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Abstract

This thesis studies the nonequilibrium properties of quantum dots with regard
to electrical conduction as well as thermodynamics. The work documented here
shows how these properties behave under the influence of time-dependent drive
protocols, pursuing two main lines of inquiry. The first concerns the interplay be-
tween nanomechanics and drive: In nanomechanical systems with strong coupling
between the charge and vibrational sectors, conductance is strongly suppressed, an
effect known as Franck-Condon blockade. Using a model Hamiltonian for a molec-
ular quantum dot coupled to a pair of leads, it is shown here that this blockade can
be exponentially lifted by resonantly driving the dot. Moreover, a multi-drive pro-
tocol is proposed for such a system to facilitate charge pumping that enjoys the
same exponential amplification. The second line of inquiry moves beyond charge
transport, examining the thermodynamics of a driven quantum dot coupled to a
lead. Taking a Green’s function approach, it is found that the laws of thermody-
namics can be formulated for arbitrary dot-lead coupling strength in the presence
of dot and coupling drive, as long as the drive protocol only exhibits mild non-
adiabaticity. Finally, the effects of initial states are studied in this situation, proving
that the integrated work production in the long-time limit conforms to the second
law of thermodynamics for a wide class of initial states and arbitrary drive and
coupling strength.
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Introduction

In one way or another, transport physics serves as the foundation for much of
modern civilization. Technical processes and machines that depend on precise
engineering of electrical, heat and matter currents are innumerable, and the ever-
increasing sophistication of tomorrow’s technology relies upon today’s research.
Among the many aspects of the theory of transport, the ones under investigation in
this thesis are those connected with the quantum regime and thermodynamics.

Quantum mechanics is the blockbuster discovery of 20th century physics: It
has revolutionized our understanding of the microscopic world, and its implica-
tions reach far beyond academic studies, into everyday life. What started out as
an attempt by Planck to understand black-body radiation [1] has since evolved into
a comprehensive theory, leading to a torrent of inventions such as the laser, the
transistor, and modern medical imaging, just to name three. The sub-field of con-
densed matter physics, which has as its subject the study of interacting quantum
many-particle systems, has proven to be particularly fruitful in terms of applica-
tions to engineering and materials science. In the evolution of modern condensed
matter physics, two convergent directions have been apparent: On the one hand,
with increasing development of the theory and powerful computational tools, our
conceptual understanding of quantum systems has grown to include ever more
complex and large many-particle systems. On the other hand, the evolution of
our experimental capabilities have afforded us more and more precise control over
ever smaller objects, even down to single-atom devices [2]. These developments
have converged to form the burgeoning field of nanoscale physics, where quan-
tum theory, simulation, and experiments are used in concert to build the devices
of the future. Some of these devices have already reshaped the technology of the
present: Decades of miniaturization efforts have placed the current state of tran-
sistor development firmly into the nanoscale, and modern solar cells and LEDs
would be unthinkable without knowledge of nanoscale physics. The nanoscale is
home to a remarkable wealth of phenomenology, including electronics as well as
optical and mechanical effects, all of which may interact in ways too numerous to
list. Equipped with such a large toolkit, the research directions available to today’s
nanoscientists are as boundless as the possible technologies that may grow from
their work.

The beginnings of thermodynamics lie further in the past [3] than those of
quantum mechanics. Developed in the 19th century as a framework for the under-
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standing of heat, work, temperature and energy, thermodynamics is invaluable in
the design of machines and work cycles and provided the scientific underpinning
of the industrial revolution. Its laws were first formulated in a phenomenological
manner, without reference to any microscopic theory. Even though it was later un-
derstood to arise from statistical mechanics in the limit of large particle number,
this limit lies on the scale of Avogadro’s constant NA ≈ 6 × 1023, and therefore
classical thermodynamics cannot be expected to hold at all scales. Nonetheless,
thermodynamics and its laws have long since become a mainstay not only in engi-
neering and physics, but also in computer science, where the theory of information
makes extensive use of entropy and related concepts [4, 5, 6].

Fluxes and currents are natural objects in thermodynamics. Therefore, the con-
nections between transport theory and thermodynamics, such as the effect of cur-
rent flowing as a result of temperature gradients [7], have been explored early on.
The path between thermodynamics and quantum mechanics is far less traveled:
Since the former has its classical applications in macroscopic systems, and the do-
main of the latter are chiefly microscopic systems, a vast difference in scale has
kept the two theories relatively separated, with only occasional historical overlap,
such as the early proposal for a quantum engine [8] and the analysis of thermody-
namics in a certain class of open systems [9].

In recent decades, the advent of nanoscale physics has led to a change in per-
spective: The range of device sizes accessible in experiments has been extended
down to a regime where quantum effects are paramount. These devices hold great
promise in many regards, such as the miniaturization of electronic components,
the design of innovative measurement schemes and quantum machines, as well as
in the context of quantum computation. Heat production has emerged as a seri-
ous bottleneck for the performance of these systems, and so a consistent theory of
quantum thermodynamics has become extremely desirable. Such a theory would
need to re-formulate the laws of thermodynamics for quantum systems while as
much as possible of the generality of their classical counterpart. Moreover, due to
the prominence of non-stationary effects at the nanoscale, quantum thermodynam-
ics needs to remain valid far from the equilibrium or adiabatic settings common
in macroscopic settings. Considerable progress has already been achieved in this
endeavor, both in terms of conceptual foundations, and regarding the behavior of
certain model systems, but an overarching framework is still lacking.

The work documented in this thesis is performed on the frontier of nanoscale
physics, at the confluence of fields of transport theory, quantum mechanics, and
thermodynamics. The presentation is structured as two parts: First, Ch. 1 is used to
lay out the methods and provide context for the research to be viewed in. Second,
the results are laid out in Ch. 2. The beginning of the expository chapter gives a
short historical overview of the relevant nanodevices in Sec. 1.1. There, the focus
lies on quantum dots, meso- or nanoscale structures that combine the quantized
energy structure of quantum systems with the ability to be integrated into electrical
circuits. Systems of this kind provide a versatile platform for device development
and are studied under various aspects in the remainder of this work. Next, the meth-
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ods used to this end are laid out in Secs. 1.2 to 1.4. The exposition concludes in
Sec. 1.5 with a sketch of the current state of quantum thermodynamics and the chal-
lenges that still need to be addressed. The first two sections of the results concern
themselves with using time-dependent driving potentials to manipulate the electric
transport through a strongly coupled nanomechanical quantum dot: In Sec. 2.1 it
is shown that by driving the quantum dot resonantly with its vibrational mode, its
conductance can be increased exponentially, thus lifting the transport blockade in-
herent in strongly coupled electromechanical systems. Then, in Sec. 2.2, a more
complex drive protocol is proposed to pump charge in either direction across such a
nanomechanical quantum dot. It is shown that the current pumped in this way also
enjoys the exponential amplification discovered in the previous section. The third
and fourth result sections are devoted to quantum thermodynamics: Sec. 2.3 shows
how to use nonequilibrium Green’s functions to establish the laws of thermody-
namics in a model of a quantum dot coupled with arbitrary strength to a metallic
lead, subject to a multi-drive protocol. Lastly, Sec. 2.4 adds the initial state of the
setup to the consideration, and links the quantum thermodynamics of such a model
system with the general framework of stochastic thermodynamics. This connec-
tion is used to show that the work produced under a general drive protocol behaves
according to the second law of thermodynamics for a wide class of initial states,
as long as the long-time limit is considered. Finally, a summary discussion is pro-
vided in Ch. 3, reviewing the documented findings and pointing out directions for
future research.
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Chapter 1

Background and methods

1.1 Molecular quantum dots

Quantum dots are mesoscopic structures with individually spaced energy levels.
A plethora of different implementations of such systems have emerged over the
past decades, with applications ranging from display technology [10] over medical
imaging [11] to proposals for quantum computation [12].

This thesis concerns itself with the transport properties of quantum dots. Since
our results build upon many years’ worth of insight obtained previously, this chap-
ter will be used to give an outline of this body of knowledge.

The physics of quantum dots has its beginning in the study of semiconductor
nanocrystals [13, 14], where individual quantum states can be examined even in
systems consisting of several thousand atoms. Their properties are evocative of
zero-dimensional quantum systems, hence the name quantum dot. The optical and
electronic features of quantum dots were soon realized and spurred a flurry of re-
search. This led to the development of various platforms to realize quantum dots,
as well as various ways of embedding them into electrical circuits, thus bringing
into focus their conductive properties [15]. In order to probe the conductance of a
quantum dot, it is connected to a number of leads, across which voltages can be ap-
plied. A schematic representation of such a setup is given in Fig. 1.1. The physics
that manifests in such a setup strongly depends on its parameters and energy scales
[16]. These include the lead temperature T , the applied potentials Vα, the tunnel-
ing rates Γα between the dot and the leads, as well as the internal properties of
the lead, such as its quantum level spacing ∆ and the strength of the interaction be-
tween electrons on the dot. Signatures of the quantization of the energies on the dot
can only be observed if these energies are spaced sufficiently far apart, in particu-
lar further than typical thermal fluctuations in energy. This dictates the condition
∆ > kBT , where kB denotes the Boltzmann constant. Moreover, the level spacing ∆

needs to be compared to the tunneling rates Γα. The case ∆ � Γα is known as weak
coupling. In this case, the energy levels on the dot still exhibit clear peak signa-
tures, with a width on the scale of Γ acquired by hybridization to the energies in the
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D

Figure 1.1: Quantum dot (D) connected to a pair of leads at the respective potentials
VL and VR. The tunneling rates into the leads are given by ΓL and ΓR, respectively.
The potential of the dot can be tuned by means of the gate voltage VG.

lead. The transport physics of this configuration is well-established [17, 16, 18];
the features most relevant to this thesis will be outlined below, largely following
[15].

As a result of the small tunneling rates, electrons can “hop” and populate lo-
calized states on the dot. Because of Coulomb repulsion among the dot electrons,
as well as potential jumps in the single particle spectrum of the dot, this hopping
requires energy. Neglecting the latter contribution, one obtains an approximating
charging energy of EC = e2/(2C), with the elementary charge e, and C denoting
the capacitance of the dot. For these individual charge number states to be well-
separated, it is required that EC � kBT , which for most semiconductor setups
corresponds to the sub-1K regime. For the setup from Fig. 1.1, it can be shown
that, in this regime, electron transport only occurs if there are available states on
the dot within the energy window defined by the bias VL−VR. Since the dot energy
levels can be moved by changing the gate voltage VG, the conductance of the dot
can be described by a diagram of the type seen in Fig. 1.2. The resulting pattern is
referred to as Coulomb diamonds and is understood as follows: If there is no dot
state available in the bias window, no conduction occurs, and the electron number
on the dot is fixed to a constant N. By increasing the bias (y axis), the window
expands and eventually comes to include a level so that current can flow. Alterna-
tively, changes in the gate voltage (x axis) may move a level into the window. In the
semi-classical constant-interaction model [19], the charging energy does not vary
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Figure 1.2: Conductance of the setup from Fig. 1.1 as a function of the bias and
gate voltages, assuming equally spaced energy levels on the quantum dot. The
non-conducting regions, distinguished by constant particle number on the dot and
the lack of a dot energy level within the bias window of size VL −VR, are indicated
in white. The pattern formed in this way is known as Coulomb diamonds.

as a function of the dot electron number and any further structure resulting from
the internal level spacing ∆ is ignored. Using this approximation, the conductance
pattern is periodic as in Fig. 1.2.

More realistic theories have been developed to take into account a wide variety
of further effects, such as asymmetry in the coupling, the influence of higher elec-
tronic states, as well as strong-coupling effects and a more sophisticated treatment
of electron interaction. Moreover, the physics of quantum dots is not limited to
purely electronic phenomena: As in any material, charge on a quantum dot may
couple to its vibrations. This is of particular importance in single-molecule junc-
tions [20, 21, 22, 23] and other strongly vibrating quantum dot platforms such as
carbon nanotubes [24, 25]. Novel fabrication techniques have been developed for
some quantum dots, which allow a precise tuning of the coupling between vibra-
tional modes and the charge sector [26]. In this way, the rich physics of nano-
electromechanical systems (NEMS) has become more experimentally accessible,
opening up a path to various applications such as innovative sensor design and data
processing schemes [27].

Charge transport through NEMS is strongly dependent of the vibrational de-
grees of freedom of the device in question. In particular, tunneling processes that
excite vibrations may be favored compared to purely electronic transitions. These
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manifest in vibrational sidebands in the Coulomb diamond pattern which contain
information about the vibrational modes of the quantum dot and their coupling to
the charge sector. Furthermore, strong electromechanical coupling leads to expo-
nential suppression of purely electronic tunneling, a phenomenon termed Franck-
Condon blockade. It has been observed in experiments with single-molecule junc-
tions [28, 29] and carbon nanotubes [30]. A great variety of theoretical work on
these systems has been performed as well, on both nanotubes [31, 32, 33] and
single-molecule junctions [20, 21, 22, 23, 34, 35], exploring the vibrational spec-
trum, the conductance, and the transfer statistics of such devices. The novel con-
tribution presented in this thesis concerns the interplay between these electrome-
chanical effects and time-dependent drive, documented in Secs. 2.1 and 2.2.

Quantum dots also can also be used as a platform for nanoscale heat engines,
considering that they do not suffer from the miniaturization issues of other tech-
niques and can be operated at high efficiency [36, 37]. Specifically, a quantum
dot connected between two reservoirs may enable particle and heat flow across a
bias as a function of temperature gradients [38, 39, 37]. Setups of this kind hold
promise for purposes of cooling nanoscale electronics and for harvesting energy
in solar cells. Secs. 2.3 and 2.4 of this thesis use a model system to examine the
thermodynamics of quantum dots, taking into account non-stationary and strong-
coupling effects.
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1.2 Non-equilibrium Green’s functions

In this chapter, we give an overview of the nonequilibrium Green’s function tech-
nique, which is the main tool employed in our work. The use of Green’s functions
in quantum theory provides a systematic way of relating the known dynamics of a
non-interacting system to those in the presence of an interaction.

Generally speaking, a Green’s function is a particular solution to a given bound-
ary value problem for a differential operator, which can be used to construct solu-
tions to this problem given arbitrary source terms. In the context of the quantum
theory of many-particle systems, the term is used to describe certain expectation
values of the operators used to model that system. These expectation values are
found to solve equations of motion and can be used as building blocks for the full
dynamics of the system, and the observables associated with it. [40]

1.2.1 Keldysh technique

Originally applied to systems in equilibrium only, the Green’s function formalism
can be modified to treat nonequilibrium settings as well [41]. This version of the
formalism is commonly referred to as nonequilibrium Green’s function (NEGF)
technique, or Keldysh formalism. In the following, we give an introduction to the
formalism, as far as it will be used in the remainder of this thesis. Our main refer-
ence in doing so is the recent review article [42]; other comprehensive accounts of
the topic include the textbooks [43, 44, 45].

Let us consider an arbitrary quantum system, the state of which at time t is
described by its density matrix ρ(t). The time evolution of ρ is governed by the
system Hamiltonian H in accordance with the von Neumann equation

∂tρ(t) = −i[H, ρ(t)]. (1.1)

Here and throughout this thesis, we set ~ = kB = 1. The equation can be formally
solved by writing

ρ(t) = U(t, t0)ρ(t0)U†(t, t0), (1.2)

where t0 denotes some initial time, and U(t, t0) is called the evolution operator or
propagator, which solves the Schrödinger equationi∂tU(t, t0) = HU(t, t0) ∀t > t0

U(t0, t0) = 1.
(1.3)

Next, we introduce an operator O whose expectation value we want to calculate.
Choosing the Schrödinger picture, we assume the operator to be time-independent,
with the entire time-dependence of the system encoded in the density matrix. The
desired expectation value is defined as a trace,

〈O(t)〉 ≡ tr [ρ(t)O] = tr [U(t, t0)ρ(t0)U†(t, t0)O]

= tr [ρ(t0)U†(t, t0)OU(t, t0)] = tr [ρ(t0)OH(t)], (1.4)
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making use of the cyclicity of the trace operation. In the last step we introduced
the Heisenberg picture, where any time dependence is absorbed into the operator,

OH(t) ≡ U†(t, t0)OU(t, t0). (1.5)

Analogously, for a pair of Heisenberg operators, we define the expectation value〈
A(t)B(t′)

〉
≡

〈
AH(t)BH(t′)

〉
= tr[ρ(t0)U†(t, t0)AU(t, t′)BU(t′, t0)], (1.6)

making use of the group property of the propagator, U(t, t0)U†(t′, t0) = U(t, t′).
〈A(t)B(t′)〉 is also referred to as the correlator of A(t) and B(t′), without explicit
mention of the Heisenberg picture.

As our goal is to describe interaction effects, we write the Hamiltonian as

H = H0 + V(t), (1.7)

with a bare Hamiltonian H0, and a possibly time-dependent interaction Hamilto-
nian V(t). In this setting, it will prove convenient to use the interaction picture,
i.e. to absorb only the time dependence induced by the bare Hamiltonian into the
operators,

Ô(t) = eiH0(t−t0)Oe−iH0(t−t0). (1.8)

In the following, we will indicate operators in the interaction picture with a hat.
The expectation value is then written as

〈O(t)〉 = tr [ρ(t0)S †(t, t0)Ô(t)S (t, t0)], (1.9)

with the S-matrix (or scattering matrix) operator S (t, t0) = eiH0(t−t0)U(t, t0) obeying
a Schrödinger equation that only features the interaction Hamiltonian,

i∂tS (t, t0) = V̂(t)S (t, t0). (1.10)

This equation can be solved by introducing the time-ordered exponential

S (t, t0) = T e−i
∫ t

t0
dsV̂(s)

, (1.11)

where the time-ordering symbol T moves operators evaluated at later times to the
left,

T [O1(t1)O2(t2)] = θ(t1 − t2)O1(t1)O2(t2) ± θ(t2 − t1)O2(t2)O1(t1), (1.12)

with θ denoting the Heaviside step function, and the signs “+” for bosonic and “-”
for fermionic operators, respectively. The time-ordered exponential in Eq. (1.11)
is then to be understood as a time-ordered infinite series. Analogously, the inverse
evolution operator is found to be

U†(t, t0) = T̃ ei
∫ t

t0
dsV̂(s)

, (1.13)
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introducing the anti-time ordering symbol T̃ , which orders operators in the reverse
fashion to Eq. (1.12),

T̃ [O1(t1)O2(t2)] = θ(t2 − t1)O1(t1)O2(t2) ± θ(t1 − t2)O2(t2)O1(t1). (1.14)

The expectation value from Eq. (1.9) therefore reads

〈O(t)〉 = tr
[
ρ(t0)T̃ ei

∫ t
t0

dt′V̂(t′)Ô(t)T e−i
∫ t

t0
dt′V̂(t′)

]
. (1.15)

The time-ordered expectation value will be of special interest. Starting from
Eq. (1.6), we find〈

TA(t)B(t′)
〉

= tr[ρ(t0)S †(t, t0)T [S (t, t0)Â(t)B̂(t′)]]

= tr
[
ρ(t0)T̃ ei

∫ t
t0

dt′V̂(t′)
T

[
e−i

∫ t
t0

dt′V̂(t′)Â(t)B̂(t′)
]]
. (1.16)

The two time-ordered exponentials can thus be merged into a single one as follows:〈
TA(t)B(t′)

〉
= tr

[
ρ(t0)TC

[
e−i

∫
C dτV̂(τ)Â(t−)B̂(t′−)

]]
. (1.17)

Here, the times are defined to lie on the contour C, as in Fig. 1.3, meaning that
times are defined on either branch of C, with the subscripts + and − indicating
the upper and lower branches, respectively. The place of time ordering has been
taken by contour ordering, denoted by TC , which orders times along C, with op-
erators evaluated at times lying later along the contour being moved to the left. It
is worth emphasizing that we do not assign an imaginary part to the times at this
point. Rather, the introduction of the contour corresponds to doubling the time
axis, and is the main structural difference between the equilibrium and nonequi-
librium Green’s function formalisms. By employing this scheme, we can avoid
making a statement about the state in the infinite future, which in the equilibrium
case is simply assumed to be non-interacting, but may not be well-defined out of
equilibrium.1

When dealing with this contour, we adopt the convention of using Latin letters
to denote times whose branch is specified and Greek ones for times that may live
on either branch.

Finally, we define the contour-ordered expectation of a pair of operators as〈
TCA(τ)B(τ′)

〉
= tr

[
ρ(t0)TC

[
e−i

∫
C dσV̂(σ)Â(τ)B̂(τ′)

]]
, (1.18)

which takes different values depending on which branch the times τ and τ′ lie on.
As we will see in detail below, all relevant Green’s functions arise from Eq. (1.18)
in this manner, making it the basic building block of NEGF. The exponentiated
contour integral will be abbreviated as

S C ≡ TCe−i
∫
C dσV̂(σ), (1.19)

in analogy to the expression for the S-matrix given in Eq. (1.11).
1From a technical point of view, extending the contour from the largest of the times t and t′ to

positive infinity does not result in additional contributions to the expectation value since the upper
branch of the extension always cancels with the lower branch.
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t0

− ×
τ C

×τ
′+

time

Figure 1.3: Keldysh integration contour C with times τ and τ′, running from t0 to
∞ in the lower half plane, before returning to t0 in the upper half plane.

1.2.2 Occupation of a single level coupled to a lead

The expectation value in Eq. (1.18) is amenable to modified versions of the quan-
tum field-theoretical methods used in the equilibrium formalism. We will now use
an example to outline which modifications need to be made: Considering a single
electron level coupled to a lead, we will calculate its steady-state occupation. We
choose the bare Hamiltonian as

H0 = εd†d, (1.20)

where d† and d are fermionic creation and annihilation operators, respectively,
and fulfill the anticommutation relations {d, d†} = 1. H0 thus describes a non-
interacting spinless fermion at the single-particle energy ε. Before introducing the
interaction term, let us calculate the bare Green’s function required in the NEGF
formalism. This Green’s function is given by

D0(τ, τ′) ≡ −i
〈
TCd(τ)d†(τ′)

〉
0
, (1.21)

where the subscript 0 indicates that the time evolution of the operator in the Heisen-
berg picture is governed by the bare Hamiltonian,2 according to the equations of
motion

∂τd(τ) = −iεd(τ)

∂τd†(τ) = iεd†(τ). (1.22)

Hence, the time-evolved operators are given by

d(τ) = e−iε(τ−τ0)d(τ0)

d†(τ) = eiε(τ−τ0)d†(τ0), (1.23)

2In the presence of an interaction Hamiltonian, the subscript 0 will thus indicate the interation
picture.
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where the initial condition d(τ0) may remain unspecified here. The times τ and τ′

are defined on the contour C from Fig. 1.3. As a result of contour ordering, the
value of D0(τ, τ′) depends on which of the two branches each of the times sits. The
Green’s function in each of these four cases are commonly grouped together using
matrix notation,3

D0(τ, τ′) =

(
D−−0 (τ, τ′) D−+

0 (τ, τ′)
D+−

0 (τ, τ′) D++
0 (τ, τ′)

)
=

−i
〈
T d(τ)d†(τ′)

〉
0

i
〈
d†(τ′)d(τ)

〉
0

−i
〈
d(τ)d†(τ′)

〉
0
−i

〈
T̃ d(τ)d†(τ′)

〉
0

 . (1.24)

The four components of D(τ, τ′) can be calculated using Eq. (1.22), for instance,

D−−0 (τ, τ′) = −i
[
θ(τ − τ′)

〈
d(τ)d†(τ′)

〉
0
− θ(τ′ − τ)

〈
d†(τ′)d(τ)

〉
0

]
= −ieiε(τ′−τ) [θ(τ − τ′)(1 − N0) − θ(t′ − t)N0

]
= −ieiε(τ′−τ) [θ(τ − τ′) − N0

]
. (1.25)

Here, the initial occupation number N0 was introduced, i.e.〈
d†(τ0)d(τ0)

〉
0
≡ tr[ρ(t0)d†(τ0)d(τ0)] = N0, (1.26)

without making any assumptions about its value.4 The other three Green’s func-
tions are obtained analogously,

D−+
0 (τ, τ′) = ieiε(τ′−τ)N0

D+−
0 (τ, τ′) = −ieiε(τ′−τ)(1 − N0)

D++
0 (τ, τ′) = −ieiε(τ′−τ) [θ(t′ − t) − N0

]
. (1.27)

Next, an interaction term is introduced as follows. Imagine the single particle
previously modeled by H0 is coupled to a metallic lead, which is a system of many
effectively non-interacting particles, with spatial extent L. We describe the lead by
the Hamiltonian

HB =
∑

k

εkc†kck, (1.28)

where the index k enumerates the lead modes. Thus, we expand the bare Hamilto-
nian to

H0 = εd†d +
∑

k

εkc†kck. (1.29)

3occasionally referred to as a Keldysh matrix
4Equivalently, the initial state ρ(t0) is unspecified.
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The coupling of the single particle to the lead will be treated as an interaction,

V =
∑

k

γk
√

L
d†ck + h. c., (1.30)

with h. c. denoting the Hermitian conjugate. Each mode of the lead is coupled to the
single particle with a time-independent tunneling amplitude γk. In the following,
we quantify the effect of the coupling by calculating the contour-ordered Green’s
function

D(τ, τ′) ≡ −i
〈
TCd(τ)d†(τ′)

〉
, (1.31)

which differs from its bare counterpart in the fact that the expectation value is
calculated with respect to the Hamiltonian H = H0 + V . We employ the expression
from Eq. (1.18) to do so, expanding the interaction exponential in powers of V .
After performing the leading-order expansion of D(τ, τ′), we have

D(τ, τ′) = −i
〈
TCe

−i
∫
C dσ

[∑
k
γk√

L
d†(σ)ck(σ)+h.c.

]
d(τ)d†(τ′)

〉
0

= D0(τ, τ′) −
i
2

∫
C

dσ
∫

C
dσ′

∑
kq

[
γkγ

∗
q

L

〈
TCd†(σ)ck(σ)c†q(σ′)d(σ′)d(τ)d†(τ′)

〉
0

+
γ∗kγq

L

〈
TCc†k(σ)c(σ)d†(σ′)cq(σ)d(τ)d†(τ′)

〉
0

]
+ O(V4). (1.32)

Here, we assumed an initial state of the factorized form ρ(t0) = ρD(t0) ⊗ ρB(t0),
meaning the coupling only affects the system as it starts to evolve. With this choice,
the expectation values 〈cqd†〉0 and 〈c†qd〉0 both vanish, leading to the disappearance
of all odd-ordered terms in Eq. (1.32). Furthermore, we work with a thermal initial
state for the lead, ρB(t0) = e−βHB with an inverse temperature β = 1/T . This
allows us to drop terms that will evaluate to zero because of 〈ckck〉 = 〈c†kc†k〉 = 0.
In order to reduce the higher-order correlators in this expansion to products of
Green’s functions, Wick’s theorem is employed, the validity of which extends to
nonequilibrium correlators [42]. This procedure results in

D(τ, τ′) = D0(τ, τ′) +

∫
C

dσ
∫

C
dσ′

∑
k

γkγ
∗
k

L
D0(τ, σ)G0,k(σ,σ′)D0(σ′, τ′)

+ O(V4), (1.33)

where we used the absence of off-diagonal correlators in the initial state ρB of the
lead to drop the sum over q. Moreover, considerable simplification is brought about
by the fact that fermion operators in contour-ordered expectation values freely an-
ticommute. Eq. (1.33) does not just give the second-order result in perturbation
theory, but its structure also allows to deduce D(τ, τ′) to all orders: By iterating,
we see that the exact Green’s function is obtained by substituting D(σ′, τ′) in place
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= +

γ∗k γk
+ . . .

D D(0) D(0) D(0)∑
kαG

(0)
kα

= +
Σ

Figure 1.4: Feynman diagrams contributing to the exact dot Green’s function
D(τ, τ′). The linearity of the diagrams allows us to re-sum the perturbation series
by defining the self-energy Σ(σ,σ′) as in Eq. (1.35).

of D0(σ′, τ′) in the convolution term above. We thus obtain a Dyson equation for
the contour-ordered Green’s function,

D(τ, τ′) = D0(τ, τ′) +

∫
C

dσ
∫

C
dσ′D0(τ, σ)Σ(σ,σ′)D(σ′, τ′), (1.34)

with the self-energy

Σ(σ,σ′) =
∑

k

γkγ
∗
k

L
G0,k(σ,σ′). (1.35)

The simple structure of Eq. (1.34) is a consequence of the coupling V̂ being merely
quadratic in the operators. In the language of Feynman diagrams, this means that
all terms in the expansion of Eq. (1.18) correspond to linear diagrams that can be
re-summed upon introduction of the self-energy, as illustrated in Fig. 1.4.

In order to calculate the coupling corrections to the individual components of
D, i.e. the coupling corrections to the Green’s functions in Eqs. (1.25) and (1.27),
we need to specify the branches of the contour where the time arguments τ and τ′

are defined. Evaluating the contour-ordered integrals is then done by splitting the
contour integral into “forward” and “backward” parts along the real line: For any
function f we have ∫

C
dτ f (τ) =

∫ ∞

t0
dt− f (t−) −

∫ ∞

t0
dt+ f (t+), (1.36)

meaning every integration over the positive branch of the contour comes with a
minus sign. Here and in the following, times on the contour are denoted by Greek
letters and times on the real line by Latin ones. For instance, the -+ component of
the Green’s function is obtained by defining τ to lie on the negative branch of C
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and τ′ on the positive one. Using Eq. (1.36) to split the integrals yields

D−+(t, t′) = D−+
0 (t, t′) +

∫ ∞

t0
ds

∫ ∞

t0
ds′D−−0 (t, s)Σ−−(s, s′)D−+(s′, t′)

−

∫ ∞

t0
ds

∫ ∞

t0
ds′D−+

0 (t, s)Σ+−(s, s′)D−+(s′, t′)

−

∫ ∞

t0
ds

∫ ∞

t0
ds′D−−0 (t, s)Σ−+(s, s′)D++(s′, t′)

+

∫ ∞

t0
ds

∫ ∞

t0
ds′D−+

0 (t, s)Σ++(s, s′)D++(s′, t′). (1.37)

Here, the components of the self energy are defined by taking the corresponding
component of G0,k(σ,σ′) in Eq. (1.35). This result, together with the other three
components, can be written more compactly in terms of matrices along the lines of
Eq. (1.24),

D(t, t′) = D0(t, t′) +

∫ ∞

t0
ds

∫ ∞

t0
D0(t, s)Σ(s, s′)D(s′, t′). (1.38)

Note that the self-energy matrix is defined so as to include the negative signs arising
from the contour integration,

Σ(s, s′) =

(
Σ−−(s, s′) −Σ−+(s, s′)
−Σ+−(s, s′) Σ++(s, s′)

)
. (1.39)

When calculating transport properties of a system below, we will also make use of
the retarded and advanced Green’s functions. These are defined by

DR(t, t′) ≡ −iθ(t − t′)
〈
{c(t), c†(t′)}

〉
,

DA(t, t′) ≡ iθ(t′ − t)
〈
{c(t), c†(t′)}

〉
=

[
DR(t′, t)

]∗
, (1.40)

(1.41)

respectively. It is easily verified how these Green’s functions are related to the
previous definitions,

DR(t, t′) = D−−(t, t′) − D−+(t, t′)

DA(t, t′) = D−−(t, t′) − D+−(t, t′). (1.42)

These Green’s functions play a central role, among other things, in determining
the excitation spectrum of a system and its response to external influences. On
the other hand, information about its distributional properties is encoded in D−+

and D+−, which are often referred to as the lesser and greater Green’s functions,
respectively. As an alternative, these properties can be summarized in the so-called
kinetic (or Keldysh) Green’s function

DK(t, t′) = D−+(t, t′) + D+−(t, t′). (1.43)
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In the following, we modify the matrix Green’s function by employing a common
procedure known as Keldysh rotation,

Ď =

(
DR DK

0 DA

)
= LσzDL†, (1.44)

where L denotes the Hermitian matrix

L ≡
1
√

2

(
1 −1
1 1

)
, (1.45)

and

σz =

(
1 0
0 −1

)
(1.46)

is the third Pauli matrix. Using this convention, we obtain the Dyson equation

Ď(t, t′) = Ď0(t, t′) +

∫ ∞

t0
ds

∫ ∞

t0
ds′Ď0(t, s)Σ̌(s, s′)Ď(s′, t′). (1.47)

Here, the self-energy is given by

Σ̌(s, s′) =

(
ΣR(s, s′) ΣK(s, s′)

0 ΣA(s, s′)

)
, (1.48)

meaning there are no additional minus signs as in Eq. (1.39). In particular, the
triangular shape of all matrices in Eq. (1.47) implies that the coupling corrections
to the retarded and advanced Green’s function can be calculated using only the
corresponding components of G0 and Σ,

DR/A(t, t′) = DR/A
0 (t, t′) +

∫ ∞

t0
ds

∫ ∞

t0
ds′DR/A

0 (t, s)ΣR/A(s, s′)DR/A(s′, t′).

(1.49)

Let us also give the Dyson equations for the lesser and greater Green’s functions,

D∓±(t, t′) = D∓±0 (t, t′) +

∫ ∞

t0
ds

∫ ∞

t0
ds′DR

0 (t, s)ΣR(s, s′)D∓±(s′, t′)

+

∫ ∞

t0
ds

∫ ∞

t0
ds′DR

0 (t, s)Σ∓±(s, s′)DA(s′, t′)

+

∫ ∞

t0
ds

∫ ∞

t0
ds′D∓±0 (t, s)ΣA(s, s′)DA(s′, t′), (1.50)

which arises in analogous fashion to the kinetic component of Eq. (1.47). Eq. (1.50)
is an application of the Langreth rule [46, 47], which relates the lesser component

18



of a convolution to convolutions of the constituents’ components: Given the func-
tion C(τ, τ′) =

∫
C dσA(τ, σ)B(σ, τ′), rewriting the contour integrals as real ones

according to Eq. (1.36) results in the identity

C±∓(t, t′) =

∫ ∞

t0
ds

[
AR(t, s)B±∓(s, t′) + A±∓(t, s)BA(s, t′)

]
. (1.51)

A straightforward application of the lesser Green’s function lies in computing
the particle number

N(t) ≡
〈
d(t)d†(t)

〉
= −iD−+(t, t). (1.52)

Often, one is interested in the situation of the steady state of the system, where
the effects characterizing the regime close to the initial state have died out and
the asymptotic behavior has established itself, with N(t) having converged to its
steady-state value. In the NEGF formalism for a time-independent Hamiltonian,
this is achieved by moving the initial time into the infinite past, t0 → −∞. We
furthermore expect that all Green’s functions in this situations will only depend on
relative times, so we make the ansatz D−+(t, t′) = D−+(t − t′). Then, the Dyson
equation (1.50) for D−+ can be written in terms of convolutions,

D−+(t − t′) = D−+
0 (t − t′) +

[
DR

0 ∗ ΣR ∗ D−+
]

(t − t′)

+
[
DR

0 ∗ Σ−+ ∗ DA
]

(t − t′) +
[
D-+

0 ∗ ΣA ∗ DA
]

(t − t′), (1.53)

where convolution of two functions A and B is defined as

[A ∗ B](t) =

∫ ∞

−∞

dsA(s)B(t − s). (1.54)

By considering the Fourier-transformed Green’s function,

D−+(ω) =

∫ ∞

−∞

d(t)eiωtD−+(t), (1.55)

the convolutions are replaced by products, and iteration of Eq. (1.53) yields

D−+(ω) = (1 + DR(ω)ΣR(ω))D−+
0 (ω)(1 + DA(ω)ΣA(ω)) + DR(ω)Σ−+(ω)DA(ω),

(1.56)

where the Fourier transform of Eq. (1.49) was used,

DR/A(ω) = DR/A
0 (ω) + DR/A

0 (ω)ΣR/A(ω)DR/A(ω). (1.57)

D−+(ω) simplifies considerably upon introduction of the Fourier transformed initial
Green’s functions,

D−+
0 (ω) = i2πδ(ω − ε)N0

DR
0 (ω) =

1
ω − ε + iη

, (1.58)
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where N0 denotes the initial occupation number of the level, and the positive in-
finitesimal η → 0 encodes the time retardation in frequency space. By applying
the Fourier transform of Eq. (1.49) to the first factor of the first term in Eq. (1.56),
one obtains

D−+(ω) =
DR

0 (ω)−1

DR
0 (ω)−1 − ΣR(ω)

D−+
0 (ω)(1 + DA(ω)ΣA(ω)) + DR(ω)Σ−+(ω)DA(ω)

(1.59)

Since Eq. (1.58) implies DR
0 (ω)−1D−+

0 (ω) = 0, the first term evaluates to zero and
we are left with

D−+(ω) = DR(ω)Σ−+(ω)DA(ω). (1.60)

Hence, the occupation of the level in the infinite past has no effect on the steady-
state solution for D−+, which can be obtained from the retarded and advanced
solutions of Eq. (1.57),

DR/A(ω) =
1

DR/A
0 (ω)−1 − ΣR/A(ω)

=
1

ω − ε − ΣR/A(ω)
. (1.61)

The retarded and advanced components of the self-energy is given by

ΣR/A(ω) =
∑

k

γ∗kγk

L
1

ω − εk ± iη
= P

∑
k

γ∗kγk

L
1

ω − εk
∓ iπ

∑
k

γ∗kγk

L
δ(ω − εk)

≡ Λ(ω) ∓ iΓ(ω), (1.62)

with the negative and positive signs in the last line applicable for the retarded and
advanced components, respectively. The real part, commonly denoted Λ(ω), ef-
fects a Lamb shift in the location of the peak of DR(ω), and the imaginary part
Γ(ω) describes the broadening of the particle linewidth as a result of coupling it to
the lead. This imaginary part serves to regularize the denominator in Eq. (1.61),
replacing the infinitesimal η. The lesser self-energy is proportional to the linewidth
and the distribution function of the lead,

Σ−+(ω) =
∑

k

γ∗kγk

L
G−+

0,k (ω) = 2πi
∑

k

γ∗kγk

L
nF(εk)δ(ω − εk) = i2nF(ω)Γ(ω). (1.63)

Finally, the pieces can be assembled and the steady state particle number is given
by

Nss =

∫
dω
2π

D−+(ω) =

∫
dω
2π

2Γ(ω)
(ω − ε − Λ(ω))2 + Γ2(ω)

nF(ω). (1.64)

In summary, the effects of coupling to the particle to the lead and taking the steady-
state limit are (i) level broadening leading to a finite linewidth Γ, (ii) energy shift
by Λ, and (iii) thermalization according to the lead distribution nF.
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Figure 1.5: Single-level quantum dot of energy ε coupled to a pair of leads. The
tunnel couplings between dot and leads, γkα, α = L,R, may differ for varying lead
levels.

1.2.3 From Keldysh to current

The use of Green’s functions is not limited to determining the dynamics of a sys-
tem. They are also a valuable tool in the theory of quantum transport. [48, 47] In
this section, we will relate the above results on Green’s functions to the problem of
calculating the charge current flowing through a mesoscopic region between a pair
of metallic leads, as sketched in Fig. 1.5. Specifically, the central region may model
a molecular quantum dot [19] as discussed in Sec. 1.1. Moreover, we will also in-
troduce the wide-band limit which is assumed in our results presented in Secs. 2.1
to 2.4. The following presentation is based on Ref. [47], where the formalism is
laid out in detail.5

The Hamiltonian of this setup is given by

H(t) = HD + HL + HR + HT,

HD(t) = εd†d,

Hα =
∑

k

εkαc†kαckα, α ∈ {L,R}

HT =
∑

k
α=L,R

γkα
√

L
d†ckα + h. c., (1.65)

where HD, Hα for α ∈ {L,R}, and HT denote the dot, lead and dot-lead tunneling
Hamiltonians, respectively. Compared to the example from the previous section,
this model contains a second lead to allow for stationary current flow. The dot
energy ε and the coupling strengths γkα are assumed to be independent of time.
This restriction is removed in Secs. 2.2 to 2.4, where the time-dependence is taken
into account, using different formalisms.

The operator for the current flowing through a lead is defined as the rate of
change of the corresponding particle number. Focusing on the right lead, this par-
ticle number is written as NR =

∑
k c†kRckR. Applying the equation of motion yields

5Ref. [47] considers a multi-level quantum dot, but this degree of generality is not needed for our
work.
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the current,

IR(t) ≡ e∂tNR = ie[H,NR] = ie
∑

k

γkR
√

L
d†ckR + h. c. . (1.66)

In order to calculate the expectation value of this operator, we introduce the mixed
Green’s functions

Fkα(τ, τ′) ≡ −i
〈
TCckα(τ)d†(τ′)

〉
. (1.67)

Taking the lesser component enables us to write

〈IR(t)〉 = 2e Re
∑

k

γkR
√

L
F−+

kR (t, t). (1.68)

The calculation of the current thus reduces to the calculation of the mixed Green’s
functions. In order to relate these with the Green’s functions introduced previously,
we assign to HT the role of the interaction Hamiltonian and consider the contour
S-matrix

S C = TCe−i
∫
C dτĤT(τ). (1.69)

The perturbation expansion of Fkα(τ, τ′) is thus given by

Fkα(τ, τ′) = −i
〈
TCe−i

∫
C dσĤT(σ)ckα(τ)d†(τ′)

〉
0

= −i
〈
TC

∑
j≥0

(−i) j

j!

∫
C

dσ

∑
kα

γkα
√

L
d†(σ)ckα(σ) + h. c.


 j

ckα(τ)d†(τ′)
〉

0

.

(1.70)

Using Wick’s theorem, as well as 〈d†ck〉0 = 〈c†kd〉0 = 〈ckcq〉0 = 〈c†kc†q〉0 = 0, we
see that the terms of the expansion can be regrouped, leading to

Fkα(τ, τ′) =

∫
C

dσG0,kα(τ, σ)
γ∗kα
√

L
D(σ, τ′), (1.71)

where the dot and bare lead Green’s functions are defined as before,

D(τ, τ′) = −i
〈
TCd(τ)d†(τ′)

〉
,

G0,kα(τ, τ′) = −i
〈
TCckα(τ)c†kα(τ′)

〉
0
, (1.72)

respectively. G0,kα denotes the bare lead Green’s function for the lead of index α.
As in Sec. 1.2.2, we study the steady-state situation by taking the limit of t0 → −∞.
Substitution of D(τ, τ′) into Eq. (1.68) yields for the current through the right lead

〈IR(t)〉 = 2e Re
∫ ∞

−∞

ds
[
ΣR

R(t, s)D−+(s, t) + Σ−+
R (t, s)DA(s, t)

]
, (1.73)
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where the self-energy now also contains a summation over the leads,

ΣR(s, s′) =
∑
kα

γ∗kαγkα

L
GR

0,kα(s, s′). (1.74)

The summation over lead modes can be simplified by taking the wide-band limit
(WBL), presuming that the coupling γα to the leads does not depend on the individ-
ual lead mode k, and that the density of states ρ̄ in the leads is constant throughout
the relevant range of energies.6 The latter is equivalent to linearizing the lead spec-
trum, εkα = vFk near the Fermi surface, with the constant Fermi velocity vF. Using
these simplifications, the contribution of lead α to the retarded self-energy evalu-
ates to

ΣR
α(s, s′)WBL

= − i
γ∗αγα

L
θ(s − s′)

∑
k

e−iεkα(s−s′)

= −iρ̄γ∗αγαθ(s − s′)
∫

dωe−iω(s−s′)

= −iΓαδ(s − s), (1.75)

where we introduced the tunneling rate Γα = |γα|
2/(2vF). The density of states was

used in the form

ρ̄ =
∑

k

δ(ω − εkα)/L =
1

2πvF
(1.76)

to convert the sum over modes
∑

k /L into the frequency integral ρ̄
∫

dω. The theta
function contributes a factor of θ(0) = 1/2. Comparing to Eq. (1.62), we note that
as a result of taking the WBL, ΣR is purely imaginary and delta-shaped in the time
domain. In the same way, the lesser component is obtained,

Σ−+
α (s, s′)WBL

= i
γ∗αγα

L

∑
k

e−iεkα(s−s′)nF(εk)

= iρ̄γ∗αγα

∫
dωe−iω(s−s′)nFα(ω). (1.77)

This frequency integral features an unphysical divergence as a result of the infinite
bandwidth in the WBL. It can be cured by introducing a frequency cutoff, but we
will in general not make this procedure explicit in the following.

As in Sec. 1.2.2, the steady-state current is obtained by making an ansatz for
D−+ that only depends on time differences. In the frequency domain, the lesser dot
Green’s function is then

D−+(ω) = DR(ω)
[
Σ−+

L (ω) + Σ−+
R (ω)

]
DA(ω). (1.78)

6The WBL is known to be accurate for metallic electrodes, where the temperature is small com-
pared to the Fermi energy. Further remarks on its validity can be found in Ref. [49].
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In particular, this implies D−+(t) = −D−+(−t)∗, and therefore, in the steady state,
after substituting Eqs. (1.75) and (1.77), Eq. (1.73) simplifies to

〈IR〉ss = −i2eΓR

∫
dω
2π

[
D−+(ω) + nFR(ω)(DR(ω) − DA(ω))

]
. (1.79)

In the steady state, one needs to impose 〈IR〉ss = − 〈IL〉ss in order to exclude solu-
tions with infinite charge accumulation on the dot. The current can then be written
as 〈I〉ss = (〈IR〉ss − 〈IL〉ss)/2. In the case of ΓL = ΓR, the term proportional to
D−+(ω) in Eq. (1.79) drops out, giving the final result for the WBL steady-state
current

〈I〉ss = i
eΓ

2

∫
dω
2π

[nFL(ω) − nFR(ω)]
[
DR(ω) − DA(ω)

]
. (1.80)

The most striking feature of this current is that it only depends on the retarded dot
Green’s function, and its frequency domain is defined by the “window” nFL − nFR
in the lead distributions.
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1.3 Floquet expansion for driven systems

Driven quantum systems have long been a mainstay of quantum physics in gen-
eral and transport theory in particular [50, 51, 52]. Accordingly, a wide array of
analytical and numerical techniques has been developed for their analysis. Given
a system described by a time-dependent Hamiltonian, there is no single, feasible,
technique to obtain the system dynamics for a completely general drive. Rather,
the choice of method depends strongly on the manner of driving the system, for in-
stance a slow drive may be treated in the adiabatic approximation, or a weak drive
may be amenable to perturbation theory. For a periodic drive without restriction on
its speed or strength, the Floquet approach has proven successful.

Here, we give an overview of the Floquet technique in preparation for Sec. 2.2,
where it is applied to a molecular quantum dot with a periodic driving force. Origi-
nating from the theory of differential equations [53, 54], the Floquet technique can
be used to treat periodic Hamiltonians,

H(t + T ) = H(t) ∀t. (1.81)

In this case, the Schrödinger equation i∂tφ(t) = H(t)φ(t) admits a complete set of
solutions of the form

φα(t) = e−iEαtuα(t), (1.82)

where uα inherits the periodicity of the Hamiltonian, and hence admits a decom-
position in harmonics of the drive frequency Ω = 2π/T ,

uα(t + T ) = uα(t) =
∑
n∈Z

e−inΩtunα. (1.83)

The Eα in Eq. (1.82) are known as quasi-energies. The decomposition in Eq. (1.83)
implies that the quasi-energies are only defined up to integer multiples of the drive
frequency. Indeed, by shifting the energy one finds

e−i(Eα+kΩ)tuα(t) = e−iEαt
∑
n∈Z

e−i(n−k)Ωtunα = e−iEαt
∑
n∈Z

e−inΩtu(n+k)α, (1.84)

which is also a solution of the Schrödinger equation. Hence the range of the quasi-
energies can be restricted to 0 ≤ Eα < Ω, analogously to the emergence of the
Brillouin zone in systems with spatial periodicity. This leads to the interpreta-
tion of the exponential e−iEαt describing the long-time (low-energy) behavior of
the wave function, whereas the periodic factor uα(t) encodes its evolution on time
scales shorter than the drive period. By decomposing the Schrödinger equation
into Fourier components, an equation for the mode amplitudes unα is obtained,∑

n∈Z

Hmnunα = (Eα + mΩ)umα, (1.85)
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meaning that the time-dependent problem can be mapped onto a time-independent
one involving an infinite-matrix Hamiltonian with entries

Hmn =
1
T

∫ T/2

−T/2
dtei(m−n)ΩtH(t). (1.86)

This representation of the Schrödinger equation suggests interpreting the role of
the drive as a source of “photons” of frequency Ω.

An analogous formalism can also be developed in the language of Green’s
functions, as was laid out in Ref. [55]: Consider a general NEGF Ǧ(t, t′), where the
check mark indicates the 2 × 2 matrix structure with both times defined on the real
line, using the notation from Sec. 1.2. First, time dependence can be expressed in
terms of the relative and average times trel = t− t′, and tav = (t + t′)/2, respectively.
Then, a Fourier transform is performed in the relative coordinate,

Ď(tav, ω) =

∫ ∞

−∞

dtreleiωtrel Ď(tav, trel). (1.87)

As a consequence of the periodicity of the Hamiltonian, the Green’s function is
itself periodic in the average time if initial state effects are disregarded. Hence it
can be expanded into Fourier modes,

Ď(n, ω) =
1
T

∫ T/2

−T/2
dtaveinΩtav Ď(tav, ω). (1.88)

Having performed this expansion, the Green’s function can be written as an infinite-
dimensional Floquet matrix in frequency space,

Ďmn(ω) = Ď
(
m − n, ω +

m + n
2

Ω

)
. (1.89)

This matrix representation allows to write convolutions in time domain as matrix
multiplications in frequency space: For a function

C(t, t′) =

∫ ∞

−∞

dsA(t, s)B(s, t′), (1.90)

the Floquet expansion is given by

Cmn(ω) =

∞∑
k=−∞

Amk(ω)Bkn(ω). (1.91)

In order to calculate this matrix product numerically, it is necessary to make an ap-
proximation, the most simple one being to only take a finite number NFl of Floquet
modes into account. This corresponds to limiting the dimension of the matrices to
N ≡ 2NFl + 1, with the index k running from −NFl to NFl.
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1.4 Open quantum systems and master equations

Only very rarely do quantum systems occur in complete isolation from their sur-
roundings. This is true especially in the context of transport theory, where systems
are embedded in environments in order to induce a current flowing through them.
More generally, a quantum system will almost invariably interact with its surround-
ings in some way, leading to various consequences such as hybridization of energy
levels, particle loss, or dissipation of energy. Typically, the environment in such
a setup contains a macroscopic number of degrees of freedom and allows for less
experimental control than the system itself, making it very challenging to describe
with an exact quantum model. Moreover, the environment is usually only of inter-
est by virtue of how it affects the system, so the environment dynamics themselves
tend to be of lesser relevance.

1.4.1 From von Neumann to Lindblad

The notion of an open system encompasses any quantum system in contact with
an environment. In this situation, it has in many cases proven possible to obtain an
effective description for the dynamics of the open system in which the environment
degrees of freedom no longer occur as variables. Since the resulting model only
contains the system degrees of freedom, it can be much easier to treat, while still
preserving information about the effects of the environment on the system. Con-
figurations with weak coupling between system and environment are particularly
amenable to such an approach. In the following, we will sketch the derivation of an
effective model that will prove useful in corroborating our results from the NEGF
approach, in Sec. 2.1.

Since the form and eventual tractability of such an effective model for the open
system will in any case depend on the configuration in question, we do not aim
for generality here, but will instead focus on what is used in Sec. 2.1. The main
reference used here is Ch. 6 of Ref. [56], others include the textbooks [57, 58]. A
rigorous treatment can be found in Ref. [59].

We consider an arbitrary quantum system in contact with an environment, as
illustrated in Fig. 1.6. The composite of system and environment will in the follow-
ing be referred to as the super-system, which includes all system and environment
degrees of freedom. Its evolution is governed by the full Hamiltonian

H = HS + HE + V, (1.92)

with the three terms denoting the system, environment, and system-environment
interaction Hamiltonians, respectively. In the following we will treat V as an
interaction Hamiltonian and make use of the interaction picture as introduced in
Sec. 1.2.

As in Sec. 1.2, the starting point of our discussion is the density matrix ρ(t)
of the super-system, which in the interaction picture evolves according to the von
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Super-system

System Environment

ρ
H

ρS
HS

HEV

Figure 1.6: Schematic representation of an open system in contact with an envi-
ronment. The open system dynamics are encoded in the reduced density matrix
ρS, which exclusively retains the system degrees of freedom. The time evolution
of ρS is obtained by evolving the density matrix ρ of the super-system with the full
Hamiltonian H = HS + HE + V and then tracing over the environment degrees of
freedom.

Neumann equation

d
dt
ρ̂(t) = −i[V̂ , ρ̂(t)]. (1.93)

We aim to find an expression for the reduced density matrix ρ̂S(t), which is obtained
from ρ̂(t) by tracing over the environment degrees of freedom,

ρ̂S(t) = trE ρ̂(t). (1.94)

A simplified equation of motion for ρS (as opposed to ρ) can be obtained from
Eq. (1.93), given certain assumptions. First, the super-system is required to be in
a factorized state ρ(t0) = ρS(t0) ⊗ ρB at the initial time t0. Here, ρB is a fixed state
of the environment, often taken to be a thermal state ρB = e−βHE/ tr e−βHE at an
inverse temperature β. In this case, the environment is referred to as a bath, as
indicated by the index B. Second, the coupling between system and environment is
assumed to be weak, and that the dynamics of the bath are much faster than those
of the system. Under these assumptions, the von Neumann equation can be shown
to imply

ρ̂S(t) = ρS(t0) −
∫ t

t0
ds

∫ s

t0
du trE

[
V̂(s),

[
V̂(s − u), ρ̂S(s) ⊗ ρB

]]
+ O(V3), (1.95)
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where the interaction picture with respect to HS + HE is indicated by hats. By mak-
ing some further assumptions about the correlators of the environment operators in
the interaction Hamiltonian V ,7 it is possible to arrive at a linear master equation
for ρS,

dρ̂S(t)
dt

= −i[ĤLS, ρ̂S(t)] +D
[
ρ̂S(t)

]
, (1.96)

where ĤLS contributes a shift of the system energy levels due to the coupling to
the bath and is hence referred to as the Lamb-shift Hamiltonian. The operatorD is
called a dissipator, and its action on the system density matrix is given by

D
[
ρ̂S

]
=

∑
µ

∑
ω

γµ(ω)
(
Cµ(ω)ρ̂SC†µ(ω) −

1
2

{
C†µ(ω)Cµ(ω), ρ̂S

})
, (1.97)

where the operators Cµ represent various decay channels, and the sum over ω cor-
responds to adding contributions from the entire spectrum of the system. Eq. (1.96)
is known as the Lindblad equation [59] for the system density matrix and captures
the non-unitary part of the evolution of the system resulting from the contact with
the bath.

1.4.2 A note on Markovianity

In the context of open system dynamics, a commonly used notion is that of Marko-
vian evolution. Specifically, the Lindblad equation (1.96) is usually taken to indi-
cate that the system evolves in a Markovian manner. The exact meaning of Marko-
vianity is however more complex than this would suggest. A considerable amount
of literature is dedicated to the issue, see Refs. [60, 56, 61, 62] among others; here,
we borrow from Refs. [57, 56] and establish the main points in as far as will be
needed to provide context for our own work.

The origin of the term lies in classical probability theory, where a stochastic
process, i.e. a sequence (Xn)n∈N of random variables is called Markovian, if the
distribution of any element in the sequence only depends on its immediate prede-
cessor,

P(Xn = x|Xn−1 = xn−1, . . . , X0 = x0) = P(Xn = x|Xn−1 = xn−1), (1.98)

where P(A|B) ≡ P(A ∩ B)/P(B) denotes the probability of the event A conditioned
on the event B. This property is a manifestation of the process being memoryless,
i.e. the transition probabilities between the nth and (n−1)st steps do not depend on
the history of the process. This notion is readily generalized to continuous stochas-
tic processes (Xt)t∈I . There, denoting by p(x, t) the probability for the process to
take the value x at the time t, we have by definition

p(x, t) =

∫
dx′p(x, t|x′, t′)p(x′, t′) ∀t′ < t, (1.99)

7These assumptions are related to, but not equivalent to assuming an infinite number of environ-
ment degrees of freedom. For details, see Ch. 6 of Ref. [56].
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where the conditional probability p(x, t|x′, t′) acts as a transition kernel for the
evolution between t′ and t. The Markov condition is formulated in analogy to
Eq. (1.98), and imposed for any sequence of times, for example p(x3, t3|x2, t2, x1, t1) =

p(x3, t3|x2, t2). This implies a composition law for the transition kernel,

p(x3, t3|x1, t1) =

∫
dx2 p(x3, t3|x2, t2)p(x2, t2|x1, t1), (1.100)

for all intermediate times t1 < t2 < t3, known as the Chapman-Kolmogorov equa-
tion.

The quantum version of Markovianity can be introduced by drawing upon
Eq. (1.100) and requiring a similar composition rule. More precisely, the role of
the probabilities p(x, t) is taken by the system density matrix ρS(t). Given a fac-
torized initial state ρ(t0) = ρS(t0) ⊗ ρB of the super-system, it is possible to find
a family of linear operators E(t) that encode the evolution of the reduced density
matrix ρS(t) = trB ρ(t),

ρS(t0 + t) = E(t)
[
ρS(t0)

]
(1.101)

in such a way it fulfills a composition law analogous to Eq. (1.100). Since the
environment degrees have already been traced out, the evolution of ρS(t) is not
unitary and hence does not inherit the group property of the propagator U(t, t′) of
the super-system. Nonetheless, by introducing the spectral decomposition ρB =∑
β λβ |φβ〉 〈φβ| of the initial bath density matrix, it is possible to write the evolution

of ρS as

ρS(t0 + t) = trB
[
U(t0 + t, t0)ρS(t0) ⊗ ρBU†(t0 + t, t0)

]
=

∑
α

〈φα|U(t0 + t, t0)ρS(t0) ⊗

∑
β

λβ |φβ〉 〈φβ|

 U†(t0 + t, t0) |φβ〉

≡
∑
αβ

W†αβ(t)ρS(t0)Wαβ(t), (1.102)

where Wαβ =
√
λβ 〈φα|U(t0 + t, t0) |φβ〉. This expression is of the form from

Eq. (1.101), with

E(t) [·] =
∑
αβ

W†α(t)[·]Wβ(t) (1.103)

denoting the trace-preserving evolution operator for the reduced density matrix.
The analogy to Eq. (1.100) is constructed by imposing the semigroup condition

E(t + s) = E(t)E(s) ∀t, s ≥ 0. (1.104)

If this condition is fulfilled and E(t) is in addition completely positive,8 then E is
said to model a Markovian process. It can be shown that the evolution of a density

8A map Emapping operators to operators is called positive if it maps positive operators to positive
operators, i.e. operators with only positive eigenvalues. E is called completely positive if for any
positive operator ρ also the operators 1d ⊗ E[ρ] are positive, for any dimension d.
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matrix ρS by E(t) can equivalently be described by the equation

d
dt
ρS = −i[H, ρS] +

N2−1∑
µ=1

hµ

(
CµρSC†µ −

1
2

{
C†µCµ, ρS

})
, (1.105)

with positive coefficients hµ ≥ 0. The integer N denotes the dimension of the
system Hilbert space, which is assumed to be finite in this context. It should be
stressed that the operator H is a function of bath expectation values of the super-
system evolution operator U(t, t0), and does in general not coincide with the system
Hamiltonian HS. Eq. (1.105) is of the same form as Eq. (1.96), showing that the
approximations performed in Sec. 1.4.1 do indeed lead to a notion of quantum
Markovianity. However, this is far from the only such notion and many alternative
definitions exist, an overview of which can be found in Ref. [62].
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1.5 Quantum thermodynamics: An overview

Thermodynamics and quantum mechanics are two of the most consequential para-
digms in modern science. Their fields of application have historically been sep-
arated by massive differences in scale: Classical thermodynamics describes the
interplay between macroscopic systems and is used to design macroscopic ma-
chines and work cycles. Quantum mechanics, on the other hand, concerns itself
with microscopic particles and processes. Even though the laws of thermodynam-
ics can be seen to arise from quantum mechanics, their domain of validity is only
reached by taking the thermodynamic limit of quasi-infinite particle number N. As
a general rule of thumb, particle numbers on the macroscale are on the order of
Avogadro’s constant, NA ≈ 6 × 1023, and classical thermodynamics is furthermore
only of limited use beyond equilibrium. Hence, it took decades after the discov-
ery of quantum mechanics for the question of quantum thermodynamics to attract
considerable attention. More recently, fabrication techniques have improved to the
point where meso- and nanoscale machines can be reliably realized in experiments,
leading to a surge in interest in the topic: On the single-particle scale [63, 64, 65],
the thermodynamic limit can evidently not be taken. On the mesoscale, the particle
number may still be quite sizable (up to 1012 particles), but other assumptions of
the classical theory break down nonetheless. In this section, we will outline these
fundamental issues of quantum thermodynamics as well as some of the established
results, in as far as they are connected to the work in Secs. 2.3 and 2.4.

The central question in quantum thermodynamics can be formulated as How do
the macroscopic laws of classical thermodynamics generalize to hold in quantum
systems? These laws of thermodynamics can be formulated as follows [66]:

1. Infinitesimal changes in the internal energy of a system (dES) are the sum of
heat flowing into the system (δQ), work performed on it (δW), and changes
in chemical energy (δEC),

dES = δQ + δW + δEC, (1.106)

where d in contrast to δ indicates a complete differential, meaning that the
internal energy of a system is a state function, whereas heat, work, and chem-
ical energy in general are not.

2. A process that adds the heat δQ to a system at temperature T causes the
change of entropy

dS ≥
δQ
T
. (1.107)

3. Entropy changes incurred during isothermal processes vanish in the limit of
the temperature tending to zero.

The focus of this work lies on the first two laws. The first law is a statement of
energy conservation, which clearly also holds in quantum mechanics. The chal-
lenge however consists in finding definitions of system energy, work and heat that
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not only fulfill the first law, but also the other two. In order to retain maximum
generality, these definitions moreover need to be made with as little reference as
possible to a specific model. The second law relates the heat flux δQ during a work
cycle with the entropy increase, which is also in need of a definition. Again, the
definition should be made in such a manner that the law holds for arbitrary systems
and work protocols, in analogy to the vast generality of classical thermodynamics.

Some of the roadblocks on the way to a consistent theory of quantum ther-
modynamics are readily apparent: Firstly, in classical thermodynamics, the exact
nature of the interaction between reservoirs and systems is not taken into account.
This simplification results from the fact that at macroscopic scales, the interfaces
between systems only occupy negligible space and thus do not significantly modify
the energy balance. For quantum systems containing only a few particles, this as-
sumption no longer holds, leading to a conflict between the goal of generality and
the need to treat interaction effects explicitly. If these interactions are strong, an
even more fundamental concern arises, namely which part of an interface belongs
to which system. Considering this issue, it is perhaps not surprising that quantum
thermodynamics of weakly coupled system has proved to be the more accessible
problem, and a satisfactory theory has emerged decades ago [67, 68, 9, 69]. The
formalism of open quantum systems, as described in Sec. 1.4, is instrumental in
this endeavor, which we outline below, following Ref. [9].

1.5.1 Open quantum systems and weak-coupling thermodynamics

Consider the reduced density matrix for an open system with a driven Hamiltonian
HS(t) weakly coupled to a bath, which evolves in Markovian fashion,

d
dt
ρS(t) = −i[HS(t), ρS(t)] +Dt[ρS(t)], (1.108)

where the time-dependence of HS(t) is only parametrical, and Dt is calculated
from HS(t) according to Eq. (1.97), indicating that the Hamiltonian is driven in
such a way that the dynamics of the reduced density matrix are still described by
a Lindblad equation. In this setting, thermodynamic quantities can be defined that
relate to the notions of macroscopic thermodynamics. Specifically,

ES(t) = tr (ρS(t)HS(t)) ,

Q̇(t) = tr
(

d
dt
ρS(t)HS(t)

)
,

Ẇ(t) = tr
(
ρ(t)

d
dt

HS(t)
)

(1.109)

are used to denote the internal energy of the system, the rate of heat flowing into it,
and the rate of work it performs, respectively. Here, we introduce the convention of
indicating time derivatives by using ∂t, and giving a dot to quantities that describe
a rate, but need not actually be time derivatives of a state function. These choices
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fulfill ∂tES(t) = Ẇ + Q̇, which generalizes the first law from Eq. (1.106) to the
quantum case in a straightforward fashion. Defining the von Neumann entropy
with the system density matrix,

S S(t) = − tr
[
ρS(t) log ρS(t)

]
(1.110)

it can be shown that the rate of change of entropy is given by

∂tS (t) = βQ̇(t) + Ṡ i(t), (1.111)

where the first term describes the entropy flow into the system, and the second one
is the entropy production rate in the system, which is found to be positive,

Ṡ i(t) ≥ 0. (1.112)

This result amounts to a quantum version of the second law, Eq. (1.107). It should
be stressed that the derivation of Eq. (1.112) hinges on the Markovian evolution on
the system density matrix as encoded in the Lindblad equation (1.105), and hence
in particular on the weakness of the coupling between system and bath.

In the regime of strong system-bath coupling, no universal formulation of quan-
tum thermodynamics exists. There are however several approaches each capturing
some aspects of quantum thermodynamics, of which we want to give an overview
now.

1.5.2 Stochastic thermodynamics

Stochastic thermodynamics has its roots in nonequilibrium classical thermodynam-
ics and has proven fruitful with in the study of work in the quantum case. Its start-
ing point is provided by a result of Jarzynski [70] about a classical system initially
weakly coupled by a Hamiltonian HT to a heat bath with Hamiltonian HB, equi-
librated at an inverse temperature β. After this initial time, the bath is decoupled
and the system is modeled by a Hamiltonian Hλ(z), where λ(t) = t/t f denotes the
control parameter used in a switching protocol and z = (q, p) is shorthand for a co-
ordinate in the system phase space. The evolution of the system is then described
by the stochastic trajectory z(t) in phase space, where t ranges between initial and
final times t0 and t f , and the work performed along this trajectory is

W =

∫ t f

t0
dtλ̇(t)∂λHλ(z(t)). (1.113)

The average work 〈W〉 is obtained by averaging Eq. (1.113) over the initial config-
urations of the super-system consisting of system and bath. In the case of an initial
thermal state at inverse temperature β, it can be shown that the average exponenti-
ated work is equal to the exponentiated free energy difference,〈

e−βW
〉

= e−β∆F , (1.114)
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with ∆F = F(t f ) − F(t0), where the initial equilibrium free energy is defined as

F(t0) = −
1
β

log Z(t0), (1.115)

with the classical partition function

Z(t0) =

∫
dzdz′e−β(H0(z)+HB(z′)+HT(z,z′)). (1.116)

where z′ denotes the phase space coordinates of the bath. The final equilibrium
free energy F(t f ) is defined analogously. The result Eq. (1.114), named Jarzynski’s
equality, establishes an equality between the average of a non-equilibrium quantity
and a change of an equilibrium thermodynamic potential. The equilibrium free
energy is thus accessible by averaging over nonequilibrium work measurements.
Since the inverse exponential function is concave, Jensen’s inequality implies

〈W〉 ≥ ∆F, (1.117)

meaning Jarzynski’s equality can also be seen as a stronger, nonequilibrium version
of Eq. (1.117) which in equilibrium is a consequence of the second law.9 By also
considering the time-reversed switching protocol Eq. (1.114) was shown to lead to
fluctuation theorems [72], by now a central feature of stochastic thermodynamics
[73, 74, 75, 76, 77]. These theorems imply that even for classical small systems,
the fluctuations of nonequilibrium thermodynamic quantities need to be taken into
account, and that they follow laws derived from their equilibrium counterparts.

Driven by this discovery, the first applications to quantum fluctuations fol-
lowed soon after, prominently Refs. [78, 79]. The classical and quantum cases
are by no means equivalent, though. For instance, there is no quantum analogue to
Eq. (1.113) that would characterize work as an observable [80, 81, 82]: Measuring
work requires taking the difference of two energy measurements and not just a sin-
gle measurement. However, work in quantum systems is still a random variable in
the sense that, the work produced between two measurement times t0 and t f is dis-
tributed according to a probability density function pt f ,t0(w), with the mean work
production given by the expectation value

〈W〉 =

∫ ∞

−∞

dwpt f ,t0(w)w. (1.118)

9Consider a system in contact with an equilibrium bath at temperature T , separated by a movable
wall that permits heat exchange. Assume a process that moves the wall in such a manner that the
initial and final states of the system are also of temperature T . The second law for the super-system
implies that during this process the total change in entropy is positive, ∆S S + ∆S B ≥ 0, where S S

and S B denote the system and bath entropies, respectively. As the bath is in equilibrium, its entropy
change is given by ∆S B = −Q/T , where Q is the heat flowing into the system. By the first law for the
system, ∆ES = Q+W, and therefore the second law implies 0 = ∆ES−W+T∆S B ≥ ∆[ES−TS S]−W,
i.e. W ≥ ∆F since F = ES − TS S. [71]
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The system in question is prepared in a thermal state10 ρ(t0) = e−βH(t0)/Z(t0) at t0,
where the equilibrium partition function of the system in the quantum case is given
by

Z(t0) = tr
[
e−βH(t0)

]
. (1.119)

From t0 to t f , the system evolves under the influence of the time-dependent Hamil-
tonian H(t). It is then found that the characteristic function of work can be written
as a correlator [80],

Gt f ,t0(u) ≡
∫ ∞

−∞

dwpt f ,t0(w)eiuw =
〈
eiuH(t f )e−iuH(t0)

〉
, (1.120)

which in Ref. [84] is used to show the fluctuation relation

pt f ,t0(w)

pt0,t f (−w)
=

Z(t f )
Z(t0)

eβw = e−β(∆F−w), (1.121)

where pt0,t f denotes the probability density function of the work generated under
the time-reversed protocol H̃(t) = H(t f − (t − t0)). The partition function

Z(t f ) = tr e−βH(t f ) (1.122)

corresponds to a fictitious thermal equilibrium state e−βH(t f )/Z(t f ) at the final time,
even though the system will in general not be in equilibrium at the end of the
protocol. The characteristic function Gt f ,t0 can also be used to show the quantum
version of the Jarzynski equality, 〈e−βW〉 = e−β∆F , where the expectation value is
now taken with respect to pt f ,t0 . As in the classical case, this then implies 〈W〉 ≥
∆F.

In summation, stochastic thermodynamics provides a an approach to quantum
thermodynamics that takes into account nonequilibrium effects, and gives a clear
picture of how to define work in accordance with the second law, with profound
insights into its statistical properties. It does not, however, provide us with a notion
of internal system energy, entropy or heat flows in the quantum setting: All time
evolution is unitary, which does not apply to the reduced dynamics of a small
system in contact with a bath.

1.5.3 Hamiltonians of mean force

The approach outlined above has been adapted to systems evolving while strongly
coupled to a bath, in both the classical [85, 86] and quantum cases [87, 88]. Here,
we focus on the latter to provide a reference point for our work in Secs. 2.3 and
2.4.

10The choice of the canonical ensemble is not mandatory. Analogous results have been obtained
for a microcanonical setup [83].
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The object of study in Ref. [88] is a composite system formed by a smaller
system strongly coupled to a bath, modeled by the general Hamiltonian

H(t) = HS(t) + HB + HT, (1.123)

where the system Hamiltonian HS is subject to drive. The composite system starts
out in a thermal state and evolves unitarily, hence the fluctuation theorem for work
production holds,

pt f ,t0(w)

pt0,t f (−w)
=

Z(t f )
Z(t0)

eβw, (1.124)

where Z(t) = tr e−βH(t) is the partition function of the composite system in a thermal
state. Defining the system free energy

FS(t) = F(t) − FB (1.125)

as the difference of composite and bath free energies, the system equilibrium func-
tion is obtained as [88]

ZS(t) =
Z(t)
ZB

, (1.126)

with the bath partition function given by ZB = trB e−βHB . The work fluctuation
relation then reads

pt f ,t0(w)

pt0,t f (−w)
=

ZS(t f )
ZS(t0)

eβw = e−β(∆FS−w), (1.127)

now involving only the system partition function. The latter can be seen to arise
from the Hamiltonian of mean force,

H∗(t) = −
1
β

log
trB e−βH(t)

trB e−βHB
, (1.128)

which, even though it only contains system operators, encodes the effect of the
coupling to the bath on the system. More precisely, the system state obtained by
thermalization with the instantaneous Hamiltonian of mean force coincides with
the reduced density matrix obtained by taking a partial trace over the state of the
composite system thermalized with H(t),

e−βH∗(t)

ZS(t)
= trB

e−βH(t)

Z(t)
. (1.129)

The Hamiltonian of mean force generalizes the classical potential of mean force as
known in reaction rate theory [89] and reduces to the system Hamiltonian in the
case of weak system-bath coupling [88].

For classical systems, the potential of mean force has been shown to facili-
tate definitions that fulfill the first and second law of thermodynamics at strong
coupling, including notions of internal energy, heat and entropy [90]. The starting
point in that treatment is to define thermodynamic potentials as differences between
the total and bath potentials, as in Eq. (1.125). A consistent quantum version, how-
ever, is still the object of ongoing research [81, 91].
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Chapter 2

Results

2.1 Lifting the Franck-Condon blockade
in carbon nanotube quantum dots

Electron-vibron coupling in quantum dots can lead to a strong suppression of
the average current in the sequential tunneling regime. This effect is known as
Franck-Condon blockade and can be traced back to an overlap integral between
vibron states with different electron numbers which becomes exponentially small
for large electron-vibron coupling strength. Here, we investigate the effect of a
time-dependent drive on this phenomenon, in particular the effect of an oscilla-
tory gate voltage acting on the electronic dot level. We employ two different ap-
proaches: perturbation theory based on nonequilibrium Keldysh Green’s functions
and a master equation in Born-Markov approximation. In both cases, we find that
the drive can lift the blockade by exciting vibrons. As a consequence, the relative
change in average current grows exponentially with the drive strength. This section
is based on the article Lifting the Franck-Condon blockade in driven quantum dots,
written in collaboration with Stefan Walter, Andreas Nunnenkamp, and Thomas L.
Schmidt, published in Phys. Rev. B 94, 205142 (2016).

2.1.1 Introduction

The field of nanoscale electronics has seen rapid advances in recent years: exper-
imental techniques have improved to the point that the range of realizable elec-
tronic components now extends down to the single-molecule scale [92, 93, 94, 95].
Novel fabrication methods afford an increasing amount of precision with regard to
the properties of such elements, in particular the conductive behavior. An ultimate
goal of this effort is to scale down electronic components such as wires, transistors,
and rectifiers to the atomic scale, thus potentially extending the lifetime of Moore’s
law. Moreover, the physics of nanoscale conductors is not limited to electronic ef-
fects. Already at the nanoscale the quantized mechanical degrees of freedom of,
e.g., a molecule become important. However, it remains difficult to exploit the me-
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chanical properties of such molecules to control transport through the molecule.
Interestingly, the situation is different at the mesoscale, where the interplay be-
tween the electronic and mechanical degrees of freedom can be engineered in a
fashion that allows for the incorporation of mesoscopic constituents into a wide
variety of setups [96, 97, 98, 99].

Suspended carbon nanotubes (CNTs) which are free to vibrate comprise ex-
actly such mesoscopic electromechanical systems [97]. CNTs are superb mechani-
cal oscillators due to (i) their high Q-factors and stiffness [100, 101], (ii) high vibra-
tional frequencies in the GHz range [102], and (iii) large electron-phonon coupling
[30]. Besides these mechanical properties, the electronic and transport properties
of CNTs can also be tuned depending on the setup. For instance, electronic back
gates allow for a controlled shaping of the nanotube’s electrostatic potential which
can be used to confine single electrons on the CNT, thus creating a quantum dot
on the nanotube. Transport through CNT quantum dots has extensively been stud-
ied theoretically and experimentally [24, 25]. Nanoelectromechanics is a growing
field of research with various experiments investigating the interplay between the
mechanical and the quantized electronic degree of freedom in suspended CNTs
[103, 104, 105, 30].

A general feature of interacting systems composed of electrons and quantized
mechanical vibrations (“vibrons”) is the suppression of conductance, in certain pa-
rameter regimes, for strong coupling between the two degrees of freedom. This
effect, commonly referred to as Franck-Condon blockade [23], results from the
atomic constituents of the system accommodating for the presence of a number of
electrons by means of displacement, thus forming composite electron-vibron parti-
cles termed polarons. Electronic transport through the system requires the electron
number to change and hence the polarons to be broken up, which is energetically
disfavored if the electron-vibron coupling that holds them together is strong. This
effect has been observed in single-molecule junctions [29] as well as in CNT sys-
tems [30], adding to the variety of ways in which material structure can influence
conductance. In addition, it has also been shown that the coupling between the
mechanical and electronic degrees of freedom can be tailored to some extent [26].

In this paper we examine the effect of time-dependent driving on the Franck-
Condon blockade by periodically modulating the electronic level energy using a
time-dependent gate voltage. More specifically, we study a system composed of
a suspended CNT on which a quantum dot is defined by means of back gates.
This quantum dot is considered weakly coupled to a pair of metallic leads in the
regime of sequential tunneling. Moreover, electrons on the dot interact strongly
with the vibrational degree of freedom of the CNT. Our goal is to investigate the
consequences of periodically modulating the electronic level. Most importantly,
we find that driving the system results in a strong increase in the time-averaged
current in a way which is reminiscent of a transistor.

Our analysis is organized as follows: In Sec. 2.1.2 we present the model used to
describe a CNT quantum dot, taking into account a periodic modulation of the elec-
tronic level and strong coupling of charge to vibrations. In Sec. 2.1.3 we derive the
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Figure 2.1: Schematics of the setup: Suspended CNT connected to source (S) and
drain (D) electrodes, on top of gate electrodes used to create a quantum dot (Vg)
and to provide a drive voltage (Vac). Figure by Stefan Walter.

steady-state current through the system using the Keldysh nonequilibrium Green’s
function formalism. Taking an alternative approach, we set up a master equation
for the electronic dynamics in Sec. 2.1.4, leading to a prediction for the current,
which we compare to the results presented in Sec. 2.1.3. Finally, we summarize in
Sec. 2.1.5 and conclude by discussing possible applications.

2.1.2 Model

We consider a quantum dot consisting of a single electronic level weakly tunnel-
coupled to a pair of metallic leads. Such a quantum dot may be realized on a
suspended CNT using electronic back gates to confine an electron in a specific sec-
tion of the nanotube [103, 104, 105, 100, 30, 101, 102, 97, 26]. The vibrations of
the CNT can be strongly coupled to the charge degree of freedom of the electron
and thus have a great influence on its conductive properties [30, 26, 31]. Addi-
tionally, a back gate can be used to apply an AC voltage, thus modulating the dot
energy level [106]. We show a schematic representation of the setup in Fig. 2.1.

This setup can be described by the Anderson-Holstein Hamiltonian, H = Hdot+

Hlead + Htun, where

Hdot = Ωa†a + εd†d + λ(a† + a)d†d + f (t)d†d,

Hlead =
∑
α=L,R

∑
k

εkαc†kαckα,

Htun = g
∑
α=L,R

[
dψ†α(x = 0) + h.c.

]
, (2.1)

denote the dot, lead, and tunneling Hamiltonians, respectively.
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Figure 2.2: Illustration of the Hamiltonian from Eq. (2.1). Electron-vibron cou-
pling corresponds to a shift of the vibron rest position depending on the electron
number N = d†d. This shift leads to an exponentially small overlap between the
oscillator’s ground state wave functions for N = 0 and N = 1. However, driving
[ f (t)] causes transitions to excited states (dashed arrows) for which the overlap is
significantly larger. Changes in electron number occur by tunneling into either of
the leads at chemical potentials µL and µR, respectively, with tunneling amplitude
g. Figure by Thomas L. Schmidt.

While in principle a CNT admits several different types of vibron modes, the
coupling to the charge sector is strongest for breathing and longitudinal stretching
modes [33]. In our analysis, we restrict the model for the quantum dot to a sin-
gle electronic level at energy ε and a single vibron mode of frequency Ω, setting
~ = 1 throughout. This choice of model captures the Coulomb blockaded regime
of a multi-electron quantum dot, where a large intra-dot Coulomb interaction re-
stricts the electronic transitions to and from the dot to those between a pair of
states with occupation numbers N and N + 1 for some N that realizes a degeneracy
in charging energy. Moreover, taking the limit of large Coulomb interaction, we
also neglect the spin degree of freedom [21], as well as Kondo effects [107]. In
addition, we include the gate-induced drive as a time-dependent contribution f (t)
to the electronic level energy. The mechanical vibration of the nanotube modulates
the dot level energy, which is quantified by the coupling strength λ. The leads
α ∈ {L,R} are modeled as fermionic reservoirs with single-particle energies εkα,
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described by fermionic operators ckα obeying the canonical anticommutation rela-
tions {ckα, c

†

k′β} = δkk′δαβ. Finally, Htun describes local electron tunneling into and
out of the leads using the Fourier transform ψα(x) = L−1/2 ∑

k eikxck,α, where L is
the length of the lead. An illustration of the Hamiltonian is shown in Fig. 2.2.

In the absence of electron-vibron coupling, the dot features a single resonance
at energy ε. Electron-vibron coupling leads to the emergence of side-peaks at en-
ergies ε + nΩ with n ∈ Z. In the following, we focus on the limit of sequential
tunneling. This is the dominant transport process for small g and potential differ-
ences eV = µL − µR, where µα is the chemical potential of lead α, such that only a
single resonance lies within the bias window.

The electron-vibron coupling term can be removed by applying the polaron
transformation [108] given byU = exp[λ(a† − a)d†d/Ω], leading to

UHU−1 = Ωa†a + ε̃d†d + f (t)d†d

+
∑
α=L,R

∑
k

εkαc†kαckα + g
∑
α=L,R

[
X†dψ†α(x = 0) + h.c.

]
, (2.2)

where the electron level energy ε is renormalized to ε̃ = ε − λ2/Ω and the electron-
vibron coupling is moved to an exponential factor multiplying the tunneling term,
X = e−λ(a†−a)/Ω. This leaves us with an expression consisting of a quadratic Hamil-
tonian H0 and a weak perturbation H1,

H0 = Ωa†a + ε̃d†d + f (t)d†d +
∑
α

∑
k

εkαc†kαckα

HI = g
∑
α

[
X†dψ†α(x = 0) + h.c.

]
, (2.3)

which lends itself to a variety of approaches that are perturbative in the tunneling
amplitude g, but still permit potentially large values of the electron-vibron coupling
λ � Ω.

A great deal of insight into similar models has already been obtained. Specifi-
cally, the undriven [ f (t) = 0] variant of the system has been examined with regard
to its transport properties [20, 21, 23, 109, 34, 110]. The most striking finding in
this context is that of Franck-Condon blockade: strong electron-vibron interaction
leads to formation of a composite state, called a polaron, which can be thought
of as being made up of an electron and a “cloud” of vibrational excitations sur-
rounding it. If the electron is to tunnel out of the quantum dot, this state has to be
broken up, at an energy cost which strongly increases with the coupling, leading to
an exponential suppression of tunneling.

In the following, we will investigate in detail the novel effects that arise by
periodically modulating the electronic level energy. We will first show that due to
the strong electron-vibron coupling, this type of drive can be mapped to a drive
of the vibron. Moreover, we will demonstrate that it has a strong influence on
electronic transport and that, in particular, the Franck-Condon blockade can be
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lifted. It is worth pointing out that a small AC drive voltage applied to the gate can
lead to an exponentially strong change of the average current.

The physical interpretation of this process is as follows. Due to the electron-
vibron coupling, a time-dependent gate voltage also has the effect of driving the
vibron, so the vibron will populate an excited state. Importantly, the overlap inte-
gral between excited vibron states for different fermion numbers contains Franck-
Condon factors which are exponentially larger than those of the vibron ground
states. This makes it possible to lift the Franck-Condon blockade, and hence in-
creases the average current.

Hence, the relative change in average current I(A)/I(0), where A is the ampli-
tude of the AC gate voltage, is close to an exponential function of A. This makes
the I − V characteristic reminiscent of that of a transistor, albeit now for AC gate
voltages: in our system, a DC bias current can be controlled by a small AC gate
voltage. Note that the frequency of the AC gate voltage needs to be close to the
vibron frequency, since the effect relies on the excitation of vibrons.

2.1.3 Polaron tunneling approximation

In the following, we use a Keldysh Green’s function approach to analyze the in-
fluence of the gate voltage on the conductance of the system. The most important
measurable quantity in this context is the steady-state current 〈I〉ss. In the follow-
ing, we work with the current through the right lead, noting that it is identical to
the one through the left lead up to a displacement current introduced by the time
dependence of the drive. However, since this current oscillates on a timescale given
by the inverse drive frequency, much faster than the tunneling rates to and from the
dot, we can safely neglect it on average. Thus 〈I〉ss is obtained from expectation
value of the operator

IR(t) = e
d
dt

∑
k

c†kRckR = −ie

∑
k

c†kRckR,H


= ieg

[
d†(t)X(t)ψR(t) − ψ†R(t)X†(t)d(t)

]
, (2.4)

where e is the negative electron charge. It will prove expedient to move the time de-
pendence into the perturbative part of the Hamiltonian, which can be accomplished
by applying the unitary transformation given byV(t) = exp

[
id†d

∫ t
t0

ds f (s)
]
. This

reduces the quadratic Hamiltonian to H̄0 = ε̃d†d + Ωa†a, and changes the polaron
operator to

X̄(t) ≡ V(t)X(t)V−1(t) = e−
λ
Ω [a†eiΩt−ae−iΩt+iF(t)], (2.5)

with F(t) = Ω
λ

∫ t
t0

ds f (t) denoting the integrated drive, where the initial time t0 al-
ways cancels in the following and can hence be chosen arbitrarily. The transformed
coupling Hamiltonian then reads

H̄I = g
∑
α

[
X̄†dψ†α(x = 0) + h.c.

]
. (2.6)
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It bears pointing out that as a result of the transformation V the drive has thus
been moved onto the vibrational part of the Hamiltonian, lending substance to the
intuition that the coupling between electrons and vibrons leads to the possibility of
driving the vibrons by driving the electrons.

In the following, we focus on a resonant harmonic drive, f (t) = A cos(Ωt). As
laid out in Sec. 1.2.3, the Keldysh Green’s function formalism together with pertur-
bation theory in the lead coupling g can be employed to calculate the mean steady-
state current [48] from the retarded dot Green’s function DR for the undriven case,

〈I〉 = i
eΓ

2

∫
dω
2π

[nFL(ω) − nFR(ω)]
[
DR(ω) − DA(ω)

]
, (2.7)

where the coupling g and the lead density of states ρ̄ are absorbed into the tun-
neling rate Γ = 2πρ̄g2. We use the wide-band approximation, so the density of
states is constant, ρ̄ = 1/(2πvF) with Fermi velocity vF. In this section, Eq. (2.7)
will be used as an approximation to the current in the presence of drive. A more
exact treatment using the Floquet formalism is presented in Sec. 2.2. To obtain the
average current, we thus need to calculate the nonequilibrium dot Green’s function

D(τ, τ′) = −i
〈
TCd†(τ)X̄(τ)X̄†(τ′)d(τ′)e−i

∫
C dσH̄I(σ)

〉
0
, (2.8)

with components Di j(t, t′), where the indices i, j = +,− denote the forward and
backward branches of the Keldysh contour C from Fig. 1.3, with the initial time
lying in the infinite past. Comparing with the notation of Sec. 2.2, it should be
also noted that D(τ, t′) as used here contains both electronic and vibrational oper-
ators. The expectation value in Eq. (2.8) is taken with respect to the Hamiltonian
H̄0 of the non-interacting system, and the time dependences are understood to be
in the interaction picture corresponding to H̄0. We note that the presence of the vi-
brational operators X̄ in this expression is a consequence of the polaron transform
dressing the electron. As the non-interacting Hamiltonian is not quadratic in X̄, X̄†,
Wick’s theorem does not hold for these operators, so the calculation of the terms
making up the Green’s function in Eq. (2.8) seems rather daunting.

Drawing upon Ref. [35], we hence employ the following approximation: the
dwell time of the electron on the quantum dot (which can be estimated as the in-
verse of the bare tunneling rate Γ) is large compared to the timescale of the polaron
which is associated with the inverse of the energy shift ε − ε̃ = λ2/Ω. In this limit,
the polaron will relax in the time between two tunneling processes. The diagram-
matic form of this polaron-tunneling approximation (PTA) is given in Fig. 2.3,
and it has been used before to calculate transport properties of strongly coupled
electron-vibron systems. [35, 111, 112] The purpose of this approximation is to
avoid having to explicitly expand the exponential from Eq. (2.8) in powers of the
tunneling amplitude g. Instead, the 2n-th order vibrational correction to the bare
dot Green’s function Gdot(τ − τ′) = −i〈TCd(τ)d†(τ′)〉 is seen to be caused by a se-
ries of tunneling processes to and from the leads, where the lead Green’s function
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Figure 2.3: Top: Generic diagram in the perturbation expansion of the full dot
propagator, with Λ2n denoting the 2n-correlator of X̄ operators, bare dot propa-
gator Gdot, and lead propagator Gleads. Bottom: Polaron tunneling approximation
of the same diagram. The vibron cloud is assumed to de-excite between electron
tunneling processes, leaving only correlators of second order in the vibron sector,
i.e. the top diagram reduces to the bottom one.

is given by

G0,kα(τ, τ′) = −i〈TCckα(τ)c†kα(τ′)〉. (2.9)

In the following, we use the shorthand Gleads = g2L−1/2 ∑
kα G0,kα, which evaluates

to the Keldysh matrix

Gleads(ω) = i2πρ̄
(
nL + nR −

1
2 nL + nR

nL + nR − 1 nL + nR −
1
2

)
, (2.10)

where nL = nF(ω− eV/2) and nR = nF(ω+ eV/2) are the Fermi functions of the left
and right lead, respectively. Here, we also made use of the wide band-limit of the
lead distributions, as detailed in App. 2.1.6. Each tunneling process involves the
mechanical degree of freedom, giving rise to vibron excitations described by the
set of correlators

Λ2n(τ1, τ
′
1 . . . , τn, τ

′
n) =

〈
TC

∏
1≤ j≤n

X̄(τ j)X̄
†(τ′j)

〉
. (2.11)
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The PTA replaces these by products of the quadratic correlators

Λ(τ, τ′) = 〈TC X̄(τ)X̄†(τ′)〉 (2.12)

connecting only two consecutive tunneling events into and out of the quantum dot.
These correlators consist of a drive-independent factor and one which explicitly
incorporates the drive, i.e., Λ(t, t′) = Λ0(t − t′)Λdr(t, t′), with

Λ0(t − t′) = −ie−
λ2

Ω2

e
λ2

Ω2 e−iΩ|t−t′ |
e
λ2

Ω2 eiΩ(t−t′)

e
λ2

Ω2 e−iΩ(t−t′)
e
λ2

Ω2 eiΩ|t−t′ |
,

 (2.13)

and the driven component

Λdr(t, t′) = e−i
∫ t

t′ ds f (s). (2.14)

Since the timescale of the vibrons is fast compared to the tunneling, we average the
driven part over one drive period, leading to (see App. 2.1.6)

Λdr(t − t′) = J0

(
2A sin Ω(t − t′)/2

Ω

)
, (2.15)

where J0 denotes the Bessel function of the first kind. This expression only de-
pends on the relative time coordinate t − t′, meaning that the problem becomes
readily amenable to Fourier transformation. This leaves us with the leading-order
correction in frequency space to the dot propagator,

Di j
0 (ω) =

∫ ∞

−∞

dteiωtGi j
dot(t)Λ

i j(t). (2.16)

At this point, the simplified structure of the diagrams in Fig. 2.3 allows us
perform a partial resummation and thus retain all orders in the coupling strength
g without requiring access to higher-order vibrational correlators. Indeed, incre-
menting the order in the tunneling is equivalent to appending a single copy each of
the polaron-dot and lead propagators to the diagram. In terms of Green’s functions,
this is equivalent to the frequency-space Dyson equation for the vibron-dressed dot
electron propagator,

D−1(ω) = D−1
0 (ω) − Σleads(ω). (2.17)

with the self-energy Σleads = g2Gleads. This relation gives rise to the full PTA
dot Green’s function D(ω), as documented in App. 2.1.6. The steady-state cur-
rent from Eq. (2.7) can now be obtained by integrating over the spectral func-
tion −i

[
D−+(ω) − D+−(ω)

]
, which is shown in Fig. 2.4. The plot features tunnel-

broadened resonances at all integer multiples of the vibron frequency. The appear-
ance of peak heights being independent of peak order is an artifact caused by the
PTA [111]; only the zeroth-order peak is reliable in that regard. Furthermore, the
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Figure 2.4: Zeroth-order peak (centered aroundω = ε̃) of the PTA spectral function
i
[
D+−(ω) − D−+(ω)

]
for different values of the drive amplitude A. Stronger drive

leads to a significant broadening of the peaks. Inset: PTA spectral function, with
peaks at every integer multiple of the vibron frequency. Peak width is suppressed
by the Franck-Condon factor e−λ

2/Ω2
, but increases proportionally to Γ and as a

function of frequency. The latter is a result of higher favorability of transitions
involving large excitations of the vibron mode.

electron-vibron coupling causes additional broadening of the peaks, which grows
larger as a function of peak order. The AC drive causes the peak widths to increase
strongly as a function of the drive amplitude, as illustrated in Fig. 2.4.

With the Green’s function in Eq. (2.17) we can calculate the steady-state cur-
rent through the quantum dot

〈I〉 = −
e
π

Γ

4

∫ eV/2

−eV/2
dω

2Γ

det D−1(ω)
, (2.18)

with V denoting the finite bias voltage between left and right lead, where we take
the limit of zero temperature in the leads, Tel = 0. The determinant det D−1(ω)
entails taking the sum over all vibron resonances, modified by the drive. The
sequential-tunneling regime is characterized by the fact that only a single such
resonance lies within the bias window, i.e., the vibron frequency is larger than the
bias eV . Moreover, the width of the resonances is proportional to the square of
the tunneling amplitude and suppressed by the Franck-Condon factor, i.e., the res-
onance width is small compared to the bias window, see Fig. 2.4. Taken together,
this allows us to consider only a single resonance as integrand, and to expand the
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Figure 2.5: Current (logarithmic scale) through the resonantly driven dot, scaled
by I0 = e−λ

2/Ω2
Γ, as a function of driving amplitude A for different choices of

strong electron-vibron coupling λ. Drive lifts the blockade in an almost exponential
fashion, with stronger response for larger coupling.

limits of integration in Eq. (2.18) to infinity, resulting in the analytic expression for
the current

〈I〉 = 2eΓe−
λ2

Ω2
∑
p∈N

Λ
(−p)
dr

1
p!

(
λ2

Ω2

)p

, (2.19)

where Λ
(−p)
dr denotes the (−p)th Fourier coefficient of the drive component in Λ,

Λ
(n)
dr =

∑
m≥|n|

(−1)m−n

m!m!

( A
2Ω

)2m (
2m

m + n

)
. (2.20)

For details we refer to App. 2.1.6.
As shown in Fig. 2.5, the current increases almost exponentially as a function

of the drive amplitude A, indicating that the Franck-Condon blockade can be lifted
through a periodic modulation of the gate voltage. It is to be noted that the deviation
from an exponential behavior grows larger as the drive becomes stronger, which
might point towards a progressive failure of the PTA. Nonetheless, the above results
provide substantial evidence that a CNT quantum dot in the sequential-tunneling
regime with strong electron-vibron coupling can be turned into a tunable conductor
by means of a time-dependent gate voltage.
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2.1.4 Born-Markov analysis

In this section we make use of an alternative approach to the setup under con-
sideration, thus supplementing the result of the Green’s function calculation. In
particular, we aim to obtain an estimate of the validity the PTA, whose compati-
bility with a time-dependent drive of the electronic level energy is still untested.
For the purposes of the following discussion, it suffices to take into account a sin-
gle lead, and instead of a steady-state current, study the tunneling rates into this
lead, which in the limit of sequential tunneling is proportional to the conductance.
[23] The comparability of the latter two quantities is a feature of the sequential-
tunneling regime, where the current is made up of consecutive, non-overlapping
single-electron tunneling transitions.

The system being weakly coupled to a metallic lead with intractably many
degrees of freedom motivates us to perform a partial trace over these lead degrees
of freedom. This is the open systems approach outlined in Sec. 1.4: We treat the
quantum dot as an open quantum system and the lead as an electron reservoir.
[113] The weak coupling Hamiltonian HI then takes the role of the perturbative
system-bath interaction. Under the Born-Markov approximation, the evolution of
the system density matrix ρS(t) is governed by the quantum master equation [57]

d
dt
ρ̂S(t) = −

∫ ∞

0
ds trB[ĤI(t), [ĤI(t − s), ρ̂S(t) ⊗ ρB]], (2.21)

where the time-dependence in the interaction picture (denoted by a hat) is under-
stood with respect to the quadratic Hamiltonian Ωa†a + [ε̃ + f (t)]d†d, and ρB de-
notes the bath density matrix. At this point, an additional simplification presents
itself as a consequence of the configuration of our quantum dot: in the Coulomb
blockade and sequential tunneling regimes not only the lead excitations, but also
the vibrations have fast dynamics compared to the electron on the quantum dot.
This means that after the polaron transform the non-perturbative part of the Hamil-
tonian no longer couples the charge and vibrational degrees of freedom. Hence
we can extend the bath to also include the vibron, leaving only the electron in the
system. [114, 115] This leads to the bath density matrix composed of the vibrons
and the lead ρB = ρvib ⊗ ρlead. Note that the separation of time scales between
electron and vibron relaxation is similar to the reasoning used to motivate the PTA
in the previous section. Nevertheless, the two approximations correspond to dif-
ferent partial resummations of a perturbation series and should not be expected to
coincide quantitatively.

As outlined in Sec. 1.4, the Born-Markov master equation can be cast in Lind-
blad form, meaning that a set of coefficients hµ and system operators Cµ can be
found with

d
dt
ρ̂S =

∑
µ

hµ

(
ĈµρSĈ†µ −

1
2

{
ρS, Ĉ†µĈµ

})
. (2.22)
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Since in our case the vibron degree of freedom is traced over, the Lindblad opera-
tors Cµ will be simple functions of the electronic creation and annihilation opera-
tors.

However, the presence of the driving term f (t)d†d casts doubts upon the va-
lidity of the approximations leading to this form: in particular, driving the system
with a frequency comparable to Ω, as is realistic in the CNT setup, is in conflict
with the assumption of separation of time scales, now that the bath includes the
vibron. Therefore, we propose the following alternative path to incorporate driv-
ing: in a fashion reminiscent of the transformation V from the previous section,
the driving term can be moved onto the vibron sector, where it then can be taken
into account by modifying the vibron density matrix in the master equation (2.21).
Assuming equilibrium Fermi distributions nF(ω) in the lead, the master equation
then reads

d
dt
ρ̂S(t) = −g2

∫ ∞

0
ds

∫
dω[〈

X̃(t)X̃†(t − s)
〉

nF(ω)dd†ei(−ε̃+ω)sρS(t)

+
〈
X̃†(t)X̃(t − s)

〉
(1 − nF(ω)) d†de−i(−ε̃+ω)sρS(t)

−
〈
X̃†(t − s)X̃(t)

〉
dρS(t)d† (1 − nF (ω)) ei(−ε̃+ω)s

−
〈
X̃(t − s)X̃†(t)

〉
d†ρS(t)dnF(ω)e−i(−ε̃+ω)s

]
+ h.c. (2.23)

where the expectation values are taken with respect to the vibron density matrix
ρvib, which we use below to take into account the drive. Moreover, X̃(t) = exp

[
−

λ
Ω

(
a†eiΩt − ae−iΩt

) ]
denotes the exponential vibron operator. We again assume the

lead to be at zero temperature, Tel = 0. In the following, we explore different
choices for ρvib, and study the resulting electron tunneling rates.

Vibron in the ground state

To begin with, we assume an unoccupied vibron state and thus ρ(0)
vib = |0〉 〈0|, cor-

responding to the absence of driving and zero temperature. In this case, the traces
in Eq. (2.23) are readily performed. Comparing to the master equation in Lind-
blad form Eq. (2.22) leads to the Lindblad operators C(0)

in = d† and C(0)
out = d with

coefficients

h(0)
in =

Γ

2
e−

λ2

Ω2
∑
n≥0

(
λ2/Ω2

)n

n!
nF(ε̃ + nΩ),

h(0)
out =

Γ

2
e−

λ2

Ω2
∑
n≥0

(
λ2/Ω2

)n

n!
(1 − nF(ε̃ − nΩ)) , (2.24)

where Γ is defined as before. Due to the specific form of the Lindblad operators,
the coefficients h(0)

in and h(0)
out are proportional to the electron tunneling rates. Specif-

ically, the respective appearances of nF and 1−nF indicate that h(0)
out governs the case
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Figure 2.6: Dot electron tunneling rate into the lead, as a function of electron-
vibron coupling λ, represented by the Lindblad coefficient h(n)

out for different vibron
Fock states n, including the ground state n = 0 [Eq. (2.24)]. In the latter case,
the rate decreases exponentially for higher electron-vibron coupling, exemplifying
Franck-Condon blockade. Higher vibron numbers lead to an intermediate regime
of less pronounced decrease. In addition, n manifests itself as the number of local
maxima superimposed over the decaying curve.

of tunneling into the lead, whereas h(0)
in describes tunneling in the other direction.

The resulting dependence of the decay rates on the coupling strength is shown in
Fig. 2.6, illustrating the Franck-Condon blockade in the strong-coupling regime.
More quantitatively, we note that the factor e−λ

2/Ω2
matches the Franck-Condon

blockade strength obtained from a classical rate equation. [23]

Vibron in a Fock state

Next, we consider the situation where the vibron is prepared in a number state,
resulting in the density matrix ρ(n)

vib = |n〉 〈n|. We can obtain Lindblad coefficients
h(n)

in and h(n)
out for any initial occupation number n. The expressions are given in

App. 2.1.7 since they are too lengthy to be shown here. In Fig. 2.6 we show the
decay rates as functions of the electron-vibron coupling λ/Ω. In contrast to the
case of zreo initial vibrons, Eq. (2.24), we observe that a number of local maxima
is superimposed onto the graphs, implying that the presence of vibrons assists the
tunneling of an electron out of the dot. For coupling strengths beyond this non-
monotonic region, a more pronounced increase of tunneling as a function of n is
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Figure 2.7: Tunneling rate (logarithmic scale) as a function of the vibron number
n for different coupling strengths λ > Ω. Increasing n leads to faster tunneling,
with the growth in tunneling rate highest in the strong-coupling regime, showing
near-exponential lifting of Franck-Condon blockade.

observed (see Fig. 2.7), which becomes progressively closer to exponential as the
coupling is made larger, implying that the conductive properties of the dot can
be exponentially activated by exciting vibrons. Once more, this result is in full
agreement with the rate-equation treatment from Ref. [23], where the electron
tunneling rates where found to be determined by the matrix elements

Mq→q′

1→0 =

(
λ

ω

)q−q′

e−
λ2

2ω2

√
q′!
q!

L(q−q′)
q′

(
λ2

ω2

)
, (2.25)

of transitions with initial and final vibron numbers q and q′ ≤ q, respectively. Here
Lαn (x) denote the generalized Laguerre polynomials.1 Since our approach does not
resolve individual vibron transitions, the present results match

∑q
q′=0 |M

q→q′

1→0 |
2, i.e.,

the sum of rates for all processes which do not add any vibrons.

Vibron in a coherent state

Finally, we move towards a vibron density matrix that is closer to the driven system
we have in mind. A resonant drive of the electron level with amplitude A can be
mapped to a vibron drive given by iA′(a† e− iΩdrt −a eiΩdrt), where A′ = AΩ/(2λ). If

1L(α)
n (x) = x−αex

n! ∂n
x(e−x xn+α).

52



we in addition introduce a vibron damping rate γ to prevent divergences that might
arise from driving a part of the bath, this generates the coherent vibron state [116]
|δ〉 with δ ∝ iA′/(Ωdr − Ω + iγ). Therefore, we consider the vibron density matrix
ρ(δ)

vib = |δ〉 〈δ|. For this case, we obtain the Lindblad coefficients

h(δ)
in =

Γ

2
e−

λ2

Ω2 e−i2 λ
Ω

(sin(Ωt) Re δ−cos(Ωt) Im δ)
∑

m,l∈Z

ei(m+l)Ωt
∑
n≥0

×

(
λ2/Ω2

)n

n!
ilJm

(
2
λ

Ω
Re δ

)
Jl

(
−2

λ

Ω
Im δ

)
nF(ε̃ + (m + l + n)Ω),

h(δ)
out =

Γ

2
e−

λ2

Ω2 e−i2 λ
Ω

(sin(Ωt) Re δ−cos(Ωt) Im δ)
∑

m,l∈Z

ei(m+l)Ωt
∑
n≥0

×

(
λ2/Ω2

)n

n!
ilJm

(
2
λ

Ω
Re δ

)
Jl

(
−2

λ

Ω
Im δ

)
(1 − nF(ε̃ + (m + l − n)Ω)) , (2.26)

where Jn denotes the nth Bessel function of the first kind. Most strikingly, these
tunneling rates are time dependent, reflecting the fact that coherent states are not
eigenstates of the quadratic Hamiltonian H0. The influence of the drive on the de-
cay rates can now be examined by varying the coherent state parameter δ. Specif-
ically, the coherent state displacement δ is proportional to the drive amplitude A′,
meaning it can be used as a measure of drive strength. Moreover, the squared ab-
solute value |δ|2 is proportional to the average number of vibrons in the coherent
state, which establishes a link to the Fock state situation discussed previously.

In case of resonant driving, the real part Re δ dominates and its magnitude is
directly proportional to the drive amplitude. However, the off-resonant situation
can be studied in the same fashion by allowing for an imaginary part in δ. There
it turns out that detuning between drive and vibron mode reduces the electron tun-
neling rate, which is in line with the intuition that the conductance is primarily
affected by the number of vibrons present on the dot.

In order to make a comparison to the results obtained previously, we proceed to
examine the average of h(δ)

out over one drive period, which can be seen as analogous
to the averaging performed to obtain Eq. (2.13) in Sec. 2.1.3. The outcome of this
procedure is shown in Fig. 2.8.

Comparing the rates for different values of the drive amplitude uncovers three
different regimes: (i) a weak-coupling regime, where increasing the driving strength
decreases the tunneling rates, (ii) an intermediate regime showing a moderate in-
crease of the tunneling rates for an increased drive, and (iii) a strong-coupling
regime which features an almost exponential rise in tunneling rates as the driving
strength is increased. The weak-coupling behavior is mainly an electronic effect:
the favored tunneling transition here is the one that does not involve any vibrations.
If the drive amplitude is less than the energy gap between dot and lead, there is lit-
tle effect, but if it is significantly larger, the dot will spend a sizable part of the
drive period below the lead; in this position, tunneling is energetically suppressed.
For larger drive amplitudes, the portion of a drive period spent below the lead ap-
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Figure 2.8: Dependence of the electron tunneling rate from the dot (at energy
ε̃ = Ω/2) into the lead (at zero energy) on the electron vibron coupling, obtained in
the Lindblad formalism with a coherent vibron state. In general, the rate decreases
strongly as a function of electron-vibron coupling, exemplifying Franck-Condon
blockade. Two different regimes are apparent in the graphs: for weak electron-
vibron coupling, the tunneling rate decreases with increasing drive amplitude A
as a consequence of the oscillating dot energy dipping below the lead energy for
increasing amounts of time. This decrease saturates for large drive, since then
the level spends about half of a drive period below the lead energy. For stronger
coupling, an increase in tunneling rates with A can be observed, the relative mag-
nitude of which is moderate for 1 . λ/Ω . 3, but becomes more substantial as the
coupling is increased beyond that regime, see Fig. 2.9.

proaches 1/2, just like the resulting tunneling amplitude. For stronger coupling,
the converse is true: driving the system makes it more conductive by activating
the vibron-assisted tunneling channels. The intermediate regime is less extended
here than in the case of vibrons in a Fock state, since |δ|2, and hence the expected
vibron number associated with the coherent state, decreases as λ−2. Lastly, the
strong-coupling regime features the weakest currents, but also the strongest relative
increase of h(δ)

out as a function of the driving strength, see Fig. 2.9, since conduction
there involves the vibrations substantially, similarly to the Fock state case. This
results in a current response that is almost perfectly exponential.

The strong-coupling results admit a comparison to the findings of Sec. 2.1.3,
where we also derived a relation between the steady-state current and the applied
drive strength. In Fig. 2.10 we compare the current obtained by both methods. We
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Figure 2.9: Tunneling rate (logarithmic scale) as a function of the drive amplitude
A, scaled by the inverse vibron damping γ, for different coupling strengths λ > Ω.
Increasing A leads to faster tunneling, with the growth in tunneling rate highest in
the strong-coupling regime, exhibiting an exponential response over wide ranges
of A.

see satisfactory agreement between the two approaches in that, starting from the
value of the Franck-Condon factor e−λ

2/Ω2
in the undriven situation, both currents

increase roughly exponentially as the drive is turned on. In both cases, further in-
crease of the drive eventually shows a slight attenuation of current growth, resulting
in deviations from an exponential characteristic. This leads us to conjecture that
these deviations are of a physical nature and not just shortcomings of the specific
method used.

2.1.5 Conclusion

We studied the nonequilibrium behavior of a quantum dot with strong interac-
tion between electronic and vibrational degrees of freedom, coupled to a pair of
metallic leads in the sequential-tunneling regime. Using Keldysh Green’s func-
tions and a partial resummation of diagrams, we obtained the prediction that a
periodically modulated gate voltage can be employed to change the transport prop-
erties of the system. Specifically, such a form of AC drive gives rise to an increase
in steady-state current, lifting the Franck-Condon blockade. This finding turned
out to be generally in line with the outcome of a master equation analysis of the
electronic dynamics of system: both approaches show a strong current response to
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Figure 2.10: Drive dependence of the current (logarithmic scale) through the res-
onantly driven quantum dot for the case of strong coupling, λ = 6.6Ω, as derived
in the Green’s function and master equation formalisms, respectively. Both cases
show a slightly subexponential response to driving, where the deviations from ex-
ponential behavior are more pronounced in the Green’s function results. There, the
drive is parametrized by the amplitude A, and in the master equation approach by
the rescaling of A by the vibron damping rate.

the gate voltage, which is close to exponential in the strongly interacting, weakly
driven limit. The compatibility of these two results also supports the validity of
the polaron-tunneling approximation used in the Green’s function treatment in the
presence of drive.

The results established here imply a transistor-like behavior of the CNT quan-
tum dot, i.e., a conductance between a pair of leads that can be strongly activated
by a gate voltage. The back gates that could be used to supply such a driving
gate voltage are already part of some experimentally realized setups, in which they
also have been used to modify the electron-vibron interaction and the coupling be-
tween quantum dot and leads. Hence, this points towards a variety of arrangements
employing CNTs as electronic components of adjustable conductance, since both
the coupling strengths and the drive parameters are in the range of experimental
feasibility.

Challenges, however, are posed by the fact that the overall currents are still
rather small, in spite of the exponential increase. It would therefore be worth-
while to study the intermediate regime where the electron-vibron coupling is not
much larger than the frequency of the vibron mode. There, the conductivity is less
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strongly suppressed due to the Franck-Condon blockade, albeit at the price of more
significant deviations from exponential response.

A further modification could be realized by incorporating the quantum dot into
a setup related to circuit quantum electrodynamics (cQED), [117, 118] thus re-
placing the drive from the gate voltage with one generated by a microwave cavity.
Even more, cQED setups would also allow for replacing the classical drive (i.e.
a microwave cavity with a large number of photons) by a quantum drive. In such
configurations, measurements of the current flowing through the CNT quantum dot
could be used to as a detection mechanism for cavity photons. Our finding that the
conductance of the electromechanical component is strongly actuated by drive sug-
gests an arrangement of this kind as a possible high-precision measurement device.

2.1.6 Appendix: Details on the NEGF approach

Below, we document the steps leading to the renormalized dot Green’s function
D(ω) which is used to obtain the current through the driven quantum dot in the
Keldysh formalism. The starting point is the polaron-transformed dot Green’s
function without renormalization due to tunneling. Using the same notation for
the vibrational operator X̄ as in the main text, this Green’s function reads

D0(τ, τ′) = 〈d†(τ)X̄(τ)X̄†(τ′)d(τ′)〉0 . (2.27)

Since the expectation value is taken with respect to the ground state of the quadratic
Hamiltonian H̄0 = Ωa†a + ε̃d†d, it factors into vibrational and electronic degrees
of freedom, where the electronic component can immediately be written as

Gdot(t − t′) = −ie−iε̃(t−t′)
(
−N0 + Θ(t − t′) −N0

1 − N0 −N0 + Θ(t′ − t)

)
, (2.28)

with the Heaviside step function Θ, and initial dot occupation N0. For the vibron
part, we find one of the Keldysh components to be

Λ+−(t, t′) = 〈X̄(t)X̄†(t′)〉0 =

〈
e−

λ
Ω [a†eiΩt−ae−iΩt+iF(t)]e

λ
Ω

[
a†eiΩt′−ae−iΩt′+iF(t′)

]〉
0

= e−
λ2

Ω2 e
λ2

Ω2 e−iΩ(t−t′)
e−i

∫ t
t′ ds f (s), (2.29)

and analogous results for the others. Here the two exponentials on the left describe
the undriven case, in particular the Franck-Condon blockade, and the drive is cap-
tured by the remaining factor, which depends on both the initial and final times t
and t′. Since we want to capture the steady-state current through the system, we
perform an average over one drive period. For the case of resonant driving, this
rests upon the vibron timescale being much shorter than the measurement time.
Thus we introduce the respective average and relative times tav = (t + t′)/2 and
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trel = t − t′, and proceed,

2π
Ω

∫ π
Ω

− π
Ω

dtav 〈X̄(tav + trel/2)X̄†(tav − trel/2)〉0

= e−
λ2

Ω2 e−
λ2

Ω2 e−iΩtrel 2π
Ω

∫ π
Ω

− π
Ω

dtave−i
∫ tav+trel/2

tav−trel/2
ds f (s)

= e−
λ2

Ω2 e
λ2

Ω2 e−iΩtrel 2π
Ω

∫ π
Ω

− π
Ω

dtave−
iA
Ω

[sin Ω(tav+trel/2)−sin Ω(tav−trel/2)]

= e−
λ2

Ω2 e
λ2

Ω2 e−iΩtrel 2π
Ω

∫ π
Ω

− π
Ω

dtav

∑
n∈Z

inJn

(
−

2A sin Ωtrel/2
Ω

)
einΩtav

= e−
λ2

Ω2 (1−e−iΩtrel)J0

(
2A sin Ωtrel/2

Ω

)
, (2.30)

where f (t) = A cos(Ωt) denotes resonant drive.
After this averaging procedure, the bare dot Green’s function D0 is connected

to the full PTA Green’s function D via the frequency-space Dyson equation

D−1(ω) = D−1
0 (ω) − Σleads(ω), (2.31)

which has us perform the Fourier transform of D0. For the vibron degree of free-
dom, we note that the undriven part of the result in Eq. (2.30) can be immediately
expanded into harmonics of Ω, whereas for the driven part, we can use the series
expansion of the zeroth Bessel function, J0(x) =

∑
m∈N

(−1)m

m!m!

(
x
2

)2m
, to calculate the

nth Fourier coefficient,

Λ
(n)
dr = J0

(
2A sin Ωt/2

Ω

)(n)

=
Ω

2π

∑
m≥0

(−1)m

m!m!
A2m

(i2Ω)2m

m∑
k=0

(
2m
k

) ∫ π
Ω

− π
Ω

dte−i(m−k)Ωte−inΩt(−1)2m−k

=
∑
m≥|n|

(−1)m−n

m!m!

( A
2Ω

)2m (
2m

m + n

)
. (2.32)

The dot Green’s function is then transformed by convolving the above expres-
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sion with the undriven vibron and bare electron parts,

D0(ω) = F

[
−ie−iε̃te−

λ2

Ω2 J0

(
2A sin(Ωt/2)

Ω

) Θ(t)e
λ2

Ω2 e−iΩ|t|
0

0 +Θ(−t)e
λ2

Ω2 e−iΩ|t|


 (ω)

= −i2πe−
λ2

Ω2 F

∑
n∈N

Λ
(n)
dr einΩt

∑
k∈N

1
k!

(
λ2

Ω2

)k

eikΩt
(
Θ(t) 0

0 Θ(−t)

)]
(ω − ε̃)

= −i2πe−
λ2

Ω2
∑

n,k∈N

Λ
(n)
dr

1
k!

(
λ2

Ω2

)k 
∫ ∞

0 dtei(kΩ+nΩ+ω−ε̃)t 0

0
∫ 0
−∞

dtei(kΩ+nΩ+ω−ε̃)t


= 2πe−

λ2

Ω2 lim
η→0

∑
n,k∈N

Λ
(n)
dr

1
k!

(
λ2

Ω2

)k  1
kΩ+nΩ+ω−ε̃+iη 0

0 − 1
kΩ+nΩ+ω−ε̃−iη

 , (2.33)

where F denotes Fourier transform between time and frequency domains, and the
cutoff η → 0+ serves to keep the integrals finite. We dropped the delta functions
on the off-diagonal of the Fourier-transformed bare dot electron Green’s function
because those will not contribute when we invert the matrix in the next step.

Similarly to the bare dot electron Green’s function, the sum over the lead
Green’s functions takes shape as

Gleads(ω)

=
1
L

∑
k

i2πnF(ωk)δ(−ωk + ω) + 1
−ωk+ω+iη i2πnF(ωk)δ(−ωk + ω)

i2π(nF(ωk) − 1)δ(−ωk + ω) i2πnF(ωk)δ(−ωk + ω) − 1
−ωk+ω−iη

 ,
(2.34)

for each of the two leads, where nF again denotes the lead Fermi distribution. Tak-
ing the wide-flat-band limit of the lead distribution, we substitute an energy integral
for the sum over lead modes, 1

L
∑

k →
∫

dEρ(E) ≈ ρ̄
∫

dE, which renders the inte-
gration trivial and leaves us us with

Gleads(ω) = i2πρ̄
(
nL + nR −

1
2 nL + nR

nL + nR − 1 nL + nR −
1
2

)
, (2.35)

where nL = nF(ω− eV/2) and nR = nF(ω+ eV/2). In the polaron tunneling approx-
imation, this Green’s function gives rise to the self-energy Σleads = g2σzGleadsσz,
with the third Pauli matrix2

σz =

(
1 0
0 −1

)
. (2.36)

2This Pauli matrix transformation is required to obtain the sign structure of the self-energy, see
Eq. (1.39).

59



Now we are in position to use Eq. (2.31) to calculate the PTA dot Green’s
function,
D(ω) =

(
D0(ω)−1 − Σleads(ω)

)−1

=
1

det D−1(ω)


−

2πe
− λ

2

Ω2 ∑
n∈Z,k∈N Λ

(n)
dr

1
k!

(
λ2

Ω2

)k
1

kΩ+nΩ+ω−ε̃


−1

− iΓ
(
nL + nR −

1
2

)
−iΓ(nL + nR)

−iΓ(nL + nR − 1)

2πe
− λ

2

Ω2 ∑
n∈Z,k∈N Λ

(n)
dr

1
k!

(
λ2

Ω2

)k
1

kΩ+nΩ+ω−ε̃


−1

− iΓ
(
nL + nR −

1
2

)


(2.37)
with the determinant of the inverse Green’s function matrix given by

det D−1(ω) = −

2πe−
λ2

Ω2
∑

n∈Z,k∈N

Λ
(n)
dr

1
k!

(
λ2

Ω2

)k 1
kΩ + nΩ + ω − ε̃

−2

−
Γ2

4
. (2.38)

The sum in this expression runs over all resonances of the vibron mode, where
each resonance peak is in turn dressed by drive-induced contributions of the other
ones. The resonances are Poisson-weighted in the case of no drive (A = 0), and the
weakly driven case, where Λ(n) is strongly localized around n = 0, may be seen as
a perturbed version of this.

The analysis in the main text is concerned with the drive dependence of D(ω)
around the lowest resonance, which is obtained from the above result by taking
n = −k.

2.1.7 Appendix: Tunneling rates for Fock vibron state

Here, we provide the Lindblad coefficient for the situation of a vibron prepared in
a Fock state, with density matrix ρ(n)

vib = |n〉 〈n|. In order to cast the master equation
Eq. (2.23) into Lindblad form, we calculate the vibron trace

〈n| X†(t)X(t − s) |n〉 = e−
λ2

Ω2
∑
m≥0

(λ2/Ω2)m

m!

n∑
k=0

(
n
k

)
(−2λ2/Ω2)k

k!

×

k∑
l=0

(
k
l

)
(−1)k−l

2k−l

k−l∑
p=0

(
k − l

p

)
eiΩs(2p−k+l−m), (2.39)

which gives rise to the Lindblad coefficients

h(n)
in =

Γ

2
e−

λ2

Ω2
∑
m≥0

(λ2/Ω2)m

m!

n∑
k=0

(
n
k

)
(−2λ2/Ω2)k

k!

×

k∑
l=0

(
k
l

)
(−1)k−l

2k−l

k−l∑
p=0

(
k − l

p

)
nF(ε̃ − (2p − k + l − m)Ω),

h(n)
out =

Γ

2
e−

λ2

Ω2
∑
m≥0

(λ2/Ω2)m

m!

n∑
k=0

(
n
k

)
(−2λ2/Ω2)k

k!

×

k∑
l=0

(
k
l

)
(−1)k−l

2k−l

k−l∑
p=0

(
k − l

p

)
(1 − nF(ε̃ − (2p − k + l + m)Ω)) . (2.40)
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The rates resulting from these coefficients are visualized in Fig. 2.6 of the main
text.
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2.2 Charge pumping in strongly coupled molecular quan-
tum dots

The interaction between electrons and the vibrational degrees of freedom of a
molecular quantum dot can lead to an exponential suppression of the conduc-
tance, an effect which is commonly termed Franck-Condon blockade. Here, we
investigate this effect in a quantum dot driven by time-periodic gate voltages and
tunneling amplitudes using nonequilibrium Green’s functions and a Floquet ex-
pansion. Building on previous results showing that driving can lift the Franck-
Condon blockade, we investigate driving protocols which can be used to pump
charge across the quantum dot. In particular, we show that due to the strongly
coupled nature of the system, the pump current at resonance is an exponential
function of the drive strength. This section is based on the article Charge pump-
ing in strongly coupled molecular quantum dots, written in collaboration with Han
Hoe Yap, Jiangbin Gong, and Thomas L. Schmidt, published in Phys. Rev. B 96,
195432 (2017).

2.2.1 Introduction

Recent progress in fabrication and measurement techniques has broken new ground
in the field of nanoscale physics: Currently realizable systems allow for the ex-
perimental examination and manipulation of single quantum states, putting within
reach a wide variety of novel effects [97, 95]. Specifically, the transport proper-
ties of such systems are the subject of extensive study, on the quest for pioneering
designs of electronic components and circuitry.

One of the core promises of nanoelectronics is to accurately generate and con-
trol small amounts of current. In such a context, the paradigm of quantum pump-
ing [119, 120, 121] has received considerable attention. Charge pumping signifies
a nonzero time-averaged flow of current through a quantum system as a result of
the temporal variation of one [122, 123] or several [124, 125, 126] system parame-
ters, even in the absence of voltage bias. This effect can be achieved, for instance,
in a system between two leads at equal chemical potential, where the system pa-
rameters are modulated by an external AC signal. Nanoscale charge pumps have
potential uses as sources of quantized, tunable currents [127, 128].

The current generated by a quantum pump generally depends in a significant
fashion on the drive protocol, which can manifest in various ways: For example, if
the drive period is longer than the time scales inherent in the system, an adiabatic
time evolution of the system can be used to obtain rather general results for the
current [129, 130, 131]. In contrast, for comparatively fast driving, the situation is
less straightforward and the resulting pump current tends to depend strongly on the
excited state spectrum of the system in question, as well as on the specific driving
protocol that is being employed [132, 133].

Charge pumping has been studied frequently in electronic systems. However,
nanoscale physics is not limited to electronics alone. In particular, the interactions
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between charges and optical or mechanical degrees of freedom open up further
avenues for exploration [99, 98, 96]. A prototypical nanoelectromechanical system
(NEMS) exists for instance in the form of carbon nanotubes (CNT) [103, 25, 24,
100, 31, 105]. It has recently become possible to use electronic gates to define
a quantum dot on a CNT and to tailor the interaction of electrons and quantized
vibrational modes (“vibrons”) of the nanotube [134, 26, 30].

In particular, the interplay between electronic and mechanical degrees of free-
dom in a NEMS can have profound consequences for its conductive properties:
The simplest such system – a single vibrational mode interacting with an elec-
tronic level – already gives rise to an infinite ladder of composite electromechani-
cal states (“polarons”) that can in principle contribute to conduction. In the limit of
strong electron-vibron coupling, the transitions involving low-lying states of this
ladder are exponentially suppressed, leading to a drastic reduction in current, a phe-
nomenon called Franck-Condon blockade (FCB) [20, 21, 23]. On the other hand, it
was shown recently that an AC gate voltage in resonance with the vibration can be
used to actuate conduction channels that are much less strongly suppressed, which
lifts the Franck-Condon blockade exponentially in the drive amplitude [135]. In
Ref. [135], it was proposed to observe this effect in a CNT quantum dot, since such
a system exhibits the required strong coupling, and the AC gate voltage could be
supplied by the gates used to define the quantum dot [106]. Here, we extend this
setup by using additional gates to also modulate the coupling of the quantum dot to
the lead electrodes. The availability of more than one time-dependent parameters
then allows us to build a bridge towards charge pumping.

Here, we study the current response of a Franck-Condon-blockaded quantum
dot to several periodic drives. We consider a model for a quantum dot with interact-
ing vibrational and electronic sectors, weakly coupled to a pair of metallic leads.
A drive protocol is defined which modulates both the coupling to the leads and
the energy level of the dot. As a result of this drive, we find that charge pumping
through the dot can be achieved. Interestingly, we find that for drive frequencies
resonant with the vibron mode, the pump current depends exponentially on the
drive amplitude.

Our work is organized as follows: In Sec. 2.2.2, we lay out the model used to
describe a doubly-driven electromechanical quantum dot. Sec. 2.2.3 contains the
derivation of the current through the system, where we use the Keldysh nonequi-
librium Green’s function method in conjunction with the polaron tunneling ap-
proximation and a Floquet expansion. We apply this method to a specific driving
protocol in Sec. 2.2.5, leading to a description of charge pumping. In Sec. 2.2.6,
we summarize our findings and discuss extensions and ideas for application.

2.2.2 Model

In principle, the electronic interactions on a CNT quantum dot can be very com-
plex as different vibron modes may couple to the charges in different electronic
orbitals. In the following, we capture the essential physics by using as a min-
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Figure 2.11: Schematics of the Hamiltonian from Eq. (2.41). As a result of
electron-vibron coupling, the vibrational spectrum has different ground state en-
ergies depending on the electron number n =

〈
d†d

〉
, with the unoccupied sector

(n = 0) having an energy increase of λ2/Ω. The energy of the dot electron ε(t) and
the couplings to the leads VL, R(t) are subject to periodic driving.

imal model for electron-vibron interactions the Anderson-Holstein Hamiltonian
H = Hdot + Hlead + Htun, where

Hdot = Ωa†a + ε̄(t)d†d + λ(a† + a)d†d,

Hlead =
∑
α=L,R

∑
k

εkαc†kαckα,

Htun =
∑
α=L,R

∑
k

[
Vkα(t)d†ckα + h.c.

]
, (2.41)

denote the dot, lead and tunneling Hamiltonians, respectively. This is a variant of
the Hamiltonian Eq. (2.1) studied in Sec. 2.1, with the only difference being that the
dot couples to each mode in the leads via the time-dependent tunneling amplitude
Vkα(t). A summary of the components of the Hamiltonian is given in Fig. 2.11.

The dot Hamiltonian can be mapped onto a non-interacting model [108] by ap-
plying the unitary transformation H̃ = UHU−1, whereU = exp[λ(a† − a)d†d/Ω].
Indeed, this procedure results in a quadratic Hamiltonian H̃0 = H̃dot + Hlead, with
H̃dot = ε(t)d†d + Ωa†a, where the dot electron energy has been renormalized to
ε(t) = ε̄(t) − λ2/Ω. While the lead Hamiltonian remains unchanged, the tunneling
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amplitudes are dressed by an exponential vibrational factor,

H̃tun =
∑
α

∑
k

[
Vkα(t)X†d†ckα + h.c.

]
, (2.42)

where X = e−
λ2

Ω2 (a†−a) encodes the modification of the tunneling process due to the
polaron.

In the limit of slow tunneling, Vkα � min (λ,Ω), insight into the transport
properties of the system has been obtained: In the time-independent case, Vkα(t) ≡
Vkα, ε(t) ≡ ε, the electron-vibron interaction leads to an exponential suppression of
DC current, 〈I〉 ∝ e−λ

2/Ω2
. This phenomenon is known as Franck-Condon blockade

[20, 21, 23] and can be pictured as follows: As a consequence of electron-vibron
interaction, the lattice structure of the dot will be deformed in the presence of an
electron, whereby a polaron is formed. If current is to flow through the dot, e.g.,
if the electron is to tunnel out, this composite state has to be broken up, which is
energetically costly for strong electron-vibron interaction. In Sec. 2.1, we showed
how application of an AC voltage to the dot can supply the energy required to
break up the polaron, facilitating electron tunneling and lifting the current blockade
[135]. In the following, we set up a formalism that allows us to treat periodic,
resonant drives in both the dot energy ε(t) and the coupling to the leads Vkα(t).

2.2.3 Floquet Green’s functions

In order to calculate the current through the quantum dot, we make use of the
nonequilibrium Green’s function technique. The operator describing the charge
current flowing through the lead α is given by

Iα = e
d
dt

∑
k

c†kαckα = −ie

∑
k

c†kαckα, H̃

 =

= ie
∑

k

Vkα(t)X†(t)d†(t)ckα(t) + h. c., (2.43)

where the time dependence of the operators is understood to arise from evolution
with the full Hamiltonian H̃. Therefore, the current expectation value can be ex-
pressed as

〈Iα(t)〉 = e
∑

k

Vkα(t)F−+
kα (t, t) + c.c., (2.44)

with Fkα(τ, τ′) = −i
〈
TCckα(τ′)X†(τ′)d†(τ′)

〉
denoting the contour ordered “mixed”

dot-lead Keldysh Green’s function. Specifically, the times τ and τ′ lie on the
Keldysh contour C, as depicted in Fig. 1.3.
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Polaron tunneling approximation

In principle, the Green’s function Fkα(τ, τ′) can be calculated perturbatively in
H̃tun for weak coupling between dot and lead. Unfortunately, a direct resumma-
tion of the perturbation series is impossible because H̃tun contains the vibrational
operator X, and thus gives rise to expectation values for which Wick’s theorem
does not hold. Therefore, we use the same polaron-tunneling approximation as in
Sec. 2.1. Within this approximation, the renormalized polaron dot Green’s function
D(τ, τ′) = −i

〈
TCd(τ)d†(τ′)X(τ)X†(τ′)

〉
obeys the Dyson equation

D(τ, τ′) = D0(τ, τ′) +

∫
C

dσ1

∫
C

dσ2D0(τ, σ1)Σ(σ1, σ2)D(σ2, τ
′), (2.45)

where the bare polaron dot Green’s function reads

D0(τ, τ′) = −i
〈
TCd(τ)d†(τ′)

〉
0

〈
TCX(τ)X†(τ′)

〉
0

(2.46)

and the subscript “0” denotes expectation values with respect to H̃0. The self-
energy is given by

Σ(σ1, σ2) =
∑
kα

Vkα(σ1)V∗kα(σ2)G0,kα(σ1, σ2)

≡
∑
α

Σα(σ1, σ2), (2.47)

in terms of the bare lead Green’s function

G0,kα(σ1, σ2) = −i
〈
TCckα(σ1)c†kα(σ2)

〉
0
. (2.48)

Having obtained a Dyson equation, the expectation value of the current through
either of the leads can now be calculated in the fashion explained in Sec. 1.2.3.

〈Iα(t)〉 = e
∑

k

Vkα(t)F−+(t, t) + c.c.

= 2e Re
∫ ∞

−∞

ds
[
ΣR
α(t, s)D−+(s, t) + Σ−+

α (t, s)DA(s, t)
]
, (2.49)

using the Langreth rule Eq. (1.51) for the lesser component of a convolution.

Floquet expansion

As a result of the time convolution, Dyson equation (2.45) does not admit an ana-
lytical solution for arbitrary time dependent drives. For periodic drives, however,
we can perform an expansion into Floquet modes to simplify the problem [55], as
detailed in Sec. 1.3.

In particular, we write the dot Green’s function Ď(t, t′) as an infinite-dimensional
matrix in the fashion of Eq. (1.89),

Ďmn(ω) = Ď
(
m − n, ω +

m + n
2

Ωdr

)
. (2.50)
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This representation allows to write convolutions in the time domain as matrix mul-
tiplications in frequency space: For a function C(t, t′) =

∫ ∞
−∞

dsA(t, s)B(s, t′), the
Floquet expansion is given by Cmn(ω) =

∑∞
k=−∞ Amk(ω)Bkn(ω). In order to perform

this multiplication, we limit the dimension of the matrices to N ≡ 2NFl + 1, with
the index k running from −NFl to NFl.

In this manner, Eq. (2.49) yields the Floquet components of the current expec-
tation value,

〈Iα(ω)〉mn = e
∞∑

k=−∞

[(
ΣR
α

)
mk

(ω)D−+
kn (ω) +

(
Σ−+
α

)
mk (ω)DA

kn(ω)+

+
(
ΣR
α

)
−m−k

(−ω)∗D−+
−k−n(−ω)∗ +

(
Σ−+
α

)
−m−k (−ω)∗DA

−k−n(−ω)∗
]
. (2.51)

In particular, the total steady-state (DC) current through the quantum dot takes
shape as

〈I〉DC =
Ωdr

2π

∫ T /2

−T /2
dtav 〈I(tav)〉 =

∫
dω
2π
〈I(ω)〉00 , (2.52)

where we defined the current difference I = IL− IR. It remains to calculate the Flo-
quet expansions of the dot Green’s function and of the self-energy, which is readily
achieved: Since the Dyson equation, Eq. (2.45), only involves a time convolution,
its retarded and advanced components can also be written in terms of a Floquet
matrix multiplication,(

DR,A
)
mn

(ω) =
(
DR,A

0

)
mn

(ω) +

∞∑
k,l=−∞

(
DR,A

0

)
mk

(ω)ΣR,A
kl (ω)DR,A

ln (ω). (2.53)

This equation can be explicitly solved for DR,A by inversion, provided we truncate
the matrices to a finite dimension N. Once DR,A are known, the lesser component
can also be calculated using the Keldysh integral equation,

D−+(t, t′) =

∫
dsds′DR(t, s)Σ−+(s, s′)DA(s′, t′), (2.54)

whose Floquet expansion is again given by a matrix multiplication.
Finally, we give the components of the Dyson equation for a general form of

the driving protocol used in the following sections,

ε(t) = A cos Ωε t,

Vkα(t) = vkα
[
1 + ∆ cos (ΩV t + φα)

]
, (2.55)

where the formalism admits any kind of commensurate choice for the drive fre-
quencies Ωε and ΩV . Expanding the bare Green’s function, we obtain

D0(tav, trel) =
∑
n∈Z

einΩε tav

∫ ∞

−∞

dω
2π

e−iωtrel

×
∑
m≥0

2m+n∑
k=0

Dfree
0

(
ω −

(
m +

n
2
− k

)
Ωε

)
λmk

n , (2.56)
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where we abbreviated λmk
n =

(−1)k

m!(m+n)!

(
A

2Ωε

)2m+n
(
2m + n

k

)
. The bare dot Green’s

function in the absence of drive is denoted by Dfree
0 (ω), with its retarded component

given by

(
Dfree

0

)R
(ω) = e−λ

2/Ω2
∑
k≥0

λ2k/Ω2k

k!
1

ω − ε − kΩ + i0+
. (2.57)

Hence, the bare dot Green’s function is given by a series of resonances at integer
multiples of the vibron frequency, which follow a drive-modified Poisson distribu-
tion strongly dependent on the electron-vibron coupling parameter λ/Ω.

Taking the wide-band limit for the leads and their coupling to the dot results in
a frequency-independent bare electronic tunneling rate Γ = 2π

∑
k |vkα|

2δ(ω − εkα),
and yields the mode expansion for the retarded self-energy,

ΣR
α(n, ω) = −i

Γα

2



|∆|2

4 e−i2φα , n = −2
∆+∆∗

2 e−iφα , n = −1

1 +
|∆|2

2 , n = 0
∆+∆∗

2 eiφα , n = 1
|∆|2

4 ei2φα , n = 2

, (2.58)

where the limitation of the Wigner mode indices n ∈ {0,±1,±2} results from the
single-mode character of Vkα. Furthermore, the lesser component reads

Σ−+
α (n, ω) =

= iΓα



|∆|2

4 e−i2φαnFα(ω), n = −2
∆
2 e−iφαnFα(ω −ΩV/2) + ∆∗

2 e−iφαnFα(ω + ΩV/2), n = −1

nFα(ω) +
|∆|2

4 nFα(ω + ΩV ) +
|∆|2

4 nFα(ω −ΩV ), n = 0
∆∗

2 eiφαnFα(ω −ΩV/2) + ∆
2 eiφαnFα(ω + ΩV/2), n = 1

|∆|2

4 ei2φαnFα(ω). n = 2

(2.59)

Here, we consider the leads at zero temperature, meaning that the Fermi function
of lead α is a step function nFα(ω) = θ(µα − ω), with the chemical potentials µα.

After converting these Wigner expansions into Floquet modes via Eq. (2.50),
the Dyson equation Eq. (2.53) can be solved to obtain the renormalized dot Green’s
function and hence the current. A detailed derivation of Eqs. (2.56)–(2.59) can be
found in Appendix 2.2.7.

2.2.4 Current under bias

In this section, we use the Floquet-Green’s function expression for the calculation
of the average current. Specifically, we apply it to a polaron quantum dot subject
to a bias eV ≡ µL − µR between left and right leads, with a time-dependent drive
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applied to both the dot energy and the coupling to the leads. By comparing to the
results from Sec. 2.1 [135], we are also able to estimate the influence of Floquet
harmonics beyond the leading order on the lifting of Franck-Condon blockade.

The pumping protocol examined here consists of two single-mode drives,

ε(t) = A cos Ωt,

Vkα(t) = vkα [1 + ∆ cos (Ωt/2)] . (2.60)

The dot drive ε(t) is chosen to be resonant with the vibron mode so as to maximize
the resulting current amplification [135]. Moreover, the coupling is driven at half
of this frequency, so that the self-energy, which contains the square of the cou-
pling, is itself in resonance with the dot and the vibron. According to Eq. (2.57),
the bare dot Green’s function features resonances at all positive integer multiples
of Ω. We choose a bias voltage V in such a way as to reach the regime which
exhibits the strongest Franck-Condon blockade as well as the most pronounced
current response to drive,[135] i.e., Γ � eV � Ω. The integrand 〈I00(ω)〉 that
gives rise to the DC current flowing through this setup can be seen in Fig. 2.12
for different values of the dot drive amplitude A. All current is due to the single
resonance within the bias window, whose width is suppressed by the FCB factor
e−λ

2/Ω2
, but strongly increases with A. The drive dependence of the integrated DC

current 〈I〉DC calculated from Eq. (2.52) is illustrated in Fig. 2.13.
The striking feature here is the degree of difference between the respective cur-

rent responses to the dot and coupling drives: The dot drive causes exponential
lifting of the Franck-Condon blockade as a function of dot drive amplitude A, re-
gardless of the presence of the coupling drive. By contrast, the dependence on the
coupling drive amplitude ∆ is only quadratic, as is expected from the fact that it
directly multiplies the tunneling coefficient vkα, the square of which is featured in
the bare electronic tunneling rate Γ. Compared to the dependence on the dot drive,
the effect of the coupling drive is minuscule: Increasing the amplitude up to the
static value vkα of the coupling causes a mere 2% difference in current.

Finally, Fig. 2.13 also shows that the impact of higher Floquet harmonics on
the current response is negligible: The Floquet result obtained using a matrix di-
mension NFl = 5 in Eq. (2.51) differs little from the outcome of the simplified
calculation in Sec. 2.1, where the response to the dot drive was calculated using
only time-averaged Green’s functions, which is equivalent to truncating the Flo-
quet matrices down to NFl = 1.

2.2.5 Polaron pumping

In this section we consider the unbiased polaron dot, i.e., we set the chemical
potentials of the leads to µL = µR = 0. In this case, a DC current can still flow
in the presence of a drive protocol which breaks the left-right symmetry. In order
to break this symmetry, we add phase differences φα to the left and right coupling
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Figure 2.12: Frequency-resolved DC current integrand 〈Iα(ω)〉00 through a biased
polaron dot (µL = −µR = Ω/4), evaluated near the zeroth-order resonance. We
use Eq. 2.51 with Floquet matrix dimension NFl = 5 for different values of the dot
drive amplitude A, and a coupling drive amplitude of ∆ = 0.6, as well as a bare
electronic tunneling rate Γ = 0.002Ω. Increasing A causes substantial widening of
the peak, signifying strong current increase.

drives, so that the driving protocol is given by

ε(t) = A cos Ωt,

Vkα(t) = vkα
[
1 + ∆ cos (Ωt/2 + φα)

]
. (2.61)

For such a setup, variaous channels contribute to charge transport through the dot,
as evidenced by the current integrand depicted in Fig. 2.14, which exhibits several
resonances of comparable height. The role of higher Floquet harmonics is evident
from the slower convergence of the result as a function of the truncation index NFl,
when compared to the situation with bias. This effect becomes more pronounced
as the drive amplitudes are increased.

The interplay between the drive parameters is more complex than in the biased
case: Fundamentally, there can be no current without breaking the left-right sym-
metry, so the phase differences are essential to achieve current flow. In the same
vein, the dot drive ε(t) by itself will not produce any current: the coupling drive
Vkα(t) is also required. This is reflected in Fig. 2.15, where dependencies of the DC
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Figure 2.13: Exponential FCB (λ = 4Ω) lifting by driving the dot energy in the
presence of a bias window µL = −µR = Ω/4. Floquet result (blue) with dimension
NFl = 5 to be compared with the result (red) from Ref. [135], corresponding to
NFl = 1. Inset: Increasing the coupling drive for fixed dot drive leads to a small-
scale quadratic rise in tunneling current I∆.

current 〈I〉DC through the unbiased dot on dot drive and phase shift are on display,
with the dependence on the phase difference isolated in the inset: In the absence
of dot drive (A = 0), no current is measured, independently of coupling drive and
phase, and the same is true for the case of zero phase difference (φL = φR). Even
though the phase difference appears to have little influence on the shape of the
resonances, it has a much more significant effect on the integrated current: For a
nonvanishing phase difference, a current response to the dot drive is observed, with
the current increasing roughly linearly in the regime of A � Ω, and in a superlinear
fashion for larger values of A. On the other hand, for a fixed value of A, the current
depends on the phase difference in a sinusoidal fashion. Taken together, we find
that the current response to the driving protocol is given by

〈I(A,∆)〉DC ∝ Γe−λ
2/Ω2 A

Ω
eA/Ω∆2 sin φ, (2.62)

where φ = φL − φR, for ∆ . 1.
Equation (2.62) is the main result of this work. It combines features known

from charge pumping through purely electronic quantum dots with the Franck-
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Figure 2.14: Frequency-resolved DC current integrand 〈Iα(ω)〉00, through an unbi-
ased polaron dot, evaluated near the peak locations (peak order k), using Eq. (2.51)
with Floquet matrix dimension NFl = 21. The coupling drive amplitude and bare
tunneling rate are given by ∆ = 0.6 and Γ = 0.002Ω, respectively. The side res-
onances appearing outside the bias window are comparable in size to the central
one at k = 0, but different sides lead to partial cancellation upon integration. In-
set: Modification of the shape of the central resonance for different values of phase
shift.

Condon physics of strongly coupled electromechanical quantum dots: On the one
hand, the factors of the bare tunneling rate, as well as the dot and coupling drive
amplitudes, occur in the same fashion as in a quantum dot without mechanical de-
grees of freedom [126, 136]. Moreover, the dependence on the sine of the phase
difference is a feature of adiabatic pumping [137] which persists in the highly non-
adiabatic protocol considered here. On the other hand, the frequency dependence
of the pumped current is dominated by the condition of resonance with the vibra-
tional frequency and thus the current increase as a function of frequency, which is
a feature of the purely electronic case, does not manifest here. Finally, the Franck-
Condon blockade factor as well as the exponential increase in current as a function
of dot drive are familiar from the lifting of Franck-Condon blockade in the unbi-
ased case of our model [135].

Hence we conclude that the polaron dot exhibits pumping characteristics simi-
lar to a non-interacting system, in addition to Franck-Condon blockade and strong
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Figure 2.15: DC current 〈I〉DC as a function of the dot drive amplitude A for dif-
ferent values of phase difference φL = −φR = φ/2, and fixed coupling drive am-
plitude ∆ = 0.6. Dots: simulation of Eq. (2.52), lines: numerical fit proportional
to A

Ω
eA/Ω sin φ. The low-amplitude regime behaves in a way similar to purely elec-

tronic pumping, with exponential lifting of FCB (λ = 4Ω) evident for larger am-
plitude. Inset: Sine-shaped phase dependence of 〈I〉DC for a fixed value of A.

amplification of pump current by application of an AC gate voltage.

2.2.6 Conclusion

We have examined the interplay between strong electromechanical coupling and
periodic drive protocols in a model of a quantum dot coupled to a pair of metallic
leads, subject to AC gate voltages modulating both the dot energy and the coupling
to the leads. By combining a perturbative approach in the tunnel coupling with
an expansion in Floquet modes, we were able to quantify the effects of multi-
parameter drives and of higher drive harmonics on the DC current through the
quantum dot.

Our main findings are twofold: Firstly, we studied the case of a biased quan-
tum dot in the limit of bias voltage small compared to the vibron frequency. In this
situation, the dominant effect is the lifting of the polaron-induced Franck-Condon
blockade as a result of driving the dot energy in resonance with the vibrational
mode on the dot. In particular, the coupling drive only has a minimal effect on the
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current in this regime, and the current response to the drive is well approximated
by the Floquet component which encodes time-averaged contributions. This re-
sult also serves to confirm earlier work on drive-induced lifting of Franck-Condon
blockade, where only time-averaged correlation functions were considered in the
perturbative expansion [135].

Secondly, we applied the same formalism to the unbiased quantum dot. There,
the interplay between both dot and coupling drives makes it possible to pump a
DC current through the system: Similar to the case of charge pumping in purely
electronic systems, we find that in the regime of weak dot drive the DC current
flow is approximately proportional to the drive amplitude, as long as a phase dif-
ference between the left and right coupling drives is employed to break left-right
symmetry. The dependence of the current on this phase is found to always be si-
nusoidal, irrespective of the dot drive amplitude. In the regime of strong dot drive,
in contrast, the current response becomes superlinear and approximates the expo-
nential characteristic found in the biased quantum dot. Thus, the driven unbiased
polaron quantum dot combines the exponential lifting of Franck-Condon blockade
with features of adiabatic charge pumping through purely electronic systems, even
far away from the adiabatic limit.

As recent experiments have used electronic gates to localize quantum dots on
carbon nanotubes, we anticipate that these could also be employed to supply the AC
voltages we use to predict charge pumping, thus providing an implementation of
our model and adding to the versatility of carbon nanotubes as elements of circuitry.
Moreover, the Anderson-Holstein Hamiltonian used in this work is a fairly general
model and could be realized in multiple ways, as long as there is a way to engineer
strong coupling between a fermion and a bosonic mode and subject this system to
several resonant drives. In particular, an optomechanical implementation could be
envisioned, with cavity modes taking the role of the drive.

The model itself can be extended to include multiple electron levels and os-
cillator modes by replacing the expression for the dot Green’s function by a more
complex one; this appears as a promising way to better capture the possible com-
plexities of experiments. Furthermore, the generality of the Floquet formalism
also permits the consideration of more complex driving schemes as well as the
time-dependent current response. Finally, while the polaron tunneling approxima-
tion allows to simplify the diagrammatic expansion substantially and yet capture
the effect of electron-phonon interaction in the parameter ranges considered in this
work, it would be interesting to explore alternatives such as the Floquet DMFT
[55], which would allow to move beyond this approximation, as well as to con-
sider more complex system Hamiltonians.

2.2.7 Appendix: Bare Green’s functions

Here, we derive the expressions Eq. (2.56) and Eq. (2.57) for the bare and free dot
Green’s functions. The free dot Green’s function is calculated by evolution with
the time independent Hamiltonian Hfree

0 = εd†d + Ωa†a and factors into electronic
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and vibrational parts,

Dfree
0 (τ, τ′) = −i

〈
TCd(τ)d†(τ′)

〉free

0

〈
TCX(τ)X†(τ′)

〉free

0
, (2.63)

where X(τ) = e−
λ2

Ω2 (a†eiΩτ−ae−iΩτ). Using Keldysh matrix notation, the electronic
Green’s function takes shape as

〈
TCd(τ)d†(τ′)

〉free

0
= e−iε(t−t′)

(
−N0 + θ(t − t′) −N0

1 − N0 −N0 + θ(t′ − t)

)
. (2.64)

Throughout this work, we focus on times beyond the transient regime, meaning the
effect of the initial dot occupation N0 is negligible and can hence be set to N0 = 0.
On the other hand, the vibrational part reads

〈
TCX(τ)X†(τ′)

〉free

0
= e−λ

2/Ω2

e
λ2

Ω2 e−iΩ|t|
e
λ2

Ω2 eiΩt

e
λ2

Ω2 e−iΩt
e
λ2

Ω2 eiΩ|t|

 . (2.65)

The retarded component in Eq. (2.57) is obtained by Fourier transform of Eq. (2.63)
and using the definition

(
Dfree

0

)R

0
=

(
Dfree

0

)−−
−

(
Dfree

0

)−+
.

The bare dot Green’s function differs from the free one by the additional evo-
lution with the drive Hamiltonian Hdr(t) = A cos Ωε t, which implies

D0(τ, τ′) = Dfree
0 (τ, τ′)e−i A

Ωε
(sin Ωετ−sin Ωετ

′)

=
∑
n∈Z

einΩετav Dfree
0 (τrel)inJn

(
−

2A
Ωε

sin
Ωετrel

2

)
, (2.66)

where Jn denotes the n-th Bessel function of the first kind. By Fourier transforming
in the relative time coordinate, we obtain the Wigner expansion,∫ ∞

−∞

dτreleiωτrel inJn

(
−

2A
Ωε

sin
Ωετrel

2

)
=

∫ ∞

−∞

dτreleiωτrel in
∑
m≥0

(−1)m

m!(m + n)!

(
−

A
Ωε

sin
Ωετrel

2

)2m+n

=

∫ ∞

−∞

dτreleiωτrel in
∑
m≥0

(−1)m

m!(m + n)!

(
−

A
i2Ωε

)2m+n (
ei Ωε τrel

2 − e−i Ωε τrel
2

)2m+n

=

∫ ∞

−∞

dτrel

∑
m≥0

2m+n∑
k=0

ei(ω+kΩε−mΩε−
n
2 Ωε)τrel

(−1)k

m!(m + n)!

(
A

2Ωε

)2m+n (
2m + n

k

)

= 2π
∑
m≥0

2m+n∑
k=0

δ
(
ω −

(
m +

n
2
− k

)
Ωε

) (−1)k

m!(m + n)!

(
A

2Ωε

)2m+n (
2m + n

k

)
. (2.67)

75



This expression is then convolved with Dfree
0 (ω):

D0(tav, trel) =
∑
n∈Z

einΩε tav

∫ ∞

−∞

dω
2π

e−iωtrel

∑
m≥0

2m+n∑
k=0

Dfree
0

(
ω −

(
m +

n
2
− k

)
Ωε

)
λmk

n , (2.68)

with

λmk
n =

(−1)k

m!(m + n)!

(
A

2Ωε

)2m+n (
2m + n

k

)
. (2.69)

2.2.8 Appendix: Self-energy

In the following, we give the derivations of the mode expansions Eq. (2.58) and
Eq. (2.59) for the retarded and lesser component of the lead self-energy, respec-
tively. Resummation of the perturbation series for D(τ, τ′) produces the Dyson
equation (2.45), with a self-energy Σ which contains the time dependence of the
coupling Vkα(t) = vkα

[
1 + ∆ cos (ΩV t + φα)

]
,

Σ(τ1, τ2) =
∑
kα

Vkα(τ1)V∗kα(τ2)Gkα(τ1, τ2). (2.70)

Introducing Wigner coordinates and Fourier transforming, we obtain

Σ(tav, ω)α =
∑

k

|vkα|
2
∫ ∞

−∞

dtreleiωtrelVkα(tav + trel/2)V∗kα(tav − trel/2)Gkα(trel)

=
∑

k

|vkα|
2
∫ ∞

−∞

dtreleiωtrel

[
|∆|2

4
e−i2φαGkα(trel)e−i2ΩV tav +

|∆|2

4
ei2φαGkα(trel)ei2ΩV tav

+

(
1 +
|∆|2

4
eiΩV trel +

|∆|2

4
e−iΩV trel

)
Gkα(trel)

+

(
∆

2
ei(ΩV trel/2+φα) +

∆∗

2
ei(−ΩV trel/2+φα)

)
Gkα(trel)eiΩV tav

+

(
∆

2
e−i(ΩV trel/2+φα) +

∆∗

2
e−i(−ΩV trel/2+φα)

)
Gkα(trel)e−iΩV tav

]
. (2.71)

In order to obtain the retarded and lesser components of the self energy, we substi-
tute the free lead Green’s functions

GR
kα(trel) = −iθ(trel)e−iεkαtrel ,

G−+
kα (trel) = inF(εkα)e−iεkαtrel , (2.72)

respectively. Using the identity limη→0+(ω−εkα+iη)−1 = P(ω−εkα)−1−iπδ(ω−εkα),
with the notation P for the principal value, the integral is readily performed. In the
wide-band limit, the bare electronic tunneling rate Γ = 2π

∑
k |vkα|

2δ(ω− εkα) is set
to be independent of frequency, which yields Eqs. (2.58) and (2.59).
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2.3 Quantum thermodynamics of the resonant-level model
with driven system-bath coupling

We study nonequilibrium thermodynamics in a fermionic resonant-level model with
arbitrary coupling strength to a fermionic bath, taking the wide-band limit. In con-
trast to previous theories, we consider a system where both the level energy and the
coupling strength depend explicitly on time. We find that, even in this generalized
model, consistent thermodynamic laws can be obtained, up to the second order
in the drive speed, by splitting the coupling energy symmetrically between system
and bath. We define observables for the system energy, work, heat, and entropy,
and calculate them using nonequilibrium Green’s functions. We find that the ob-
servables fulfill the laws of thermodynamics, and connect smoothly to the known
equilibrium results. This section is based on the article Quantum thermodynamics
of the resonant-level model with driven system-bath coupling, written in collab-
oration with Massimiliano Esposito and Thomas L. Schmidt, published in Phys.
Rev. B 97, 085435 (2018).

2.3.1 Introduction

Thermodynamics has long been central to the understanding and optimization of
the performance of work cycles and machines. As a result of recent advances in
fabrication technology and measurement techniques, the range of realizable ma-
chines now extends down to the size of a single molecule [97, 138, 139, 140]. At
this length scale, many of the assumptions underlying the edifice of thermodynam-
ics are no longer valid. Specifically, the paradigm of a nanoscale system coupled
to a bath features a variety of subtleties that are not present in macroscopic setups.
First, the extent of the contact area between system and bath may be similar to that
of the system itself, meaning the details of the coupling become relevant and can
no longer be treated in the same general fashion as in the macroscopic case. Sec-
ond, if the coupling is of sufficient strength, even the distinction between system
and bath may itself become blurred [141]. Finally, the task of taking into account
nonequilibrium effects is much more intricate at the nanoscale and has received a
great deal of recent attention. These difficulties are compounded by quantum ef-
fects that play no role macroscopically but rise to prominence in small systems.
However, even the problem of formulating a microscopic theory of nonequilibrium
thermodynamics for a classical system is daunting in itself [90, 142, 86, 143].

The key to establishing a framework of nonequilibrium quantum thermody-
namics is to define quantities that transfer the concepts of system energy, entropy,
heat, and work to the nanoscale regime in the context of a given system, while pre-
serving as much generality as possible. To this end, a wide variety of approaches
has been pursued, studying setups which roughly fall into the two categories of
weak [67, 57, 73, 69, 144] and general couplings [70, 85, 80, 73, 145, 146, 74,
147, 148, 149, 150] between system and bath, respectively. For the case of weak
coupling, consistent thermodynamics has been established [57, 73, 69, 151], as
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outlined in Sec. 1.5.1, but beyond weak coupling, the situation is much less clear:
There, the meaning of work and work fluctuations has been understood, but the
quest for definitions of system energy and heat remains open [70, 80, 74].

Recently, the formalism of nonequilibrium Green’s functions has been applied
to the question of statistical physics and thermodynamics in paradigmatic quan-
tum systems [152]. The advantage of this approach lies in its inherent ability to
treat both nonequilibrium and strong-coupling situations, meaning that Green’s
functions can readily provide a wide range of candidates for thermodynamic def-
initions. The subjects of these studies are variants of the resonant-level model,
consisting of an electronic level coupled to metallic leads, under the influence of
a drive protocol. This constitutes a minimal description of a quantum dot coupled
to source and drain electrodes and driven by means of AC gate voltages. Elec-
tronic transport in the time-dependent resonant-level model and its extensions has
been studied for several years [153, 154, 34, 135, 155], but more recently its ther-
modynamic properties have come into the spotlight. Several sets of thermody-
namic definitions have been proposed in this way, with varying ranges of validity
[156, 157, 158, 159, 160, 161, 162, 163, 164]. In particular, it has proved chal-
lenging to find appropriate generalizations of corresponding equilibrium quantities
[158], and to incorporate drive protocols and coupling structures of general form
[160, 161].

Our work considers a resonant-level model in the spirit of Ref. [160], where
the electron level is subjected to a time-dependent drive and coupled to a single
lead, which we consider in the wide-band limit. To arrive at a more realistic model
for experiments [165], we extend the existing models by in addition allowing for
a time-dependent coupling between system and bath, and show that it admits an
analytical solution in terms of Green’s functions. These solutions give rise to
nonequilibrium thermodynamic quantities, which connect smoothly to their equi-
librium counterparts, and obey the laws of thermodynamics in the quasi-adiabatic
limit. In doing so, we give a definition of the heat current which differs from those
considered in Ref. [157] and thus resolve the apparent inconsistency caused by
time-dependent coupling.

The paper is structured as follows: In Sec. 2.3.2, we introduce the resonant-
level model and its solution in the presence of time-dependent parameters. Next,
we use this solution to define thermodynamic quantities in Sec. 2.3.3, and demon-
strate the first law of thermodynamics in our model. We proceed in Sec. 2.3.4 by
confirming that the adiabatic limit of our definitions matches established equilib-
rium results. In Sec. 2.3.5 we perform an expansion in derivatives of the drive
protocol, from which we conclude that our definitions are compatible with the sec-
ond law of thermodynamics up to second order in drive velocities. We compare
this expansion with exact numerical results in Sec. 2.3.6. Finally, we summarize
our findings and compare to related results in the literature, in Sec. 2.3.7.
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2.3.2 Resonant-level model

We study a model Hamiltonian for a single electronic level coupled to a fermionic
lead of length L,

H(t) = HD(t) + HB + HT(t), (2.73)

HD(t) = ε(t)d†d,

HB =
∑

k

εkc†kck,

HT(t) =
∑

k

γ(t)
√

L
d†ck + h. c.,

where HD(t), HB, and HT(t) are the dot, lead, and tunneling Hamiltonians, re-
spectively. Here, d† and d denote the creation and annihilation operators for the
dot electron and fulfill the fermionic commutation relation {d, d†} = 1. Analo-
gously, the operators c†k and ck are associated with the lead electrons, with the
index k enumerating the lead modes. In the absence of the tunneling term, we
assume thermal equilibrium in the lead, thus imposing 〈c†kcq〉0 = δkqnF(εk), where
nF(εk) = [1+eβ(εk−µ)]−1 denotes the Fermi-Dirac distribution at inverse temperature
β with chemical potential µ, and the subscript 0 denotes expectation values taken
with respect to the quadratic Hamiltonian HD(t) + HB. Both the dot energy ε(t)
and the dot-lead coupling strength γ(t) are subject to time-dependent drive, and no
assumption is made regarding the magnitude of γ(t). In this way, the Hamiltonian
in Eq. (2.73) combines nonequilibrium physics and potentially strong coupling be-
tween system and bath, and hence features several of the challenges inherent in the
attempt to formulate quantum thermodynamics. The schematics of the model are
visualized in Fig. 2.16.

In the following, we describe the dynamics of the resonant-level model of
Eq. (2.73) in terms of nonequilibrium Green’s functions [47], which can be cal-
culated analytically, as laid out in Sec. 1.2. Specifically, we consider the tunneling
Hamiltonian HT in the role of the interaction, and use a perturbation series to cap-
ture the renormalization of dot properties as a consequence of this interaction.

Resumming the perturbation series leads to a Dyson equation for the full dot
Green’s function as in Eq. (1.34),

D(τ, τ′) = D0(τ, τ′) +

∫
C

dσdσ′D0(τ, σ)Σ(σ,σ′)D(σ′, τ′), (2.74)

as a function of the bare dot Green’s function D0(τ, τ′) = −i〈d(τ)d†(τ′)〉0. Thus,
the consequences of coupling to the leads are fully quantified by the self-energy,
which is given by

Σ(σ,σ′) =
γ(σ)γ∗(σ′)

L

∑
k

G0,k(σ,σ′), (2.75)
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Figure 2.16: Resonant-level model of a driven single-electron quantum dot at en-
ergy ε(t), with time-dependent tunnel coupling γ(t) to a single metallic lead at in-
verse temperature β, with chemical potential µ. The coupling results in broadening
of the dot electron level with profile A(t, ω), see Eq. (2.82).

where G0,k(σ,σ′) = −i〈TCck(σ)c†k(σ′)〉0 denotes the bare lead Green’s function.
To calculate this function analytically, we assume the wide-band limit, i.e., a linear
spectrum εk = vFk with infinite bandwidth. The wide-band limit constitutes an
excellent approximation at temperatures less that the Fermi energy of the bath, and
leads to a constant density of states ρ̄ = 1/(2πvF). The retarded self energy is then
given by

ΣR(s, s′) = −iΓ(s)δ(s − s′), (2.76)

where we introduced the tunneling linewidth3 Γ(s) = πρ̄|γ(s)|2, which we assume
to be strictly positive. Importantly, the wide-band limit produces a delta-shaped
ΣR(s, s′). Similarly, we evaluate the lesser component,

Σ−+(s, s′) = 2πiρ̄γ(s)γ∗(s′)
∫

dω
2π

e−iω(s−s′)nF(ω), (2.77)

which depends on the lead distribution nF(ω).
Eq. (2.74) admits an analytical solution: First, we note that we can solve it

for the retarded and advanced Green’s functions by taking the retarded component
of each factor. Then, we proceed by iteratively replacing instances of the exact
Green’s function DR in Eq. (2.74) by the entire right hand side of Eq. (2.74). This

3This definition differs by a factor of 2 from the more conventional one used in the previous
section. The choice here serves the purpose of keeping expressions as compact as possible.
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leads to an expansion in powers of the self-energy, which sums to

DR(t, t′) = −iθ(t − t′)e−i
∫ t

t′ dsε(s)e−
∫ t

t′ dsΓ(s). (2.78)

The advanced component is then given by DA(t, t′) = DR(t′, t)∗. Together with the
lesser self-energy, they give rise to the D−+ via the Langreth rule, Eq. (1.51),

D−+(t, t′) =

∫ ∞

−∞

ds ds′DR(t, s)Σ−+(s, s′)DA(s′, t′), (2.79)

which we simplified by noting that an additional term [47], which is proportional to
the dot occupation at the initial time t0, drops out since t0 → −∞. Using Eqs. (2.77)
and (2.78), we thus evaluate the lesser dot Green’s function as

D−+(t, t′) = 2i
∫

dω
2π

nF(ω)e−iω(t−t′)V(t, ω)V∗(t′, ω), (2.80)

where we defined the function

V(t, ω) =

∫ t

−∞

ds
√

Γ(s) exp
{∫ t

s
dy

[
iω − iε(y) − Γ(y)

]}
(2.81)

which encodes the history of the driving protocol [ε(t),Γ(t)]. This result is in agree-
ment with the findings of an equation-of-motion approach [153]. By choosing
t = t′, this Green’s function provides us with the expectation value of the dot par-
ticle number, N(t) = −iD−+(t, t),

N(t) =

∫
dω
2π

nF(ω)A(t, ω), (2.82)

where we wrote

A(t, ω) = 2|V(t, ω)|2. (2.83)

Note that Eq. (2.82) appears as a straightforward generalization of the dot particle
number in a stationary system, where A(t, ω) would be replaced by the Lorentzian
spectral function

A0(ω) =
2Γ

(ω − ε)2 + Γ2 . (2.84)

Since it can be shown that in the stationary case A and A0 coincide (see App. 2.3.8),
the expression A(t, ω) can be viewed as a drive-induced modification of the dot
spectral function. However, it bears pointing out that in general A does not match
the definition of the non-stationary spectral function: A(t, ω) , −2 Im DR(t, ω),
where DR(t, ω) stands for the Wigner transform of the retarded dot Green’s func-
tion.

We have thus arrived at a fully analytical solution of the resonant-level model
in the presence of two drives, after taking the wide-band limit. In a way similar to
the particle number, expectation values of any other operator on the dot and lead
Hilbert spaces can be calculated from the Green’s function matrix Ď(t, t′).
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2.3.3 Thermodynamic definitions and first law

In the following, we define thermodynamic quantities for our system in terms of
quantum mechanical expectation values and use the Green’s functions obtained in
the previous section to calculate them. Herein, we require these definitions to be
compatible with the laws of thermodynamics, in the presence of dot and coupling
drives as well as arbitrary dot-lead coupling strength.

It has been shown previously [156, 160] that for the case of time-independent
coupling, such a set of definitions may be obtained by defining a system energy
that consists of the expectation value of the dot Hamiltonian with half the coupling
Hamiltonian added,

ES(t) =

〈
HD(t) +

1
2

HT(t)
〉
. (2.85)

This kind of splitting is indicative of the fact that in the presence of strong coupling,
one cannot simply identify the dot with the “system”, and the lead with the “bath”,
in the thermodynamic sense of these terms. Moreover, energy added to the total
ensemble by the coupling drive must be partitioned between system and bath. The
choice of a partition factor of 1/2 has the added feature that the system energy can
then be written as an expectation value of dot operators only, ES = −i〈∂td†d −
d†∂td〉/2. In the following, we show that, even in the case of driven coupling, this
choice of system energy conforms to the first and second laws of thermodynamics.

The expectation values in Eq. (2.85) are readily expressed in terms of Green’s
functions, leading to the exact result

ES(t) =

∫
dω
2π
ωnF(ω)A(t, ω)

− 2
∫

dω
2π

nF(ω) Im
[
∂tV(t, ω)V∗(t, ω)

]
, (2.86)

with V(t, ω) and A(t, ω) as in Eqs. (2.81) and (2.83). We define the rate of change
in work performed on the system as split into three parts,

Ẇ(t) ≡ ẆSB(t) + ẆC(t) + ẆB(t), (2.87)

where ẆSB(t) = 〈∂tH(t)〉 and ẆC(t) = µ∂tN(t) denote the power supplied by the
drive to system and bath, and the chemical work rate associated with particle flow
into the dot, respectively. Below, we will always use the dot symbol to denote a
rate, as opposed to ∂t which stands for a time derivative. ẆSB(t) is found to be

ẆSB(t) = ∂tε(t)N(t) + 〈∂tHT(t)〉

= ∂tε(t)
∫

dω
2π

nF(ω)A(t, ω) +
2∂tΓ(t)
√

Γ(t)

∫
dω
2π

nF(ω) Im V(t, ω), (2.88)

whereas the chemical chemical work rate equals

ẆC(t) = 4µ
√

Γ(t)
∫

dω
2π

nF(ω) Re V(t, ω) − 2µΓ(t)
∫

dω
2π

nF(ω)A(t, ω). (2.89)
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The third term in Eq. (2.87) is a work done by the system-bath coupling to change
the particle numbers in the bath. It is reminiscent of the work that the coupling
needs to do to create a volume in the bath recently identified in Ref. [86], but in
the grand canonical ensemble. In order to obtain the rate of work performed on the
system only, this contribution therefore needs to be subtracted. It is given by

ẆB(t) ≡
1
π
∂tΓ(t) = 2∂tΓ(t)∂µNeq

B /ρ̄, (2.90)

where ρ̄ is the lead density of states as in Sec. 2.3.2 and Neq
B = ρ̄

∫
dω
2π nF(ω) denotes

the (infinite) equilibrium particle number in the lead. Its change with respect to
the chemical potential, ∂µNeq

B , is finite and can be seen as the grand canonical
analogue of a compressibility. One sees therefore that ẆB arises from changes in
the tunneling linewidth Γ(t) which modify the level repulsion among the levels in
the lead, in turn causing a change in the lead particle number.

Among the results of Sec. 2.3.5, we will find that this definition of ẆB is com-
patible with the second law of thermodynamics. Lastly, we define the heat current
flowing into the system as

Q̇(t) = −∂t

〈
HB +

1
2

HT(t)
〉
− ẆC(t) − ẆB(t). (2.91)

Mirroring Eq. (2.85), this definition associates half of the coupling energy with the
bath, and explicitly features the reversed work flows due to particle transfer and
work performed on the bath. Our notion of heat flow presents a generalization of
the one used in Ref. [156] for time-dependent coupling, which differs from the one
considered in Ref. [157].

If we sum up the definitions from Eqs. (2.85), (2.87), and (2.91), we obtain the
energy balance

∂tES = Q̇ + Ẇ, (2.92)

which makes manifest the first law of thermodynamics in our system, with E taking
on the role of the internal energy.

2.3.4 Link to equilibrium

In this section, we show that the definitions made in Sec. 2.3.3 are compatible with
the concept of the Hamiltonian of mean force as discussed in Sec. 1.5.3. We start
by defining a potential of mean force for the adiabatic limit of our model. Then
we take the limit of infinitely slow drive, ∂tε → 0 and ∂tΓ → 0 of the definitions
made in Sec. 2.3.3 and find that the two approaches coincide, thus ensuring that
our quantities reduce to the correct adiabatic limit.

We can view Eq. (1.125) as the starting point for the mean-force approach:
There, a thermodynamic potential for the system (dot) is defined by as the differ-
ence of the corresponding potential for the “super-system” comprising both dot and
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lead, and that of the lead itself. Here, we choose to work in the grand canonical en-
semble that is characterized by a fixed inverse temperature β and chemical potential
µ, in analogy to our Green’s function approach. The grand canonical ensemble of
the super-system is realized by weak coupling to a “super-bath”, thus fixing β and
µ for the ensemble. This setup has been employed for a classical model [142], as
well as for the resonant-level model with a single drive parameter [160].

In the absence of drive, and assuming that the super-system is coupled to the
super-bath in a fashion permitting energy and particle exchange, we can obtain the
weak coupling thermodynamics of the super-system from the equilibrium grand
canonical potential

Ωeq ≡ −
1
β

log tr e−β(H−µN)

= −
1
β

∫
dω
2π
ρ(ω) log

(
1 + e−β(ω−µ)

)
(2.93)

where N is the particle number operator of the super-system. Here, ρ(ω) denotes
the stationary density of states of the super-system. It is defined as the sum of dot
and lead contributions, which in terms of Green’s functions is given by

ρ(ω) = −2 Im DR(ω) − 2
∑

k

Im GR
k (ω). (2.94)

Following Ref. [160], we note that the sum over the exact lead Green’s functions
obeys the Dyson equation∑

k

GR
k (ω) =

∑
k

GR
0,k(ω) + |γ|2DR(ω)

∑
k

[
GR

0,k(ω)
]2
. (2.95)

Writing the unperturbed lead Green’s function in the frequency domain, GR
0,k(ω) =

(ω − εk + i0+)−1, we see that the correction becomes

|γ|2DR(ω)
∑

k

[
GR

0,k(ω)
]2

= −DR(ω)∂ω

|γ|2 ∑
k

GR
0,k(ω)

 = −DR(ω)∂ωΣR(ω) (2.96)

According to Eq. (2.76), this correction vanishes in the wide-band limit. Therefore
the lead component of ρ(ω) is not renormalized by the coupling, facilitating its
interpretation as a “pure bath” term which does not contribute to the system ther-
modynamics and is subtracted from Eq. (2.93) in the sense of Eq. (1.125). We thus
define the (system) grand canonical potential of mean force,

Ω
eq
S ≡ −

1
β

∫
dω
2π

A0(ω) log
(
1 + e−β(ω−µ)

)
, (2.97)
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where A0(ω) is the stationary spectral function defined in Eq. (2.84). Changes in
Ω

eq
S resulting from modification of the system parameters are equal to the corre-

sponding changes in Ωeq. With this choice of Ω
eq
S , we can use equilibrium ther-

modynamics to obtain expressions for the equilibrium values of particle number,
system entropy and energy,

Neq = −∂µΩ
eq
S =

∫
dω
2π

A0(ω)nF(ω) (2.98)

S eq = −∂T Ω
eq
S =

∫
dω
2π

A0(ω)σF(ω) (2.99)

Eeq
S = Ω

eq
S + µNeq +

1
β

S eq =

∫
dω
2π

A0(ω)ωnF(ω). (2.100)

where in Eq. (2.99) we defined the frequency-resolved entropy factor

σF(ω) = −nF(ω) log nF(ω) − [1 − nF(ω)] log [1 − nF(ω)]. (2.101)

These quantities can be related to the adiabatic limit of the definitions in Sec. 2.3.3
by introducing a parametric time dependence in A0 via ε(t) and Γ(t). The ex-
pressions obtained by substituting this time-dependent Lorentzian A0(t, ω) into
Eqs. (2.98), (2.99), and (2.100) can then be used to calculate the adiabatic particle
and energy currents,

∂tNeq(t) =

∫
dω
2π

nF (∂ΓA0∂tΓ + ∂εA0∂tε) = [∂tN](1)

∂tE
eq
S (t) =

∫
dω
2π
ω f (∂ΓA0∂tΓ + ∂εA0∂tε) = [∂tE](1), (2.102)

where the right hand sides refer to the adiabatic expansions of the time derivatives
of Eqs. (2.82) and (2.86), respectively, which are detailed in App. 2.3.9. Similarly,
we can interpret the time derivative of the grand canonical potential as the rate of
mechanical work performed on the system,

∂tΩ
eq
S (t) = −

1
β

∫
dω
2π

(∂ΓA0∂tΓ + ∂εA0∂tε)
[
σF(ω) − β(ω − µ)nF(ω)

]
= Ẇ (1)

SB + ẆB, (2.103)

as can be gleaned from Eq. (2.127). Hence we conclude that the adiabatic limit
of the system quantities defined in Sec. 2.3.3 matches the result of adiabatic weak
coupling thermodynamics as encoded in the grand canonical potential of mean
force from Eq. (2.97).

2.3.5 Second law

Having obtained a definition for the heat flowing into the system, we now address
the question of how to define the system entropy. To this end, we generalize the
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adiabatic expression given in Eq. (2.99) and show the compatibility of this choice
with the previous definitions by exhibiting the second law.

In analogy to the non-adiabatic result for the particle number on the dot, Eq. (2.82),
we define the system entropy beyond the adiabatic limit by replacing the Lorentzian
spectral function A0 in Eq. (2.99) with the function A as in Sec. 2.3.2,

S (t) ≡
∫

dω
2π

A(t, ω)σF(ω). (2.104)

Next, we show the second law in the sense that the entropy production rate is non-
negative up to second order in the quasi-adiabatic expansion:

∂tS − βQ̇ ≥ 0, (2.105)

with equality up to first order. Details of the expansion can be found in App. 2.3.9.
Starting with the first order, we note that on the one hand, the derivative of

Eq. (2.104) is approximated by

[∂tS ](1) =

∫
dω
2π
σF(ω) (∂ΓA0∂tΓ + ∂εA0∂tε) , (2.106)

whereas on the other hand, we obtain the corresponding terms for the heat flow
from Eq. (2.127),

Q̇(1) =
1
β

∫
dω
2π
σF (∂ΓA0∂tΓ + ∂εA0∂tε)

−
1
β

∫
dω
2π

log
(
1 + e−βω

)
∂ω

(
−
ω − ε

Γ
A0∂tΓ − A0∂tε

)
−

∫
dω
2π

nFA0

(
ω − ε

Γ
∂tΓ + ∂tε

)
− ẆB. (2.107)

An integration by parts in the second integral yields a term that cancels the third in-
tegral, as well as a boundary contribution equal to ∂tΓ/π, thus canceling −ẆB. The
first integral coincides with [∂tS ](1), which implies that to first order in adiabatic
expansion, the change in system entropy is entirely due to heat flow,

[∂tS ](1) = βQ̇(1). (2.108)

Moreover, the quasi-adiabatic expansion shows that our definitions give rise to
exact differentials for the system energy as well as reversible work and heat flows
to first order in time derivatives,

∂Γ∂ε Q̇(1) = ∂ε∂ΓQ̇(1),

∂Γ∂εẆ(1) = ∂ε∂ΓẆ (1). (2.109)

In particular, the reversible heat therefore fulfills the requirement of being a state
function. This should be contrasted with the observation made in Ref. [157], that a
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certain class of heat definitions, arising from a splitting of the coupling energy as in
Eq. (2.85), fails to exhibit this property as soon as driven coupling is introduced. As
our choice of Q̇ from Eq. (2.91) differs from the class of heat definitions considered
in Ref. [157], this problem does not arise here.

Moving to the second order in time derivatives, we note that the relevant part
of Q̇(2) are given by the last two integrals in Eq. (2.126),

δQ̇(2) ≡ Q̇(2) − Q̇(1)

=
Γ2

2

∫
dω
2π
∂ωnFA2

0

(
∂t
ω − ε

Γ

)2

+

∫
dω
2π

(ω − µ)∂ωnF∂t

A2
0Γ

2
∂t
ω − ε

Γ

 . (2.110)

On the other hand, the expansion of ∂tS is immediate from Eq. (2.121),

δṠ (2) ≡ [∂tS ](2) − [∂tS ](1)

=

∫
dω
2π
∂ωσF∂t

A2
0Γ

2
∂t
ω − ε

Γ

 . (2.111)

Using ∂ωσF(ω) = β(ω − µ)∂ω f , we see that this matches the second term in
Eq. (2.110), and therefore we obtain

δṠ (2) − βδQ̇(2) = −
Γ2

2

∫
dω
2π

(∂ω f )A2
0

(
∂t
ω − ε

Γ

)2
≥ 0, (2.112)

which proves the second law of thermodynamics (2.105) to second order. We re-
mark that the integral occurring in Eq. (2.112) equals the negative of the second-
order term in the work performed on the super-system, Eq. (2.124). Hence the
excess entropy production beyond the adiabatic limit can be interpreted as a con-
sequence of mechanical friction causing heat to leave the system.

2.3.6 Comparison with exact numerical results

In this section, we compare the analytical results which were derived up to the
second order in the drive speed with exact numerical results. For this purpose, we
study a protocol where both dot and coupling drives are cosine-shaped,

ε(t) = ε0 + ∆ε cosωε t

Γ(t) = Γ0 + ∆Γ cosωΓt, (2.113)

and we set µ = 0. By tuning the parameters, this protocol can be made to include
the regimes of strong dot-lead coupling and non-adiabatic drive.

The dot particle number N(t) as calculated from Eq. (2.82) is displayed in
Fig. 2.17, and contrasted with the adiabatic result for N(t) that is obtained by using
the Lorentzian spectral function A0(t, ω), with time-dependence parameters ε(t)
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Figure 2.17: Dot particle number as a function of time, for ε0 = 0.5, ∆ε = 0.5,
ωε = 0.5, Γ0 = 1, ∆Γ = 0.2, ωΓ = 0.5. Blue: adiabatic N0(t) obtained using the
Lorentzian spectral density A0(t, ω). Red: Exact N(t) from Eq. (2.82).

and Γ(t). We observe that non-adiabaticity causes the exact result to lag behind
the adiabatic one, in line with the retarded character of the time integrals in the
definition of A(t, ω).

Moreover, in Fig. 2.18 we compare the exact entropy production ∂tS − βQ̇,
calculated numerically based on Eqs. (2.104) and (2.91) with the corresponding
result (2.112) in the quasi-adiabatic limit. While the exact result indeed converges
to the quasi-adiabatic case for slow driving, significant deviations from the quasi-
adiabatic result occur already for parameters where N(t) is still very close to the
adiabatic result. In particular, whereas the time integral of the entropy production
rate over a drive cycle is positive, the rate itself features negative transients, which
can be interpreted as a sign of non-Markovianity in our model for strong dot-lead
coupling. This is in marked contrast to the weak-coupling case [57].

2.3.7 Conclusions

We have presented an analytical solution of the resonant-level model in the wide-
band limit, in the presence of both time-dependent dot energy and tunnel coupling.
We defined thermodynamic quantities, which we calculated using this solution, and
found them to be in accordance with the first law of thermodynamics. We found
that the adiabatic limit of our definitions matches the results known from stationary
thermodynamics. Finally, a quasi-adiabatic expansion allowed us to verify the
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Figure 2.18: Difference of entropy production rate ∂tS (t) and inverse temperature
multiplied by heat, for ε0 = 0.5, ∆ε = 0.5, ωε = 0.5, Γ0 = 1, ∆Γ = 0.2, ωΓ = 0.5.
Blue: Second-order quasi-adiabatic entropy production rate (∂tS − βQ̇)(2). This
rate is positive for all times, in accordance with the second law as in Eq. (2.112).
Red: ∂tS − βQ̇ as calculated from Eqs. (2.91) and (2.104). This rate can become
negative beyond the adiabatic limit, reflecting the influence of higher orders in the
quasi-adiabatic expansion. Moreover, the non-Markovianity of the system itself
may lead to negative transients.

second law of thermodynamics to second order in time derivatives of the drive
protocol.

It is worthwhile to compare the definitions made here with other recent research
on the subject. The choice of a system energy that includes half of the coupling
contribution has previously been studied in the case of constant tunnel coupling
[156, 160, 161]. Our work generalizes these results to driven coupling, whereby
we find that the terms ±ẆB need to be added to the definitions (2.87) and (2.91)
of the rate of work performed by the system and the heat current flowing through
it, respectively. Specifically, the quasi-adiabatic expansion of our exact results
matches the findings of Ref. [160] if we take the limit of time-independent Γ. Our
definitions also give rise to a state function for the reversible heat, which resolves
the issue pointed out in Ref. [157] for time-dependent Γ.

Compared to the case of constant tunneling, time-dependent tunnel amplitudes
also give rise to a nontrivial gauge invariance. A time-dependent dot level en-
ergy ε(t) can easily be mapped onto a time-dependent tunnel amplitude, γ(t) ∝
γ0(t) exp[−i

∫ t
dsε(s)]. Our results all have this gauge invariance. In contrast,
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several works have suggested that system quantities can be defined by isolating
ε(t) dependent quantities in the “super-system” observables [160, 161]. However,
this procedure is not gauge-invariant and thus cannot be used in the case of time-
dependent tunnel amplitudes.

Several challenges remain to be overcome on the way to a full understanding of
nonequilibrium quantum thermodynamics in the resonant-level model: Beyond the
wide-band approximation, the precise correspondence between the Green’s func-
tion approach and the results obtained for the grand canonical ensemble in the
adiabatic limit as in Sec. 2.3.4 is still unclear. Similar problems arise if one consid-
ers higher moments of the Hamiltonian instead of expectation values only [161].
Finally, it is an appealing prospect to find a version of the second law that holds for
all orders in drive speed as opposed to just second order.

2.3.8 Appendix: Adiabatic limit

In the following, we derive approximations for the quantities defined in Sec. 2.3.3
for the case of slow driving. First, we establish the adiabatic limit of infinitely
slow drive. Then, we move to the quasi-adiabatic case by expanding the exact
expressions in terms of time derivatives of the drive protocol [ε(t),Γ(t)].

The function

V(t, ω) =

∫ t

−∞

ds
√

Γ(s)e
∫ t

s dy[iω−iε(y)−Γ(y)] (2.114)

from Eq. (2.81) is the central subject of the calculations in this section. Its static
limit is obtained by assuming constant ε ≡ ε0 and Γ ≡ Γ0,

V (0)(ω) =

√
Γ0

i(ε0 − ω) + Γ0
. (2.115)

Using this to calculate A(0) = 2|V (0)(ω)|2, we obtain

A(0)(ω) =
2Γ0

(ω − ε0)2 + Γ2
0

, (2.116)

which coincides with the spectral function A0(ω). From Eq. (2.82), we immedi-
ately obtain the particle number,

N(0) =

∫
dω
2π

A0(ω)nF(ω) =

∫
dω
2π

2Γ0

(ω − ε0)2 + Γ2
0

nF(ω). (2.117)

Similarly, we obtain for the system energy,

E(0)
S =

∫
dω
2π
ωnF(ω)A0(ω), (2.118)

since the second term in Eq. (2.86) is approximated by zero.
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2.3.9 Appendix: Quasi-adiabatic expansion

In this section, we move beyond the adiabatic limit in approximating the particle
number, system energy, as well as heat and work rates. To this end we reinstate the
time dependence of Γ and ε in V(t, ω) which occurs in all the quantities considered
here. We then expand both drives up to second order in time derivatives resulting
in the expansion4

V (2)(t, ω) =

√
Γ

i(ε − ω) + Γ
−

∂tΓ

2
√

Γ

1
[i(ε − ω) + Γ]2 +

3
√

Γ(i∂tε + ∂tΓ)2

[i(ε − ω) + Γ]5

+

[
−
∂tΓ(i∂tε + ∂tΓ)

4
√

Γ
−

1
6

√
Γ(i∂2

t ε + ∂2
t Γ)

]
6

[i(ε − ω) + Γ]4

+

 ∂2
t Γ

4
√

Γ
−

(∂tΓ)2

8
√

Γ3
+

√
Γ

2
(i∂tε + ∂tΓ)

 2
[i(ε − ω) + Γ]3 , (2.119)

where all drives are evaluated at time t. By substituting this expression, we readily
obtain second-order results for the currents ∂tN, Ẇ, ∂tES, and Q̇. Since the second-
order contributions to these quantities go beyond the adiabatic results in the sense
of Sec. 2.3.4, we refer to them as quasi-adiabatic expansion.

The particle current is given by the time derivative of Eq. (2.82).

∂tN(t) =

∫
dω
2π

nF(ω)∂tA(t, ω), (2.120)

where by substituting Eq. (2.119), we find the second-order expansion of ∂tA(t, ω) =

2∂t|V(t, ω)|2 to be given by

[∂tA(t, ω)](2) = (∂ΓA0∂tΓ + ∂εA0∂tε)

− ∂t∂ω

A2
0Γ

2
∂t
ω − ε

Γ

 , (2.121)

where we suppress the arguments t andω from here onward. Therefore, the second-
order quasi-adiabatic expansion of the particle current reads

[∂tN(t)](2) =

∫
dω
2π

nF (∂ΓA0∂tΓ + ∂εA0∂tε)

+

∫
dω
2π
∂ωnF∂t

A2
0Γ

2
∂t
ω − ε

Γ

 . (2.122)

Analogously, by starting from Eq. (2.86), we find the second-order expression for
the system energy current,

[∂tES](2) =

∫
dω
2π
ωnF (∂ΓA0∂tΓ + ∂εA0∂tε)

+

∫
dω
2π
ω∂ωnF∂t

A2
0Γ

2
∂t
ω − ε

Γ

 . (2.123)

4The expansion of V(t, ω) was performed by Thomas L. Schmidt.
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The work flow into the system consists of three distinct contributions, Ẇ = ẆSB +

ẆC +ẆB, the first two of which require expansion: The power applied to the super-
system is approximated by expanding Eq. (2.88),

Ẇ (2)
SB =

∫
dω
2π

nFA0

(
∂tε +

ω − ε

Γ
∂tΓ

)
−

Γ2

2

∫
dω
2π
∂ωnFA2

0

(
∂t
ω − ε

Γ

)2
, (2.124)

and the chemical work flow is given by Ẇ(2)
C = µ[∂tN](2), which is immediate from

Eq. (2.122). Finally, we consider the heat current, Q̇ = −∂t 〈HB + HT/2〉−ẆC−ẆB.
The last term is the reverse of the first-order expression quantifying mechanical
work performed on the bath, whereas the first two terms can be expressed as as

− ∂t 〈HB + HT/2〉 − µ∂tN = −ẆSB + ∂tES − µ∂tN, (2.125)

which leads to the approximation

Q̇(2) = −Ẇ(2)
SB + (∂tES)(2) − µ∂tN(2) − ẆB

= −

∫
dω
2π

nFA0

(
∂tε +

ω − ε

Γ
∂tΓ

)
+

∫
dω
2π

(ω − µ)nF (∂ΓA0∂tΓ + ∂εA0∂tε)

+
Γ2

2

∫
dω
2π
∂ωnFA2

0

(
∂t
ω − ε

Γ

)2

+

∫
dω
2π

(ω − µ)∂ωnF∂t

A2
0Γ

2
∂t
ω − ε

Γ

 − ẆB. (2.126)

Making use of the relations β(ω − µ)nF(ω) = σF(ω) − log
(
1 + e−βω

)
and

∂ΓA0(ω) = −∂ω[(ω − ε)A0/Γ], we can rewrite the first-order terms as

Q̇(1) =
1
β

∫
dω
2π
σF (∂ΓA0∂tΓ + ∂εA0∂tε)

−
1
β

∫
dω
2π

log
(
1 + e−βω

)
∂ω

(
−
ω − ε

Γ
A0∂tΓ − A0∂tε

)
−

∫
dω
2π

nFA0

(
ω − ε

Γ
∂tΓ + ∂tε

)
− ẆB, (2.127)

where after integrating by parts, the second line cancels the third. Furthermore,
by comparing Eq. (2.127) to the time derivative of the equilibrium grand canonical
potential of Eq. (2.97) and the work rate in Eq. (2.124) we obtain the relation
(2.103).
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2.4 Initial states in quantum thermodynamics

We examine the role of initial-state contributions to the quantum thermodynamics
of the driven resonant-level model. By solving the equations of motion, we obtain
an analytical expression for the work performed on the system given a general
drive protocol and arbitrary coupling to a bath. We establish that our definition of
work coincides with the one introduced in stochastic thermodynamics. This con-
nection is shown to imply that in the long-time limit, the work performed as a result
of a periodic drive is positive also for a non-thermal initial state, in accordance
with the second law of thermodynamics. This section was written in collaboration
with Edvin G. Idrisov, Massimilano Esposito, and Thomas L. Schmidt. It represents
work in progress and will be submitted for publication in the near future.

2.4.1 Introduction

Quantum mechanics and thermodynamics are often thought of as operating on
vastly different length scales. While the former is the foundation of our under-
standing of physics at the nanoscale, the latter is rooted in the macroscopic world,
where it is instrumental in the design of work cycles and machines. It is only
in recent years that fabrication and measurement methods have improved to the
point that machines on the quantum scale can be reliably implemented and ana-
lyzed [97, 138, 139, 140, 37]. A theory of quantum thermodynamics – or even
just classical microscopic thermodynamics – has thus become highly desirable, as
it would facilitate goals such as the design of novel electronic components as well
the understanding of chemical reactions, among others [166, 138, 167, 168].

The central goal of quantum thermodynamics is to adapt the laws of thermo-
dynamics in order to capture the behavior of quantum systems, while preserving as
much as possible of the generality that constitutes the power of classical thermody-
namics. On the path to this goal, obstacles are manifold. Many of the underlying
premises of classical thermodynamics do not carry over to the quantum regime.
First, the thermodynamic limit of large particle numbers is clearly not given in
quantum systems. Second, the smaller the systems in question are, the more atten-
tion has to be paid to the precise manner of how they are coupled to each other.
In particular, the thermodynamics of strongly coupled quantum systems still lacks
a unifying framework, in spite of considerable recent attention [141, 90, 81, 91].
Third, the roles of fluctuations and non-equilibrium, already nontrivial in classical
systems [86, 143], are even more prominent in quantum settings.

A great variety of techniques have been employed to establish quantum ther-
modynamics: The case of a system weakly coupled to a bath was resolved us-
ing open systems [67, 9, 69]. The strong-coupling situation has proved to be
more complex. One promising approach is given by stochastic thermodynamics
[70, 78, 80, 84, 83, 81], which has been used to give a consistent definition of
work for non-equilibrium quantum systems as well as to establish general fluc-
tuation theorems [72, 73, 74, 77]. However, the notions of system energy and
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heat flows, and thus the first law of thermodynamics, are less straightforward in
this approach [81]. On the other hand, recent work has examined the possibil-
ity of using exactly solvable model systems to define thermodynamic quantities
[160, 169]. There, several sets of definitions exist that fulfill a quantum ver-
sion of the first law, but a general formulation of the second law remains elusive
[156, 170, 157, 158, 159, 160, 161, 162, 163, 171, 169].

In this work, we examine the role of the initial state in the quantum thermo-
dynamics of the strongly coupled resonant-level model coupled to a metallic lead.
Considering the work performed by a periodic driving protocol, we establish a link
to stochastic thermodynamics. There, it is known that the work production over
a drive period is positive provided that the composite system of dot and lead is
initially in a thermal state, which can be seen as a signature of the second law of
thermodynamics for quantum systems. We show that, for an initially uncoupled
setup of dot and lead, the work production in the long-time limit is also positive,
even though the composite system is never in a thermal state. Furthermore, we
exhibit the non-equivalence of the two configurations in the long-time limit by
considering nonlocal correlations in the lead.

Our analysis is structured as follows: In Sec. 2.4.2, we lay out the resonant-
level model and give its solution in the presence of arbitrary coupling strength and
drive protocol, taking into account initial state effects. In Sec. 2.4.3, we discuss the
work production as a result of a periodic driving protocol, and see that it is closely
related to the work production discussed in stochastic thermodynamics. Moreover,
we introduce the factorized and thermal initial states whose thermodynamics aim
to compare. Next, we use Sec. 2.4.4 to analyze the limit of long evolution times
and quantify the asymptotic effect of the initial configuration of the system. In
particular, we find that the asymptotic work production per period is positive even
in situations without thermalization at any point in time. We furthermore use the
evolution of correlations in the lead to point out that initial-state dependence still
occurs in non-local correlators. A summary of our results is given in Sec. 2.4.5.

2.4.2 Model

The resonant-level model for a quantum dot has previously been solved with the
non-equilibrium Green’s function formalism [160, 169]. Here we take a different
approach, using equations of motion [153]. The system consists of a single electron
level coupled to metallic lead of size L, which acts as a bath. Its Hamiltonian is
given by

H(t) = HD(t) + HB + HT(t), (2.128)

HD(t) = ε(t)d†d,

HB = −ivF

∫ ∞

−∞

dxψ†(x)∂xψ(x),

HT(t) = γ(t)d†ψ(x = 0) + h. c.,
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where HD(t), HB, and HT(t) are the dot, lead, and coupling Hamiltonians, respec-
tively. We assume a linear energy spectrum in the lead, with Fermi velocity vF.
The continuum limit L → ∞ is implicit here, and is in agreement with the infinite
integration domain in HB. The operators d and d† respectively annihilate or create
an electron on the dot, and similarly ψ(x) and ψ†(x) are the annihilation and cre-
ation operators of a lead particle at position x. They fulfill fermionic commutation
relations, {d, d†} = 1, and {ψ(x), ψ†(y)} = δ(x − y). We allow for a general drive
protocol, with both the dot energy ε and the tunnel coupling amplitude γ ∈ R de-
pending on time. No restrictions are placed on the strength of the coupling or on
the speed of the drive. The only further approximation we use consists of taking
the wide-band limit of the dot-lead coupling, meaning a constant density of states
in the leads, ρ̄ = 1/(2πvF). Lastly, the spin degree of freedom is not relevant to our
analysis, so we do not consider it here.

The resulting equations of motion in the Heisenberg picture read

∂td(t) = −iε(t)d(t) − iγ(t)ψ(x = 0, t)

∂tψ(x, t) = −vF∂xψ(x, t) − iγ(t)d(t)δ(x). (2.129)

As shown in Ref. [153], these admit the solution

d(t) = e
∫ t

t0
ds(−iε(s)−Γ(s))d(t0)

− i
∫ t

t0
dsγ(s)e

∫ t
s dy(−iε(y)−Γ(y))ψ0(−vF(s − t0)),

ψ(x, t) = ψ0(x − vF(t − t0)) −
iγ(t̃)
vF

θ(x)d(t̃x), (2.130)

using the shorthand t̃x = t − x/vF, and introducing the initial values d(t0) and ψ0(x)
for the dot and lead operators, respectively.

This solution allows us to calculate the time evolution of any observable of the
system. For instance, the particle number on the dot is given by

N(t) ≡
〈
d†(t)d(t)

〉
= tr

[
ρ(t0)d†(t)d(t)

]
, (2.131)

where in the second equality we introduced the initial density matrix ρ(t0) of the
composite system of dot and lead. Moreover, we define the mechanical work rate
as

Ẇ(t) ≡ 〈∂tH(t)〉 , (2.132)

in agreement with Refs. [74, 156, 160]. Here and in the following we use a dot
superscript to indicate that a quantity is interpreted as a rate, not necessarily that
it is a time derivative [169]. Explicit expressions for N(t) and Ẇ(t) are given in
App. 2.4.6.
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2.4.3 Work production

The definition of work is a subtle matter in quantum thermodynamics: Work can-
not be defined as an observable since it is related to an energy difference and hence
requires more than one measurement [80, 88, 74]. Below, we show the equiva-
lence of our definition in Eq. (2.132) and the work rate as introduced in stochastic
thermodynamics.

The latter approach [80] defines the mechanical work performed on a system
between the time of initialization t0 and a final time t as the difference between two
measurements of the total system energy, one at t0 and the other at t. In this way,
work is represented as a random variable with probability density function p(w, t).
Its expectation value is given by

〈w(t)〉 = tr
[
U†(t, t0)H(t)U(t, t0)ρ(t0)

]
− tr

[
H(t0)ρ(t0)

]
, (2.133)

where ρ(t0) = e−βH(t0)/ tr e−βH(t0) denotes the density matrix of a thermal initial
state of the composite system, and U(t, t0) is the propagator in the Schrödinger
picture, fulfilling

i∂tU(t, t0) = H(t)U(t, t0). (2.134)

〈w(t)〉 can be shown to be bounded from below by the difference of the equilibrium
free energies calculated with the initial and final Hamiltonians [78, 84],

〈w(t)〉 ≥ F(t) − F(t0), (2.135)

where the free energy F(t) of a hypothetical equilibrium state at time t is given by

F(t) = −
1
β

log tr e−βH(t). (2.136)

In particular, Eq. (2.135) implies positive work production,

〈w(t)〉 ≥ 0, (2.137)

for a periodic drive protocol that ensures F(t) = F(t0).
On the other hand, Eq. (2.132) implies

Ẇ(t) = tr
[
U†(t, t0)∂tH(t)U(t, t0)ρ(t0)

]
. (2.138)

By taking the time derivative of Eq. (2.133), we see that the work rates in both
approaches are the same,

∂t〈w(t)〉 = Ẇ(t). (2.139)

This implies that the positivity relation Eq. (2.137) also holds for the integrated
work produced according to Eq. (2.138), if the composite system is prepared in a
thermal initial state.
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The prerequisite of an initially thermal state is rather restrictive: Consider a
dot prepared in isolation from a thermalized lead, the coupling to which is then
switched on afterwards, together with the drive protocol. In this case, the com-
posite system will never fully thermalize. Hence, the commonly required initial
thermalization may be hard to achieve in practice. In the following, we use the
work production to examine how the thermodynamics of a system prepared like
this differs from that of an initially thermalized system.

Specifically, we compare two initial state configurations: First, a factorized
state (i) of the composite system, ρ(i)(t0) = ρD(t0) ⊗ ρB(t0), where the bath is in a
thermal state at an inverse temperature β,

ρB(t0) =
e−βHB(t0)

tr e−βHB(t0) . (2.140)

We specify the initial state of the system by supplying its initial occupation N(t0).
Setup (i) is analogous to the choice in Ref. [169], but with a finite initial time t0.
Second, we consider a state (ii), where the composite system is thermalized as a
whole,

ρ(ii)(t0) =
e−βH(t0)

tr e−βH(t0) , (2.141)

which is the usual assumption in stochastic thermodynamics.
As a first part of the comparison, we illustrate the evolution during the first few

drive cycles. To this end, we let each of these states evolve subject to the example
drive protocol

ε(t) = δ1 + δ2 cos Ωt

Γ(t) = Γ0, (2.142)

choosing a sinusoidal drive of the dot energy and a constant dot-lead tunneling rate
Γ0 = γ2

0/(2vF). The work rates corresponding to either of the setups can be explitly
calculated using the results in App. 2.4.6. The evolution of the work rates starting
from the initial time are visualized in Fig. 2.19, with the asymptotic work rate Ẇ∞
obtained for an initial state in the infinite past, t0 = −∞ added for comparison. It
is evident that close to t0 the effects of the initial state are significant, resulting in
positive work production for the thermalized setup (ii) over the course of a drive
period T = 2π/Ω,

∆W (ii) ≡

∫ t0+T

t0
dtẆ(i)

t0 ≥ 0, (2.143)

in agreement with Eq. (2.137). For the factorized setup (i) on the other hand,
the integrated work production during the first drive cycle is negative. Moving
away from the initial time, the dependence of the work rate on the initial state
exponentially, and in both setups the work rate approaches the asymptotic, W∞,
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Figure 2.19: Mechanical work rate Ẇ(t) = ∂tε(t)N(t) resulting from the drive pro-
tocol (2.142), for different initial conditions. Red: Factorized initial state ρ(t0) at
t0. Work production integrated over multiples of the drive period starting at t0 is
negative. Parameters: δ1 = 1, δ2 = −0.4, Ω = 10, Γ0 = 1. Blue: Thermal initial
state ρ(t0). Work production integrated over multiples of the drive period starting
at t0 is positive. Black: Limit of t0 → −∞. Periodic asymptotic work rate, inte-
grated work production is zero. For t � t0 the initial state effects decay and for
both initial states the work rate converges to the asymptotic one.

which has the same periodicity as the drive protocol. This example thus shows that
the effect of the initial configuration on thermodynamics is substantial for short
evolution times, but the long-time behavior suggests that the initial-state effects
decay over time.

2.4.4 Long-time limit

Let us consider evolution times much larger than the inverse tunneling rate Γ−1. As
found in App. 2.4.6 and exemplified in Fig. 2.19, the initial state contributions to
correlators involving the dot operators decay to zero in the long-time limit. This
can be seen as the closest analogue to equilibration that is possible for the case of
arbitrary coupling and a time-dependent Hamiltonian: For local properties of the
dot, the initial state contributions vanish asymptotically. Next, we investigate the
work production after this pseudo-equilibration process has occurred, i.e. we take
the limit of an initial state in the infinite past. In this case, the asymptotic work rate
W∞ is given by taking t0 = −∞ in either Eq. (2.150) or Eq. (2.157).

In the following, we show that the work production obtained by integrating W∞
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over a drive period is positive far away from the initial time,

∆W∞ =

∫ T

0
dtẆ∞(t) ≥ 0, (2.144)

which establishes an asymptotic version of Eq. (2.143). Indeed, the exponential
decay of the initial state contributions to the work rate Ẇ(ii) calculated with the
thermalized initial state implies

∆W(ii)
m ≡

∫ t0+(m+1)T

t0+mT
dtẆ(ii)(t) →

m→∞
∆W∞, (2.145)

where the periodicity Ẇ∞(t) = Ẇ∞(t + T ) is used to fix the integration interval
on the right hand side to [0,T ]. If now ∆W∞ were strictly negative, Eq. (2.145)
would imply that for sufficiently large m, all the increments ∆W(ii)

m are bounded
from above by a strictly negative number. On the other hand, since Ẇ (ii) is based
on a thermalized initial state, Eq. (2.137) implies

n∑
m=0

∆W (ii)
m =

∫ t0+(n+1)T

t0
dtẆ(ii)(t) ≥ 0 (2.146)

for any integer n, which leads to a contradiction. Hence we proved ∆W∞ ≥ 0.
The expression for Ẇ (i) in Eq. (2.150) shows that the integrated work production
per drive cycle converges to ∆W∞ in the same manner as for Ẇ (ii). Therefore, the
asymptotic work production per cycle is positive, even for a factorized initial state
with negative work production during the early drive cycles. We conclude that in
the long-time limit, the work production in our model is positive even though the
conditions imposed by stochastic thermodynamics are not met.

This result does however not imply that the two initial setups (i) and (ii) lead
to asymptotically equivalent evolution for all observables: The bath correlators
〈ψ†(x, t)ψ(y, t)〉 do not converge in the same manner as the local quantities N(t)
and Ẇ in the long-time limit. As detailed in App. 2.4.6, for any evolution time t,
non-decaying initial-state signatures remain in correlators of some bath sites that
are sufficiently far away from the dot. This makes manifest the difference between
a thermal state of the composite system and an initially factorized state that is then
coupled and left to evolve.

2.4.5 Conclusion

We connected stochastic thermodynamics to a set of definitions in terms of the
expectation values in the resonant-level model for a driven quantum dot at arbitrary
coupling to a bath. In particular, the definitions of the work rate known from the
literature in both contexts are shown to coincide. This implies a positive work
production during a drive cycle, if the system starts out in thermal equilibrium.
By explicitly calculating the work rate in the resonant-level model for a thermal
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initial state as well as for a factorized initial state of dot and leads, we see that the
one-period work production is the same for both initial setups if the initial time lies
in the infinite past. This is then used to show that the work production per period
in the resonant-level model in the long-time limit is also positive, even though
the system may not have been in a thermal state at any point, as is the case for
the factorized setup. Our results indicate that the validity of the laws of quantum
thermodynamics does not rely on an initially thermalized state.

2.4.6 Appendix: Expectation values

Here, we use the solution of the Heisenberg equations,

d(t) = e
∫ t

t0
ds(−iε(s)−Γ(s))d(t0) − i

∫ t

t0
dsγ(s)e

∫ t
s dy(−iε(y)−Γ(y))ψ0(−vF(s − t0)),

ψ(x, t) = ψ0(x − vF(t − t0)) −
iγ(t̃)
vF

θ(x)d(t̃), (2.147)

to calculate observables for the two different initial setups (i) and (ii). Our focus
lies on the dot particle number N(t) =

〈
d†(t)d(t)

〉
, the rate of mechanical work

Ẇ = 〈∂tH(t)〉, as well as on the equal-time bath correlator Cxy(t) =
〈
ψ†(x, t)ψ(y, t)

〉
.

For setup (i), we use the factorized initial state

ρ(i)(t0) = ρD(t0) ⊗
[
e−βHB(t0)/ tr e−βHB(t0)

]
. (2.148)

This leads to the initial correlators〈
d†(t0)d(t0)

〉
= trD

[
ρD(t0)d†(t0)d(t0)

]
≡ N(t0),〈

d†(t0)ψ(x, t0)
〉

= 0,〈
ψ†(x, t0)ψ(y, t0)

〉
=

1
vF

∫
dω
2π

eiω y−x
vF nF(ω) (2.149)

where we denoted the initial dot occupation by N(t0) and used the wide-band limit,
as well as the thermal initial occupation of the bath modes, to calculate the bath
correlator. In order to calculate the lead correlator, we considered the momen-
tum space representation ψ(x, t0) =

∑
k eikxck/

√
L, with the thermal expectation

value for the lead mode given by 〈c†kcq〉 = δkqnF(εk). Moreover, we took the wide-
band limit of the momentum summation, which leads to the frequency integral∑

k /L → ρ̄
∫

dω, with the density of states ρ̄ = 1/(2πvF). The divergence of the
bath correlator is due to linearizing the spectrum of the lead, εk = vFk, and can be
cured by imposing a cutoff. We will not explicitly perform this procedure in the
following. Substituting Eq. (2.147) into the desired expectation values, we can use
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the initial correlators from Eq. (2.149) to obtain

N(i)(t) = N(t0)e−2
∫ t

t0
dyΓ(y)

+

∫
dω
2π

nF(ω)A(t, ω)

Ẇ (i)(t) = ∂tε(t)N(t) + 4∂t
√

Γ(t)
∫

dω
2π

nF(ω) Im V(t, ω)

C(i)
xy(t) =

1
vF

∫
dω
2π

eiω y−x
vF nF(ω)

+
γ(t̃x)γ(t̃y)

v2
F

θ(x)θ(y)N(t0)e
∫ t̃x

t0
ds[iε(s)−Γ(s)]e

∫ t̃y
t0

ds[−iε(s)−Γ(s)]

+ 2
γ(t̃x)γ(t̃y)

v2
F

θ(x)θ(y)
∫

dω
2π

eiω y−x
vF V(t̃y, ω)V∗(t̃x, ω)nF(ω)

−
γ(t̃y)

√
2vF

v2
F

θ(y)
∫

dω
2π

eiω y−x
vF V(t̃y, ω)nF(ω)

−
γ(t̃x)

√
2vF

v2
F

θ(x)
∫

dω
2π

eiω y−x
vF V∗(t̃x, ω)nF(ω), (2.150)

where, using the notation from Ref. [169], we introduced the generalized spectral
function A(t, ω) = 2|V(t, ω)|2, with

V(t, ω) =

∫ t

t0
ds

√
Γ(s)e

∫ t
s dy[iω−iε(y)−Γ(y)]. (2.151)

Regarding the dot quantities N(i) and Ẇ (i), we conclude that the initial condition
N(t0) only features in the first terms of N(i) and Ẇ(i), which are exponentially sup-
pressed for large evolution times t − t0. Such a term will be referred to as transient
in the following. As for the bath correlators C(i)

xy, we note that the first term results
from the initial thermalization of the isolated bath, whereas all the others arise dur-
ing the evolution in contact with the dot. These terms are hence to be understood
using the convention γ(t) = 0 for t ≤ t0.

Given setup (ii) with ρ(ii)(t0) = e−βH(t0)

tr e−βH(t0) on the other hand, the initial thermal-
ization of the composite system needs to be taken into account. More precisely, we
assume the system to be in a thermal state up to the initial time t0. For all times
s ≤ t0 we thus have the dot particle number〈

d†(s)d(s)
〉

=

∫
dω
2π

nF(ω)A0(ω), (2.152)

the dot-lead correlator〈
d†(s)ψ(x, s)

〉
=
γ0

vF

∫
dω
2π

eiωx/vFnF(ω)
[

θ(x/vF)
ω − ε0 + iΓ0

+
θ(−x/vF)

ω − ε0 − iΓ0

]
, (2.153)
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as well as the lead correlator〈
ψ†(x, s)ψ(y, s)

〉
=

1
vF

∫
dω
2π

eiω y−x
vF nF(ω)

− i
γ2

0

v2
F

∫
dω
2π

eiω y−x
vF nF(ω)

[
θ(y/vF)θ(−x/vF)
ω − ε0 + iΓ0

−
θ(−y/vF)θ(x/vF)
ω − ε0 − iΓ0

]
,

(2.154)

making explicit the coupling-induced corrections to the correlators compared to
the factorized setup (i). Specifically, the diagonal dot-lead correlators 〈d†ψ0〉 do
not vanish any longer, and 〈ψ†0ψ

†

0〉 acquires a correction term proportional to γ2
0.

a As a result of the initial thermalization, the initial dot occupation depends on
the spectral function A0(ω) = 2Γ0/[(ω − ε0)2 + Γ2

0], where ε0 and Γ0 = γ2
0/(2vF)

denote the initial dot energy and tunneling rate into the lead, respectively. The
initial conditions involving the undetermined function ψ0 can be shown to follow
from Eqs. (2.152), (2.153), and (2.154):

〈d†(t0)ψ0(x)〉 =
γ0

vF

∫
dω
2π

nF(ω)
eiωx/vF

ω − ε0 − iΓ0
, (2.155)

as well as

〈ψ†0(x)ψ0(y)〉 =
1
vF

∫
dω
2π

eiω y−x
vF nF(ω). (2.156)

Thermalization thus manifests in the dot particle number and work rate as follows,

N(ii)(t) = e−2
∫ t

t0
dyΓ(y)

∫
dω
2π

A0(ω)nF(ω)

− i
γ0

vF

√
2vFe

∫ t
t0

dy(iε(y)−Γ(y))
∫

dω
2π

e−iω(t−t0)V(t, ω)
ω − ε0 − iΓ0

nF(ω)

+ i
γ0

vF

√
2vFe

∫ t
t0

dy(−iε(y)−Γ(y))
∫

dω
2π

eiω(t−t0)V∗(t, ω)
ω − ε0 + iΓ0

nF(ω)

+

∫
dω
2π

A(t, ω)nF(ω),

Ẇ (ii)(t) = ∂tε(t)N(t) + 4∂t
√

Γ(t)
∫

dω
2π

nF(ω) Im V(t, ω)

+ 2∂tγ(t)
γ0

vF
Re

[
e
∫ t

t0
dy[iε(y)−Γ(y)]

∫
dω
2π

nF(ω)
e−iω(t−t0)

ω − ε0 − iΓ

]
. (2.157)

As in the findings (2.150) for setup (i), we see that the effect of the initial thermal-
ization of the composite system on the local quantities N(ii) and Ẇ (ii) consists of
transient contributions only: In the limit of t0 = −∞, the signatures of the respec-
tive initial states vanish. The situation is different for the lead correlator, which
fulfills

Cxy(t) =
〈
ψ†0(x − vF(t − t0))ψ0(y − vF(t − t0))

〉
+

iγ(t̃x)
vF

θ(x)〈d†(t̃x)ψ(y − x, t̃x)〉 −
iγ(t̃y)

vF
θ(y)〈ψ†(x − y, t̃y)d(t̃y)〉 (2.158)
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at all times t. In particular, for any t > t0, we can consider sites x, y > vF(t − t0),
recalling that we took the limit of infinite lead length. For this choice, the retarded
times t̃x and t̃y lie further in the past than t0. Hence C(ii)

xy (t) is given by the thermal
correlator defined by the initial conditions in Eqs. (2.153) and (2.154): The sites x
and y lie outside of the light cone defined by the Fermi velocity of the lead and no
information about the drive protocol has yet reached them at time t. This implies
that for any time t, the thermal correlations of the initial state are manifest in a non-
transient manner in the lead. Inside this light cone, the lead correlator is influenced
by the drive, as described by

C(ii)
xy (t) =

∫
dω
2π

nF(ω)
{

1
vF

eiω y−x
vF

+ i
γ0

vF

γ(t̃x)
vF

θ(x)e
∫ t̃x

t0
dz(iε(z)−Γ(z)) eiω(y/vF−(t−t0))

ω − ε0 − iΓ0

−

√
2
vF

γ(t̃x)
vF

θ(x)V∗(t̃x, ω)eiω y−x
vF

− i
γ0

vF

γ(t̃y)
vF

θ(y)e
∫ t̃y

t0
dz(−iε(z)−Γ(z)) e−iω(y/vF−(t−t0))

ω − ε0 + iΓ0

−

√
2
vF

γ(t̃y)
vF

θ(y)V(t̃y, ω)eiω y−x
vF

+
γ(t̃x)γ(t̃y)

v2
F

θ(x)θ(y)e
∫ t̃x

t0
dz(iε(z)−Γ(z))e

∫ t̃y
t0

dz(−iε(z)−Γ(z))A0(ω)

− i

√
2
vF

γ0

vF

γ(t̃x)γ(t̃y)

v2
F

θ(x)θ(y)e
∫ t̃x

t0
dz(iε(z)−Γ(z))V(t̃y, ω)

eiω(y/vF−(t−t0))

ω − ε0 − iΓ0

+ i

√
2
vF

γ0

vF

γ(t̃x)γ(t̃y)

v2
F

θ(x)θ(y)e
∫ t̃y

t0
dz(−iε(z)−Γ(z))V∗(t̃x, ω)

e−iω(x/vF−(t−t0))

ω − ε0 + iΓ0

+ 2
γ(t̃x)γ(t̃y)

v2
F

θ(x)θ(y)V∗(t̃x, ω)V(t̃y, ω)eiω y−x
vF

}
. (2.159)
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Chapter 3

Summary

Nonequilibrium quantum transport is a vast and rapidly evolving field. The work
presented in this thesis has approached the topic from multiple directions, studying
electromechanical interaction, quantum pumping and quantum thermodynamics.
These approaches, connected by the quest to understand the effects of periodic
driving on transport, have uncovered several new results:

First, in Sec. 2.1, a model for a quantum dot with strong electromechanical in-
teraction was examined, coupled to a pair of leads and with a time-dependent drive
controlling the dot energy. Without the drive, such a system is characterized by
an exponential suppression of conductance due to electron-vibron interaction. By
applying the nonequilibrium Green’s function (NEGF) formalism in conjunction
with the polaron tunneling approximation, it was shown that this suppression of
transport can be exponentially lifted by applying a resonant drive to the dot energy.
Thus, a DC current amplification may be achieved by applying an AC signal to
the quantum dot. These results are in agreement with the outcome a Born-Markov
analysis of the system.

Second, in Sec. 2.2, the same system was studied under the influence of a
multi-drive protocol, introducing a time dependence in both the dot energy and
in the coupling to the leads. The NEGF approach was combined with a Floquet
expansion to study charge transport through the dot under the influence of a general
drive in the absence of bias, leading to the discovery of a protocol that can pump
a charge current in either direction, which also enjoys the exponential lifting effect
documented in Sec. 2.1.

Third, in Sec. 2.3, a proposal for quantum thermodynamics was given for the
resonant-level model of a quantum dot, allowing for strong system-bath coupling
and driven system energy as well as driven coupling. The NEGF formalism is used
to obtain an analytical solution of the system dynamics for arbitrary driving speeds,
which is then used to define the notions of system energy, heat, work and entropy.
In doing so, the quantities are split into system and bath components in such a
way that they agree with the outcome of an approach using a potential of mean
force. The system quantities are shown to fulfill the first law of thermodynamics
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as a result of energy conservation, and the second law for rates in quasi-adiabatic
expansion.

Finally, in Sec. 2.4, the influence of the initial state on quantum thermodynam-
ics was studied, again using the resonant-level model as a template. After solving
the equations of motion in the presence of an arbitrary driving protocol, thermody-
namic quantities are established for both a factorized and a thermalized initial state
of dot and lead. For a thermal initial state, the theory of stochastic thermodynamics
applies, which guarantees the positivity of the mechanical work performed by a pe-
riodic drive, in accordance with the second law of thermodynamics. By comparing
the analytical expressions for the work production in the resonant-level model, it
was proven that this property is also exhibited by the asymptotics of a system that
starts out in a factorized state and thus is never in a thermal state. Furthermore,
the asymptotic properties of the dot are shown not to depend on the initial state,
whereas on the other hand the correlators in the lead carry may non-transient sig-
natures of the initial state, thus quantifying the non-equivalence of the two setups.

The results documented here show that the interplay of drive and nanoelec-
tromechanics holds rich possibilities for further investigation and applications: By
implementing the drive mechanism, for example via gate voltages in carbon nan-
otube quantum dots, it could be examined how the lifting of Franck-Condon block-
ade can be used in practice. Furthermore, our findings are not limited to carbon
nanotubes, but also apply to other quantum dot architectures featuring strong elec-
tromechanical coupling. Different simulation techniques may be used to study
systems beyond the paradigmatic models considered in this thesis, such as multi-
dot architectures or molecular quantum dots with a complex vibrational spectrum.
Work along these lines may help to identify those setups where the current response
is strongest and examine the possibility of AC-gated transistors. Lastly, it would
be worthwhile to consider analogous systems in the context of optomechanics and
cavity quantum electrodynamics, which also involve photon degrees of freedom,
opening up further further possibilities, such as the design of high-precision sen-
sors.

An all-encompassing theory of nonequilibrium quantum thermodynamics is
still far off at this point, with several issues requiring further conceptual develop-
ment. The incremental progress achieved in this thesis serves to consolidate some
of the approaches, by using tools from transport theory to establish the laws of ther-
modynamics in a model system, as well as using synergies between this approach
and stochastic thermodynamics to study the long-time limit in quantum thermo-
dynamics. This regime offers insight into questions of thermalization and could
serve to establish a degree of universality among initial configurations of a sys-
tem. The full thermodynamic significance of the initial state is yet to be mapped
out, especially with regard to entanglement and long-range correlation in the initial
configurations. Evidently, the resonant-level model offers an accessible platform to
examine these questions without having to tackle the extraneous complexity inher-
ent in other models and it is consequently far from outliving its usefulness: Bath
correlators of the type studied in Sec. 2.4 can be used to obtain further quantita-
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tive insight into possible nonequilibrium analogues of thermalization, and may also
be used to study various definitions of entropy, with the possibility of easy com-
parisons with the notion of “system entropy” from Sec. 2.3. The resonant-level
model furthermore holds potential for generalization: Once the thermodynamics
of a single level are understood, the question of an extension to multiple levels
arises naturally. Aside from the obvious appeal of describing larger systems, such
an extension would also allow to use a reaction-coordinate approach for the treat-
ment of strongly coupled dots. In a similar vein, a way to explicitly account for
many-body interaction is sure to be a goal of future research.
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