservation
laws Eq. (12),

μeqσ ¼ fλlλ
σ; ð72Þ

where ffλg are real coefficients. Thus, we can write the
equilibrium Gibbs free energy as

Geq ¼ fλLλ − RTZS
eq þ G0: ð73Þ

In this form, the first term of the Gibbs free energy appears
as a bilinear form of components fLλg and conjugated
generalized forces ffλg (Ref. [23], Sec. III. 3), which can
be thought of as chemical potentials of the components.
From Eq. (72) and the properties of components Eq. (13),
the equality Zσ

eqμ
eq
σ ¼ Zσμeqσ follows. Hence, using the

definition of chemical potential Eq. (45), the nonequili-
brium Gibbs free energy G of the generic distribution fZσg
defined above is related to Geq [Eq. (73)] by

G ¼ Geq þ RTLðfZσgjfZσ
eqgÞ; ð74Þ

where we introduce the relative entropy for non-normalized
concentration distributions, also called the Shear Lyapunov
function or the pseudo-Helmholtz function [35,73,74]:

LðfZσgjfZ0σgÞ≡ Zσ ln
Zσ

Z0
σ
− ðZS − Z0SÞ ≥ 0: ð75Þ

This quantity is a natural generalization of the relative
entropy, or Kullback-Leibler divergence, used to compare
two normalized probability distributions [75]. For sim-
plicity, we still refer to it as relative entropy. It quantifies
the distance between two distributions: it is always
positive and vanishes only if the two distributions are
identical: fZσg ¼ fZ0σg. Hence, Eq. (74) proves that the
nonequilibrium Gibbs free energy of a closed CRN is
always greater than or equal to its corresponding equi-
librium form, G ≥ Geq.
We now proceed to show that the nonequilibrium Gibbs

free energy is minimized by the dynamics in closed CRNs;
viz., G—or, equivalently, LðfZσgjfZσ

eqgÞ [59,76]—acts as
a Lyapunov function in closed CRNs. Indeed, the time
derivative of G Eq. (70) always reads

dtG ¼ μσdtZσ þ Zσdtμσ þ RdtZS

¼ μσdtZσ: ð76Þ

When using the rate equation for closed CRNs Eq. (7), we
find that dtG ¼ −Jρ∇σ

ρμσ. Using Eq. (74) together with
Eqs. (46) and (58), we get

dtG ¼ RTdtLðfZσgjfZeq
σgÞ ¼ −T _Si ≤ 0; ð77Þ

which proves the aforementioned result.

3. Chemical work

In arbitrary CRNs, the rate of change of nonequilibrium
Gibbs free energy, Eq. (76), can be related to the entropy
production rate, Eq. (59), using the rate equations of open
CRN, Eqs. (9) and (10), and the chemical work rate,
Eq. (69):

T _Si ¼ _Wc − dtG ≥ 0: ð78Þ

This important result shows that the positivity of the
entropy production sets an intrinsic limit on the chemical
work that the chemostats must perform on the CRN to
change its concentration distribution. The equality sign is
achieved for quasistatic transformations ( _Si ≃ 0).
If we now integrate Eq. (78) along a transformation

generated by an arbitrary time-dependent protocol πðtÞ,
which drives the CRN from an initial concentration dis-
tribution fZσ

i g to a final one fZσ
f g, we find

TΔiS ¼ Wc − ΔG ≥ 0; ð79Þ

where ΔG ¼ Gf −Gi is the difference of nonequilibrium
Gibbs free energies between the final and the initial state.
Let us also consider the equilibrium state fZσ

eqig (fZσ
eqfg)

obtained from fZσ
i g (fZσ

f g) if one closes the network (i.e.,
interrupts the chemostatting procedure) and lets it relax to
equilibrium, as illustrated in Fig. 4. The Gibbs free energy
difference between these two equilibrium distributions,
ΔGeq ¼ Geqf − Geqi, is related to ΔG via the difference
of relative entropies, Eq. (74):

ΔG ¼ ΔGeq þ RTΔL; ð80Þ

where

ΔL≡ LðfZσ
f gjfZσ

eqfgÞ − LðfZσ
i gjfZσ

eqigÞ: ð81Þ

Thus, the chemical work Eq. (79) can be rewritten as

Wc − ΔGeq ¼ RTΔLþ TΔiS; ð82Þ

which is a key result of our paper. ΔGeq represents the
reversible work needed to reversibly transform the CRN
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from fZσ
eqig to fZσ

eqfg. Implementing such a reversible
transformation may be difficult to achieve in practice.
However, it allows us to interpret the difference Wirr

c ≡
Wc − ΔGeq in Eq. (82) as the chemical work dissipated
during the nonequilibrium transformation, i.e., the irre-
versible chemical work. The positivity of the entropy
production implies that

Wirr
c ≥ RTΔL: ð83Þ

This relation sets limits on the irreversible chemical work
involved in arbitrary far-from-equilibrium transformations.
For transformations connecting two equilibrium distribu-
tions, we get the expected inequality Wirr

c ≥ 0. More
interestingly, Eq. (83) tells us how much chemical work
the chemostat needs to provide to create a nonequilibrium
distribution from an equilibrium one. It also tells us how
much chemical work can be extracted from a CRN relaxing
to equilibrium.
The conceptual analogue of Eq. (82) in stochastic

thermodynamics (where probability distributions replace
non-normalized concentration distributions) is called the
nonequilibrium Landauer principle [42,43] (see also
Refs. [77–79]). It has been shown to play a crucial role
in analyzing the thermodynamic cost of information
processing (e.g., for Maxwell demons, feedback control,
or proofreading). The inequality Eq. (83) is, therefore, a
nonequilibrium Landauer principle for CRN.

IV. THERMODYNAMICS OF COMPLEX-
BALANCED NETWORKS

In this section, we focus on unconditionally complex-
balanced networks. We see that the thermodynamics of
these networks bears remarkable similarities to stochastic
thermodynamics.
Let us first observe that whenever a CRN displays a

well-defined steady-state distribution fZσxg, the entropy
production rate Eq. (55) can be formally decomposed as
the sum of an adiabatic and a nonadiabatic contribution,

T _Si ¼ JρRT ln
Jþρ

J−ρ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
≡T _Sa

−dtZσxRT ln
Zσx

Zσx|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≡T _Sna

; ð84Þ

in analogy with what was done in stochastic thermody-
namics [46–50]. As we discuss in Sec. II E, unconditionally
complex-balanced networks have a unique steady-state
distribution, fZσx ≡ Zσx(πðtÞ)g, Eq. (37), for any value
of the chemostatted concentrations, fZσy ≡ ZσyðπðtÞÞg, and
of the fixed unbroken components fLλug. The decompo-
sition Eq. (84) is thus well defined at any time, for any
protocol πðtÞ. As a central result, we prove in Appendix C
that the adiabatic and nonadiabatic contribution are non-
negative for unconditionally complex-balanced networks
as well as for complex-balanced networks without time-
dependent driving.
The adiabatic entropy production rate encodes the

dissipation of the steady state fZσxg. It can be rewritten
in terms of the steady-state Gibbs free energy of reaction
fΔrGρg Eq. (48) as

T _Sa ¼ −JρΔrGρ ≥ 0: ð85Þ

This inequality highlights the fact that the transient
dynamics—generating the currents fJρg—is constrained
by the thermodynamics of the complex-balanced steady
state, i.e., by fΔrGρg.
The nonadiabatic entropy production rate characterizes

the dissipation of the transient dynamics. It can be
decomposed as

T _Sna ¼ −RTdtLðfZσxgjfZσxgÞ
þ RTdtZSx − Zσxdtμσx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡T _Sd

≥ 0; ð86Þ

where ZSx ¼ P
σx∈Sx

Zσx (see Refs. [46,48] for the analo-
gous decomposition in the stochastic context). The first
term is proportional to the time derivative of the relative
entropy Eq. (75) between the nonequilibrium concentration
distribution at time t and the corresponding complex-
balanced steady-state distribution. Hence, it describes the
dissipation of the relaxation towards the steady state. The

FIG. 4. Pictorial representation of the transformation between
two nonequilibrium concentration distributions. The nonequili-
brium transformation (blue line) is compared with the equilib-
rium one (green line). The equilibrium transformation depends on
the equilibrium states corresponding to the initial and final
concentration distributions. In Sec. III E 3, for an arbitrary
CRN, these equilibrium states are obtained by first closing the
network and then letting it relax to equilibrium. Instead, in Sec. V,
for a detailed balance CRN, the equilibrium states are obtained by
simply stopping the time-dependent driving and letting the
system spontaneously relax to equilibrium.
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second term, T _Sd, is related to the time-dependent driving
performed via the chemostatted species and thus denoted
the driving entropy production rate [46]. It vanishes in
nondriven networks where we obtain

_Sna ¼ −RdtLðfZσxgjfZσxgÞ ≥ 0: ð87Þ

This result shows the role of the relative entropy
LðfZσxgjfZσxgÞ as a Lyapunov function in nondriven
complex-balanced networks with mass action kinetics. It
was known in the mathematical literature [35,80], but we
provide a clear thermodynamic interpretation to this result
by demonstrating that it derives from the nonadiabatic
entropy production rate.
We mention that an alternative derivation of the

adiabatic–nonadiabatic decomposition for nondriven com-
plex-balanced networks with mass action kinetics was very
recently found in Ref. [51].

V. THERMODYNAMICS OF OPEN
DETAILED-BALANCED NETWORKS

We finish our study by considering detailed-balanced
networks. We discuss the equilibrium distribution, intro-
duce a new class of nonequilibrium potentials, and derive a
new work inequality.
Let us also emphasize that open detailed-balanced

CRNs are a special class of open complex-balanced
CRNs for which the adiabatic entropy production rate
vanishes (since the steady state is detailed balanced) and
thus the nonadiabatic entropy production characterizes the
entire dissipation.

A. Equilibrium distribution

As we discuss in Sec. II D, for given kinetics fk�ρg,
chemostatting fZσyg and unbroken components fLλug,
detailed-balanced networks always relax to a unique
equilibrium distribution. Since the equilibrium chemical
potentials can be expressed as a linear combination of
conservation laws, Eq. (72), we can express the equilibrium
distribution as

Zeq
σ ¼ exp

�
−
μ∘σ − fλlλ

σ

RT

�
; ð88Þ

inverting the expression for the chemical potentials
Eq. (45). Since the independent set of unbroken conserva-
tion laws flλug is such that lλu

σy ¼ 0, ∀λu, σy, see Sec. II C,
we have that

μeqσy ¼ fλbl
λb
σy ; ∀σy ∈ Sy: ð89Þ

We thus conclude that the jλbj broken generalized forces
ffλbg depend on only the chemostatted concentrations
fZσyg. Instead, the remaining jλuj unbroken generalized

forces fλu can be determined by inverting the nonlinear set

of equations Lλu ¼ lλu
σxZ

σx
eq. They, therefore, depend on both

fZσyg and fLλug.
One can easily recover the local detailed-balanced

property [Eqs. (50) and (18)] using Eq. (88).

B. Open nondriven networks

As a consequence of the break of conservation laws, the
nonequilibrium Gibbs free energy G Eq. (70) is no longer
minimized at equilibrium in open detailed-balanced
networks. In analogy to equilibrium thermodynamics
[23], the proper thermodynamic potential is obtained from
G by subtracting the energetic contribution of the broken
conservation laws. This transformed nonequilibrium Gibbs
free energy reads

G≡ G − fλbL
λb

¼ Zσðμσ − fλbl
λb
σ Þ − RTZS þG0: ð90Þ

We proceed to show that G is minimized by the dynamics
in nondriven open detailed-balanced networks. Let fZσxg
be a generic concentration distribution in a detailed-
balanced network characterized by fLλug and fZσyg, and
let fZσx

eqg be its corresponding equilibrium. Using the
relation between equilibrium chemical potentials and con-
servation laws Eq. (72), the transformed Gibbs free energy
Eq. (90) at equilibrium reads

Geq ¼ fλuL
λu − RTZS

eq þ G0: ð91Þ

Yet, combining Eq. (72) and the properties of unbroken
components, one can readily show that Zσ

eqðμeqσ − fλbl
λb
σ Þ ¼

Zσðμeqσ − fλbl
λb
σ Þ. The relation between the nonequilibrium

G and the corresponding equilibrium value thus follows

G ¼ Geq þ RTLðfZσxgjfZσx
eqgÞ ð92Þ

(we show in Appendix A the derivation of the latter
in the presence of a reacting solvent). The non-negativity
of the relative entropy for concentration distributions
LðfZσxgjfZeq

σxgÞ ensures that the nonequilibrium trans-
formed Gibbs free energy is always greater than or equal to
its equilibrium value, G ≥ Geq. Since entropy production
and nonadiabatic entropy production coincide, using
Eqs. (87) and (92), we obtain

dtG ¼ RTdtLðfZσxgjfZeq
σxgÞ ¼ −T _Si ≤ 0; ð93Þ

which demonstrates the role of G as a Lyapunov function.
The relative entropy LðfZσxgjfZ0σxgÞ was known to be a
Lyapunov function for detailed-balanced networks [76,81],
but we provide its clear connection to the transformed
nonequilibrium Gibbs free energy. To summarize, instead
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of minimizing the nonequilibrium Gibbs free energy G
Eq. (70) as in closed CRNs, the dynamics minimizes the
transformed nonequilibrium Gibbs free energy G in open
nondriven detailed-balanced CRNs.

C. Open driven networks

We now consider unconditionally detailed-balanced
CRNs. As we discuss in Sec. II D, they are characterized
by a unique equilibrium distribution fZσx

eq ≡ Zσx
eqðπðtÞÞg,

defined by Eq. (18), for any value of the chemostatted
concentrations fZσy ¼ Zσy(πðtÞ)g.
We start by showing that the external fluxes fIσyg can be

expressed as the influx rate of moieties. Since the CRN is
open and unconditionally detailed balanced, each chemo-
statted species breaks a conservation law (no emergent
cycle is created, Sec. II D). Therefore, the matrix whose
entries are flλb

σyg in Eq. (89) is square and also nonsingular
[82]. We can thus invert Eq. (89) to get

fλb ¼ μeqσy l̂
σy
λb
; ð94Þ

where fl̂σy
λb
g denote the entries of the inverse matrix of that

with entries flλb
σyg. Hence, using the definition of a broken

component, fLλb ≡ lλb
σ Zσg, we obtain that

fλbL
λb ¼ μeqσy l̂

σy
λb
lλb
σ Zσ|fflfflfflfflffl{zfflfflfflfflffl}

≡Mσy

: ð95Þ

From the rate equations for the chemostatted concentrations
Eq. (10), we find that

dtMσy ¼ Iσy ; ∀σy ∈ Sy: ð96Þ

We can thus interpret Mσy as the concentration of a moiety
that is exchanged with the environment only through the
chemostatted species Xσy . Equation (95) shows that the
energetic contribution of the broken components can be
expressed as the Gibbs free energy carried by these specific
moieties.
Example 12.—A simple implementation of this scenario

is the thermodynamic description of CRNs at constant pH
(Ref. [23], Chap. 4), where the chemostatted species
becomes the ion Hþ and MHþ

is the total amount of
Hþ ions in the system. The transformed Gibbs potential
thus becomes G0 ¼ G − μHþM

Hþ
and the transformed

chemical potentials can be written in our formalism as
μ0σx ¼ μσx − μHþ l̂

Hþ
b lb

σ, where lb
σ is the conservation law

broken by chemostatting Hþ. □

Example 13.—For the CRN in Fig. 2, whose conserva-
tion laws are given in example 4, the concentrations of the
exchanged moieties are

M1 ¼ Za þ 1

2
Zb;

M2 ¼ Zd þ Ze: ð97Þ

For the specific implementation of that CRN, Fig. 3,
the first term (second term) is the total number of
moiety 2H (C) in the system, which can be exchanged
with the environment only via the chemostatted species
H2O (CO). □

We now turn to the new work relation. From the general
work relation Eq. (78), using Eqs. (90) and (95), we find

T _Si ¼ _Wd − dtG ≥ 0; ð98Þ

where the driving work due to the time-dependent driving
of the chemostatted species is obtained using the chemical
work rate Eq. (69) together with Eqs. (95) and (96):

_Wd ≡ _Wc − dtðfλbLλbÞ
¼ μeqσydtM

σy − dtðμeqσyMσyÞ
¼ −dtμ

eq
σyM

σy : ð99Þ

Equivalently, the driving work rate Eq. (99) can be defined
as the rate of change of the transformed Gibbs free energy
Eq. (90) due to the time-dependent driving only; i.e.,

_Wd ≡ ∂G
∂t ≡ dtμ

eq
σy

∂G
∂μeqσy : ð100Þ

To relate this alternative definition to Eq. (99), all fZσyg
must be expressed in terms of fμeqσyg using the definition of
chemical potential Eq. (45).
The driving work rate _Wd vanishes in nondriven CRNs,

where Eq. (98) reduces to Eq. (93). After demonstrating
that the entropy production rate is always proportional to
the difference between the chemical work rate and the
change of nonequilibrium Gibbs free energy in Eq. (79), we
show that, for unconditionally detailed-balanced CRNs, it
is also proportional to the difference between the driving
work rate and the change in transformed nonequilibrium
Gibbs free energy, Eq. (98).
We end by formulating a nonequilibrium Landauer

principle for the driving work instead of the chemical
work done in Sec. III E 3. We consider a time-dependent
transformation driving the unconditionally detailed-
balanced CRN from fZσ

i g to fZσ
f g. The distribution

fZσ
eqig (fZσ

eqfg) denotes the equilibrium distribution
obtained from fZσ

i g (fZσ
f g) by stopping the time-dependent

driving and letting the system relax towards the equilib-
rium, Fig. 4. Note that this reference equilibrium state is
different from the one obtained by closing the network in
Sec. III E 3. Integrating Eq. (98) over time and using
Eq. (92), we get
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Wd − ΔGeq ¼ RTΔLþ TΔiS; ð101Þ

where

ΔL≡ LðfZσx
f gjfZσx

eqfgÞ − LðfZσx
i gjfZσx

eqigÞ: ð102Þ

ΔGeq represents the reversible driving work, and the
irreversible driving work satisfies the inequality

Wirr
d ≡Wd − ΔGeq ≥ RTΔL: ð103Þ

This central relation sets limits on the irreversible work
spent to manipulate nonequilibrium distributions. It is a
nonequilibrium Landauer principle for the driving work by
the same reasons that inequality Eq. (83) is a nonequili-
brium Landauer principle for the chemical work. The key
difference is that the choice of the reference equilibrium
state is different in the two cases. The above discussed
inequality Eq. (103) holds only for unconditionally
detailed-balanced CRNs, while Eq. (83) is valid for any
CRNs.

VI. CONCLUSIONS AND PERSPECTIVES

Following a strategy reminiscent of stochastic thermo-
dynamics, we systematically build a nonequilibrium
thermodynamic description for open driven CRNs made
of elementary reactions in homogeneous ideal dilute
solutions. The dynamics is described by deterministic rate
equations whose kinetics satisfies mass action law. Our
framework is not restricted to steady states and allows
us to treat transients as well as time-dependent drivings
performed by externally controlled chemostatted concen-
trations. Our theory embeds the nonequilibrium thermo-
dynamic framework of irreversible processes established by
the Brussels School of Thermodynamics.
We now summarize our results. Starting from the

expression for the entropy production rate, we establish
a nonequilibrium formulation of the first and second law of
thermodynamics for CRNs. The resulting expression for
the system entropy is that of an ideal dilute solution. The
clear separation between chemostatted and internal species
allows us to identify the chemical work done by the
chemostats on the CRN and to relate it to the nonequili-
brium Gibbs potential. We are also able to express the
minimal chemical work necessary to change the non-
equilibrium distribution of species in the CRN as a differ-
ence of relative entropies for non-normalized distributions.
The latter measure the distance of the initial and final
concentration distributions from their corresponding equi-
librium ones, obtained by closing the network. This result is
reminiscent of the nonequilibrium Landauer principle
derived in stochastic thermodynamics [43] and which prove
very useful to study the energetic cost of information
processing [45]. We also highlight the deep relationship
between the topology of CRNs, their dynamics, and their

thermodynamics. Closed CRNs (nondriven open detailed-
balanced networks) always relax to a unique equilibrium
by minimizing their nonequilibrium Gibbs free energy
(transformed nonequilibrium Gibbs free energy). This
latter is given, up to a constant, by the relative entropy
between the nonequilibrium and equilibrium concentra-
tion distribution. Nondriven complex-balanced networks
relax to complex-balanced nonequilibrium steady states
by minimizing the relative entropy between the non-
equilibrium and steady-state concentration distribution. In
all these cases, even in the presence of driving, we show
how the rate of change of the relative entropy relates to
the CRN dissipation. For complex-balanced networks, we
also demonstrate that the entropy production rate can be
decomposed, as in stochastic thermodynamics, in its
adiabatic and nonadiabatic contributions quantifying,
respectively, the dissipation of the steady state and of
the transient dynamics.
Our framework could be used to shed new light on a

broad range of problems. We mention only a few.
Stochastic thermodynamics has been successfully used

to study the thermodynamics cost of information process-
ing in various synthetic and biological systems [44,83–87].
However, most of these are modeled as few state systems or
linear networks [8,9]—e.g., quantum dots [88], molecular
motors [89,90], and single enzyme mechanisms [91,92]—
while biochemical networks involve more-complex
descriptions. The present work overcomes this limitation.
It could be used to study biological information-handling
processes, such as kinetic proofreading [93–99] or enzyme-
assisted copolymerization [92,100–105], which have cur-
rently only been studied as single enzyme mechanisms.
Our theory could also be used to study metabolic

networks. However, these require some care, since complex
enzymatic reaction mechanisms are involved [106].
Nevertheless, our framework provides a basis to build
effective coarse-graining procedures for enzymatic reac-
tions [107]. For instance, proofreading mechanisms oper-
ating in metabolic processes could be considered [108]. We
foresee an increasing use of thermodynamics to improve
the modeling of metabolic networks, as recently shown in
Refs. [30,32,33].
Since our framework accounts for time-dependent

drivings and transient dynamics, it could be used to
represent the transmission of signals through CRNs or
their response to external modulations in the environment.
These features become crucial when considering problems
such as signal transduction and biochemical switches
[24,109,110], biochemical oscillations [28,111], growth
and self-organization in evolving biosystems [112,113],
or sensory mechanisms [85,87,114–117]. Also, since
transient signals in CRNs can be used for computation
[118] and have been shown to display Turing universality
[119–122], one should be able to study the thermodynamic
cost of chemical computing [123].
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Finally, one could use our framework to study any
process that can be described as nucleation or reversible
polymerization [124–129] (see also Ref. [130], Chaps. 5 ad
6) since these processes can be described as CRNs [63].
As closing words, we believe that our results constitute

an important contribution to the theoretical study of CRNs.
It does for nonlinear chemical kinetics what stochastic
thermodynamics has done for stochastic dynamics, namely,
build a systematic nonequilibrium thermodynamics on top
of the dynamics. It also opens many new perspectives and
builds bridges between approaches from different com-
munities studying CRNs: mathematicians who study CRNs
as dynamical systems, physicists who study them as
nonequilibrium complex systems, and biochemists as well
as bioengineers who aim for accurate models of metabolic
networks.
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APPENDIX A: THERMODYNAMICS OF IDEAL
DILUTE SOLUTIONS

We show that the nonequilibrium Gibbs free energy
Eq. (70) is the Gibbs free energy of an ideal dilute solution
(Ref. [131], Chap. 7) (see also Ref. [51]). We also show that
in open detailed-balanced networks in which the solvent
reacts with the solutes, the expression of the transformed
Gibbs free energy Eq. (92) is recovered by treating the
solvent as a special chemostatted species.
The Gibbs free energy (density) of an ideal dilute

mixture of chemical compounds kept at constant temper-
ature and pressure reads

G ¼ Zσμσ þ Z0μ0 ðA1Þ

where the labels σ ∈ S refer to the solutes and 0 to the
solvent. The chemical potentials of each species Eq. (45)
read

μσ ¼ μ∘σ þ RT ln
Zσ

Ztot
; ∀σ ∈ S;

μ0 ¼ μ∘0 þ RT ln
Z0

Ztot
: ðA2Þ

Since the solution is dilute, Ztot ¼
P

σ∈SZ
σ þ Z0 ≃ Z0 and

the standard-state chemical potentials fμ∘σg depend on the
nature of the solvent. Hence, the chemical potentials of the
solutes read

μσ ≃ μ∘σ þ RT ln
Zσ

Z0

; ∀σ ∈ S; ðA3Þ

while that of the solvent reads

μ0 ≃ μ°0 − RT
ZS

Z0

; ðA4Þ

where ZS ≡P
σ∈SZ

σ. Therefore, the Gibbs free energy
Eq. (A1) reads

G≃ Zσμσ þ Z0μ°0 − RTZS; ðA5Þ

which is Eq. (70), where G0 is equal to Z0μ°0 plus possibly
the Gibbs free energy of solutes that do not react.
We now consider the case where the solvent reacts with

the solutes. We assume that both the solutes and the solvent
react according to the stoichiometric matrix

∇ ¼

0
B@

∇0

∇X

∇Y

1
CA; ðA6Þ

where the first row refers to the solvent, the second block of
rows to the internal species, and the last one to the
chemostatted species. The solvent is treated as a chemo-
statted species such that dtZ0 ¼ 0.
In order to recover the expression for the transformed

Gibbs free energy Eq. (92) in unconditionally detailed-
balanced networks, we observe that, at equilibrium,

∇σ
ρμ

eq
σ þ∇0

ρμ
eq
0 ¼ 0: ðA7Þ

Therefore, the equilibrium chemical potentials are a linear
combination of the conservation laws of ∇ [Eq. (A6)],

μeqσ ¼ fλlλ
σ;

μeq0 ¼ fλlλ
0: ðA8Þ

As mentioned Sec. II C, the chemostatting procedure
breaks some conservation laws, which are labeled by λb.
The unbroken ones are labeled by λu.
The transformed Gibbs free energy is defined as in

Eq. (90), reported here for convenience,

G≡G − fλbL
λb ; ðA9Þ

where G reads as in Eq. (A1), fLλbg are the broken
components, and ffλbg are here interpreted as the con-
jugated generalized forces. Adding and subtracting the term
Zσμeqσ þ Z0μ

eq
0 from the last equation and using Eq. (A8),

we obtain

G ¼ Geq þ Zσðμσ − μeqσ Þ þ Z0ðμ0 − μeq0 Þ; ðA10Þ

where
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Geq ¼ fλuL
λu : ðA11Þ

From Eqs. (A3) and (A4) and the fact that Zσy ¼ Z
σy
eq and

Z0 ¼ Zeq
0 , we obtain

G≃ Geq þ Zσxðμσx − μeqσxÞ − RTðZSx − ZSx
eq Þ

¼ Geq þ ZσxRT ln
Zσx

Zσx
eq
− RTðZSx − ZSx

eq Þ

≡ Geq þ RTLðfZσxgjfZσx
eqgÞ; ðA12Þ

in agreement with the expression derived in the main
text, Eq. (92).

APPENDIX B: ENTROPY OF CRNs

We show how the nonequilibrium entropy Eq. (63) can
be obtained as a large particle limit of the stochastic
entropy. We point out that very recently similar derivations
for other thermodynamic quantities have been obtained in
Refs. [51,132].
In the stochastic description of CRNs, the state is

characterized by the population vector n ¼ fnσg. The
probability to find the network is in state n at time t is
denoted ptðnÞ. The stochastic entropy of that state reads
[21,107], up to constants,

SðnÞ ¼ −kB lnptðnÞ þ sðnÞ: ðB1Þ

The first term is a Shannon-like contribution, while the
second term is the configurational entropy,

sðnÞ≡ nσ ~s∘σ − kB
X
σ

ln
nσ!
nn

σ

0

: ðB2Þ

~s∘σ is the standard entropy of one single Xσ molecule, and n0
is the very large number of solvent molecules.
We now assume that the probability becomes very

narrow in the large particle limit nσ ≫ 1 and behaves as
a discrete delta function ptðnÞ≃ δ½n − n̂ðtÞ�. The vector
n̂ðtÞ≡ fn̂σg denotes the most probable and macroscopic
amount of chemical species, such that Zσ ¼ n̂σ=ðVNAÞ.
Hence, the average entropy becomes

hSi ¼
X
n

ptðnÞSðnÞ≃ sðn̂Þ: ðB3Þ

When using the Stirling approximation (lnm!≃m lnm−
m for m ≫ 1), we obtain

sðn̂Þ≃ n̂σ ~s∘σ − n̂σkB ln
n̂σ

n0
þ kB

X
σ

n̂σ

¼ n̂σ
�
~s∘σ þ kB ln

n0
VNA

�

þ −n̂σkB ln
n̂σ

VNA
þ kB

X
σ

n̂σ

≡ n̂σð~s∘σ þ kB lnZ0Þ
þ −n̂σkB lnZσ þ kB

X
σ

n̂σ: ðB4Þ

Dividing by V and using the relation R ¼ NAkB, we finally
get the macroscopic entropy density Eq. (63)

hSi=V ≃ Zσs∘σ − ZσR lnZσ þ RZS; ðB5Þ

where the (molar) standard entropies of formation s∘σ reads

s∘σ ¼ NAð~s∘σ þ kB lnZ0Þ: ðB6Þ

Mindful of the information-theoretical interpretation of
the entropy [133], we note that the uncertainty due to the
stochasticity of the state disappears [the first term on
the rhs of Eq. (B1)]. However, the uncertainty due to the
indistinguishability of the molecules of the same species—
quantified by the configurational entropy Eq. (B2)—
remains and contributes to the whole deterministic entropy
function Eq. (63).

APPENDIX C: ADIABATIC-NONADIABATIC
DECOMPOSITION

We prove the positivity of the adiabatic and nonadiabatic
entropy production rates Eq. (84) using the theory of
complex-balanced networks; see Sec. II E.
We first rewrite the mass action kinetics currents

Eq. (5) as [53,81] Jρ ¼ Kρ
γ0ψ

γ0 , where ψγ ≡ ZσΓγ0
σ and K ¼

fKρ
γ ≡ Kþρ

γ − K−ρ
γ g is the rate constants matrix whose

entries are defined by

Kρ
γ ¼

8<
:

kþρ if γ is the reactant complex of þ ρ

−k−ρ if γ is the product complex of þ ρ

0 otherwise:

ðC1Þ

Hence, the definition of a complex-balanced network
Eq. (37) reads

X
γ∈Cj

Wγ
γ0ψ

γ0 ¼ 0; ∀j; ðC2Þ

where W ≡ ∂K ¼ f∂γ
ρK

ρ
γ0 g≡ fWγ

γ0 g is the so-called

kinetic matrix [35], and ψγ ≡ ZσΓγ
σ .
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The kinetic matrix W is a Laplacian matrix [76,81]:
any off-diagonal term is equal to the rate constant of
the reaction having γ0 as a reactant and γ as a product
if the reaction exists, and it is zero otherwise. Also, it
satisfies

X
γ∈C

Wγ
γ0 ¼ 0; ðC3Þ

which is a consequence of the fact that the diagonal
terms are equal to minus the sum of the off-diagonal
terms along the columns. The detailed balanced prop-
erty Eq. (18) implies that

Wγ
γ0ψ

eq
γ0 ¼ Wγ0

γ ψ
eq
γ ; ∀γ; γ0; ðC4Þ

where ψ eq
γ ≡ Zeq

σ
Γσ
γ .

In order to prove the non-negativity of the adiabatic term
Eq. (84), we rewrite it as

_Sa ≡ Jρ ln
Jþρ

J−ρ
¼ Kρ

γ0ψ
γ0 ln

�
Zσ

Zeq
σ

�−∇σ
ρ

¼ −Wγ
γ0ψ

γ0 ln
ψγ

ψ eq
γ
: ðC5Þ

The detailed balance property is used in the first
equality, and the decomposition of the stoichiometric
matrix Eq. (30) in the second one. Also, the constant RT
is taken equal to 1. Using Eq. (C3), Eq. (C5) can be
rewritten as

_Sa ¼ −Wγ
γ0ψ

γ0 ln
ψγψ

γ0
eq

ψ eq
γ ψγ0 : ðC6Þ

From the log inequality − ln x ≥ 1 − x and the detailed
balance property Eq. (C4), we obtain

_Sa ≥ Wγ
γ0ψ

γ0
�
1 −

ψγψ
γ0
eq

ψ eq
γ ψγ0

�

¼ −Wγ
γ0ψ

γ0
eq

ψγψ
γ0

ψ eq
γ ψγ0 ¼ −Wγ0

γ ψγ
ψγ0

ψγ0
¼ 0: ðC7Þ

The last equality follows from the assumption of a
complex-balanced steady state Eq. (C2), the properties
of the groups of complexes fCjg (Sec. II E), and the fact
that fZσy ¼ Zσyg. Indeed,

Wγ0
γ ψγ

ψγ0

ψγ0
¼

X
j

X
r0∈Cj

Wγ0
γ ψγ

�
Zσx

Zσx

�
Γσx
γ0

¼
X
j

�
Zσx

Zσx

�
Γσx
j X
r0∈Cj

Wγ0
γ ψγ ¼ 0: ðC8Þ

Concerning the nonadiabatic term Eq. (84), using the
rate equations (9) and the fact that fZσy ¼ Zσyg, we can
rewrite it as

_Sna ≡ −dtZσ ln
Zσ

Zσ

¼ −Wγ
γ0ψ

γ0 ln
ψγ

ψγ
: ðC9Þ

Because of Eq. (C3), we further get that

_Sna ¼ −Wγ
γ0ψ

γ0 ln
ψγψ

γ0

ψγψ
γ0 : ðC10Þ

From the log inequality − ln x ≥ 1 − x and from Eq. (C4),

_Sna ≥ Wγ
γ0ψ

γ0
�
1 −

ψγψ
γ0

ψγψ
γ0

�
¼ −Wγ

γ0ψ
γ0 ψγ

ψγ
¼ 0: ðC11Þ

The last equality again follows from the assumption of a
complex-balance steady state Eq. (C2) as in Eq. (C8).

APPENDIX D: DEFICIENCY OF CRNs

The deficiency of an open CRN is defined as [22]

δ ¼ dimker∇X − dim ker ∂C ≥ 0; ðD1Þ

where ∂C ¼ f∂j
ρ ≡P

γ∈Cj∂γ
ρg. Other equivalent definitions

can be found in Refs. [52,53]. The kernel of ∇X identifies
the set of cycles, Eqs. (19) and (20), while the kernel of the
incidence matrix ∂̂ identifies the set of cycles of the
reaction graph. Hence, the deficiency measures the differ-
ence between the number of cyclic transformations on
chemical species and how many of them can be represented
as cycles on the reaction graph. Deficiency-zero networks
are defined by δ ¼ 0; i.e., they exhibit a one-to-one
correspondence between the two. This topological property
has many dynamical consequences, the most important of
which is that deficiency-zero networks are unconditionally
complex balanced [36,37]. As shown in Ref. [22], defi-
ciency also has implications on the stochastic thermody-
namic description of networks: the stochastic entropy
production of a deficiency-zero network converges to the
deterministic entropy production in the long-time limit.
Linear networks are the simplest class of deficiency-zero
networks. Since only one internal species appears in each
complex with a stoichiometric coefficient equal to 1,
∇X ≡ ∂C, and thus δ ¼ 0.
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We describe the oligosaccharides-exchange dynamics performed by the so-called D-enzymes on
polysaccharides. To mimic physiological conditions, we treat this process as an open chemical
network by assuming some of the polymer concentrations fixed (chemostatting). We show that
three different long-time behaviors may ensue: equilibrium states, nonequilibrium steady states,
and continuous growth states. We dynamically and thermodynamically characterize these states and
emphasize the crucial role of conservation laws in identifying the chemostatting conditions inducing
them. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4938009]

I. INTRODUCTION

Biological systems use large and branched chains of
basic sugars, called polysaccharides, to store energy.1 Glucans
such as glycogen and starch are polysaccharides whose
building blocks are D-glucose monosaccharides. Despite the
apparent simplicity of their constituents, their metabolism
involves several chemical steps, each performed by a specific
set of enzymes.2 Interestingly, some of these catalysts
lack specificity regarding the reaction they catalyze or
the substrates they act on.3,23–32 An example is provided
by (1 → 4)-alpha-D-glucans2,4–6 (EC 2.4.1.25), also called
D-enzymes, which act on pairs of glucans regardless of their
size.7 Specifically, D-enzymes catalyze the transfer of groups
of glycosyl residues from a donor glucan to an acceptor
glucan.4,5 Experimental evidences highlight the presence of
bonds between glycosyl residues which are not cleaved by
D-enzymes4—at least not over physiological time scales.7

These bonds are called forbidden linkages.4 In this way,
D-enzymes transfer segments of glucan chains containing
one or more forbidden linkages, and the transfer of segments
containing one forbidden linkage are the most probable.4 Also,
each glucan chain is characterized by a reducing-end glucose
which is not transferred by D-enzymes.4,7 Hence, glucans
made of just the reducing end can act only as acceptor in the
transfer.

Qualitatively, D-enzymes process medium-size glucans
by disproportionating them into unit-size and big-size
glucans.5 Since their transfers reactions are neutral ener-
getically,7,8 entropy is the main driving force in this system. In
closed conditions, this system evolves towards an equilibrium
state maximizing the entropy.7,9

In this paper we consider a simplified kinetic description
of the D-enzyme’s action on glucans, which we treat as
a chemical network. Since metabolic processes should be
thought of as part of an open system continuously fed from

a)riccardo.rao@uni.lu
b)massimiliano.esposito@uni.lu

the environment, we mimic these physiological conditions by
introducing chemostats (i.e., species whose concentrations
are kept constant by the environment). Our goal is to
characterize the dynamical and thermodynamical implications
of treating the action of the D-enzymes on glucans as an open
chemical network. In the framework of deterministic chemical
networks endowed with mass action kinetics, we prove
that chemostatting can induce three different types of long-
time behaviors: equilibrium, non-equilibrium steady state,
and continuous growth. The equilibrium state corresponds
to the stationary concentration distribution in which the
concentration currents along each reaction pathway vanishes
(detailed balance property10). Non-equilibrium steady states
refer to stationary distributions violating detailed balance.
Hence, contrary to equilibrium states, a continuous and
steady flow of mass circulates across the network. Finally,
the continuous growth regime we observed corresponds
to a non-stationary state characterized by continuous and
steady flow of mass entering the network and resulting in
its continuous growth. We emphasize the dynamical and
thermodynamical roles of conservation laws and emergent
cycles in identifying the chemostatting conditions leading to
these states. We are thus able to confirm the general relation
between the number of chemostatted species and the number
of independent thermodynamical forces—or affinities—found
in Ref. 11. Despite the simplicity of our description, the
closed system results found in Ref. 7 are reproduced and
the qualitative disproportionating behavior of D-enzymes5 is
captured by our (chemostatted) open system description.

The plan of the paper is as follows: in Sec. II, the kinetic
model is established and the related rate equation description
for the concentration of polysaccharides is introduced. In
Sec. III, the chemostatting conditions leading to non-
equilibrium steady states rather than equilibrium ones are
found. For this purpose, both the conservation laws of the
dynamics and the emergent cycles of the network are analyzed.
The dissipation of the non-equilibrium steady state is also stud-
ied. The network’s conservation laws identified in Sec. III A
are used in Sec. IV to derive the steady-state concentration
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distributions for different numbers of chemostats. The explo-
sive asymptotic behavior is described in Sec. V. Conclusions
are drawn in Sec. VI. Some technical derivations and proofs
are provided in Appendices.

II. THE KINETIC MODEL

The action of D-enzymes is modeled as follows (see also
Fig. 1). Glucans are treated as polymers whose monomers
represent single transferable segments. Hence, each glucan
is identified by its number of monomers, or equivalently by
its monomeric mass. The enzymatic steps performed by the
D-enzymes in order to achieve the transfer are not explicitly
described—they are coarse-grained—, and we describe the
interaction between two polymers of mass n and m as a
mass-exchange process:12

(n) + (m) κnm−→ (n + 1) + (m − 1), for n ≥ 1, m ≥ 2, (1)

where κnm denotes the related coarse-grained rate constant.
Transfers of oligosaccharides longer than one monomeric unit
are less probable4 and are not considered in our description.
We take into account the presence of non-transferable units
by imposing the size of the donor glucan (m) to be greater
than one.4,7

Let us note that each reaction is reversible because the
backward path is already included in (1) (it is realized by
replacing n → m − 1 and m → n + 1 in the above expression).
Furthermore, the constraint on the minimal size of the donor
molecules imposes that m ≥ 2. Since we describe the glucans
as linear polymers, and since D-enzymes do not discriminate
the size of the polymers, we assume a constant kernel for
the reactions: κmn = κ, ∀n ≥ 1,∀m ≥ 2. This assumption
is based on the evidence that the free-enthalpy release
resulting from any reaction is almost vanishing.7,8 Indeed,
for any bond cleaved, a new one of the same kind will be
formed.

Assuming a large and well stirred pool of interacting
polymers, the evolution of the system is well described
by reaction rate equations.12 According to this mean-field
description, the molar concentration of polymers of mass
k at time t, Zk = Zk(t), satisfies the following first order
differential equations:

Żk =
1
2



n≥1
m≥2

∇knm
�
J+nm − J−nm

�
                          

≡Jnm

, for k ≥ 1. (2)

The 1
2 factor in front of the summation takes into account

that summing over all n ≥ 1 and m ≥ 2 includes every

FIG. 1. (a) The typical monomer-exchange reaction describing the action of
D-enzymes on glucan chains. (b) The attachment of free monomers to other
species is not allowed.

reaction pathway twice.13 ∇knm represents the element of
the stoichiometric matrix related to the species of mass k and
to the reaction involving an acceptor and a donor polymer
of mass n and m, respectively. The reaction scheme in (1)
implies that

∇knm = δkn+1 + δ
k
m−1 − δkn − δkm, (3)

where δ ji represents the Kronecker delta. Assuming a mass
action kinetics, the forward (denoted by +) and the backward
fluxes (−) can be written as

J+nm = κZnZm, J−nm = κZn+1Zm−1, (4)

where Zn denotes the concentrations of the polymers of size n.
To simplify the following discussion, we will use the Einstein
summation notation: upper indexed quantities represent
vectors, lower indexed ones covectors, and repeated indexes
imply the summation over all the allowed values for those
indexes (1 ≤ n ≤ nmax and 2 ≤ m ≤ mmax, or 1 ≤ k ≤ kmax,
where nmax, mmax, and kmax are finite in closed systems but
infinite in open ones). To avoid confusion, exponents will
always act on parentheses (e.g., (a)n denotes the quantity a to
the power n).

The rate equations (2) assume the following form when
the expressions for both stoichiometric matrix (3) and fluxes
(4) are considered

Ż1 = κZ
�
Z2 − Z1�

+ κZ1Z1,

Żk = κZ
�
Zk+1 − 2Zk + Zk−1�

+ κZ1 �
Zk − Zk−1�

, for k ≥ 2,

(5)

where Z ≡ kmax
k=1 Zk denotes the total concentration. The

second term in the right hand side of (5) arises from the
constraint that the donor species cannot be monomers14 (see
Fig. 1(b)).

To model the open system we now assume that the
environment keeps the concentrations of some species
constant by refilling the consumed ones and eliminating the
produced ones, see Fig. 2. We call these species chemostats15

and we denote them with the indices ky ∈ ΩY, where ΩY ⊂ N
represents a subset of all species. The remaining (variable)
species are explicitly denoted by kx.

By definition, the chemostats’ concentrations must remain
constant, Żky = 0. The rate of chemostatted molecules
consumed by the reactions in the network must therefore
be balanced by the rate of chemostatted molecules in-
jected/rejected from the system. The rate of injection/rejection

FIG. 2. Pictorial representation of a reaction involving a chemostat. When a
reaction produces a chemostat (here a dimer), the environment extracts one
molecule of this species from the system (dotted light green reaction). On
the other hand, when a chemostat reacts, a new molecule is injected into the
system (dashed dark green reaction).
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of the kyth chemostat is quantified by the external currents,11

whose expression is

Iky =
1
2
∇ky
nm

�
J+nm − J−nm

�
= κZ

�
Z2 − Z1�

+ κZ1Z1 if ky = 1

= κZ
�
Zky+1 − 2Zky + Zky−1�

+ κZ1 �
Zky − Zky−1�

if ky ≥ 2. (6)

III. STEADY STATES: CONSERVATION LAWS,
CYCLES, AND DISSIPATION

Three different types of long-time behaviors have been
identified for our kinetic model: equilibrium, non-equilibrium
steady state and continuous growth. We start by focusing
on the chemostatting conditions leading to equilibrium or
non-equilibrium steady states. The existence and uniqueness
of the steady state are currently a priori assumed.

Closed systems always reach an equilibrium steady
state16 defined by Żkx

eq = 0,∀kx and Jnm
eq = 0,∀n,m. Their

dynamics is constrained by conservation laws,11,17,18 which
fully characterize the equilibrium concentration distribution.
Chemostatting generic chemical species may break these
conservation laws and may create chemical forces—also
called affinities.11 The appearance of affinities is directly
related to that of so-called emergent cycles, through which
the external chemical forces can act. In finite chemical
networks, if no emergent affinity arises from the chemostatting
procedure, the system will always relax to a unique
equilibrium state compatible with the chemostats and the
non-broken conservation laws.11,16 When emergent cycles—or
equivalently affinities—are generated, the system may evolve
towards a non-equilibrium steady state defined by ˙̄Z

kx
= 0, ∀kx

and J̄nm , 0 (non-equilibrium steady state quantities are
denoted by an overbar in the text). In Subsections III A–III C,
we analyze how the closed system’s conservation laws and
emergent cycles are modified by the gradual increase of
the number of chemostatted chemical species. In Subsection
III C, we relate these to the dissipation in the system.

A. Conservation Laws

Conservation laws denote the presence of physical
quantities which are conserved during the evolution of the
system, the so-called components. In general, they can be
identified from the cokernel space of the stoichiometric
matrix.11,17,18 Indeed, if lk ∈ coker∇, namely, if lk∇knm = 0,
the scalar lkZk is conserved

d
dt

�
lkZk

�
= lk Żk

=
1
2

lk∇knm
�
J+nm − J−nm

�
= 0. (7)

For the closed system, the equation leading to the
conservation laws is lk

n+1 − lkn = lkm − lk
m−1, for 1 ≤ n ≤ nmax

= kmax − 1 and 2 ≤ m ≤ mmax = kmax. It exhibits the following
solutions: l(1)

k
= α and l(2)

k
= α · k (where α is an arbitrary

constant, which is taken as one when expressing the
components), which correspond to the conservations of

the total concentration Z ≡ kmax
k=1 Zk and the total mass

M ≡ kmax
k=1 k Zk, respectively. Hence, kmax = M − Z + 1.

However, when the system is opened by setting
chemostats, the relevant stoichiometric matrix becomes the
stoichiometric submatrix of the variable species: ∇kx

nm. Also,
kmax = ∞. No matter what the sizes of the chemostatted
glucans are, neither the total concentration conservation law
lkx = α nor the total mass conservation law lkx = αkx survives
(i.e., they are not anymore elements of the cokernel space
of ∇kx

nm). We therefore say that the total mass and the total
concentration are broken conservation laws. Nevertheless,
when just one chemostat is present, ΩY ≡ {ky}, a new
conservation law emerges,

l(3)
kx
= α

�
kx − ky

�
. (8)

Hence, the system exhibits just one (net) broken conservation
law. It corresponds to the component

q = M − kyZ, (9)

which can assume any value in R and takes into account that
the total mass can change in the system only by multiples
of the chemostat mass, ky. In presence of more than one
chemostat, no conservation law survives.

The components derived in this section—M and Z for the
closed system and q for the network with one chemostat—will
be used to characterize the steady state distribution in Sec. IV.

B. Emergent cycles

A cycle represents a finite set of reactions which leave
the state of the network unchanged. Algebraically they are
represented as vectors cnm and they belong by definition to
the kernel space of the stoichiometric matrix (cnm ∈ ker∇):
1
2∇knmcnm = 0.

The steady-state currents satisfy ∇knm J̄nm = 0 and can
always be written as linear combinations of cycles. The
cycle space of our polymers system is however infinite
dimensional and its complete characterization is of little use.
However, in order to characterize non-equilibrium steady
states only the emergent cycles—those cycles that may appear
when chemostatted species are introduced—are needed.11

Physically, they represent cyclic transformations leaving the
variable species kx unchanged, but which would change the
concentrations of the chemostats ky if they were not kept
constant and contribute to the external currents.

An emergent cycle (γnm) is thus defined by


1
2∇kx

nmγ
nm = 0,

1
2∇

ky
nmγ

nm = ν
ky
γ , 0 for at least one ky,

(10)

where

ν
ky
γ



ky∈ΩY

denotes the amount of chemostats of mass ky

injected (minus sign) or rejected (plus sign) from the chemical
network during the transformation γnm. These quantities
cannot take arbitrary values, due to the constraints imposed
by the conservation laws of ∇knm. Indeed, for any conservation
law, l(i)

k
, a constraint of the following form holds:

l(i)
ky
ν
ky
γ = l(i)

ky
1
2∇

ky
nmγ

nm = 0. (11)
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Taking into account the total concentration l(1)
k
= α and total

mass l(2)
k
= αk conservation laws, derived in Sec. III A (the

emergent conservation law l(3)
k

is a linear combination of the
first two on the whole set of species indexes), we obtain the
following constraints:




ky ν
ky
γ = 0


ky kyν

ky
γ = 0

. (12)

Non-trivial solutions of this set of equations signal the
presence of emergent cycles, and thus of independent affinities,
which read11

Aγ =
1
2



nm

γnm ln


ky

(Zky)−∇
nm
ky . (13)

The set of linearly independent solutions of (12) gives the
number of independent emergent cycles in the chemostatted
chemical network. If we normalize this set so to have the
smallest non-vanishing integer values for νky

γ , these values
indicate the number of chemostatted species which are
introduced in or rejected from the system in precisely one
(emergent) cyclic transformation.

For less than three chemostats, only trivial solutions of
(12) exist and therefore no emergent cycle appears. For three
chemostats, we obtain one emergent cycle characterized by
the following normalized values for νky:

νky1 = ky3 − ky2,

νky2 = ky1 − ky3,

νky3 = ky2 − ky1,

(14)

where ky1, ky2, and ky3 represent the masses of the chemostats.
For any additional chemostat, we obtain an additional
emergent cycle, each characterized by its value for the
coefficients νky.

C. External currents and dissipation

We now show that at steady state, the emergent cycles
determine the external currents Īky and the entropy production
rate Σ.

We first observe that the steady-state external currents
Īky are in general linear combination of the coefficients νky

γi

and must satisfy the same constraints (Eq. (12)). Indeed, the
steady-state equations in presence of chemostats,


1
2∇kx

nm J̄nm = 0,
1
2∇

ky
nm J̄nm = Īky,

(15)

are equivalent to Eq. (10): the emergent cycles γnm are
substituted by the steady state currents J̄nm and the coefficients
νky by the steady-state external currents Īky. Thereby, if no
cycle emerges due to the chemostats, the steady-state external
currents Īky are vanishing, provided that the steady state exists.
The system is then at equilibrium.

The dissipation at steady state is intimately related to
the external currents.11 Indeed, the (non-negative) entropy
production rate for our chemical reaction network can be

TABLE I. Summary of the behaviors of our model for different numbers
of chemostats (ES stands for “equilibrium state” whereas NESS for “non-
equilibrium steady state”). The number of broken conservation laws and
independent affinities are also reported. The growth state occurs whenever
the concentration of the largest chemostat is larger than the concentration of
the smallest one: (Z ky larger ≥ Z ky1).

Number of
chemostats, sY

Broken c. laws,
b

Independent
affinities, a

Asymptotic
behavior

0 0 0 ES
1 1 0 ES
2 2 0 ES/growth
3 2 1 NESS/growth
4 2 2 NESS/growth

written as

Σ ≡ 1
2



nm

JnmR ln
J+nm

J−nm

= −


kx

ŻkxR ln
Zkx

Zkx
eq                                

≡ΣX

−


ky

IkyR ln
Zky

Zky
eq                              

≡ΣY

, (16)

where R is the gas constant. At the steady state, the
internal species’ contribution ΣX always vanishes. Hence,
the dissipation is characterized by the contribution due to the
chemostats ΣY, which is non-vanishing if the set of steady-state
external currents Īky is also non-vanishing. We also mention
that the steady state entropy production can be expressed
as the sum along a set of independent emergent cycles
of products of affinities (13) and emergent cycle currents11

Jγ: Σ̄ =


γ AγJγ.
Summarizing, the conservation laws provide us with

both the components—which are useful for expressing the
steady state distributions—and the constraints (Eq. (12))
on the emergent cycles of the network (Eq. (10)). Due to
these constraints, the first emergent cycle appears in the
system with three chemostats. For any additional chemostat
an additional independent cycle emerges. Through these
cycles the environment exerts chemical forces, which are
generated by the chemostats concentrations. The external
currents analyzed in Subsection III C result from these forces
and characterize the dissipation.

We emphasize that the relation between the number of
chemostats sY, of net broken conservation laws b, and of
emergent cycles a, is in perfect agreement with the general
result obtained for finite-dimensional phase space in Ref. 11
stating that

sY = b + a. (17)

These results are summarized in Table I.

IV. THE STATIONARY DISTRIBUTIONS

We now use the components introduced in Subsection
III A to derive the steady-state concentration distribution
for different number of chemostats. The conditions on the
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chemostats’ concentrations not leading to the steady state
solution are also identified.

From the steady-state equations corresponding to (5) and
from the equations for external currents (6), we can write
a general expression for the steady-state concentrations as a
function of the concentration of monomers, Z̄1, the fraction
of polymers larger than monomers, r̄ ≡ 1 − Z̄1/Z̄ , and the
chemostats fluxes, Īky, as follows:

Z̄k = Z̄1(r̄)k−1 +


ky∈ΩY

Īky

κ

1 − (r̄)k−ky

1 − r̄
Θ

�
k − ky − 1

�
, (18)

where Θ(·) represents the discrete step function (we refer
the reader to Appendix A for details). Here, the number
of chemostats is arbitrary, and since the external currents
at steady state satisfy the same constraints as in (12), only
sY − 2 of them are independent. In the next paragraphs, we
will discuss in detail the above expression for zero, one, two,
and three chemostats, and the variables Z̄1, r̄ , and Īky will be
expressed in terms of the components and of the chemostats’
concentrations.

A. Closed system

As previously discussed, the closed system exhibits the
following components: Z =

kmax
k=1 Zk and M =

kmax
k=1 k Zk. In

order to express the equilibrium distribution algebraically
as function of Z and M we consider the following limit
M ≫ Z . In this way kmax ∼ ∞ and imposing Z =

∞
k=1 Zk

and M =
∞

k=1 k Zk on expression (18) we can write Z̄1 and r̄
as functions of Z and M . Hence

Z̄k =
(Z)2
M

(
1 − Z

M

)k−1

. (19)

Fig. 3 shows the behavior of this distribution for different
values of Z and M . As expected, the higher the ratio between
the mass and the concentration M ≫ Z , the broader the
distribution.

Remark. The equilibrium distribution we obtained from
our dynamical description is equivalent to the result obtained

FIG. 3. Equilibrium concentration distribution for the closed system of
monomers-exchanging polymers at different values of the total concentration
Z and total mass M . The dark blue bar plot refers to the choice Z = 10 and
M = 15, while the light blue one to Z = 10 and M = 55.

using maximum entropy approaches and is consistent with
experimental observations.7 The equivalence is inferred by
comparing Eq. (19) with Eqs. (1), (3), and (4) in Ref. 7.

B. Open system: 1 chemostat

Introducing a chemostat breaks the concentration and
mass conservation laws, but a new one arises (8). As a result,
no affinity appears (sY = 1, b = 1, and a = 0) and the system
evolves towards an equilibrium state compatible with the
chemostat concentration Zky and the value of the component
q (9) (the steady-state external current vanishes, Īky = 0).
Also, since the system is now open, kmax is infinite.

Imposing the constraints on the expression for the steady
state (18), namely,


q = Z̄1 1 − ky (1 − r̄)

(1 − r̄)2
Zky = Z̄1(r̄)ky−1

, (20)

we can express the variables Z̄1 and r̄ numerically as functions
of q and Zky and obtain the equilibrium—exponential—
distribution as a function of q and Zky.

C. Open system: 2 chemostats

From two chemostats on, the infinite dimension of the
system starts to play a role. As discussed in Sec. III, two
chemostats are not enough to drive the network towards
a non-equilibrium steady state (sY = 2, b = 2, and a = 0):
Iky1 = 0 and Iky2 = 0, where ky1 and ky2 represent the masses
of the two chemostats (ky1 < ky2). Thus, imposing the known
values of the chemostat concentrations on expression (18)
leads to


Zky1 = Z̄1(r̄)ky1−1

Zky2 = Z̄1(r̄)ky2−1 , (21)

which only admits physical solutions if Zky1 > Zky2. In this
case, from (21) we obtain the equilibrium distribution

Z̄k = Zky1

(
Zky2

Zky1

) k−ky1
ky2−ky1

, (22)

which is broader the smaller Zky1 − Zky2 is or the larger
ky2 − ky1 is. When Zky1 ≤ Zky2 the equilibrium concentration
distribution becomes an increasing exponential which cannot
be reached. As a result the system will enter a regime of
continuous growth aimed at reaching that state (which we
analyze in Sec. V).

D. Open system: 3 chemostats

Three is the minimum number of chemostats able to drive
the system in a non-equilibrium steady state (Sec. III B).
Indeed, a class of emergent cycles appears (sY = 3, b = 2,
and a = 1) and the system exhibits a set of non-vanishing
external currents. If we impose the values for the chemostats’
concentrations on the general expression for the steady state
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(18), we obtain



Z̄ky1 = Z̄1(r̄)ky1−1,

Z̄ky2 = Z̄1(r̄)ky2−1 +
Īky1

κ

1 − (r̄)ky2−ky1

1 − r̄
,

Z̄ky3 = Z̄1(r̄)ky3−1 +
Īky1

κ

1 − (r̄)ky3−ky1

1 − r̄

+
Īky2

κ

1 − (r̄)ky3−ky2

1 − r̄
.

(23)

As discussed in Sec. III C, the external currents Īky are subject
to the same constraints as the emergent cycles and can be
written as linear combinations of them. Since we have one
class of emergent cycles, characterized by the νky values in
(14), we have that

Īkyi = Īνkyi, i = 1,2,3, (24)

where Ī ∈ R determines the exact value of the fluxes. As for
two chemostats, the set of equations in (23), in the variables Z̄1,
r̄ , and Ī, does not exhibit physical solutions if the concentration
of the largest chemostat is higher than the one of the smallest
one, i.e., Zky1 ≤ Zky3. On the other hand, whenever the above
condition is not fulfilled, the stationary solution is unique and
stable (Appendix B). Solving the system (23) numerically, we
obtain the values of Z̄1, r̄ , and Ī given Zky1, Zky2, and Zky3. In
Fig. 4, the distribution is shown for different values of these
concentrations.

The chemostat concentrations also determine the sign of
the related fluxes: if the concentration of the second chemostat
lies above the equilibrium distribution obtained by the first
and third one, we have a continuous flow of mass from
the intermediate chemostat towards the external ones (Ī > 0,
Fig. 4(a)). Vice versa, if the concentration of the second
chemostat lies below the equilibrium distribution obtained
by the first and the third one, we have a continuous flow
of mass from the smallest and largest chemostats towards
the intermediate one (Ī < 0, Fig. 4(b)). Importantly, whatever
physical value Zky1, Zky2, and Zky3 assume, the system cannot
exhibit a condition in which a net flux of matter from the
largest species to the smallest one occurs. This is clear by
looking at the νky-values in (14) used to express Īkyi, Eq. (24):
the sign of νky1 and νky3 is always the same, and opposite to
the one of νky2.

E. Open system: More chemostats

Going on adding chemostats, new independent classes
of emergent cycles appear. The procedure for determining
the steady-state distribution is equivalent to that discussed
is Subsections IV C and IV D. In these two cases we
proved that when the largest chemostat has a concentration
greater or equal to that of the smallest one, the system
does not reach a steady state. The same exact behavior has
been observed numerically for more chemostats, hence we
speculate that this property holds for an arbitrary number of
chemostats.

As a final remark, we point out that the steady-state
distributions do not depend on the value of the rate constant
κ. Indeed, solving Equations (20), (21), and (23) for Z̄1, r̄ ,

FIG. 4. Non-equilibrium steady-state distributions for the system of
monomer-exchanging polymers with three chemostatted species. In both of
the plots, the chemostats—highlighted in green and by the arrows—are ky1
= 2, ky2= 5, and ky3= 10. The orientation of the arrows denotes the sign of the
external fluxes of chemostats: arrows pointing up means chemostats leaving
the system, i.e., I ky > 0. The chosen chemostat’s concentrations are: plot (a)
Z ky1= 5, Z ky2= 7, and Z ky3= 2; plot (b) Z ky1= 5, Z ky2= 1, and Z ky3= 2.

and Īky/κ, we obtain them as functions of the components and
the chemostats’ concentrations. Since the latter do not depend
on κ, the same holds for Z̄1, r̄ , and Īky/κ. As a corollary
Īky is proportional to κ and the same holds true for entropy
production (16).

V. ASYMPTOTIC GROWTH REGIME

We mentioned in the previous section that the system does
not exhibit a steady state when the concentration of the largest
chemostat exceeds that of the smallest one, Zky1 ≤ Zky last—we
refer in the text to this configuration of chemostats leading to
continuous growth as “unbalanced.” The dynamical fixed point
moves outside the region of physical solutions—namely, to
r̄ ≥ 1, see Appendix B—and the system approaches the limit
r̄ → 1. This indicates that the concentration of the single
monomer species becomes negligible compared to the rest of
the species. Hence the system grows towards an unreachable
steady state with an exponentially increasing concentration
distribution.
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FIG. 5. Concentration distributions at different times are shown for system
in unbalanced conditions. Different colors from red to violet correspond
to exponentially increasing times. The set of plots is obtained by numer-
ical solution of differential equation (5). Absorbing boundary conditions
have been chosen, meaning that the concentration at the cutoff—here set to
kcutoff = 1000—is zero. We point out that this prescription is safe before the
cutoff is reached. In plot (a) we report a system with three chemostats. The
chemostat’s masses and the related concentrations chosen are: Z5= 1, Z19

= 7, and Z37= 2. The concentrations of the species between the chemostats
basically overlap at times t & 1 and become steady. Beyond this time the
growth only involves the species larger than the biggest chemostats. In plot
(b) we consider a system with monomers and dimers chemostatted: Z1= 3
and Z2= 4.

Fig. 5(a) shows the concentration distributions of an
unbalanced system at different times before the numerical
cutoff (more details are given in the related caption) is
reached. These different distributions show that while the
concentrations of the species between two chemostats stabilize
to steady values, the concentrations of the species larger than
the biggest chemostat do not. Hence, the system continuously
grows trying to populate the infinite size polymer. This
behavior has been observed taking into account different
number of chemostats and chemostats’ concentrations.

In order to characterize this growth algebraically, we
consider a system with monomer and dimer chemostats (ky1
= 1 and ky2 = 2) such that Zky1 ≤ Zky2. (The typical growth
obtained numerically in this scenario is shown in Fig. 5(b).)
Since the growth dynamics cannot be solved exactly, we
assume that the asymptotic concentration distribution can be
parametrized by (equilibrium) steady state expression (18)

with time dependent parameters, i.e.,

Zk(t) ≃ A(t)�a(t)�k−3
, for k ≥ 3, (25)

where A(t) and a(t) are unknown real functions of time.
To simplify the notation, let us denote the concentrations of
the chemostats by Y 1 ≡ Zky1 and Y 2 ≡ Zky2. The functions
A(t) and a(t) can be determined by means of the differential
equations for the total concentration Z and the total mass M ,

Ż = −I1 − I2 = −κZ(Z3 − Y 2) − κY 2Y 1,

Ṁ = −I1 − 2I2

= −κZ(2Z3 − 3Y 2 + Y 1) − κ2Y 2Y 1 + κY 1Y 1,

(26)

where Z , M and the concentration of trimers Z3 assume the
following form when ansatz (25) is taken into account,

FIG. 6. Stream plot of the differential equations (26) expressed in terms
of the ansatz functions a(t) (abscissa) and A(t) (ordinate). When balanced
chemostat concentrations are used, the fixed point takes values of a(t) in
]0,1[: plot (a). The chemostats chosen for this plot are Y 1= 4 and Y 2= 2.
Vice versa, when the chemostats are unbalanced (Y 1= 2 and Y 2= 4) the fixed
point moves outside from the physical region (a(t) > 1): plot (b).
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Z(t) ≃ A(t)
1 − a(t) + Y 1 + Y 2,

M(t) ≃ 3 − 2a(t)�
1 − a(t)�2 A(t) + Y 1 + 2Y 2,

Z3(t) ≃ A(t).

(27)

When the equations are expressed in terms of A(t) and a(t), the
stream plots for different values of the chemostats’ concen-
trations show that the ansatz captures the non-equilibrium
phase transition occurring when the chemostats become
unbalanced, see Fig. 6. Indeed, for balanced chemostats,
the system evolves towards a fixed point with a lying in
]0,1[, Fig. 6(a). On the other hand, when the chemostats are
unbalanced the fixed point lies beyond a = 1 signaling an
asymptotic growth regime, Fig. 6(b).

The numerical solution for A(t) and a(t) obtained using
(26) and (27) accurately characterizes the asymptotic growth.
Indeed, as seen in Fig. 7, when comparing the evolution of
Z and M obtained from A(t) and a(t) with that obtained by
numerically solving the rate equations, the former solution
overlaps with the latter before the cutoff used in the numerics

FIG. 7. Total concentration (a) and total mass (b) as functions of time in
the asymptotic growth regime. The numerical solution obtained using ansatz
(25) is plotted in green (dashed). These plots are compared with numerical
solutions of the system of differential equations (5) with different cutoffs
(blue curves). The chosen chemostat concentrations are: Y 1= 3 and Y 2= 4
while the initial condition imposed is Z k(t = 0)= 2

5 ( 2
5 )k . Finally, the chosen

cutoff concentrations are: kc= 200 (dark blue curve), kc= 500 (blue curve)
and kc= 1000 (light blue curve).

FIG. 8. Entropy production rate as a function of time in the asymptotic
growth regime. The numerical solution obtained using ansatz (25) is plotted in
green (dashed). This plot is compared with numerical solutions of the system
of differential equations (5) with different cutoffs (blue curves). In all the
plot, the entropy production rate is given in units of R. The chosen chemostat
concentrations are: Y 1= 3 and Y 2= 4 while the initial condition imposed is
Z k(t = 0)= 2

5 ( 2
5 )k . The chosen cutoffs kc are: 200 (dark blue curve), 500

(blue curve) and 1000 (light blue curve). Also, the inset shows in greater
details the initial transient relaxation stage.

is reached. We find that the total concentration grows linearly
with time whereas the mass quadratically.

Taking into account ansatz (25), entropy production rate
(16) becomes

Σ ≃ RI1 ln
A(t)

Y 1(a(t))2 + RI2 ln
A(t)

Y 2a(t) , (28)

where I1 and I2 can be written in terms of Y 1, Y 2, A(t), and
a(t) using Eq. (26). The latter is plotted in Fig. 8, where it is
compared with the numerical solutions for different cutoffs.
The agreement with the numerical solution is not perfect
but captures the linear asymptotic growth of the entropy
production rate reasonably well. Also, we point out that
the unbalanced dynamics shown in Fig. 8 exhibits an initial
transient relaxation stage shown in the inset.

We conclude mentioning that the same ansatz could
be used for systems characterized by more chemostats
with unbalanced concentrations. Indeed, the growth always
involves the species larger than the biggest chemostat, whereas
the species between chemostats converge faster to proper
steady values. Hence, fixing the concentration of these latter
species, we could assume a growth like (25) for the species
larger then the biggest chemostat and perform the same
analysis.

VI. CONCLUSIONS

This paper provides a kinetic description of systems
made of glucans and processed by the class of enzymes
known as D-enzymes. The action of the enzyme induces a
monomer-exchange process12 between pairs of glucans which
are distinguished by their mass or degree of polymerization.
Free monomers are not allowed to attach to other polymers4

implying that the total concentration and the total mass
are conserved when the system is closed. The system’s
dynamics is ruled by rate equations for the polymer
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concentrations endowed with mass action kinetics. We mimic
physiological conditions by introducing chemostats which
effectively describe the action of the environment by fixing the
concentrations of certain glucans. In this scenario, chemostats
represent species processed by the environment. For example,
they may represent species which need to be processed and
injected by the environment in the system; analogously, they
may represent final products of the metabolic processes which
are taken out of the system. Importantly, chemostatting the
system amounts to open it and introduce driving forces on the
non-chemostatted species.

Our main results are summarized in Table I. We identified
three types of different long-time behaviors depending on the
chemostatting conditions: equilibrium state, non-equilibrium
steady state, and continuous growth of the system. The closed
system as well as the open system with a single chemostat
always relax to an equilibrium state. In presence of two
chemostats the system will either relax to equilibrium or turn
into a state of continuous growth depending on whether or not
the concentration of the largest chemostat is lower than the
concentration of the smallest one. We proved that this latter
condition for growth holds true for up to three chemostats
and conjectured that it is generally true based on numerical
evidence. For more than two chemostats, if the concentration
of the largest chemostat is lower than that of the smallest
one, the system will reach a nonequilibrium steady state
where the chemostats continuously exchange matter across
the system. Our results confirm that, even in the infinite-
dimensional chemical network considered here, the number of
chemostats equals to the number of broken conservation laws
plus the number of emergent cycles (see Table I). A proof
of this equality for finite dimensional chemical networks
is provided in Ref. 11. We also emphasized the role of
the emergent cycles in driving the chemostatted chemical
networks towards nonequilibrium steady states rather than
equilibrium states.11

The metabolism of polysaccharides is a complex process
involving many steps and several enzymes2 and its complete
dynamical characterization is beyond the scope of the present
paper. We focused on the dynamical characterization of the
disproportionating action of D-enzymes in the breakdown
and synthesis processes of glucans.5 Under physiological
conditions, it has been pointed out that one of the possible
role of D-enzymes in these processes is to produce glucans
of large sizes (which are then processed by other enzymes)
starting from medium sized ones.5 Importantly, a production
of glucose (monomers in our descriptions) is expected too.5

This disproportionating behavior can be reproduced in a
(nonequilibrium) steady state by the three chemostats system
depicted in Figure 4(a). The intermediate high concentration
chemostatted glucans represent the species to be processed,
while the low concentration chemostatted glucans represent
the species to be produced—in this case the small and large
glucans. In this scenario, a continuous flow of intermediate
glucans enters the system and consequently both the smaller
and the larger glucans are steadily produced and expelled
from the system (Sec. IV D). We stress that the production
of the small glucans follows from the total concentration
conservation law (Sec. III A), i.e., the fact that free monomers

cannot attach to other glucans. As seen in Sec. IV C, two
chemostats are not sufficient to reproduce a nonequilibrium
steady state.

Also, under closed in vitro conditions, the equilibrium
distribution (which has also been analyzed in Ref. 9 and can
be equivalently obtained by means of maximum entropy
methods7) agrees with experiments.7 This means that if
chemostatting conditions could be implemented in vitro, our
predictions could be verified experimentally. Such a procedure
would also enable to engineer different polymer concentration
distributions.

The approach we developed could be easily extended
to describe the behavior of more sophisticated forms of
D-enzymes7 embedding further conservation laws. It is
also relevant to study any type of exchange process or
aggregation–fragmentation dynamics12 in an open system
framework,19–22 emphasizing the importance of conservation
laws and providing more insights into the mechanisms driving
these processes out of equilibrium.
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APPENDIX A: STEADY-STATE DISTRIBUTIONS

The generic expression for steady-state distribution (18)
can be obtained as follows. The steady-state equations can be
expressed as

Z̄
�
Z̄2 − Z̄1	

+ Z̄1Z̄1 = 0,

Z̄
�
Z̄k+1 − 2Z̄k + Z̄k−1	

+ Z̄1 �
Z̄k − Z̄k−1	

=
Īk

κ
δk ky∈ΩY, for k ≥ 2.

(A1)

Defining the variable ∆Z̄k ≡ Z̄k − Z̄k−1, they become

Z̄∆Z̄2 + Z̄1Z̄1 = 0,

Z̄
�
∆Z̄k+1 − ∆Z̄k

	
+ Z̄1∆Z̄k =

Īk

κ
δk ky∈ΩY, for k ≥ 2.

(A2)

Hence, by hierarchically substituting these expression one
into the other and using the variable r̄ ≡ 1 − Z̄1/Z̄ , we obtain

∆Z̄k = − (1 − r̄) Z̄1r̄k−2 +

+


ky∈ΩY

Īky

κ
r̄k−ky−1Θ

�
k − ky − 1

�
, (A3)

where Θ(·) represents the discrete step function,

Θ(k) =


0 if k < 0,
1 if k ≥ 0.

(A4)
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Finally,

Z̄k =

k

i=1

∆Z̄ i = Z̄1(r̄)k−1 +

+


ky∈ΩY

Īky

κ

1 − (r̄)k−ky

1 − r̄
Θ

�
k − ky − 1

�
, (A5)

which corresponds to Equation (18) in the main text.

APPENDIX B: THREE CHEMOSTATS STEADY STATE

We discuss the uniqueness and stability conditions for the
steady state when three chemostats are present.

From the constraints on the steady state (23) and from
the condition for external currents (24), we can write a single
steady state condition involving just r̄ as variable,�
νky3Z̄ky1 + νky1Z̄ky2

� (r̄)νky1+ν
ky3 − �

νky1 + νky3
�

Z̄ky2(r̄)ν
ky1

− �
νky3Z̄ky1 + νky1Z̄ky3

� (r̄)νky3

+
�
νky3Z̄ky2 + νky1Z̄ky3

�
= 0. (B1)

Let us define the variables x ≡ (r̄)νky3 and y ≡ (r̄)νky1, so that
the above-expressed steady-state condition can be written as
the intersection of two curves: a rectangular hyperbola and a
power law function


yh = y0 − z0

x − x0
,

yp = (x)ν
ky1/ν

ky3
,

(B2)

where the coefficients are given by

x0 =

�
νky1 + νky3

�
Z̄ky2

νky3Z̄ky1 + νky1Z̄ky2
,

y0 =
νky3Z̄ky1 + νky1Z̄ky3

νky3Z̄ky1 + νky1Z̄ky2
,

z0 =
νky1νky3

�
Z̄ky2 − Z̄ky1

� �
Z̄ky2 − Z̄ky3

�
�
νky3Z̄ky1 + νky1Z̄ky2

�2 .

(B3)

[The subscripts h and p simply help us to distinguish the
two functions.] From a geometrical point of view, physical
solutions are represented by those intersection points lying
in (x, y) ∈ (0,1) × (0,1). In order to prove that this happens
whenever Z̄ky1 > Z̄ky3 we observe that all of the possible
configurations of chemostat concentrations are described by
the following four cases for the parameters x0 and y0.

• x0 < 1 and y0 < 1 (z0 < 0). This condition implies
the following configuration for the chemostats: Z̄ky1

> Z̄ky2 > Z̄ky3.

In this case we have always one and only one
solution. Indeed, the center of the hyperbola (x0, y0)
lies in (0,1) × (0,1), and the upper right branch of
the hyperbola always intersects the power law in
x = 1 (which is non-physical). The left lower one,
instead, always intersects the power law for values in
(0,1) × (0,1) since yh(x = 0) > 0 (Fig. 9(a)).

• x0 < 1 and y0 > 1 (z0 > 0). This condition corresponds
to Z̄ky1 > Z̄ky2 and Z̄ky3 > Z̄ky2.

FIG. 9. Plots of the hyperbola (dark
purple curve) and power law (light pur-
ple curve) in (B2) for different config-
urations of parameters. The center of
the hyperbola is highlighted by a dark
purple dot, while the physical region by
the dashed orange lines. (a) x0 < 1 and
y0 < 1, (b) x0 < 1 and y0 > 1, (c) x0 > 1
and y0 < 1 and (d) x0 > 1, and y0 > 1.
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In this case we have one solution if and only
if Z̄ky1 > Z̄ky3. The center of the hyperbola lies
in (0,1) × (1,∞) and the upper left branch of the
hyperbola never intersects the power law. The right
lower one, instead, always intersects the power law in
x = 1, y = 1 (Fig. 9(b)). We have a further intersection
in the physical region if and only if dyp

dx
���x=1
>

dyp
dx

���x=1
,

which holds iff Z̄ky1 > Z̄ky3—indeed, x∗ : yh(x∗) = 0 is
such that x∗ > 0, for any choice of the chemostats.

• x0 > 1 and y0 < 1 (z0 > 0). This condition corresponds
to: Z̄ky1 < Z̄ky2 and Z̄ky3 < Z̄ky2.

Once again, we have one solution if and only if
Z̄ky1 > Z̄ky3. The center of the hyperbola lies in
(1,∞) × (0,1) and the right lower branch of the
hyperbola never intersects the power law. The upper
left one, instead, always intersects the power law in
x = 1, y = 1 (Fig. 9(c)). We have a further intersection
in the physical region if and only if dyp

dx
���x=1
>

dyp
dx

���x=1
,

which holds iff Z̄ky1 > Z̄ky3—indeed, yh(0) > 0 for any
choice of the chemostats.

• x0 > 1 and y0 > 1 (z0 < 0). This condition implies the
following configuration for the chemostats: Z̄ky1 < Z̄ky2

< Z̄ky3.

In this case we have no solutions. Indeed, the center
of the hyperbola lies in (x, y) ∈ (1,∞) × (1,∞) and
neither the upper right nor the lower left branch of
the hyperbola intersects the power law in the physical
region. The left lower one, indeed, always intersects the
power law in (1,1) which is non-physical (Fig. 9(c)).

Summarizing, we have a unique steady state whenever
the concentration of the largest chemostat is higher than the
concentration of the smallest one: Z̄ky1 > Z̄ky3.

Stability. In order to prove the stability of the fixed point
we resort to the following Lyapunov function:

L =


k

Zk ln
Zk

Zk
s
− (Z − Zs) . (B4)

It is easy to prove that this function is always positive and
vanishes only for Zk = Zk

s , where Zk
s represents the steady-

state solution. If the steady-state solution exists, namely,
if exists Zk

s : Żk
s = 0, the time derivative of the Lyapunov

function (B4) can be written as

dL
dt
=



kx

Żkx ln
Zkx

Zkx
s
. (B5)

Close to the steady state the above derivative is negative.
Spanning the phase space with small perturbations on every
concentration, we always obtain dL

dt ≤ 0, where the equal sign
is reached only at the steady state. Disregarding the infinite
dimension of the phase space, we consider the independent
set of perturbations labeled with the index k ′x and quantified
by the small real value ϵ

Zkx = Zkx
s + ϵδ

k′xkx, |ϵ | ≪ min
kx

Zkx
s . (B6)

Embedding these perturbation in (B5) and using rate equations
(5) we obtain

dL
dt
≃ − κ

Z1
s

�
Zs − Z1

s − Z2
s

�
ϵ2, for k ′x = 1,

dL
dt
≃ − κ

Zk′x
s

(
2Zs + 2Zk′x

s

− Zk′x+1
s − Zk′x−1

s − Z1
s

)
ϵ2, for k ′x , 1,

(B7)

which are always negative, no matter the sign of the
perturbation.
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We set up a rigorous thermodynamic description of reaction-diffusion systems driven out of equilibrium
by time-dependent space-distributed chemostats. Building on the assumption of local equilibrium,
nonequilibrium thermodynamic potentials are constructed exploiting the symmetries of the chemical
network topology. It is shown that the canonical (resp. semigrand canonical) nonequilibrium free energy
works as a Lyapunov function in the relaxation to equilibrium of a closed (resp. open) system, and its
variation provides the minimum amount of work needed to manipulate the species concentrations. The
theory is used to study analytically the Turing pattern formation in a prototypical reaction-diffusion system,
the one-dimensional Brusselator model, and to classify it as a genuine thermodynamic nonequilibrium
phase transition.
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Introduction.—Reaction-diffusion systems (RDSs) are
ubiquitous in nature. When nonlinear feedback effects
within the chemical reactions are locally destabilized by
diffusion, complex spatiotemporal phenomena emerge.
These latter ranging from stationary Turing patterns [1,2]
to traveling waves [3,4] play a critical role in the aggre-
gation and structuring of hard matter [5] as well as living
systems [6]. In biology, striking examples are embryogen-
esis determined by the prepatterning of morphogens [7–9]
and cellular rhythms regulated by calcium waves [10,11].
Nonequilibrium conditions consisting in a continual

influx of chemicals and energy are required to create and
maintain these dissipative structures. Since the original work
of Prigogine and Nicolis [12,13], which made clear how
order can emerge spontaneously at the expense of continu-
ous dissipation, much work has been dedicated to better
understanding the chaotic and nonequilibrium dynamics of
RDSs [14]. Most of it has focused on searching for general
extremum principles, e.g., in selecting the relative stability of
competing patterns [15]. Nevertheless, a complete frame-
work is still lacking that models RDSs as proper thermo-
dynamic systems in contact with nonequilibrium chemical
reservoirs subject to external work and entropy changes.
Such a theory is all the more necessary nowadays, when
promising technological applications, such as biomimetics
[16,17] and chemical computing [18], are envisaged that
deliberately exploit the self-organized structures of RDSs.
In this respect, the work needed to manipulate a Turing
pattern and the efficiency with which information exchanges
through traveling waves can occur are thermodynamic
questions of crucial importance.
In this Letter, we lay the basis to address these questions

by presenting a rigorous thermodynamic theory of RDSs
far from equilibrium. We take the viewpoint of stochastic

thermodynamics [19,20] and carry over its systematic way
to define thermodynamic quantities (such as work and
entropy), anchoring them to the (herein deterministic)
dynamics of the RDSs. Stochastic thermodynamics has
recently emerged as a comprehensive framework for
describing small systems arbitrarily far from equilibrium,
as it allows one to study the efficiency of thermal micro-
engines [21], rationalize the fluctuation theorems [22], and
connect information processing to work [23]. We supple-
ment this well-established approach with a novel yet pivotal
element, which is the inclusion of the conservation laws
[24–26] of the underlying chemical network (CN) for
constructing thermodynamic potentials under general non-
equilibrium conditions. Moreover, viewing the RDS as the
large size limit of stochastically reacting and diffusing
chemicals, we can study Turing patterns as instances of
thermodynamic nonequilibrium phase transitions [27–32].
Theory.—The description of Ref. [33] is extended to

CNs endowed with a spatial structure. We consider a dilute
ideal mixture of chemical species σ that diffuse within a
vessel V ∋ r with impermeable walls and undergo elemen-
tary reactions ρ. The abundance of some species is possibly
controlled by the coupling with external chemostats (if not,
the system is called closed). Hence, the concentration
Zσðr; tÞ of internal and chemostatted species, respectively
denoted x and y follows the reaction-diffusion equations

∂tZσ ¼ −∇ · Jσ þ
X
ρ

Sσ
ρjρ þ Iσ: ð1Þ

Fick’s diffusion currents Jσ ¼ −Dσ∇Zσ are responsible for
the transport of chemicals across space and vanish at the
boundaries of V; the external currents Iσ ≠ 0∀ y describe
the rate at which the controlled species are injected into the
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(open) system by the chemostats; Sσ
ρjρ gives the concen-

tration variation upon reaction ρ. Here, Sσ
ρ ¼ νσ−ρ − νσþρ is

the stoichiometric matrix, i.e., the negative difference
between the number of species σ involved in the forward
(þρ) and backward (−ρ) reaction and jρ ¼ jþρ − j−ρ is the
net reaction current. While the former specifies the CN
topology, the latter determines its kinetics. By virtue
of the mass-action kinetics assumption [34], each reaction
current is proportional to the product of the reacting

species concentrations, j�ρ ¼ k�ρ

Q
σZ

νσ�ρ
σ . For example,

the net current associated with the autocatalytic reaction

2X1 þ X2⇌
k−

kþ
3X1 (the core of the Brusselator model dis-

cussed later) is jρ ¼ kþZ2
X1
ZX2

− k−Z3
X1
, where νX1þρ ¼ 2,

νX2þρ ¼ 1, and νX1
−ρ ¼ 3. Thermodynamic equilibrium char-

acterized by homogeneous concentrations Zeq
σ is reached

when all external and reaction currents vanish identically,
jρ ¼ Iσ ¼ 0. It implies for the rate constants the local
detailed balance condition kþρ=k−ρ ¼

Q
σðZeq

σ ÞSσ
ρ . Such a

relation is taken to be valid irrespective of the system’s
state. The CN instead may be in a global nonequilibrium
state characterized by space-dependent concentrations
Zσðr; tÞ as a result of inhomogeneous initial conditions
or because of nonvanishing external currents Iσ . Yet, we
assume it to be kept by the solvent in local thermal
equilibrium at a given temperature T. Therefore, the species
can be assigned thermodynamic state functions, which have
the known equilibrium form valid for dilute ideal mixtures
but are a function of the nonequilibrium concentrations
Zσðr; tÞ (Ref. [35], Chap. 15).
A central role is played by the nonequilibrium chemical

potential μσðrÞ ≔ μ∘σ þ lnZσðrÞ (given in units of temper-
ature T times the gas constant R, as any other quantity
hereafter). It renders the local detailed balance in the form
kþρ=k−ρ ¼ expð−P

σ S
σ
ρμ

∘
σÞ involving only the difference

between the energy of formation of reactants and products.
Moreover, its variation across space and between species
gives the local diffusion and reaction affinity [34]

FσðrÞ ≔ −∇μσðrÞ; fρðrÞ ≔ −
X
σ

Sσ
ρμσðrÞ; ð2Þ

which are the thermodynamic forces driving the system.
We introduce as nonequilibrium potential the “canonical”

Gibbs free energy of the system G ≔
R
V dr

P
σðμσZσ − ZσÞ

(given up to a constant). It can be expressed in terms of the
equilibrium free energy Geq ¼ GðZeq

σ Þ as

G ¼ Geq þ LðZσkZeq
σ Þ ð3Þ

introducing the relative entropy for non-normalized con-
centration distributions

LðZσkZeq
σ Þ ≔

Z
V
dr

X
σ

�
Zσ ln

Zσ

Zeq
σ
− ðZσ − Zeq

σ Þ
�
: ð4Þ

Akin to the Kullback–Leibler divergence for probability
densities [36], Eq. (4) quantifies the dissimilarity between
two concentrations: Being positive for all Zσ ≠ Zeq

σ , it
implies that G is always larger than its equilibrium
counterpart Geq. Most importantly, it is minimized by
the relaxation dynamics of closed systems. This is shown
by evaluating the time derivative of Eq. (3) with the aid of
Eq. (1) at Iσ ¼ 0 and Eq. (2),

dtL ¼ dtG ¼ − _Σdff − _Σrct ≕ − _Σ ≤ 0; ð5Þ

and recognizing the standard form of the total entropy
production rate (EPR) _Σ split into its diffusion and reaction
parts [34]:

_Σdff ≔
Z
V
dr

X
σ

Jσ · Fσ; _Σrct ≔
Z
V
dr

X
ρ

jρfρ: ð6Þ

The relative entropy (4) possesses some important physical
features. First, in the absence of reactions, it gives the
total entropy produced by the diffusive expansion of
concentrations. For example, consider nA and nB moles
of inert chemicals A and B initially placed in the volume
fractions VA and VB, respectively. They relax to homo-
geneous concentrations with an entropy production −L ¼
nA logVA þ nB logVB that is exactly the entropy of mixing
of the two species [37]. It is remarkable that diffusive
dissipation and mixing entropy are, thus, fully described
in a purely information theoretic fashion, namely, as a
relative entropy between concentrations. Second, the rel-
ative entropy between reacting concentrations Zσðr; tÞ ¼
Z̄σðtÞϕσðr; tÞV and arbitrary reference homogeneous con-
centrations Zh

σ can be split into the relative entropy between
space-averaged concentrations Z̄σðtÞ ¼

R
V drZσðr; tÞ=V

and equilibrium ones Zeq
σ plus the relative entropy of the

normalized local modulations ϕσðrÞ around Z̄σ and the flat
distribution 1=V:

LðZσkZh
σÞ ¼ LðZ̄σkZh

σÞ þ
X
σ

Z̄σLðϕσk1=VÞ: ð7Þ

The positivity of relative entropy implies LðZσkZh
σÞ ≥

LðZ̄σkZh
σÞ; i.e., the free energy of a patterned system is

always larger than its homogeneous counterpart. Third,
different patterns may have the same relative entropy (see
Fig. 1) indicating that morphology and thermodynamics
need not be correlated [38].
The conservation laws of the CN play a central role in

building the nonequilibrium thermodynamics of the sys-
tem, i.e., in the derivation of Eqs. (3) and (4). The left null
vectors of Sσ

ρ, i.e.,
P

σl
λ
σSσ

ρ ¼ 0, define the components
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Lλ ¼
P

σl
λ
σZσ, which are the global conserved quantities

of the closed system: dt
R
V drLλ ¼ 0. For this reason, lλ

σ are
called conservation laws. Physically, they identify parts of
molecules called moieties exchanged between species [39].
When the system is opened by chemostatting, lλ

σ differ-
entiate into the lλu

σ ’s that are left null vectors of the
submatrix of internal species Sx

ρ and the lλb
σ ’s that are

not, namely,

X
x

lλu
x Sx

ρ ¼ 0;
X
x

lλb
x Sx

ρ ≠ 0: ð8Þ

Accordingly, the unbroken components Lλu ¼
P

σl
λu
σ Zσ

remain global conserved quantities of the system,
dt
R
V drLλu ¼ 0, while the broken ones Lλb ¼

P
σl

λb
σ Zσ

change over time, dt
R
V drLλb ¼

P
yl

λb
y
R
V drIy ≠ 0.

In light of that, the equilibrium condition
P

σS
σ
ρμ

eq
σ ¼ 0

corresponding to null reaction affinities fρ ¼ 0 implies that
μeqσ is a linear combination of the conservation laws lλ

σ.
This entails

R
V dr

P
σμ

eq
σ ∂tZσ ¼ 0, which yields, in turn, the

decomposition (3) when time integrating along a relaxation
dynamics that leads from Zσ to Zeq

σ [40].
Moreover, the conservation laws are the passkey to

construct the correct nonequilibrium thermodynamic
potential for open systems. For the latter, an additional
term appears when taking the time derivative of G due to
the external current in Eq. (1),

_Wchem ≔
Z
V
dr

X
y

μyðrÞIyðrÞ; ð9Þ

which defines the chemical work performed by the chemo-
stats. The second law (5) thus attains the new form

_Wchem − dtG ¼ _Σ ≥ 0; ð10Þ

where the EPR _Σ is still given by the two contributions
of Eq. (6) even for Iσ ≠ 0. Consequently, G is no longer
minimized due to the break of conservations laws.
Similar to equilibrium thermodynamics when passing from
canonical to grand canonical ensembles, one needs to
transform the free-energy G subtracting the energetic
contributions of matter exchanged with the reservoirs
[41]. This amounts to the moieties of the broken compo-
nents Myp ≔

P
λb
lλb
yp

−1 R drLλbðrÞ entering those chemo-
stats yp that break all conservation laws, times the reference
values of their chemical potential μrefyp (which simplifies to
μyp for homogeneous chemostats). The so-obtained semi-
grand Gibbs free energy

G ≔ G −
X
yp

μrefyp Myp ð11Þ

encodes CN-specific topological and spatial features thanks
to the freedom in the choice of yp and μrefyp . This allows one
to split the EPR

_Wdriv þ _Wnc − dtG ¼ _Σ; ð12Þ

in terms of the driving and the nonconservative chemical
work rate, respectively,

_Wdriv ≔ −
X
yp

dtμrefyp Myp; _Wnc ≔
X
y

Z
V
drIyF y: ð13Þ

The former results from time-dependent manipulations
of the reference chemostats yp, while the latter gives the
cost of sustaining chemical flows by means of the forces
F yðrÞ ¼ μyðrÞ −

P
yp μ

ref
yp

P
λb
lλb
yp

−1lλb
y measured with

respect to the reference chemical potentials μrefyp [40].
Equation (12) is a major result of this Letter and can be
verified by direct substitution. It quantifies exactly the
energy needed to manipulate, sustain, and create chemical
patterns. In the absence of driving (dtμrefyp ¼ 0) and non-

conservative forcing (F y¼0), it simplifies to dtG¼− _Σ≤0,
which proves that the CN, despite being open, relaxes to
equilibrium by minimizing the free energy G. Moreover, for
a generic open CN, the decomposition of G corresponding
to Eq. (3), i.e., G − Geq ¼ LðZσkZeq

σ Þ ≥ 0, and a time
integral between two nonequilibrium states connected
by an arbitrary manipulation turn Eq. (12) into a non-
equilibrium Landauer principle [36] for RDS,

FIG. 1. Sketch of two patterns with equal relative entropy. Any
transformation ϕðrÞ → ϕ0ðrÞ ¼ ϕðr0Þ with j∂r=∂r0j ¼ 1 corre-
sponding to a simple rearrangement of the local concentrations
leaves LðZjZeqÞ unchanged. This is rooted in the lack of
interactions between chemicals at the scale of the RDS.
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Wdriv þWnc − ΔGeq ≥ ΔLðZσkZeq
σ Þ: ð14Þ

The latter states that the dissipative work spent to
manipulate the CN is bounded by the variation in relative
entropy between the boundary states and their respective
equilibria attained by stopping the driving and zeroing the
forcing.
Turing pattern in the Brusselator model.—As first

proposed by Turing in his seminal paper [42], RDSs

undergo a spatial symmetry breaking leading to a stationary
pattern when at least two chemical species react nonlinearly
and their diffusivities differ substantially. A minimal
system that captures these essential features is the
Brusselator model [43] in one spatial dimension. Here,
the concentrations of two chemical species, an activator
ZX1

¼ x1ðr; tÞ and an inhibitor ZX2
¼ x2ðr; tÞ, evolve in

time and space r ∈ ½0; l� according to the RDS (1) for the
chemical equations in Fig. 2, namely,

∂t

�
x1
x2

�
¼

�
k1y1 − k−1x1 − k2y2x1 þ k−2y3x2 þ k3x21x2 − k−3x31 − k4x1 þ k−4y4 þDx1∂2

rx1;

k2y2x1 − k−2y3x2 − k3x21x2 þ k−3x31 þDx2∂2
rx2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼J ðx1;x2Þ

: ð15Þ

The y1, y2, y3, and y4 are the homogeneous concen-
trations of the chemostatted species, and the diffusivities
satisfy the Turing condition Dx1 ≪ Dx2 . Equation (15)
admits a homogeneous stationary solution ðxh1; xh2ÞT that
becomes unstable for y2 ≥ yc2 so that a sinusoidal pattern
with wave number qc and amplitude proportional to the (in
general complex) function Aðr; tÞ starts developing around
the space-averaged concentrations x̄ðtÞ [35]:
�
x1ðr; tÞ
x2ðr; tÞ

�
¼

�
x̄1ðtÞ
x̄2ðtÞ

�
þ
�

1

ux2

�
½Aðr; tÞeiqcr þ c:c:�:

ð16Þ

The critical values yc2 and qc are determined by the
condition of marginal stability of the homogeneous
state: They are the smaller values for which the matrix
∂xJ ðxh1; xh2Þ (evolving linearized perturbations) acquires a
zero eigenvalue, the corresponding eigenvector being
ð1; ux2ÞT. Near the onset of instability, one can treat
ϵ ¼ ðy2 − yc2Þ=yc2 ≪ 1 as a small parameter and carry out
a perturbation expansion in powers of ϵ. This leads to the
amplitude equation for Aðr; tÞ [44],

τ∂tA ¼ ϵA − αjAj2Aþ ξ∂2
rA; ð17Þ

which describes an exponential growth from an initial small
perturbation Aðr; 0Þ ≃ 0 followed by a late-time saturation
due to the nonlinear terms in Eq. (15). Amplitude equations
provide a general quantitative description of pattern for-
mation in several systems near the onset of instability [45],
irrespective of the details of the underlying physical process
that is subsumed into the effective coefficients τ, α, and ξ.
Since Eq. (17) can be seen as a gradient flow in a complex
Ginzburg-Landau potential involving a bifurcation as ϵ
turns positive, pattern formation is usually considered a
dynamical phase transition [46]. Here, using an analytical

approximate solution to Eq. (15) valid for ϵ ≪ 1, we show
that the phenomenon is, in fact, a genuine thermodynamic
phase transition identified by the appearance of a kink
singularity at yc2 in the nonequilibrium free energy Gðy2Þ.
The semigrand canonical free energy of Fig. 2 is calculated
[40] taking the stationary stable solution corresponding to a
given value of y2, i.e., the homogenous one for y2 ≤ yc2 and
the patterned one for y2 > yc2, namely,

�
xp1 ðrÞ
xp2 ðrÞ

�
∼
�

1

ux2

� ffiffiffi
ϵ

α

r
2 cosðqcrÞ: ð18Þ

FIG. 2. Nonequilibrium semigrand Gibbs free energy G for the
Brusselator model as a function of the chemical potential of the
chemostatted species ZY2

obtained by the analytic stationary
solution of the amplitude equation. To define G, we choose y1 and
y2 as the reference chemostats breaking the two components
L1 ¼ x1 þ x2 þ y1 þ y4 and L2 ¼ y2 þ y3. The dotted line rep-
resents the free energy G in the unstable homogeneous system
before the pattern growth. Symbols (⋆) result from numerical
integration of Eq. (15). Inset: The derivative ∂G=∂μY2

displays a
discontinuity at yc2 ≃ 2.66.
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The physical meaning of the kink at y2 ¼ yc2 is best
understood noticing that the quantity ∂G=∂μY2

¼
_Wdriv=dtμY2

is the driving work upon a quasistatic
manipulation of the chemical potential μY2

. In particular,
for y2 > yc2 it represents the minimum work needed to
vary the wave number qc of the Turing pattern (18).
Interestingly, the total EPR shows no singularity at the
transition (cf. Fig. 3): Moving across yc2, the EPR of
reaction _Σrct decreases with respect to the homogeneous
state value _Σh, while a nonzero EPR of diffusion appears,
their sum being continuous. This is different from what
has been observed in some previous studies of non-
equilibrium phase transition [27–31].
Conclusion.—We presented the nonequilibrium thermo-

dynamics of RDSs and exemplified the theory with the
application to the Brusselator model. We went beyond
the conventional treatment of classical nonequilibrium
thermodynamics [47] in two respects: avoiding to linear-
ize the chemistry, i.e., to oversimplify reaction affinities to
currents times Onsager coefficients; explicitly building
thermodynamic potentials that act as Lyapunov functions
in the relaxation to equilibrium provide minimum work
principles and reveal the existence of nonequilibrium
phase transitions. As demonstrated by the paradigmatic
case of the Brusselator model, the framework can be
directly applied to quantify the energy cost of pattern
manipulations in complex biochemical systems [48–50]
and paves the way to study information transmission
in signal transduction [51], quorum sensing [52], and
chemotaxis [53].
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We here recall the basic ingredients underlying the dynamics and thermodynamics of reaction–diffusion systems
(RDS). In the following sections, the algebraic details underlying our main results are explained.

The evolution in time of the concentration of each chemical species σ is ruled by a reaction–diffusion equation

∂tZσ(r) = −∇ · Jσ(r) +
∑
ρS
σ
ρ jρ(r) + Iσ(r) . (1)

The diffusion currents (null at the boundaries of the system) follow from Fick’s first law

Jσ(r) = −Dσ∇Zσ(r) , (2)

whereas the reaction ones satisfy the mass-action kinetics

jρ(r) = k+ρ
∏
σ[Zσ(r)]ν

σ
+ρ − k−ρ

∏
σ[Zσ(r)]ν

σ
−ρ . (3)

The currents Iσ(r) are non zero only for the chemostatted species y, and only at the points where the chemostats are
located.
Enforcing the hypothesis of local equilibrium [1], we prescribe that each point in space is characterized by a

well-defined Gibbs free energy density

g(r) =
∑
σ [µσ(r)−RT ]Zσ(r) , (4)

where the chemical potential of the species is that of a dilute ideal gas

µσ(r) = µ◦σ +RT ln {Zσ(r)/Z0} . (5)

As discussed in Refs. [2], the term proportional to the total concentration, −RT∑σZσ(r), is due to the solvent. Z0 is
the concentration of the solvent. Dynamics and thermodynamics are connected by the local detailed balance,

k+ρ
k−ρ

=
∏

σ

(Zeq
σ )S

σ
ρ = exp

{
−∑σ [µ◦σ −RT lnZ0]Sσρ

}
, (6)

which relates the ratio of forward and backward reaction rates to the difference of standard-state chemical potentials,
µ◦σ. Since Z0 is constant, the term −RT lnZ0 is absorbed in µ◦σ in the main text. Integrating Eq. (4) over all volume
V, we obtain the Gibbs free energy of RDS,

G =
∫

V
dr [µσ(r)Zσ(r)−RT∑σZσ(r)] . (7)

We finally recall that the forces which act on RDS are related to either spatial gradients of concentrations

Fσ(r) := −∇µσ(r) , (8)

or to chemical reactions

fρ(r) := −∑σµσ(r)Sσρ . (9)

These forces are called affinities and they vanish only at thermodynamic equilibrium: for each point of space r,
Jσ(r) = 0 for all σ and jρ(r) = 0 for all ρ.
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DYNAMICS AND THERMODYNAMICS OF CLOSED RDS

We now discuss the minimization of the Gibbs free energy as closed RDS relax to equilibrium, and show how this
minimization is related to the entropy production rate (EPR).

In closed CNs Iσ(r) = 0 for all σ, namely there is no exchange of matter with the chemostats. We also assume that
closed RDS always relax to thermodynamic equilibrium. At equilibrium, Zeq

σ must be homogeneous, i.e. ∇Zeq
σ = 0 for

all σ, as a consequence of F eq
σ = 0 for all σ. All affinities related to chemical reactions must also vanish

f eq
ρ =

∑
σµ

eq
σ Sσρ = 0 , for all ρ , (10)

which implies that the chemical potentials can be written as a linear combination of conservation laws

µeq
σ =

∑
λψλ`

λ
σ . (11)

The conservation laws are left null vectors of the stoichiometric matrix S. They identify components, Lλ(r) :=∑
σ`
λ
σZσ(r), namely global conserved quantities in closed RDS. Indeed,

dt
∫

V
drLλ(r) =

∫

V
dr
∑
σ`
λ
σdtZσ(r) =

∫

V
dr
∑
σ`
λ
σ

[
−∇ · Jσ(r) +

∑
ρS
σ
ρ jρ(r)

]
= 0 , (12)

where the first term vanish because Jσ(r) vanishes at the boundaries, whereas the second one because of the definition
of `λσ.
We can now show that the Gibbs free energy can be expressed in terms of a relative entropy for non-normalized

concentrations distribution, i.e. Eq. (4) of the main text. We first observe that the difference between G of a generic
state Zσ(r) and that of a reference homogeneous state, Zh

σ , can be written as

G−Gh =
∫

V
dr
∑
σ

[
(µσ(r)− µh

σ)Zσ(r)−RT (Zσ(r)− Zh
σ)
]

+
∑
σµ

h
σ

∫

V
dr
[
Zσ(r)− Zh

σ

]
. (13)

We now notice that using the definition of chemical potential, Eq. (5), the first term on the rhs can be recast into (up
to a global factor equal to RT )

L(Zσ‖Zh
σ) :=

∫

V
dr
∑
σ

{
Zσ(r) ln Zσ(r)

Zh
σ

−
[
Zσ(r)− Zh

σ

]}
≥ 0 , (14)

which is akin to a relative entropy for non-normalized distributions. It is indeed always non-negative and vanish only
when Zσ = Zh

σ . The second term in Eq. (13) is in general different from zero, but when the homogeneous reference
state is the equilibrium one, Zh

σ = Zeq
σ , then it vanishes. The latter fact is due to the properties of equilibrium chemical

potentials, Eq. (11), and the properties of conservation laws, Eq. (12). Therefore,

G−Gh = RTL(Zσ‖Zh
σ) +

∑
σµ

h
σ

∫

V
dr
[
Zσ(r)− Zh

σ

]
(15)

holds in general, but when the equilibrium state is chosen as a reference, one has

G−Geq = RTL(Zσ‖Zeq
σ ) ≥ 0 . (16)

Crucially, the last equation tells us that G takes its minimum value at equilibrium, where it becomes

Geq =
∑
λψλLλ −RTV

∑
σZ

eq
σ . (17)

We now relate the changes of G to the EPR when the RDS relaxes to equilibrium. By taking the time derivative of
the Gibbs free energy (7), we obtain

dtG =
∫

V
dr
∑
σµσ(r)

{
−∇ · Jσ(r) +

∑
ρS
σ
ρ jρ(r)

}
. (18)

Notice that the first term in curly brackets can be written as

−
∫

V
dr
∑
σµσ(r)∇ · Jσ(r) =

∫

V
dr
∑
σ {−∇ · [Jσ(r)µσ(r)] + Jσ(r) · ∇µσ(r)} . (19)
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The divergence theorem, together with the fact that the currents vanish at the boundaries, implies that the first term
on the rhs vanishes. The second term, instead, is minus the EPR due to diffusion

T Σ̇dff :=
∫

V
dr
∑
σJσ(r) · Fσ(r) = RT

∫

V
dr
∑
σDσ

‖∇Zσ(r)‖2
Zσ(r) ≥ 0 , (20)

where we used the definition of diffusion affinity given in Eq. (8).
The second term in curly brackets of Eq. (18) is easily recognized as minus the EPR due to the reactions

T Σ̇rct :=
∫

V
dr
∑
ρjρ(r)fρ(r) = RT

∫

V
dr
∑
ρjρ(r) ln j+ρ(r)

j−ρ(r) ≥ 0 , (21)

where we used the definition of reaction affinity given in Eq. (9). The last equality in Eq. (21) is sometimes called
reaction isotherm of flux–force relation and follows from the assumption of elementary reactions (mass-action kinetics)
and the local detailed balance, Eq. (6). We can thus conclude that

dtG = −T Σ̇dff − T Σ̇rct ≡ −T Σ̇ ≤ 0 , (22)

which, together with Eq. (16), also demonstrates that G is a Lyapunov function in closed RDS.

DYNAMICS AND THERMODYNAMICS OF OPEN RDS

Open RDS are characterized by nonvanishing currents Iσ(r) for the species y which are chemostatted. As a
consequence, the time derivative of the Gibbs free energy reads

dtG = Ẇchem − T Σ̇ , (23)

where

Wchem =
∫

V
dr
∑
yµy(r)Iy(r) , (24)

is the chemical work, namely the free energy exchanged with the chemostats. Crucially, even if the open RDS is
prepared in such a way to relax to an equilibrium concentration distribution (more about these conditions will be
given later), G is not minimized anymore. The reason is that Geq depends on all conservation laws, Eq. (17), but in
open RDS some conservation laws are broken. Broken conservation laws, labeled by λb, are those minimal subset of
conservation laws such that

∑
x`
λb
x Sxρ 6= 0 for at least one ρ. As a consequence, the related components change due to

the exchange of chemostatted species with the environment

dt
∫

V
drLλb(r) =

∑
y`
λb
y

∫

V
drIy(r) 6= 0 . (25)

The subset of conservation laws which are not broken by the exchange of mass are labeled by λu. They are characterized
by the fact that

∑
x`
λu
x Sxρ = 0 for all ρ, and as a consequence dt

∫
V drLλu(r) = 0.

In order to find the potential which is minimized at equilibrium in open RDS, we need an expression for the EPR
which, in contrast to Eq. (23), accounts for the broken conservation laws.

EPR Decomposition

We will now derive Eq. (12) of the main text, namely an EPR decomposition which accounts for those RDS-specific
topological properties encoded in conservation laws.

We start by partitioning the set of chemostatted species y into two disjoint groups, to which belong species denoted
yp and yf . The first group is composed by a minimal set of chemostats that break all broken conservation laws when
starting from the closed CN. Clearly, the number of species yp equals that of λb. All other chemostatted species fall
into the second group. From the fact that the set of conservation laws is linearly independent, it follows that the
matrix whose entries are `λb

yp is square and nonsingular. The entries of the inverse matrix are denoted by `yp
λb

−1.
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We now observe that this partitioning allows us to recast Eq. (25) as

dtMyp =
∫

V
dr Iyp(r) +

∑
λb
`
yp
λb

−1∑
yf
`λb
yf

∫

V
dr Iyf (r) , (26)

where

Myp :=
∑
λb
`
yp
λb

−1
∫

V
drLλb(r) , (27)

are defined as the moiety concentrations.
At this point we choose some reference values µref

yp for the chemical potentials of the species yp. These can be chosen
arbitrarily among the values of µyp(r) where Zyp(r) are controlled by the chemostats. With this prescription, we can
rewrite Eq. (26) as

µref
yp dtMyp = dt

[
µref
yp Myp

]
+ dtµref

yp Myp = µref
yp

∫

V
dr Iyp(r) + µref

yp

∑
λb
`
yp
λb

−1∑
yf
`λb
yf

∫

V
dr Iyf (r) . (28)

When inserting the above identity in the definition of chemical work, Eq. (24), we obtain

Ẇchem = dt
[∑

yp
µref
yp Myp

]
−∑yp

dtµref
yp Myp +

∑
y

∫

V
drIy(r)Fy(r) , (29)

where the fundamental chemical forces are defined as

Fy(r) := µy(r)−∑yp
µref
yp

∑
λb
`
yp
λb

−1
`λb
y . (30)

Overall, the EP can be written as

T Σ̇ = Ẇdriv + Ẇnc − dtG (31)

(Eq. (12) in the main text) where

Ẇdriv = −∑yp
dtµref

yp Myp (32)

is defined as the driving work rate,

Ẇnc =
∑
y

∫

V
drIy(r)Fy(r) (33)

as the nonconservative chemical work, and finally

G = G−∑yp
µref
yp Myp (34)

is the semigrand Gibbs free energy. These three terms reflect the three fundamental forms of dissipation occurring in
RDS. Ẇdriv involves the time derivative of µref

yp , hence it accounts for external manipulation via time-dependently driven
chemostats and vanishes for autonomous RDS. Ẇnc is the sum of a minimal number of current–force terms. It describes
the thermodynamic cost of sustaining currents of chemicals across the system and vanishes in detailed-balanced RDS,
see next section. Finally, −dtG is the conservative contribution which quantifies the dissipation during transient
dynamics and vanishes at steady states.
We now briefly linger on the definition of fundamental force, Eq. (30). For the chemostatted species yp, the forces

read Fyp(r) = µyp(r)− µref
yp . Therefore, they simply accounts for differences of chemical potential of the same species

in different points of the boundaries. They originate steady currents of chemicals across the RDS which not necessarily
involve reactions. In contrast, Fyf (r) = µyf (r)−∑yp

µref
yp

∑
λb
`
yp
λb

−1
`λb
yf also accounts for chemical potential differences

of different species which are coupled by reactions. Therefore, they originate steady currents of chemicals which involve
reactions.
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Open Detailed-Balanced RDS

Open detailed-balanced RDS can relax to equilibrium despite the fact that they exchange matter with the environment.
As we now show, this happens when all fundamental forces vanishing and the time-dependent driving is stopped.

Let us assume that the open RDS relaxes to equilibrium. From Eq. (11), it follows that
∑
λb
ψλb`

λb
yp = µref

yp , (35)

where we have used the fact that `λu
yp = 0, for all λu, by definition of unbroken conservation law. In words, Eq. (35)

tells us that the equilibrium distribution must be shaped by the reference chemical potentials. We can thus rewrite the
semigrand Gibbs potential as

G = G−∑λb
ψλb

∫

V
drLλb(r) , (36)

whose expression is reminiscent of a Legendre transform of G with respect to the broken components. Using the
equilibrium expression of G, Eq. (17), one can write the equilibrium semigrand potential as

Geq =
∑
λu
ψλu

∫

V
drLλu(r)−RTV∑σZ

eq
σ . (37)

We thus readily get that

G − Geq = G−∑λψλ

∫

V
drLλ(r)−RTV∑σZ

eq
σ = RTL(Zσ‖Zeq

σ ) ≥ 0 . (38)

holds far from equilibrium.
Equation (38) tells us that G takes its minimum value at the equilibrium distribution identified by the reference

chemical potentials, Eq. (35). However, G may not be effectively minimized by the dynamics, namely dtG 
 0. This
happens only when all fundamental forces vanish and the time-dependent driving is stopped. Then, Eq. (31) becomes

dtG = −T Σ̇ ≤ 0 , (39)

which, in combination with Eq. (38), demonstrates the role of G as a Lyapunov function in open detailed-balanced
RDS.
Some comments are in order regarding the requirements that all fundamental forces vanish. First, F∗yp = 0 if and

only if µ∗yp(r) = µref
yp wherever exchange with the chemostats is allowed. Physically, this means that there cannot

develop steady diffusion currents of yp due to gradients of µyp(r) imposed by the chemostats. Second, F∗yf = 0 if and
only if the chemical potentials of yf at the points where exchange is allowed are constant and equal to

µ∗yf (r) =
∑
yp
µref
yp

∑
λb
`
yp
λb

−1
`λb
yf . (40)

Hence, steady diffusion currents of yf and steady currents of chemical reactions across the RDS are prevented.

Nonequilibrium Landauer’s Principle

In absolute generality, Eqs. (31) and (38) can be combined in the form

Ẇnc + Ẇdriv − dtGeq = RT dtL(Zσ‖Zeq
σ ) + T Σ̇ . (41)

where Zeq
σ must be understood as the equilibrium concentration distribution identified by µref

yp , Eq. (35). Clearly, the
latter distribution is achieved when stopping the driving and turning off the fundamental forces, so that Eq. (39) is
recovered. When integrating over time between two arbitrary nonequilibrium concentration distributions we obtain

Wnc +Wdriv −∆Geq = RT ∆L(Zσ‖Zeq
σ ) + TΣ . (42)

(Eq. (14) in the main text). The positivity of the EP thus bounds the overall work, Wnc + Wdriv − ∆Geq, to be
greater than the difference of relative entropies, which measure the distance from equilibrium of the initial and final
distribution.
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Homogeneous Chemostatted Species Limit

We now discuss the case of homogeneous chemostatting used in the second part our Letter. It can be seen as
the limit of fast-diffusing chemostatted species. In this limit Jy(r) = 0, or equivalently ∇µy = 0, for time scales
comparable to those of reactions. Therefore, the reaction–diffusion equation for the concentrations of chemostatted
species become balance equations of the form

dtZy =
∑
ρS
y
ρjρ(r) + Iy(r) , (43)

with external currents in general different from zero everywhere in the vessel. In this limit, the chemical work (24)
becomes

Ẇchem =
∑
yµy

∫

V
drIy(r) . (44)

One can as well determine the EPR decomposition (31) in this limit. First, one has that µyp = µref
yp for all r. Hence,

the expressions of semigrand Gibbs free energy and driving work reads identical as in Eqs. (34) and (32). Instead,
there cannot be fundamental forces Fyp = 0 due to differences of chemical potentials of yp. The other fundamental
forces are instead homogeneous, and can be expressed as

Fyf := µyf −
∑
yp
µyp

∑
λb
`
yp
λb

−1
`λb
yf , (45)

so that the related nonconservative contributions read Ẇnc = Fyf

∫
V drIyf (r).

BRUSSELATOR MODEL

We study the Brusselator model as an open CN constituted of two dynamical species X1, X2 and four homogeneously
chemostatted species Y1, . . . , Y4. Their concentrations are denoted by x1(r, t), x2(r, t) and y1, . . . , y4, respectively. The
chemical equations governing the CN are depicted in the upper left corner of Fig. 2 in the main text. Their main
feature is the autocatalytic reaction ρ = 3 that is responsible of the nonlinear effects at the basis of patter formation.
The stoichiometric matrix of the closed CN

Sσρ =




1 −1 1 −1
0 1 −1 0
−1 0 0 0
0 −1 0 0
0 1 0 0
0 0 0 1




(46)

possesses two conservation laws `1σ = (1 1 1 0 0 1) and `2σ = (0 0 0 1 1 0) that are both broken by chemostatting. The
species Y1 and Y2 are chosen to be the reference chemostats yp. Other choices do not change qualitatively our results.

The reaction-diffusion equations for the Brusselator model in one spatial dimension [0, `] 3 r read, in vector form,

∂t

(
x1
x2

)
=
(
k1y1 − k−1x1 − k2y2x1 + k−2y3x2 + k3x

2
1x2 − k−3x

3
1 − k4x1 + k−4y4 +Dx1∂

2
rx1

k2y2x1 − k−2y3x2 − k3x
2
1x2 + k−3x

3
1 +Dx2∂

2
rx2

)
:= J (x1, x2). (47)

Setting all partial derivatives to zero in Eq. (47), one finds the unique stationary homogeneous solution

(xh
1 , x

h
2)T =

(
k1y1 + k−4y4
k−1 + k4

,
(k2y2 + k3x

h
1)xh

1

k−2y3 + k3xh
1

2

)T

. (48)

Its linear stability against small perturbations is analyzed by applying to (47) a Fourier transform x(q, t) :=∫
drx(r, t)eiqr and considering its Jacobian matrix evaluated in the homogeneous state (xh

1 , x
h
2)T:

∂xJ (xh
1 , x

h
2) =

(
−(k−1 + k4)− k2y2 − 3k−3x

h
1

2 −Dx1q
2 k−2y3 + k3x

h
1

2

k2y2 − 2k3x
h
1x

h
2 + 3k−3x

h
1

2 −k−2y3 − k3x
h
1

2 −Dx2q
2

)
. (49)
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The eigenvalues λ±(q) of (49) are most easily expressed by means of the Jacobian’s trace and determinant:

T (q) := Tr{∂xJ (xh
1 , x

h
2)} , D(q) := Det{∂xJ (xh

1 , x
h
2)} , λ±(q) = 1

2

[
T (q)±

√
T 2(q)− 4D(q)

]
. (50)

The homogeneous solution is stable if both eigenvalues are negative, while it is unstable if at least one eigenvalue is
positive. The Turing mechanism requires the homogeneous state to be stable in the absence of diffusion, i.e. λ±(0) 6 0,
and to turn unstable for some finite value of q. In view of (50), these two conditions correspond to, respectively,

T (0) < 0 and D(0) > 0 , D(q) 6 0 for some q . (51)

Since D is an upward parabola in q2, the critical wavelength qc of the Turing pattern is determined by looking for the
value of q which first makes D negative:

1
2q
∂D
∂q

∣∣∣∣
q=qc

= 0 , i.e. qc =

√
Dx1(k3xh

1
2 − k−2y3) +Dx2(2k3xh

1x
h
2 − k2y2 − k4 − 3k−3xh

1
2 − k−1)

2Dx1Dx1

. (52)

The critical value of the chemostat concentration yc
2 is fixed by setting D(qc) = 0, which corresponds to the condition

of marginal stability of the homogeneous state, i.e. λ+(qc) = 0. We call (1, ux2)T the corresponding eigenvector.
The above linear stability analysis suggests that sufficiently close to the threshold value yc

2 the concentrations are
well described by

(
x1(r, t)
x2(r, t)

)
=
(
x̄1(t)
x̄2(t)

)
+
(

1
ux2

)(
A(r, t)eiqcr + c.c.

)
, (53)

with A(r, t) following the so-called amplitude equation

τ∂tA = εA− α|A|2A+ ξ∂2
rA. (54)

The latter can be derived by a multiple scale expansion based on the replacements ∂r → ∂r +
√
ε∂r and ∂t → ε∂t

together with the expansion of (x1, x2)T in powers of the small reduced parameter
√
ε :=

√
(y2 − yc

2)/yc
2 [3]. This

formalizes the intuitive idea that the amplitude A(r, t) describes slow modulations of the pattern around its leading
critical mode. Thus, it changes sizeably only over long distances r′ =

√
εr and large times t′ = εt, related by the

diffusive scaling x′2 ∼ t′. Truncating the expansion at lowest order gives (54), whose effective coefficients are expressible
in closed form if the backward reactions are neglected [4]:

τ := 1 + εy1
1− ε2 , η := Dx1

Dx2

, α := −8 + 38y1η + 5y2
1η

2 − 8y3
1η

3

9y3
1η(1 + y1η) , ξ := 2

1 + y1η
. (55)

Hence, hereafter we focus on the weakly reversible case k+ρ = 1 � k−ρ = 10−4, and to obtain analytic results we
approximate k−ρ = 0 as far as purely dynamical expressions are concerned. From here on, we also make use of the
no-flux boundary conditions of Eq. (47): they restrict the spectrum of Fourier modes x(q, t) ∼ cos(qr), and impose
that the critical wavenumber qc is a multiple of 2π/`.

First, we look for an analytic solution of the amplitude equation (54). Very close to the critical point inhomogeneous
solutions of (54) may be just small modulations with wavelength close to qc. Though, such solutions do not conform
with the no-flux conditions at the boundaries r = {0, l} and thus must be excluded. Therefore, (54) admits only a
real-valued homogeneous solution

A(t) =
√

ε

α− exp[− 2ε
τ (t− t0)]

, (56)

that for long times relaxes to the patter maximum amplitude
√
ε/α. Second, we focus on the space-averaged

concentrations. Integrating Eqs. (47) over space and adding them up we obtain,

dtx̄1 + dtx̄2 = y1 − x̄1 , (57)

which shows that x̄1 attains the same value in the homogeneous and patterned stationary state, i.e. x̄h
1 = x̄p

1 = y1.
In fact, the numerical solution of (47) shows that x̄1(t) varies very little during the formation of the pattern (e.g. a
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relative variation smaller than 10−4 is observed at ε = 0.05) so that the approximation x̄1(t) ' y1 is legitimate at all
times. Then, an approximate solution for x̄2(t) is found by using (56) together with (53), namely,

(
x1(r, t)
x2(r, t)

)
=
(

y1
x̄2(t)

)
+
(

1
ux2

)
2A(t) cos(qcr), (58)

plugging it into (47) and averaging over space. We arrive at

dtx̄2 = y1y2 − x2
1x2 = y1y2 − 4A2(t)ux2 − (y2

1 + 2A2(t)ux2)x̄2, (59)

whose solution

x̄2(t) = 1
γ(t)

[
y2 + y1

∫ t

t0

dt′γ(t′)(y2 − 4A2(t′)ux2)
]

with γ(t) = ey
2
1t

[
α
τ + exp

(
−2 ετ (t− t0)

)
α
τ + exp

(
−2 ετ t0

)
] τ

α

(60)

can be given explicitly in terms of hypergeometric functions (being cumbersome we avoid to present it here). The
dynamics of the pattern formation is thus fully characterized for ε� 1. The long time solution (58) and (60), i.e.

(
xp

1(r)
xp

2(r)

)
=
(
y1
x̄p

2

)
+
(

1
ux2

)√
ε

α
2 cos(qcr) , (61)

is employed to evaluate the Gibbs free energy and the EPR of the pattern.
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Abstract
Starting from the detailed catalyticmechanismof a biocatalyst we provide a coarse-graining procedure
which, by construction, is thermodynamically consistent. This procedure provides stoichiometries,
reaction fluxes (rate laws), and reaction forces (Gibbs energies of reaction) for the coarse-grained level.
It can treat active transporters andmolecularmachines, and thus extends the applicability of ideas that
originated in enzyme kinetics. Our results lay the foundations for systematic studies of the
thermodynamics of large-scale biochemical reaction networks.Moreover, we identify the conditions
underwhich a relation between one-way fluxes and forces holds at the coarse-grained level as it holds
at the detailed level. In doing so, we clarify the speculations and broad claimsmade in the literature
about such a general flux–force relation. As a further consequencewe show that, in contrast to
commonbelief, the second lawof thermodynamics does not require the currents and the forces of
biochemical reaction networks to be always aligned.

1. Introduction

Catalytic processes are ubiquitous in cellular physiology. Biocatalysts are involved inmetabolism, cell signaling,
transcription and translation of genetic information, as well as replication. All these processes and pathways
involve not only a few but rather dozens to hundreds, sometimes thousands of different enzymes. Finding the
actual catalyticmechanismof a single enzyme is difficult and time consumingwork. To date, formany enzymes
the catalyticmechanisms are not known. Even if such detailed informationwas at hand, including detailed
catalyticmachanisms into a large scalemodel is typically unfeasable for numerical simulations. Therefore, larger
biochemical reaction networks contain the enzymes as single reactions following enzymatic kinetics. This
simplified description captures only the essential dynamical features of the catalytic action, condensed into a
single reaction.

The history of enzyme kinetics [1] stretches backmore than a hundred years. After the pioneering work of
Brown [2] andHenri [3],Michaelis andMenten [4] laid the foundation for the systematic coarse graining of a
detailed enzymaticmechanism into a single reaction. Since then, a lot of different types ofmechanisms have
been found and systematically classified [5]. Arguably, themost important catalysts in biochemical processes are
enzymes—which are catalytically active proteins. However, other types of catalyticmolecules are also known,
some of themoccur naturally like catalytic RNA (ribozymes) or catalytic anti-bodies (abzymes), some of them
are synthetic (synzymes) [5]. For our purposes it does notmatter which kind of biocatalyst is being described by a
catalyticmechanism—we treat all of the above in the sameway.

From amore general perspective, other scientificfields are concernedwith the question of how to properly
coarse grain a process aswell.While inmost applications the focus lies on the dynamics, or kinetics, of a process,
it turned out that thermodynamics plays an intricate role in this question [6]. For processes occurring at
thermodynamic equilibrium, every choice of coarse graining can bemade thermodynamically consistent—after
all, the very foundation of equilibrium thermodynamics is concernedwith reduced descriptions of physical
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phenomena [7]. Instead, biological systems are open systems exchanging particles with reservoirs and as such
they are inherently out of equilibrium.Nonequilibriumprocesses, in general, do not have a natural coarse
graining.

When the particle numbers in a reaction network are small, it needs to be described stochastically with the
chemicalmaster equation. Indeed, there is increased interest in the correct thermodynamic treatment of
stochastic processes [8, 9].With stochastic processes it is possible to investigate energy-conversion inmolecular
motors [10–13], error correction via kinetic proofreading [14–16], as well as information processing in small
sensing networks [17–19]. In this field, different suggestions arose for coarse grainingsmotivated by
thermodynamic consistency [20–22]. In these cases, the dissipation in a nonequililibriumprocess is typically
underestimated—although also overestimationsmay occur [23]. For a general overview of coarse-graining in
Markov processes, see [24] and references therein.

For large-scale networks however, a stochastic treatment is unfeasable. On the one hand, stochastic
simulations quickly become computationally so demanding that they are effectively untractable. On the other
hand, when species appear in large abundances (e.g.metabolic networks) the stochastic noise is negligible. This
paper is exclusively concernedwith this latter case. The dynamics is governed by deterministic differential
equations: the nonlinear rate equations of chemical kinetics. Assuming a separation of time scales in these
equations,model reduction approaches have been developed [25–27]. However, they do not address the
question of thermodynamic consistency. Remarkably, recent development in the thermodynamics of chemical
reaction networks [28, 29]highlighted the strong connection between the thermodynamics of deterministic rate
equations and of stochastic processes, including the relation between energy, work, and information.
Unfortunately, these studies were limited to elementary reactions withmass–action kinetics. The present paper
addresses this constraint, thus extending the theory to kinetics of coarse-grained catalysts.

Understanding the nonequilibrium thermodynamics of catalysts is a crucial step towards incorporating
thermodynamics into large-scale reaction networks. There is ongoing effort in the latter [30–32]which very
often is based on the connection between thermodynamics and kinetics [33–35].

In this paperwe showhow to coarse grain the deterministic description of any biocatalyst in a
thermodynamically consistent way—extending the applicability of such simplifications even tomolecular
motors [10, 36] and activemembrane transport [37]. The starting point is the catalyticmechanismdescribed as a
reversible chemical reaction networkwhere each of theM reaction steps ρ is an elementary transition
representing a conformational change of amolecule or an elementary chemical reactionwithmass–action
kinetics. The corresponding rates are given by the fluxes (kinetic rate laws), fr

, that incorporate the reaction rate

constants and the dependence on the concentration of the reactantmolecules. Themass–action reaction forces
(negative Gibbs free energies of reaction) are f f-D =r r r

+ -G RT ln [38]. At this level, the reaction currents,

f f= -r r r
+ -J , of these elementary steps are alignedwith their respective reaction forces[39]: when one is

positive, so is the other. Fromherewe construct a reduced set ofC reactions with effective reaction fluxes ya
 and

net forces−ΔαG. Aswewill see later, there is a limited freedom to choose the exact set of reduced reactions.
Nonetheless, the number of reduced reactions is independent of this choice.

By construction, our coarse graining procedure captures the entropy-production rate (EPR) [39, 40] of the
underlying catalyticmechanism,

å ås f f y y- - D = - - D
r

r r r
a

a a a
+ - + -≔ ( ) ( )T G G 0,

M C

even though the numberC of effective reactionsα ismuch smaller than the numberM of original reaction steps
ρ. Therefore, our procedure is applicable in nonequilibrium situations, such as biological systems. In fact, the
above equation is exact under steady-state conditions. In transient and other time-dependent situations the
coarse graining can be a reasonable approximation.We elaborate this point further in the discussion.

Secondly, wework out the condition for this coarse graining to reduce to a single reactionα. In this case, we
prove that the followingflux–force relation holds true for this coarse-grained reaction:

y
y

-D =a
a

a

+

-G RT ln .

A trivial consequence is that the coarse-grained reaction current, y y= -a a a
+ -J , is alignedwith the net force,

−ΔαG. In the past, such aflux–force relation has been used in the literature [41, 42] after its general validity was
claimed [33] and later questioned [31, 34]. Fromhere the belief arises that in every biochemical reaction network
with any type of kinetics the currents and the forces of each reaction individually need to be aligned, a constraint
used especially influx balance analysis [43–45]. However, as we show in this paper, this relation does not hold
when the coarse-graining reduces the biocatalyst to two ormore coupled reactions.
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This paper is structured as follows: first we present our results. Then, we illustrate ourfindings with two
examples: thefirst is enzymatic catalysis of two substrates into one product. This can be reduced to a single
reaction, for whichwe verify theflux–force relation at the coarse-grained level. The second example is amodel of
activemembrane transport of protons, which is a prototype of a biocatalyst that cannot be reduced to a single
reaction. Afterwards, we sketch the proofs for our general claims. Finally, we discuss our results and their
implications. Rigorous proofs are provided in the appendix.

2. Results

Ourmain result is a systematic procedure for a thermodynamically consistent coarse graining of catalytic
processes. These processesmay involve several substrates, products,modifiers (e.g. activators, inhibitors) that
bind to or are released from a singlemolecule—the catalyst. The coarse graining involves only a few steps and is
exemplified graphically infigure 1:

(1) Consider the catalytic mechanism in a closed box and identify the internal stoichiometric cycles of the
system. An internal stoichiometric cycle is a sequence of reactions leaving the state of the system invariant.
Formally, internal stoichiometric cycles constitute the nullspace of the full stoichiometricmatrix, .

(2) Consider the concentrations of all substrates, modifiers, and products (summarized as Y) constant in
time—therefore reduce the stoichiometricmatrix by exactly those species. The remaining species,X,
representN different states of the catalyst. As a consequence, the reduced stoichiometricmatrix, X , has a
larger nullspace: new stoichiometric cycles emerge in the system. These emergent cycles cause a turnover in
the substrates/products while leaving the internal species invariant. Choose a basis, aC , of emergent
stoichiometric cycles that are linearly independent from the internal cycles.

(3) Identify the net stoichiometry,  aCY , together with the sum, -DaG, of the forces along each emergent
cycleα.

(4) Calculate the apparent fluxes ya
 along the emergent cycles at steady state.

Figure 1.Overview of the coarse-graining procedure: (Left) the starting point is a reaction networkwith elementary reactions
followingmass–action kinetics in a steady state. This example contains two catalyticmechanisms [blue boxes] and for illustrative
purposes some additional arbitrary reactions. Each of the two catalyst species, E and M, is conserved throughout the network. The
reaction partners of the catalysts re-appear in the rest of the network. From the perspective of the remaining network, only the
turnover [blue arrows] of thesemolecules are relevant. The involved concentrationsmay be global, as for S, or refer to different well
stirred sub-compartments [green box], as for P. (Right)The procedure provides few coarse-grained reactions [blue arrows] that
replace the originallymore complicatedmechanisms. The kinetic rate laws,ψ, of the coarse-grained reactions are different from
mass–action.We construct them explicitly during the coarse-graining procedure, so that the turnover is correctly reproduced.
Combinedwith the coarse-grained reaction forces [Gibbs free energies] also the entropy-production rate is reproduced exactly.We
work out the coarse graining of these two catalysts, E and M, in detail in section 3.
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For each emergent stoichiometric cycleα this procedure provides a new reversible reactionwith net
stoichiometry  aCY , net force−ΔαG, and net fluxes ya

. Furthermore, it preserves the EPR and, therefore, is
thermodynamically consistent.

Our second result is a consequence of themain result: we prove that the flux–force relation is satisfied at the
coarse-grained level by any catalyticmechanism forwhich only one single cycle emerges in step 2 of the
presented procedure, as in example 3.1.Whenmore cycles emerge, the flux–force relation does not hold aswe
show in the explicit counter-example 3.2.

3. Examples

3.1. Enzymatic catalysis
Let us consider the enzyme E that we introduced infigure 1. It is capable of catalyzing a reaction of two
substrates, S1 and S2, into a single productmolecule, P. The binding order of the two substrates does notmatter.
Every single one of these reaction steps is assumed to be reversible and to followmass–action kinetics. For every
reactionwe adopt a reference forward direction. Overall, the enzymatic catalysis can be represented by the
reaction network infigure 2.

We apply ourmain result to this enzymatic scheme and thus construct a coarse-grained description for the
net catalytic action.We furthermore explicitly verify our second result by showing that the derived enzymatic
reactionfluxes satisfy the flux–force relation.

3.1.1. Closed system—internal cycles
When this system is contained in a closed box, nomolecule can leave or enter the reaction volume. The
dynamics is then described by the following rate equations:

= ( ) ( )z J z
t

d

d
, 1

wherewe introduced the concentration vector z , the current vector ( )J z , as well as the stoichiometricmatrix :
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In the dynamical equations, only the currents ( )J z depend on the concentrations, whereas the
stoichiometricmatrix  does not. The stoichiometricmatrix thus imposes constraints on the possible steady-
state concentrations that can be analyzedwithmere stoichiometry: at steady state the current has to satisfy

= ( )J z0 ss or, equivalently, Î( )J z kerss . In our example, the nullspace ker is one-dimensional and
spanned by = - -( )C 1 1 1 1 0 0 .int Hence, the steady-state current is fully described by a single scalar
value, =( )J z CJ .ss int int The vector Cint represents a series of reactions that leave the system state unchanged: the
two substrates are bound along reactions 1 and 4 and released again along reactions−3 and−2. In the end, the
system returns to the exact same state as before these reactions. Therefore, we call this vector internal
stoichiometric cycle. Having identified this internal cycle renders the first step complete.

Figure 2.An enzymatic scheme turning two substrates into one product. The substrates can bind in arbitrary order.We adopt a
reference direction for the individual reactions: forward is from left to right, as indicated by the arrows. The backward reactions are
from right to left, thus every single reaction step is reversible. This scheme has a clear interpretation as a graph: the reactions are edges,
reactants/products are vertices, where different combinations of reactants/products are considered different vertices. This graph has
three disconnected components and contains no circuit.
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Note that this stoichiometric cycle does not correspond to a self-avoiding closed path, or circuit, in the
reaction graph infigure 2. This is due to the fact that combinations of species serve as vertices. If instead each
species individually is a vertex, then also each cycle corresponds to a circuit.

In the followingwe explainwhy the first step of the procedure is important. The closed systemhas to satisfy a
constraint that comes fromphysics: a closed systemnecessarily has to relax to a thermodynamic equilibrium
state—which is characterized by the absence of currents of extensive quantities on any scale. Thus
thermodynamic equilibrium is satisfied if =J 0int . One can show that this requirement is equivalent to
Wegscheider’s condition [46]: the product of the forward rate constants along the internal cycle equals that of
the backward rate constants,

=- - - - ( )k k k k k k k k . 21 4 3 2 1 4 3 2

Furthermore, irrespective of thermodynamic equilibrium, the steady state has to be stoichiometrically
compatible with the initial condition: there are three linearly independent vectors in the cokernel of :

For each such vector, the scalar º ℓ · zL evolves according to = =¶
¶

ℓ ℓ· · ( )z J z 0
t

, and thus is a conserved
quantity.We deliberately chose linearly independent vectors with a clear physical interpretation. These vectors
represent conservedmoieties, i.e. a part of (or an entire)molecule that remains intact in all reactions. The total
concentration of the enzymemoiety in the system is given by LE. The other two conservation laws, L1 and L2, are
the total concentrations ofmoieties of the substrates, S1 and S2, respectively.

Given a set of values for the conserved quantities from the initial condition,Wegscheider’s condition on the
rate constants ensures uniqueness of the equilibrium solution [46].

3.1.2. Open system—emergent cycles
So farwe only discussed the system in a closed box that will necessarily relax to a thermodynamic equilibrium.

Wenowopen the box and assume that there is amechanism capable offixing the concentrations of S1, S2

and P to some given levels. These three species therefore no longer take part in the dynamics. Formally, we
divide the set of species into two disjoint sets:

È     { } { }E, ES , ES , ES S , EP S , S , P .

X Y

1 2 1 2 1 2

Thefirst are the internal species,X, which are subject to the dynamics. The second are the chemostatted species,Y,
which are exchangedwith the environment.We apply this splitting to the stoichiometricmatrix,

 


=
⎛
⎝⎜

⎞
⎠⎟,

X

Y

and the vector of concentrations, = ( )z x y, . Analogously, the rate equations for this open reaction system split
into

¶
¶

= ( ) ( )x J x y
t

, , 3X

º
¶
¶

= +( ) ( ) ( )y J x y I x y
t

0 , , . 4Y

The equation (4) ismerely a definition for the exchange current I , keeping the speciesY at constant
concentrations. Note that the exchange currents I quantify the substrate/product turnover. The actual
dynamical rate equations, the equation (3), are a subset of the original equations for the closed system, treating
the chemostats as constant parameters. Absorbing these latter concentrations into the rate constants, we arrive at
a linearODE systemwith new pseudo-first-order rate constants ˜( )yk . For these rate equations, one needs to
reconsider the graphical representation of this reaction network: since the chemostatted species now aremerely
parameters for the reactions, we have to remove the chemostatted species from the former vertices of the
network representation and associate them to the edges. The resulting graph representing the open network is
drawn infigure 3.
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The steady-state current = ( )J J x y,ss ss of equation (3)needs to be in the kernel of the internal
stoichiometricmatrix X only. This opens up new possibilities. It is obvious that ker is a subset of ker X , but

ker X is in fact bigger. In our examplewe nowhave two stoichiometric cycles,

ð5Þ

Thefirst cycle is the internal cycle we identified in the closed system already: it only involves reactions that leave
the closed system invariant, thus upon completion of this cycle not a singlemolecule is being exchanged. The
second cycle is different: upon completion it leaves the internal species unchanged but chemostatted species are
exchangedwith the environment. Since this type of cycle appears only upon chemostatting, we call them
emergent stoichiometric cycles. Overall, the steady-state current is a linear combination of these two cycles:

= +J C CJ Jss int int ext ext. This completes step 2.
These two stoichiometric cycles correspond to circuits in the open reaction graph.We give a visual

representation on the right offigure 3. As a consequence of workingwith catalysts, the vertices of the reaction
graph for the open system coincidewith the internal speciesX. Therefore, for all catalysts the cycles of the open
system correspond to circuits in the corresponding graph.

The cycles are not the only structural object affected by the chemostatting procedure: the conservation laws
change aswell. In the enzyme examplewe havemerely one conservation law left—that of the enzymemoiety, LE.
The substratemoieties are being exchangedwith the environment, which renders L1 and L2 broken conservation
laws. Overall, upon adding three chemostats two conservation lawswere broken and one cycle emerged. In fact,
the number of chemostatted species always equals the number of broken conservation laws plus the number of
emergent cycles [47].

3.1.3. Net stoichiometries and net forces
Thenet stoichiometryof the emergent cycle is + S S P1 2 . This represents a single reversible reactiondescribing
thenet catalytic actionof the enzyme. For a complete coarse graining,we still need to identify thefluxes and thenet
force along this reaction. Its net force is givenby the sumof the forces along the emergent cycle.Collecting theGibbs
energies of reaction in a vector, D D D≔ ( )G G G, ...,r 1 6 , this sum is conciselywritten as

-D - D =
- - - -

≔ · [ ][ ]
[ ] ( )C GG RT

k k k k

k k k k
ln

S S

P
. 6ext ext r

1 4 5 6 1 2

1 4 5 6

One could also ask about the net stoichiometry and net force along the internal cycle. However, we have
 =C 0int since the internal cycle does not interact with the chemostats.Moreover, the net force along the
internal cycle is

- D = =- -

- -
· ( )C G RT

k k k k

k k k k
ln 0 7int r

1 4 3 2

1 4 3 2

by virtue ofWegscheider’s condition.

3.1.4. Apparent fluxes
Wenowdetermine the apparentfluxes along the two cycles of the system. To that end, we first solve the linear
rate equations to calculate the steady-state concentrations and the steady-state currents. For the steady-state

Figure 3. (Left)Enzymatic catalysis as an open chemical network. The species S1, S2 and P are now associated to the edges of the graph,
instead of being part of its vertices as in figure 2. This graph has only one connected component and contains three distinct circuits.
(Center, right)Graphical representation of the two circuits spanning the kernel of X . The lower left triangle constitutes the third
circuit. It can be recovered by a linear combination of the other two circuits.
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concentrations we use a diagrammaticmethod popularized byKing andAltman [48] that we summarize in
appendix A.

As derived in step 2 of the procedure, the steady-state current vector is

Hence the two cycle currents are

= - = - = = -- -[ ] [ ][ ] [ ] [ ][ ]J J k k J J k kES E S , EP E P .int 2 2 2 2 2 ext 6 6 6

With the explicit steady-state concentrations given in appendix A.1, wefind (see appendix B.1 for details):
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x
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Here, LE is the total amount of available enzyme, ( )yNE is a positive quantity that depends on the chemostat
concentrations aswell as all rate constants, and

x = + + +-
- -

-
( ) [ ] [ ]
y k

k k

k
k

k k

k
S

S
.3 1

2 3 2

1
2

2 3

4

As expected, the current along the emergent cycle Jext is not zero, provided that its net force is not zero.
However, note that the current along the internal cycle does not vanish either, even though its ownnet force is
zero. Both currents vanish onlywhen the net force,-D Gext , vanishes—which is at thermodynamic
equilibrium.

Finally, we decompose the current y y= -+ -Jext into the apparent fluxes

y
x

y
x

= > = >+ -
- - - -

( )
( ) [ ][ ] ( )

( ) [ ] ( )y

y

y

y

L

N
k k k k

L

N
k k k kS S 0, P 0. 9E

E
1 4 5 6 1 2

E

E
1 4 5 6

Here, it is important to note thatwhile

y y- = -+ -
-[ ] [ ][ ]k kEP E P ,6 6

there are several cancellations happening in the derivation of equation (8) implying that

y y¹ ¹+ -
-[ ] [ ][ ]k kEP , E P .6 6

Weelaborate on these cancellations in this special case in appendix B.1 aswell as for the general case in
appendix B.3.

3.1.5. Flux–force relation
With the explicit expressions for the net force, equation (6), and the apparent fluxes, equation (9), of the
emergent cycle we explicitly verify the flux–force relation at the coarse-grained level:

y
y

= = -D
+

-
- - - -

[ ][ ]
[ ]RT RT

k k k k

k k k k
Gln ln

S S

P
.1 4 5 6 1 2

1 4 5 6
ext

Thisflux–force relation implies that the reaction current is always alignedwith the net force along this reaction:
>  -D >J G0 0ext ext . In other words, the reaction current directly follows the force acting on this reaction.
In fact, in this casewe can connect the flux–force relation to the second law of thermodynamics. The EPR

reads



s

y y
y
y

=- D = - D - D

=- D = -+ -
+

-

( ) · · ·
( )

x y J G C G C GT J J

J G RT

,

ln 0.

ss ss r int int r ext ext r

ext ext

With this representation, it is evident that the flux–force relation ensures the second law: s 0.Moreover, we
see explicitly that the EPR is faithfully reproduced at the coarse-grained level. This shows the thermodynamic
consistency of our coarse-graining procedure.
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3.2. Activemembrane transport
Wenow turn to the second example introduced infigure 1: amembrane protein, M, thatmodels a proton pump
similar to the one presented in [37]. It transports protons fromone side of themembrane (side a) to the other
(side b). Themembrane protein itself is assumed to be charged to facilitate binding of the protons and to have
different conformations -M and -M where it exposes the binding site to the two different sides of the
membrane. Furthermore, when a proton is bound, it can either bind another substrate Swhen exposing the
proton to side a—or the respective product P when the proton is exposed to side b. The latter could be some
other ion concentrations on either side of themembrane—or an energy rich compound (ATP) and its energy
poor counterpart (ADP). The reactionsmodeling thismechanism are summarized in the reaction graph in
figure 4.

In order tofind a coarse-grained description for this transporter we apply our result. Since the procedure is
already detailed in example 3.1, we omit some repetitive explanations in this example.

3.2.1. Closed system—internal cycles
This closed systemhas no cycle, thereforeWegscheider’s conditions do not impose any relation between the
reaction rate constants. There are three conservation laws in the closed system,

They represent the conservation ofmembrane protein (LM), proton (LH), and substratemoieties (LS),
respectively, showing that these three are conserved independently. For any initial condition, the corresponding
rate equations will relax to a unique steady-state solution satisfying thermodynamic equilibrium, =( )J z 0.

3.2.2. Open system—emergent cycles
Wenowfix the concentrations of the protons +Ha and +Hb in the two reservoirs, as well as the substrate and the
product concentrations. The reaction network for this open system is depicted infigure 5. The open system still
has a conservedmembrane proteinmoiety while the conservation laws of protons and substrate are broken
upon chemostatting. Furthermore, there are two emergent cycles now,

ð10Þ

Their visual representation as circuits is given on the right offigure 5.

Figure 4.Reaction graph for themechanismmodeling the active transport of protons fromone side of amembrane, +Ha , to the other
side, +Hb . The transport is coupled to the catalysis of a substrate, S, to a product, P. The free transporter itself exists in two different
conformations denoted -M and -M , respectively. Again, all reactions are considered reversible and to followmass–action kinetics. A
reference forward direction is indicated as arrows from left to right.
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3.2.3. Net stoichiometry and net forces
Thefirst emergent cycle has the net stoichiometry S P, which represents pure catalysis with net force

-D = -

- - -

[ ]
[ ] ( )G RT

k k k k

k k k k
ln

S

P
. 11cat

2 3 4 7

2 3 4 7

The second cycle has net stoichiometry + +H Hb a . This represents the slip of one proton from side b back to
side awith net force

-D = - - - -
+

+
[ ]

[ ] ( )G RT
k k k k

k k k k
ln

H

H
. 12sl

1 5 6 7 b

1 5 6 7 a

For later reference, we note that the difference = -C C Ctr cat sl has net stoichiometry + ++ +H S H Pa b .
This is the active transport of a proton from side a to side b, under catalysis of one substrate into one product.
The net force of this reaction is

-D = -D + D =
+

- - - - - -
+

[ ][ ]
[ ][ ] ( )G G G RT

k k k k k k

k k k k k k
ln

H S

H P
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1 2 3 4 5 6 a

1 2 3 4 5 6 b

3.2.4. Apparent fluxes
Solving the linear rate equations (see appendix A), we have a solution for the steady-state concentrations. The
exact expressions are given in appendix A.2.With the steady-state concentrations, we calculate the contributions
of both cycles to the steady-state current: = +( )J x y C CJ J,ss cat cat sl sl. Each current contribution is given by a
single reaction:

y y y y= - = - -+ - + -≕ ≕J J J J, .cat 2 cat cat sl 1 sl sl

With the abbreviations

x x+ + + +- -
+

-
+ + +

- - -≔ [ ] [ ][ ] [ ] ≔k k k k k k k k k k k kH H H H , ,cat 6 5 b 1 5 a b 6 1 a sl 3 4 2 4 3 2

we can express the apparent fluxes as
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L
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L
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L
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H P P ,

H P H ,

H S H .

M

M
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M

M
cat 1 2 3 4 5 6 b cat 7 2 3 4

M

M
sl 1 2 3 4 5 6 b sl 1 5 6 7 b

M

M
sl 1 2 3 4 5 6 a sl 1 5 6 7 a

The derivation for these equations is detailed in appendix B.2.Note that NM depends on all rate constants and all
chemostat concentrations.

3.2.5. Breakdown of the flux–force relation
We see that the abbreviated terms ξ appear symmetrically in the forward and backward fluxes. Therefore, when
the net forces are zero, necessarily the currents vanish and the system is at thermodynamic equilibrium.
However, in general, the currents do not vanish.Moreover, the concentrations of the chemostats appear in the
four different fluxes in different combinations—indicating that both net forces couple to both coarse-grained
reactions. Due to this coupling, it is impossible tofindnice flux–force relations for the two reactions

Figure 5. (Left)Activemembrane transport as a graph representing the open chemical network. The proton concentrations +Ha and
+Hb , as well as the substrate and the product are chemostatted, thus are associated to the edges of the graph. (Right)Graphical

representations for the three distinct cycles in this graph.Only two of themare independent andwe choose Ccat and Csl as a basis in
themain text. The third is their difference = -C C Ctr cat sl.
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independently:

y
y

y
y

-D ¹ -D ¹
+

-

+

- ( )G RT G RTln , ln . 14cat
cat

cat
sl

sl

sl

To the contrary, it is easy tofind concentrations for the four chemostats where the catalytic force is so strong
that it drives the slip current against its natural direction—giving rise to a negative contribution in the EPR.
Nonetheless, the overall EPR is correctly reproduced at the coarse-grained level:

s = - D = - D - D·J GT J G J G 0.ss r cat cat sl sl

Since this is, by construction, the correct EPRof the full system at steady state, we know that it is always non-
negative—and that the coarse-graining procedure is thermodynamically consistent. This example shows
explicitly that biochemical reaction networks need not satisfy the flux–force relation, nor need their currents and
forces be aligned to complywith the second law. After all, the function of thismembrane protein is to transport
protons from side a to side b against the natural concentration gradient.

4. Cycle-based coarse graining

From the perspective of a single biocatalyst, the rest of the cell (or cellular compartment) serves as its
environment, providing a reservoir for different chemical species. Our coarse graining exploits this perspective
to disentangle the interaction of the catalyst with its environment—in the formof emergent cycles—from the
behavior of the catalyst in a (hypothetical) closed box at thermodynamic equilibrium—in the formof the
internal cycles. From the perspective of the environment, only the interactionswith the catalystmatter, i.e. the
particle exchange currents: they prescribe the substrate/product turnover andwhen combinedwith the
reservoir’s concentrations (chemical potentials) also the dissipation. Our coarse graining respects the reservoir’s
concentrations and incorporates all the emergent cycles that exchange particles with the reservoir. It thus
correctly reproduces the exchange currents: this is the fundamental reasonwhywe can replace the actual
detailedmechanism of the catalyst with a set of coarse-grained reactions in a thermodynamically exact way. A
formal version of this reasoning, including all necessary rigor and a constructive prescription tofind the
apparent fluxes, is provided in appendix B.

In our examples we illustrated the fundamental difference between the case where a catalyst can be replaced
with a single coarse-grained reaction and the casewhere this is not possible. In thefirst case, such a catalyst
interacts with substrate and productmolecules that are coupled via exchange ofmass in a specific stoichiometric
ratio. This is known as tight coupling.Whether or not the catalysis is additionallymodified by activators or
inhibitors, does not interfere with this condition. After all, themodifiers are neither consumed nor produced.
Thus they appear only in the normalizing denominators of the steady-state concentrations and affect the kinetics
while leaving the thermodynamics untouched. Furthermore, if there is only one single emergent cycle in a
catalyticmechanism, any product of pseudo-first-order rate constants along any circuit in the networkwill
either (i) satisfyWegscheider’s conditions or (ii) reproduce (up to sign) the net force,-DaG, of the emergent
cycle. Ultimately, this is why theflux–force relation holds in this tightly coupled case. A formal version of this
proof, including all necessary rigor, is provided in appendix C.

In the case wherewe have to provide two ormore coarse-grained reactions, the catalyticmechanism couples
several processes that are not tightly coupled via exchange ofmass. To the contrary: the turnover of different
substrates/products need not have fixed stoichiometric ratios. In fact, their ratios will depend on the
environment’s concentrations. In this case theflux–force relation does not hold in general, as we provedwith
our counter-example. After all, when several processes are coupled, the force of one process can overcome the
force of the second process to drive the second current against its natural direction. This transduction of
energy[12, 49]would not be possible at a coarse-grained level, if theflux–force relationwas always true.

We now asses the reduction provided by our procedure: the numberC of coarse-grained reactionsα is
always lower than the numberM of reaction steps ρ in the originalmechanism. This can be understood from the
graph representation of the open system: the numberB of circuits in a connected graph is related to its numberN
of vertices (catalyst states) and the numberM of edges (reaction steps) by = - +B M N 1 [50]. Some of the
circuits represent internal cycles, renderingB an upper bound to the number of emergent cyclesC. Since the
numberN of catalyst states is at least two, these numbers are ordered: >M B C . This proves that our coarse
graining always reduces the number of reactions.
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5.Discussion

The original work ofMichaelis andMenten [4]was based on a specific enzyme that converts a single substrate
into a single product assuming a totally irreversible step. Their goal was to determine the rate of production of
productmolecule. Later progress in enzyme kinetics extended theirmethod to deal with fully reversible
mechanisms, as well asmany substrates,many products andmodifiers [1]. The focus on the turnover ledmany
people to identify the net effect of the enzymewith a single effective reaction, describing its kinetics with the
Michaelis–Menten equation (or one of its generalizations). Our coarse-graining indeed incorporates all these
special cases: theMichaelis–Menten equation arises from coarse graining amechanism of the form

+ +   ( )S E ES EP E P 15

and assuming that the last reaction step, the release of the product, ismuch faster than the other steps. Then the
coarse-grained reaction current is identical to the substrate/product turnover. Importantly, our procedure
highlights that there is no direct correspondence between the number of required net reactions and the number
of circuits in the reaction graph—even of the open system. Some circuits correspond to internal cycles that play a
kinetic role, not leaving a trace in the thermodynamic forces. Only the emergent cyclesneed to be taken into
account for the coarse graining. Thus the net effect of amulti-cyclic catalystmight be consistently expressed as a
single effective reaction, as seen in the example 3.1.

Likewise, in theoretical studies of biochemical systems, effective unimolecular reactions of the form

are frequently used, where the reaction rate constants satisfy

m m m m
=

- + -+

-

⎡
⎣⎢

⎤
⎦⎥

◦ ◦
k

k RT
exp .A B X Y

Here, the chemical potentials,μ, account for the thermodynamic force exerted byX andY. Evenwhen the actual
effective reaction does not followmass–action kinetics, this equation is assumed, implying that the effective
reactionfluxes are y=+ +[ ]k A and y=- -[ ]k B , and the ‘constants’ k indeed depend on some concentrations.
This is only consistent if the implicit conversionmechanism is tightly coupled by exchange ofmass: when tightly
coupled, the differences of the chemical potentials represent theGibbs free energy change along the reaction

+ +A X B Y . In this case, the above equation is theflux–force relation. Otherwise, our coarse-graining
procedure reveals that this is thermodynamically inconsistent: if the implicitlymodeled catalysis is not tightly
coupled via the exchange ofmass, there is a hidden thermodynamic driving force that is independent of the
concentrations ofA andB, while the turnover ofX/Y is not in a stoichiometric ratio to the turnover ofA/B.We
have seen in example 3.2 that theflux–force relation indeed does not hold in this case.

The failure of theflux–force relation in the nontightly coupled case does not imply inconsistent
thermodynamics. Our coarse-graining procedure indeed deals with this case very easily. The resultingfluxes and
forces reproduce the EPRwhile sacrificing the flux–force relation. The key difference to the original ideas in
enzyme kinetics is that the substrate/product turnover is split into several effective reactions with their own
reactionfluxes and forces, reproducing the EPR. This is especially important for complex catalysts:manymodels
formolecularmotors and active transporters are not tightly coupled. These free-energy transducers often
display slippage via futile cycles.While some enzymes also show signs of slippage,many simple enzymes are
modeled as tightly coupled—which implies they satisfy the flux–force relation.Our coarse graining deals with all
these cases and in that sense goes far beyondMichaelis–Menten.

Our procedure greatly reduces the number of species and reactions involved in a networkwhile reproducing
the EPR. This comes at the cost of complicated effective fluxes (rate laws). They are rational functions of the
involved concentrations and thusmore complicated than simplemass–action kinetics. Nonetheless, our
procedure is constructive by giving these complicated expressions explicitly.With the explicit solutions at hand,
further assumptions can bemade to simplify the effective fluxes—as in the case of the originalMichaelis–
Menten equation. Note that these additional simplificationsmay have an impact on the EPR, in theworst case
breaking the thermodynamic consistency. This trade-off between simplicity and thermodynamic correctness
needs to be evaluated case by case.

We nowdiscuss the limitations of our approach. The presented coarse-graining procedure is exact in steady-
state situations, arbitrarily far from equilibrium.When the surrounding reaction network is not in a steady state,
the coarse graining can still be used: then the coarse-grained reactionfluxes and forces have to be considered
instantaneous—they change in time due to the changing substrate/product (ormodifier) concentrations.
Underlying this point of view is a separation of time scales: when the abundance of substrates and products is
very large, as compared to the abundance of catalyst, then the concentrations of the latter changemuchmore
quickly. This results in a quasi-steady state for the catalyst-containing species. Consequently, our coarse graining
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cannot capture the contribution to dissipation that arises in this fast relaxation dynamics. It only captures the
dissipation due to the conversion of substrate into product. This reasoning can bemademore rigorous: there are
time-scale separation techniques for deterministic rate equations [25, 51] frequently used in biochemical
contexts [26], furthermore stochastic corrections due to small copy-numbers [52] and even effectivememory
effects [27, 53] can be incorporated.However, these techniques do not explicitly address the question of
thermodynamic consistency andwe think that combining our coarse-grainingwith these techniques is a
promising endeavor for the future.

We restricted the entire reasoning in this paper to catalysts. They follow linear rate equationswhen their
reaction partners have constant concentrations. This linearity allowed us to give explicit solutions for general
catalysts. Focusing on the emergent cycles to reproduce the correct thermodynamics paves theway to apply a
similar procedure beyond catalysts: reaction networks that remain nonlinear after chemostatting still have
emergent cycles [28]. They can be calculated algebraically frombases for the nullspaces of the full and the
reduced stoichiometricmatrices,  and X . The cycles in nonlinear networksmay not have a representation as
circuits in the reaction graph, aswe have seenwith the internal cycle of the enzyme in a closed box.Nonetheless,
each of the emergent cycles aC can serve as an effective reaction: it has awell defined stoichiometry,  aCY , and a
well defined net force,-D a·G Cr . The steady state concentrations as well as the fluxes, however, need to be
determined case by case. Nonlinear differential equations can bemulti-stable, where our coarse graining applies
to each stable steady state. Some nonlinearODEs exhibit limit cycles, thus never reaching a steady state. In this
case our procedure is no longer applicable.

6. Summary

Wehave presented a coarse-graining procedure for biocatalysts and have shown that it is thermodynamically
consistent. During this coarse graining procedure, a detailed catalyticmechanism is replaced by a few net
reactions. The stoichiometry, deterministic kinetic rate laws and net forces for the coarse-grained reactions are
calculated explicitly from the detailedmechanism—ensuring that at steady state the detailedmechanism and the
net reactions have both the same substrate/product turnover and the same EPR.

Furthermore, we have shown that in the tightly coupled case where a detailedmechanism is replaced by a
single reaction, this net reaction satisfies aflux–force relation. In the casewhere a detailedmechanismhas to be
replacedwith several net reactions, the flux–force relation does not hold for the net reactions due to cross-
coupling of independent thermodynamic forces. Ultimately, this cross-coupling allows the currents and forces
not to be aligned—while complyingwith the second law of thermodynamics.

Overall, we have shown that coarse-graining schemeswhich preserve the correct thermodynamics far from
equilibrium are not out of reach.
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AppendixA.Diagrammaticmethod for explicit steady states of linear reaction networks

Weconsider a catalyticmechanismwith a catalyst and several substrates, products, inhibitors or activators. The
mechanism is resolved down to elementary reactions followingmass–action kinetics.

Upon chemostatting all the substrates, products, inhibitors and activators—summarized as y—we are left
with rate equations that are linear in the catalyst-containing species—summarized as x.While the steady-state
equations alone, = ( )J x y0 ,X , are under-determined and linearly dependent, the open system still has a
conservation law for the total catalyst-moiety concentration = åL xi i, which again is a linear equation.We can
replace thefirst line of the steady-state equations with this constraint to arrive at linear equations = ( )e y xL 1 ,
where = ( )e 1, 0,...1 is the first Cartesian unit vector and( )y is an invertible squarematrix that depends on the
chemostat concentrations. According toCramer’s rule the unique solution to this problem is given by
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* 


=
( )
( ) ( )y

y

x

L

det

det
, A1i i

where ( )yi is identical to( )y just with the ith column replaced by e1.We nowprovide a diagrammatic
method to represent this solution. This diagrammaticmethod is frequently attributed toKing andAltman [48]
orHill [54], while an equivalent approachwas already employed byKirchhoff [55] to solve problems in electric
networks.We give the diagrammaticmethod in the language of graph theory [50, 56], for whichwe need some
definitions.

The open pseudo-first-order reaction network has a simple representation as a connected graph  where all
the catalyst-containing species i form the vertices  and the reactions Èr r- formbidirectional edges. The
reduced stoichiometricmatrix X is the incidencematrix for this graph.

A closed self-avoiding path in a graph is a circuit and can be identifiedwith a vector Îc over the edges,
whose entries are in fact restricted to -{ }1, 0, 1 . Since a circuit is a closed path, it satisfies  =c 0X and reaches
asmany vertices as it contains edges. A graph not containing any circuit is called forest, a connected forest is
called tree.

A connected subgraph t Ì is called spanning tree if it spans all the vertices but contains no circuit. The set
 of spanning trees of afinite graph is alwaysfinite. A rooted spanning tree is a tree where all the edges are
oriented along the tree towards one and the same vertex, called the root.

With these notions set, the determinants in equation (A1) can bewritten as

 

 å  å å = =
t r t

r
t r t

r
Î Î Î Î

( ) ˜ ( ) ( ) ˜ ( ) ≕ ( )y y y y yk k Ndet , det .i
ii i

Here,  i is the set of spanning trees rooted in vertex i, and r̃ ( )yk is the pseudo-first-order rate constant of
reaction ρ. Overall, Kirchhoff’s formula for the solution to the linear problem is

*


å =
t r t

r
Î Î( )

˜ ( ) ( )
y

y
x

L N
k

1
. A2i

i

From this result it is easy to confirm that the solution exists and is always unique as long as the chemostat
concentrations arefinite and positive. Furthermore, the steady-state concentrations are expressed as sums of
products of positive quantities, thus themselves are always positive.

While this formula is very compact and abstract, it is not obviously convenient for practical calculations.
However, the rooted spanning trees appearing in this formula can be visually represented as diagrams, as wewill
see in the following examples. These diagrams are intuitive enough tomake practical calculationswith this
formula feasible.

A.1. Steady-state concentrations for the enzymatic catalysis
The enzymatic catalysis example in themain text, when open, is represented by the graph infigure 3. This
graph hasfive vertices and six edges. It contains three distinct circuits and twelve different spanning trees.

A visual representation of Kirchhoff’s formula (A2) for its steady-state concentrations is given by the
following diagrams:

Here, each diagram represents a product of pseudo-first-order rate constants over a spanning tree that is rooted
in the (circled) vertex associatedwith the species wewant to solve for (left-hand side). Thus, the concentrations
are sums of twelve diagrams each, normalized by a denominator NE that equals the sumof all the 60 diagrams
given above.

A.2. Steady-state concentrations for the active transporter
The activemembrane transporter example in themain text, when open, is represented by the graph infigure 5.
This graph has six vertices and seven edges. It contains three distinct circuits and 15 different spanning trees.
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Avisual representation of Kirchhoff’s formula (A2) for its steady-state concentrations is given by the
following diagrams:

Here, each diagram represents a product of pseudo-first-order rate constants over a spanning tree that is rooted
in the (circled) vertex associatedwith the species wewant to solve for (left-hand side). Thus, the concentrations
are sums of 15 diagrams each, normalized by a denominator NM that equals the sumof all the 90 diagrams given
above.

Appendix B. Kinetic rate laws for the coarse-grained reactions

Wenow explicitly construct the kinetic rate laws as apparent cycle fluxes. First, wemake use of the diagrammatic
method to derive the coarse-grained kinetic rate laws for the two example systems of themain text. Thenwe
generalize these examples to generic catalysts.

B.1. Kinetic rate laws for the enzymatic catalysis
As shown in themain text, the cycle currents are

= - = - = = -- -[ ] [ ][ ] [ ] [ ][ ]J J k k J J k kES E S , EP E P .int 2 2 2 2 2 ext 6 6 6

Plugging in the diagrams (appendix A.1) for the steady-state concentrations of the enzyme-containing species
we arrive at

Next, wemultiply the remaining pseudo-first-order rate constants into the diagrams and highlight them in blue.
This leads us to

Note how some of the diagrams did not contain that edge before, leading to a circuit in the newdiagrams. The
newpseudo-first-order rate constant carries an arrowhead to highlight the orientation of that edge. The black
edges remain oriented along the other black edges towards the circled vertex. The remaining diagrams already
contained the reverse pseudo-first-order rate constant for the newly incorporated edge. The product of these
forward and backward pseudo-first-order rate constants is highlighted as a dashed blue edgewithout arrowhead.
The latter tree diagrams appear on both sides of theminus signs and can be canceled. Thus the currents are
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Here, we highlight the entire circuits in blue to emphasize the common factors in the remaining terms.Note that
the square representing the internal cycle remained in the internal cycle current on both sides of theminus sign.
However,Wegscheider’s conditions, equation (2), ensure that these terms cancel as well. Furthermore,
Wegscheider’s conditions allow us to express the diagrams containing the lower triangle with the upper triangle:

Overall, the currents expressedwith rate constants and concentrations are
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B.2. Kinetic rate laws for the active transporter
Weproceed analogously to the previous calculation for the enzymatic catalysis: plug the tree diagrams from
appendix A.2 into
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-
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and cancel all diagrams that do not contain a circuit. This leads us to

Since thismembrane transportermechanism does not have an internal cycle, we cannot exploitWegscheider’s
conditions to cancelmore terms.Nonetheless, we see that we can factor the circuits out of some of the terms.
Overall, we arrive at the cycle currents

y y y y- -+ - + -≕ ≕J J, .cat cat cat sl sl sl
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wherewe used the abbreviations

x x+ + + +- -
+

-
+ + +

- - -≔ [ ] [ ][ ] [ ] ≔k k k k k k k k k k k kH H H H , .cat 6 5 b 1 5 a b 6 1 a sl 3 4 2 4 3 2

B.3. Kinetic rate laws for generic catalysts
Bymaking use of the graph theory notation introduced in appendix A, we can generalize the above calculations
to generic catalysts.

Before proceeding with calculations, we need a generalmethod to determine the cycle currents from
individual reaction currents. To that end, we construct a special spanning tree *t for the graph  of the open
system: (1)we start with the closed system and determine its internal cycles ker .We take the set  Ì of
edges that the internal cycles are supported on. (2)Consider this set of edges  Ì as a subgraph of the open
network. Choose a spanning tree t for this subgraph. (3)Complete t to a spanning tree *t of  . All the edges
not contained in the spanning tree are the chords.

There is a special connection between chords and circuits first highlighted by Schnakenberg [57]: the
spanning tree alone, by definition, does not contain any circuit. Adding a chord to the spanning tree gives rise to
a circuit composed of the chord together with edges from the spanning tree. Furthermore, by construction every
chord gives rise to a different circuit and the set of these circuits form a basis of the cycle space ker X . In this
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context the circuits associated to chords are also called fundamental cycles. The currents on the chords then are
identical to the steady-state currents along the fundamental cycles of the chords [57].

The special spanning tree *t that we constructed is separating the chords into two sets: each chord in  gives
rise to an internal cycle, while the chords not in  give rise to the emergent cycles. This construction provides a
basis for the entire cycle space, yet keeps the internal cycles and the emergent cycles separated. Therefore we call
it a separating spanning tree.

It is worth noting that not every basis of circuits can be expressed as fundamental cycles of a spanning tree.
This technical detail, however, has no impact on our results. Different bases are just different representations of
the same space. In the followingwe assume a spanning treemainly for convenience.

Let j i be the chord of an emergent cycle. Then the current through that chord is
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Next, we note that a lot of terms cancel by taking this difference. All the spanning trees that contain the edge
i j or j i, respectively, appear with both plus andminus sign:
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After canceling these spanning tree contributions, we define the apparent cycle fluxes as
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Weobviously have y y= -Jij ij ji. Thus the apparent cyclefluxes serve as kinetic rate laws for the coarse-grained
reactions.

There is, technically speaking, no strict necessity to cancel the spanning tree contributions in order to arrive
at expressions that can serve as coarse-grained kinetic rate laws. Keeping the spanning tree contributions results
in the apparentfluxes of the substrates/products that are being produced/consumed along the chord. This is a
natural choice for dealingwith data from isotope labeling experiments.With this definition for kinetic rate laws,
however, the flux–force relation is not satisfied—even in the case of a single emergent cycle [34]. In contrast, our
definition of apparentfluxes resembles the apparent cycle fluxes, rather than apparent exchangefluxes.
Comparing the apparent cycle fluxeswith the net force along the emergent cycle, we do have a flux–force
relation, as shown in the next section.

AppendixC. Proof of theflux–force relation

Beforewe prove theflux–force relation, we rewrite the apparent fluxes for the emergent cycles derived in
equation (B1). This simplifies thefinal proof considerably. To that end, we observe that adding a chord to a
spanning tree not containing this chord always creates a circuit. Since in equation (B1)we sumover all possible
spanning trees, the same circuits re-appear in several summands.We now re-sort the sums tofirst run over
distinct circuits, and then sumover the remainders of the spanning trees. For that we need some notation.

For any circuit cwe abbreviate the product of pseudo-first-order rate constants along it as
= r rÎ( ) ˜ ( )yw c kc . The net force along a circuit thus is concisely written as

å-D = =
-r

r

rÎ -

˜ ( )
˜ ( )

( )
( ) ( )y

y
G RT

k

k
RT

w c

w c
ln ln . C1c

c

Here,-c refers to traversing the circuit cwith reversed orientation. For any circuit, c, we furthermore define
( )c to be the set of subforests of  that (i) do not contain any edge of c, (ii) span the rest of the graph, and (iii) are
directed towards the circuit c. Analogously to the product of rate constants along a circuit, for this set of
subforests we denote the sumof products of rate constants as
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
å x

r
r

Î Î

( ) ≔ ˜ ( )
( )

yc k .
f c f

By construction, x x= -( ) ( )c c since the set ( )c does not depend on the orientation of c. Let ij be the set of
circuits traversing the edge j i. Note that these circuits are exactly the ones appearing in equation (B1) .

With this notationwe rewrite the apparent cycle fluxes in the followingway:


åy x=
Î( ) ( ) ( )

y

L

N
w c c .ij

c ij

This rewriting is not limited to the case of a single emergent cycle. In fact, we used this form to express the
apparent cyclefluxes of the activemembrane transporter in appendix B.2.

We nowprove theflux–force relation—under the assumption that there is exactly one emergent cycle hc
with chord h = j i. Let-DhG be the net force along this cycle and let hJ be its current at steady state. Let
furthermore *t be a separating spanning tree, as we defined in appendix B.3.

Having only one emergent cyclemeans that for every circuit Îc ij we have one of the following cases:

• The circuit is formed by following the separating spanning tree fromvertex i back to j, inwhich case it is
exactly the emergent cycle: = hc c .

• The circuit is formed by traversingmore chords, inwhich case it can bewritten as g= +hc c where

g Î ker is an internal cycle. In this case we have = =g
g- - - -

h

h

h

h

( )
( )

( )
( )

( )
( )

( )
( )

w c

w c

w

w

w c

w c

w c

w c
due toWegscheider’s

conditions.

In any case we canwrite z =  h( ) ( ) ( )w c c w c where z z= -( ) ( )c c is a symmetric factor. Overall, the
apparent fluxes for the emergent cycle are

 
å åy x x z= = h
Î Î

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( ) ( ) ( ) ( ) ( )

y y

L

N
w c c

L

N
c c w c .ij

c cij ij

By construction, ξ and ζ are symmetric and also any sumover these terms is symmetric. Consequently, the
apparent forward and backward fluxes of the emergent cycle satisfy





å

å

y
y

x z

x z
=

- - -
=

-

h

h

h

h

Î

Î

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )
( ) ( ) ( )

( )
( )

( )

( )

c c w c

c c w c

w c

w c

y

y

ij

ji

L

N c

L

N c

ij

ij

which, togetherwith equation (C1), concludes the proof.
From this proof it is evident, why the flux–force relation breaks down once there are several emergent cycles

with nonzero forces: in the case where a circuit Îc ij is not identical to the emergent cycle hc , we can still write
it as g= +hc c . However, now γneed not be an internal butmight be another emergent cycle. Therefore,
Wegscheider’s condition does not apply to it, thus g( )w and hence ζ(c)need not be symmetric. As a
consequence, the ratio of apparent forward and backward cycle fluxes cannot be expressed by the force of the
emergent cycle−ΔηG alone.

The proof also showswhy the choice of a separating spanning tree ismainly for convenience. In the case of a
single emergent cycle, the exact basis for the internal cycles does notmatter and you can alwaysfind an
appropriate separating spanning tree. In the case of several emergent cycles, there is no simple and direct relation
between the force and thefluxes of a cycle. The only consistency requirement is the EPR.However, the EPR is a
scalar and thus invariant under change of basis. Furthermore, it involves only the forces and the currents of the
cycles. This imposes no restrictions on the individual forward and backwardfluxes.
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C O N C L U S I O N S
Starting from a phenomenological description of nonequilibrium thermo-

dynamics, we introduced a systematic way of determining broken conser-
vation laws, Sec. 1.5.1. These laws identify conserved quantities whose
changes in the systems are always matched by an opposite change in the
environment, Eq. (52). In this way, these quantities carry the information
about the way the system globally exchanges system quantities with the reser-
voirs. By combining the balance equations of broken conserved quantities
with the laws of thermodynamics, we find that energy and entropy balance
can be decomposed in terms of three fundamental types of energetic and
dissipative contributions, Secs. 1.5 and 3.3: those due to external driving,
which vanish in processes which are not manipulated; those due to noncon-
servative forces created by the coupling with multiple reservoirs, which are
responsible for sustaining currents of system quantities across the system;
and those conservative contributions which account for overall changes of
system quantities within the systems, and which characterize the relaxation
to equilibrium states.

Our phenomenological description is generic, yet it formally accounts for
features that are specific for any system. In this way, it can be applied to
any process, regardless of its dynamics. We specialized it to Markov jump
processes and chemical reaction networks, Sec. 2 and Part ii. Regarding
the former, conservation laws enabled us to provide the first complete ther-
modynamic description. But the importance of our formulation is not only
theoretical. On a practical level, it provides a systematic procedure to anal-
yse the thermodynamics of specific systems. For a large variety of these, we
demonstrated how easy the identification of their dissipative mechanisms
is, Sec. [6, p. 51].

Regarding chemical reaction networks we established a rigorous thermo-
dynamic description for different types of dynamics: chemical master equa-
tion, which describes the evolution in time of the probability distributions
of molecules numbers, Eqs. (119) and [(11), p. 113]; rate equations, which de-
scribe concentrations, Eqs. (87), (89), and [(9) and (10), p. 148]; and reaction–
diffusion equations for space-inhomogeneous concentration distributions,
Eqs. (126) and [(1), p. 185]. For the last two types of dynamics, our approach
is inspired by stochastic thermodynamics, as we build the thermodynamics
on top of the dynamics. Conservation laws, thus enabled us to identify the
thermodynamic potentials which are minimized at equilibrium, and to es-
tablish the connection with the potentials identified by mathematicians in
the context of chemical reaction network theory.

We also introduced a formulation of the nonequilibrium Landauer princi-
ple that is valid for arbitrary isothermal processes, Sec. 1.6. This principle re-
lates the minimal thermodynamic cost of transforming a given system from
two arbitrary nonequilibrium states, to their distance from equilibrium. Its
early formulation for mechanically driven processes, Ref. [1, 2], played a ma-
jor role for the formulation of thermodynamics of information [3]. Indeed, since
information processing is physical and can be regarded as the transforma-
tion of nonequilibrium states, this principle allows to quantify the minimal
cost of this processing, i.e. the minimal cost of computation. Importantly,
this principle also proved useful for assessing the cost of information pro-
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cessing in simple biochemical mechanisms, like copolymerization processes
inspired by DNA replication and RNA transcription [4, 5]. The formulation
that we derived generalizes these earlier ones in two regards. First, it is
formulated for arbitrary isothermal systems—not just mechanically driven
ones—and in particular for systems prevented from reaching equilibrium
due to nonconservative forces. Second, our formulation is valid for arbi-
trary dynamics—not just stochastic ones—and in particular for chemical
reaction networks described by rate equation and reaction–diffusion equa-
tions. For each of these types of dynamics the generalized relative entropy
introduced in Eq. (72) assumes a specific form (Eqs. (83), (125), and (128)),
but all these forms share the same properties. In this respect, we find fas-
cinating how thermodynamics imposes a clear theoretical structure which
assumes different forms depending on the class of processes to which it is
applied. Our generalized nonequilibrium Landauer principle can hence be
used to analyse biochemical information-handling systems whose complex-
ity goes beyond simple mechanisms. This endeavour is important in the
light of the current understanding that biological systems have developed
by optimizing the gathering and representation of information [6, 7].

In the context of chemical reaction networks, our description lays the foun-
dations for thermodynamic analysis of metabolic networks. Metabolisms is
indeed the core thermodynamic process of living organism, which allows
them to manage the energy required for their functioning. Quantifying the
thermodynamic performance of these process is therefore important as it
might reveal crucial features of these organisms.
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All articles presented in my thesis are the outcome of my research activity

within the group of M. Esposito at the University of Luxembourg.
The project on dynamics of glucans, resulting in Ref. [1], originated from a

collaboration between M. Esposito and D. Lacoste. When I started my PhD,
I took the lead of the project: Guided by M. Esposito, I performed all cal-
culations, the numerical simulations, and wrote the paper. While working
on it, I realized that a rigorous and complete thermodynamic description
of chemical reaction networks was lacking. This initiated the project on
thermodynamics of chemical reaction networks, which resulted in Ref. [2].
Under the constant supervision of M. Esposito, I developed the mathemati-
cal formulation, performed all calculations, and wrote the paper.

Afterwords, M. Esposito suggested to connect the results of Ref. [2] with
previously derived fluctuation theorems. I thus worked on conservation
laws in stochastic thermodynamics of both generic Markov jump processes
and stochastic chemical reaction networks, Refs. [3, 4]. For these works,
I contributed to designing the research, I performed all calculations and
wrote the papers with the help of M. Esposito.

At the same time, the need for a thermodynamic description applicable to
chemical reaction networks with enzymatic reactions triggered the project
leading to Ref. [5]. The key result of this work was conceived together
with A. Wachtel. I then followed the development of the project at all its
subsequent stages.

The paper on thermodynamics of reaction–diffusion systems, Ref. [6],
arose from the interest of extending the results of Ref. [2] to space-inhomoge-
neous chemical processes. I developed the main theory, performed the re-
lated calculations, and discussed its application to the Brusselator model
with G. Falasco, who performed the analysis.

Finally, several discussions with M. Esposito lead him to conceive a uni-
fying perspective on a class of fluctuation relations, Ref. [7]. For this work,
I developed the mathematical formulations, the performed all calculations,
and wrote the paper, benefiting of M. Esposito support and guidance.
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