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Abstract

The rapid development in the field of Unmanned Aerial Vehicles (UAV s) is driven

by new applications in agriculture, logistics, inspection and smart manufacturing.

The future keys in these domains are the abilities to autonomously interact with

the environment and with other robotic systems. This thesis is providing control

engineering solutions to contribute to these key capabilities.

The first step of this thesis is to develop an understanding of the dynamic behavior

of UAV s. For this purpose, dynamic and kinematic models are presented to describe

a UAV ’s motion. This includes a kinematic model which is suitable for off-the-shelf

UAV s and combines full 360◦ heading operation with a low computational complexity.

The presented models are subsequently used to develop a nonlinear model predictive

control NMPC strategy. In this context, the performance of several NMPC solvers

and inequality constraint handling techniques is evaluated. The real-time capabil-

ity and NMPC performance are validated with real AR.Drone 2.0 and DJI M100

quadrotors. This includes collision avoidance and advanced tracking scenarios. The

design work-flow for the related control objectives and constraints is presented ac-

cordingly. As a next step, this UAV NMPC strategy is extended for a UAV with

attached robotic arm. For this purpose, the forward kinematics of the robotic arm

are developed and combined with the kinematic model of the UAV . The resulting

NMPC strategy is validated in a grasping scenario with a real aerial manipulator.

The final step of this thesis is the NMPC of cooperating UAV s. The computational

complexity of such scenarios conflicts directly with the fast UAV dynamics. In ad-

dition, control objectives and system topologies can dynamically change. To address

these challenges, this thesis presents the DENMPC software framework. DENMPC

provides a computationally efficient central NMPC strategy that allows changing the

control scenario at runtime. This is finally stated in the control of a real cooperative

aerial manipulation scenario.

Keywords:

Nonlinear Model Predictive Control, Aerial Manipulation, Cooperative

Control, Task-based Control, Distributed Systems, Unmanned Aerial Ve-

hicles
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To my family Léa, Ernst, Mathilde and Anja.

To Klara, Dr. Josef Rapp,

Hermann Heinzelmann, Prof. Dr. Max Riederle and Prof. Dr.-Ing. Knut Graichen

who set my path.

“Mathematics is a kind of toy which nature threw to us

for comfort and for entertainment in the darkness.“

- Jean Baptiste le Rond d’Alembert

ix



c© Copyright by Jan Eric Dentler, 2018.

All rights reserved.

x



Contents

Declaration of Authorship . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv

1 Introduction 1

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Solution approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Conventions 9

2.1 Coordinate convention & transformation . . . . . . . . . . . . . . . . 10

2.2 Euler convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Quaternion convention . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Denavit-Hartenberg convention . . . . . . . . . . . . . . . . . . . . . 15

3 Quadrotor models 17

3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Physical model with Euler angle description . . . . . . . . . . . . . . 19

3.3 Physical model with quaternion description . . . . . . . . . . . . . . . 23

3.4 Hover model with yaw description . . . . . . . . . . . . . . . . . . . . 24

3.5 Hover model with direction vector attitude description . . . . . . . . 27

3.6 Discretization of grey box models . . . . . . . . . . . . . . . . . . . . 33

xi



3.7 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7.1 AR.Drone 2.0 identification . . . . . . . . . . . . . . . . . . . 34

3.7.2 DJI M100 identification . . . . . . . . . . . . . . . . . . . . . 42

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Nonlinear model predictive control 49

4.1 State of the art in model predictive control . . . . . . . . . . . . . . . 52

4.2 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Static optimization problems . . . . . . . . . . . . . . . . . . . 54

4.2.2 Optimality of dynamic optimal control problems . . . . . . . . 55

4.3 Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Gauß-Newton sequential quadratic programming . . . . . . . . 59

4.3.2 GRAMPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 C/GMRES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.4 CMSCGMRES . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 NMPC Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Constraint handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.1 Primal barrier method . . . . . . . . . . . . . . . . . . . . . . 75

4.5.2 Auxiliary variable method . . . . . . . . . . . . . . . . . . . . 76

4.5.3 Saturation function approach . . . . . . . . . . . . . . . . . . 77

4.6 Stability discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 UAV control 83

5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 NMPC pose tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 AR.Drone 2.0 NMPC pose tracking parametrization . . . . . . 90

5.3.2 DJI M100 NMPC pose tracking . . . . . . . . . . . . . . . . . 100

5.4 Offset-free MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Model predictive collision avoidance . . . . . . . . . . . . . . . . . . . 114

5.6 Task-based control using potential functions . . . . . . . . . . . . . . 119

5.6.1 Formulating task with inequality constraints . . . . . . . . . . 120

5.6.2 Inequality transformation to potential function . . . . . . . . . 121

5.6.3 Adding cost gradient . . . . . . . . . . . . . . . . . . . . . . . 121

5.6.4 Addressing differentiability of the potential function . . . . . . 123

5.6.5 Coordinate relation . . . . . . . . . . . . . . . . . . . . . . . . 123

xii



5.6.6 Safety constraints . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6.7 Experimental validation of task-based MPC . . . . . . . . . . 130

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Aerial manipulation 141

6.1 Related work in aerial manipulation control . . . . . . . . . . . . . . 143

6.2 Aerial manipulator kinematics . . . . . . . . . . . . . . . . . . . . . . 146

6.3 Aerial manipulator control . . . . . . . . . . . . . . . . . . . . . . . . 151

6.4 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4.1 End-effector pose tracking scenario . . . . . . . . . . . . . . . 155

6.4.2 Bottle grasping scenario . . . . . . . . . . . . . . . . . . . . . 159

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7 Cooperative control 163

7.1 Related work in cooperative control . . . . . . . . . . . . . . . . . . . 164

7.2 OCP of distributed systems . . . . . . . . . . . . . . . . . . . . . . . 167

7.3 Modularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.4 DENMPC framework implementation . . . . . . . . . . . . . . . . . . 173

7.4.1 Code generation . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.5 Validation of DENMPC . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.5.1 Modularization benchmark . . . . . . . . . . . . . . . . . . . . 178

7.5.2 Unidirectional sensor-constrained tracking . . . . . . . . . . . 182

7.5.3 Online adaptability . . . . . . . . . . . . . . . . . . . . . . . . 188

7.5.4 Cooperative aerial manipulation . . . . . . . . . . . . . . . . . 194

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8 Conclusion and future work 203

8.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

A Annex 207

A.1 Hardware & software . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.2 Global OCP for distributed systems and optimality conditions for dif-

ferent constraint handling methods . . . . . . . . . . . . . . . . . . . 208

Bibliography 213

xiii



xiv



List of Tables

2.1 Mathematical convention . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Identification parameters to match AR.Drone 2.0 velocity channels . 36

3.2 Empirically chosen parameters to match AR.Drone 2.0 position channels 39

3.3 Empirically chosen parameters to match DJI position channels . . . . 43

4.1 MPC: advantages and disadvantages . . . . . . . . . . . . . . . . . . 51

4.2 Newton-type algorithms with different approximations of the Hessian 60

4.3 NMPC solver parametrization for benchmark scenario, given in the

solver inherent nomenclature . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Task-based UAV control: Peak distance values for the set of 10 con-

ducted experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1 Physical parameters of the MUAV setup in m . . . . . . . . . . . . . 151

6.2 End-effector pose tracking scenario: control parametrization . . . . . 155

6.3 MUAV grasping scenario: control parameters . . . . . . . . . . . . . 160

7.1 Atomic functions to realize agents and couplings . . . . . . . . . . . . 172

7.2 Functionals and functions required for the code generation . . . . . . 177

xv



xvi



List of Figures

1.1 Cooperative aerial manipulation scenario . . . . . . . . . . . . . . . . 3

2.1 Quadrotor coordinate conventions . . . . . . . . . . . . . . . . . . . . 12

2.2 Euler coordinate transformation chain . . . . . . . . . . . . . . . . . 13

2.3 Denavit-Hartenberg convention [BH09, p.159] (θ sign corrected) . . . 16

3.1 Quadrotor rotor convention . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 First order plant step response . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Angle discontinuity visualization with constant velocity . . . . . . . . 28

3.4 Angle discontinuity problem regarding the control trajectory of an

AR.Drone 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Unit circle with direction vector projections . . . . . . . . . . . . . . 30

3.6 Experimental validation of direction vector attitude description: tra-

jectory of a real AR.Drone 2.0 . . . . . . . . . . . . . . . . . . . . . 32

3.7 AR.Drone 2.0 photography . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Automized AR.Drone 2.0 identification . . . . . . . . . . . . . . . . . 37

3.9 AR.Drone 2.0 identification of forward channel . . . . . . . . . . . . 40

3.10 AR.Drone 2.0 identification of sideward channel . . . . . . . . . . . . 40

3.11 AR.Drone 2.0 identification of upward channel . . . . . . . . . . . . . 41

3.12 AR.Drone 2.0 identification of heading channel . . . . . . . . . . . . 41

3.13 DJI M100 photography . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.14 DJI M100 identification of forward channel . . . . . . . . . . . . . . . 44

3.15 DJI M100 identification of sideward channel . . . . . . . . . . . . . . 44

3.16 DJI M100 identification of upward channel . . . . . . . . . . . . . . . 45

3.17 DJI M100 identification of heading channel . . . . . . . . . . . . . . . 45

4.1 MPC receding horizon scheme . . . . . . . . . . . . . . . . . . . . . . 50

4.2 NMPC pose tracking benchmark: UAV pose . . . . . . . . . . . . . . 72

4.3 NMPC pose tracking benchmark: velocities . . . . . . . . . . . . . . 73

xvii



4.4 NMPC pose tracking benchmark: controls, computation time, costs . 74

4.5 Sigmoid approximation of unit step . . . . . . . . . . . . . . . . . . . 78

5.1 AR.Drone 2.0 NMPC pose tracking parametrization: 3D trajectories 92

5.2 AR.Drone 2.0 NMPC pose tracking parametrization: state trajectories 94

5.3 AR.Drone 2.0 NMPC pose tracking parametrization: tracking error,

controls and computation time . . . . . . . . . . . . . . . . . . . . . . 95

5.4 AR.Drone 2.0 NMPC pose tracking: 3D trajectories . . . . . . . . . 97

5.5 AR.Drone 2.0 NMPC pose tracking: channel trajectories . . . . . . . 98

5.6 AR.Drone 2.0 NMPC pose tracking: tracking error, controls and com-

putation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 DJI M100 NMPC pose tracking: 3D trajectory . . . . . . . . . . . . 101

5.8 DJI M100 NMPC pose tracking channel trajectories . . . . . . . . . 102

5.9 DJI M100 NMPC pose tracking channel trajectories . . . . . . . . . 103

5.10 Simulation of NMPC tracking of constantly moving target . . . . . . 104

5.11 Simulation of NMPC tracking of constantly moving target . . . . . . 106

5.12 Analytically determined system response for ts = 2 s, v0 = 0.2 m s−1 . 107

5.13 TPC control structure . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.14 TPC idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.15 TPC system responses for different parametrization for ts = 2 s and

v0 = 0.2 m s−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.16 Simulation of tracking a constantly moving target with TPC . . . . . 110

5.17 Visualization of the experimental data of tracking of a target, moving

in a square with a constant velocity . . . . . . . . . . . . . . . . . . . 110

5.18 Real AR.Drone 2.0 square tracking without TPC . . . . . . . . . . . 112

5.19 Real AR.Drone 2.0 square tracking with TPC . . . . . . . . . . . . . 113

5.20 Sigmoid distance cost function LCA with κH = 1 . . . . . . . . . . . . 114

5.21 AR.Drone 2.0 CA: the trajectory of the quadrotor is deviated by an

obstacle, depicted as stand in the center point of the circle. As desired,

the drone is avoiding the circular keep out area with radius r = 1 m . 115

5.22 AR.Drone 2.0 CA: pose trajectory . . . . . . . . . . . . . . . . . . . 117

5.23 AR.Drone 2.0 CA: trajectories . . . . . . . . . . . . . . . . . . . . . 118

5.24 Use case scenario: tracking with cone-shaped sensor perception of a

quadrotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.25 Unit step penalty function values of cone constraint . . . . . . . . . . 122

5.26 Unit step penalty function of cone constraint in the GxGy-plane . . . 122

xviii



5.27 Extended soft cone constraint transformed with sigmoid . . . . . . . 123

5.28 Tracking of global position with soft cone constraint . . . . . . . . . . 126

5.29 Potential function for collision avoidance . . . . . . . . . . . . . . . . 128

5.30 Potential function for cohesion . . . . . . . . . . . . . . . . . . . . . . 129

5.31 Task-based UAV control: target tracking while obstacle is avoided . . 131

5.32 Task-based UAV control: UAV GxGy-trajectory with pose markers

every ∆t = 4.2 s showing circular evasion maneuver pattern . . . . . . 133

5.33 Task-based UAV control: UAV pose trajectory with steps in the VΨ-

trajectory due to the limited yaw angle interval . . . . . . . . . . . . 134

5.34 Task-based UAV control: manually introduced obstacle position is

showing circular pattern in order to follow UAV on its evasion tra-

jectory. The steps are caused by the obstacle entering the field of

perception of the motion caption system. . . . . . . . . . . . . . . . 134

5.35 Task-based UAV control: UAV distance to obstacle do stays above the

defined minimum distance of dc,min = 1.0 m . . . . . . . . . . . . . . . 136

5.36 Task-based UAV control: UAV distance to target d stays within the

defined minimum distance of dmin = 0.7 m and maximum distance of

dmax = 2.0 m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.37 Task-based UAV control: UAV absolute tracking angle αt stays within

the defined maximum of αtmax = 0.5 rad of the sensor cone constraint 137

5.38 Task-based UAV control: UAV actuation . . . . . . . . . . . . . . . 137

6.1 Aerial Manipulator consisting of DJI M100 and two-joint robotic arm

(the stereo camera on top is not part of the experimental setup) . . . 142

6.2 Manipulator dimension and coordinate frames for front tracking . . . 147

6.3 MUAV with grasped object (orange cylinder): coordinate frames . . . 147

6.4 MUAV coordinate frame transformation chain . . . . . . . . . . . . . 148

6.5 End-effector pose tracking scenario: 3D-path with target (red circles),

end-effector (blue), UAV center (orange) . . . . . . . . . . . . . . . . 156

6.6 End-effector pose tracking scenario: states with target (red), end-

effector (blue), UAV center (orange) . . . . . . . . . . . . . . . . . . 157

6.7 End-effector pose tracking scenario: control influence . . . . . . . . . 158

6.8 MUAV grasping scenario: step chain with transition conditions . . . 159

6.9 MUAV grasping scenario: scenario sequence using DJI M100 with

two-joint robotic arm . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.10 MUAV grasping scenario: trajectories from controller perspective . . 161

xix



7.1 Scheme of UAV cooperation . . . . . . . . . . . . . . . . . . . . . . . 167

7.2 Schematic DENMPC class structure . . . . . . . . . . . . . . . . . . . 173

7.3 Schematic DENMPC memory and concatenation structure . . . . . . 174

7.4 Comparison with (left) and without (right) modularization: UAV 1 and

UAV 2 keep distance ddes = 1 while UAV 1 is tracking target . . . . . 180

7.5 Comparison with and without modularization UAV 1 and UAV 2 keep

distance ddes = 1 and UAV 1 is tracking target . . . . . . . . . . . . . 181

7.6 Cooperative sensor-constrained tracking scenario: Visual tracking of

quadrotor from camera equipped quadrotor . . . . . . . . . . . . . . . 182

7.7 Cooperative sensor-constrained tracking scenario: setup . . . . . . . . 185

7.8 Cooperative sensor-constrained tracking scenario: position . . . . . . 186

7.9 Cooperative sensor-constrained tracking scenario: data . . . . . . . . 187

7.10 Runtime formation change scenario: Video footage: t1: 2 agents (left)

vs. t2:3 agents (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7.11 Runtime formation change scenario: 3D position plot with formation

visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.12 Runtime formation change scenario: UAV trajectories . . . . . . . . . 192

7.13 Runtime formation change scenario: distance, tracking and computa-

tion time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.14 Cooperative aerial manipulation video footage . . . . . . . . . . . . . 194

7.15 Trigonometric scheme for tracking function . . . . . . . . . . . . . . . 195

7.16 Cooperative aerial manipulation: MUAV end effector pose tracking . 196

7.17 Cooperative aerial manipulation: DJI M100 trajectories . . . . . . . 197

7.18 Sensing UAV tracking 3d plot showing the virtual AR.Drone 2.0 ref-

erence (pee,des and its trajectory pee) . . . . . . . . . . . . . . . . . . . 198

7.19 Cooperative aerial manipulation: AR.Drone 2.0 trajectories and con-

troller computation time . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.1 Aerial manipulation scenario: Autonomous grasping and pouring of a

bottle using a task step chain in combination with DENMPC . . . . 206

xx



List of Abbreviations

Symbol Description

SS State-Space

MPC Model Predictive Control

KKT Karush-Kuhn-Tucker Optimality conditions

SQP Sequential Quadratic Programming

QP Quadratic Programming

OCP Optimal Control Problem

NMPC Receeding horizon Nonlinear Model Predictive Control

ROS Robot Operating System

PID Controller penalizing the proportional integral and derivative of

the control error

PI Controller penalizing the proportional integral of the control er-

ror

UAV Unmanned Aerial Vehicle

MUAV Manipulating Unmanned Aerial Vehicle

ISS Input-to-State-Stabiliy

GRAMPC Graichen MPC is a indirect gradient model predictive control

algorithm

ACADO Automatic Control And Dynamic Optimization toolkit

GMRES Generalized Minimal RESidual method

FDGMRES Finite Difference Generalized Minimal RESidual method

C/GMRES Continuation Generalized Minimal RESidual method

MSC/GMRES Multiple Shooting Continuation Generalized Minimal RESidual

method

CMSC/GMRES Condensed Multiple Shooting Continuation Generalized Mini-

mal RESidual method

C Programming language ”C”

C++ Programming language ”C++”

V-REP Virtual Robot Experimentation Platform

LQR Linear Quadratic Regulator

xxi



Symbol Description

CA Collision Avoidance

HEUN Heun integrator

rhs Right hand side

lhs Left hand side

PT1 First order plant

PT2 Second order plant

ODE Ordinary Differential Equation

AR.Drone 2.0 Augmented Reality Drone 2.0 by Parrot

DJI M100 DJI Matrice 100

PMP Pontryagin’s Maximum Principle

DJI D-Jing Innovations Science and Technology Co., Ltd

DOF Degree Of Freedom

MATLAB MATrix LABoratory

Mathematica Wolfram—Alpha Mathematica

DH Denavit-Hartenberg

TPC Target Position Control

SSREGEST Estimate state-space model by reduction of regularized ARX

model

SSEST Estimate state-space model

N4SID State-space estimation using subspace method

TC Test case

ARCAS Aerial Robotics Cooperative Assembly System

FK Forward Kinematics

IK Inverse Kinematics

DENMPC Distributed System Event-based Nonlinear Model Predictive

Control Framework

p.s.d. Positive semi-definite

OPTITRACK Optitrack motion capture system

BFGS Broyden-Fletcher-Goldfarb-Shannon approximation

HMDV Hover Model with Direction Vector attitude description

xxii



Symbol Description

RHMDV Reduced Hover Model with Direction Vector attitude description

HMDV Hover Model with Yaw attitude description

RHMY Reduced Hover Model with Yaw attitude description

NLopt Open Source Library for NonLinear optimization

ERR20 European Roadmap for Robotics in 2020

s. t. subject to

xxiii



Glossary

Symbol Description

$ Concatenated state and adjoint state variables

ϕ Variated of concatenated state and adjoint state variables

σ Vector

v Velocity

ν Slack variable

p Point

x Coordinate x

y Coordinate y

z Coordinate z

w Coordinate w

Φ Roll

Θ Pitch

Ψ Yaw

ox Direction vector projection on x

oy Direction vector projection on y

o Direction vector

% Angular velocity around x-axis

ϑ Angular velocity around y-axis

ω Angular velocity around z-axis

ts Time constant

kp Proportional gain

ki Integral gain

kd Derivative gain

ζ Integration error

e Error

n Dimension/amount

κ Parameter

y Output

x State

xxiv



Symbol Description

ς Disturbance

λ Adjoint state

λin Inequality constraint Lagrange multiplier

λeq Equality constraint Lagrange multiplier

w Concatenated optimization variables

xdes State

u Control

u∗ Optimal control

udes Desired control

L Integral/stage costs

V Terminal/final costs

J Cost function

L Lagrangian

H Hamiltonian

f System function

c Constraint function

cin Inequality constraint function

ceq Equality constraint function

τ Horizon time variable

t Global time variable

s Laplace operator

k Iterator/discrete time index

j Solver iteration index

l Horizon iteration index

T Horizon length

N Horizon samples

∆t Time step

∆τ Horizon time step

α Step width

υ Horizon expansion factor

xxv



Symbol Description

ε Tolerance

h Forward differentiation step

imax Maximum number of iterations

ξ Convergence factor

χ Concatenation matrix of Li-Brackets

f Concatenated function

g Concatenated function

g Gravity constant

m Mass

ι Inertia

drot Rotor distance

ds Sensor distance

cΨ Yaw constant

cΓ Thrust constant

q State penalty

r Control penalty

d Distance

R Rotation matrix

T Transformation matrix

ρ Quaternion

Γ Force

Λ Torque

ωrot Rotor speed

A Frame A

B Frame B

V Vehicle frame

V1 Vehicle 1 frame

V2 Vehicle 2 frame

G Global frame

B Body frame

xxvi



Symbol Description

M Base frame

J Joint frame

J 1 Joint 1 frame

J 2 Joint 2 frame

EF End effector front frame
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Chapter 1

Introduction

The significance of Unmanned Aerial Vehicles (UAV s) has been increasing over the

last decades. According to [Meo17], 2.2 million consumer drones have been sold for

$4.5 billion in 2016. Already until 2021, the global annual revenue in drones is es-

timated to grow to a total of $12 billion. Originally, UAV applications have been

limited to governmental use such as military purposes, fire monitoring as well as

search and rescue missions. However, the advances in energy storage and computa-

tion technology have led to a downsize of UAV s and has made them attractive for the

consumer market. Their main civil selling points today are their sensing capability

and extensive operational space. Today, the related use reaches from leisure enter-

tainment to surveillance and videography purposes. In the agricultural sector, the

reduction of chemical plant treatment is demanding alternative solutions for large-

scale fostering and monitoring of plants [Pat16, Mos15]. In parallel, the industry is

developing modular smart factories which require novel solutions in logistics, inspec-

tion and manufacturing [Jos17]. These demands open new fields of applications for

UAV s regarding transportation and manipulation purposes.

To address these demands, the ”European Roadmap for Robotics in 2020”

(ERR20 ) [SPA16] is stating the required key abilities of aerial robots in future and

their technological readiness (in brackets):

• Configurability: adapting to different environmental conditions and state (3)

• Interaction ability: Interaction cognitively and physically with other robots (5)

• Motion ability: Ability to move indoor and outdoor avoiding obstacles and

exerting forces (5)

• Manipulation ability: Ability to perform aerial manipulation tasks (2-3)

• Decisional autonomy: On-board reactivity and planning including multiple-

robot systems autonomy (8)
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Due to the low technological readiness of aerial manipulation and robot interaction

technology, the applications of small UAV s are currently still limited to sensing and

transportation scenarios.

The development of this technology is therefore a key priority towards industrial

applications. The governmental support of this conclusion is stated by dedicated re-

search projects. In this context, a significant project is the European Aerial Robotics

Cooperative Assembly System project (ARCAS ). Examples of the fast-growing field

of aerial manipulation applications are contact inspection of bridges [JCBHO15],

canopy sampling of the environment [KSX15], opening of valves [KOO14] and po-

sitioning of assembly parts in factories [MLS15]. To fulfill such tasks, a manipulator

is attached to the UAV which results in a Manipulating Unmanned Aerial Vehicle

(MUAV ). In contrast to traditional fix wing UAV s, small multi-rotor UAV s are capa-

ble of hovering at one position. This makes them particularly suitable for deployment

in cluttered environments and for manipulation tasks.

In order to execute complex tasks (e.g. in industrial environments) efficiently and

flexibly, it is advantageous to deploy multiple specialized robots with complimentary

abilities [ATDG10]. Hence, a key technology target of the ERR20 [SPA16] is the

“distributed architectures for multiple aerial robots and heterogeneous multi-robot

systems with dependability and reconfiguration properties”. Such systems allow the

execution of versatile tasks in a highly efficient way and can furthermore provide

safety by redundancy. The versatility thereby allows the adaptation of the system

to different tasks, utilized robots and environments. The challenging nature of such

dynamically changing cooperative control tasks in combination with the fast dynamics

of UAV s and complexity of MUAV systems has motivated this work.

In order to contribute to the technological development of aerial robotics, this

thesis is dedicated to advanced control design for commercially available small multi-

rotor UAV s. In particular, this work is focusing on model predictive control strategies

for cooperative aerial manipulation.

1.1 Problem statement

The applications of cooperative aerial manipulation and corresponding control ap-

proaches are manifold. The necessary elements to control such scenarios can be ex-

plained using the example scenario given in Figure 1.1. In this scenario, two different

types of robots are deployed. The UAV shown on the left is equipped with computer

vision and a localization system. The MUAV on the right is only equipped with a
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robotic arm to optimize payload and energy consumption. In order to manipulate

its environment (e.g. grasping the bottle), the MUAV has to be precisely localized

in its environment. For this purpose, the MUAV can cooperate with the UAV by

requesting localization and optical sensor information. As the perception space of the

optical sensor is limited, the UAV has to be controlled in relation with the MUAV

or/and vice versa to continuously provide sensor information.

Figure 1.1: Cooperative aerial manipulation scenario

From a control engineering perspective, there are three major challenges of the

illustrated scenario. The first challenge is the complex fast nonlinear dynamics of

MUAV s and UAV s. This complexity and speed conflicts with their limited compu-

tational power onboard. Hence, computationally efficient algorithms are required to

achieve real-time control. This is particularly challenging for commercial UAV s, as

the information about internal control and physical UAV properties is generally very

limited.

The second challenge is to provide a generic controller which is adaptable to differ-

ent control tasks (e.g. searching for the bottle vs. tracking the MUAV ), robots (e.g.

UAV , MUAV , different sensor setups) and environmental constraints (e.g. obstacles,

such as furniture).

The third challenge is to control the cooperation of the UAV s within the scenario.

For safety and efficiency, it is advantageous to be able to dynamically exchange robots

of different types and the overall scenario objectives at runtime.

The objective of this work is to provide applied control solutions for these chal-

lenges, evaluated in real-world experiments. These have been exclusively conducted
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with commercially available UAV s, while omitting proprietary solutions. The usage

of commercial UAV s facilitates the reproducibility of results and promotes science as

well as application development by reducing the development effort and costs.

This thesis focuses on control engineering. To limit the scope of this work lo-

calization, communication, respectively perception and estimation are not subject of

this thesis. However, all commercial UAV s do have internal attitude controllers. A

communication failure would thus only lead to missing localization data, but not to

a complete system failure.

1.2 Thesis objectives

According to the problem statement in §1.1, the objective of this thesis is the devel-

opment of a control strategy for mobile robots. This control shall allow

• exploiting the robot dynamics for time and energy efficient operation

• the consideration of environmental constraints

• runtime reconfiguration and adaptation for different situations and tasks

• the robot to interact with its environment e.g. by means of a manipulator

• the coordinated real-time control of heterogeneous teams of robots

These objectives are coherent with the key technology targets given in ERR20 for

aerial robots in order to increase the capability of robots towards industrial applica-

tions. For this reason, a further objective of this thesis is to validate the applicability

of the developed control strategy in real aerial manipulation and cooperative control

scenarios under the use of commercially available UAV s.

1.3 Solution approach

In this thesis Model Predictive Control (MPC ) is used to handle complex control

scenarios. MPC allows defining control objectives by means of an optimization prob-

lem. This so-called Optimal Control Problem (OCP) is minimizing a given objective

function subject to constraints. However, the real-time application of MPC for fast

systems is challenging, due to the computational complexity of solving the underlying

OCP . This is further exacerbated if additional algorithmic mechanisms are required,

for example to allow a runtime modification of the MPC . Hence, the efficiency of the
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applied solver is limiting the velocity and complexity of the controlled scenarios. The

advantage of a single central MPC unit is hereby a simple implementation of safety

features. Furthermore, the global OCP solution can be computed without consider-

ing additional consensus techniques. For these reasons, this thesis is focusing on the

development of a centralized MPC solution. However, the presented approaches can

be adapted in a distributed manner for large-scale applications.

1.4 Contribution

The first contribution of this work is a model which describes the motion of UAV s with

internal attitude controller. The model is designed to be computationally efficient

and to avoid singularities in the orientation description. The model is suited to

approximate and predict the UAV ’s pose and velocity. The corresponding model

parameters are identified for real AR.Drone 2.0 and DJI M100 quadrotors.

The second contribution is a nonlinear MPC (NMPC ) for the pose of these UAV s

and the corresponding control parameterization. In addition, a workflow is con-

tributed that allows to consider constraints e.g. position and sensor perception space

constraints within the real-time MPC .

The third contribution of this work is the development of a controller for end

effector pose tracking of a commercial MUAV . This novel approach is based on a

separate tracking of the end effector position and orientation. As a consequence, the

compact direction vector UAV model can be used which results in low computation

times. The effectiveness of the proposed approach is demonstrated in a real-world

aerial manipulation scenario.

The final contribution of this work is the implementation of the Distributed System

Event-Based Nonlinear Model Predictive Control (DENMPC ) framework. This is

an object-oriented real-time nonlinear MPC framework for small-scale multi-robot

systems. DENMPC features a computationally efficient MPC modularization which

allows the runtime modification of robots, control objectives and scenario constraints.

To facilitate implementation and prototyping, DENMPC is using the communication

infrastructure of the Robot Operating System (ROS [QCG+09]). Subsequently, the

experimental validation of the developed framework is conducted in real multi-UAV

scenarios.
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1.5 Outline

This thesis is structured according to the thesis objectives given in §1.2. Each chapter

is thereby addressing one of the presented objectives. As the related literature for the

individual chapters is distinct, the related work is given separately at the beginning

of each particular chapter. The results for each topic are summarized in an individual

conclusion section at the end of the related chapter. The thesis is beginning with a

brief introduction in pose description techniques, coordinate conventions, coordinate

transformation and the related nomenclature in §2. In §3, different approaches to

model the UAV behavior are given. In this context, a compact direction vector model

is introduced and identified for real UAV systems. Fundamental MPC knowledge, as

well as an implementational description of the utilized MPC methods are provided

in §4. This includes different solution strategies for the underlying OCP and various

constraint handling techniques. §5 is demonstrating the MPC of real UAV systems,

using the previously presented UAV models. In addition, a workflow is presented

to facilitate the formulation of complex control objectives. The MUAV kinematic

modeling and control is discussed in §6. Finally, the control of multiple UAV /MUAV

systems is discussed in §7. This chapter presents the development of the DENMPC

control framework and its application in cooperative control scenarios. To conclude

this thesis, §8 is summarizing the presented work, discussing the results and providing

a future perspective.

1.6 Publications

In the context of this thesis, the open source (GPL3 licensed) software

• Jan Dentler. DENMPC : An event-based real-time nonlinear model

predictive control framework. Github, 2017 [Den16].

has been developed (see §7). This thesis contains material which has been also pub-

lished in journal and conference proceedings and is available under the following

sources:

• Jan Dentler, Somasundar Kannan, Souad Bezzoucha, Miguel Angel Olivares-

Mendez and Holger Voos. Model predictive cooperative localization con-

trol of multiple UAVs using potential function sensor constraints.

Springer Autonomous Robots Journal 2018 [DKB+18] (see §3,§5,§7).

6



• Jan Dentler, Somasundar Kannan, Miguel Angel Olivares-Mendez and Holger

Voos. Implementation and Validation of an Event-Based Real-Time

Nonlinear Model Predictive Control Framework with ROS Interface

for Single and Multi-robot Systems. Proceedings of the IEEE Conference

on Control Technology and Applications 2017 [DKMV17] (see §3,§5,§7).

• Jan Dentler, Somasundar Kannan, Miguel Angel Olivares-Mendez and Hol-

ger Voos. A modularization approach for nonlinear model predictive

control of distributed fast systems. Proceedings of the IEEE 24th Mediter-

ranean Conference on Control and Automation 2016 [DKMV16a] (see §7).

• Jan Dentler, Somasundar Kannan, Miguel Angel Olivares-Mendez and Holger

Voos. A real-time model predictive position control with collision

avoidance for commercial low-cost quadrotors. Proceedings of the IEEE

Multiconference on Systems and Control 2016 [DKMV16b] (see §3,§5).

• Jan Dentler, Somasundar Kannan, Miguel Angel Olivares-Mendez and Holger

Voos. A tracking error control approach for model predictive position

control of a quadrotor with time varying reference. Proceedings of the

IEEE International Conference on Robotics and Biomimetics 2016 [DKMV16c]

(see §5).

Within the context of this thesis, following work of students has been conducted:

• Patrick Kremer, Jan Dentler, Somasundar Kannan and Holger Voos. Cooper-

ative Localization of Unmanned Aerial Vehicles in ROS - The Atlas

Node. Proceedings of the IEEE Conference on Industrial Informatics 2017

[PDKV17].

• Patrick Hoffmann. Development of a controller for a lightweight ma-

nipulator. University of Luxembourg, Bachelor thesis, 2016 [Hof16].

In cooperation with the Parallel Computing and Optimization Group (PCOG) at the

University of Luxembourg, a study on UAV swarm trajectory planning using chaotic

dynamics and their control with MPC has been conducted. This study is not within

the scope of this thesis, but has been published as follows:

• Martin Rosalie, Jan Dentler, Gregoire Danoy, Pascal Bouvry, Somasundar Kan-

nan, Miguel Angel Olivares-Mendez and Holger Voos. Collision avoidance

effects on the mobility of a UAV swarm using Chaotic Ant Colony
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with Model Predictive Control. Journal of Intelligent & Robotic Systems

2018 [DMD+18].

• Martin Rosalie, Jan Dentler, Gregoire Danoy, Pascal Bouvry, Somasundar Kan-

nan, Miguel Angel Olivares-Mendez and Holger Voos. Area exploration with

a swarm of UAVs combining deterministic Chaotic Ant Colony Mobil-

ity with position MPC. Proceedings of the IEEE Conference on Unmanned

Aircraft Systems 2017 [MDD+17].
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Chapter 2

Conventions

This section is discussing the nomenclature and conventions used in this thesis. The

applied mathematical nomenclature is given in Table 2.1.

Expression Notion e.g.

Scalars: small letters and capital
greek letters

p,Γ

Functionals: capital latin letters P

Vectors & vector-valued functions bold small letters and bold
capital greek letters

p,Γ

3D-Vectors defined in the Cartesian space indicated by overlying arrow −→p
Matrices capital bold latin letters P

Coordinate systems & sets calligraphic capital latin let-
ters

P

MPC related variables which are deter-
mined over the prediction horizon

underline p

Transformation matrix to describe A in
reference to B

BTA

Table 2.1: Mathematical convention

In the context of this thesis, the standard state-space (SS ) control terminology

is used. The plant state x ∈ Rnx is therefore influenced by its input. Without

disturbance this input is equal to the control output u ∈ Rnu . The idea of control

is to use u to steer the plant towards a desired state xdes ∈ Rnx . A common way

to describe the dynamics of the plant is thereby a first-order Ordinary Differential
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Equation (ODE ) which is called system function

ẋ (t) = f (x (t) ,u (t) , t) , f : Rnx × Rnu × R→ Rnx (2.1)

2.1 Coordinate convention & transformation

A common tool to describe the position and orientation in 3D space are Cartesian

coordinate systems. The pose of an object in reference to a global coordinate frame G
is defined by its position and orientation. The position is thereby given as translation

of the attached body frame’s B origin in respect to the global coordinate systems G

G−→p B = [GxB,
GyB,

GzB]T ∈ R3. (2.2)

The lower right index indicates the original coordinate frame and the higher left index

the reference coordinate frame in which the original coordinates shall be expressed.

If no indices or contextual information are explicitely given, the translation/rotation

between body frame and global frame is described

G−→p B ≡ −→p . (2.3)

The orientation can be described as rotation matrix R ∈ R3×3, Euler angles or

quaternions ρ. The transformation of coordinates A−→p which are defined in A, into B
(B−→p ) can be described with the help of homogeneous coordinates. For 3D-space the

homogeneous coordinates are formed by extending the point vectors −→p ∈ R3 by one

dimension. This extension allows the usage of homogeneous transformation matrices
AT B ∈ R4×4 ([WS16])[

A−→p
1

]
= AT B

[
B−→p
1

]
=

[
ARB A−→p B

0 1

][
B−→p
1

]
(2.4)

Due to the orthogonality of R, (R)−1 = RT holds and the inversion of T yields

([WS16]) [
B−→p
1

]
= AT B

−1

[
A−→p

1

]
=

[
ART

B −ART
B
A−→p B

0 1

][
B−→p
1

]
(2.5)

The advantage of such homogeneous transformation matrices is, that a chain of mul-

tiple translations and rotations can be expressed in a single transformation matrix
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[Bea08]. The representative transformation matrix results from multiplying basic ho-

mogeneous transformation matrices. Examples of such basic transformations include

the translation from A to B (2.6) by A−→κ , counterclockwise rotation around axis zA

(2.7) by Ψ, Ay (2.8) by Θ and Ax (2.9) by Φ:

AT B,tl
(A−→p ) =


1 0 0 Ax

0 1 0 Ay

0 0 1 Az

0 0 0 1

 (2.6)

AT B,rotz
(AΨ

)
=


cos(AΨ) − sin(AΨ) 0 0

sin(AΨ) cos(AΨ) 0 0

0 0 1 0

0 0 0 1

 =


0

ARBrotz
(AΨ

)
0

0

0 0 0 1

 (2.7)

AT B,roty
(AΘ

)
=


cos(AΘ) 0 sin(AΘ) 0

0 1 0 0

− sin(AΘ) 0 cos(AΘ) 0

0 0 0 1

 =


0

ARBroty
(AΘ

)
0

0

0 0 0 1

 (2.8)

AT B,rotx
(AΦ

)
=


1 0 0 0

0 cos(AΦ) − sin(AΦ) 0

0 sin(AΦ) cos(AΦ) 0

0 0 0 1

 =


0

ARBrotx
(AΦ

)
0

0

0 0 0 1

 (2.9)

To indicate the sign of the variables −→κ , Ψ, Θ, Φ, the index gives the base coordinate system

in which the translation vector and angles are defined. The inversion of these elementary

matrices is straightforward:

BTA,tl
(A−→p ) =

(AT B,tl (A−→p ))−1
= AT B,tl

(
−A−→p

)
(2.10)

BTA,rotz
(AΨ

)
=
(AT B,rotz (AΨ

))−1
=
(AT B,rotz (AΨ

))T
= AT B,rotz

(
−AΨ

)
(2.11)

BTA,roty
(AΘ

)
=
(AT B,roty (AΘ

))−1
=
(AT B,roty (AΘ

))T
= T BA,roty

(
−AΘ

)
(2.12)

BTA,rotx
(AΦ

)
=
(AT B,rotx (AΦ

))−1
=
(AT B,rotx (AΦ

))T
= T BA,rotx

(
−AΦ

)
(2.13)

For the rotation matrices, the inversion is equal to clockwise rotations around the corre-

sponding axis. The orthogonality of the rotation matrices allows thereby the inversion by

a simple transposition. These basic transformation matrices can be combined to describe

an object orientation according to the Euler convention.
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2.2 Euler convention

Euler angles are a traditional approach to describe an orientation in 3D-space (the SO(3)

rotation group). In the context of this work, the Euler angles follow the ZY ′X ′′-convention

with yaw Ψ, pitch Θ, roll Φ angle. Figure 2.1 illustrates this description with the example

of the UAV coordinate convention used within this thesis.

Figure 2.1: Quadrotor coordinate conventions

Figure 2.1 shows B coordinate axes originating from the UAV center pointing to its front,

left and top. To describe the UAV orientation in reference to the global coordinate frame

G, first, the vehicle frame V is defined. V has the same orientation as G, but is translated

to the center of the UAV . From there on, the idea of Euler angles is to consecutively rotate

around the coordinate system axes in order to align the resulting coordinate system with

the body coordinates B. The first rotation is rotating the vehicle frame V by the yaw angle

Ψ around the Vz-axis. The result is the new “vehicle 1 frame” V1. Within V1 V1x and V1y

are lying in the GxGy-plane. If the quadrotor is not tilted, V1x is accordingly pointing in

forward and V1y in left direction. V1z and Gz are identically pointing upwards. This frame

definition allows the description of the UAV heading in its static equilibrium and is therefore

extensively used within this work. The vehicle 2 frame V2 is defined by the rotation of V1

around V1y by a pitch angle Θ. Finally, the body frame B is reached by rotating V2 around
V2x by a roll angle Φ. The body frame axes Bx, By, Bz are accordingly aligned with the

UAV s forward, sideward and upward movement. This definition of the Euler angles is used

within this thesis. In order to improve the readability, the related coordinate frame indeces

can be ommitted in the following. The whole coordinate transformation chain with the

transformation matrices (2.7)-(2.13) is shown in Figure 2.2.
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B V2 V1 V G

V2T B,rotx
(V2Φ

)

BT V2,rotx

(V2Φ
)
V1T V2,roty

(V1Θ
)

V2T V1,roty

(V1Θ
)
VT V1,rotz

(VΨ
)

V1T V,rotz
(VΨ

)
GT V,tl

(G−→p )

VT G,tl
(G−→p )

roll pitch yaw shift

Figure 2.2: Euler coordinate transformation chain

According to the transformation chain in Fig.2.2, the transformation matrix from body

B to vehicle frame V yields

VT B = VT V1,rotz
V1T V2,roty

V2T B,rotx (2.14)

=


cos Ψ − sin Ψ 0 0

sin Ψ cos Ψ 0 0

0 0 1 0

0 0 0 1




cos Θ 0 sin Θ 0

0 1 0 0

− sin Θ 0 cos Θ 0

0 0 0 1




1 0 0 0

0 cos Φ − sin Φ 0

0 sin Φ cos Φ 0

0 0 0 1



=


cos Θ cos Ψ cos Ψ sin Θ sin Φ− cos Φ sin Ψ cos Φ cos Ψ sin Θ + sin Φ sin Ψ 0

cos Θ sin Ψ cos Φ cos Ψ + sin Θ sin Φ sin Ψ − cos Ψ sin Φ + cos Φ sin Θ sin Ψ 0

− sin Θ cos Θ sin Φ cos Θ cos Φ 0

0 0 0 1


end its inverse

BT V =
(VT B)−1

(2.15)

=


cos(Θ) cos(Ψ) cos(Θ) sin(Ψ) − sin(Θ) 0

cos(Ψ) sin(Θ) sin(Φ)− cos(Φ) sin(Ψ) cos(Φ) cos(Ψ) + sin(Θ) sin(Φ) sin(Ψ) cos(Θ) sin(Φ) 0

cos(Φ) cos(Ψ) sin(Θ) + sin(Φ) sin(Ψ) cos(Φ) sin(Θ) sin(Ψ)− cos(Ψ) sin(Φ) cos(Θ) cos(Φ) 0

0 0 0 1



Under the assumption that ”Gimbal-Lock” singularities are avoided, the reverse trans-

formation from RVB ∈ R3×3 to Euler angles is given by [WS16, p.12]

Θ = arctan2

(
−BRV,31,

√(
BRV,11

2 + BRV,21
2
))

(2.16)

Φ = arctan2

(BRV,32

Θ
,
BRV,33

Θ

)
(2.17)

Ψ = arctan2

(BRV,21

Θ
,
BRV,11

Θ

)
. (2.18)

The advantage of Euler angles is an intuitive understanding of the UAV pose. However,

a major disadvantage is its discontinuous angle definition. The angles are defined on the
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intervals −π < Ψ ≤ π, −π/2 < Θ ≤ π/2, −π < Φ ≤ π, thus a full rotation leads to a step

(e.g. for Ψ between Ψ = π and Ψ = −π). This would imply a velocity Dirac-impulse, which

is not shown by the real system. One way to avoid this problem is the use of quaternions ρ.

2.3 Quaternion convention

Quaternions ρ are a representation of the 3D rotation group SO(3) which contains all

rotations around the origin of R3. In contrast to Euler angles or rotation matrices (§2.2),

the quaternion is composed of one real component ρw and three imaginary components ρx,

ρy, ρz

ρ = ρw + ρxi + ρyj + ρzk. (2.19)

In the context of this thesis, only unit quaternions ρ are considered. These fulfill the

property

1 = ρ2
w + ρ2

x + ρ2
y + ρ2

w. (2.20)

A quaternion is representing a rotation around vector −→p = [ρx, ρy, ρz]
T by an angle α =

arccos(1
2ρw). This can be equally described by the rotation matrix

VRB
(Vρ) :=


1− 2

(
ρ2
y + ρ2

z

)
2ρxρy − 2ρwρz 2(ρwρy + ρxρz)

2(ρwρz + ρxρy) 1− 2
(
ρ2
x + ρ2

z

)
2ρyρz − 2ρwρx

2ρxρz − 2ρwρy 2(ρwρx + ρyρz) 1− 2
(
ρ2
x + ρ2

y

)


−1

. (2.21)

Using computer algebraic methods, the direct inversion results in a large expression which

is omitted here. However, considering unit quaternions, the resulting rotation matrices are

orthogonal wherefore

R−1 = RT (2.22)

holds. Under the assumption of unit quaternions, (2.21) therefore results to

VRB
(Vρ) :=

1− 2
(
ρ2
y + ρ2

z

)
2ρxρy − 2ρwρz 2ρxρz − 2ρwρy

2(ρwρz + ρxρy) 1− 2
(
ρ2
x + ρ2

z

)
2(ρwρx + ρyρz)

2(ρwρy + ρxρz) 2ρyρz − 2ρwρx 1− 2
(
ρ2
x + ρ2

y

)
 (2.23)
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The Euler angles (Ψ, Θ, Φ) can be mapped to quaternions by [Hen77]
ρw

ρx

ρy

ρz

 =


cos
(

Φ
2

)
cos
(

Θ
2

)
cos
(

Ψ
2

)
+ sin

(
Φ
2

)
sin
(

Θ
2

)
sin
(

Ψ
2

)
sin
(

Φ
2

)
cos
(

Θ
2

)
cos
(

Ψ
2

)
− cos

(
Φ
2

)
sin
(

Θ
2

)
sin
(

Ψ
2

)
cos
(

Φ
2

)
sin
(

Θ
2

)
cos
(

Ψ
2

)
+ sin

(
Φ
2

)
cos
(

Θ
2

)
sin
(

Ψ
2

)
cos
(

Φ
2

)
cos
(

Θ
2

)
sin
(

Ψ
2

)
− sin

(
Φ
2

)
sin
(

Θ
2

)
cos
(

Ψ
2

)

 . (2.24)

and in reverse by [Hen77]

Φ

Θ

Ψ

 =


arctan

(
2(ρwρx−ρyρz)

1−2(ρ2x+ρ2y)

)
arcsin (2 (ρwρy − ρzρx))

arctan

(
2(ρwρz−ρxρy)

1−2(ρ2y+ρ2z)

)
 =

arctan
(
2 (ρwρx − ρyρz) , 1− 2

(
ρ2
x + ρ2

y

))
arcsin (2 (ρwρy − ρzρx))

arctan
(
2 (ρwρz − ρxρy) , 1− 2

(
ρ2
y + ρ2

z

))
 (2.25)

2.4 Denavit-Hartenberg convention

An alternative description of coordinate transformations which is used in the context of

this work, is the Denavit-Hartenberg (DH ) transformation for robotic arms. As the most

common actuators for robotic arms are revolute and prismatic joints, the idea of DH is

to describe this transformation based on the corresponding movement constraints. This

principle is illustrated in Figure 2.3 showing the coordinate transformation from coordinate

frame J i in joint i to coordinate frame J i+1 in joint i+1. For this purpose, DH is aligning

J i with J i+1 by following translation and rotations [BH09, p.161]:

• 1: di: Translation of J i to J iH1 by di along zJ i-axis

• 2: θi : Rotation of J iH1 to J iH2 by θi around zJ i-axis

• 3: ai: Translation of J iH2 to J iH3 by ai along xJ i+1-axis

• 4: αi: Rotation of J iH3 to J i+1 by αi around xJ i+1-axis.

The auxiliary coordinate frames J iH1-J iH3 are defined according to the translation/rota-

tion steps. The four parameters d, θ, a, α are sufficient to describe the coordinate transfor-

mation between to two linked joints.

Considering a coordinate frame in each joint, the end effector pose can be determined

by a sequence of coordinate transformations forming a kinematic chain. Starting from the

base i = 0, each individual joint is consecutively transforming the coordinate system of the

next joint until reaching the end effector coordinate frame. The elementary matrices to

describe the transformations in step 1-4 have been introduced in (2.6)-(2.13) [WS16]. As a

result, a point J i+1−→p defined in J i+1 is transformed into J i coordinates using
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Figure 2.3: Denavit-Hartenberg convention [BH09, p.159] (θ sign corrected)

[
J i−→p

1

]
= J iT J i+1,DH (θi, di, ai, αi)

[
J i+1−→p

1

]
(2.26)

= J iH1TJ i,tl


 0

0

di


 J iH2TJ iH1,rotz (θi)

J iH3TJ iH2,tl


ai0

0


 J i+1TJ iH3,rotx (αi)

[
J i+1−→p

1

]

=


cos (θi) − cos (αi) sin (θi) sin (αi) sin (θi) ai cos (θi)

sin (θi) cos (αi) cos (θi) − sin (αi) cos (θi) ai sin (θi)

0 sin (αi) cos (αi) di

0 0 0 1


[
J i+1−→p

1

]

This specific transformation matrix is in the following indicated with the index DH . In

reverse conclusion, the coordinates defined in J i can be transformed into the J i+1 frame

with the inverse

J i+1T J i,DH (θi, di, ai, αi) =
(J iT J i+1,DH (θi, di, ai, αi)

)−1
(2.27)

=


cos (θi) sin (θi) 0 −ai

− cos (αi) sin (θi) cos (αi) cos (θi) sin (αi) −di sin (αi)

sin (αi) sin (θi) − cos (θi) sin (αi) cos (αi) −di cos (αi)

0 0 0 1

 .
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Chapter 3

Quadrotor models

A mathematical description of a UAV ’s flight behavior is required to simulate or predict

its motion. This chapter is dedicated to the modeling of UAV s. It starts with an overview

of related work regarding different modeling approaches and sources in §3.1. To provide

the physical background of UAV motion, a comprehensive physical model for quadrotor

UAV s is derived in §3.2. This model is based on an Euler angle description which shows

an undesired angle singularity. A physical model with quaternion description is developed

in §3.3 to address this issue. For most commercial UAV systems such a physical model

has to be adapted, as they are steered with velocity reference commands instead of force

and torque inputs. This is challenging, as most manufacturers do not provide information

about internal control structure and physical properties of the UAV . In addition, fast

control update intervals and thus low computation times are required to cope with the

fast UAV dynamics. Hence, the amount of mathematical operations and states has to

be limited to minimize computation time and memory consumption. This is particularly

crucial if the model is used in MPC on embedded systems. To satisfy these requirements,

a Hover Model with single Yaw angle description (HMDV ) is developed in §3.4. In order

to avoid the singularity of the Ψ angle attitude description, a Hover Model with Direction

Vector (HMDV ) attitude description is derived in §3.5. The utilized discretization for the

implementation of the quadrotor models on a computer platform is given in §3.6. Finally,

the parameters for the derived models are identified for a real AR.Drone 2.0 in experiments

as well as a DJI M100 quadrotor from simulation. The corresponding identification process

and experimental setup are described in §3.7. A summary and discussion of the quadrotor

modeling is given in §3.8.
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3.1 Related work

This thesis is focusing on the deployment of quadrotor UAV systems. Regarding the 6DOF

of a rigid body, quadrotors are under-actuated systems with the four rotor thrusts and the

weight acting upon. A common way to describe UAV dynamics is to derive the rigid-body

dynamics according to the Newton-Euler method. In addition, the aerodynamic effects,

the electric drive, etc. are modeled to determine the force and torque acting upon the

UAV . Most scientific literature assumes symmetry to simplify the resulting UAV model.

The compact example for such a model is given in [HMLO02], providing a 6DOF physical

model with rotor drag dynamics. A very comprehensive theoretical work on coordinate

conventions, modeling of quadrotor kinematics and dynamics has been published in [Bea08].

This work develops a 6DOF physical model with rotor speed inputs, considering the UAV

pose as well as linear and angular velocities. In this context, model simplification strategies

are discussed and models for sensor behavior such as accelerometers, gyros and cameras are

given. A similarly comprehensive work focusing on design and application of quadrotors

is published in [Pou07]. This includes a study on design of a quadrotor and aerodynamic

effects such as rotor dynamics, flapping and inflow distortion. These effects combined

with electric drive dynamics are then combined in a mathematical model. The introduced

theoretical principles are used to develop the “X-4” quadrotor with a detailed description of

the utilized hardware. Similarly, the development of the “STARMAC II” and the modeling

of its physical properties are presented in [HHWT07]. Also here, a full proprietary quadrotor

solution is developed, starting from the electric drive properties, the aerodynamic effects to

the rigid body UAV dynamics. In the “OS4” project, a compact summary of models for

influences acting as forces and moments upon the UAV is given in [BS07b]. The extended

version of the related quadrotor design is presented in [BS07a]. Using the Lagrangian is an

alternative modeling approach to derive a rigid-body quadrotor model, as shown in [KKP09].

In [HD11], this is used to develop a model for a quadrotor with attached inverse pendulum.

Both modeling approaches for UAV models are also discussed in the book [GDLP13].

Despite its extensive appearance in literature the presented physical modeling ap-

proaches have three limitations considering their application for this thesis. First, the

presented sources use Euler angles to model the UAV attitude. However,the surjection

of the Euler-angle attitude description poses a problem when used as a prediction model

within a MPC . To address this issue, the attitude can be described with quaternions,

as shown in [ACLV16]. The second disadvantage of such physical models is their com-

putational complexity. This is for example addressed by linearizing the model around its

stationary position. Examples for linearized state space models are presented in [Bou12],

[ANT10]. Third, they cannot be easily used to model commercial UAV systems. As most

commercial UAV s are controlled via lateral speed commands, the applied force and torque

is a result of an internal controller and not directly measurable. This can be addressed by
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identifying all UAV subsystems and the controller, as shown in [Li14] for a AR.Drone 2.0

quadrotor. However, such an extensive identification is challenging as the information

and accessibility to physical parameters and internal software structure is limited. Within

this thesis, this is approached by directly approximating and identifying the input-output

behavior. The relation between UAV input and velocity response is thereby modeled with

first order plants (PT1 ) and the velocities are mapped to the UAV pose with a nonlinear

map. While this has been published in [DKMV16b], later on this approach has also been

presented for an AR.Drone 2.0 by [SF16]. A congruent model for the AR.Drone 2.0 has

been published in [SBSF16]. In [FBC13], the relation between input pitch and roll angle

and the corresponding velocity response of an AR.Drone 2.0 is identified similarly.

3.2 Physical model with Euler angle description

In order to relate the UAV position and orientation to the imposed force and torque,

two integrations steps are required from acceleration over velocity. For a UAV pose with

6−DOF , this can be described by a system of 12 ODE s, leading to a 12-state model. Based

on the coordinate conventions of §2.2, the corresponding states of a model states are

x =
(Gx, Gy, Gz, G ẋ, G ẏ , G ż , V2Φ, V1Θ, VΨ, B%, Bϑ, Bω

)T
. (3.1)

Gx, Gy, Gz are representing the UAV position coordinates in the global coordinate frame

G. Correspondingly G ẋ, G ż , G ż are the UAV velocities in G. The orientation of the UAV

is described by the Euler angles V2Φ, V1Θ, VΨ which are defined in their corresponding

frames (V2, V1, V, see §2.2). The angular velocities around the body frame coordinate axes

are given by B%, Bϑ, Bω.

Similar to the model discussed in [Bea08], the relation between applied force
−→
Γ and the

change of body momentum is given by the second Euler-equation. Assuming a constant

mass m, this results to

B−→Γ =


BΓx
BΓy
BΓz

 = m ·


Bẍ
Bÿ
Bz̈

 . (3.2)

Accordingly, Euler’s rotation equations are relating torque
−→
Λ with angular velocity. With

a constant inertia matrix Iι ∈ R3×3, this yields

B−→Λ =


BΛx
BΛy
BΛz

 = Iι ·


B%̇
Bϑ̇
Bω̇

+


B%
Bϑ
Bω

×
Iι ·


B%
Bϑ
Bω


 (3.3)
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which can be reformulated to determine the angular accelerations
B%̇
Bϑ̇
Bω̇

 = Iι
−1



BΛx
BΛy
BΛz

−

B%
Bϑ
Bω

×
Iι ·


B%
Bϑ
Bω



 . (3.4)

In order to determine the UAV dynamics in the global world frame G, (3.2) and (3.4)

have to be mapped from body coordinates B to world coordinates G. For this mapping, the

rotation matrix VRB
(V2Φ, V1Θ, VΨ

)
≡ GRB

(V2Φ, V1Θ, VΨ
)
, introduced as (2.14) can be

used: 
G ẍ
G ÿ
G z̈

 =
1

m
GRB

(V2Φ, V1Θ, VΨ
)
BΓx
BΓy
BΓz

 (3.5)

The angular velocities B%, Bϑ, Bω are defined in the body frame. In order to describe the

influence of the orientational dynamics in terms of Euler angles, these body frame velocities

have to be mapped to the different coordinate frames (V2, V1, V) in which the Euler angles

are defined. For this purpose, the relation of the Euler angle derivatives are mapped to the

angular body velocities via [Bea08, p.13]
B%
Bϑ
Bω

 = BRV2

(V2Φ
)

V2Φ̇

0

0

+ V2RV1

(V1Θ
)
 0
V1Θ̇

0

+ V1RV
(VΨ

) 0

0
VΨ̇



 (3.6)

(3.6) can then be analytically solved to isolate the Euler angle derivatives
V2Φ̇
V1Θ̇
VΨ̇

 = EulerRB
(V2Φ, V1Θ, VΨ

)
B%
Bϑ
Bω

 (3.7)

=

1 sin
(V2Φ

)
tan

(V1Θ
)

cos
(V2Φ

)
tan

(V1Θ
)

0 cos
(V2Φ

)
− sin

(V2Φ
)

0 sin
(V2Φ

)
sec
(V1Θ

)
cos
(V2Φ

)
sec
(V1Θ

)


B%
Bϑ
Bω

 (3.8)
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Based on the states (3.1) the Euler equations (3.4), (3.5) and the rotation matrices (3.6),

(3.8) the system function f
(
x,
−→
Γ ,
−→
Λ
)

for the rigid body dynamics can be concatenated

ẋ =



G ẋ
G ẏ
G ż
G ẍ
G ÿ
G z̈
V2Φ̇
V1Θ̇
VΨ̇
B%̇
Bϑ̇
Bω̇



= f
(
x,
−→
Γ ,
−→
Λ
)

=



G ẋ
G ẏ
G ż

1
m
GRB

(V2Φ, V1Θ, VΨ
)
BΓx
BΓy
BΓz


EulerRB

(V2Φ, V1Θ, VΨ
)
B%
Bϑ
Bω


Iι
−1



BΛx
BΛy
BΛz

−

B%
Bϑ
Bω

×
Iι ·


B%
Bϑ
Bω







. (3.9)

Assuming the quadrotor is operating on earth, it is exposed to gravity. Further assuming

that Gz is chosen to point away from the gravity center of the earth, the weight force

Γg = m·g is accelerating downwards in −Gz direction. Neglecting any external disturbances,

the only force acting on the quadrotor besides weight is the thrust induced by its rotors. If

all rotors are aligned in the BxBy-plane, the resulting thrust BΓz is perpendicular to this

plane in Bz direction. As a result the linear acceleration (3.5) results to
G ẍ
G ÿ
G z̈

 =
1

m
GRB

(V2Φ, V1Θ, VΨ
) 0

0
BΓz

−
0

0

g

 (3.10)
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The torque
−→
Λ is introduced by differing rotor speeds. Defining the system controls u =[

BΓ, BΛx,
BΛy,

BΛz

]T
, the system function f (x,u) finally results to

f (x,u) =



G ẋ
G ẏ
G ż

1
m
GRB

(V2Φ, V1Θ, VΨ
) 0

0
BΓz

−
0

0

g


EulerRB

(V2Φ, V1Θ, VΨ
)
B%
Bϑ
Bω


Iι
−1



BΛx
BΛy
BΛz

−

B%
Bϑ
Bω

×
Iι ·


B%
Bϑ
Bω







. (3.11)

Figure 3.1: Quadrotor rotor convention

Typically, no direct measurement of thrust BΓz and torque
−→
Λ are available in real

quadrotor systems. However, for symmetric quadrotors they can be approximately mapped

to the square of the rotor speeds ωrot
2 and vice versa. Considering the rotor convention

shown in Figure 3.1, the mapping yields [Bea08, 16]
Γ
BΛx
BΛy
BΛz

 =


cΓ cΓ cΓ cΓ

−drotcΓ −drotcΓ drotcΓ drotcΓ

−drotcΓ drotcΓ drotcΓ −drotcΓ

−cΨ cΨ cΨ cΨ

 ·

ωrot

2
1

ωrot
2
2

ωrot
2
3

ωrot
2
4

 . (3.12)

The parameters cΓ and cΨ are hereby system inherent parameters that are based on the

rotor dimensions and shape with drot being the distance between drone center and rotor.
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In order to facilitate the UAV design and control, most quadrotors are built symmetri-

cally. Using this assumption of symmetry the inertia matrix becomes diagonal

Iι =

ιVx 0 0

0 ιVy 0

0 0 ιVz

 (3.13)

and the system function (3.11) simplifies to

f (x,u) =



G ẋ
G ẏ
G ż

BΓz
m (cos

(V2Φ
)

cos
(VΨ

)
sin
(V1Θ

)
+ sin

(V2Φ
)

sin
(VΨ

)
)

BΓz
m (− cos

(VΨ
)

sin
(V2Φ

)
+ cos

(V2Φ
)

sin
(V1Θ

)
sin
(VΨ

)
)

−g +
BΓz
m cos

(V1Θ
)

cos
(V2Φ

)
B% + Bω cos

(V2Φ
)

tan V1Θ + Bϑ sin
(V2Φ

)
tan V1Θ

Bϑ cos
(V2Φ

)
− Bω sin

(V2Φ
)

(Bω cos
(V2Φ

)
+ Bϑ sin

(V2Φ
)
) sec V1Θ

1
ιVx

(
BΛx + BϑBω(ιVy − ιVz )

)
1
ιVy

(BΛy + B%Bω(−ιVx + ιVz )
)

1
ιVz

(
BΛz + B%Bϑ(ιVx − ιVy )

)



. (3.14)

3.3 Physical model with quaternion description

As previously discussed in §2.2, the use of Euler angles in (3.2) is disadvantageous due to

their inherent singularities. One possibility to overcome this problem is to use quaternions

(see convention §2.3) instead. This yields the state vector

x =
(Gx, Gy, Gz, G ẋ, G ẏ , G ż , Gρw , Gρx , Gρy , Gρz , B%, Bϑ, Bω)T . (3.15)

In order to derive the system function, the derivative of Gρ is determined using the scalar

quaternion product <,>

Gρ̇ =
1

2
< Gρ,


0
G%
Gϑ
Gω

 > (3.16)
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which yields [WS16, 13]
G ρ̇w
G ρ̇x
G ρ̇y
G ρ̇z

 =
1

2


−Gρx −Gρy −Gρz
Gρw Gρz −Gρy
−Gρz Gρw Gρx
Gρy −Gρx Gρw

 ·

G%
Gϑ
Gω

 . (3.17)

Under use of rotation matrix GRB
(Gρ) (2.23) the system function results to

f (x,u) =



G ẋ
G ẏ
G ż

1
m
GRB

(Gρ)
0

0

Γ

−
0

0

g



1
2


−Gρx −Gρy −Gρz
Gρw Gρz −Gρy
−Gρz Gρw Gρx
Gρy −Gρx Gρw

 GRB (Gρ)

G%
Gϑ
Gω



Iι
−1



BΛx
BΛy
BΛz

−

B%
Bϑ
Bω

×
Iι ·


B%
Bϑ
Bω







. (3.18)

For the force/torque mapping to the rotor velocities again (3.12) can be used.

3.4 Hover model with yaw description

The physical thrust and torque based models introduced in §3.2-§3.3 are well suited to

describe physical effects and the flight behavior of a UAV . However, they are not well

suited to predict the behavior of commercial quadrotors for two reasons:

• Commercial UAV s have internal controllers that are typically based on velocity ref-

erences in the V1-frame. In addition, there are typically no inputs or measurements

for BΓz,
BΛx,BΛy,

BΛz or the rotor speed ωrot and the underlying dynamics available.

• The model complexity is indicated by the multitude of mathematical operations. This

leads to high computation times in simulations and as MPC model.

For these reasons, a more compact model for commercial quadrotor is advantageous which

directly relays on velocity reference inputs. One approach is, to simplify the physical under

with the assumption that most mobile robots are designed to move in a planar space. Their
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position is defined in a GxGy-plane and the height Gz of this plane. Accordingly, their

attitude is defined by the rotation angle Ψ around Gz . This description does fit multi-rotor

UAV s, as they are typically operated around their static equilibrium, the hovering position.

By neglecting the small angles in pitch Θ and roll Φ, the forward and sideward movement of

the quadrotor is considered to be in the GxGy-plane. Consequently, B and V1 are identical.

The attitude is thus only defined by the heading, given as yaw angle VΨ rotation around

the Gz axis. Hence, the state of a multi-rotor UAV can be described with the vector

x (t) =
[
Gx (t) , Gy (t) , Gz (t) , VΨ (t) , V1ẋ (t) , V1ẏ (t) , V1ż (t) , VΨ̇ (t) ,

]T
. (3.19)

The x, y, z position and Ψ orientation are in the global frame G. ẋ, ẏ, ż and Ψ̇ are

representing forward, leftward, upward and heading velocity of the UAV . The controls

u =
[
uV1x , uV1y , uV1z , uV1ω

]T
(3.20)

are given as forward uV1x , leftward uV1y , upward uV1z and heading velocity uV1ω references

in the vehicle 1 frame V1.

A real UAV is not instantly reaching these reference velocities. For the appxorimation

of this settling behavior, a PT1 can be used. A PT1 with state x, input u, settling time

constant ts and proportional gain kp is defined by ODE

ẋ (t) = − 1

ts
x (t) +

kp
ts
u (t) (3.21)

The step response of a PT1 is asymptotically approaching kp

x (t) = kp

(
1− e−

t
ts

)
, (3.22)

as shown in Figure 3.2.

0 1 2 3 4 time [s]
0

0.25kp

0.5kp

0.75kp

ts = 0.5s
ts = 1s
ts = 2s

Figure 3.2: First order plant step response

By substituting the factors a = − 1
ts

and b =
kp
ts

and applying the rotation matrix
GRV1

(VΨ (t)
)
≡ VRV1

(VΨ (t)
)

deduced from transformation matrix BTArotz (Ψ) (2.7) the

system function can be derived. For the Hover Model with Yaw Attitude Description
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(HMDV ) this yields

f (x,u) =



GRV1

(VΨ (t)
)
·


V1ẋ (t)
V1ẋ (t)
V1ż (t)


VΨ̇ (t)

ax · V1ẋ (t) + bx · uV1x (t)

ay · V1ẏ (t) + by · uV1y (t)

az · V1ż (t) + bz · uV1z (t)

aΨ · V1Ψ̇ (t) + bΨ · uV1ω (t)



Nonlinear Map: V1→ G

 PT1 velocity models.

(3.23)

which is equal to

f (x,u) =



V1ẋ (t) cos
(VΨ (t)

)
− V1ẏ (t) sin

(VΨ (t)
)

V1ẋ (t) sin
(VΨ (t)

)
+ V1ẏ (t) cos

(VΨ (t)
)

G ż (t)
VΨ̇ (t)

ax · V1ẋ (t) + bx · uV1x (t)

ay · V1ẏ (t) + by · uV1y (t)

az · V1ż (t) + bz · uV1z (t)

aΨ · V1Ψ̇ (t) + bΨ · uV1ω (t)


. (3.24)

For VΨ (t) = 0 the rotation matrix equals the identity matrix GRV1 (0) = I3 which makes

the double integrator structure of (3.24) visible. The parameters κ

κ =
[
ax, bx, ay, by, az, bz, aΨ, bΨ

]T
(3.25)

are depending on the UAV system and have to be identified individually.

Reduced model for lower memory consumption

The memory consumption of the prediction model used within the MPC is crucial. As

the model states and inputs are stored for the whole prediction horizon and potentially for

some previous horizons, the allocated memory is a multitude of the model states. This is

limiting its application on embedded systems. As a result, it can be useful to reduce the

state dimension of (3.24) further to a more compact model. Under consideration of a fast

internal controller, V1ż (t) = bz · uV1z (t) and VΨ̇ (t) = bΨ · uV1ω (t) can be assumed. Hence,

these are eliminated from the state vector

x (t) =
[
Gx (t) , Gy (t) , Gz (t) , VΨ (t) , V1ẋ (t) , V1ẏ (t) ,

]T
, (3.26)
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which results in the reduced system function

f (x,u) =



V1ẋ (t) cos
(VΨ (t)

)
− V1ẏ (t) sin

(VΨ (t)
)

V1ẋ (t) sin
(VΨ (t)

)
+ V1ẏ (t) cos

(VΨ (t)
)

bz · uV1z (t)

bΨ · uV1ω (t)

ax · V1ẋ (t) + bx · uV1x (t)

ay · V1ẏ (t) + by · uV1y (t)


. (3.27)

The result is a Reduced Hover Model with Yaw Attitude Description (RHMY ). For surveil-

lance and transportation tasks which are typically executed in the GxGy-plane, this assump-

tion does not directly reduce the systems performance. However, real UAV s do not comply

with the assumption of an infinitely fast closed-loop system in V1ż (t) and VΨ̇ (t). The

resulting modeling error of the reduced MPC prediction model leads to a lower control

performance and may cause instability. The usage of this model is therefore limited to

systems, where the internal control is sufficiently fast.

3.5 Hover model with direction vector attitude de-

scription

The developed system model (3.24) and its reduced version (3.27) can be used to describe

mobile robots which are moving in a plane by using a single Ψ-angle attitude description.

This section is presenting a direction vector approach in order to address the previously in

§2.2 mentioned discontinuous angle definition which is based on the defined yaw angle VΨ

interval

VΨ := {VΨ ∈ R| − π < VΨ ≤ π}. (3.28)

For a constantly rotating robot with angular velocity VΨ̇ = 1, the angle shows the surjection

for a limited VΨ interval as shown in Figure 3.3. This is problematic, if the attitude is

controlled by means of velocity or acceleration. To show the problematic behavior, a MPC

is applied to an AR.Drone 2.0 quadrotor using the reduced prediction model (3.27) with

the parameters chosen to[
ax, bx, ay, by, bz, bΨ

]T
=
[
−0.5092, 1.458,−0.5092, 1.458, 1, 1.6

]T
(3.29)

The resulting trajectories are given in Figure 3.4. To control the quadrotor attitude,

traditionally the error eVΨ = VΨdes − VΨ to the desired yaw angle VΨdes is minimized.

The yaw angle plot in Figure 3.4a shows a step at t ≈ 84.5 s in the desired angle from
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ψ∈[-∞,∞]

ψ∈[-π,π)

2 4 6 8 10 12
t[s]

5

10

Ψ [rad]

Figure 3.3: Angle discontinuity visualization with constant velocity

VΨdes (0 s) = π
2 to VΨdes (≈ 84.5 s) = π. To minimize eVΨ , the controller is applying a

positive angular velocity to converge towards VΨdes = π. As real mobile robotic systems

are exposed to disturbance, the robot is likely to overshoot VΨdes = π which leads to a

change of sign to VΨ = −π. Hence, the quadrotor will again try to reach the desired

value from the new angle VΨ = −π. As a result, positions close to VΨdes = ±π cannot

be stabilized which leads to a repetitive rotational movement. The resulting high control

reaction in Figure 3.4c leads to a disturbance in the position trajectory, as shown in Figure

3.4b.

Consequently, an alternative angle representation in the planar rotation matrix

V1−→p =

[
cos(VΨ) − sin(VΨ)

sin(VΨ) cos(VΨ)

]
G−→p = V1RGG

−→p with G−→p =

[
G−→x
G−→y

]
(3.30)

has to be found.

One way to do this is to use a direction vector. For 3D-space this is well established in

the form of quaternions ρ ∈ R4. In state-space models, the four elements of ρ are treated as

separate states. This is disadvantageous for real-time MPC , as the related increase in the

state dimension is also significantly increasing the memory consumption. The alternative

is to describe the 2D rotation in the xy-plane with a direction vector. For this purpose,

the direction vector is representing a unit vector Go which is defined by its projections onto

the coordinate axes Gox and Goy as shown in Figure 3.5. The orientation of the drone is

therefore unambiguously defined by Go.

Go =

[
Gox
Goy

]
=

[
cos(VΨ)

sin(VΨ)

]
Gox := {Gox ∈ R| − 1 < Gox ≤ 1}
Goy := {Goy ∈ R| − 1 < Goy ≤ 1}

. (3.31)

28



(a) AR.Drone 2.0 Orientation

82 84 86 88 90 92 94 t[s]

−2

0

2
Ψ [rad]
Ψdes [rad]

(b) AR.Drone 2.0 Position

82 84 86 88 90 92 94 t[s]

0

1

2

x [m] xdes [m] y [m] ydes [m] z [m] zdes [m]

(c) AR.Drone 2.0 Inputs

82 84 86 88 90 92 94 t[s]

−1

0

1

uV1x [m s−1] uV1y [m s−1]

uV1z [m s−1] uV1ω [rad s−1]

Figure 3.4: Angle discontinuity problem regarding the control trajectory of an
AR.Drone 2.0
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In comparison to a single angle description with yaw VΨ, this transformation is bijective.

Figure 3.5: Unit circle with direction vector projections

As the direction vector is expressing the projection from the unit circle, Gox and Goy
are fulfilling the circle constraint

1 = Gox
2

+ Goy
2
. (3.32)

Using (3.31) to receive the state-space description, G ȯ yields

G ȯ =

[
G ȯx
G ȯy

]
=

[
− sin(VΨ)

cos(VΨ)

]
VΨ̇ =

[
−Goy
Gox

]
VΨ̇ (3.33)

This is intuitive, as the derivative G ȯ has to be orthogonal to Go to force Go to stay on the

unit circle. Transformation matrix (3.30) is transformed with (3.31) to

V1RG
(Gox , Goy) =

[
Gox −Goy
Goy Gox

]
(3.34)

Applied to the reduced system model, the angular velocity ˙VΨ in (3.33) is given by the

system input uVΨ with the constant factor bΨ. Hence, the derivative yields to

G ȯ =

[
−Goy
Gox

]
bVΨ · uVΨ (t) (3.35)
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To transform the system dynamics (3.27) into a direction vector model, VΨ is substituted

by the direction vector in the state vector

x (t) =
[
Gx (t) , Gy (t) , Gz (t) , Gox (t) , Goy (t) , V1ẋ (t) , V1ẏ (t)

]T
. (3.36)

Using the direction vector (3.31), the derivative (3.35) with uVΨ and the coordinate trans-

formation (3.34), the system dynamics can be derived from (3.27). For the Reduced Hover

Model with Direction Vector Attitude Description (RHMDV ) this finally leads to

ẋ (t) = f (x (t) ,u (t)) =



V1ẋ (t) Gox (t)− V1ẏ (t) Goy (t)
V1ẋ (t) Goy (t) + V1ẏ (t) Gox (t)

az · z (t) + bz · uV1z (t)

−Goy (t) · bVΨ · uVΨ (t)
Gox (t) · bVΨ · uVΨ (t)

af · V1ẋ (t) + bf · uV1x (t)

as · V1ẏ (t)− bs · uV1y (t)


(3.37)

To track attitude Go, a simple quadratic penalty can be used

Lo =
(Godes − Go)T

[
qox 0

0 qoy

] (Godes − Go) (3.38)

where qox and qoy represent orientation penalty factors. This is valid under the condition,

that numerical errors of the MPC solver avoid the singular problem of opposing attitudes,

e.g. Godes = [−1, 0]T with Go = [1, 0]T, or Godes = [ 1√
2
, 1√

2
]T with Go = [− 1√

2
,− 1√

2
]T.

To validate the direction vector quadrotor model (3.37) experimentally, a NMPC pose

tracking scenario with a real AR.Drone 2.0 is conducted (for more details, see §5). In

this scenario, the desired drone attitude is rotated anticlockwise in steps of ∆VΨ = π
2 .

The VΨ plot in Figure 3.6 shows the desired and resulting real attitude of the system. In

contrast to the previous instability at VΨ = ±π (Figure 3.4), Figure 3.6 is showing a stable

asymptotic convergence towards the desired trajectory. The oscillations in x, y, z around

the desired point are caused by disturbance. This includes airflow disturbance, modeling

errors, numerical errors and the trade-off between energy optimality and position tracking.

Hence, the direction vector approach is resolving the angle discontinuity problem.

Applying the same direction vector description on the model (3.24) results to a Hover

Model with Direction Vector Attitude Description (HMDV ). The state vector yields

x (t) =
[
Gx (t) , Gy (t) , Gz (t) , Gox (t) , Goy (t) , V1ẋ (t) , V1ẏ (t) , V1ż (t) , VΨ̇ (t) ,

]T
(3.39)
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(a) AR.Drone 2.0 Orientation
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(b) AR.Drone 2.0 Position
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(c) AR.Drone 2.0 Inputs
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uV1z [m s−1] uV1ω [rad s−1]

Figure 3.6: Experimental validation of direction vector attitude description: trajec-
tory of a real AR.Drone 2.0
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and the system function

f (x,u) =



V1ẋ (t) Gox (t)− V1ẏ (t) Goy (t)
V1ẋ (t) Goy (t) + V1ẏ (t) Gox (t)

G ż (t)

−Goy (t) · VΨ̇ (t)
Gox (t) · VΨ̇ (t)

ax · V1ẋ (t) + bx · uV1x (t)

ay · V1ẏ (t) + by · uV1y (t)

az · V1ż (t) + bz · uV1z (t)

aΨ · V1Ψ̇ (t) + bΨ · uV1ω (t)



. (3.40)

The proposed approach is a trade-off between the continuous attitude description and the

computational effort, regarding the quaternion approach (4 states) and the standard angle

description (1 state).

3.6 Discretization of grey box models

A discretized model representation is required in order to implement the previously derived

system functions in a simulator with an adaptable simulation step, for example V-REP .

For this purpose, the discrete iterator k is introduced to describe the discrete time t [k] =

k ·∆t. The corresponding states at these discrete time instances can be written accordingly

x [k − 1] ≡ x ((k − 1) ∆t). A simple way of discretizing the derivative is the backward

difference approximation

ẋ (t) ≈ x [k]− x [k − 1]

∆t
(3.41)

which can be used to approximate the system function

x [k]− x [k − 1]

∆t
≈ f (x [k − 1] ,u [k − 1]) . (3.42)

Isolating x [k] leads to

x [k] = x [k − 1] + ∆t · f (x [k − 1] ,u [k − 1]) (3.43)
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The discretization of the system function (3.24) can be accordingly used to calculate the

next state at t = ∆t(k + 1):

x [k + 1] =



V1x [k] + ∆t
(
xV1 [k] cos

(VΨ [k]
)
− V1ẏ [k] sin

(VΨ [k]
))

V1y [k] + ∆t
(V1ẋ [k] sin

(VΨ [k]
)

+ V1ẏ [k] cos
(VΨ [k]

))
V1y [k] + ∆t · G ż [k]

ΨV1 [k] + ∆t · VΨ̇ [k]

(ax∆t+ 1) V1ẋ [k] + ∆t · bx · uV1x [k]

(ay∆t+ 1) V1ẏ [k] + ∆t · by · uV1y [k]

(az∆t+ 1) V1ż [k] + ∆t · bz · uV1z [k]

(aΨ∆t+ 1) V1Ψ̇ [k] + ∆t · bΨ · uV1ω [k]


. (3.44)

For the direction vector extension, a normalization is required in order to fulfill the circle

constraint (3.32). Accordingly the system state is calculated via

x [k + 1] =



V1x [k] + ∆t
(V1ẋ [k] Gox [k]− V1ẏ [k] Goy [k]

)
V1y [k] + ∆t

(V1ẋ [k] Goy [k] + V1ẏ [k] Gox [k]
)

V1y [k] + ∆t · G ż [k]
Gox [k]−∆t·Goy [k]V Ψ̇[k]√

Gox [k]2+Goy [k]2

Goy [k]+∆t·Gox [k]V Ψ̇[k]√
Gox [k]2+Goy [k]2

(ax∆t+ 1) V1ẋ [k] + ∆t · bx · uV1x [k]

(ay∆t+ 1) V1ẏ [k] + ∆t · by · uV1y [k]

(az∆t+ 1) V1ż [k] + ∆t · bz · uV1z [k]

(aΨ∆t+ 1) V1Ψ̇ [k] + ∆t · bΨ · uV1ω [k]



. (3.45)

3.7 Identification

In order to use the HMDV (3.24), the model parameters (3.25) have to be identified. Due

to the characteristic of the inherent PT1 s, these parameters can directly be determined

from the step response. For this purpose, the UAV ’s position and velocity response have

to be measured. Due to the separation in forward, leftward, upward and heading channel,

the parameters for each subsystem can be identified separately.

In the context of this work, AR.Drone 2.0 and DJI M100 quadrotors are used. The

corresponding model parameters are identified in the following.

3.7.1 AR.Drone 2.0 identification

This section is dedicated to the identification of the HMDV (3.24) parameters for a real

AR.Drone 2.0 quadrotor. The utilized AR.Drone 2.0 is shown in Figure 3.7. The grey
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balls are visual markers which are used to triangulate the robots pose with the help of a

motion capture system (OPTITRACK ). The pose measurement is running at ∆t = 1
240 Hz .

Figure 3.7: AR.Drone 2.0 photography

All AR.Drone 2.0 inputs u (3.20) are limited to
∥∥uV1x∣∣ ≤ 1,

∥∥∥uV1y ∣∣∣ ≤ 1,
∥∥uV1z ∣∣ ≤

1,
∥∥uV1ω ∣∣ ≤ 1. For the identification, input steps between [−1, 0, 1] are used to impose

the maximal actuation from the stationary state. The AR.Drone 2.0 velocity response is

measured and processed in the following four steps:

1 : The global pose is measured by the OPTITRACK system.

2 : The global velocities are approximated via a difference quotient:
G ẋ (t)
G ẏ (t)
G ż (t)
GΨ̇ (t)

 ≈ 1

t [k]− t [k − 1]


Gx [k]− Gx [k]
Gy [k]− Gy [k]
Gz [k]− Gz [k]
GΨ [k]− GΨ [k]

 (3.46)
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3 : The determined velocities are filtered with a moving average filter considering the

last N = 10 samples.
G ẋ (t)
G ẏ (t)
G ż (t)
GΨ̇ (t)

 ≈ 1

N

N−1∑
l=0

1

t [k]− t [k − 1]


Gx [k − l]− Gx [k − l]
Gy [k − l]− Gy [k − l]
Gz [k − l]− Gz [k − l]
GΨ [k − l]− GΨ [k − l]

 (3.47)

4 : The resulting filtered velocity data is transformed into the vehicle 1 frame V1 using
V1ẋ (t)
V1ẏ (t)
V1ż (t)
V1Ψ̇ (t)

 =


0

V1RG
(VΨ [k]

)
0

0

0 0 0 1



Gx (t)
Gy (t)
Gz (t)
GΨ (t)

 . (3.48)

Due to disturbance, it is advantageous to base the identification of model parameters on

a longer interval, including multiple input steps. This is facilitated by identification tools

which allow automatic fitting of the model with the real UAV behavior. In the context of

this thesis, the MATLAB algorithms SSREGEST , SSEST and N4SID have been used for

this purpose. The best fit trajectories of the first-order approximations are given in Figure

3.8. Based on the automated estimates, an additional manual fitting of the step functions

is given under the reference “Manual”. The corresponding best fit parameters are given in

Table 3.1.

ax bx Best Fit V1ẋ ay by Best Fit V1ẏ
SSREGEST -1.225 3.970 43.10% -1.266 3.839 47.75%

SSEST -0.526 1.878 46.42% -1.087 2.603 59.65%
N4SID -0.523 1.877 46.37% -2.083 3.757 48.36%
Manual -0.800 2.560 52.21% -0.800 2.560 54.90%

az bz Best Fit V1ż aΨ bΨ Best Fit V1Ψ̇
SSREGEST -1.485 1.796 51.21% -7.519 15.90 69.01%

SSEST -1.287 1.644 44.26% -4.669 7.816 91.99%
N4SID -1.259 1.633 42.89% -4.617 7.737 91.95%
Manual -1.900 2.100 62.37% -5.000 9.000 89.01%

Table 3.1: Identification parameters to match AR.Drone 2.0 velocity channels

As the identified AR.Drone 2.0 parameters have shown to be prone to hull and rotor

deformations, the identification has been conducted with a “new” unused AR.Drone 2.0 .

To be able to directly relate velocity and position response for the horizontal and vertical

behavior, V1Ψ is manually kept close to zero.
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(a) AR.Drone 2.0 V1ẋ-Velocity in m s−1

0 2 46 8 10 12 14 16 18 20 22 24 26 t [s]

−2

0

2

(b) AR.Drone 2.0 V1ẏ-Velocity in m s−1

0 2 4 6 8 10 12 14 16 t [s]

−2

0

2

(c) AR.Drone 2.0 V1ż-Velocity in m s−1

105 105.5 106 106.5 107 107.5 108 108.5 109 109.5 t [s]

0

0.5

1

(d) AR.Drone 2.0 V1Ψ̇-Velocity in rad s−1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 t [s]

−2

0

2

Real AR.Drone 2.0 SSREGEST N4SID
SSEST Manual

Figure 3.8: Automized AR.Drone 2.0 identification
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The resulting trajectories show, that only the V1Ψ̇ behavior in Figure 3.8d appears to

comply with a PT1 approximation. Figure 3.8c indicates a precise fitting of V1ż on an

input step, but a slight overshoot for a step back to zero. This nonlinearity therefore leads

to a compulsory PT1 model error. The same behavior is even more visible in the V1ẋ

trajectory in Figure 3.8a and the V1ẏ plot in Figure 3.8b. The observed nonlinearities are

a result of the AR.Drone 2.0 dynamics with its internal control and are system specific.

Their occurence is also directly reflected by the best fit indicators in Table 3.1.

The AR.Drone 2.0 shows very similar velocity behavior in forward (Figure 3.8a) and

leftward direction (Figure 3.8b). Nevertheless, the automatically identified parameters ax,

bx in Table 3.1 are differing significantly. This is evidence, that the fitting of the nonlineari-

ties is not trivial. The major question is therefore which approximation serves the modeling

purpose.

In the context of this thesis, the UAV models have been derived to serve as prediction

model in MPC . The effect of the model error in a prediction model for a UAV with

stabilizing internal control yields:

• Real system slower than prediction model → control response is lower than nominal

→ slow maneuvering

• Real system faster than prediction model → control response is higher than nominal

→ aggressive maneuvering which might lead to stability problems

For the first step in Figure 3.8a, it is visible that the model is faster than the system in

the upslope. For the downslope the opposite is true. One approach would therefore be

to increase the PT1 settling times to achieve a very slow response and thus accept a low

control performance.

To avoid this performance loss, the fitting problem is addressed by empirically adjusting

the model parameters in a closed-loop experiment. This work is focusing on model predictive

UAV position and heading control. Hence, the parameters have been identified in a pose

tracking scenario with a real AR.Drone 2.0 (see §5.3.1). Starting with the initial guess of

the manually fitted parameters from Table 3.1 the closed-loop position response showed

undesired low damping in Gx and Gy. Consequently, ax, bx, ay and by of the forward and

sideward channel have been modified systematically in order to achieve a fast, damped

position and heading response. As a remark, the damping of the closed-loop system is

not only depending on the quality of the MPC prediction model, but also on the control

parametrization. The control parametrization described in §5.3.1 and the adjustment of the

model parameters are therefore an iterative process. The resulting model parameters are

given in Table 3.2.

The corresponding real AR.Drone 2.0 and model (indicated by ̂) trajectories are given

in Figure 3.9-3.12. The resulting Gx and Gy trajectories show a similar position displace-
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ax bx ay by az bz aΨ bΨ

Manual -0.6000 1.200 -0.600 1.200 -1.900 2.100 -5.000 9.000

Table 3.2: Empirically chosen parameters to match AR.Drone 2.0 position channels

ment after a given input pulse. However, the corresponding velocity (Figure 3.9b, 3.10b)

approximation is suboptimal. The velocity and position for upward (Figure 3.11) and head-

ing channel (Figure 3.12) do show the desired fitting. In Figure 3.11a, the slight decrease

in the Gz position after the initial step is caused by a horizontal movement command, as

the vertical and horizontal movement of the AR.Drone 2.0 are not completely decoupled.

The parametrized AR.Drone 2.0 HMDV model finally results to

f (x,u) =



V1ẋ (t) Gox (t)− V1ẏ (t) Goy (t)
V1ẋ (t) Goy (t) + V1ẏ (t) Gox (t)

G ż (t)

−Goy (t) · VΨ̇ (t)
Gox (t) · VΨ̇ (t)

−0.600 · V1ẋ (t) + 1.2 · uV1x (t)

−0.600 · V1ẏ (t) + 1.2 · uV1y (t)

−1.900 · V1ż (t) + 2.1 · uV1z (t)

−5.000 · V1Ψ̇ (t) + 9.000 · uV1ω (t)



. (3.49)
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(a) AR.Drone 2.0 Gx-Position
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0

2

x [m] x̂ [m] uV1x [m s−1]

(b) AR.Drone 2.0 V1ẋ-Velocity

70 75 80 85 90 t [s]
−4

−2

0

2

V1ẋ [m s−1] V1 ˆ̇x [m s−1] uV1x [m s−1]

Figure 3.9: AR.Drone 2.0 identification of forward channel

(a) AR.Drone 2.0 Gy-Position

138 140 142 144 146 148 150 152 154 t [s]

−2

0

2
y [m] ŷ [m] uV1y [m s−1]

(b) AR.Drone 2.0 V1ẏ-Velocity

138 140 142 144 146 148 150 152 154 t [s]

−2

0

2

V1ẏ [m s−1] V1ˆ̇y [m s−1] uV1y [m s−1]

Figure 3.10: AR.Drone 2.0 identification of sideward channel
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(a) AR.Drone 2.0 Gz-Position
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0
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1

1.5 z [m] ẑ [m] uV1z [m s−1]

(b) AR.Drone 2.0 V1ż-Velocity
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−1

−0.5

0
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1 V1ż [m s−1] V1ˆ̇z [m s−1] uV1z [m s−1]

Figure 3.11: AR.Drone 2.0 identification of upward channel

(a) AR.Drone 2.0 ΨG-Position
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Ψ [rad] Ψ̂ [rad] uV1ω [rad s−1]

(b) AR.Drone 2.0 VΨ̇-Velocity
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−2
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V1Ψ̇ [rad s−1] V1 ˆ̇Ψ [rad s−1] uV1ω [rad s−1]

Figure 3.12: AR.Drone 2.0 identification of heading channel
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3.7.2 DJI M100 identification

The second type of UAV considered within this thesis is a DJI M100 quadrotor (shown in

Figure 3.13 with attached robotic arm).

Figure 3.13: DJI M100 photography

Its physical properties are given in [Ltd]. In ROS teleoperated mode, the lateral veloc-

ities are limited to

uV1x,orig := {uV1x,orig ∈ R| − 10 m s−1 < uV1x,orig ≤ 10 m s−1} (3.50)

uV1y,orig := {uV1y,orig ∈ R| − 10 m s−1 < uV1y,orig ≤ 10 m s−1} (3.51)

uV1z,orig := {uV1z,orig ∈ R| − 4 m s−1 < uV1z,orig ≤ 4 m s−1} (3.52)

uV1ω,orig := {uV1ω,orig ∈ R| − 100 ◦ s−1 < uV1ω,orig ≤ 100 ◦ s−1}. (3.53)

For the model and its identification, the inputs are normalized. The original inputs (index:

orig) are mapped to the model inputs according to

uV1x =
uV1x,orig

10
uV1y =

uV1y,orig

10
uV1z =

uV1z,orig
4

uV1ω =
uV1ω,orig

100
(3.54)

The DJI M100 ’s fast dynamics and in combination with the spatial constraints of the

available OPTITRACK motion tracking system are problematic. As a consequnce, no

experimental identification with full velocity input steps has been possible. However, DJI

provides a simulator with an accurate data-driven behavior model of the DJI M100 . This

data-driven model of the simulator can be matched with the the velocity reference model

(3.40). For this purpose, the same signal processing is used as for the AR.Drone 2.0 in
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§3.7.1. The pose measurement of the motion capture system is thereby substituted by the

simulator data. In the context of the identification, the communication latency is neglected.

As the DJI M100 ’s internal controller can cope with minor modifications in the UAV ’s

architecture, the resulting velocity reference model is sufficiently precise to serve as MPC

prediction model. The model parameters have been empirically chosen as shown in Table

3.3.

The corresponding response is given in Figure 3.14-3.17. As in §3.7.1, also here V1Ψ is

kept close to zero during the identification of the horizontal and vertical movement. This

allows the direct relation between Gx (Figure 3.14a) with V1ẋ (Figure 3.14b) as well as Gy

(Figure 3.15a) with V1ẏ (Figure 3.15b). The response to the altitude input signal is given in

Figure 3.16 and for the heading input in Figure 3.15. The ̂ symbol is hereby indicating the

model response, while Gx (t), Gy (t), Gz (t) and GΨ (t) are the DJI M100 simulator response.

Particularly the velocity plots show the matching of the developed model with the original

simulator model. The position plots show a difference in their amplitude which is caused by

the integration of the modeling error of the velocity channels. One particularity is V1ż in

Figure 3.16b which states a generally higher upward than downward velocity. Despite the

good fit of model and simulator data, the model quality regarding a real DJI M100 has to be

determined experimentally. For this reason, the developed model is used as prediction model

within an MPC pose tracking scenario in §5.3.2. The closed-loop behavior is then compared

to the same scenario using the developed model to simulate the DJI M100 behavior. This

allows the validatation of the quality of the parametrized DJI M100 HMDV .

ax bx ay by az bz aΨ bΨ

Model -1.0 10.0 -1.0 10.0 -2.0 8.0 -5.0 8.0

Table 3.3: Empirically chosen parameters to match DJI position channels

According to the determined parameters given in Table 3.3, the DJI M100 HMDV

model results to

f (x,u) =



V1ẋ (t) Gox (t)− V1ẏ (t) Goy (t)
V1ẋ (t) Goy (t) + V1ẏ (t) Gox (t)

G ż (t)

−Goy (t) · VΨ̇ (t)
Gox (t) · VΨ̇ (t)

−1.0 · V1ẋ (t) + 10.0 · uV1x (t)

−1.0 · V1ẏ (t) + 10.0 · uV1y (t)

−2.0 · V1ż (t) + 8.0 · uV1z (t)

−5.0 · V1Ψ̇ (t) + 8.0 · uV1ω (t)



. (3.55)
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(a) DJI M100 Gx-Position
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(b) DJI M100 V1ẋ-Velocity
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Figure 3.14: DJI M100 identification of forward channel

(a) DJI M100 Gy-Position
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(b) DJI M100 V1ẏ-Velocity
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V1ẏ [m s−1] V1ˆ̇y [m s−1] uyV1,orig [m s−1]

Figure 3.15: DJI M100 identification of sideward channel
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(a) DJI M100 Gz-Position
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(b) DJI M100 V1ż-Velocity
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Figure 3.16: DJI M100 identification of upward channel

(a) DJI M100 VΨ-Position
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(b) DJI M100 V1Ψ̇-Velocity
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Figure 3.17: DJI M100 identification of heading channel
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3.8 Conclusion

This chapter has presented the modeling of a quadrotor UAV system. This includes a

traditional physical modeling approach with rotor velocity inputs, respectively torque and

thrust inputs. To describe the UAV attitude without Euler-angle singularities, the physical

model is extended using a quaternion attitude description.

The main contribution of this chapter is the development and identification of a kine-

matic model which allows describing the behavior of commercial quadrotors with unknown

internal controller and physical parameters (e.g. inertia). The idea of this model is an

operation of the UAV close to its stationary hover attitude. As a result, the heading VΨ

suffices to describe its attitude. To describe the input response of the UAV , the settling

behavior of the forward, sideward, upward and heading velocities have been approximated

with a PT1 . The resulting hover model with VΨ description (HMDV ) has inherited the

property of the Euler angle singularity. This has been addressed by substituting the VΨ

with a direction vector attitude description (HMDV ). To address MPC in different com-

putational environments, the reduced models RHMY and RHMDV have been presented.

These are using less states and thus memory. Finally, the model parameters have been

identified for a real AR.Drone 2.0 and DJI M100 system. While the identification of the

AR.Drone 2.0 has been conducted via a motion capture system, the higher velocity and

limited laboratory space allowed the identification of the DJI M100 only from the vendor’s

data-driven simulator. Nevertheless, the closed-loop behavior of both models is validated

in §5, discussing UAV control.

Regarding the AR.Drone 2.0 , the identification data revealed nonlinearities which

cannot be fully accommodated by the proposed PT1 description. Furthermore, the

AR.Drone 2.0 behavior has shown to be prone to hull and rotor deformations. For this

reasons, some experiments within this thesis have been conducted with a set of deprecated

model parameters. In these cases, the utilized parameters are explicitly given for the exper-

imental setup. The parameters presented in §3.7.1 have been identified using undeformed

UAV s.

The advantage of the presented hover model for commercial UAV s is its compact state-

vector description and low amount of mathematical operations. This is advantageous in

terms of memory and computation time and particularly important if it is serving as MPC

prediction model on embedded computers. On systems with sufficient computational re-

sources, it might be advantageous to use a full quaternion attitude description instead of

the direction vector approach. This could increase the dynamic performance, particularly

regarding the control of aerial manipulators. Such a full attitude description requires the

identification of Θ and Φ behavior and can be developed straight-forward using the map-

ping (2.24), (3.17). However, depending on the UAV ’s internal attitude control, the PT1

approximation for Θ and Φ velocities might be not very accurate. This can be addressed
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using higher order models or a nonlinear approximation. Hence, a full quaternion model for

commercial UAV s has been omitted in the context of this work in order to limit the scope

of this work and to maintain a generic model.

47



48



Chapter 4

Nonlinear model predictive control

This chapter is dedicated to fast Nonlinear Model Predictive Control (NMPC ) approaches.

Model Predictive Control (MPC ) is the use of optimization techniques for closed-loop con-

trol. The basic idea of MPC is to back-propagate the influence of a plant’s inputs u on the

predicted future behavior in order to determine the current optimal input u∗ (t) for a desired

objective e.g. a desired trajectory xdes (τ), a minimal response time, etc. In order to predict

the plant’s future state x (τ) ∈ Rnx , NMPC is using a nonlinear model of the plant dynam-

ics f (x,u, t) : Rnx ×Rnu ×R→ Rnx . For real-time applications, the considered prediction

horizon length T ∈ R+ is typically limited, due to the resulting computational burden and

the limited precision of prediction models. As a result, the time variable for the prediction

horizon at time instance t ∈ R is defined on the interval τ = {τ ∈ R|t ≤ τ ≤ t+T}. Accord-

ing to the convention defined in §2, the variables evolving over this horizon are indicated

with bold and underlined symbols e.g. x.

As for controllable systems x (τ) is dependent on u (τ), the prediction x (τ) and com-

putation of u (τ) is an iterative process. In order to determine the optimal controls u∗ (t),

it is necessary to define which behavior is considered to be optimal. At time instance t this

can be described in form of an optimal control problem

min
u(·)

J (x,u) = V (x (t+ T ) , t+ T ) +

t+T∫
t

L (x (τ) ,u (τ) , τ) dτ (4.1)

s.t. ẋ (τ) = f (x (τ) ,u (τ) , τ) (4.2)

0 = ceq (x (τ) ,u (τ) , τ) (4.3)

0 ≥ cin (x (τ) ,u (τ) , τ) (4.4)

x (t) = x (τ0) , (4.5)

where a performance functional J (x,u) : Rnx ×Rnu → R (4.1) in Bolza-form is minimized.

This means that the minimization is considering a stage cost functional L which is integrated
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over the horizon, as well as a terminal cost functional V which appears at the end of the

horizon. To take into account the plant dynamics, the minimization of the OCP is subject to

the system dynamics f (x,u, τ) given by (4.2). The OCP can express further restrictions

in terms of equality (4.3) and inequality constraints (4.4). A typical example for such

constraints are for example the input limitations of a plant. For the feedback of the plant’s

behavior at each time instance t, the state prediction is initiated with the real system state

x (t) (4.5). To finally close the loop, u is computed to solve OCP (4.1)-(4.5) and applied

to the real plant. Within the context of this work the standard control policy is applied:

u (τ0 = t) = u (t) . (4.6)

The technical implementation of MPC requires a discretization of time tk = ∆t · k and

the horizon τk [j] = tk + ∆τ · j at each time instance tk. This leads to the characteristic

receding horizon of MPC , as illustrated in Figure 4.1.

tk tk+1 tk+2
∆t ...

tk−1tk−2

τk
t

τ fτ 0

τ k+1

τ fτ 0

τ k+2

τ fτ 0

prediction horizon tk

prediction horizon tk+1

prediction horizon tk+2

past future

xdes (t)

x (t)

x (τ k)

x (τ k+1)

x (τ k+2)

u (t)

u (τ k)

u (τ k+1)u (τ k+2)

∆τ

Figure 4.1: MPC receding horizon scheme
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The MPC algorithms considered within this work are following the scheme of Figure

4.1 which can be summarized in Table 1.

Algorithm 1: Generic MPC Algorithm

while Time loop tk = tk−1 + ∆t do
Initiate prediction horizon with measured state x [tk] = x [tk];
while Iterative solution of OCP in horizon τ = [tk, tk + T ] do

Predict future plant behavior x (τ) with f (x (τ) ,u (τ) , τ);
Compute/Optimize plant controls u (τ) by minimizing J (x,u)

end
Apply control e.g. u [tk+1]→ u (tk+1)

end

The algorithm in Table 1 clarifies that the actual challenge of MPC is to solve its inherent

OCP . This problem can be arbitrarily complex according to the systems dynamics, control

objectives and constraints. The resulting challenges are the complexity of solver algorithms,

high computational burden, variety of solver parameters and the necessity of a plant model.

Consequently, the use of MPC on embedded systems and for fast real-time applications

is limited. However, the possibility of fully exploiting the plant’s dynamics, the simplicity

in defining complex control objectives while maintaining a simple control policy and the

consideration of constraints makes MPC the choice of controller for this work. A summary

of advantages and disadvantages of MPC is given Table 4.1.

MPC advantages and disadvantages

Advantages:

+ 1. plant dynamics can be fully exploited
+ 2. generic consideration of complex control goals
+ 3. simple control policy for complex systems
+ 4. generic consideration of constraints

Disadvantages:

- 1. plant model is required
- 2. high computational load
- 3. high algorithmic complexity
- 4. high number of control parameters

Table 4.1: MPC: advantages and disadvantages

The critical point for the MPC of UAV s is the real-time capability. In this context,

§4 is discussing fast OCP -solvers and constraint handling techniques which are efficient in

terms of memory usage and computation time.
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4.1 State of the art in model predictive control

The real-time capability is a crucial aspect of MPC which has led to a variety of fast

optimization algorithms. A theoretically well-established and widely used fast MPC algo-

rithm is sequential quadratic programming (SQP) in combination with Newton-type solvers

with e.g. Gauß-Newton or Broyden-Fletcher-Goldfarb-Shannon (BFGS ) Hessian approxi-

mation. A compact overview on the convergence of Newton’s method with different Hessian

approximations is provided in [Die14]. A variety of related algorithms are integrated in the

comprehensive NMPC framework ACADO [DFH09]. The computational efficiency and

real-time feasibility for fast mobile robot systems have been validated experimentally. One

example is given in [GM16] where collision avoidance scenarios with an aerial manipula-

tor are presented using BFGS . Another comprehensive nonlinear optimization framework

which contains an SQP implementation is NLopt [Kra88].

An example of a gradient-descent-based fast NMPC framework is GRAMPC (accessible

via [GU14]). The package offers transparent fast code in C . The advantage of gradient-

descent-based approaches is the intuitive parametrization, and that only first-order deriva-

tives of system/cost functions are required. The major drawback is the lower convergence

in comparison to Newton-type methods.

A computationally efficient NMPC alternative is the Continuation Generalized Minimal

RESidual (C/GMRES ) method as presented in [Oht04]. C/GMRES is using a continuation

method [RD83] to trace the optimal solution trajectory. Its underlying concept is intro-

duced in §4.3.3. A compact version in C++ code is freely available under [Oht]. The low

computational burden of C/GMRES makes it particularly suitable for the control of fast

systems, such as e.g gasoline engines [KSJ14], hover crafts [SO02, SO03] and eco-cruise

control scenarios [SAVD16]. To increase the numerical stability, the multiple shooting

derivative MSC/GMRES has been developed in [SOD06]. The related computational effort

is minimized using condensing as shown in [SOD09] and [SO10]. The result is a compu-

tationally efficient and robust condensed multiple shooting derivative CMSC/GMRES . In

the previous publications [DKB+18, DKMV17, DKMV16b, Den16], CMSC/GMRES has

been successfully implemented to control a commercial quadrotor. The low computation

time and real-time capability of CMSC/GMRES has been confirmed experimentally for the

given scenarios. For this reason, this work is also based on CMSC/GMRES .

Another MPC approach is to compute the OCP costs for a predefined set of feasible

control sequences [BMPL+14]. The control sequence with the lowest cost function value is

then applied to the system. The underlying idea is, that a limited set of control sequences

also limits the computational burden. The disadvantage of this method is, that the limited

set can decrease the optimality of the solution and the set size has to be increased with the

nonlinearity of the system.
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Most solvers are solving OCPs by using the corresponding first-order optimality condi-

tions. In this context, a generic approach to describe the optimality of OCPs is Pontryagin’s

Maximum Principle (PMP). A comprehensive summary of PMP for different OCPs and

applied constraints is given in [HSV95, Cha07]. The necessary first-order optimality condi-

tions are thereby derived using the calculus of variations.

The handling of inequality constraints in MPC itself is a wide field of research. An

overview and benchmark of computationally efficient inequality constraint handling tech-

niques with C/GMRES is given in [HNB+15]. This includes the exterior penalty, aux-

iliary variable and the Fischer-Burmeister semi-smooth transformation. A very popular

family of constraint handling methods are primal barrier methods. In the context of eco-

nomic optimization, a variety of barrier functions and their modifications are discussed in

[Gas13, Liu03]. This encyclopedia of economic optimization also features active set con-

straint handling methods for QP . The major disadvantage of primal barrier and auxiliary

variable methods is that a violation leads to an infeasible OCP and accordingly to a crash

of the MPC solver. This is particularly problematic for light-weight solvers, as they do not

prevent from invalid values (inf, nan) within the prediction horizon. Consequently, they

do not automatically recover from an infeasible state. If a small constraint violation can

be accepted, one way to avoid this problem is the use of soft constraints. An example for

such a transformation into a soft constraint is the saturation function approach. A satu-

ration function approach is approximating the inequality constraint switching behavior by

an analytical function (e.g. sigmoid [LL17], tanh). The result is a potential function. A

comprehensive study on such saturation function approaches in combination with MPC

of multi UAV scenarios is given in [BMPL+14]. The provided examples include Collision

Avoidance (CA), area exploration and formation flying.

Due to the complexity of NMPC algorithms, a major challenge is to prove closed-loop

stability. In order to limit the scope of this work, the theoretical stability analysis has been

omitted throughout this thesis. A short stability discussion is given in §4.6. The local

stability is stated by experimental results. More detailed information about NMPC stabil-

ity analysis of discrete NMPC has been published in [GP17]. It provides stability proofs

using stabilizing terminal constraints and relaxation of dynamic programming. Another

generic framework for NMPC stability proofs is Input-to-State-Stability [DFH09] which

exploits the boundness and convergence of the cost function. Less known algorithms like

C/GMRES are still suffering from limited theoretical analysis. While [Oht04] is stating

the boundness of error for the optimality condition under certain conditions, there has not

been any publication which is theoretically stating the closed-loop stability of any physical

system to the author’s knowledge. In his lecture notes [Die17] Prof. Diehl is mentioning,

that the stability proof for C/GMRES is in principle covered by the stability analysis of a

real-time iteration scheme presented in [DFA07]. Nevertheless, this has to be combined with
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the theoretical analysis of the C/GMRES inherent continuation method and Krylov-space

solver FDGMRES [Kel95]. An introduction of Krylov-space techniques for linear systems

is given in [Gut07].

4.2 Optimality

In the context of MPC , fast solvers are typically assuming convexity and exploiting the

first-order optimality conditions to solve OCPs. For static optimization problems these

optimality conditions are known as Karush-Kuhn-Tucker (KKT ) conditions as given in

§4.2.1. By using calculus of variations, similar conditions can be derived for dynamic OCPs

known as Pontryagin’s maximum principle (PMP), as further discussed in §4.2.2.

4.2.1 Static optimization problems

Considering a constrained static optimization problem of the form

min
u

J (u) J : Rnu → R, J ∈ C2 (4.7)

s. t. 0 ≥ cin (u) cin : Rnu → Rncin , cin ∈ C2 (4.8)

0 = ceq (u) ceq : Rnu → Rnceq , ceq ∈ C2, (4.9)

the optimal point u∗ is minimizing the cost functional J (u) while satisfying equality ceq

and inequality constraints cin. In this context, C2 is the class of continuous functions with

continuous first and second derivative. We assume the existence of a unique solution of

(4.7)-(4.9) based on the convexity of J (u). For equality constraints, the optimal point is

given if the negative cost gradient −∇uJ (u) and the constraint gradient ∇uceq (u) are

parallel:

−∇uJ (u) = λeq∇uceq (u) . (4.10)

For an inequality constraint there are two cases to distinguish. In the first case, the

minimum of J (u) lays within the feasible region. As a result, the problem solution is inde-

pendent of the inequality constraint. The second case considers the minimum of J (u) to lay

outside the region compliant with cin. To evaluate this case, (4.10) for equality constraints

has to be extended. For inequality constraints the constraint gradient ∇ucin (u) is pointing

in the direction of the incompliant region. For minimization problems the negative gradient

−∇uJ (u) of the cost constraint is pointing towards the minimum of J (u). This requires

−∇uJ (u) and ∇ucin (u) to point in opposite directions at the optimal point u∗

−∇uJ (u) = λin∇ucin (u) ∧ λin ≥ 0. (4.11)
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The optimality conditions (4.10)-(4.11) for the constraint problem (4.7)-(4.9) can be

generalized with the Lagrangian

L (u) = ∇uJ (u) + λin
>∇ucin (u) + λeq

>∇uceq (u) . (4.12)

This results in the Karush-Kuhn-Tucker (KKT ) optimality conditions [Noc06]:

Karush Kuhn Tucker (KKT ): first order optimality conditions

Stationary condition: 0 = ∇uL (u) (4.13)

Complementary slackness condition: 0 = λin
>cin (u) (4.14)

Primal feasibility condition: 0 ≥ cin (u) (4.15)

0 = ceq (u)

Dual feasibility condition: 0 ≥ λin (4.16)

The first-order optimality conditions (4.13)-(4.16) are necessary conditions. To reach

to sufficient optimality conditions, it has to be ensured that the optimal point u∗ is a local

minimum. For an unconstrained problem, this is guaranteed if the Hessian is positive semi

definite

∇2
uuL (u) > 0. (4.17)

For the constraint case, the minimum of J (u) can also lay on an active constraint. Accord-

ingly, the Hessian has to increase in the feasible area around the considered u

s>∇2
uuL (u) s > 0 ∀s (4.18)

s ∈ Rnu s.t. 0 = ceq (u) ∧ 0 ≥ cin (u) (4.19)

4.2.2 Optimality of dynamic optimal control problems

Control is typically applied on dynamically changing systems, wherefore the static optimiza-

tion approach (4.7)-(4.9) has to be extended. First, the unconstrained case of a dynamic

OCPs is considered, as following

min
u(·)

J (u) = V (x (t+ T ) , t+ T ) +

t+T∫
t

L (x (τ) ,u (τ) , τ) dτ (4.20)

s. t. ẋ (τ) = f (x (τ) ,u (τ) , τ) (4.21)

x (t) = x (t) . (4.22)
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The particular condition here is the explicit appearance of the system dynamics (4.21). The

optimality conditions of dynamic OCPs can be derived similarly to the KKT optimality

conditions for static OCPs. For means of visibility, the time dependency within the horizon

is not explicitly shown in the following, e.g. L (x (τ) ,u (τ) , τ)⇒ L (x,u, τ) Analog to (4.12)

for static optimization problems, the optimality conditions for the dynamic optimization

problem (4.20)-(4.22) can be generalized using the Hamiltonian

H (x,u,λ, τ) = L (x,u, τ) + λ>f (x,u, τ) . (4.23)

Under the assumption of a given horizon length T , the necessary optimality conditions for

OCP (4.20)-(4.22) can be derived using calculus of variations [Cha07, p.114,129]

Optimality conditions for unconstrained OCP

First order optimality conditions:

ẋ (τ) = +∇λH (x,u,λ, τ) = f (x,u, τ) (4.24)

λ̇ (τ) = −∇xH (x,u,λ, τ) = −∇xL (x,u,λ, τ)−
(
∇xf (x,u,λ, τ)

)>
λ (4.25)

0 = +∇uH (x,u,λ, τ) = +∇uL (x,u,λ, τ) +
(
∇uf (x,u,λ, τ)

)>
λ (4.26)

Transversality condition: λ (t+ T ) = ∇xV (t+ T )
∣∣
t+T

(4.27)

Boundary condition: x (t) = x (t) (4.28)

Legendre-Clebsch condition: ∇2
uuH (x,u,λ, τ) p.s.d. (4.29)

If equality constraints

ceq : Rnu × Rnu × R→ Rnceq , ceq ∈ C2, (4.30)

have to be considered, the OCP results to

min
u(·)

J (u) = V (x (t+ T ) , t+ T ) +

t+T∫
t

L (x (τ) ,u (τ) , τ) dτ (4.31)

s. t. ẋ (τ) = f (x (τ) ,u (τ) , τ) (4.32)

0 = ceq (x (τ) ,u (τ) , τ) , (4.33)

x (t) = x (t) , (4.34)

Accordingly the Hamiltonian is extended to the Lagrangian by the constraint terms

L (x,u,λ, τ) = H (x,u,λ, τ) + λeq
>ceq (x,u, τ) (4.35)

L (x,u,λ, τ) = L (x,u, τ) + λ>f (x,u, τ) + λeq
>ceq (x,u, τ) . (4.36)
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Calculus of variations confirms the direct extension of the Euler-Lagrange equations (4.24)-

(4.26) to

ẋ (τ) = ∇λL (x,u,λ, τ) (4.37)

λ̇ (τ) = −∇xL (x,u,λ, τ) (4.38)

= −∇xL (x,u,λ, τ)−
(
∇xf (x,u,λ, τ)

)>
λ−

(
∇xceq (x,u,λ, τ)

)>
λeq

0 = ∇uL (x,u,λ, τ)

= ∇uL (x,u) +
(
∇uf (x,u,λ, τ)

)>
λ+

(
∇uceq (x,u,λ, τ)

)>
λeq (4.39)

0 = ceq (x,u,λ, τ) (4.40)

For inequality constraints

cin : Rnu × Rnu × R→ Rncin , cin ∈ C2, (4.41)

the resulting optimality conditions are differing according to the nature of each constraint.

A comprehensive collection on these are given by [Cha07, p.133-161] which includes OCPs

with mixed sets of pure and mixed state constraints. To limit the scope of this work, here

only the PMP for OCPs with mixed inequality constraints from [Cha07, p.149] shall be

given:

min
u(·)

J (u) = V (x (t+ T ) , t+ T ) +

t+T∫
t

L (x (τ) ,u (τ) , τ) dτ (4.42)

s. t. ẋ (τ) = f (x (τ) ,u (τ) , τ) (4.43)

0 ≥ cin (x (τ) ,u (τ) , τ) , (4.44)

0 = ceq (x (τ) ,u (τ) , τ) , (4.45)

x (t) = x (t) . (4.46)

It is assumed, that each inequality constraint concatenated in cin (x (τ) ,u (τ) , τ) depends

explicitely on u. This can be checked with the rank condition:

rank
(
∇ucin (x (τ) ,u (τ) , τ) , diag (cin (x (τ) ,u (τ) , τ))

)
= ncin . (4.47)

Under use of the Lagrangian

L (x,u,λ, τ) = L (x,u, τ) + λTf (x,u, τ) + λin
Tcin (x,u, τ) + λeq

Tceq (x,u, τ) . (4.48)

the necessary first-order optimality conditions can be written as [Cha07, p.150]:
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Necessary first order optimality conditions for OCP using PMP

Maximum principle:

H
(
x,ϕ,λ, τ

)
≥ H (x,u,λ, τ) ∀ϕ ∈ {u ∈ Rnu : 0 ≥ cin (x,u, τ)} (4.49)

Euler-Lagrange equation:

ẋ = ∇λL (x,u,λ, τ) = f (x,u,λ, τ) (4.50)

λ̇ = −∇xL (x,u,λ, τ) = −∇xL (x,u,λ, τ)−
(
∇xf (x,u,λ, τ)

)>
λ

−
(
∇xceq (x,u,λ, τ)

)>
λeq −

(
∇xcin (x,u,λ, τ)

)>
λin (4.51)

0 = ∇uL (x,u,λ, τ) = ∇uL (x,u) +
(
∇uf (x,u,λ, τ)

)>
λ

+
(
∇uceq (x,u,λ, τ)

)>
λeq +

(
∇ucin (x,u,λ, τ)

)>
λin (4.52)

Complementary Condition:

0 = ∇ucin,k (x,u,λ, τ)λink, 0 ≤ λin,k (τ) k ∈ [1, ..., ncin ] (4.53)

Constant Hamiltonian Condition:

H (x,u,λ, τ) = −
t+T∫
t

∇τL (x,u,λ, τ) dτ (4.54)

with H (x (t+ T ) ,u (t+ T ) ,λ (t+ T ) , t+ T ) = 0

The maximum principle (4.49) for the problem (4.42)-(4.46) is mathematically stating

the following. The control space is constrained by the given inequality constraints. Every

Hamiltonian of this constrained control space is higher than the Hamiltonian of the optimal

control trajectory. If the unconstrained optimal solution lays outside of this constrained

control space, the constrained optimal solution is accordingly found on the boundary of the

constrained control space. Otherwise, the unconstrained and constrained optimal solution

coincide. More detailed information regarding PMP is given in [Cha07, p.150]. Particularly

the canonical equations (4.50)-(4.52) are important as they are used to solve OCPs in fast

NMPC solvers.
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4.3 Solvers

The major effort in MPC is to solve the underlying OCP . As every technical problem

can be reformulated as optimization problem, there is vast literature on optimization tech-

niques and solvers. Of particular interest for this thesis are fast solvers that are able to

solve nonlinear problems in the form of OCP (4.1)-(4.5). In the following, §4.3 assesses

a selection of promising algorithms for UAV control. This includes ACADO ’s Gauß-

Newton SQP , GRAMPC ’s adaptive gradient-descent approach and C/GMRES , respec-

tively CMSC/GMRES . As related work for C/GMRES (e.g. [Oht04]) and CMSC/GMRES

(e.g. [SOD09]) are written very compact, the related sections §4.3.3, respectively §4.3.4,

give a detailed step by step derivation of the algorithms in order to facilitate future work

in the direction of stability proofs.

4.3.1 Gauß-Newton sequential quadratic programming

Omitting inequality constraints for means of visibility, the optimality conditions for the

static optimization problem (4.7)-(4.9) can be concatenated to [Die14]

w :=

[
u

λ

]
, 0 = f (w) =

[
∇uL (u,λ)

c (u)

]
. (4.55)

As a remark, the concatenated optimality conditions f are differing from the system dy-

namics f . Assuming convexity, the optimal u can be computed iteratively with Newton’s

method [Die14]

f
(
wj
)

+
∂f
(
wj
)

∂wj

(
wj+1 −wj

)
= 0. (4.56)

which uses a linearization of f at current iterate wj . With the concatenated optimality

conditions (4.55), the Newton iteration (4.56) yields [Die14][
∇uL

(
uj ,λj

)
c
(
uj
) ]

+

[
∇2
uuL

(
uj ,λj

)
∇uc

(
uj
)

∇uc
(
uj
)>

0

][
uj+1 − uj

λj+1 − λj

]
= 0. (4.57)

Using the Lagrangian derivative

∇uL (u,λ) = ∇uJ (u) +∇uc (u)λ (4.58)

the Newton iteration (4.57) can be further simplified to [Die14][
∇uJ

(
uj
)

c
(
uj
) ]

+

[
∇2
uuL

(
uj ,λj

)
∇uc

(
uj
)

∇uc
(
uj
)>

0

][
uj+1 − uj

λj+1

]
= 0 (4.59)
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For the system 4.59, the Newton iteration results to [Die14][
uk+1

λk+1

]
=

[
uk+1

0

]
+

[
∇2
uuL

(
uj ,λj

)
∇uc

(
uj
)

∇uc
(
uj
)>

0

]−1 [
∇uJ

(
uj
)

c
(
uj
) ]

(4.60)

As shown in (4.60), the exact Newton method requires the inverse of the Hessian which is

computationally expensive. Newton-type methods try to overcome this by approximating

the Hessian ∇2
uL
(
uj ,λj

)
≈ Aj . A common approximation for a least square cost-function

is the Gauß-Newton approximation ∇2
uL
(
uj ,λj

)
≈ ∇uR∇uR> The most common types

of approximations are given in Table 4.2 [Die14].

Method Exact Hessian Gauss-Newton BFGS

A ≈ Hessian ∇2
uL (u,λ) ∇uR∇uR> A− As(s)>A

(s)>As
+ yy>

(s)>y

Convergence Quadratic: Linear: Super-linear:

‖wk+1 −w∗‖ ≤
w
2
‖wk+1 −w∗‖2 κ‖wk+1 −w∗‖

κ = O (‖R (x∗) ‖)
κ‖wk+1 −w∗‖

κ→ 0

Table 4.2: Newton-type algorithms with different approximations of the Hessian

The Newton iteration (4.59) is equally representing the optimality conditions for the

quadratic program [Die14]

min
u

∇J
(
uj
)> (

u− uj
)

+
1

2

(
u− uj

)>
Aj
(
u− uj

)
(4.61)

s. t. ceq
(
uj
)

+∇ceq
(
uj
)> (

u− uj
)
. (4.62)

As a consequence, the sequential iteration of Newton’s method can be interpreted as Se-

quential Quadratic Programming SQP [Die14]. In order to solve a dynamic OCPs with

SQP , the horizon is discretized and the controls are considered as independent optimiza-

tion variables. This transforms the dynamic OCP into a static optimization program, which

can accordingly be solved using SQP . In the context of this work, the ACADO inherent

SQP implementation is used as a representative SQP implementation.
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4.3.2 GRAMPC

A well-documented platform for fast NMPC which offers a compact efficient code structure

is GRAMPC . It features NMPC for OCPs with control input limitations. The inherent

OCP is solved by finding the root of the first-order optimality condition with a gradient-

based line-search. The GRAMPC package offers a variety of different step width calculation

approaches and integration methods. Besides the computationally efficient algorithms, one

advantage of this library is its transparency and lean design in C which facilitates mod-

ifications. The package also contains examples for NMPC problems, specifically also for

a quadrotor. Further details are given in the related publications [GU14, Gra13]. In the

following section GRAMPC is applied to the nonlinear physical UAV model introduced in

§3.2.

Table 2 shows the control algorithm. The presented GRAMPC configuration uses an

adaptive step size calculation that is based on a parabolic interpolation of H (α). The

forward and backward integration is executed with the HEUN scheme.

Algorithm 2: Sequence of used GRAMPC configuration [GU14]

while Time loop tk = tk−1 + ∆t k ∈ N+ do
Measure present states x (tk) = x (tk)
while Gradient Iterations j ∈ N+ do

Adaptation of step width interval α ∈ [αlow, αhigh]

[αlow, αhigh]←


2
3

[αlow, αhigh] if αj−1 ≥ αhigh + 0.1 (αhigh − αlow)
3
2

[αlow, αhigh] if αj−1 ≥ αhigh + 0.1 (αhigh − αlow)
[αlow, αhigh] otherwise

Calculate control trajectory for the different step widths αj, αlow, αhigh
ujk (τ) = uk−1 (tk)− α · Lu

(
xk,uk−1,λk−1, tk

)
Forward integration with HEUN -integrator of equation 4.24, 4.50
xjk (τ) =

∫ tk+T

tk
f
(
xj−1
k ,ujk, τ

)
∂τ

Backward integration with HEUN -integrator of equation 4.24, 4.50
λjk (τ) = ∇xV (tk + T )−

∫ tk
tk+T
∇xL

(
xjk,u

j
k, τ
)
dτ

Calculate αjopt as parabolic minimum of over αj, αlow, αhigh
min
αj

J
(
xjk (tk) ,u

j
k (tk)

)
Calculate and apply control trajectory for αjopt
uk (tk) = uk−1 (tk)− αopt,k · Hu

(
xk−1,uk−1,λk−1, tk

)
end
Apply control uk (tk+1)→ u (tk+1)

end
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4.3.3 C/GMRES

Another fast NMPC algorithm is the C/GMRES -Method proposed in [Oht04]. In contrast

to the line-search method introduced in §4.3.2, C/GMRES calculates the control trajectory

update explicitly. To explain its principle of operation, we consider following discrete OCP

[Oht04]

min
u

J (x (t) ,u (t) , t) = V (xN (t) , t+ ∆τ ·N) +
N−1∑
l=0

L (xl (t) ,ul (t) , tl) dt

s. t. xl+1 (t) = xl (t) + ∆τ · f (xl (t) ,ul (t) , tl) ∈ Rnx

0 = ceq (xl (t) ,ul (t) , tl) ∈ Rnceq

x0 (t) = x (t)

(4.63)

which leads to the Lagrangian [Oht04]

L
(
x,λ,u,λeq

)
:= L (x,u) + λTf (x,u) + λeq

Tceq (x,u) . (4.64)

Where ceq are equality constraints and λeq are the corresponding Lagrange multipliers.

The necessary first-order condition according to calculus of variations (see §4.2) results in

0 = ∇uL
(
xl (t) ,λl+1 (t) ,ul (t) ,λeq l

(t)
)
∈ Rnu . (4.65)

Ohtsuka in [Oht04] considers the equality constraint Lagrange multipliers λeq as additional

input, which leads to the combined discretized control vector

w (t) :=
[
uT

0 (t) λeq
T

0
(t) uT

1 (t) λeq
T

1
(t) ... uT

N−1 (t) λeq
T

N−1
(t)
]
∈ Rnu×N .

(4.66)

Furthermore the optimality conditions and constraints can be combined to the vector con-

dition [Oht04]

0 = f (w (t) ,x (t) , t) =



∇uLT
(
x0 (t) ,λ1 (t) ,u0 (t) ,λeq

0
(t)
)

ceq (x0 (t) ,u0 (t) , t)
...

∇uLT
(
xN−1 (t) ,λN (t) ,uN−1 (t) ,λeq

N−1
(t)
)

ceq
(
xN−1 (t) ,uN−1 (t) , t

)


(4.67)

The idea of C/GMRES is to trace the time-dependent variation of the optimal solution,

instead of directly solving (4.67) with Newton’s method. This is computationally efficient.

To start the MPC within a feasible set, u is chosen to satisfy u (0) = 0. The basic idea is
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to stabilize the system asymptotically in the origin with the constraint (4.68)

ḟ = −ξf. (4.68)

This allows determining ḟ explicitly via the derivative of (4.68) which results in

ẇ = f−1
w

(
−ξf− fxẋ− ft

)
. (4.69)

The stabilization factor ξ is chosen according to the system dynamics. Determining the

inverse of the Jacobian f−1
u and the Jacobian themselves with analytical methods is com-

putational expensive. To tackle this issue, equation (4.69) is reformulated with the finite

forward difference method. This method is explained in detail in [KK04, AWF11]. An

example for R2 is shown in (4.70) as

∂f (x1, x2)

∂ [x1, x2]T
σ =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
σ ≈

[
f1(x1+hσ1,x2+hσ2)−f1(x1,x2)

h
f2(x1+hσ1,x2+hσ2)−f1(x1,x2)

h

]
, (4.70)

with x =
[
x1 x2

]T
, σ =

[
σ1 σ2

]T
, f (x1, x2) =

[
f1 (x1, x2) f2 (x1, x2)

]T
.

The same forward difference approximation can be used to approximate the Jacobian ḟ

in (4.68). This is shown in (4.72) and can be reformulated to (4.73)

ḟ (w,x, t) = −ξf (w,x, t) (4.71)

f (w + hẇ,x+ hẋ, t+ h)− f (w,x, t)

h
= −ξf (w,x, t) (4.72)

f (w + hẇ,x+ hẋ, t+ h)

h
= −ξf (w,x, t) +

f (w,x, t)

h
. (4.73)

To create sparse vectors, equation (4.73) is expanded by f (w,x+ hẋ, t+ h) /h. In the

resulting equation (4.74)-(4.75) the unknown ẇ appears only on the left side

lhs : =
f (w + hẇ,x+ hẋ, t+ h)− f (w,x+ hẋ, t+ h)

h
(4.74)

rhs : =
(1− ξh) f (w,x, t)− f (w,x+ hẋ, t+ h)

h
. (4.75)

The solution of the equation system can be calculated via FDGMRES . FDGMRES is

the nonlinear implementation of the Krylov-space solver GMRES . It avoids matrix-matrix

multiplications and therefore exploits the sparsity of the rhs and lhs. The result is a

fast convergence to a sufficient approximation of w. According to the lhs (4.74), each

computation of the lhs requires only two evaluations of f. Finally the update of w results

to
wk+1 = wk + ∆t · ẇk k = N+. (4.76)
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The resulting algorithm is schematically displayed in Table 3.

Algorithm 3: Sequence of used C/GMRES configuration

while Time loop tk = tk−1 + ∆t k ∈ N+ do
Measure present states x (tk) = x (tk)
while Iterative solution of OCP j ∈ N+ do

Forward integration with explicit Euler-integrator of equation 4.24, 4.50
xjk (τ) =

∫ tk+T

tk
f
(
xj−1
k ,ujk, τ

)
∂τ

Backward integration with explicit Euler-integrator of equation 4.24,
4.50
λjk (τ) = ∇xV (tk + T )−

∫ tk
tk+T
∇xL

(
xjk,w

j
k, τ
)
dτ

Calculate optimal ẇj with FDGMRES method by solving
f(wj+hẇj ,xj+hẋj ,t+h)−f(wj ,xj+hẋj ,t+h)

h
=

(1−ξh)f(wj ,xj ,t)−f(wj ,xj+hẋj ,t+h)
h

Update control trajectory
wj+1
k = wj

k + ∆t · ẇj
k

end

wk = wj+1
k

Apply control wk (tk)→ w (tk)
end

4.3.4 CMSCGMRES

The stability of C/GMRES presented in §4.3.3 can be increased with a multiple shooting

extension [SOD06]. This is connected with a higher computational effort per iteration, but

is advantageous in terms of convergence and stabilization of nonlinear systems. The idea

of multiple shooting is not to integrate the states consecutively from x (t) to x (t+ T ), but

instead to integrate from every state x (τ l) only one step. l is hereby the iterator within the

prediction horizon. Subsequently, the states are then updated according to the condition

for a continuous state trajectory:

0 = xj (τ l+1)−

xj (τ l) +

τ l+∆τ∫
τ l

f (x (τ) ,u (τ) , τ) dτ

 l ∈ N+. (4.77)

The index l is hereby indicating the position within the prediction horizon. According to

the duality of the system, this continuity condition can also be derived for λ. Under use of

the concatenated state and adjoint state vector over the horizon

$ (t) :=
[
xT

1 (t) λT
1 (t) ... xT

N (t) λT
N (t)

]
∈ R2nx×N , (4.78)
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the continuity conditions can be composed accordingly

0 = g (w (t) ,$ (t) ,x (t) , t) =



x1 − (x0 + ∆τf (x0,w0))

λ1 −
(
λ2 − ∂L

∂x (x1,λ1,w2)T
)

...

xN −
(
xN−1 + ∆τf

(
xN−1,wN−1

))
λN−1 −

(
λN − ∂L

∂x

(
xN−1,λN−1,wN

)T)
λN − V (xN ,wN )


. (4.79)

This has the advantage that the initial state is not integrated over the whole horizon (Single

shooting), but system is always integrated with respect to the previous prediction. As a

result the numerical stability is higher for nonlinear systems. To use this technique with

the C/GMRES method, the continuation method (equation 4.68-4.69) is extended [SOD06]

to

ḟ = −ξwf (4.80)

ġ = −ξ$g. (4.81)

The idea here is that the state prediction error shall also converge to zero. However,

the additional solving of (4.81) leads to a larger problem dimension and a related high

computation time. The idea of condensing is thus to combine (4.80)-(4.81) to reduce the

system order. Starting with the partial derivative formulation of (4.81)-(4.81)

fwẇ + f$$̇ + fxẋ+ ft = ξwf (4.82)

gwġ + g$$̇ + gxẋ+ gt = ξ$g, (4.83)

$̇ can be isolated in (4.83):

$̇ = g−1
$

(
ξ$g− gwẇ − gxẋ− gt

)
. (4.84)

Inserting (4.84) in (4.82)

fwẇ + f$g−1
$

(
ξ$g− gwẇ − gxẋ− gt

)
+ fxẋ+ ft = ξwf (4.85)

To use the GMRES method efficiently, the right-hand side has to be independent from the

variable to be determined. For this reason, all terms with the desired update variable ẇ in

(4.86) are isolated to the left-hand side

(
fw + f$g−1

$ gw
)
ẇ = ξwf− fxẋ− ft − f$g−1

$

(
ξ$g− gxẋ− gt

)
. (4.86)
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The result is a nonlinear correspondence to the linear input affine form

Ax = b (4.87)

which can be solved with FDGMRES .

Left-hand side

The main issue of (4.86) is the calculation of g−1
$ . To address this issue, first only the

left-hand side is considered and the dummy vector σ is introduced:

lhs = fwẇ + f$g−1
$ gwẇ (4.88)

lhs = fwẇ + f$σ (4.89)

with σ = g−1
$ gwẇ. (4.90)

As the inversion of matrix g in (4.90) is expensive, σ is approximated with a forward

approximation quotient. For this reason, (4.90) is reformulated

g$σ = gwẇ (4.91)

gwẇ − g$σ = 0. (4.92)

This can be approximated with the forward difference quotient

gwẇ − g$σ ≈
g (w + hẇ,$ + hσ,x+ hẋ, t+ h)− g (w,$,x+ hẋ, t+ h)

h
, (4.93)

which inserted in (4.92) leads to the relation

g (w + hẇ,$ + hσ,x+ hẋ, t+ h) = g (w,$,x+ hẋ, t+ h) . (4.94)

(4.94) can be solved iteratively at each control input computation iteration. The result

has still to be inserted into (4.89). By introducing a dummy vector σ, (4.89) can be

formulated with a forward difference quotient. This avoids the explicit computation

of the partial derivatives of f

lhs = fwẇ + f$σ ≈
f (w + hẇ,$ + hσ,x+ hẋ, t+ h)− f (w,$,x+ hẋ, t+ h)

h
. (4.95)

Here, (4.95) is dependent on the next state approximation $ + hσ which has to

be eliminated. Before, g has been defined as the state integration difference ζ for

each point on the time grid within the horizon. Therefore the next state can be

approximated by integrating the system and adding this error ζ. This is achieved by
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the mapping

$ + hσ = f (w, ζ,x, t) =


xk + hf (xk,uk) + ex,k+1

λk+2 − h∂L∂x
(
xk+1,λk+2,uk+1,λeqk+1

)
+ eλ,k+1

...

V (xN ) + eλ,N

 . (4.96)

In (4.95)$+hσ appears in the context of the approximation withw+hẇ,x+hẋ, t+h

in f. Accordingly the following integration error has to be found

ζ = g (w + hẇ,$ + hσ,x+ hẋ, t+ h) (4.97)

which appears in relation (4.94). As a consequence, (4.94) can be inserted into (4.96)

and subsequentially (4.95). This finally results to the left-hand side:

lhs := −f (w,$,x+ hẋ, t+ h)

h

+
f (w + hẇ, f (w + hẇ,g (w,$,x+ hẋ, t+ h) ,x+ hẋ, t+ h) ,x+ hẋ, t+ h)

h
(4.98)

Right-hand side

Going back to the right-hand side of (4.86)

rhs := ξ$f− fxẋ− ft − f$g
−1
$

(
ξg− gxẋ− gt

)
. (4.99)

which again contains an inverse expression that can be approximated by introducing

a dummy σ. This is a new dummy variable and not connected with the dummy σ

introduced for the left-hand side!

rhs := −ξwf− fxẋ− ft − f$σ (4.100)

with σ = g−1
$

(
ξ$g− gxẋ− gt

)
. (4.101)

Building the products in (4.101) leads to

g$σ + gxẋ− gt = −ξ$g (4.102)

which can be approximated with the forward difference to

g (w,$ + hσ,x+ hẋ, t+ h)− g (w,$,x, t)

h
≈ −ξ$g (w,$,x, t) . (4.103)
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(4.103) can be reformulated to

g (w,$ + hσ,x+ hẋ, t+ h) = (1− hξ$)g (w,$,x, t) . (4.104)

This can be inserted in the forward difference approximation of equation (4.100)

rhs :≈ −ξwf (w,$,x, t)− f (w,$ + hϕ,x+ hẋ, t+ h)− f (w,$,x, t)

h
(4.105)

Similarly to the left-hand side, the mapping f is used to determine $ + hϕ.

$ + hϕ = f (w,g (w,$ + hϕ,x+ hẋ, t+ h) ,x+ hẋ, t+ h) . (4.106)

As a remark, the difference to the lhs is that there is no partial derivative fw on the

right-hand side, and thus also no w + hẇ. Finally, (4.104) is inserted into (4.106)

to get rid of $ + hϕ. With another insertion into (4.105), this results to the full

right-hand side:

rhs :≈
(

1

h
− ξw

)
f (w,$,x, t)

−
f
(
w, f

(
w,
(
1− hξ$

)
g (w,$,x, t) ,x+ hẋ, t+ h

)
,x+ hẋ, t+ h

)
h

(4.107)

To finally solve the complete condensed multiple shooting problem, the combination

of left-hand side (4.98) and right-hand side (4.107) are solved together:

f (w + hẇ, f (w + hẇ,g (w,$,x+ hẋ, t+ h) ,x+ hẋ, t+ h) ,x+ hẋ, t+ h)

−f (w,$,x+ hẋ, t+ h) =
(
1− hξw

)
f (w,$,x, t)

−f
(
w, f

(
w,
(
1− hξ$

)
g (w,$,x, t) ,x+ hẋ, t+ h

)
,x+ hẋ, t+ h

)
. (4.108)

68



4.4 NMPC Benchmark

To assess the potential of the NMPC solvers introduced in §4.3, they are used to

control the physical model (3.14) in a simulative environment. The scenario is sim-

ulating a closed-loop state (3.1) change from the initial (x (0), u (0)) to the desired

state (xdes, udes)

x (0) = (1,−1, 1, 0, 0, 0, 0, 0, 0.5π, 0, 0, 0)T (4.109)

u (0) = (9.81, 0, 0, 0)T (4.110)

xdes = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T (4.111)

udes = (9.81, 0, 0, 0)T (4.112)

Q = diag
([

10, 10, 10, 0, 0, 0, 1, 1, 1, 0, 0, 0
])

(4.113)

R = diag
([

0.1, 0.1, 0.1, 0.1
])

(4.114)

using the trajectory error penalty (Q, R). The parameters of model (3.14) are chosen

in the scenario to g = 9.81 m s−1, m = 1 kg, ιx = 1 kg m2, ιy = 1 kg m2 and ιz =

0.5 kg m2. The NMPC solvers are applied using the same prediction horizon length

T = 2 s, horizon discretization N = 20 s ↔ ∆τ = 0.1 s and control update interval

∆t = 0.1 s. The inherent OCP with the physical model (3.14) accordingly results to

min
u(·)

=

t+T∫
t

(xdes − x (τ))TQ (xdes − x (τ)) + (udes − u (τ))TR (udes − u (τ)) dτ

s.t. ẋ (τ) =



Gẋ
G ẏ
G ż

BΓz(cos V2Φ cos VΨ sin V1Θ + sin V2Φ sin VΨ)
BΓz(− cos VΨ sin V2Φ + cos V2Φ sin V1Θ sin VΨ)

−9.81 + BΓz cos V1Θ cos V2Φ
B% + Bω cos V2Φ tan V1Θ + Bϑ sin V2Φ tan V1Θ

Bϑ cos V2Φ − Bω sin V2Φ

(Bω cos V2Φ + Bϑ sin V2Φ) sec V1Θ
BΛx + 0.5BϑBω
BΛy − 0.5B%Bω

1
0.5
BΛz


x (t) = x (t) .
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Under the defined conditions, no stable parametrization for C/GMRES could

be found. For this reason, this benchmark comprises the simulation results for

GRAMPC , CMSC/GMRES and the ACADO inherent multiple shooting SQP with

Gauß-Newton approximation of the Hessian. The solver specific parametrizations

are given in Table 4.3 in the solver related nomenclature. If not explicitly given,

the default solver properties are used. As each solver provides different integration

schemes, the computationally least demanding scheme which provides a stable solu-

tion is used. Table 4.3 demonstrates the extent and complexity of NMPC solvers

and their parametrization. Due to this complexity, a qualitative comparison in detail

could not be conducted in the context of this work. Important properties are hereby

the numerical stability, convergence and computational effort. For this reason, the

goal of this benchmark scenario is not the qualitative analysis, but the demonstration

of feasibility and potential of the considered solvers.

GRAMPC
Nmaxit(imax) = 100 ShiftControl = on
ScaleProblem = on CostIntegrator = simpson

Integrator = heun IntegratorRelTol = 10−4

IntegratorAbsTol = 10−3 LineSearchType = adaptive
LineSearchMax = 2.0 LineSearchMin = 10−5

LineSearchInit = 0.1 LineSearchIntervalFactor = 0.5
LineSearchAdaptFactor = 2.0 JacobianX = sysjacxadj

LineSearchIntervalTol = 10−3 JacobianU = sysjacuadj
SQP

INTEGRATOR TYPE = INT RK4
DYNAMIC SENSITIVITY = FORWARD SENSITIVITY

USE IMMEDIATE FEEDBACK = YES
HESSIAN APPROXIMATION = GAUSS NEWTON

DISCRETIZATION TYPE = MULTIPLE SHOOTING
CMSC/GMRES

Integrator = Explicite Euler alpha(υ) = 1.5
zeta(ξ) = 10 hdir(h) = 10−3

rtol(ε) = 10−5 kmax(imax) = 5

Table 4.3: NMPC solver parametrization for benchmark scenario, given in the solver
inherent nomenclature

The resulting system trajectories are given in Figure 4.2-4.4. Figure 4.2 shows the

UAV pose displacement, while Figure 4.3 is giving the related velocities. The UAV ’s

computed force and torque inputs are plotted in Figure 4.4. All trajectories show the

desired convergence from the initial states (4.109) towards the desired system states
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(4.111). This is further confirmed by the decrease of the cost function J in Figure

4.4f.

Regarding the optimality, the suboptimal solution and limited horizon length lead

to small overshoot which is visible e.g. in the yG position in Figure 4.2b at t ≈ 2 s.

Furthermore, in the initial phase, the SQP and CMSC/GMRES solutions are showing

significant suboptimal behavior in the form of discontinuous trajectory peaks. These

peaks are clearly visible, for example in the ϑB trajectory shown in Figure 4.3e. This

suboptimal behavior is caused by the limited solver iterations, sampling times and so-

lution tolerance. From the three configured solvers, CMSC/GMRES shows the least

optimal behavior. However, setting this has to be considered in relation with the com-

putation time tc. With a maximum computation time max(tc) = 0.28 ms and an av-

erage computation time of tc = 0.17 ms per control update interval, CMSC/GMRES

outperforms GRAMPC with max(tc) = 14.0 ms, tc = 8.71 ms as well as SQP with

max(tc) = 168.025 ms, tc = 146.56 ms. The corresponding computation time for

each control update interval are displayed in Figure 4.4e. These computation times

demonstrate the potential of CMSC/GMRES . However, they are not representative

for neither SQP nor GRAMPC for the following reasons. For the SQP evaluation,

the standard ACADO implementation has been used. As the framework is very

complex and does include many algorithmic options, the code is not lightweight. An

isolated efficient implementation using only the utilized solver and integration scheme

is supposed to lead to significantly lower computation times. In addition, the SQP al-

gorithm is using higher order integrators which allow reducing the amount of samples

within the horizon. The related reduction of optimization variables permits significant

lower computation times, while maintaining stability. For example, also with N = 5

a stable behavior is achieved resulting in max(tc) = 36.21 ms, tc = 31.77 ms. The

number of iterations is directly depending on the given solution tolerance. Accord-

ingly, also the computation time of GRAMPC could also be further reduced using a

lower solution optimality tolerance. Nevertheless, both algorithms do not show sub-

ms performance without significant additional implementation effort. For this reason,

CMSC/GMRES is used as NMPC -solver within this thesis.

71



(a) NMPC benchmark Gx-Position [m]
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(d) NMPC benchmark V2Φ-Orientation [rad]
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(e) NMPC benchmark V1Θ-Orientation [rad]
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(f) NMPC benchmark VΨ-Orientation [rad]
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GRAMPC SQP CMSC/GMRES
Figure 4.2: NMPC pose tracking benchmark: UAV pose
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(a) NMPC benchmark G ẋ-Position
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Figure 4.3: NMPC pose tracking benchmark: velocities
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(a) NMPC benchmark BΓz [N]
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Figure 4.4: NMPC pose tracking benchmark: controls, computation time, costs
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4.5 Constraint handling

One major advantage of MPC in comparison to regular control strategies is the ability

to consider constraints. While equality constraints are typically treated analogue to

the system dynamic constraint, the treatment of inequality constraints within the

MPC is not trivial. For this reason, this chapter gives a short introduction on several

constraint handling strategies which have been used in the context of this thesis.

Due to the fact that OCPs are typically defined as minimization problems with the

optimum J = 0, the idea is to impose additional costs for a constraint violation.

4.5.1 Primal barrier method

Considering the static optimization problem (4.7)-(4.9), inequality constraints can

be treated by smoothing the complementary slackness condition (4.14) in the KKT -

optimality conditions. An example for such a simple interior point method is the

primal barrier method that applies a smoothing constant qcin [Die14]

∇xJ (x) +∇xc (x)λeq +∇xcin (x)λin = 0 (4.115)

c (x) = 0 (4.116)

λin,lcin,l (x) + qcin l = 0, l = 1, ..., ncin (4.117)

λeq are the equality constraint and λin respective the inequality constraint multipli-

ers. Isolation of λin in (4.117) can be directly inserted into (4.115) to

∇xcin,l (x)λin,l → −qcin l
∇xcin,l (x)

cin,l (x)
, l = 1, ..., ncin . (4.118)

Integrating (4.118) leads to an equivalent representation of an optimization problem,

including the inequality relaxation

min
x

J (x)−
ncin∑
l=1

qcin l log (−cin,l (x)) (4.119)

s.t. c (x) = 0 (4.120)

For small qcin the non-smoothness of the inequality is approximated better, but the

condition of the optimization problem gets worse. The simple interior point method

of (4.118) is a primal barrier method. More sophisticated interior point methods

are optimizing this trade-off by adaptation of the relaxation value qcin . The main
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disadvantage of this simple logarithmic barrier method is that violated constraints

lead to an infeasible problem. For a violated constraint, the argument of the logarithm

becomes negative and is therefore not defined anymore. Therefore, it has to be ensured

that the inequality constraints are never violated.

4.5.2 Auxiliary variable method

Another strategy is to implement inequality constraints using a slack variable ν as

presented in [Oht04]. This method has been implemented in the C/GMRES -Package

accessible under [Oht]. The underlying idea is to add a positive variable to an in-

equality constraint in order to transform it into an equality constraint. To ensure the

positiveness of this slack variable, its quadrature is used. The problem is accordingly

shifted to the question which ν is fulfilling the equality constraint. This can be solved

by taking the ν into account as additional optimization variable. To avoid the singu-

larity for ν = 0 a small displacement is created by a small penalty −r>ν ν in the cost

function.

min
u

J =

T∫
τ=0

L (x,u, τ)− r>ν ν (τ) dτ (4.121)

s. t. c (x,u, τ) = 0 (4.122)

cin,l (x,u, τ) + νl (τ)2 = 0, l = 1, ..., ncin (4.123)

This OCP leads to the Lagrangian

L = L (x,u) + λ>c (x,u, τ)− r>ν ν (τ) +

ncin∑
l=0

λin,l
(
cin,l (x,u, τ) + ν2

l

)
. (4.124)

Considering λin and ν as additional optimization variables, the KKT -conditions yield

∇uL = ∇uL (x,u) + λ>∇uc (x,u) + λin
>∇ucin (x,u) =0 (4.125)

∂L
∂νi

= 2λin,lνl − rν,l=0, l = 1, ..., ncin (4.126)

∂L
∂λin,l

= cin,l (x,u, τ) + ν2
l =0, l = 1, ..., ncin (4.127)

c (x,u, τ) = 0 (4.128)

λin ≥ 0. (4.129)
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At the point of optimality, ν in (4.127) can be isolated

0 = cin,l (x,u, τ) + ν2
l = 0 ⇒ νl =

√
−cin,l (x,u, τ) l = 1, ..., ncin . (4.130)

Then, (4.130) is inserted into (4.126)

2λin,lνl − rν=0 ⇒ λin,l =
rν

2
√
−cin,l (x,u, τ)

l = 1, ..., ncin . (4.131)

Accordingly λin can be substituted in (4.125) by condition (4.131):

∇uJ (x,u) + λ>∇uc (x,u) +

ncin∑
l=1

rν

2
√
−cin,l (x,u, τ)

∇ucin,l (x,u) =0 (4.132)

Integration of (4.132) finally leads the equivalent OCP around the optimal point

[DFH09]

min
u
J (x,u)−

ncin∑
l=1

rν

√
−cin,l (x,u, τ) (4.133)

s. t. c (x,u, τ) = 0 (4.134)

As a remark, the experimental evaluation has shown a high sensitivity regarding

initial ν and penalty rν values. This can lead to an unstable parametrization. The

result is a negative λin which is contradicting the first-order optimality conditions.

Furthermore, the solver does not necessarily recover from this state.

4.5.3 Saturation function approach

Another inequality constraint handling approach is to approximate the switching

behavior of constraint by a saturation function. Due to the fact that OCPs are

typically defined as minimization problems with the optimum J = 0, a constraint

violation has to be penalized with a higher cost. The intuitive approach is to use a

unit step function ε

ε (cin)

{
1 if cin ≥ 0

0 otherwise
(4.135)
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to translate the constraint cin ≤ 0 to the soft constraint Lcin

cin ≤ 0 ⇒ Lcin = ε (cin) . (4.136)

With this approach, a violation of the constraint is penalized with L = 1. However,

the lack of continuous differentiability at the constraint border cin = 0 is problematic

for MPC solvers. Most fast OCP solvers require the differentiability of the cost

function. This can be addressed by relaxing the cost step via a saturation function

approximation. A popular saturation function is in this context the sigmoid function

ε (cin) ≈ sig (cin, κA) =
1

1 + e−κAcin
. (4.137)

Here, κA can be used to tune the sharpness of the switching behavior. The derivative

of sig (cin, κA) can be determined analogously

∂sig (cin, κA)

∂cin
=
κA(1 + e−κAcin)

(1 + e−κAcin)2
. (4.138)

Figure 4.5 is showing the behavior of the sigmoid function and its derivative for a

variation of κA.
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Figure 4.5: Sigmoid approximation of unit step

As desired, sig (cin, κA) is converging towards a unit step ε(cin) for increasing κA.

Its derivative is accordingly converging towards a δ impulse

lim
κA→∞

sig (cin, κA)→ ε(cin) (4.139)

lim
κA→∞

∂sig (cin, κA)

∂cin
→ δ(cin). (4.140)
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As the transformed inequality constraints are added to the cost-function, the result

is a potential function. The transformed OCP results to

min
u

J =

T∫
τ=0

L (x,u, τ) +

ncin∑
l=1

κHsig (cin,l, κA) dτ (4.141)

s. t. 0 = c (x,u, τ) , (4.142)

where κH is adjusting the height of the penalty value introduced by a constraint vi-

olation. Same approaches exist for other saturation functions e.g. tanh [BMPL+14].

The disadvantage of the saturation function is, that constraint violations are possible

depending on the cost height and gradient. This relaxation of constraint borders is

often referred to as soft constraint and leads to a trade-off between constraint compli-

ance and other goals in the cost-function. There exist more sophisticated saturation

function approaches which address this issue by reformulation of the inequality con-

straints and runtime adjustment of the approximation parameters [GKPC10]. A sec-

ond disadvantage is, that non-convexity can be introduced into the system. This has

to be taken into consideration during the constraint design, as discussed in §5.6. The

advantage is, no additional optimization variables are required wherefore the problem

dimension and related computational effort stays low. Furthermore, the OCP stays

feasible even when an inequality constraint would be violated. This makes it partic-

ularly well suited in robotic applications with state constraints. To give an example,

if a minimum distance between two UAV s shall be kept, small violations of a given

safety distance are acceptable. However, if the UAV s initially are below this safety

distance the OCP is still feasible and will force the UAV s into a compliant distance.

4.6 Stability discussion

There are several approaches to discuss the stability of MPC . Prof. Grüne and Prof.

Pannek are discussing stability and suboptimality in [GP17], both with and without

the use of stabilizing constraints. One discussed approach is to apply equilibrium

end-point constraints. The underlying idea is to formulate the desired convergence

towards the desired trajectory as additional constraint in the problem [GP17, p.89].

Another very generic approach for MPC stability proofs is to prove the input to

state stability (ISS ) [LAR+09]. Here, a KL function is used to confine the OCP

solution which proves a convergence towards the optimal solution. The same can be
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expressed by a K∞-bounded (α1,α2,α3) Lyapunov function α1(|x|) < V (x) < α2(|x|)
in combination with bounded disturbance V (f(x,u, ς)− f(x,u,0)) < α2(|x|).

The main challenge in applying these stability proof frameworks on real-world ap-

plication is the combined complexity of the OCP solvers, constraint handling methods

and system nonlinearities. For the C/GMRES , respectively CMSC/GMRES algo-

rithm used within this thesis, the boundness of error has been discussed in a very

compact form in [Oht04], [SOD09] and [SO10]. This discussion is based on the al-

gebraic analysis of the internally used subalgorithms. One example is FDGMRES

which is analysed in [Kel99] regarding robustness and numerical properties. In the

compact form of the presented CMSC/GMRES analysis in [SO10], the extent of not

clearly defined variables (e.g. Lipschitz boundaries) complicate the traceability of the

algebraic analysis. In the context of this work, it was not possible to reproduce the

proof and conditions for a bounded error. As a consequence, no stability proofs are

given. Nevertheless, experimental results in the context of this thesis indicate the

local stability. To provide easier access to the algorithmic details for future analysis,

CMSC/GMRES has been explained very detailed in §4.3.4.

4.7 Conclusion

This chapter has introduced the concept of fast NMPC . In this context, an overview

on the related work has been given. As fast NMPC solvers typically rely on the

first-order optimality conditions of the inherent OCP , the optimality of optimization

problems has been discussed in §4.2. This includes static optimization and dynamic

optimization problems with equality and inequality constraints.

In search for a lightweight NMPC solver which is capable of real-time UAV con-

trol, four different NMPC algorithms have been presented and evaluated. This in-

cludes ACADO ’s SQP with Gauß-Newton approximation, the GRAMPC gradient-

descent, the continuation-based C/GMRES method and its multiple shooting deriva-

tive CMSC/GMRES . In §4.4, all four solvers have been evaluated in a UAV pose

change scenario in simulation. With tc = 0.17 ms, respectively max(tc) = 0.28 ms per

iteration, CMSC/GMRES has shown the lowest computation time in the conducted

benchmark. It shall be mentioned, that the given benchmark of computation time

and stability does not allow an absolute comparison of the analysed NMPC algo-

rithms’ performance. This is varying with the scenario and parametrization, such as

the control update interval ∆t, prediction horizon T , horizon discretization ∆τ , for-

ward difference step h, the system condition, etc. Nevertheless, the parametrization
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and scenario have been chosen to demonstrate the potential of the given methods.

As a result, CMSC/GMRES is the solver of choice for this thesis.

To be able to solve OCPs with inequality constraints, a selection of lightweight

constraint handling techniques has been introduced in §4.5. While the primal barrier

method offers a very intuitive parametrization and very steep cost gradient towards a

constraint violation, it does lead to an infeasible OCP when violated. Furthermore,

the steep gradient at the constraint border leads to a drift towards the compliant

regions which leads to a suboptimal problem. For this reason, it is best suited for im-

plementing constraints on variables that are directly influencable for example control

limits. The auxiliary variable method has shown to be less intuitive in its parametriza-

tion. However, its main disadvantage is that the inequality Lagrange-multiplier and

the slack-variable are treated as separate optimization variables. Hence, a discretiza-

tion of two more variables over the full horizon is considered per constraint. This

can be critical in terms of memory usage and computation time. Finally, the sat-

uration function approach is used to transform inequality constraints into potential

functions. This transformation is using a saturation function (e.g. sigmoid) in order

to approximate the switching behavior of an inequality constraint with a continu-

ously differentiable function. The result is a soft constraint which allows violations

according to the parametrization of the approximation. This constraint handling is

well suited if minor violations are acceptable. It does not introduce additional op-

timization variables, wherefore it is computationally lightweight and widely used in

this thesis.

In order to use the proposed NMPC in safety critical applications, future work

will address the algebraic analysis of CMSC/GMRES to determine bounds and a

proof of stability. In addition, the constraint handling techniques will be researched

in terms of convergence and stability properties.
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Chapter 5

UAV control

This chapter is dedicated to the MPC of UAV s which follow velocity reference com-

mands. In combination with an unknown internal controller, this is typical for com-

mercially available UAV s. In this context, §5.1 is discussing the related work. §5.2

is assessing the controllability of a UAV based on the developed HMDV (3.24). The

UAV NMPC -strategy for this thesis is contributed in §5.3. The proposed control is

subsequently validated on real AR.Drone 2.0 and DJI M100 systems. This includes

the discussion and evaluation of the NMPC parametrization. Furthermore, the ex-

perimental results are compared with simulation results. This comparison is used to

assess the quality of the developed HMDV (3.40).

One challenge of using standard MPC for UAV s is the tracking of constantly

moving targets. This leads to a constant offset, respectively tracking error. To address

this issue, §5.4 is contributing a target position control TPC . Another challenge is

to determine the optimal control action when obstacles are considered. For this

purpose, §5.5 is giving an experimental introduction into (CA) with MPC . §5.6 is

further generalizing this to task-based control by contributing a constraint design

workflow. This workflow facilitates the incorporation of control objectives, sensor

constraints and environmental constraints in the NMPC strategy.

5.1 Related work

A well established Cartesian UAV position control approach is a hover-PID controller

which is based on a linearization around the UAV ’s stationary state [Cor13]. The

UAV position is thereby controlled in an outer loop, with an inner loop stabilizing

its attitude. The global position and heading errors are computed and transformed
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into the vehicle frame according to[
V1ex
V1ey

]
=

[
cos
(VΨ (t)

)
sin
(VΨ (t)

)
− sin

(VΨ (t)
)

cos
(VΨ (t)

)] [Gxdes − GxGydes − Gy

]
(5.1)

eVz = Gzdes − Gz (5.2)

eVΨ = VΨdes − VΨ. (5.3)

After this transformation each channel u ∈ {uV1x , uV1y , uV1z , uωV1} is controlled sepa-

rately using the PID control law

u (t) = kpe (t) + ki

t∫
0

e (t) dt+ kd
∂e (t)

∂t
(5.4)

with proportional kp, integral ki and derivative gain kd.

In the context of the OS4 project at the Swiss Federal Institute of Technology

[BMS04], such a PID controller is derived. In addition, a Lyapunov stability proof for

a full nonlinear quadrotor model is given. The authors conclude that the PID hover

control shows a poor disturbance rejection. A more detailed study on the influence

of aerial disturbance on hover-PID controlled UAV s is presented in [JHA+13]. In

[Bea08], such a controller is applied for vision-based control in combination with a

state estimator. More detailed information on visual quadrotor control strategies is

given by [GDLP13]. An example for a vision based fuzzy position control is presented

in [OmKV14]. [BNS04] is presenting a quadrotor LQR-controller and comparing

it with the classical PID hover control. In contrast to the author’s expectations,

the LQR approach showed a less dynamic behavior and a steady-state error in the

experiment. Another example for the use of LQR is given in [HD11], where an

inverted pendulum is balanced on a quadrotor. To act in a bigger trust region than

a conventional PID hover controller, [ST14] presents an adaptive control concept for

UAV s. The concept is the adaptation of controller parameters based on a linearization

of the UAV dynamics. With the objective of improving the control performance, a

multiple surfaces sliding mode control is presented in [STSK13].

However, to fully exploit the nonlinear dynamics of a quadrotor, a nonlinear con-

trol approach is desired. For this purpose a backstepping control is developed in

[HMLO02]. This includes a Lyapunov stability proof for the presented controller. In

[BS05] a backstepping control is developed for the linear translational subsystem of a

quadrotor. The attitude subsystem is controlled with a sliding mode controller. As a
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consequence, the closed-loop system shows a strong resistance towards disturbance.

However, it introduces high frequencies into the system’s controls which are causing

drifting of the onboard sensors. More detailed information is given in [BS07a]. To

address this issue, [BS07b] is presenting an integral backstepping controller as further

development. The result is a control law for the full state model.

With the increasing computational power of computers, real-time MPC for fast

systems has become feasible. An LQR control, as presented in [BNS04], is equal to

the analytical solution for an unconstrained infinite horizon linear MPC . However,

the big advantage of MPC is the consideration of constraints. This is particularly

interesting for implementing safety measures. Linear MPC approaches for UAV s

have been presented in [Bou12] and [ANT10]. A linear MPC example with state

constraints for quadrotors is simulated in [LQS+11]. In the experimental evaluation,

the MPC is compared with a backstepping controller. The authors conclude, that

the backstepping controller is performing better, while MPC allows safe operation

by imposing dynamical constraints. However, a linear MPC does not cope with the

nonlinearities of a UAV ’s behavior. This results in a lower control performance. In

[GM16], this is tackled with a multiple-shooting SQP pose NMPC for a UAV with

inverse pendulum. However, the resulting NMPC computation time of tc = 0.35 s

with 20 shooting nodes is high in relation to a UAV ’s fast dynamics. [BMPL+14] is

therefore proposing to use predefined finite control trajectory sets within the MPC

to reduce the computational burden. In the context of this thesis, the computational

burden of NMPC is addressed by CMSC/GMRES , as discussed in §4.4.

A typical MPC controller is minimizing an objective function to track a desired

trajectory under minimization of the energy effort. The result is a trade-off be-

tween state and control tracking. This trade-off typically leads to a constant tracking

error for constantly moving targets. For safety purposes, such an “offset” is not de-

sired. One strategy for an offset-free trajectory MPC for quadrotors is presented in

[ROR08]. The author is separating the control problem of a quadrotor into a path

tracking MPC with underlying H∞ attitude control. Offset-free tracking is achieved

by considering a disturbance error model in the path planning dynamics. The MPC

control policy minimizes the offset by an integral part. The disadvantage of the pro-

posed method is, that first the optimal controls are computed with MPC where the

implemented constraints are respected. Afterwards, the controls are altered with the

integral part, which then might lead to constraint violation. A more detailed analysis

of the described reference tracking is given in [ROR10]. To tackle UAV tracking errors

induced by e.g. wind gusts, [ANT10] is proposing a similar hierarchical UAV control
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scheme considering tracking errors as output errors in the MPC scheme. [LQS+11] is

presenting an offset-free linear MPC for quadrotors by using disturbance modeling.

The advantage of modeling the disturbance to minimize the offset is, that information

about the disturbance can be used to optimize the system’s behavior. The drawback

of this approach is the increased computational effort, as the disturbance has to be

estimated and modeled by for example augmenting the system dynamics. A sum-

mary of offset-free linear MPC control strategies is provided in [Pan15], including

disturbance model and observer.

Within this chapter, the tracking control for a UAV with limited vision sensor

perception is discussed. One approach for vision sensors is visual servoing which

is based on optical flow or features, as shown in [dRB08], [KNFL09] and [EIB12].

For traditional backstepping controllers, sensor perception limits can be addressed

by switching the robot’s formation control according to the compliance with the sen-

sor constraints [WLY15]. Another approach is to compute the optimal boundary

trajectories to satisfy the sensor constraint and track these, as shown for holonomic

robots in [BH06] or for visual servoing in [BMCH07, LNGB+10]. Nevertheless, the

task dependency of the control laws makes it challenging to formulate control laws

for complex scenarios with constraints. One way to avoid this loss of generality is

to use MPC which allows defining tasks and constraints as optimization problem in

a generic way. An example of a cooperative MPC using barrier function constraint

handling with sensor and CA constraint is given in [DGS+16] . With the use of

switching parameters, CA constraints can also be formulated linear. This approach

is for example presented in [FKM13], where a swarm of unicycles is controlled using

mixed integer quadratic programming. In [SKK17a], an aerial manipulator is pre-

sented with a camera attached to the end effector. The camera is controlled using a

stochastic MPC method for visual servoing in order to keep the target in the field of

view. A direct implementation of sensor constraints in MPC for holonomic mobile

manipulators is discussed in [AZR15]. In [OSB16], MPC is used to incorporate CA

on a teleoperated UAV s.

5.2 Controllability

Considering the hover model (3.24) with VΨ-angle description, the system velocities
V1ẋ, V1ẏ , V1ż , VΨ̇ are directly influenced by its inputs u. As all other states are velocity

dependent, it is intuitive that all system states are controllable as it will be analyzed

86



in the following. For system (3.24), the stationary condition

0 = f (xs,u = 0) (5.5)

holds for the stationary points

xs =
[
Gxs,

Gys,
Gzs,

VΨs, 0, 0, 0, 0
]T

{Gxs, Gys,
Gzs,

VΨs} ∈ R. (5.6)

To be able to steer the plant to arbitrary points around these static equilibrium

points, the local accessibility is examined. The detailed algebraic analysis of the

local reachability of input affine nonlinear systems with drift terms fD (x) is given

in [Sas99, Gra13] by following theorem:

Theorem 1. [Sas99] A nonlinear system of the form

ẋ = f (x,u) = fD (x) +
nu∑
i=1

f i,I (x)ui ∀x ∈ Rnu , ui ∈ R (5.7)

is locally accessible around state xs, if a set around xs exists, so that

nx = dim (χ) (5.8)

holds with

χ = span{f i,I (x) , ...,fnu,I (x) ,L(fD (x) , ...,f i,I (x)), . . .

. . .L(f i,I (x) , ...,fnu,I (x)), ...} i, j = 1, ..., nu, (5.9)

where L() is the Lie-Bracket [Sas99, Gra13]

L(fD,f I) :=
∂f I (x)

∂x
fD (x)− ∂fD (x)

∂x
f I (x) . (5.10)

For the model (3.24) the system function f (x,u) is accordingly separated into

its drift fD (x) and input-affine term f I (x)
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f (x,u) = fD (x) + f I (x)u (5.11)

f (x,u) =



V1ẋ (t) cos
(VΨ (t)

)
− V1ẏ (t) sin

(VΨ (t)
)

V1ẋ (t) sin
(VΨ (t)

)
+ V1ẏ (t) cos

(VΨ (t)
)

G ż (t)
VΨ̇ (t)

ax · V1ẋ (t)

ay · V1ẏ (t)

az · V1ż (t)

aΨ · VΨ̇ (t)


+



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

bx 0 0 0

0 by 0 0

0 0 bz 0

0 0 0 bΨ




uV1x (t)

uV1y (t)

uV1z (t)

uωV1 (t)

 .

Accordingly χ can be derived

χ = [f I (x) ,L(,f I (x)fD (x))]

=



0 0 0 0 −ax cos
(VΨ (t)

)
ay sin

(VΨ (t)
)

0 0

0 0 0 0 −ax sin
(VΨ (t)

)
−ay cos

(VΨ (t)
)

0 0

0 0 0 0 0 0 −az 0

0 0 0 0 0 0 0 aΨ

ax 0 0 0 −a2
x 0 0 0

0 ay 0 0 0 −a2
y 0 0

0 0 az 0 0 0 −a2
z 0

0 0 0 aΨ 0 0 0 −a2
Ψ


(5.12)

which has full rank for every x. Therefore, according to theorem 1 there exists an

input u to steer the plant with the dynamics (3.24) to any arbitrary state x. Due to

its similarity, the controllability for the HMDV (3.40) is omitted here.

5.3 NMPC pose tracking

To track a desired state xdes with MPC , the idea is to penalize the state error

quadratically. In the same way the invested power can be limited by penalizing the

controls u quadratically. A generic approach to track the orientation and angular

velocity of a 3D rigid body is to minimize the attitude eR and angular velocity error

vector eΩ. For an orientation in form of a rotation matrix R ∈ SO3 and angular
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velocity vector Ω =
[
% ϑ ω

]T

, these can be written as [LLM12]

eR = 0.5(RT
desR−RTRdes) (5.13)

eΩ = Ω−RTRdΩd. (5.14)

The orientation tracking can be equally achieved by directly minimizing the scalar

error [LLM12]

eR = spur(I3 −RT
desR) (5.15)

which is computationally advantageous. While this tracking methodology is used for

3D-orientation, the hover-models only consider their Ψ orientation around the Vz

axis. This allows to track the orientation of the HMDV directly with a quadratic

state error penalty (3.38). Under assumption of stable communication channels and

constrained by the HMDV dynamics (3.40) and control limits, the OCP therefore

yields

min
u

J =

t+T∫
t

(
xdes − x

)T
Q
(
xdes − x

)
+ uTRu dτ (5.16)

s. t.

f (x,u) =



V1ẋ (τ) ox (τ)− V1ẏ (τ) oy (τ)
V1ẋ (τ) oy (τ) + V1ẏ (τ) ox (τ)

G ż (τ)

−oy (τ) · VΨ (τ)

ox (τ) · VΨ (τ)

ax · V1ẋ (τ) + bx · uV1x (τ)

ay · V1ẏ (τ) + by · uV1y (τ)

az · V1ż (τ) + bz · uV1z (τ)

aΨ · VΨ̇ (τ) + bΨ · uV1ω (τ)


(5.17)

with input limits: |u| < 1 :

0 ≤ cin =
[
uV1x

2 − 1, uV1y
2 − 1, uV1z

2 − 1, uV1ω
2 − 1

]T

(5.18)

x (t) = x (t) (5.19)
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This OCP is solved with CMSC/GMRES using the parametrization (see §4.3.4):

ξ = 1, υ = 1, ∆t = 0.01 s, T = 1 s, (5.20)

N = 10, h = 0.001 s, h = 10−8, imax = 10 (5.21)

The corresponding penalty matrices Q and R in (5.16) are chosen according to

the system dynamics and desired closed-loop response. As the parametrization is

an enhancement problem and related to the system dynamics, the penalty values are

determined empirically for each individual type of drone. To measure the convergence

towards a desired pose, the position tracking error

ep =

∥∥∥∥∥∥∥
eGx

eGy

eGz

∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥
Gxdes − Gx
Gydes − Gy
Gzdes − Gz

∥∥∥∥∥∥∥
2

(5.22)

and orientation tracking error

eΨ =
∥∥VΨdes − VΨ

∥∥
2

(5.23)

can be used. In the following, this is shown for real AR.Drone 2.0 and DJI M100

quadrotors.

5.3.1 AR.Drone 2.0 NMPC pose tracking parametrization

To control the pose of the AR.Drone 2.0 , the OCP (5.16)-(5.19) is solved using

CMSC/GMRES with the parametrization (5.20-5.21) and the AR.Drone 2.0 HMDV

(3.49). The control design parameters are the constraint matricesQ,R which balance

between trajectory tracking and energy optimality. In order to demonstrate this effect

on the closed-loop behavior, Q is chosen to

Q = diag
([

1, 1, 1, 1, 1, 0, 0, 0, 0
])

(5.24)

to track the UAV pose, but no velocities. Then, the real AR.Drone 2.0 response is

determined for different control penalties R
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R = diag
([

1.0, 1.0, 1.0, 1.0
])

(5.25)

RH = diag
([

2.0, 2.0, 2.0, 2.0
])

(5.26)

RL = diag
([

0.5, 0.5, 0.5, 0.5
])
. (5.27)

R is hereby indicating the nominal control penalty, RH a higher control penalty and

RL lower control penalty. The nominal parametrization for this work has been chosen

to provide a fast closed-loop response in Gx,Gy,VΨ and due to the low performance

of the internal altitude controller, a highly damped response in Gz direction.

The experimental setup consists of a real AR.Drone 2.0 quadrotor which is follow-

ing a sequence of desired pose changes. The UAV is localized by means of a motion

capture system. The complete scenario is consisting of 4 distinguishable test cases

(TC ). In each scenario, the UAV orientation is indicated by an arrow pointing in
V1x-direction.

The first TC is shown in Figure 5.1a and represents a lateral position change in

the Gx, Gy plane. The orientation VΨdes = 0 rad and altitude Gzdes = 1.5 m are fixed

and the Gxdes,
Gydes displacement is executed stepwise in the form of a square. This

TC allows to evaluate the damping of the closed-loop system for the forward and

sideward channels.

Figure 5.1b is showing the second TC of a combined Gxdes,
Gydes-position and

VΨdes orientation change. As previously, the position changes form a square in the
Gxdes,

Gydes-plane, while the front of the drone is oriented towards the center of the

square. This scenario is chosen to evaluate the trade-off between position and orien-

tation tracking.

For the third TC , the UAV position is fixed in −→p des = [0, 0, 1.5]Tm, while only

the orientation is varied in steps of ∆VΨdes = ±π rad. This TC is suitable to evaluate

the orientation tracking. The resulting UAV trajectory is given in Figure 5.1c.

The final fourth TC is evaluating the closed-loop altitude tracking, by displacing

the UAV ’s target position between −→p des = [0, 0, 1.5]Tm and −→p des = [0, 0, 2.0]Tm.

For this TC , the orientation is fixed to VΨdes = 0 rad. The altitude displacement is

limited to ∆Gzdes = 0.5 m to avoid strong air current ground effects which have not

been considered in the identified model. Furthermore, the perception space of the

motion capture system is limited upwards. Figure 5.1d is showing the resulting UAV

altitude changes.

To analyze the AR.Drone 2.0 ’s closed-loop behavior in detail, Figure 5.2a is show-

ing the step response in Gx-direction during TC 1. As expected the high control
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(a) TC1: Lateral Position Change (b) TC2: Combined Pose Change

(c) TC3: Orientation Change (d) TC4: Altitude Change

Figure 5.1: AR.Drone 2.0 NMPC pose tracking parametrization: 3D trajectories

penalty RH leads to a slower response, while a lower control penalty RL results in

a faster but less damped response. The closed-loop trajectory is showing similarities

to a second order plant (PT2 ). Interestingly, the response for the chosen nominal

control penalty R is oscillating the least. All three solutions show an overshoot of

∆Gx ≈ 0.3 m for a step height of ∆Gx ≈ 1.0 m, which can be further reduced by mak-

ing the closed-loop system slow via higher control penalties. However, this has not
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been further investigated, as the objective in most UAV scenarios is a fast response

in Gx, Gy-direction. The same behavior can be also observed for the Gy-axis in Fig-

ure 5.2b. Figure 5.2c is showing the UAV ’s Gz-axis response in TC 4. The altitude

response is significantly slower than in GxGy-direction and shows a highly damped

asymptotic convergence towards the target value. However, this converging trajec-

tory is superposed with disturbance introduced by the internal altitude controller of

the AR.Drone 2.0 . The high variance of the AR.Drone 2.0 ’s altitude sensing solution

can lead to sudden undesired displacements, as e.g. at time instance t ≈ 442 s in RL.

Finally, the VΨ behavior is given in 5.2d. Due to the direction vector description in

the MPC prediction model, the controller is able to stabilize the AR.Drone 2.0 in

full 360◦. In contrast to a simple single angle error limitation to −π/2 < eΨ ≤ π/2,

the direction vector approach does ensure the uniqueness of the solution throughout

the prediction horizon.

All considered channels Gx, Gy, Gz, VΨ show the desired asymptotic stability which

validates the chosen NMPC pose tracking approach.

The direct influence of Q on the controls u can be seen for q in Figure 5.3a,

qH in Figure 5.3b and qL in Figure 5.3c. As desired, a higher penalty leads to

a lower control amplitude. An extract of the resulting position tracking error ep

(5.22) is given in Figure 5.3d and Figure 5.3e shows an extract of the orientation

tracking error eΨ (5.23). Both errors are converging towards zero after each step in

the desired trajectory, while the qH response is as expected the slowest. This states

the effectiveness and performance of the applied NMPC pose tracking approach.
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(a) AR.Drone 2.0 Gx-Position response in TC1
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xRL [m] xRH [m] xdes [m] x [m]

(b) AR.Drone 2.0 Gy-Position response in TC1
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(c) AR.Drone 2.0 Gz-Position response in TC4
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2

zRL [m] zRH [m] zdes [m] z [m]

(d) AR.Drone 2.0 VΨG-Orientation response in TC3

160 170 180 190 200 t [s]

−2
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ΨRL [m] ΨRH [rad] Ψdes [rad] Ψ [rad]

Figure 5.2: AR.Drone 2.0 NMPC pose tracking parametrization: state trajectories
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(a) AR.Drone 2.0 u-Inputs for R
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(b) AR.Drone 2.0 u-Inputs for RH
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(c) AR.Drone 2.0 u-Inputs for RL
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(d) AR.Drone 2.0 position tracking errors
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(e) AR.Drone 2.0 orientation tracking errors
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Figure 5.3: AR.Drone 2.0 NMPC pose tracking parametrization: tracking error,
controls and computation time
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AR.Drone 2.0 NMPC pose tracking

In order to provide a simulative control development framework, the developed

discretized UAV models (3.45) are implemented in V-REP . As the utilized

CMSC/GMRES solver is using an explicit Euler-integrator scheme in the context of

this work, these simulation models are equivalent to the prediction model (3.49). This

allows to use the closed-loop behavior in order to evaluate the model performance

and the control performance. The idea is, that the more the real AR.Drone 2.0

and simulator closed-loop trajectory are congruent, the higher the quality of the

utilized prediction model is. Furthermore, as the simulator and the NMPC model

are equivalent, the control performance can be evaluated in an environment where

just delay and numerical errors appear.

For the evaluation, the previous four TC s of §5.3.1 are used. Figure 5.4a shows,

that the simulated AR.Drone 2.0 response in TC 1 is following the square pattern be-

tween the desired poses as desired. The disturbance of the real AR.Drone 2.0 system

is particularly visible in the translation phases. Furthermore, the overshoot in the cor-

ner regions visualizes the model mismatch. This difference is further exacerbated by a

combined position and orientation change in TC 2, as visualized in Figure 5.4b. Here,

the trajectory pattern between the real AR.Drone 2.0 and the simulator is clearly

distinguishable, which appears to indicate a significant model mismatch. However, it

is important to consider that the pose changes are imposed stepwise. Therefore, the

trajectory in the translation periods is directly determined by the solver, wherefore

even small disturbance, respectively model-mismatch is able to influence the trajec-

tory pattern. Due to their congruency, the simulator VΨ response in TC 3 (Figure

5.4c) and Gz in TC 4 (Figure 5.4d) is covered by the real systems trajectory. For a

more detailed analysis of the closed-loop behavior, the control channels Gx, Gy, Gz ,
VΨ are plotted separately.

The Gx trajectory in Figure 5.5a as well as the Gy trajectory in Figure 5.5b show

that the controlled real AR.Drone 2.0 is responding faster than the simulator model

with a higher initial overshoot. Figure 5.5c shows, that the real AR.Drone 2.0 is

responding slower in Gz-direction. The VΨ-response is finally shown in Figure 5.5d,

where simulated and real trajectory are congruent. All trajectories in Figure 5.5a-

5.5d show the desired performance of a closed-loop system and state the quality of

the model by the low trajectory difference.
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(a) TC1: Lateral Position Change (b) TC2: Combined Pose Change

(c) TC3: Orientation Change (d) TC4: Altitude Change

Figure 5.4: AR.Drone 2.0 NMPC pose tracking: 3D trajectories
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(a) AR.Drone 2.0 Gx-Position
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(b) AR.Drone 2.0 Gy-Position
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(c) AR.Drone 2.0 Gz-Position
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(d) AR.Drone 2.0 VΨ-Orientation
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Figure 5.5: AR.Drone 2.0 NMPC pose tracking: channel trajectories

This is also stated by similar position ep (5.22) and orientation error eΨ (5.23),

as shown in Figure 5.6a. The resulting real drone controls are given in Figure 5.6b.

Finally, the computational efficiency of the proposed NMPC is validated by an average

computation time of t̄c = 0.37 ms for the real AR.Drone 2.0 system. The related

computation time plot is shown in 5.6c.
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(a) AR.Drone 2.0 tracking errors
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(b) AR.Drone 2.0 u-Inputs
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(c) CMSC/GMRES computation time
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Figure 5.6: AR.Drone 2.0 NMPC pose tracking: tracking error, controls and com-
putation time
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5.3.2 DJI M100 NMPC pose tracking

Within the context of this work, the NMPC is also used to track the pose of a

DJI M100 quadrotor, as for the AR.Drone 2.0 in §5.3.1. For this purpose, the iden-

tified DJI M100 model (3.55) is used as prediction model within OCP (5.16)-(5.19).

The corresponding CMSC/GMRES parametrization is given in (5.20)-(5.21). The

state Q and control penalties R are chosen according to the closed-loop behavior.

Detailed results are omitted here, as the procedure and penalizing effects are similar

to the AR.Drone 2.0 in §5.3.1. As a result, the penalties are chosen empirically to

Q = diag
([

1, 1, 1, 1, 1, 0, 0, 0, 0
])

(5.28)

R = diag
([

10.0, 10.0, 10.0, 1.0
])
. (5.29)

As for the AR.Drone 2.0 , this section is evaluating the quality of the identified

DJI M100 HMDV by using its discretized form (3.45) as simulation model in V-REP .

Figure 5.7a-5.7d show similar patterns in all test cases for the real DJI M100 and the

simulator response.

This similarity is also observed when considering the closed-loop behavior of the

individual states. The low trajectory difference in Figure 5.8a-5.8d is stating the

high quality of the model. In detail, Figure 5.8a shows the Gx-direction in which

UAV and simulator show a fast approximation towards the target trajectory. The

simulator shows a slightly slower reaction. This is also observed for the Gx-axis in

Figure 5.8b, for Gz in Figure 5.8c and VΨ in Figure 5.8d. As a remark, the angle VΨ

is illustrated here in its typical interval definition ]−π, π], wherefore oscillating steps

between VΨ = ±π can be observed at e.g. t ≈ 170 s, t ≈ 190 s.

The computed controls for the real DJI M100 are given in Figure 5.9a. These are

the normalized inputs u ∈ [−1, 1] which are translated to the real DJI M100 according

to (3.54). As desired, ep (5.22) and eΨ (5.23) are converging towards zero after each

reference change. Therefore, Figure 5.9b is stating the asymptotic stability of the

NMPC controlled systems. In this context, the simulator and real DJI M100 show

congruent tracking errors which is also stating the quality of the identified model.

Finally, the computation time is given in Figure 5.9c. The average computation time

of t̄c = 0.4295 ms is validating the real-time applicability. of the presented NMPC

approach considering a control update interval time of ∆t = 10 ms.
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(a) TC1: Lateral Position Change (b) TC2: Combined Pose Change

(c) TC3: Orientation Change (d) TC4: Altitude Change

Figure 5.7: DJI M100 NMPC pose tracking: 3D trajectory
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(a) DJI M100 Gx-Position
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(d) DJI M100 VΨ-Orientation
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Figure 5.8: DJI M100 NMPC pose tracking channel trajectories
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(a) DJI M100 u-Inputs
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(b) DJI M100 tracking errors
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(c) CMSC/GMRES computation time
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Figure 5.9: DJI M100 NMPC pose tracking channel trajectories
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5.4 Offset-free MPC

Figure 5.10: Simulation of NMPC tracking of constantly moving target

In many applications as for example area exploration, UAV s follow a given path

with a defined velocity. However, only static pose changes have been addressed in

§5.3. Considering constantly changing target states, the phenomena shown in Figure

5.10 can be observed. In this scenario the target position (green sphere) is moving

with a constant velocity on the square in the GxGy-plane (red trajectory). The UAV is

tracking the constantly moving target position which results in the ellipsoidal pattern

(blue trajectory). The closed-loop UAV system acts as a low-pass filter, as the corners

of the square are not reached. This systematic protraction of the closed-loop system

is caused by:

1 Delay between state measurements and control output: In the time that the

optimal controls are computed, the target has already moved on

2 Trade-off in control tracking versus state tracking The given UAV ’s target ve-

locity and target position trajectory do not fit together
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Apart from the pattern shown in Figure 5.10, the protraction leads to a static tracking

error

lim
t→∞

ep → const., (5.30)

for a target which is moving with constant velocity. This can pose a safety problem.

In the context of the publication [DKMV16c], this effect has been analyzed using a

deprecated version of the RHMY (5.32). The test OCP is given as

min
u

J =

tf∫
t0

(
xdes − x

)>
Q
(
xdes − x

)
+ u>Ru dτ (5.31)

s. t.

ẋ =



V1ẋ (t) cos
(VΨ (t)

)
− V1ẏ (t) sin

(VΨ (t)
)

V1ẋ (t) sin
(VΨ (t)

)
+ V1ẏ (t) cos

(VΨ (t)
)

0.8827uV1z (t)

1.265uωV1 (t)

−0.8799 · V1ẋ (t) + 3.273 · uV1x (t)

−0.5092 · V1ẏ (t) + 1.458 · uV1y (t)


(5.32)

with input limits: |u| < 1 :

0 ≤ cin =
[
uV1x

2 − 1, uV1y
2 − 1, uV1z

2 − 1, uV1ω
2 − 1

]T

(5.33)

x (0) =
[
0, 0, 0, 0, 0, 0

]
(5.34)

Q = diag
([

1, 1, 8, 3, 1.5, 1.5
])
, R = diag

([
1.5, 1.5, 3.0, 3.1

])
. (5.35)

using the CMSC/GMRES parameters

ξ = 10, υ = 1, ∆t = 0.1 s, T = 1 s, (5.36)

N = 10, h = 0.001 s, h = 10−8, imax = 10. (5.37)

To analyze the tracking behavior, OCP (5.31)-(5.35) is used to track a target which

is constantly moving in Gx-direction

xdes (t) =
[
0.2 m s−1 · t 0 1.5 0 0

]
. (5.38)

In order to exacerbate the protraction effect, the penalty values (5.35) are chosen

to track zero velocity v = 0 (5.38). The penalty matrices Q and R are chosen to
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limit the drone movement to the GxGy-plane by highly penalizing deviations from
Gzdes. The simulative evaluation using system model (5.32) is shown in Figure 5.11.

The x-channel in Figure 5.11a is showing the expected position offset. The resulting

Euclidean position tracking error ep (5.22) in Figure 5.11b is stating the convergence

towards a constant value. From a control perspective, this proportional offset can be

treated with an integral part, as shown in the following.

(a) AR.Drone 2.0 Gx-Position
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0
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8 xdes[m]

x[m]

(b) AR.Drone 2.0 position tracking error
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0

1
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3
ep[m]

Figure 5.11: Simulation of NMPC tracking of constantly moving target

Target position control

In order to achieve an offset-free tracking, a target position control (TPC ) is devel-

oped. The first step is hereby to model the closed-loop system. For this purpose, each

UAV direction is considered independently in this context. Furthermore, the control

and velocity penalty values are assumed to cause a well-damped closed-loop behavior

as shown in Figure 5.11a. This allows the approximation of the UAV trajectory with

a PT1 . In the Laplace domain, this is expressed by system function

x (t) = (1− e−
t
ts )xdes (t) d tx (s) =

1

1 + tss
xdes (s) (5.39)

Variables of the Laplace domain are marked by the Laplace operator as argument

s. Under use of the constant velocity v0 step ε (t), the position trajectory can be

described as a ramp

xdes (t) = v0 · t · ε (t) d txdes (s) =
v0

s2
. (5.40)
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Inserting (5.40) into (5.39) leads to the system response

x (s) =
1
ts

( 1
ts

+ s)s2
(5.41)

The inverse Laplace transformation of (5.41) results in the system response

x (t) = v0ts

(
e−

t
ts +

t

ts
− 1

)
ε (t) = v0t+ v0ts

(
e−

t
ts − 1

)
(5.42)

This system response is illustrated in Figure 5.12 for arbitrarily chosen ts = 2 s and

v0 = 0.2 m s−1. As it shows the same behavior as the simulation of the Gx-position

in Figure 5.11, this does not prove the consistency of the model, but justifies the

modeling approach.

Figure 5.12: Analytically determined system response for ts = 2 s, v0 = 0.2 m s−1

To get rid of this static tracking error, the basic concept is an adaptation of the

target position xdes. For this reason the system is extended with an outer control

loop according to Figure 5.13. For this purpose the new input w and error e = w− x
is introduced. The trajectory reference signal (5.38) is directed to the new input

w. Figure 5.13 illustrates the idea for a displacement in x-direction. Instead of

Figure 5.13: TPC control structure

the actual target w, an altered target xdes is given to the NMPC . This alteration
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Figure 5.14: TPC idea

xdes is increasing with the tracking error ex The resulting system response is higher,

which leads to a convergence towards w. A linear interpolation of the target position

(P -part) and an integral (I-part) leads to the control law

xdes (t) = w (t) + kp · e (t) + ki ·
t∫

0

e (t) dt (5.43)

d txdes (s) = w (s) + kp · e (s) + ki ·
e (s)

s
. (5.44)

Based on the system control can be composed as

x (s) =
1

1 + tss

(
w (s) + kp · (w (s)− x (s)) + ki ·

(w (s)− x (s))

s

)
(5.45)

(5.46)

which yields

x (s)

w (s)
=

ki + (1 + kp)s

ki + (1 + kp)s+ s2ts
. (5.47)

For the input signal of

w (t) = v0 · t d t v0

s2
, (5.48)

the system response results in

x (s) =
v0(ki + kps+ s)

s2(ki + s(kp + sts + 1))
(5.49)
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which represents the time domain signal

x (t) =
v

r

((
ts − tse

rt
ts

)
e−

t(kp+r+1)

2ts + rt
)

(5.50)

with r =
√

(kp + 1)2 − 4kits. (5.51)

This signal shows the desired convergence, as shown in Figure 5.12. Furthermore,

Figure 5.15: TPC system responses for different parametrization for ts = 2 s and
v0 = 0.2 m s−1

Figure 5.12 shows that higher kp leads to smaller tracking errors. However, conver-

gence for kp < ∞ can be only achieved with an integral part ki > 0. Due to the

underlying MPC and the three dimensional problem, where Gx, Gy, Gz are coupled,

the controller cannot be parametrized by the typical root locus analysis. One reason

is, that the integral part leads to overshooting in the quadrotor trajectory at direc-

tion changes. Accordingly, the integral part ki is chosen to be very small, while the

convergence is accelerated by using high proportional gain kp. Due to the stability

properties of the internal MPC controller, kp cannot be chosen arbitrarily high. For

the considered UAV /MPC the parameters have been empirically chosen for the Gx-

channel to kp = 2 and ki = 0.001. The simulation with the TPC is shown in Figure

5.16. The resulting x-trajectory in Figure 5.16a shows a smaller offset than without

TPC (see Figure 5.11a). As expected, the tracking error ep is converging towards

zero. Hence, the next step is the validation with a real UAV .
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(a) AR.Drone 2.0 Gx-Position

2 4 6 8 10 12 t [s]
0
2
4
6
8 xdes[m]

x[m]

(b) AR.Drone 2.0 position tracking error

2 4 6 8 10 12 t [s]
0

1

2

3
ep[m]

Figure 5.16: Simulation of tracking a constantly moving target with TPC

Experimental validation

(a) Without TPC (b) With TPC

Figure 5.17: Visualization of the experimental data of tracking of a target, moving in
a square with a constant velocity

The validation experiment consists of an AR.Drone 2.0 controlled by the inner

MPC control of §5.3.1 and the outer TPC of §5.4. The position of the quadrotor is

measured with the OPTITRACK motion capture system, which limits the experi-

mental space. For this reason, the desired trajectory is chosen as square with a side

length of 1.5 m in an altitude of Gzdes = 1.5 m. The target position is changed with

a constant velocity of v0 = 0.2 m s−1. Figure 5.17 is showing on the left side the re-
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sulting ellipsoidal trajectory without the proposed TPC . The corresponding system

trajectories are shown in Figure 5.18. As expected, Gx and Gy position are responding

delayed to Gxdes and Gydes. The resulting tracking error of ep ≈ 2 m shows a ripple

which is caused by the direction changes in the square corners.

To reduce the tracking error ep (5.22), the proposed TPC is implemented. As

the prediction model (5.32) shows asymmetric model parameters for the Gx and Gy

channel, the TPC is adapted to each channel individually. The parameters for the Gx-

channel are empirically chosen to kpx = 2, kix = 0.001 and for the Gy-channel kpy = 3,

kiy = 0.001. The resulting trajectory in Figure 5.17 (right) states the effectiveness of

the TPC by a better tracking of the square trajectory. In the corners of the square,

the integral part leads to overshooting. After the corner, the quadrotor converges

towards the square edges. The corresponding trajectory shows a much lower tracking

error ep (5.22), as given in Figure 5.19. This is caused by the smaller delay in the Gx

and Gy response. At each corner the tracking error is increased due to the direction

change of the target trajectory. After the corner, it is converging against zero as

desired. Hence, the experiment is validating the desired TPC for constantly moving

targets.
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(a) AR.Drone 2.0 Gx-Position
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x[m]

(b) AR.Drone 2.0 Gy-Position
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(c) AR.Drone 2.0 Gz-Position
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(d) AR.Drone 2.0 position tracking error
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ep[m]

(e) AR.Drone 2.0 Controls u
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1 uxV1 [m/s] uyV1 [m/s] uzV1 [m/s] uΨV1 [rad/s]

Figure 5.18: Real AR.Drone 2.0 square tracking without TPC
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(a) AR.Drone 2.0 Gx-Position
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(b) AR.Drone 2.0 Gy-Position
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(c) AR.Drone 2.0 Gz-Position
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(d) AR.Drone 2.0 position tracking error
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(e) AR.Drone 2.0 Controls u
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Figure 5.19: Real AR.Drone 2.0 square tracking with TPC
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5.5 Model predictive collision avoidance

In order to deploy UAV s in cluttered environments, the capability to avoid collisions

is essential for safety reasons. A typical CA approach is to keep a minimal Euclidean

distance ddes between an obstacle G−→p o and the UAV ’s position G−→p . This problem

can be formulated as inequality constraint (5.52) which can be translated with 0 ≤ cin

into a constraint (5.53). To avoid the expensive square root computation in (5.53), it

is advantageous to use the quadratic form (5.54) instead. This is possible as ddes is

always positive, wherefore (5.54) and (5.53) have equivalent roots .

ddes ≤
√(

G−→p o − G
−→p
)T (G−→p o − G

−→p
)

(5.52)

cin ≤ ddes −
√(

G−→p o − G
−→p
)T (G−→p o − G

−→p
)

(5.53)

cin ≤ d2
des −

(G−→p o −
G−→p
)T (G−→p o −

G−→p
)

(5.54)

If the safety distance ddes is chosen large enough, minor violations are acceptable.

This is advantageous, as a soft constraint can be used, as shown in §4.5.3. The soft

constraint is hereby necessary to avoid an infeasible OCP solutions if ddes is violated

due to initial conditions or disturbance. According to the sig approximation in §4.5.3

the constraint (5.54) can be transformed to the additional stage cost term

LCA =
κH

1 + e
−κA

(
d2des−(G−→p o−G−→p )

T
(G−→p o−G−→p )

) (5.55)

The parameters κH , LCA can be adapted to the system costs J . Accordingly κH has to

be chosen big enough to have dominating costs LCA to ensure that CA is prioritized in

relation to trajectory tracking. Figure 5.20 is showing the influence of the parameter

Figure 5.20: Sigmoid distance cost function LCA with κH = 1
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κA which is affecting the sharpness of the switching behavior. For increasing κA values

(Figure 5.20 from left to right), the switching behavior is approximated better, but

the system becomes more ill-conditioned and therefore more difficult to solve. d is

representing the distance |G−→p o − G
−→p | and ddes the desired distance that should be

kept. If the UAV is in the prohibited area d < ddes (top area in Figure 5.20), the

system function is dominated by (5.55). As a consequence, the solver preferably tries

to minimize LCA (5.55) and therefore increases the distance d to the obstacle. The

validation of the proposed sigmoid CA is shown in the following §5.5.

Experimental validation of NMPC collision avoidance

For the experimental validation a static obstacle is introduced at position G−→p o =

[0, 0, 1]T. The UAV is tracking position changes between Gpdes = [0,−1, 1]T and
Gpdes = [0, 1, 1]T. According to the CA, the UAV has to avoid the obstacle in the

center in order to reach the tracked position. The result is a collision evasion curve

around the obstacle as shown in Figure 5.21.

Figure 5.21: AR.Drone 2.0 CA: the trajectory of the quadrotor is deviated by an
obstacle, depicted as stand in the center point of the circle. As desired, the drone is
avoiding the circular keep out area with radius r = 1 m

The experimental validation has been conducted in the context of [DKMV16b]

with a deprecated version of the RHMY and parametrization (3.29). Under use of
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LCA (5.55), the related OCP with the CA extension is given as

min
u

J =

t+T∫
t

(
xdes − x

)T
Q
(
xdes − x

)
+ uTRu

+
κH

1 + e
−κA

(
d2des−(G−→p o−G−→p UAV

)
T
(G−→p o−G−→p UAV

)
) dτ

s. t. (5.56)

ẋ =



V1ẋ (t) cos
(VΨ (t)

)
− V1ẏ (t) sin

(VΨ (t)
)

V1ẋ (t) sin
(VΨ (t)

)
+ V1ẏ (t) cos

(VΨ (t)
)

uV1z (τ)

1.6uωV1 (τ)

−0.5092 · V1ẋ (t) + 1.458 · uV1x (t)

−0.5092 · V1ẏ (t) + 1.458 · uV1y (τ)


(5.57)

input limits handled with auxiliary variably constraint (§4.5.2): |u| < 1 :

0 ≤ cin =
[
uV1x

2 − 1, uV1y
2 − 1, uV1z

2 − 1, uV1ω
2 − 1

]T

(5.58)

x0 (t) = x (t) , x (0) =
[
0, 0, 0, 0, 0, 0

]
, (5.59)

Q = diag
([

1, 1, 1, 10, 0, 0
])
, R = diag

([
1.3, 1.3, 3.0, 1.1

])
, (5.60)

rν =
[
0.001, 0.001, 0.001, 0.001

]
(5.61)

ξ = 1, υ = 2, ∆t = 0.01 s, T = 1 s, (5.62)

N = 10, h = 0.001 s, ε = 10−8, imax = 10 (5.63)

For the experimental validation LCA (5.55) is parametrized with κA = 6 and κH = 3

which have been chosen empirically. Furthermore, to limit collision evasion maneuvers

to take place in the GxGy-plane, the Gz-axis tracking penalty rz = 3 is set higher in

comparison to the GxGy-tracking penalties.

The resulting trajectories are given in Figure 5.22-5.23. In each figure three sec-

tions are separated by vertical lines. Each of these sections is representing a change in

the target position. Figures 5.22a-5.22c show that the main evasion takes place in the
Gy direction. The VΨ-axis is stabilized in VΨ = 0 as shown in Figure 5.22d. At first,

the UAV is just moving in Gy-direction until it approaches the CA sphere. Then the
Gx-axis is deployed to initiate the CA curve. When reaching the obstacle avoidance

sphere with d < dmin = 1 m, the repulsive behavior of the CA constraint pushes the

quadrotor away from this sphere. Until a feasible path is found, this leads to position
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(a) AR.Drone 2.0 Gx-Position
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(b) AR.Drone 2.0 Gy-Position
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(d) AR.Drone 2.0 VΨ-Orientation
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Figure 5.22: AR.Drone 2.0 CA: pose trajectory

oscillations which are caused by a wrong prediction due to the model error. These

oscillations can be decreased by using a more precise model, further smoothening of

the sigmoid approximation or a reduction of the control action.

The distance to the obstacle (Figure 5.23a) states a slight violation of the soft

constraint dmin = 1 m. The stabilization of the NMPC is shown in the tracking er-

rors which are converging towards zero as shown in Figure 5.23b. The corresponding

inputs in Figure 5.23c state the effectiveness of the input interval limitation with

the auxiliary variable constraint handling. Figure 5.23d is showing the computa-

tion time tc. The maximum max(tc) = 1.6 ms and average computation time of

t̄c = 0.7709 s are stating the real-time capability, effectiveness and efficiency of the

proposed CMSC/GMRES + sigmoid-CA combination.
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(a) AR.Drone 2.0 Distance to Obstacle
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(c) AR.Drone 2.0 Inputs
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(d) Computation time

10 15 20 25 30 35 40 45 t [s]
0

0.5

1

1.5 1 2 3

tc[ms] t̄c = 0.7709ms

Figure 5.23: AR.Drone 2.0 CA: trajectories
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5.6 Task-based control using potential functions

This section is extending the use of NMPC for pose tracking of §5.3 and the soft

CA constraint formulation of §5.5 to more complex tasks as e.g. sensor limitations.

One major difficulty to control complex tasks autonomously is their mathematical

formulation. MPC is offering the possibility to formulate such tasks with the help

of constraints as shown in §4.5. The consideration of inequality constraints in MPC

requires computational overhead which threatens the real-time capability of MPC for

fast systems. For this reason, this section is presenting a constraint design workflow to

describe tasks in terms of soft constraints according to §4.5.3. In practice, this refers

to the substitution of hard inequality constraints by a cost function that imposes a

repulsive behavior from the violation of the constraint. This implementation in the

cost function equals a potential function. In this section, a generic procedure to create

such potential functions is presented.

As use case for the constraint design process, the UAV scenario shown in Figure

5.24 is considered. In this use case, the control goal is to keep an object within the

limited sensor perception space of a quadrotor. In contrast to the track a certain

pose (see §5.3), the objective here is to track a certain pose region. The sensor

perception space is assumed to be convex and shaped like a cone (e.g. ultrasonic

distance sensor). An AR.Drone 2.0 quadrotor is used as UAV and represented with

the reduced direction vector dynamics (3.37).
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αFoV
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maxz
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Figure 5.24: Use case scenario: tracking with cone-shaped sensor perception of a
quadrotor
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The task formulation can be separated into following steps:

1 Task formulation in the task frame with inequality constraints (§5.6.1)

2 Composition of the cost function using step functions to approximate the switch-

ing behavior of inequality constraint (§5.6.2)

3 Introduction of artificial gradients to improve convergence to desired cost func-

tion region (§5.6.3)

4 Approximation the step function with analytical functions (§5.6.4)

5 Transformation from the task frame into the global frame perspective (§5.6.5)

6 Adding safety measures (§5.6.6)

which are detailed in the following sections.

5.6.1 Formulating task with inequality constraints

The first step to implement the sensor-based control is to formulate the task in terms

of inequality constraints. For the use case, the object has to be tracked within the

given perception space limits. The task frame S is here accordingly the sensor frame.

Accordingly, a target object is defined in the sensor coordinate frame S with the

target position vector S−→p o ∈ S

S−→p o =


Sxo
Syo
Szo


>

∈ R3. (5.64)

Subsequently, the field of view of the sensor can be expressed by the inequality con-

straints

0 ≥ cin1

(S−→p o, αFoV
)

= Sy
2

o + Sz
2

o − (Sxo sin(αFoV ))2 (5.65)

0 ≥ cin2

(S−→p o

)
= −Sxo. (5.66)

In this example (5.65) is representing a double cone with the sensor beam width

angle αFoV . To receive a single cone perception space, constraint (5.66) is limiting

the cone to the positive half plane of Sxo. In contrast to just pointing the quadrotor

into the target direction, the formulation of the perception space tracking offers more
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flexibility to the MPC to optimize the energy consumption and to adapt the scenario

to other constraints e.g. obstacles. The task constraints (5.65)-(5.66) are considered

in the OCP by means of potential functions.

5.6.2 Inequality transformation to potential function

Considering the constraints (5.65)-(5.66) as hard constraints is problematic, because

their violation would lead to an infeasible optimization problem. In the sensor-based

tracking scenario, this would be the case if the object is outside the sensor perception

space. Such a violation is possible due to disturbance or an infeasible initial pose. For

this reason, the sensor constraints are designed as soft constraints with the saturation

function constraint handling discussed in §4.5.3. However, for validation purposes it

is advantageous to do this step-wise by first using step functions to approximate the

inequality constraint switching behavior. For the task constraints (5.65)-(5.66) this

leads to

Lcin
(S−→p o, αFoV

)
= ε

(
cin2

(S−→p o

))
+ ε
(
cin1

(S−→p o, αFoV
))
ε
(
−cin2

(S−→p o

))
(5.67)

= ε
(
−Sxo

)
+ ε
(
Sy

2

o + Sz
2

o − (Sxo sin(αFoV ))2
)
ε
(Sxo)

cin2 is used to distinguish between the negative and positive half-space of Sxo:

Lcin(cin2

(S−→p o

)
> 0→ Sxo ∈ R−) = 1 (5.68)

Lcin(cin2

(S−→p o

)
≤ 0→ Sxo ∈ R+) = cin1

(S−→p o, αFoV
)

(5.69)

Figure 5.25 is validating the soft cone constraint (5.67), where the area in the cone

has the potential value Lcin = 0 and areas outside are penalized with Lcin = 1.

This facilitates the validation of the desired behavior, but poses the problem of zero

gradient descent.

5.6.3 Adding cost gradient

The left plot in Figure 5.25 is showing the costs Lcin
(S−→p o, αFoV

)
(5.67) in the GxGy-

plane. As expected, the gradient satisfies

∇Lcin
(S−→p o, αFoV

)
= 0 ∀cin1

(S−→p o, αFoV
)
6= 0. (5.70)
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Figure 5.25: Unit step penalty function values of cone constraint

Most MPC solvers are exploiting the gradient to find the optimal solution. Hence,

this property becomes problematic, as the convergence of the search algorithm cannot

be guaranteed with zero gradient descent. To address this issue the next step is to

add a cost gradient, which is indicating the direction of the compliant region.

J J

Figure 5.26: Unit step penalty function of cone constraint in the GxGy-plane

To impose a gradient for the use case, a simple quadratic penalty can be added

to the non-compliant regions around the cone. Hence, (5.67) is extended to

Lcin
(S−→p o, αFoV , κG

)
= ε

(
−Sxo

) (
1 + κG

(
Sx

2

o + Sy
2

o + Sz
2

o

))
(5.71)

+ ε
(
Sy

2

o + Sz
2

o − (Sxo sin(αFoV ))2
)
· ε
(Sxo) (1 + κG

(
Sy

2

o + Sz
2

o

))
,

whereby parameter κG is controlling the steepness of the gradient derivative. The

result on the right side in Figure 5.26 shows the desired convergence towards the

compliant triangular (cone) area. As a remark, gradient-based solvers typically re-

quire convex OCP problems to ensure convergence. Naturally, most sensor perception
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spaces are convex. However, this should be kept in mind for the development of more

complex constraints or the combination of multiple constraints.

5.6.4 Addressing differentiability of the potential function

Finally, a sigmoid function is used to approximate the inequality constraint switching

behavior. This results in the saturation function constraint handling, as discussed in

§4.5.3. The transformation of the extended soft cone constraint (5.71) by means of a

sigmoid function (4.137), finally yields to

Lcin
(S−→p o, αFoV , κG, κA

)
= sig

(
−Sxo, κA

) (
1 + κG

(
Sx

2

o + Sy
2

o + Sz
2

o

))
+ sig

(
Sy

2

o + Sz
2

o − (Sxo sin(αFoV ))2, κA

)
· sig

(Sxo, κA) (1 + κG

(
Sy

2

o + Sz
2

o

))
.

The resulting cost function is shown in Figure 5.27 for κA = 10. To be able to track

an object with known position in the global coordinate system, S−→p o in (5.67) has to

be determined by its counterpart G−→p o in the global coordinate system. The required

coordinate transformation is explained in the following section.

J

Figure 5.27: Extended soft cone constraint transformed with sigmoid

5.6.5 Coordinate relation

As shown in §2.2, the coordinate transformation from G to S can be described as a

sequential transformation using homogeneous transformation matrices. Considering
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the hovering condition, the

robot position G−→p =(Gx, Gy, Gy)> and

robot orientation Go =(Vox ,
Voy)>

in direction vector form are defining the UAV ’s pose. The kinematic chain from the

global frame G into the sensor frame V1 is given by (2.6), respectively (3.34). This

results to

V1T G
(Go, G−→p ) =


ox oy 0 0

−oy ox 0 0

0 0 1 0

0 0 0 1




1 0 0 −Gx
0 1 0 −Gy
0 0 1 −Gz
0 0 0 1



=


Vox Voy 0 −VoxGx − VoyGy
−Voy Vox 0 VoyGx − VoxGy

0 0 1 −Gz
0 0 0 1

 (5.72)

To further transform from V1 into S, the coordinates are translated translating (2.6)

by distance ds along V1x and finally rotated (2.8) by the sensor inclination angle βFoV

into the sensor frame S

ST V1 (βFoV , ds) =


cos(βFoV ) 0 − sin(βFoV ) 0

0 1 0 0

sin(βFoV ) 0 cos(βFoV ) 0

0 0 0 1




1 0 0 −ds
0 1 0 0

0 0 1 0

0 0 0 1



=


cos(βFoV ) 0 − sin(βFoV ) −ds cos(βFoV )

0 1 0 0

sin(βFoV ) 0 cos(βFoV ) −ds sin(βFoV )

0 0 0 1

 (5.73)
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The complete kinematic chain equals to

ST G
(
βFoV , ds,

Go, G−→p ,
)

= ST V1 (βFoV , ds) · V1T G
(Go, G−→p )

=


Vox cos(βFoV ) Voy cos(βFoV ) − sin(βFoV ) Gz sin(βFoV )− σ cos(βFoV )

−Voy Vox 0 VoyGx − dxGy
Vox sin(βFoV ) Voy sin(βFoV ) cos(βFoV ) −Gz cos(βFoV )− σ sin(βFoV )

0 0 0 1


with σ = ds + Vox

Gx + Voy
Gy,

and the inverse transformation

GT S
(
βFoV , ds,

Go, G−→p
)

=
(ST G (βFoV , ds, Go, G−→p ))−1

=


Vox cos(βFoV ) −Voy Vox sin(βFoV ) ds

Vox + Gx
Voy cos(βFoV ) Vox Voy sin(βFoV ) ds

Voy + Gy

− sin(βFoV ) 0 cos(βFoV ) Gz

0 0 0 1

 .

Accordingly, the global coordinates in the sensor frame yields[
S−→p o

1

]
= ST G

(
βFoV , ds,

Go, G−→p
) [G−→p

1

]
(5.74)

=


Sxo
Syo
Szo

1

 =


(Gz − Gz) sin(βFoV )− σ cos(βFoV )
Voy(Gx − Gx) + Vox(Gy − Gy)

(Gz − Gz) cos(βFoV )− σ sin(βFoV )

1


with σ = ds + Vox

(Gx − Gx)+ Voy
(Gy − Gy)

Finally, the target position in the sensor coordinate frame can be expressed in global

coordinates by (5.74) and applied in Lcin
(S−→p o, αFoV , κG, κA

)
(5.72). Due to its com-

plexity, the resulting equation is not given here. Figure 5.28 is showing the resulting

costs in the GxGy-plane for a quadrotor at position G−→p =
[
−1,−1, 0

]T

and orienta-

tion Go =
[
0.71, 0.71

]T

≡ VΨ = 45◦. The triangular base form of the cone is oriented

as expected from the UAV origin in G−→p =
[
−1,−1, 0

]T

.
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J

Figure 5.28: Tracking of global position with soft cone constraint

5.6.6 Safety constraints

To validate the derived potential function experimentally, additional safety measures

are necessary. The most important safety constraint is treating CA and ensures that

a safety distance dmin between object and drone is not violated. Second, the max-

imum distance dmax of the sensor has to be considered. This can be accomplished

by implementing a cohesion constraint which introduces a repulsive behavior from

large distances between object and robot. In general, these safety measures are im-

plemented directly with the inequality constraints in §5.6.2, to ensure the convexity

of the derived potential function. However, in this case the safety constraints are

treated separately which allows using these also as safety measures for other scenar-

ios. In §5.5 a simple CA constraint has already been introduced, but the workflow

presented in §5.6 can be used to derive CA with other convergence properties. This

is exemplarily shown for both the cohesion and CA constraint in the presented use

case scenario.
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Collision avoidance constraint

Considering that G−→p o could also represent an obstacle to avoid, a potential function

for obstacle avoidance can be formulated as penalty of a distance below a limit dmin:

dmin ≤
∥∥G−→p o −

G−→p
∥∥ . (5.75)

The norm can be reformulated by means of quadrature

0 ≤ cinminD =
(G−→p o −

G−→p
)> (G−→p o −

G−→p
)
− d2

min (5.76)

which is then transformed into a potential function with unit steps

LminD = ε (cinminD) (5.77)

= ε
((G−→p o −

G−→p
)> (G−→p o −

G−→p
)
− d2

min

)
. (5.78)

To improve the convergence properties, (5.77) is extended by a quadratic penalty

LminD = ε
((G−→p o −

G−→p
)> (G−→p o −

G−→p
)
− d2

min

)
(5.79)

·
(
κH − κG

((G−→p o −
G−→p
)> (G−→p o −

G−→p
)))

Here, κH is defining the maximum height and κG the decent of the gradient of the

potential function. Finally, (5.79) can be transformed to an analytical function with

the help of the sigmoid function (4.138)

LminD
(G−→p o,

G−→p , dmin, κH , κG, κA
)

(5.80)

= sig
((G−→p o −

G−→p
)> (G−→p o −

G−→p
)
− d2

min, κA

)
(5.81)

·
(
κH − κG

((G−→p o −
G−→p
)> (G−→p o −

G−→p
)))

.

κA is describing the quality of the unit step approximation as before. The final result

of the potential function is shown in Figure 5.29a which shows a high penalty for the

area with distance dmin around the origin. The form of the convex top can be adjusted

with κG. Figure 5.29b shows penalty values LminD > 0.5 for an obstacle in position

G−→p o =
[
x, y, z

]T

with the UAV placed at G−→p =
[
−1,−1, 0

]T

. As desired, any

violation of dmin (5.75) is addressed with a high penalty. This reflects the repulsive

behavior between robot and object.

127



(a) Potential function for CA
function over GxGy-plane

J

(b) Potential function for CA
function in global perspective

Figure 5.29: Potential function for collision avoidance

Cohesion constraint

Cohesion can be seen as inversion of the CA repulsion problem (5.75). This means,

distances greater than dmax to an object should be avoided. The constraint is therefore

formulated as

dmax ≥
∥∥G−→p o −

G−→p
∥∥ . (5.82)

As before, the norm can be expressed with the help of a quadrature

0 ≤ cinmaxD = d2
max −

(G−→p o −
G−→p
)> (G−→p o −

G−→p
)

(5.83)

and transformed into a cost function with a unit step function ε

LmaxD = ε (cinmaxD) = ε
(
d2
max −

(G−→p o −
G−→p
)> (G−→p o −

G−→p
))
. (5.84)

To manipulate the curvature of the given penalty function, κH is introduced to define

the maximum height. κG is describing the ascent of the gradient of the potential
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function

LmaxD = ε
(
dmax2 −

(G−→p o −
G−→p
)> (G−→p o −

G−→p
))

(5.85)

·
(
κH + κG

((G−→p o −
G−→p
)> (G−→p o −

G−→p
)))

.

The final analytical cost function is gained from an approximation of the unit step ε

with the sigmoid function (4.138). This results to

LmaxD
(G−→p , G−→p o, dmax, κH , κG, κA

)
= sig

(
d2
max −

(G−→p o −
G−→p
)> (G−→p o −

G−→p
)
, κA

)
. . . (5.86)

·
(
κH + κG

((G−→p o −
G−→p
)> (G−→p o −

G−→p
)))

.

(a) Potential function for cohesion
over GxGy-plane

J

(b) Potential function for cohesion
in global perspective

Figure 5.30: Potential function for cohesion

Figure 5.30a is showing the desired attractive behavior.The cohesion constraint

leads to a high penalty for distances greater than dmax around the origin. Figure

5.29b is showing penalty values LmaxD > 0.5 for an obstacle in position G−→p o =

G−→p o =
[
x, y, z

]T

with the robot placed at G−→p =
[
−1,−1, 0

]T

. The figure validates

that the whole area of
∥∥G−→p o − G

−→p
∥∥ ≥ dmax is highly penalized which leads to an

attracting behavior between object and robot. With the developed safety constraints

(5.80) and (5.86), the cone constraint is validated in the following section.
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5.6.7 Experimental validation of task-based MPC

The validation scenario is a visual quadrotor tracking scenario. The underlying task

is to keep a target G−→p t in the sensor perception space, as shown in Figure 5.24.

To control this scenario the combination of cone (5.72), CA (5.80) and cohesion

(5.86) constraints are used in a NMPC . In this context the OCP considers the

coordinate transformation (5.74), quadrotor dynamics (3.27) and the related model

parameters (3.29). To validate that the quadrotor keeps the tracked position in its

sensor perception space, the scenario is conducted with different initial conditions and

disturbance. The disturbance is introduced manually by means of an obstacle with

the position G−→p c and a related CA constraint (5.79). In order to make the evasive

CA behavior visible in the GxGy-plane, the Gz-axis action of UAV is reduced by

increasing the input penalty for uV1z . The resulting OCP (5.87)-(5.95) does consider

the obstacle and target position within the prediction horizon as constant.

min
u

J =

t+T∫
t

u (τ)Ru (τ) (5.87)

+ κH0Lcin

(
S−→p

t
, αFoV , κG0, κA0

)
+ κH1LmaxD

(
G−→p t,

G−→p , dmax, κH1, κG1, κA1

)
+ κH2LminD

(
G−→p t,

G−→p , dmin, κH2, κG2, κA2

)
+ κH3Lc,minD

(
G−→p c,

G−→p , dc,min, κH3, κG3, κA3

)
dτ

s. t. ẋ = f (x,u, τ)

0 ≤ cin =
[
uV1x

2 − 1, uV1y
2 − 1, uV1z

2 − 1, uV1ω
2 − 1

]T

(5.88)

with [
S−→p

t

1

]
= ST G

(
βFoV ,−ds, Go,−G−→p

)[G−→p t

1

]
R0 = diag

([
1, 1, 10, 1

])
(5.89)
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κc : ds = 0.17, αFoV = 0.5, βFoV = 0.5, (5.90)

κH0 = 0.4, κG0 = 0.01, κA0 = 2.0

κminD : dmin = 0.7, κH1 = 0.4, (5.91)

κH1 = 4.5, κG1 = 0.0001, κA1 = 3.0

κmaxD : dmax = 2, κH2 = 0.4, (5.92)

κH2 = 1.5, κG2 = 0.0001, κA2 = 3.0

κc,minD : dc,min = 1, κH3 = 0.6, (5.93)

κH3 = 1.5, κG3 = 0.001, κA3 = 3.0

κcgmres : N = 20, T = 1 s, h = 0.001 s, ε = 10−8, ξ = 10 (5.94)

∆t = 0.01 s, imax = 30, υ = 2. (5.95)

Figure 5.31: Task-based UAV control: target tracking while obstacle is avoided

The experimental outline is shown in Figure 5.31. A OPTITRACK motion cap-

ture system is providing measurements of the UAV pose and the obstacle. The

constant target position is indicated as green diamond in the center of the pictures.

In its initial pose, the UAV is not necessarily fulfilling the underlying inequality con-

straints of the sensor cone constraint (5.72). The activation of the controller therefore

initially leads to a convergence towards a compliant pose. As a next step, an obstacle

(red star) is introduced manually by means of the motion capture system. The UAV

(blue circle) is evading the approaching obstacle by moving in the opposite direction.

This evasive maneuver shows the form of an arc due to the active target tracking

constraints. Manually following the UAV with the obstacle leads to a circular tra-

jectory around the tracked target point G−→p t. The corresponding UAV orientation is

indicated by a blue arrow.
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To cope different initial conditions and obstacle patterns, a set of 10 experiments

is conducted. Figure 5.32 is showing the resulting GxGy-trajectory of the UAV (blue

line), obstacle (dashed red line) and the fixed target position (green diamond). To

visualize the system at different time instances, the position of the obstacle (red

star) and the pose of the UAV (blue circle with arrow) is marked every ∆t = 4.2 s.

The distances between UAV and target is signalized as light grey line at each of

these time instances. Accordingly, the distance between the UAV and the obstacle is

indicated as light red line. The resulting circular pattern validates the target tracking

during the evasion maneuver. Furthermore, the direction of the UAV is pointing to

the center which is indicating the tracking of the target. In this context, in plot 7

center left and plot 9 center up the drone orientations which are not pointing towards

the target are representing initial conditions. These initial poses have been chosen

arbitrarily within the spacial limitations of the laboratory. Its exact values can be

exerted from the UAV pose plots in Figure 5.33. In this initial phase, a typical

increase in the altitude (Gz) can be observed. This is caused by the inclination angle

βFoV of the sensor cone constraint. The steps in the VΨ values in Figure 5.33 are based

on the limited VΨ-angle interval. The sinusoidal trajectories in Gx and Gy evidence

the circular evasion maneuver of UAV . Figure 5.33 is showing measurements of the

corresponding obstacle position. Also here the sinusoidal trajectory is visible in order

to provoke the UAV evasion maneuver. The steps in the obstacle position at the

beginning are caused by the entering into the detection zone of the motion capture

system.

To analyze the influence of the obstacle CA constraint LminD (5.80), Figure 5.35

shows the distance between the UAV and the obstacle. The single plots show how

the obstacle is moved close to dc,min to provoke an evasion maneuver of UAV . The

measured minimal distances are given in Table 5.1. As the CA design is based on

soft constraints, violations are feasible. For all 10 experiments, the highest violation

of the obstacle distance dc appears in run 5 with min(dc) = 0.601 m. The violation

depends on the UAV and obstacle speed as well as the cost gradient design of the CA

constraint. For the considered UAV and obstacle speeds, the cost gradient is chosen

less steep (5.93) in order to show a smooth repulsive behavior while enforcing the

desired evasion. In reverse conclusion, higher violations are accepted. Its repulsive

behavior can be observed as oscillation around the constraint border in Figure 5.35

plots 6, 7 and 9.

The influence of the target CA and cohesion constraints can be evaluated using the

Euclidean distance of UAV to the target as shown in Figure 5.36. Both constraints
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Figure 5.32: Task-based UAV control: UAV GxGy-trajectory with pose markers every
∆t = 4.2 s showing circular evasion maneuver pattern
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Figure 5.33: Task-based UAV control: UAV pose trajectory with steps in the VΨ-
trajectory due to the limited yaw angle interval
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Figure 5.34: Task-based UAV control: manually introduced obstacle position is show-
ing circular pattern in order to follow UAV on its evasion trajectory. The steps are
caused by the obstacle entering the field of perception of the motion caption system.
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restrict the distance to dmin = 0.7 m ≤ d ≤ 2.0 m = dmax. The measured distance

d lies in the interval 0.941 m ≤ d ≤ 1.966 m and therefore complies to the target

distance constraints for all 10 experiments. The peak distance values are given in

Table 5.1. The minimum tracking distance min(d) = 0.941 m appears in run 2 and

its maximum value max(d) = 1.966 m in run 10.

In addition to the distance, also the tracking angle is required in order to evaluate

the tracking performance the given sensor cone (5.72). Hence, the absolute tracking

angle αt is defined between the UAV 1 sensor orientation and the distance vector

αt = ‖ arccos(
S−→p t · (1, 0, 0)>∣∣S−→p t

∣∣ )‖. (5.96)

The result is shown in Figure 5.37. The sensor constraint (5.72) is restricting the

absolute tracking angle to αt ≤ αtmax = 0.5 rad. For the set of experiments, the initial

conditions do typically not satisfy this constraint due to a low initial UAV altitude Gz

and an incompliant orientation VΨ. This is directly visible in the controller counter

action as shown in Figure 5.38. In the initial phase, run 1-5 show a direct reaction

in the altitude by |uV1z | >> 0, while a significant adjustment of the orientation

by |uV1ω | >> 0 is dominating in run 5-10. The resulting convergence towards the

constraint compliance αt → αtmax can be seen in all plots of Figure 5.36. This is

followed by a period of low action, as all constraints are satisfied and the obstacle is

not considered yet. With the approaching obstacle dc → dc,min in Figure 5.35, the

control action in Figure 5.38 is increased due to the evasion maneuver. As a result,

also the tracking angle αt in Figure 5.37 is disturbed. To measure the constraint

violation, the maximal absolute tracking angle in the nominal state max(αtns) is

given in Table 5.1. For this purpose, max(αtns) takes into consideration the absolute

tracking angle peak values after the initial convergence phase. αt ≤ αtmax = 0.5 rad

holds after the initial phase for all the experiments. The measured maximum appears

in run 2 with max(αtns) = 0.438 rad.

The experimental results validate the desired behavior of task-based tracking also

under the influence of disturbance introduced as obstacle. The sensor field of view

limitations are respected and collisions are avoided. Furthermore, the set of experi-

ments shows the robust convergence towards a compliant state under differing initial

conditions and constraint violations.
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Figure 5.35: Task-based UAV control: UAV distance to obstacle do stays above the
defined minimum distance of dc,min = 1.0 m
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Figure 5.36: Task-based UAV control: UAV distance to target d stays within the
defined minimum distance of dmin = 0.7 m and maximum distance of dmax = 2.0 m
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Figure 5.37: Task-based UAV control: UAV absolute tracking angle αt stays within
the defined maximum of αtmax = 0.5 rad of the sensor cone constraint
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Figure 5.38: Task-based UAV control: UAV actuation
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run 1 2 3 4 5
min(dc)[m] 0.976 0.950 0.945 1.038 0.601
min(d)[m] 1.064 0.941 1.176 1.203 0.950
max(d)[m] 1.785 1.931 1.827 1.791 1.834

max(αtns)[rad] 0.371 0.438 0.345 0.183 0.350
run 6 7 8 9 10

min(dc)[m] 0.754 0.773 0.915 0.879 1.083
min(d)[m] 1.091 0.633 1.082 1.191 0.984
min(d)[m] 1.922 1.815 1.791 1.823 1.966

max(αtns)[rad] 0.260 0.307 0.220 0.225 0.271

Table 5.1: Task-based UAV control: Peak distance values for the set of 10 conducted
experiments

5.7 Conclusion

The chapter has presented an NMPC control approach for commercial low-cost multi-

rotor systems. The proposed control strategy provides very low computation times

combined with the ability to handle constraints. As a first step, the controllability has

been analytically validated in section §5.2. In chapter §5.3, a state tracking NMPC

implementation for UAV s has been presented using CMSC/GMRES . The proposed

control has subsequently been validated on real AR.Drone 2.0 and DJI M100 sys-

tems. In this context, the NMPC parameterization has been discussed and evaluated.

In addition, the experimental results have been referenced with simulation results in

order to asses the quality of the identified UAV models (3.49) and (3.55). An average

computation time of t̄c = 0.3700 ms (AR.Drone 2.0 ) and t̄c = 0.4295 ms (DJI M100 )

stated the efficiency of the proposed CMSC/GMRES approach. With a control up-

date interval time of ∆t = 10 ms, this also validated the real-time applicability.

One problem of standard NMPC is the constant offset in pose tracking scenarios

of constantly moving targets. An offset-free MPC approach by using a TPC has been

discussed in section §5.4. To address this problem, the closed-loop system has been

considered as PT1 . By means of Laplace transformation it has been shown, that this

modeling approach for the closed loop system is justified for the considered problem.

To reduce the tracking error, a TPC is added as outer loop to the MPC controlled

system. The TPC is providing the MPC with targets that are virtually set further

away than the actually given. This translation is related via a PI -controller with the

tracking error. The stability of the proposed algorithm has been validated experimen-

tally and stated its efficiency with a maximum computation time of max(tc) ≈ 1 ms.

The position control has also stabilized the AR.Drone 2.0 under more complex distur-
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bances (involving VΨ), with the remark that the input limitation constraint handling

of glsuV1ω has to be adjusted accordingly. The presented TPC requires low com-

putational effort in comparison to other approaches that include disturbance model

estimation. Furthermore, the parameter tuning is intuitive, does not require changes

in the MPC and does not affect the constraint handling of the MPC .

Another problem of UAV pose tracking in a real environment are obstacles. To

be able to avoid obstacles, §5.5 demonstrated how a minimum distance inequality

constraints is transformed into a potential function using the saturation function ap-

proach from §4.5.3. The corresponding measurements with the real AR.Drone 2.0

validated this approach [DKMV16b]. Using the reduced memory model, the compu-

tational load on a standard computer (see §A.1) was max(tc)
∆t

≈ 1.6 ms
100 ms

≈ 1.6% .

CA is further generalized to task-based control in §5.6. In this section, a workflow

was contributed in order to derive potential functions. This allows the incorperation

of control goals, sensor constraints and environmental constraints into the NMPC .

An AR.Drone 2.0 quadrotor has served as use case which has been tracking an object

with an attached sensor. The first step in the workflow is to formulate the sensor

perception space within a sensor coordinate frame by means of inequality constraints.

For the use case, the cone shape of the sensor perception space has been described

by a combination of two inequality constraints. Following the saturation function

approach from §4.5.3, the second step is transforming these constraints into a potential

function with the help of step functions. This transformation facilitates the analytical

and graphical validation of the resulting cost function without having to deal with

the increased complexity of sigmoids. To improve the solvability of the problem for

gradient-based solvers, the next step has been the introduction of a gradient in the

incompliant regions. The gradient is designed to point away from the compliant

region. Finally, the saturation function is used to approximate the step functions

which leads to a continuous gradient around the constraint borders. As a result the

potential function becomes analytical and therefore solvable by standard real-time

MPC solvers. As safety measure for the experimental validation, a CA and cohesion

constraint have been developed with the same workflow. The tracking by means of

the sensor constraint has been tested experimentally in simulation and a real-world

implementation. In the presented scenarios an AR.Drone 2.0 is tracking a fixed

target using the developed constraints while disturbance is introduced in form of an

obstacle. The results show the desired collision evasion maneuver while maintaining

sensor tracking for different initial conditions.
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A further development will be the analysis of the energy efficiency of the proposed

sensor constraint, in comparison to a simple orientation tracking. In this context, a

statistical analysis of large numbers of real-world experiments would be of interest.
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Chapter 6

Aerial manipulation

The success of UAV s in agriculture, security and industry is based on their extended

operational space. However, UAV s are currently mostly used in sensing and trans-

portation scenarios. The idea of aerial manipulation is thus to extend the usage of

UAV s by introducing ways to interact with their environment. The importance of

this development is stated by dedicated research projects, as for example the Euro-

pean Aerial Robotics Cooperative Assembly System project (ARCAS ). Examples

from the fast-growing field of aerial manipulation applications are the contact inspec-

tion of bridges [JCBHO15], canopy sampling of the environment [KSX15], opening of

valves [KOO14], and positioning of assembly parts in factories [MLS15].

To fulfill such tasks, a manipulator is attached to the UAV which results in a

Manipulating Unmanned Aerial Vehicle (MUAV ). A flexible approach fitting many

manipulation scenarios is the use of a robotic arm as manipulator. Typically, for small

UAV systems (quadrotor, hexarotor, etc.) all rotors are aligned in one plane. Without

external influences, such UAV s are usually stabilized around their hovering condition

with zero pitch and roll. An attached robotic arm has the advantage to extend this

operational space, as the orientation of the arm end effector is not limited to the

hover condition and thus is able to manipulate objects with different orientations.

Despite the advantages of MUAV systems, the number of commercially available

solutions is very limited. This is caused by the challenges of precise localization,

controlling the complex dynamics of the combined MUAV , and the limited payload

of the UAV which also limits the manipulator size and payload. These challenges are

also reflected in the research domain, as the number of publications using real MUAV

experiments is very limited. Furthermore, these experiments are typically executed

with proprietary MUAV designs where dynamic properties and internal controller
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are fully known. However, the difficulty to reproduce proprietary solutions limits the

access to this field of application for research and industry.

Figure 6.1: Aerial Manipulator consisting of DJI M100 and two-joint robotic arm
(the stereo camera on top is not part of the experimental setup)

For these reasons, §6 is discussing the modeling and control of an under-actuated

MUAV consisting of a commercially available robotic arm attached to a commercial

UAV . The MUAV system considered in this work is shown in Figure 6.1 consisting

of a DJI M100 quadrotor with an attached 2-joint robotic arm. The utilization of

commercially available components hereby is minimizing the development effort and

promoting science as well as application development for MUAV s. The difficulty of

using commercially available products is that very limited information about internal

control algorithms and physical model properties is available. As use case for this

thesis, a two-joint robotic arm is chosen for its low weight. This results in higher

payload as well as longer flight autonomy. The disadvantage of this under-actuation

is that UAV and manipulator have to be controlled dependently in order to maximize

the subspace of reachable poses.

To address commercial MUAV control, this chapter is structured as follows. First,

the related work is discussed in §6.1. As next step, §6.2 is contributing the forward

kinematics (FK ) of the MUAV shown in Figure 6.1. Based on the FK , a novel NMPC

for the MUAV end effector pose is developed in §6.3. This approach is based on a

separation of the end effector position and orientation tracking in the NMPC cost-

function. Furthermore, the solution for the Inverse Kinematic (IK ) problem of the

end effector pitch angle is presented. In this context, the IK problem is to determine

the necessary manipulator joint angles for a given end effector pitch orientation. The

combination of the proposed NMPC and IK control results in a performant, real-time
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capable MUAV end effector control with a large reachable subset of poses. In §6.4,

this contribution is extended by a real-world experimental validation of the proposed

control approach. Furthermore, its real-time applicability in manipulation tasks is

demonstrated in a real MUAV bottle grasping scenario.

6.1 Related work in aerial manipulation control

First considering only robotic arms, the literature for control of robotic arms is well

established as a result of an extensive industrial use of multi-joint robotic arms. For

this reason, a detailed literature review in this perspective is omitted. For further

information, a very comprehensive study on robotics and robotic manipulators has

been published in [WS16]. The book features fundamentals in robot design, analysis,

control and simulation including manipulator kinematics, differential kinematics and

dynamics. It also covers IK control which is partially applied in this work.

Instead, the focus of this section is the control of full MUAV scenarios. Most

manipulation tasks require the tracking of the manipulator’s end effector pose. The

pose of the object to grasp is hereby typically defined in a global coordinate system.

In literature, two major approaches can be distinguished. The first approach is to

control UAV and arm separately. A global convergence is however reached, by inject-

ing their mutually influenced error into the individual manipulator and UAV control

algorithms. This leads typically to hierarchical control concepts. Examples for such

separated approaches are given in [KQGD+16] and [ACMP13]. These publications

present hierarchical motion controllers for MUAV s. To derive the desired end-effector

waypoints for the quadrotors position and orientation control, the manipulator’s in-

verse kinematics (IK ) are used. In parallel, the manipulator joints are determined

by the given desired orientation. Both publications provide a simulative validation

scenario. The stability properties of such hierarchical control approaches based on

PID-controllers is studied in [OKPO13]. Based on the principle of Lyapunov-stability,

[KAOMV14] is deriving a hierarchical adaptive UAV position control. For this pur-

pose, the horizontal movement and altitude are treated separately. The influence of

the manipulator’s momentum and force on the UAV is thereby rejected by the adap-

tive control design. In [BZM+14], a two-joint manipulator MUAV is controlled with

feedback linearization and compensation of the manipulator’s influence. It refers to

this method as consecutive compensator which is based on the real-time computation

of the inertia tensor, center of mass position and reactive torque. The results have

143



been validated in simulation. These types of approaches are typically computationally

lightweight, but are less performant than the second type of MUAV control.

This second and more intuitive approach is to develop a complete system model,

which reflects the combined movement of UAV with attached robotic arm and develop

a control solution for the combined system dynamics. In contrast to the previous ap-

proach, the usage of the full MUAV model promises to achieve a better closed-loop

MUAV performance. One example of a full dynamic model of the combined two-joint

MUAV system is derived in [KCK13] using the Lagrange-D’Alembert methodology.

Subsequently, the paper is presenting a sliding mode controller with Lyapunov stabil-

ity proof. The developed approach is validated experimentally by grasping a wooden

block with a real MUAV and inserting it into a box. The combined model of another

two-joint MUAV system is presented in [ACLV16]. In this context, the full kinematic

chain is determined using dual quaternions and the related dynamics according to

the Newton-Euler formalism. The dual quaternions are thereby used to express the

translational and rotational transformation of coordinate frames at once. The con-

troller is based on a dual quaternion feedback-linearization technique and validated

experimentally. A Lyapunov based control-approach for a three-joint MUAV is pre-

sented in [ÁMMGC+14], providing simulative results. In [ASO15], a controller for a

multi-joint MUAV is deriving by energy shaping. The paper is proposing potential

and kinetic energy shaping to overcome the issue of unstable unactuated coordinates

in underactuated MUAV systems. The stability properties of the resulting Intercon-

nection and Damping Assignment Passivity-Based Control (IDA-PBC) are derived

without and under consideration of external forces. Furthermore, an experimental

validation is provided. [BZM+14] is extended by [BKMZ16], presenting a finite-time

MUAV control with feedback linearization in order to control a two-joint manipula-

tor MUAV . The publication is testing the control approach in simulation. A further

simulative validation of a MUAV controller is given by [ZZZ16]. Furthermore, it

contributes a geometric modeling and control approach for an n-joint MUAV based

on Lie-algebra. The kinematic chain is thereby modeled by means of the exponential

map according to Lie-theory.

In the context of the ARCAS project, a behavioral approach using the combined

differential kinematics of the MUAV is given in [BGP+15], [BGP+17]. The idea is

here to define a task variable for different MUAV elementary behaviors, as e.g. UAV

tracking, CA, etc. Derivatives of these task variables are directly influencing the

velocity reference of the MUAV . Accordingly, this approach is closely related to an

optimal control approach with a task-related cost function. The advantage of the
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presented approach is the ability to change tasks of the MUAV . The publication

[MPT+16] is further extending [BGP+15] by a multi MUAV coordination strategy.

As shown in §5.6, another approach to describe such task-based controllers is MPC .

In MPC , the task is directly formulated with cost functions and constraints in the

inherent OCP . The result is a simple task definition and high control performance

under the drawback of a higher computational burden. For this reason, previous

work [DKMV17] presented the framework DENMPC in order to provide a compu-

tationally efficient NMPC that allows switching of tasks and constraints. Detailed

information of DENMPC is given in §7. However, due to the complex and fast non-

linear dynamics of MUAV s, real-time MPC for such systems is still challenging. A

first approach towards this goal has been presented in [GK15] by showing a model

predictive trajectory generator for a two-joint MUAV . For this purpose, the MUAV

dynamics are derived and an input constrained OCP is formulated. To solve this

OCP , first, a standard Gauss-Newton solver is used. Second, a linearization tech-

nique for optimal control with Lie-Group structure is presented, which subsequently

allows the solution with SQP and similar. The approach is validated experimentally

in a bottle-grasping scenario. For this purpose, the optimal controls are computed

as a position and velocity reference for the feedback-linearization control of the UAV

and the PID servo controllers. The authors mentioned that future development will

address the real-time applicability of the optimal control approach. Another optimal

control approach for a MUAV with docking ability is presented in [DABS14]. For this

purpose, the model translating between the MUAV flight behavior and the behavior

during physical interaction is described by piecewise affine systems. For each of these

system states, a model for the lateral and longitudinal motion is designed and hybrid

predictive controllers are computed.

Besides the computational burden, the major difficulty of a combined UAV /mani-

pulator control is the requirement of a combined system model. Most of the previously

described approaches are therefore deriving the dynamics based on force and torque

acting on the UAV . However, for safety reasons commercial UAV s typically have an

internal controller which stabilizes the UAV and tracks velocity commands. These

issues are addressed within the context of this work, by presenting a MUAV NMPC

which is considering the full MUAV kinematics based on the HMDV (3.55).

Besides the pose tracking problem, force- and torque control and visual servoing

shall be mentioned here, but are not in the scope of this thesis. Visual servoing is re-

ferring to the usage of onboard image sensors to control the relative pose to the object

to grasp. A recent example of visual servoing for aerial manipulation by [SKK17b], is
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presenting a stochastic MPC -based visual servoing algorithm to grasp a cylinder with

a MUAV . The approach has been validated experimentally. A visual object tracking

approach in an aerial manipulation scenario is given in [BCL15]. The control is hereby

separately composed of the influence on the end effector position, orientation, center

of gravity and a safety constraint to comply with the joint limits. The resulting visual

servoing controller is validated in simulation. [DO14a] is simulating the UAV with a

gantry to consider a visual servoing control under disturbance. In [DO14b], a visual

servoing control of a 6-DOF manipulator attached to a UAV is presented. The servos

are thereby controlled according to a camera which is placed on the manipulator end

effector. The visual servoing algorithm is experimentally validated in a manipulator

stand-alone scenario.

6.2 Aerial manipulator kinematics

Robotic arms are versatile manipulators. They typically consist of a manipulator

base and an end effector which are connected via adjoint links. To achieve MUAV

capabilities, such a robotic arm is attached to the bottom of a DJI M100 quadrotor.

Without loss of generality, this robotic arm consists of multiple neighboring links,

which are each interconnected by one joint. Within this work, the robotic arm dis-

played in Figure 6.2 is utilized which features two revolute joints with parallel rotation

axes and a gripper as end effector. This arm configuration has been chosen as com-

promise between costs, weight and reachable pose set in combination with the UAV .

The manipulator hereby consists of fully commercially available parts including servo

“Dynamixel AX18-A” which has been used for the gripper and joint 2, as well as

the “Dynamixel MX28-T” servo for joint 1. The arm links consist of commercially

available aluminum and bioloid frames. The servos are interfaced with the DJI M100

by a “USB2Dynamixel”. The angle position can be directly controlled in servo mode

or the joint angle velocity in wheel mode. For this setup, the joints are controlled in

position control mode (θ1 (t) for joint 1 and θ2 (t) for joint 2), as the natural servo

interface does not provide angle constraint compliance in wheel mode.

The robotic arm shown in Figure 6.2 is attached to the DJI M100 which leads to

the configuration, shown in Figure 6.3. For the given MUAV , the pose of the end

effector with attached coordinate system E is depending on the joint angles θ1 (t),

θ2 (t) as well as the UAV ’s orientation Gρ and position G−→p . The description of

this dependency is generally known as forward or direct kinematic problem under

the assumption of rigid arm links and ideal surfaces [WS16, p.19]. The relation to
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Figure 6.2: Manipulator dimension and coordinate frames for front tracking

Figure 6.3: MUAV with grasped object (orange cylinder): coordinate frames
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transform the end effector coordinates into G can directly expressed by the kinematic

chain shown in Figure 6.4.

G V B M

J 1 J 2 EF E

VT G
(G−→p V) BT V

(Gρ) MT B

J 2T J 1 (θ2) EFT J 2
ET EF

BT G
(G−→p V)−1 (BT V (Gρ))−1 (MT B)−1

(J 2T J 1 (θ2)
)−1 (EFT J 2

)−1
(ET EF )−1

J 1TM (θ1)

(J 1TM (θ1)
)−1

(J 1TM (θ1)
)−1

J 1TM (θ1)

Figure 6.4: MUAV coordinate frame transformation chain

This chain is based on the coordinate conventions of the full MUAV as given in

Figure 6.3. The first step is thus the consideration of the UAV position which is

represented as translation to the UAV vehicle frame V with respect to the global

coordinates G

(VT G (G−→p (t)
))−1

=


1 0 0 Gx

0 1 0 Gy

0 0 1 Gz

0 0 0 1

 . (6.1)

In contrast to the UAV position, pitch Θ and roll Φ angle do directly affect the

end effector position. Therefore the simple direction vector model is not appropriate

for the end effector control and the full quaternion orientation description introduced

in (2.23) is used. Accordingly, the transformation from the DJI M100 body frame

B into the vehicle frame V is given by the transformation matrix T VB
(Gρ (t)

)
which

consists of a rotation matrix (2.23)) and uses the UAV orientation in form of the

quaternion Gρ (t). To map the coordinates of the manipulator base frame M onto

the UAV body coordinates B, the coordinates have to be rotated, as the DH for the

manipulator requires the coordinate alignment according to Figure 2.3. The rotation

is reflecting that the xM-axis is mapped onto the −Bz-axis, the yM-axis onto the

xB-axis and the zM-axis onto the −By-axis. In addition, the manipulator base is

not directly installed in the center of gravity of the UAV , wherefore an additional

translation B−→pM betweenM and B is required. The combined transformation matrix
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is respectively given as

(MT B)−1
=


0 1 0 BxM

0 0 −1 ByM
−1 0 0 BzM

0 0 0 1

 . (6.2)

The next steps are the joint transformations (2.26) according to the DH convention.

The first manipulator link is only describing the translation of joint 1 J 1 with respect

to the base frame M. As the manipulator joints are aligned with the manipulator

mounting center, This translation can be described in DH parameters

(J 1TM
)−1

=


1 0 0 a0

0 1 0 0

0 0 1 0

0 0 0 1

 . (6.3)

Due to the manipulator configurations, the joints do not have a twist, wherefore

the twist angle α1 = α2 = 0. The alignment of joints and manipulator base yields

d1 = d2 = 0, wherefore (2.26) results for joint 1 (with d = d1) and joint 2 (with

d = d2) to

(J 2T J 1 (θ (t))
)−1

=
(EFT J 2 (θ (t))

)−1
=


cos (θ) − sin (θ) 0 a cos (θ)

sin (θ) cos (θ) 0 a sin (θ)

0 0 1 0

0 0 0 1

 (6.4)

Finally, only the coordinate transformation from the front end effector frame EF
(see Figure 6.2) to E is missing. This transformation is depending on the task of

the MUAV . Examples for such tasks are the grasping of an object, the manipulation

with a grasped object, etc. These examples can be illustrated with use case scenarios.

In order to grasp e.g. a bottle, the bottleneck has to be between the gripper tongs.

Therefore, it makes sense to define E in the center of the gripper as illustrated in

Figure 6.3 to coincide with EC . To manipulate with the bottle (pouring out liquid),

the position of the bottle opening is more important. Thus, E is chosen to coincide

with P in this case. According to the task E is therefore translated with respect to EF .

In Figure 6.3 E is shown to represent the center between the front bottom corners of

the gripper. In order to generalize this definition, the end effector coordinate frame E
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is defined with axes parallel to the B-axes for θ1 = −π/2 and θ2 = 0. As the coordinate

axes EF are defined in DH -convention, they have to be rotated accordingly. Combined

with the translation ẼF−→p E between frame EF and EF , the complete transformation

yields

(ET EF )−1
=


1 0 0 ẼFxE

0 0 1 ẼF zE

0 −1 0 −ẼF yE
0 0 0 1

 . (6.5)

The˜is hereby indicating that ẼF−→p E is given in already rotated coordinates (aligned

with E).

Following the transformation chain in Figure 6.4 using (6.1), (2.23), (6.2), (6.4)

and (6.5), the full transformation from E to G finally results to:

GT E
(
θ1, θ2,

Gρ, G−→p
)

=

[
GRE G−→p E

0 0 0 1

]
(6.6)

=
(VT G (G−→p (t)

))−1 (BT V (Gρ (t)
))−1 (MT B)−1 (J 1TM

)−1
. . .

. . . ·
(J 2T J 1 (θ1 (t))

)−1 (ET J 2 (θ1 (t))
)−1 (ET EF )−1

The end effector orientation is thereby defined by the rotation matrix

GRE
(
θ1, θ2,

Gρ, G−→p
)

= (6.7)

−2(ρwρy + ρxρz) cos(θ1 + θ2) +
(
1− 2ρ2

y − 2ρ2
z

)
sin(θ1 + θ2)

2ρxρy − 2ρwρz(
−2ρ2

y − 2ρ2
z + 1

)
cos(θ1 + θ2) + 2(ρwρy + ρxρz) sin(θ1 + θ2)


T

2((ρwρx − ρyρz) cos(θ1 + θ2) + (ρxρy + ρwρz) sin(θ1 + θ2))

1− 2 (ρ2
x + ρ2

z)

2((ρxρy + ρwρz) cos(θ1 + θ2) + (ρyρz − ρwρx) sin(θ1 + θ2))


T


(
2ρ2

x + 2ρ2
y − 1

)
cos(θ1 + θ2) + 2(ρxρz − ρwρy) sin(θ1 + θ2)

2(ρwρx + ρyρz)

(2ρxρz − 2ρwρy) cos(θ1 + θ2) +
(
1− 2ρ2

x − 2ρ2
y

)
sin(θ1 + θ2


T



,

150



while the end effector position is expressed by the translation

G−→p E
(
θ1, θ2,

Gρ, G−→p
)

= (6.8)

−2BxMρ2
y + 2

(
−a0ρw + BzMρw +

(
ByM + ẼF yE

)
ρx

)
ρy − 2BxMρ2

z + BxM + Gx

. . .−2
((

ByM + ẼF yE

)
ρw +

(
a0 − BzM

)
ρx

)
ρz − 2a1 (ρwρy + ρxρz) cos (θ1)

. . .−
(

2
(
a2 + ẼF xE

)
(ρwρy + ρxρz) + ẼF zE

(
2ρ2

y + 2ρ2
z − 1

))
cos (θ1 + θ2) + a1

(
−2ρ2

y − 2ρ2
z + 1

)
sin (θ1)

. . .+
(
a2 + ẼF xE

)
sin (θ1 + θ2)− 2

((
a2 + ẼF xE

) (
ρ2
y + ρ2

z

)
− ẼF zE (ρwρy + ρxρz)

)
sin (θ1 + θ2)

−2ByMρ2
x − 2ẼF yEρ

2
x + 2

(
a0 − BzM

)
ρwρx + 2BxMρyρx − 2

(
ByM + ẼF yE

)
ρ2
z + ByM + ẼF yE + Gy

. . .+2
(BxMρw +

(BzM − a0

)
ρy
)
ρz + 2 (a1 (ρwρx − ρyρz) cos (θ1)

. . .+
(
a2ρwρx + ẼF xEρwρx + ẼF zEρyρx + ẼF zEρwρz − a2ρyρz − ẼF xEρyρz

)
cos (θ1 + θ2)

. . .+a1

(
ρxρy + ρwρz ) sin (θ1) +

((
a2 + ẼF xE

)
(ρxρy + ρwρz) + ẼF zE (ρyρz − ρwρx)

)
sin (θ1 + θ2)

)

−2
(
ρ2
x + ρ2

y

) BzM + BzM + Gz + 2
(
ByM + ẼF yE

)
ρwρx − 2BxMρwρy + a0

(
2ρ2

x + 2ρ2
y − 1

)
. . .+2

(
BxMρx +

(
ByM + ẼF yE

)
ρy

)
ρz + a1

(
2ρ2

x + 2ρ2
y − 1

)
cos (θ1)−

(
a2 + ẼF xE

)
cos (θ1 + θ2)

. . .+2
(
−ẼF zEρwρy +

(
a2 + ẼF xE

) (
ρ2
x + ρ2

y

)
+ ẼF zEρxρz

)
cos (θ1 + θ2) + 2a1 (ρxρz − ρwρy) sin (θ1)

. . .+
(
−2ẼF zEρ

2
x + 2

(
a2 + ẼF xE

)
ρzρx − 2ẼF zEρ

2
y + ẼF zE − 2

(
a2 + ẼF xE

)
ρwρy

)
sin (θ1 + θ2)



.

For given θ1, θ2, Gρ, G−→p the end effector frame pose E with respect to the global frame

G and therefore the FK -problem are solved. All other variables are constants defined

by the mechanical MUAV setup. The task-based definition of ẼF−→p E (see (6.5)) is

considered to be constant between changes of the task definition. The parameters

for the real MUAV setup are given in Table 6.1. Joint length a0 is thereby already

included in the z-component of B−→pM.

B−→pM = [0.02, 0,−0.13] ẼF−→p E = [−0.02, 0,−0.16] a0=0 a1=0.071 a2=0.102

Table 6.1: Physical parameters of the MUAV setup in m

In the following, the FK (6.6) with orientation (6.7) and position (6.8) is utilized

in the following to derive a control concept for the MUAV system.

6.3 Aerial manipulator control

The proposed UAV manipulator combination is an under-actuated MUAV which

allows position −→p and yaw Ψ-orientation changes due to the UAV and pitch Θ

orientation changes according to the robotic arm. In contrast to hyper-redundant

manipulators, this requires the UAV to move according to the tracked end effector
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pose. The contribution of this section is an NMPC of the MUAV platform which

takes into consideration the FK of the robotic arm. Furthermore, the orientation of

the robotic arm is controlled according to the closed-form algebraic solution of the

IK using artificial angle constraints.

For a grasping scenario as shown in Figure 6.3, the gripper center EC has to

be steered towards the object frame P . For this purpose, the NMPC from §5.3.2 is

extended for MUAV operation. The NMPC design for real-time applications requires

to trade off between using a precise computationally expensive model which leads to

low control update intervals versus the usage of a simplified compact model allowing

high control update intervals. While very precise models provide a more optimal

path planning, the controller’s capability to reject disturbance suffers from the larger

control update intervals. In the case of the two-joint MUAV , a consideration of the

full end effector pose within the system state vector leads to a high state dimension

and complex system dynamics which are computationally expensive.

To address this complexity, the idea is to treat position and orientation tracking

separately. For the position tracking, the UAV orientation Gρ and manipulator joint

angles θ1, θ2 are therefore considered to be constant over the whole horizon within

one control update interval. This allows end effector tracking by the explicit use of
G−→p E (6.8) in the cost function J . Consequently, the DJI M100 HMDV (3.55) is

used as dynamical constraint with the state vector (3.39). In correspondence, matrix

Qee ∈ R3 is introduced in order to penalize the end effector position error.

The control of the orientation itself is also separated into yaw Ψ and pitch Θ

tracking. As the end effector joints of the considered MUAV are perpendicular to

the BxBz-plane, the yaw orientation of the end effector GΨE is defined by the UAV

orientation. Consequently, instead of tracking the end effector Ψ-orientation, the

UAV Ψ-orientation can be tracked as shown in §5.3.2 using the direction vector states

in system function (3.40). However, some industrial applications require the grasping

of cylindrical objects with their center axis normal to the GxGy-plane. Hence, they

are ambiguous in their Ψ-orientation (see grasped cylinder in Figure 6.3). As the
GΨE -orientation can take every desired value, it is advantageous to point the UAV

towards the object position instead of tracking a specific Ψ angle. For this purpose

the vector G−→p P − G−→p E is projected onto the GxGy-plane. This projection can then

directly be tracked with the direction vector description of the UAV orientation
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LΨ = 0.5qΨ

(GxP − Gx
dxy

− Gox
)2

+ 0.5qΨ

(GyP − GyB
dxy

− Goy
)2

(6.9)

with dxy =

√
(GxP − Gx)2 +

(
GyP − Gy

)2

using penalty factor qΨ. It might appear more intuitive to use the end effector position
G−→p E rather than the UAV position G−→p . However, due to disturbance, it is possible

that G−→p E could overshoot with respect to the tracking position. The result would be

direction change by ±π. As the position tracking is trying to track exactly the point

where this switching happens, this might lead to an unstable behavior during the

grasping procedure. For this reason, the utilization of the UAV position as reference

position for the Ψ calculation is advantageous if its projections are distinct from G−→p P .

This is typically the case for −π/2� GΘE � π/2 depending on ẼE−→p E . The resulting

cost function (6.10) includes the quadratic tracking of the desired end effector position
G−→p E,des, the direction LΨ (6.9), the input u and the state trajectory x tracking. The

UAV and end effector position tracking can be contradicting, therefore it is necessary

to “switch off” the undesired tracking according to the task. For this purpose, the

opposing tracking objective is “switched off” by setting the corresponding position

tracking penalties inQ ∈ R9×9, respectivelyQee ∈ R3×3 to zero. This is also necessary

for the orientation tracking versus direction tracking (Q ∈ R9×9, qΨ ∈ R).

Using the HMDV (3.40) and the end effector position G−→p E (6.8), the NMPC

inherent OCP at time instance t results to

min
u

J =

t+T∫
t

(
G−→p P (τ)− G−→p E

(
θ1 (τ) , θ2 (τ) , Gρ (τ) , G−→p (τ)

))T

Qee (6.10)

(
G−→p P (τ)− E−→p G

(
θ1 (τ) , θ2 (τ) , Gρ (τ) , G−→p (τ)

))
+ 0.5qΨ

(GxP (t)− GxB (τ)

dxy
− GoxB

)2

+ 0.5qΨ

(
GyP (t)− GyB (τ)

dxy
− GoyB

)2

+
(
xdes (t)− x (τ)

)T
Q
(
xdes (t)− x (τ)

)
+ u (τ)TRu (τ) dτ .

with dxy =

√
(GxP − Gx)2 +

(
GyP − Gy

)2

s. t. ẋ = f (x,u, τ) (6.11)

0 ≤ cin =
[
uV1x

2 − 1, uV1y
2 − 1, uV1z

2 − 1, uV1ω
2 − 1

]T

(6.12)

x0 (t) = x (t) (6.13)
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As the kinematic NMPC is already controlling GΨE and the DJI M100 inherent

controller is steering lim
t→∞

GΦE → 0, the only missing DOF is the pitching GΘE of the

MUAV . This problem to determine the joint parameters for a given end effector pose

is known as inverse kinematic problem IK . However, the solution of IK is not trivial

as the FK of multi-joint robotic arms are not generally a bijective map. In order to

determine the separate influences on the end effector GΘE , the end effector rotation

matrix GRE
(
θ1, θ2,

Gρ, G−→p
)

(6.7) is converted into Euler-angles using (2.16). For this

purpose also the UAV quaternion description Gρ can be expressed with mapping

(2.24) as Euler angles GΦ, GΘ, GΨ.

Considering the stationary condition GΦE = 0, the end effector pitch can be de-

termined using (2.16) which finally results to

GΘE = arctan2

(
−GRE,31,

√
GRE,11

2 + GRE,21
2

)
GΘE→0

= arctan2
(
cot
(GΘ − θ1 − θ2

))
=
π

2
− θ1 − θ2 + GΘ. (6.14)

However, equation (6.14) is under-determined, as the two joint angles θ1 and θ2

have to be determined. To address this issue, additional constraining conditions are

required. Using the artificial joint angle constraint θ1 = θ2 the pitch angle control

law directly follows to

θ1 = θ2 = −
GΘE,des − GΘ − π

2

2
. (6.15)

A few remarks about the presented control approach: As the tracking idea is to

make EC and P coincide, the MUAV ’s end effector pose directly relates to the object

pose. From the moment when the object is grasped, this condition is always fulfilled

u → 0, wherefore the MUAV is drifting according to the present disturbance. To

address this issue, the control objective of the MUAV has to be changed as soon as

a static connection with the object is established. It shall also be kept in mind, that

for real manipulation tasks, it might be necessary to impose environment constraints,

as the OCP (6.10)-(6.13) does not consider the physical boundaries of the object to

grasp nor its environment.

To conclude this section, an NMPC approach has been developed treating end

effector position and UAV orientation independently to reach a given end effector

pose with an under-actuated MUAV .
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6.4 Experimental validation

To validate the effectiveness of the proposed aerial manipulation control described in

§6.3, two experiments are conducted. First, the end effector pose tracking is verified

using a real MUAV . Second, a bottle grasping scenario is used to demonstrate the

applicability of the proposed approach. The NMPC feedback of the DJI M100 pose

is thereby provided by a OPTITRACK motion capture system. The end effector pose

is determined from the UAV base via its FK .

6.4.1 End-effector pose tracking scenario

The NMPC OCP (6.10)-(6.13) of this validation scenario is parametrized according

to Table 6.2. Hence, the choice of penalty matrices leads to an NMPC tracking of

a given end effector position and yaw-orientation. Accordingly, the tracking of the

object direction is switched off with qΨ = 0. Furthermore, a small state penalty is

imposed on the lateral UAV velocities in order to reduce position overshoot.

Q Qee R qΨ

diag ([0, 0, 0, 1, 1, .01, .01, .01, 0]) diag ([1, 1, 1]) diag ([10.0, 10.0, 5.0, 1.0]) 0

Table 6.2: End-effector pose tracking scenario: control parametrization

To demonstrate the closed-loop behavior, the desired end effector pose is changed

stepwise. The chosen target positions thereby represent the corners of a square.

The desired end effector Ψ-orientation is given always opposite to the direction of

the center. In order to show the influence of the manipulator, the Θ-orientation

is alternated between GΘE,des ∈ {−30◦, 0◦, 30◦}. The given reference and resulting

system path is visualized in Figure 6.5 with the corresponding perspective views.

Figure 6.5 confirms that the NMPC is able to steer the UAV to reach a desired end

effector pose. The effect of the FK back-propagation by solving OCP (6.10)-(6.13) is

thereby clearly visible, as distinguishable square UAV paths on three different heights

are visible. These are a direct result of the three given GΘE,des-angles.

The time relation of the MUAV trajectories is shown in Figure 6.6-6.7. Within

these figures, the imposed GΘE,des-angle changes are indicated by vertical dashed

lines. The position plots in Gx (Figure 6.6a) and Gy (Figure 6.6b) show the expected

step-wise square pattern and the convergence of the end effector position GxE to-

wards GxE,des, respectively EyG towards GyE,des. The UAV position is hereby given to

demonstrate the displacement with respect to the end effector position. Step changes
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(a) 3D-plot (b) GxGy-plot

(c) GxGz-plot (d) GyGz-plot

Figure 6.5: End-effector pose tracking scenario: 3D-path with target (red circles),
end-effector (blue), UAV center (orange)

in GzE,des have been omitted for visibility reasons. However, a change in the manipula-

tor orientation GΘE is physically related to a change of the translation between UAV

and end effector position. As the end effector position is tracked, the UAV position

is changing accordingly. Figure 6.6c states, that the altitude GzE,des is tracked as

expected. The heading control response in Figure 6.6d is also stating the convergence

towards the desired GΨE,des-orientation.
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(a) MUAV Gx-Position response in m

20 40 60 80 100 t[s]

−0.5

0

0.5

GxE,des GxE Gx

(b) MUAV Gy-Position response in m
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(c) MUAV Gz-Position response in m
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(d) MUAV GΨ-Orientation response in rad
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(e) MUAV GΘ-Orientation response in rad
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(f) MUAV GΦ-Orientation response in rad
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Figure 6.6: End-effector pose tracking scenario: states with target (red), end-effector
(blue), UAV center (orange)
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(a) Normalized control outputs u
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(b) MUAV tracking errors
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(c) MUAV computation time ms
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Figure 6.7: End-effector pose tracking scenario: control influence

It shall be mentioned here, that the angle limits of GΨE are leading to steps

between ±π. The GΘE response is given in Figure 6.6e. As expected a slight offset

is visible, as the feed-forward control of the servos is not exact and the manipulator

frame not perfectly stiff. Remarkable is here, that disturbance in the UAV pitch-angle
GΘ results in higher GΘE changes. This amplification of small orientation changes is

assumed to be caused by the delayed response of the manipulator servos, wherefore it

might be advantageous to use GΘE = 0, depending on the UAV ’s internal Θ response

time. The high performance of the DJI M100 attitude controller is visible in Figure

6.6f, by a very low disturbance rejection time. The normalized control outputs are

given in Figure 6.7a and show the expected action peaks for trajectory changes, while

maintaining the nominal state in between to keep energy consumption low. The

related tracking error in position G−→p E and yaw GΨE -orientation tracking is plotted

in Figure 6.7b. Here, the control performance is clearly visible by minimizing the

related errors after each trajectory change. Finally, to evaluate the computational

performance of the proposed approach, Figure 6.7c is showing the computation time tc

for each control update interval. With an average computation time of tc = 1.9717 ms
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and a control update interval of ∆t = 10 ms on a Dell Latitude E5440 (see §A.1),

the real-time capability of the proposed control approach is evident. To conclude,

the experimental results of the end effector pose tracking scenario are validating the

desired control behavior and state the performance as well as real-time capability of

the control approach introduced in §6.3.

6.4.2 Bottle grasping scenario

To demonstrate the applicability of the proposed NMPC for industrial applications,

a bottle grasping scenario is demonstrated with the MUAV . Like the UAV position,

the bottle-neck position G−→p P is localized using a motion capture system. The outline

of the scenario can be separated into three consecutive steps which are displayed

in Figure 6.8. In the initial state, the MUAV is stabilizing in its home position
G−→p des = [−1, 0, 1.4]T with Goxdes = 1, Goydes = 0 and GΘdes = −30◦ = −0.52 rad.

After giving an initial “Start” command, the bottle-neck position is tracked with

the end effector. The MUAV GΨ-orientation is thereby tracked with (6.9), to point

the MUAV towards the bottle-neck G−→p P . As result, the MUAV is approaching the

bottle. The third step is to close the gripper after reaching the bottle-neck position∥∥G−→p P − G−→p E∥∥ ≤ 0.006 m. The closing procedure is using a timer with tclose = 2 s

after which the system is returning to step one. The resulting path is indicated by

the picture sequence in Figure 6.9 and confirms that the bottle is grasped.

Figure 6.8: MUAV grasping scenario: step chain with transition conditions

To switch between the tracking of the home position with the UAV center of

mass and the tracking of the bottle-neck with the MUAV end effector, the control

parametrization is changed between steps. The utilized parametrization is given in

Table 6.3 and includes the switching of the IK pitch control.
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Phase 1 Phase 2 Phase 3 Phase 1

Figure 6.9: MUAV grasping scenario: scenario sequence using DJI M100 with two-
joint robotic arm

Step 1. Step 2. & 3.
Q diag ([1., 1., 1., 1., 1., .5, .5, .5, 0]) diag ([0, 0, 0, 0, 0, .01, .01, .01, 0])
Qee diag ([0, 0, 0])] diag ([1, 1, 1])]
R diag ([10.0, 10.0, 10.0, 1.0]) diag ([10.0, 10.0, 5.0, 10.0])
qΨ 0 1

IK tracking GΘE,des = −30◦ GΘE,des = GΘP

Table 6.3: MUAV grasping scenario: control parameters

The MUAV response is given in Figure 6.10 and shows the desired convergence

towards the desired states. This validates the performance of the control strategy.

The signal discontinuities in Figure 6.10 are caused by changes of the control task.

In Figure 6.10d GΨPgrasp is indicating the direction of the bottle depending on the

current UAV position according to (6.9). For means of visibility, the direction vector

is shown here as Euler angle GΨE . The visible oscillations are directly related to the

oscillations in Gy as shown in Figure 6.10b. However, the scale of the plots confirms

the accuracy of the closed-loop MUAV system using motion capture tracking. As

expected, a significant control action is only visible in the transition phase between

two steps, as shown in Figure 6.10e. The computation time in Figure 6.10f confirms

the real-time applicability. To sum up, the grasping of the bottle in Figure 6.9

validates the applicability of the proposed control approach for manipulation tasks.
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(a) Controller states trajectory Gx in m
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(b) Controller states trajectory Gy in m
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(c) Controller states trajectory Gz in m
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(d) Controller states trajectory GΨ in m
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(e) DJI M100 controls u
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(f) Controller computation time
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Figure 6.10: MUAV grasping scenario: trajectories from controller perspective
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6.5 Conclusion

This chapter has presented a novel NMPC concept for under-actuated MUAV s. For

this purpose, a two-joint robotic arm has been attached to the DJI M100 quadrotor.

Subsequentially, the FK of the combined MUAV have been derived. Based on thes

FK and the DJI M100 HMDV (3.55) a NMPC pose control has been developed.

The FK is therefore applied in the cost function of the NMPC to track the end ef-

fector position. For computational complexity reasons, the heading Ψ is controlled

separately within the NMPC . Two different Ψ tracking options have been presented,

to either directly track a given orientation or to point the MUAV towards a given ob-

ject. In addition, a closed-form IK solution has been used to determine the necessary

joint angles to reach a desired end effector pitch angle. To conclude this work, the

developed approach has been successfully validated in an end effector pose tracking

scenario and a simple bottle grasping application is shown.

Future work will consider the modeling of the nonlinear pitch and roll behavior

of the internal DJI M100 controller which allows deriving a full quaternion model.

The performance of this computationally more complex model with the presented

approach will be further investigated. In addition, the deployment of environmental

constraints for grasping scenarios in cluttered environments will be investigated. An-

other further priority of future work will the research of industrial applications with

the presented MUAV system.
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Chapter 7

Cooperative control

Today, distributed systems are a part of every day life. Examples for such systems

are the internet, globally distributed value chains, telecommunication, traffic regu-

lation, transportation of goods, power supply systems, etc. The cooperative aerial

manipulation scenario shown in Figure 1.1. represents such a distributed systems.

Distributed systems consist of a multitude of interacting single entities, called agents.

In the context of this work, each single UAV is such an agent.

The advantages of a distributed system can be shown with a cooperative aerial

manipulation example. By deploying several UAV s to search and localize an object,

measurements can be improved with sensor fusion, safety by redundancy is provided

and the search time can be minimized. Additional task capabilities can be introduced

to the system in the form of specialized agents. For example, a MUAV can be deployed

for the manipulation task as soon as the object is localized. In the meanwhile, the

UAV s can provide perception information to the MUAV . This allows to reduce the

sensing payload on the MUAV which results in more available payload and energy

efficient manipulation.

In order to achieve such a global objective, the agents have to be controlled coop-

eratively. However, the control of distributed systems suffers from their complexity

and is facing two main issues:

1. Maintaining the inherent flexibility of distributed systems:

Refers to the flexibility of changing single elements or control objectives at

runtime. For example, if a UAV is defective, another UAV can take over its

task. If the new robot has different physical dynamics, the control of the whole

system has to be readapted to maintain an optimal result.
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2. Computational efficiency for real-time applicability:

As dynamics and interaction mechanisms of each agent have to be represented

within the control, the computational burden for large sets of agents e.g. robots

is high. Due to their fast dynamics, this is particularly problematic for UAV s.

Corresponding to the nature of large-scale distributed systems, these issues are typi-

cally addressed by a distributed control strategy. This means, every agent or subgroup

of agents are controlling themselves in relation to their neighboring agents. However,

for real-time MPC of fast systems even the control of such a subgroup is computa-

tionally challenging.

For this reason, this chapter is focusing on the development of a computation-

ally efficient central NMPC strategy for small-scale systems. This precedes a future

extension to distributed control approaches. To address the issues of computational

efficiency while maintaining flexibility, this chapter is contributing a Distributed Sys-

tem Event-Based Nonlinear Model Predictive Control (DENMPC ) framework. For

this purpose, the related work is given in §7.1. To address the flexibility of the MPC ,

§7.3 presents a scheme which allows to compose an OCP in a modular way from

different agents, constraints and control objectives. In §7.4, the DENMPC frame-

work C++-implementation with this modularization scheme is discussed. To achieve

computational efficiency, DENMPC is exploiting the mathematical structure of OCP

components. This refers to the avoidance of computationally expensive matrix multi-

plications. In addition, each compiled OCP component is accessed via a fast functors

and pointers scheme. Out of these compiled components, arbitrary optimal control

problems can be recomposed at runtime. This results in low computation times while

allowing runtime changes of the system topology, dynamics, couplings and control

objectives. The change of the OCP can thereby be triggered via event as for example

ROS messages, timers, etc. To state the computational efficiency of the proposed

control framework, §7.5 is validating the framework features experimentally in real

UAV scenarios. A summary and future perspective of the proposed methods is given

in §7.6.

7.1 Related work in cooperative control

A very comprehensive study on swarm mechanics, interaction constraints and control

is given in [GP11]. This includes control strategies for swarm expansion, contraction,

rotation and topology changes. Also different agent models for example generic single

and double integrator systems are discussed. In [ZM13], a survey on formation control
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and coordination for unmanned vehicles has been presented. It provides detailed

application references for swarms of mobile robots. In this context, also references for

control techniques based on virtual structures, leader-follower schemes, defined agent

behaviors, graph theory and potential field approaches are given. These methods

are well established for nonholonomic mobile robots and can be be applied straight

forward to UAV s.

One such control technique is feedback linearization to derive leader-follower con-

trol laws for distance and orientation. This is well established for first order kinematic

models of mobile robots. In [CGHC09], this concept is shown for autonomous under-

water vehicles. The simple interaction scheme of leader-follower approaches thereby

can be scaled easily. For this purpose, the follower only has to be considered as leader

for the next robot. To achieve more complex formations, [DOK98] introduces differ-

ent control laws for leader follower scenarios. By controlling distance and angle to

multiple followers, the article shows how specific formations can be achieved. The

developed controllers are applied on nonholonomic wheeled robots. In [DFK+02],

this idea is extended by the capability of switching between different leader-follower

control laws. This allows to change the formation according to the scenario. A leader-

follower approach for nonholonomic wheeled robots is presented in [CMPT08]. The

particularity of this approach is the consideration of control constraints and a set

of admissible positions. In addition, the article presents a comprehensive stability

analysis.

Virtual structure approaches define the desired formation explicitly. This is pre-

sented in [MGS11] for an example of car-type mobile robots. In contrast, behavioral

control is based on switching between elementary behaviors of agents. Relevant to

this thesis, a multi-MUAV control scenario has been presented in [MPT+16]. In this

context, each MUAV is capable of tracking a desired end effector pose and keeping a

given distance to its neighbor. Furthermore, every MUAV can track according to the

field of view of its sensor and avoid the manipulators mechanical joint limits. For non-

holonomic wheeled robot, a behavior-based formation control approach is presented

in [LBY03].

A common tool to describe distributed systems mathematically is graph theory.

Control design based on graph theoretic considerations are given in [FM04, CdQ15,

DF08, DSH07]. For this purpose, the connectivity and respectively rigidity of the

formation is controlled using the eigenvalues of the Laplacian matrix of the related

graph. [DSH07] is thereby considering network connectivity by using coverage and

communication constraints.
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All these control concepts are task specific and changes in the agents dynamics,

scenario constraints and objectives require a redesign of the control laws. As shown in

§5.6, artificial potential functions can be used to generalize control task descriptions.

In [GC02], potential functions are used to describe repulsive and attractive inter-

agent behavior. The robots are thereby steered according to the gradients of these

potentials. Experiments on wheeled omnidirectional mobile robots with dynamic

obstacle CA show the effectiveness of the proposed approach. The same principle is

presented in [GDDSL12] for quadrotor formation flying. In addition, the controller is

able to consider obstacle with repulsion attributes.

Closely related to the potential function approach, the control performance can

be increased by predicting the agents future behavior. This is for example used to

reduce oscillations in rigid formation scenarios. The combination of potential func-

tions with behavior prediction leads to MPC . As discussed in §4, MPC is based on

a formulation of the control scenario as optimization problem. This offers a generic

way of handling complex scenarios without adapting the control policy. An exam-

ple of a central NMPC of omnidirectional ground robots is presented in [NMSC13].

The article shows the experimental evaluation of the NMPC with three robots in a

leader-follower as well as in a formation control scenario. In [NSCM14], the related

cost function weights are determined in an iterative tuning approach. A typical ex-

ample of MPC for UAV s is trajectory tracking in formation flight while considering

CA constraints. In [KCK13], MPC is presented for collision free traffic regarding

automotive transportation scenarios. A non-convex MPC for cooperative control is

presented in [AMA14]. Here, the first objective is to tackle CA. The secondary

performance objective is to deal with the quality of the collision free trajectory. A

comprehensive study on multi-UAV MPC control strategies is given in [BMPL+14].

The provided examples are CA, area exploration and formation flying using virtual

structure.

The scenario size and complexity using MPC is limited by the computational bur-

den in relation with real-time applicability. This computational effort can be split, by

considering separate subproblems consisting of each agent with its local neighborhood.

The result is a distributed MPC . A comprehensive collection of such algorithms is

given and discussed in detail in [Neg14]. As a result, the controllers can also be ap-

plied in larger scale scenarios. The distributed controller topology thereby provides

safety by redundancy. The disadvantage is the lower control performance due to the

lack of global information about all scenario components. In addition, communication

and convergence mechanisms have to be implemented. This is necessary to achieve
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convergence towards the global optimal solution. An example of such an NMPC

distribution for fixed-wing UAV formation flight is given in [SK09]. The article com-

pares central and distributed NMPC for a simulative leader-follower formation flight

scenario with CA. Another distributed MPC example is given in [TMK12] for UAV

trajectory planning. There, the distribution is realized by broadcasting a UAV ’s tra-

jectory to its neighbors in the form of trajectory polynomial coefficients. Each agent

is subsequently solving the planning problem for a subsystem with its neighbors using

SQP . In [BR11], a distributed MPC for UAV formation control is developed. For

this purpose, navigation constraints are linearized with switching parameters which

results in a mixed-integer quadratic program.

The objective of this chapter is to incorporate the advantages of the presented

central MPC approaches with the advantages of distributed control approaches. In

order to develop a control solution with low computation times and the desired flex-

ibility, the global OCP of a distributed system is analyzed in the following regarding

its key components.

7.2 OCP of distributed systems

An example of a central control of a distributed system of three coupled quadrotors is

given in Figure 7.1. In the presented cooperation scenario every quadrotor represents

Figure 7.1: Scheme of UAV cooperation
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an agent with its uncoupled dynamic f i, constraints ceqi, cini and costs Li. To

describe the behavior of the coupled system, the single agents are interconnected with

coupling constraints cinij, ceqij and/or coupling costs Lij. The couplings in Figure

7.1 do not have to be physical couplings, but are representations of mathematical

constraints like for example a CA constraint. They can act on both agents (e.g.

”Coupling 1”) or just one agent (e.g. ”Coupling 3”). The arrows in Figure 7.1 are

hereby representing the direction of information. For the given example of ”Coupling

3”, ”Agent 3” reacts on ”Agent 2”, but not in reverse.

More generally, a distributed system consists of a set of nν agents V = {ν1, ..., νnν}.
In the context of this thesis, pairwise couplings between agents are considered. Ac-

cordingly, each agent i ∈ V is exclusively coupled with nηi neighbors j ∈ N i =

{νj ⊆ V|{νi 6= νj}} by the couplings E = {εij = {νi, νj}|νi, νj ∈ N i}. To glob-

ally control all nν agents, the individual MPC cost functions are added up (7.1).

The interaction between agents can be expressed by additional coupling stage costs

Lij (xi,ui,xj,uj) and coupling constraints e.g. ceqij (xi,ui,xj,uj) and final cou-

pling costs V (xi, t+ T ). For means of visualization, an explicit time dependency τ

is omitted in the following. Accordingly, the OCP described in §4 is extended for a

distributed systems to the global OCP

min
u(·)

J (u) =
nν∑
i=1

V (xi, t+ T ) +

nε∑
j 6=i

V ij

(
xi,xj

)
+

nν∑
i=1

 t+T∫
t

Li (xi,ui) +

nε∑
j 6=i

Lij

(
xi,xj ,ui,uj

) dτ (7.1)

s. t. ẋi = f i (xi,ui) , (7.2)

0 = ceqi (xi,ui) , ceqi ∈ Rnceqi , (7.3)

0 ≥ cini (xi,ui) , cini ∈ Rncini , (7.4)

0 = ceqij
(
xi,ui,xj,uj

)
, ceqij ∈ Rnceqij , (7.5)

0 ≥ cinij
(
xi,ui,xj,uj

)
, cinij ∈ Rncinij , (7.6)

xi (t) = xi (t) (7.7)

The couplings shown in OCP (7.1),(7.5),(7.6) are acting on both agents equally.

To realize coupling constraints and cost functions which are only acting on one

agent (e.g. leader-follower constraint), the influence of the cost functions on one

agent e.g. j is neglected. This is indicated with the index “\{uj}”. For exam-

ple L
\{uj}
i,j (xi,ui,xj,uj) is a coupling cost term, that just affects agent i. This is

achieved by omitting the corresponding derivative terms e.g. ∇xjL
\{uj}
i,j = 0 and
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∇ujL
\{uj}
i,j = 0 in the solution of the optimality conditions. As a remark, depending

on the system dynamics, objectives and constraints, this approach can lead to subop-

timal or infeasible solutions if the problem convexity is altered. In mobile robotics this

can appear for example when a unidirectional robot tries to follow an omnidirectional

robot.

In the following, the idea of modularizing terms of the optimality conditions is

used to create the first order optimality conditions (see §4.2) dynamically. For this

purpose, the OCP structure is analyzed for the constraint handling methods given in

§4.5.

7.3 Modularization

The key to fast MPC is an efficient solver code, typically compiled from a fast low-

level programming language e.g. C . Hence, standard MPC implementations form

the OCP (7.1)-(7.7) in compilation time and then use the compiled fast functions at

runtime. This has the advantage of a fast execution, but with the draw-back that

for each adjustment of the system topology, control objective, etc., the OCP has

to be recompiled. This contradicts a runtime adaptability required for dynamically

changing distributed systems. To address this lack of flexibility, this section is con-

tributing a modularization approach. The idea of this modularization is to compose

the OCP at runtime from elemental precompiled functions. By exploiting the OCP

structure, the modularization combines the flexibility of runtime adjustments with

the computational speed of compiled functions.

The current implementation of the DENMPC framework provides the modular-

ization of OCP in the form (7.1)-(7.7). Furthermore, it comes with an incorporation

of the primal barrier and auxiliary variable constraint handling method (see §4.5). In

order to demonstrate this central cooperative control, the following composite state

vectors of the agents are considered

x =
[
xT

1 ... xT
nA

]T

, u =
[
uT

1 ... uT
nA

]T

. (7.8)
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Without loss of generality, the modularization is shown with the reduced OCP

min
u

J (x,ui) =
∑
i

V i (xi (t+ T ) , t+ T ) +
∫ t+T
t

∑
i

Li (xi (τ) ,ui (τ) , τ) dτ

s.t. ẋi = f i (xi,ui, τ), xi (t) = xi,0,

0 = ci (xi,ui, τ), 0 = cij (xi,xj,ui,uj),

τ ∈ [t, t+ T ] j ∈ N i, i ∈ [1, nA]

(7.9)

for means of readability. OCP (7.9) comprises the atomic OCPs of each agent plus

coupling constraints cij.

The modularization is exemplarily shown for the primal barrier inequality con-

straint handling. As shown in §4.2.2, the Lagrangian for the cooperative OCP (7.9)

can be calculated accordingly

L =
nν∑
i

[Li (xi,ui, t) + λ>i f i (xi,ui, t)− qcin
>
i

ln (−cini (xi,ui, t))

+

nη∑
j

−qcin
>
i,j

ln
(
cini,j (−xi,xj,ui,uj, t)

]
. (7.10)

Each agent i is contributing to the Lagrangian L with its individual stage costs

Li, dynamics f i and constraints cini additively. This holds also for the coupling

constraints cini,j, which are affecting always two agents (agent i, agent j). Like the

individual constraints cini, the couplings are contributing to L via the primal barrier

method.

Considering the composite vectors (7.8), the optimality conditions for the global

OCP can be expressed in terms of the contributing single agent elements

0 = ∇uL =
[
∇u1L>, . . .∇unνL>

]>
(7.11)

ẋ = ∇λL =
[
f 1 (u1,x1, t)

> , . . .fnν (unν ,xnν , t)
>
]>
. (7.12)

λ̇ = −∇xL =
[
−∇x1L>, . . .−∇xnνL>

]>
. (7.13)
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The idea is to exploit the additive structure of the Lagrangian which is also visible

in its derivatives. The modularization is demonstrated for ∇uiL in (7.11)

0
!

= ∇∂uiL = ∇uiLi (xi,ui, t) + (∇uif i (xi,ui, t))
> λi . . . (7.14)

− (∇uicini (xi,ui, t))>
(
qcin i\cini (xi,ui, t)

)
. . . (7.15)

−
(
∇uicini,j (xi,uj,ui,uj, t)

)
>
(
qcin i,j\cini,j (xi,uj,ui,uj, t)

)
. (7.16)

where ”\“ is representing an element-wise division. Regarding the structure of (7.14)-

(7.16), three influences can be distinguished. (7.14) consists of the agents dynamics

and stage costs which typically formulate the control objective. (7.15) is associated

with the constraints that are acting on agent i, while (7.16) is the influence induced by

coupling constraints. In reverse conclusion, if (7.14) is provided for different agents,

(7.15) for different constraints and (7.16) for different coupling constraints, the sum-

mands of this equation can be exchanged according to the dynamics, objective, con-

straints and couplings. To structure the global OCP , the modularization also has

to be executed for the other optimality conditions (7.12)-(7.13). In case of (7.12)

this is trivial, as it results in a concatenation of system dynamics. For (7.13) the

modularization can be executed straight forward as for (7.14). In §A.2, this is shown

for all constraint handling methods presented in §4.5.

Each of the summands (e.g. (∇uif i (xi,ui, t))
> λi) in (7.11)-(7.13) is a vector-

valued function . In order to avoid computationally expensive matrix-multiplications

(e.g. (∇x1f 1)T λ1), GRAMPC [GU14] offers the possibility to provide (∇xf)T λ as

explicit function. This is particularly advantageous, as the Jacobians of the system

function are typically sparse. The same principle can also be applied for all other

components of the optimality conditions that consist of a multiplication of matrix-

valued functions with vectors:

e.g. ∇x1f 1 (x1,u1, t)
T λ1 ≡ s (x1,u1,λ1, t) (7.17)

Accordingly, each atomic term in Table 7.1 can be expressed by a vector-valued

function (s). As a result, no matrix multiplication is needed at runtime as these

products are computed and optimized in compilation-time. In the following these

vector-valued summands are referred to as atomic functions.

These can be provided in fast compiled code and modularly added or removed

from the optimality conditions. For example a change of an agent has influence

on all optimality conditions. Therefore, it makes sense to be able to change all of
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its corresponding atomic functions at once. In DENMPC , this is realized by pack-

ing associated atomic functions into a single C++-class which can be addressed via

functors. Out of these predefined modules, the corresponding central OCP for any

arbitrary topology of the system can be formed. The structure of Table 7.1 is demon-

strating how DENMPC is associating the atomic functions to agents, constraints

and couplings. The object-oriented implementation of this structure in DENMPC is

explained in the following.

Table 7.1: Atomic functions to realize agents and couplings

“Agent” i
Costs: Li (xi,ui), ∇xiLi (xi,ui), ∇uiLi (xi,ui)
Final costs: V i (xi), ∇xiV i (xi),

Dynamics: f i (xi,ui), (∇xif i (xi,ui))
T λi, (∇uif i (xi,ui))

T λi,

Equality
constraints:

ceqi (xi,ui),
(
∇xiceqi (xi,ui)

)T
λeqi,

(
∇uiceqi (xi,ui)

)T
λeqi,(

∇νiceqi (xi,ui)
)T
λeqi

Inequality
constraints:

cini (xi,ui), (∇xicini (xi,ui))
T λini, (∇uicini (xi,ui))

T λini,
(∇νicini (xi,ui))

T λini
“Constraint”: additional constraints / cost functions for agent i
Costs: Li (xi,ui), ∇xiLi (xi,ui), ∇uiLi (xi,ui)
Final costs: V i (xi), ∇xiV i (xi),

Equality
constraints:

ceqi (xi,ui),
(
∇xiceqi (xi,ui)

)T
λeqi,

(
∇uiceqi (xi,ui)

)T
λeqi,(

∇νiceqi (xi,ui)
)T
λeqi

Inequality
constraints:

cini (xi,ui), (∇xicini (xi,ui))
T λini, (∇uicini (xi,ui))

T λini,
(∇νicini (xi,ui))

T λini
“Coupling”: coupling between agent i and its neighbor agent j
Costs: Lij (xi,xj,ui,uj), ∇xiLij (xi,ui,xj,uj), ∇xjLij (xi,ui,xj,uj),

∇uiLij (xi,ui,xj,uj), ∇ujLij (xi,ui,xj,uj)
Final Costs: V ij (xi,xj,ui,uj), ∇xiV ij (xi,xj), ∇xjV ij (xi,xj),

Equality
Constraints:

ceqij (xi,ui,xj,uj),
(
∇xiceqij (xi,ui,xj,uj)

)T

λeqij,(
∇xjceqij (xi,ui,xj,uj)

)T

λeqij,
(
∇uiceqij (xi,ui,xj,uj)

)T

λeqij,(
∇ujceqij (xi,ui,xj,uj)

)T

λeqij,
(
∇νiceqij (xi,ui,xj,uj)

)T

λeqij

Inequality
Constraints:

cinij (xi,ui,xj,uj),
(
∇xicinij (xi,ui,xj,uj)

)T
λinij,(

∇xjcinij (xi,ui,xj,uj)
)T
λinij,

(
∇uicinij (xi,ui,xj,uj)

)T
λinij,(

∇ujcinij (xi,ui,xj,uj)
)T
λinij,

(
∇νicinij (xi,ui,xj,uj)

)T
λinij
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7.4 DENMPC framework implementation

To provide a flexible control approach for distributed systems, this thesis con-

tributes the ”Distributed System Event-based Nonlinear Model Predictive Con-

trol“(DENMPC ) framework.

Figure 7.2: Schematic DENMPC class structure

The principle structure of the DENMPC package is shown in Figure 7.2. It

consists of the five base class containers Controller, Agent, Constraint, Coupling

and Event which provide the basic functionality for the user defined MPC . Each

featured user agent, constraint, etc. is implemented as child class of these base

class containers and therefore inherits the interface which is required for the modular

composition of the NMPC . This includes the declaration of the atomic functions

given in Table 7.1. The Scheduler class is handling the communication of the agents

with the controllers.

The Agent class represents a generalization of user defined agents. It provides the

interface for the atomic functions given in Table 7.1 to represent system dynamics,

cost functions, constraints and their derivatives. Furthermore, each agent contains a

list of pointers to additional constraints and/or couplings, which are acting upon it.

Besides the declaration of the atomic functions for the modularization, the Agent

class provides a ROS communication interface. This interface allows the subscription

of measurement data and publication of controls.
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According to the modularization, also the atomic functions of constraints and

couplings can be structured in the base classes Constraint and Coupling. These

contain interfaces for stage costs, final costs, equality and inequality constraints func-

tions, as well as their derivatives. In contrast to the individual agent Constraint,

the Coupling class functions is associated with two agents. This allows establishing

interactions between agents and as a result, the extension to arbitrary multi-agent

systems.

Figure 7.3: Schematic DENMPC memory and concatenation structure

The main function of the Controller base class is the modularization described in

§7.3. This includes the concatenation of states and optimization variables (e.g. (7.8)).

A schematic explanation of this concatenation is given in Figure 7.3. Based on the

concatenation, the composition of the optimality conditions is implemented. The idea

of concatenating all variables of each single agent, constraint and coupling in global

vectors is to provide an interface for the implemented solvers. As a result, the solver

only considers the solution of a single global OCP with global state and optimization

variable vectors. This facilitates the implementation of solvers, as the modularization

does not have to be taken into account. The global vectors are thereby depending

on the scenario and the constraint handling method. For example, for the auxiliary

variable method (see §A.2) the slack-variable and inequality Lagrange multiplier are

implemented as additional optimization variables. All global vectors of states x, opti-
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mization variables w, controls u, target states xdes, target controls udes, parameters

κ, states Lagrange multipliers λ, equality constraint Lagrange multipliers λeq, in-

equality constraint Lagrange multipliers λin, inequality constraint slack variables ν

are allocated in one memory block. The Agent, Constraint and Coupling objects

store the information at which address their individual component x1 is stored within

the global vectors. Accordingly, the controller contains a list of pointers to all agents

that are controlled.

In order to minimize the computational overload introduced by the modulariza-

tion, a pointer/functor access scheme is used. A schematic example of the pointer

access scheme to the atomic functions is given in Table 7.1 for the composition of the

global ∇xL. To compose the global OCP functions, the controller iterates through

all controlled agents (pointer pag), associated constraints (pointer pcon) as well as

couplings (pointer pcuo) and sums up their individual influence. The computational

overhead is limited to the functor/pointer access times and the iteration management

overhead as well as the allocation of auxiliary variables. According to this access

scheme, the complete optimality conditions (7.11)-(7.13) are composed and then pro-

vided to the CMSC/GMRES solver.

Listing 7.1: Schematic pointer access scheme for the example of composing ∇xL
// Determine the global stage cost state derivative

void Controller ::dldx(out ,t,u,x){

//Loop over agents

for(int i=0;i<this ->agentlist.size();i++){

//Get pointer to agent

pag=agentlist_[i];

//Get dldx values of agent

pag ->dldx(tmp ,t,pag ->u,pag ->x);

//Add the agent related elements of tmp to out

add(out ,tmp);

//Loop over constraints in agents

for(int j=0;j<pag ->getConstraint_Dim ();j++){

//Get constraint pointer

pcon=pag ->constraint_[j];

//Get dL/dx values of constraint

pcon ->dldx(tmp ,t,pcon ->u,pcon ->x)

//Add the constraint ’s agent elements of tmp to out

add(out ,tmp);

}

//Loop over couplings in agents

for(int k=0;k<pag ->getCoupling_Dim ();k++){

175



// Getting coupling pointer

pcou=pag ->coupling_[k];

//Get dL/dx1 values of coupling

pcou ->dldx1(tmp ,t,pcou ->u1 ,pcou ->x1 ,pcou ->u2 ,pcou ->x2);

//Add the coupling ’s 1st agent elements of tmp to out

add(out ,tmp);

//Get dL/dx2 values of coupling

pcou ->dldx2(tmp ,t,pcou ->u1 ,pcou ->x1 ,pcou ->u2 ,pcou ->x2);

//Add the coupling ’s 2nd agent elements of tmp to out

add(out ,tmp);

}

}

}

Besides the computational efficiency, the pointer based modularization allows a

manipulation of the complete scenario by just modifying the pointer references. Agent

nν can be easily exchanged by referring the pointer to agent i in the agent vector

(agentlist in Listing 7.1) to another agent instance. This is also valid for control

objectives, constraints, etc. To give an example, two different couplings have been

predefined:

• follow drone with fixed distance

• hover at position.

Each of these objectives is represented by a set of the atomic functions given in Table

7.1. An array of coupling pointers is storing the couplings used for the composition

of the central OCP . First the “hover at position” coupling is applied on a quadrotor

by adding the pointer to the “hover at position” coupling to the list of couplings.

Next, the “follow drone with fix distance” objective shall be applied. Accordingly,

the previous pointer to “hover at position” is substituted by a pointer to the “follow

drone with fix distance” element. An advantage of the proposed modularization

is that without equation simplifications in compile-time the composed functions are

mathematically identical to the nonmodular formulation. If the additional calculation

overhead is neglectable, the controllability as well as stability of the controlled system

is not affected and directly determined by system and solver properties,

To make use of this modularization, the Event class handles the event-triggered

online addition and removal of agents, constraints and couplings to the global OCP .

Furthermore, it allows the online modification of parameters. The purpose of this is

for example the online adjustment of the state tracking penalty factors, parameters
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of the agent dynamics or the distances in formation coupling constraints. The ap-

pearance of such an event is checked at the beginning of each control update and can

be caused by ROS communication events, timers, etc. As a result the OCP can be

modified dynamically. Further information about the implementation of DENMPC

is given in the code documentation within the package [Den16].

7.4.1 Code generation

In order to facilitate prototyping and the control development process, the derivatives

and accordingly the atomic terms listed in Table 7.1 can be determined automatically

from the OCP equations listed in Table 7.2. For example, ACADO is addressing this

by automatic differentiation. However, to avoid the implementational complexity of

automatic differentiation, a separate code-generator is used in the context of this

thesis. This code-generator has been implemented as Mathematica package which al-

lows the utilization of Mathematica’s symbolic calculation (e.g. derivation) capability.

Accordingly, the agents, constraints and couplings and their related OCP equations

listed in Table 7.2, are implemented in Mathematica and subsequently translated

into C++ code. This code-generator is currently under extensive testing and will be

published under GPL3 open-source licence.

Table 7.2: Functionals and functions required for the code generation

“Agent” i
Costs: Li (xi,ui), Final costs: V i (xi), Dynamics: f i (xi,ui), Equality constraints:
ceqi (xi,ui), Inequality constraints: cini (xi,ui)

“Coupling”: coupling between agent i and its neighbor agent j
Costs: Lij (xi,xj,ui,uj), Final Costs: V ij (xi,xj,ui,uj), Equality Constraints:
ceqij (xi,ui,xj,uj), Inequality Constraints: cinij (xi,ui,xj,uj),

“Constraint”: additional constraints / cost functions for agent i
Costs: Li (xi,ui), Final costs: V i (xi), Equality constraints: ceqi (xi,ui), Inequality
constraints: cini (xi,ui)

7.5 Validation of DENMPC

In order to validate the features of DENMPC , this chapter is providing experimen-

tal results regarding the runtime adaptability and computational efficiency of the

proposed approach. For this purpose four experiments are conducted. The first sce-

nario in §7.5.1 is comparing DENMPC with an explicit implementation of the global
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OCP without modularization. For this purpose, a formation flight scenario of two

AR.Drone 2.0 s is conducted. The second scenario in §7.5.2 is an extension of the task-

based tracking introduced in §5.6.7. In this scenario, one AR.Drone 2.0 is tracking

another AR.Drone 2.0 using sensor constraints. This scenario shows the performance

of the DENMPC framework for more complex tasks and unidirectional couplings. In

§7.5.3, the third scenario is showing how one AR.Drone 2.0 is dynamically added to a

formation of two AR.Drone 2.0 s. This scenario demonstrates the runtime adaptabil-

ity. Finally, §7.5.4 is showing a heterogeneous cooperative control scenario in the form

of cooperative aerial manipulation. In this scenario, an AR.Drone 2.0 is tracking the

end effector position of a DJI M100 MUAV . In order to demonstrate the variability

of DENMPC , the dynamics, constraints, cost functions, constraint handling methods

are altered in all four scenarios. The utilized hardware setup is given in §A.1. In the

following section the computational efficiency of the modular composition method is

validated in a UAV cooperation scenario.

7.5.1 Modularization benchmark

In this section, a simple formation scenario of two quadrotors is controlled with

NMPC . The quadrotors are implemented as 3D-models in the simulation environ-

ment V-REP . In order to validate the computational efficiency of the modularization

approach with fast pointer/functor access, the approach is compared with an explicit

implementation of the OCP . The idea of the scenario is to track a given target po-

sition with UAV 1, while keeping a distance of ddes = 1 m between both UAV s. This

coupling is realized with the potential function

L21 (x1,u1,x2,u2) = qd

√(−→p 1 −−→p 2

)T (−→p 1 −−→p 2

)
− ddes. (7.18)

−→p 1, −→p 2 are the position vector of UAV 1, respectively UAV 2.
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The applied OCP of the scenario is given as

min
u1,u2

J =

t+T∫
t

(xdes1 − x1)TQ1 (xdes1 − x1) + uT
1R1u1 (7.19)

+ (xdes2 − x2)TQ2 (xdes2 − x2) + uT
2R2u2

+ qd

√(−→p 1 −−→p 2

)T (−→p 1 −−→p 2

)
− ddes dτ

s.t.

f (xi,ui) =



V1ẋi cos
(VΨi

)
− V1ẏ i sin

(VΨi

)
V1ẋi sin

(VΨi

)
+ V1ẏ i cos

(VΨi

)
0.8827 · uV1z,i

−0.005879 · VΨi + 1.265 · uV1ω,i
−0.8799 · V1ẋi + 3.273 · uV1x,i
−0.5092 · V1ẏ i + 1.458 · uV1y,i


i = 1, 2 (7.20)

0 ≤ cini =
[
uV1x,i

2 − 1, uV1y,i
2 − 1, uV1z,i

2 − 1, uV1ω,i
2 − 1

]T

(7.21)

x1 (0) =
[
0, 0, 0, 0, 0, 0

]
, x2 (0) =

[
0, 1, 0, 0, 0, 0

]
(7.22)

Q1 = diag
([

1, 1, 2, 1, 0, 0
])
, Q2 = diag

([
0, 0, 2, 1, 0, 0

])
(7.23)

R1 = diag
([

10, 10, 10, 10
])
, R2 = diag

([
10, 10, 10, 10

])
(7.24)

qd = 10, ddes = 1, λeq
i
(0) =

[
1, 1, 1, 1

]
· 10−4 (7.25)

νi (0) =
[
0.9, 0.9, 0.9, 0.9

]
, rν,i (0) =

[
1, 1, 1, 1

]
· 10−4 (7.26)

ξ = 1, υ = 1, ∆t = 0.1, T = 1, (7.27)

N = 10, h = 0.001, ε = 10−8, imax = 30 (7.28)

For ease of notation the time dependency of variables and functions are not ex-

plicitly shown in (7.19)-(7.21). The position tracking is realized in the OCP with a

quadratic penalty (7.23)-(7.24) in the cost function (7.19). Q2 is hereby used to track

the z-axis of UAV 2 to force it onto the xy-plane. The UAV system dynamics are

represented by the RHMY with the parametrization as shown in (7.20).

The control limitation constraints (7.21) are realized via the auxiliary variable

method (§4.5.2). The corresponding initialization of the Lagrange multipliers λeq,

the slack variables ν and the slack penalty rν is given in (7.25)-(7.26). The applied

CMSC/GMRES parameters are given in (7.27)-(7.28) according to the convention

given in §5.3. The system is initialized with the initial states (7.22) which fulfill
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ddes = 1. To analyze the systems closed-loop behavior, a position displacement of

target xdes1 is introduced at time t ≈ 10 s

xdes1 (0) = [0, 0, 0, 0, 0, 0] , xdes1 (≈ 10) = [1, 0, 0, 0, 0, 0] . (7.29)

Figure 7.4-7.5 is showing the comparison of the modular DENMPC implementa-

tion with the nonmodular explicit implementation. The xy-plot in Figure 7.4 confirms

the desired behavior. UAV 1 is reaching the target position which is indicated with a

red rectangle. Both UAV s are trying to keep the distance ddes = 1 m. This is visible

by the displacement of UAV 2 and the curvature of the UAV 1 trajectory. Due to the

trajectory tracking, both UAV s do not show a significant deviation from the tracked

z = 0. Hence, the visualization of the z-axis is omitted here. This behavior is further

validated by the state and distance plots in Figure 7.5. Subsequent to the imposed

change of xdes1, the distance is converging towards the desired value ddes = 1 m. In

correspondance, the actuation converges towards zero.

(a) GxGy-plot with modularization
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(b) GxGy-plot without modularization
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Figure 7.4: Comparison with (left) and without (right) modularization: UAV 1 and
UAV 2 keep distance ddes = 1 while UAV 1 is tracking target

The trajectories of the modular DENMPC and nonmodular implementation in

Figure 7.4-7.5 show identical behavior. This is expected, as the modular global OCP

and nonmodular global OCP are mathematically identical. Small differences in the

trajectories are caused by numerical and timing errors of the simulator as well as

the interrupts of the running control process on the computer. These interrupts are
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(k) UAV 2 actuation
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(l) UAV 2 actuation
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Figure 7.5: Comparison with and without modularization UAV 1 and UAV 2 keep
distance ddes = 1 and UAV 1 is tracking target
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also assumed to lead to the peak values of the computation time max(tc) ≤ 10 ms in

Figure 7.5, as these peaks appear arbitrarily and without correlation to the system

trajectory (harware specifications in A.1). Nevertheless, the computation time does

not exceed ∆t = 100 ms which validates the real-time applicability. This is stating the

efficiency of the applied CMSC/GMRES method in order to cooperatively control a

small swarm of UAV s. In reverse conclusion, this setup would allow the real-time con-

trol of up to 10 similar scenarios, controlled by a single computer The computational

efficiency of the proposed modularization is evaluated with the mean computation

time. The modular approach with t̄comp = 3.551 ms shows only a computational

overhead of 16% to t̄comp = 3.057 ms of the nonmodular OCP . This remarkably low

computational overhead comes with the advantage of online adaptability of dynamics,

objectives and topology and confirms the efficiency of the proposed modularization.

For more complex agent dynamics, this ratio further declines as the number of func-

tor/pointer access would stay the same, while the effective time within the functions

would increase.

7.5.2 Unidirectional sensor-constrained tracking

In order to analyze the DENMPC performance in a more complex real multi-UAV

scenario with unidirectional coupling, this section is extending the task-based MPC

validation scenario presented in §5.6.7. Here, one quadrotor (UAV 1) is equipped with

a camera to track the target quadrotor UAV 2. Hence, the task is to keep the target

quadrotor in the camera frame, as shown in Figure 7.6.

Figure 7.6: Cooperative sensor-constrained tracking scenario: Visual tracking of
quadrotor from camera equipped quadrotor
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The control of both quadrotors is accomplished with DENMPC using the potential

functions for sensor-based tracking as developed in §5.6. The quadratic state tracking

Li :=
(
xdesi (τ)− xi (τ)

)>
Qi

(
xdesi (τ)− xi (τ)

)
+ ui (τ)Riui (τ) , (7.30)

sensor cone constraint (5.72), coordinate transformation (5.74)[
S−→p

1

1

]
= ST G

(
βFoV ,−ds,−G−→p 0

)[G−→p
1

1

]
(7.31)

in combination with the CA (5.80), cohesion (5.86) constraint and quadrotor dynamics

RHMY (3.27) with parameters (3.29), the OCP yields

min
u1,u2

J =

t+T∫
t

2∑
i=1

Li (7.32)

+κH0Lcin
\{u2}

(
S−→p

1
, αFoV , κG0, κA0

)
+κH1L

\{u2}
maxD

(
G−→p

1
, G−→p

1
, drotmax, κH1, κG1, κA1

)
+κH2L

\{u2}
minD

(
G−→p

1
, G−→p

1
, drotmin, κH2, κG2, κA2

)
dτ

s.t. 0 ≤ cini =
[
uV1x,i

2 − 1, uV1y,i
2 − 1, uV1z,i

2 − 1, uV1ω,i
2 − 1

]
0 = f i (xi,ui, t)

As introduced in §7.2, the index \{u2} of the cost functions Lcin , LmaxD and LminD

indicates, that the influence of the cost functions on UAV 2 is neglected. This means

that the sensor cone, CA and cohesion constraints are only affecting UAV 1. The ad-

vantage of this is, the future states of both UAV s are considered for the computation

of the optimal controls. However, the effect of the tracking costs can be limited to
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one quadrotor. The parameters of (7.32) for the experimental validation are given as

Q1 = diag
([

0, 0, 0, 0, 0, 0.7, 0.7
])
, R1 = diag

([
1, 1, 1, 1

])
(7.33)

Q2 = diag
([

1.5, 1.5, 1.6, 1, 1, 0, 0
])
,R2 = diag

([
1, 1, 1, 1

])
(7.34)

qcin,1 =
[
1, 1, 1, 1

]
· 10−4, qcin,2 =

[
1, 1, 1, 1

]
· 10−4 (7.35)

κc : ds = 0.17, αFoV = 0.5, βFoV = 0.5, (7.36)

κH0 = 0.4, κG0 = 0.01, κA0 = 2.0

κminD : drotmin = 1, κH1 = 0.4, κH1 = 4.5, κG1 = 0.001, κA1 = 3.0 (7.37)

κmaxD : drotmax = 2, κH2 = 0.4, κH2 = 1.5, κG2 = 0.001, κA2 = 3.0 (7.38)

κcmscgmres : N = 20, T = 1 s, ε = 10−8, ξ = 10,∆t = 0.01 s, imax = 30, (7.39)

υ = 2 (7.40)

Here, κcmscgmres are the CMSC/GMRES solver parameters and given in a coherent

notation to §5.3. The input limitation constraints are realized with primal barrier

constraint handling (see §4.5.1) using (7.35).

To examine the dynamic behavior of the proposed control solution, the target

position of UAV 2 is moving in a circular trajectory. For UAV 1, the choice of Q1 leads

to a tracking of zero forward velocity V1ẋ1 (t) = 0 and sideward velocity V1ẏ1 (t) = 0

which yields the desired states

xdes1 = diag
([

0, 0, 0, 0, 0, 0, 0
])

(7.41)

xdes2 = diag
([

1
2

cos(0.3t), 1
2

sin(0.3t), 1, 0, 0, 0.0, 0.0
])
. (7.42)

For the numerical validation, two AR.Drone 2.0 models have been implemented in the

simulation environment V-REP (Figure 7.7a). In correspondence, Figure 7.7b shows

the real AR.Drone 2.0 s during the experimental validation. The UAV position data

is thereby measured by a motion capture system.

An intuitive access to the UAV behavior is gained by plotting the UAV positions

and the orientation of UAV 1 by means of a vector as shown in Figure 7.8b-7.8b. To be

able to associate both UAV positions, time related UAV positions are connected with

a line. It is visible that UAV 2 is following the desired circular trajectory, while UAV 1

is tracking UAV 2 in an ellipsoidal movement. The orientation vectors are displayed

at each ∆t ≈ 1.68 s for means of visualization. Both xy-plots confirm the circular

trajectory of UAV 2. This is also characterized by the sinusoidal movement in Figure
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(a) Numerical validation in V-REP (b) Real UAV validation

Figure 7.7: Cooperative sensor-constrained tracking scenario: setup

7.8e and Figure 7.8f. The likewise sinusoidal position trajectories of UAV 1 in Figure

7.8c are indicating a tracking of UAV 2. The position of UAV 1 is just dependent on

the applied constraints. As a result, UAV 1 can rotate freely around UAV 2. This

leads to the drift of the sinusoidal position trajectory of UAV 1. In contrast to the

numerical validation, the initial UAV positions have been chosen arbitrarily in the

real scenario. As a result, the position trajectory of UAV 1 shows a different motion

pattern in Figure 7.8d.

Nevertheless, the distance plots in Figure 7.9a-7.9b state that UAV 2 is tracked

within the given distance limitations dmin ≤ d ≤ dmax. An exception is the initial

phase of the simulation. In this scenario, the repulsive behavior of the CA constraint

causes an increase in the distance in order to satisfy d ≥ dmin. At t ≈ 55 s, the

minimum distance constraint of the real UAV scenario is violated due to disturbance.

Due to the soft implementation of the sensor constraint, the OCP maintains feasible.

This allows the recovery from the constraint violation. To conclude, the distance

trajectory is validating the active CA and cohesion constraint.

For the validation of the controller performance, Figure 7.9c-7.9d are showing the

absolute tracking angle. According to (7.43), the tracking angle for the multi-UAV

scenario yields

αt = ‖ arccos(
S−→p 2 · [1, 0, 0]>∣∣S−→p 2

∣∣ )‖. (7.43)

As desired, the cone constraint keeps the tracking angle αt smaller than the sensor

beam width angle αt ≤ αFoV = 0.5 rad. Figure 7.9c shows, that the tracking angle αt

in the simulation is in fact much smaller. This is caused by the smooth approximation
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Figure 7.8: Cooperative sensor-constrained tracking scenario: position
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Simulation Real UAV s
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Figure 7.9: Cooperative sensor-constrained tracking scenario: data
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of the unit steps by sigmoids (4.137). The result is a convergence towards the center

of the cone. Especially for undisturbed systems, the tracking angle αt is consequently

significant smaller than the beam width angle αFoV . To reduce this effect κA can be

increased. The disturbed real UAV s exploit more of this tracking angle range. Due

to the initial conditions, αt is violating the applied cone constraint at the beginning.

For t ≥ 10 s, it is tracked within the given bounds αt ≤ αFoV = 0.5 rad . Hence, the

experimental results are validating the desired NMPC performance.

The control trajectories in Figure 7.9e-7.9h confirm that the input limits are re-

spected. In contrast to the numerical solution, the real UAV s show a significant

higher control action. This is caused by disturbance rejection and model errors.

To evaluate the computational efficiency of DENMPC for the given scenario,

Figure 7.9i-7.9j are giving the MPC computation time on a Dell Latitude E5440

(see §A.1). The real experimental evaluation requires additional drivers which leads

to higher computational load. The results are CPU interrupts of the controller

which cause sudden peaks in the computation time of tc ≈ 20 ms. Furthermore,

the real UAV controller shows a higher computational load due to disturbance rejec-

tion. Nevertheless, the DENMPC average computation times t̄c ≈ 2.54 ms, respec-

tively t̄c ≈ 1.34 ms, are very low in comparison with the control update interval of

∆t = 10 ms. This states the real-time applicability of DENMPC for this scenario.

7.5.3 Online adaptability

Figure 7.10: Runtime formation change scenario: Video footage: t1: 2 agents (left)
vs. t2:3 agents (right)

This section demonstrates runtime changes of agents, constraints and couplings

with DENMPC . To visualize this adaptability, a switch between two formations is
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conducted online. Initially two AR.Drone 2.0 quadrotors form a linear formation

around a given target. Subsequently, a third AR.Drone 2.0 is dynamically added to

the scenario. This causes the formation to change to a triangle around the target, as

shown in Figure 7.10. This formation change is caused by a combination of position

tracking and CA constraints. For this purpose each agent is tracking the same point
−→p des =

[
0, 0, 2

]>
which is realized with xdes =

[
0, 0, 2, 0, 0, 0

]>
and minimal energy

consumption udes = 0. This is realized for each UAV i with standard quadratic state

tracking stage costs:

Li (xi (t) ,ui (t)) = (xdes − xi (t))>Q (xdes − xi (t)) + ui (t)
>Rui (t) . (7.44)

In order to keep a minimum distance dmin, a CA-constraint is implemented between

each pair of UAV s using the saturation function constraint handling (see §4.5.3)

Li,j
(−→p i (t) ,

−→p j (t)
)

=
κH

1 + e
−κA

(
dmin

2−(−→p i(t)−−→p j(t))
>
(−→p i(t)−−→p j(t))

) . (7.45)

The goal of keeping a minimum distance of dmin = 1.5 m while targeting the same po-

sition is contradicting. For two and three UAV s, the result are equidistant formations

around the given target position.

The related OCPs are formed with (7.44), (7.45), the RHMY (3.27) with param-

eter set (3.29) and the control constraints ‖u‖ ≤ 1. Starting with two agents (UAV 1,

UAV 2) this results in the OCP

min
u

J =

t+T∫
t

2∑
i=1

Li (xi,ui) + L1,2

(−→p 1,
−→p 2

)
dτ (7.46)

s.t. 0 ≤ cini =
[
uV1x,i

2 − 1, uV1y,i
2 − 1, uV1z,i

2 − 1, uV1ω,i
2 − 1

]
,

0 = f i (xi,ui)

For means of simplicity, the initial states are not shown in the OCP formulation. It

shall be mentioned that the UAV positions (e.g. −→p 1) are part of the state vectors

(e.g. x1).

At time t1, a ROS message is triggering a change of the OCP . As a result,

an additional quadrotor and the corresponding constraints (cin3) and CA couplings
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(L1,3, L2,3) are added at runtime to the scenario. The OCP for three UAV s yields

min
u

J =

t+T∫
t

3∑
i=1

Li (xi,ui) + L1,2

(−→p 1,
−→p 2

)
(7.47)

+ L2,3

(−→p 2,
−→p 3

)
+ L1,3

(−→p 1,
−→p 3

)
dτ

s.t. 0 ≤ cini =
[
uV1x,i

2 − 1, uV1y,i
2 − 1, uV1z,i

2 − 1, uV1ω,i
2 − 1

]
0 = f i (xi,ui) .

Finally, at time instance t2, a second ROS message triggers the removal of UAV 3.

Consequently, the OCP is switching again from form (7.47) to form (7.46).

To solve the given problem, DENMPC is using CMSC/GMRES with primal bar-

rier constraint handling. The scenario parameters have been determined empirically

to achieve a smooth system response

Qi = diag
([

2, 2, 8, 3, 10.5, 10.5
])

(7.48)

Ri = diag
([

5.5, 5.5, 3, 3.1
])

(7.49)

κCA : dmin = 1.5 m, κH = 4.0, κA = 2.0 (7.50)

κcmscgmres : N = 10, T = 3 s, h = 0.001 s, ξ = 10,∆t = 0.01 s, (7.51)

imax = 6, υ = 2, ε = 0.1. (7.52)

For ease of visualization, the movement is limited to the xy-plane using a high

z-axis penalty. The result is shown in Figure 7.10. The trajectory of the agents in

3D space is given in Figure 7.11. Each agent and the central target are depicted as

a small sphere. The distance between corresponding agents at each time instance

is visualized as gray line. While the linear formation (7.46) is emphasized by a

magenta colored connection line, the green connection lines are showing the triangular

formation according to OCP (7.47). Before t1, UAV 3 is not within the bounds of

the plotted region, as indicated by the distance connectors in Figure 7.11. This is

validating that DENMPC is able to switch its control behavior online.

Triggered by a ROS message at time t1 ≈ 8 s, UAV 3 is added to OCP (7.46).

This results to OCP (7.47). Figure 7.11 shows how the formation is then shifted

from a linear to a triangular formation between t1 and t2. As all UAV s are tracking

the same point and the CA is only considering the Euclidean distance of the agents,

the formation can rotate freely around the tracked center point. A second ROS
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Figure 7.11: Runtime formation change scenario: 3D position plot with formation
visualization

message at t2 is removing UAV 3 as well as the associated constraints from the system.

Accordingly, UAV 1 and UAV 2 are forming the original linear formation again.

For a more detailed overview on the timing, the system trajectories are given

in the following. The corresponding position trajectories in Figure 7.12a-7.12c are

confirming position changes at t1 ≈ 8 s (left vertical bar in the graphs) and t2 ≈ 44 s

(right vertical bar in the graphs). As expected, Figure 7.12c shows that UAV 3 is

not actively controlled for t < t1 and t > t2. This is stated by the high position

oscillations at the beginning and the y-drift at the end of the plot. The position

plots also show, that the UAV positions are more disturbed between t1 and t2. This

increase is caused by the influence of the additional UAV 3 airflow. In combination

with the adhesive target tracking and the repulsive CA coupling, this manifests in

oscillations. These oscillations can be reduced by penalizing the UAV velocity states

under the cost of slower trajectory changes. Another way to reduce this disturbance

is to consider a disturbance model within the quadrotor model. The disturbance is

causing a higher control action as shown in Figure 7.12d-7.12f. Due to the control
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Figure 7.12: Runtime formation change scenario: UAV trajectories
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limit constraints, the controls do not exceed the predefined limit of max(|uV1z |) = 1.

This indicates an active constraint handling.

(a) Tracking Distance between UAV s and −→p des =
[
0, 0, 2

]>
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Figure 7.13: Runtime formation change scenario: distance, tracking and computation
time

To evaluate the control performance, the distance graph in Figure 7.13b shows that

at the beginning of the experiment ‖−→p 3 − −→p 2‖2 ≈ 2.5 m and ‖−→p 3 − −→p 1‖2 ≈ 3.0 m.

Accordingly, UAV 3 is not tracking the target xdes before t1. At time instance t1, the

distance of UAV 3 to the other agents converges to d = 1.5 m. The target tracking

error graph in Figure 7.13a confirms the equidistant alignment of the agents to the

target. This confirms an active CA-coupling and target tracking. The increase in

the distance after t2 is evidence that the position tracking is not active anymore. As

previously discussed at time instance t1, the tracking error of UAV 3 is high ‖[0, 0, 2]>−
−→p 3‖2 ≈ 3 m.

The computational efficiency of DENMPC is stated by the computation time

in Figure 7.13c. For the OCP (7.46) of the double agent system (UAV 1,UAV 2)

the average computation time is t̄c = 1.5 ms, the maximum computation time is

max(tc) = 2.0 ms. The measurements were made on a standard notebook of type Dell

Latitude E5440 (see §A.1). The three agent system OCP (7.47) with UAV 1, UAV 2
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and UAV 3 is solved in t̄c = 4 ms. Also here, the higher computational load leads to

more CPU interrupts which manifests in some single peaks up to max(tc) = 14.7 ms.

At first sight, adding one agent causing a doubling of the computation time might

look over-proportional. However, it has to be taken into account that the amount of

CA couplings is increased by two. The average computation time of t̄c = 4 ms for the

three drone scenario with a control update interval of ∆t = 0.1 s results to an average

computational load of 4% on the utilized hardware. This states the computational

efficiency of DENMPC , under use of the proposed constraint handling technique,

modularization, framework structure and CMSC/GMRES solver.

7.5.4 Cooperative aerial manipulation

To address the problem statement §1.1, a cooperative aerial manipulation scenario

is conducted. This experiment serves the cooperative control validation for a het-

erogeneous system. For this purpose the aerial manipulation scenario in §6.4.1 is

extended by a sensor UAV . The resulting setup with a DJI M100 MUAV and an

AR.Drone 2.0 sensing drone is shown in Figure 7.14.

Figure 7.14: Cooperative aerial manipulation video footage

In this scenario, the DJI M100 MUAV is tracking a set of different poses with its

end effector as shown in §6.4.1. As previously, the forward kinematics FK (6.8) are

used to track a target pose −→p des,1 and orientation odes,1. Both are provided in the

form of the desired state xdes1 of UAV 1. The end effector pose tracking cost function

yields
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LE (xdes1,x1, θ1, θ2)

=
(−→p des,1 − G−→p E

(
θ1, θ2,ρ1,

−→p 1

))T
Qee,p

(−→p des,1 − G−→p E
(
θ1, θ2,ρ1,

−→p 1

))
+ (odes,1 − o1)TQee,o (odes,1 − o1) (7.53)

In order to continuously provide sensor information to the MUAV , an AR.Drone 2.0

is cooperatively controlled to face the front of the MUAV in a distance of ddes = 1.5 m.

The related cost function is developed according to the trigonometric scheme shown

in Figure 7.15

Figure 7.15: Trigonometric scheme for tracking function

LS (x1,x2) = qo (o2 − (−o1))T I 2×2 (o2 − (−o1)) (7.54)

+qd
(−→p 2 −−→p 1 − ddes · [ox1, ox1, 0]T

)T
I 3×3

(−→p 2 −−→p 1 − ddes · [ox1, ox1, 0]T
)
.

(7.54) can also be extended to allow the facing of different orientations of the MUAV

using trigonometric addition theorems.

To show the cooperative effect in the scenario, the end effector joint angles are

changed during the scenario. In accordance to this translation, the AR.Drone 2.0

is adapting to the DJI M100 ’s center pose. The UAV motions are predicted

with the f 1 = fDJI M100 (3.55) and f 2 = fAR.Drone 2.0 (3.49) HMDV . With

LE (xdes1,x1, θ1, θ2) (7.53) and LS (x1,x2) (7.54) the OCP yields

min
u

J =

t+T∫
t

2∑
i=1

uT
i Riui + LE (xdes1,x1, θ1, θ2) + LS (x1,x2) dτ (7.55)

s.t. ẋi = f i (xi,ui, τ) (7.56)

0 ≤ cini =
[
uV1x,i

2 − 1, uV1y,i
2 − 1, uV1z,i

2 − 1, uV1ω,i
2 − 1

]
(7.57)

x1 (0) =
[
1, 1, 1.5, 1, 0, 0, 0, 0, 0

]
, x2 (0) =

[
1, 1, 2, 1, 0, 0, 0, 0, 0

]
(7.58)
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The related parameters are chosen to

Qee,p =
[
1, 1, 1

]
, Qee,o =

[
10, 10

]
, R1 =

[
10, 10, 10, 10

]
(7.59)

qo = 1, qd = 1, R2 =
[
1, 1, 1, 1

]
(7.60)

ξ = 1, υ = 1, ∆t = 0.1 s, T = 1 s, (7.61)

N = 10, h = 0.001 s, h = 10−8, imax = 10. (7.62)

Figure 7.16: Cooperative aerial manipulation: MUAV end effector pose tracking

To evaluate the control performance, the system trajectories are given in the

following. The spacial behavior of the MUAV end effector target and pose trajectories

are visualized in Figure 7.16. Between the target poses, the MUAV ’s trajectory is

moving according to its dynamics. The position trajectories in Figure 7.17a-7.17c

are confirming the convergence of the MUAV end effector towards the desired end

effector position. The DJI M100 center position is hereby translated according to

the manipulator joint angles θ1, θ2 as shown in Figure 7.17f. This visualizes the

forward kinematics of the manipulator and is particularly visible in the altitude (z)

at t = 100 s and t = 130 s (Figure 7.17c). Figure 7.17d is showing the orientation of

the DJI M100 in terms of heading angle Ψ. Also here, a convergence towards the

desired position is visible and validates the orientation tracking. The controls u1 are
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Figure 7.17: Cooperative aerial manipulation: DJI M100 trajectories
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given in Figure 7.17e and show the characteristic peaks at each change of the tracked

pose. This is the direct response to the sudden changes in position and orientation

error which are shown in Figure 7.17g. As expected, the DJI M100 shows the desired

behavior as in the aerial manipulation scenario in §6.4.1.

Figure 7.18: Sensing UAV tracking 3d plot showing the virtual AR.Drone 2.0 refer-
ence (pee,des and its trajectory pee)

To evaluate the performance of the sensing UAV , the required pose to fulfill

tracking condition (7.54) is calculated as xdes2. Figure 7.18 is showing the 3d plot

of the AR.Drone 2.0 position. The arrows are hereby indicating the orientation

of the AR.Drone 2.0 . The resulting AR.Drone 2.0 position trajectory is given in

Figure 7.19a-7.19c. As the behavior of the sensing UAV 2 is directly related via

LS (7.54) to UAV 1, the disturbance of UAV 1 is translated to UAV 2 by means of

the distance lever d. The excellent tracking performance is visible in the x and y

plots, as target and actual position are congruent. The z-axis shows significantly

more disturbance, as it is sensitive to airflow disturbance. This is visible at the time

instances when xdes1 is changing. The required orientation to fulfill tracking condition

(7.54) is tracked according to Figure 7.19d. The jittering vertical lines between ±π
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Figure 7.19: Cooperative aerial manipulation: AR.Drone 2.0 trajectories and con-
troller computation time
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are caused by the definition of the Ψ interval. As for the DJI M100 , also the controls

of the AR.Drone 2.0 in Figure 7.19e do show the characteristic response peak at

each reference change. The error plot in Figure 7.19f is validating the corresponding

disturbance rejection. The computational performance is stated in Figure 7.19g. The

maximal computation time of max(tc) = 9.4 ms is smaller than the utilized control

update interval of ∆t = 10 ms. The real-time applicability is also stated by the low

average computation time of t̄c = 1.1 ms.

The results of the experimental evaluation confirm the effectiveness and com-

putational efficiency of the proposed control approach. This confirms the real-time

applicability of DENMPC for small cooperative aerial manipulation scenarios. The

presented scenario is hereby representative for cooperative aerial manipulation sce-

nario as given in the problem statement of this thesis §1.1.

7.6 Conclusion

This chapter has addressed the cooperative control of UAV s with NMPC . The given

related work has stated that to the author’s knowledge, no central fast NMPC frame-

work exists that is suitable to control fast distributed systems. This refers to the

combination of low computation times with the capability of modifying the inher-

ent OCP at runtime. This capability is required to adapt to changes in the control

objectives, constraints and topology of dynamic scenarios.

For this purpose, the OCP and related optimality conditions have been analyzed

for distributed systems. This analysis has been conducted for the constraint handling

presented in §4.5. It has been shown, that the OCP of distributed systems can be

mathematically decomposed into atomic functions. These can be provided as com-

piled fast C++ code. Furthermore, by choosing these atomic functions accordingly,

runtime matrix multiplications can be avoided in the composition of the Lagrangian

and its derivatives. As those are typically sparse, this increases the computational ef-

ficiency. For this purpose, the atomic functions are compiled for each agent, coupling

and constraint. As a result, the distributed OCP and related optimality conditions

can be composed at runtime for any arbitrary scenario with these elements and with-

out recompilation.

The object-oriented C++ implementation of this modularization into base class

containers has been presented and the code-generation has been discussed. In this

context, the fast functor/pointer access scheme has been demonstrated which min-

imizes the computational overhead introduced by the modularization. In order to
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trigger changes of the OCP online, an event handling mechanism has been imple-

mented including ROS messages and timers. The result is the Distributed System

Event-Based Nonlinear Model Predictive Control (DENMPC ) framework that offers

the flexibility to modify the control scenario at runtime, while maintaining low com-

putation times. This makes it particularly suitable for prototyping, single and multi

robot applications as well as fault-tolerant control. The framework source code is

available under [Den16].

To validate the features of DENMPC four different example scenarios have

been conducted. The first scenario consisted of a simulative formation flight of two

AR.Drone 2.0 UAV s. In order to evaluate the computational overhead of the modu-

larization, the modular DENMPC and an explicit NMPC approach have been used

to control the scenario. For the given scenario, the computational overhead was 16%

and the real-time applicability has been confirmed. For the second scenario, a leader-

follower scenario with two real AR.Drone 2.0 s has been controlled with DENMPC .

Here, one of the AR.Drone 2.0 s has been tracking the other UAV within a con-

fined sensor space. This scenario has validated the use of unidirectional couplings,

the modularization and the task-based MPC approach from §5.6 for cooperative

scenarios. The real AR.Drone 2.0 trajectories have confirmed the effectiveness of

the proposed control. Using the mathematically complex sensor constraint, the low

average computation time of t̄c ≈ 2.54 ms is confirming the real-time applicability

and computational efficiency. To evaluate the online adaptability, DENMPC has

been used in a real UAV formation change scenario. The experiment showed a linear

flight formation of two AR.Drone 2.0 quadrotors that has been extended to a three

quadrotor triangular formation. The drone trajectories have confirmed the online

switching of quadrotor dynamics and objectives, CA couplings and input limitation

constraints triggered by a ROS message event. Also here, the average computation

time of t̄c = 1.5 ms for the two drone scenario and t̄c = 4 ms for the three drone

scenario state the computational efficiency of DENMPC . The final experiment

serves as example for cooperative aerial manipulation scenarios. In this scenario a

DJI M100 MUAV from §6 is tracked by an AR.Drone 2.0 quadrotor. Also here the

control effectiveness is stated by the system’s response and the real-time applicability

is demonstrated with a low average computation time of t̄c = 1.1 ms.

The presented work represents the first stage of solving OCPs of distributed sys-

tems. Future work will focus on the implementation of distributed NMPC methods to

make also use of event-based NMPC on large-scale systems. Further implementations

will also address additional inequality constraint handling techniques. To evaluate
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the performance of these techniques an extensive benchmark and their mathematical

evaluation is a future field of interest. Furthermore, the effects of the event-based

NMPC adaptation have to be analyzed regarding problem feasibility and control

performance. This does include an analysis of the system behavior under runtime

switching of control objectives.
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Chapter 8

Conclusion and future work

This thesis investigated real-time model predictive control of UAV s, MUAV s, and

cooperative aerial manipulation scenarios. In correspondence to the thesis structure,

there have been five major fields of research:

Quadrotor models

The prerequisite for MPC is a prediction model. For this purpose, different ways

to describe the motion of a quadrotor UAV have been discussed in chapter §3.

This includes a physical model based on rigid body dynamics and a hover model

based on a linearization around its static equilibrium. The focus of this thesis has

been on the latter, as it is particularly suited for commercial UAV s that have an

internal attitude stabilization controller. Furthermore, less mathematical operations

are needed to describe the UAV behavior accurately. The results are low MPC

computation times and a high control performance. In this context, a direction vector

description has been introduced to solve the Euler-angle singularity problem. This

allows the full 360◦ control of a UAV ’s heading angle. Finally, the model parameters

for an AR.Drone 2.0 and DJI M100 have been identified. These are well-established

representatives of commercial UAV solutions. The presented identification of these

systems targets to facilitate the prototyping for research and industry in future.

Model predictive control

Due to the computational and energetic limitations of mobile robots, a computation-

ally efficient MPC is required. In §4, the basic NMPC principles used within this

thesis are presented. Based on these, a benchmark of several fast NMPC algorithms

has been conducted. This includes a gradient-based method from the GRAMPC

framework, a Gauß-Newton-SQP approach from ACADO and C/GMRES , respec-
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tively CMSC/GMRES . The computational performance has been evaluated in a

simulated control scenario using the physical model of a UAV . In the given scenario,

CMSC/GMRES could stabilize the system with an exceptional low computation

time of max(tc) = 0.28 ms and tc = 0.17 ms. Due to its control performance,

CMSC/GMRES has been chosen as base algorithm for this thesis. One of the advan-

tages of MPC is the consideration of constraints. For this reason, three lightweight

constraint handling techniques for robotic applications have been discussed. This

includes the saturation function, primal barrier and auxiliary variable approaches.

The major concern regarding NMPC for mobile robots is the difficulty to prove

stability for such complex algorithms in combination with nonlinear systems. To

facilitate future development of stability proofs, the CMSC/GMRES algorithm is

given in very detailed step by step instructions.

UAV control

Chapter §5 is contributing the NMPC control of real UAV s, in particular an

AR.Drone 2.0 and DJI M100 quadrotor. The parametrization for both UAV s is

determined in experiments. This is shown in detail for the AR.Drone 2.0 . Com-

putation times of t̄cAR.Drone 2.0 = 0.3700 ms and t̄cDJI M100 = 0.4295 ms state the

computational efficiency of the proposed NMPC . The control performance is vali-

dated in pose tracking scenarios. One disadvantage of the missing integral part in

the NMPC control policy is a constant error, if the target is moving with a constant

velocity. To address this problem, a target position control has been presented. This

TPC virtually translates the target position in order to introduce an integral control

behavior.

To promote the use of UAV s in urban, respectively cluttered environments, the

pose tracking NMPC has been extended with a collision avoidance constraint. The

desired evasion maneuver is validated with a real AR.Drone 2.0 . With the objective

of formulating more complex control objectives, a workflow to develop suitable

potential functions has been presented. Subsequently, this task-based workflow

has been used to develop also CA and cohesion constraints. In the demonstration

scenario, a real AR.Drone 2.0 has been used to track a given target within a confined

sensor space. Furthermore, an obstacle has been introduced to test the developed

CA constraints. A set of 10 experiments have been conducted and confirmed the

effectiveness of the contributed workflow for different initial conditions and obstacle

trajectories.
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Aerial manipulation

§6 is discussing the kinematic control of a manipulating aerial vehicle. For this

purpose a robotic arm has been attached to a DJI M100 quadrotor. The forward

kinematics have been derived including position and orientation. To move the robotic

joints, a closed-form inverse kinematic control has been developed. This control

allows to achieve a given manipulator pitch angle. For the end effector position

of the robotic arm, an NMPC concept has been developed. The concept is based

on a separate NMPC treatment of the end effector position and orientation. As

a consequence, the previously developed hover model can be utilized. The result

is low computation times while achieving the desired control performance. This

performance has been evaluated in two experiments with a real DJI M100 MUAV .

A grasping scenario of a bottle served as demonstration of a real application. With an

average computation time of t = 0.256 ms, the real-time capability has been stated.

This scenario has validated the performance of NMPC for aerial manipulation and

shows the potential for industrial applications.

Cooperative control

The final field of research has been the control of multiple mobile robots. For this

purpose, a central NMPC has been analyzed regarding the distributed nature of such

systems. In order to accommodate the dynamic nature of such systems, a modular-

ization has been introduced. This allows to change control objectives, constraints

and the system topology at runtime while maintaining low computation times. In

combination with event handling mechanisms that manages those changes, the open

source central NMPC framework (DENMPC ) has been developed. This framework

targets the control of small-scale multi-robot systems, fault-tolerant systems and the

control of systems with changing control objectives. To achieve low computation-

times, the C++ implementation is using compiled atomic functions with fast func-

tor/pointer access. Furthermore, expensive matrix multiplications are already exe-

cuted in compilation-time which further reduces the computation time. The features

of DENMPC are evaluated in dedicated real UAV experiments, stating the runtime

adaptability, computational efficiency and effectiveness. In this context, a coopera-

tive aerial manipulation scenario has been conducted. The outline is a real DJI M100

MUAV which is tracking a target position with its end effector. At the same time an

AR.Drone 2.0 is controlled to face the MUAV with its camera. Here, the real-time

applicability of DENMPC is confirmed with a low average computation time of only

t̄c = 1.1 ms per control update. Furthermore, the runtime adaptability of DENMPC

205



in combination with a task step-chain allows to execute complex tasks. One con-

ducted example is the grasping of a bottle and pouring of its content into a mug, as

shown in Figure 8.1.

Figure 8.1: Aerial manipulation scenario: Autonomous grasping and pouring of a
bottle using a task step chain in combination with DENMPC

With DENMPC , this thesis has contributed a control framework for real-time

control of cooperative aerial manipulation scenarios. In this context, this work has

addressed the future key abilities of aerial robots defined in the ”European Roadmap

for Robotics in 2020” [SPA16].

8.1 Future work

Future work will focus on the application of aerial manipulation on industrial prob-

lems. As this thesis has only focused on the control perspective, the MUAV percep-

tion has to be incorporated accordingly. For the given cooperative aerial manipulation

scenario, this means the visual tracking of a UAV , respectively objects.

One step in this direction for cooperative systems has been the publication of the

ATLAS framework in [PDKV17]. ATLAS is dedicated to cooperative localization

using sensor fusion. A further direction of research for large-scale multi-robot systems

is the distribution of the presented central DENMPC . This refers to the application

of DENMPC in a distributed manner and the implementation of fast global consensus

techniques.
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Appendix A

Annex

A.1 Hardware & software

The experiments have been conducted and analysed with the following hard and

software:

Hardware

• Computer Platform: Dell Latitude E5440 (Intel(R) Core(TM) i7-4600U CPU

@ 2.10GHz, 8GB RAM @ 1600MHz)

• Motion Capture System: Optitrack c©2018 NaturalPoint (using six Prime 13

high speed tracking cameras)

• UAVs:

– DJI M100 : DJI Matrice 100

– AR.Drone 2.0 : Parrot Augmented Reality Drone 2.0

• Manipulator Servos: Dynamixel MX28T, Dynamixel AX18A, Dynamixel2USB

Interface

Software

• Ubuntu 14.04.1: kernel 4.4.0-89 (on Dell Latitude E5440)

• Debian kernel 3.1.0 (on DJI M100)

• MATLAB R2016a

• Mathematica 10.0

• ROS Indigo
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A.2 Global OCP for distributed systems and opti-

mality conditions for different constraint han-

dling methods

This section is extending the results of section §7.3 by providing the Lagrangian

derivatives for the global OCP of distributed systems with inequality constraints.

For this purpose the symbolic conventions of §7 are used.

Global OCP with primal barrier constraint handling

Using the primal barrier method of §4.5.1 to handle inequality constraints results to

the Lagrangian

L =
nν∑
i=1

(
Li (xi,ui) + λT

i f i (xi,ui) + λeq
T

i
ceqi (xi,ui) (A.1)

+

ncini∑
l=1

[
ϕT

i
ln (−cini (xi,ui))

]
+

nεi∑
j 6=i

〈
Li,j

(
xi,xj,ui,uj

)
+ λeq

T

i,j
ceqi,j

(
xi,xj,ui,uj

)
+

ncin i,j∑
l=1

[
ϕT

i,j
ln
(
−cini,j

(
xi,xj,ui,uj

))] 〉)
.

The controls of each agent ui, the constraint Lagrange multipliers λeqi for con-

straints and for couplings λeqi,j are concatenated to the global optimization variable

vector

w = [uT
1 , ...,u

T
nν ,λeq

T
1 , ...,λeq

T
nν
,λeq

T
1,2, ...,λeq

T
nν−1,nν

]T . (A.2)

Accordingly, the first order optimality condition (4.52) result to (\ is referring to

an element-wise division)
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Lw = (A.3)

∇u1L1 + (∇u1f1)T λ1 + (∇u1ceq1)T λeq1 − (∇u1cin1)Tϕ1\cin1

. . .+
∑nε1
j

〈
∇u1L1,j +

(
∇u1ceq1,j

)T
λeq1j + (∇u1cin1,j)

Tϕ1,j\cin1,j

〉
...

∇unν
Lnν +

(
∇unν

fnν
)T
λnν +

(
∇unν

ceqnν
)T
λeqnν

−
(
∇unν

cinnν
)T
ϕnν\cinnν

. . .+
∑nεnν
j

〈
∇unν

Lnν ,j +
(
∇unν

ceqnν ,j

)T
λeqnνj

+
(
∇unν

cinnν ,j
)T
ϕnν ,j\cinnν ,j

〉
ceq1

...

ceqnν
ceq1,2

...

ceqnν−1,nν


with the state derivative of the Lagrangian (4.51)

Lx = (A.4)

∇x1L1 + (∇x1f1)T λ1 + (∇x1ceq1)T λeq1 − (∇x1cin1)Tϕ1\cin1

. . .+
∑nε1
j

〈
∇x1L1,j +

(
∇x1ceq1,j

)T
λeq1,j + (∇x1cin1,j)

Tϕ1,j\cin1,j

〉
...

∇unν
Lnν +

(
∇xnν

fnν
)T
λnν +

(
∇xnν

ceqnν
)T
λeqnν

−
(
∇xnν

cinnν
)T
ϕnν\cinnν

. . .+
∑nεnν
j

〈
∇unν

Lnν ,j +
(
∇unν

ceqnν ,j

)T
λeqnνj

+
(
∇xnν

cinnν ,j
)T
ϕnν ,j\cinnν ,j

〉


.

Global OCP with auxiliary variable constraint handling

For the auxiliary variable approach as presented in §4.5.2, the global OCP yields

L =
nν∑
i=1

(
Li (xi,ui) + λT

i f i (xi,ui) + λeq
T

i
ceqi (xi,ui) (A.5)

+

ncini∑
l=1

[
λini,l

(
cini,l (xi,ui) + ν2

i,l

)
− κi,jνi,l

]
+

nεi∑
j 6=i

〈
Li,j

(
xi,xj,ui,uj

)
+ λeq

T

i,j
ceqi,j

(
xi,xj,ui,uj

)
+

ncin i,j∑
l=1

[
λini,j,l

(
cini,j,l

(
xi,xj,ui,uj

)
+ ν2

i,j,l

)
− κi,j,lνi,j,l

] 〉)
.

As the auxiliary variable constraint handling does consider slack variables and

inequality Lagrange multipliers as additional optimization variables, the global opti-

mization variable vector is accordingly extended

w = [uT
1 , ...,u

T
nν ,λeq

T
1 , ...,λeq

T
nν
,λin

T
1 , ...,λeq

T
nν
,

λeq
T
1,2, ...,λeq

T
nν−1,nν

,λin
T
1,2, ...,λeq

T
nν−1,nν

,νT
1 , ...,ν

T
nν ,ν

T
1,2, ...,ν

T
nν−1,nν (A.6)
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The first order optimality condition (4.52) result to (∗. is referring to an element-wise

multiplication)

Lw = (A.7)

∇u1L1 + (∇u1f1)T λ1 + (∇u1ceq1)T λeq1 + (∇u1cin1)T λin1

. . .+
∑nε1
j

〈
∇u1L1,j +

(
∇u1ceq1,j

)T
λeq1j + (∇u1cin1,j)

T λin1,j

〉
...

∇unν
Lnν +

(
∇unν

fnν
)T
λnν +

(
∇unν

ceqnν
)T
λeqnν

−
(
∇unν

cinnν
)T
λinnν

. . .+
∑nεnν
j

〈
∇unν

Lnν ,j +
(
∇unν

ceqnν ,j

)T
λeqnνj

+
(
∇unν

cinnν ,j
)T
λinnνj

〉
ceq1

...

ceqnν
ceq1,2

...

ceqnν−1,nν

cin1

...

cinnν
cin1,2

...

cinnν−1,nν

2λin1 ∗ .ϕ1 − ν1

...

2λinnν ∗ .ϕnν − νnν
2λin1,2 ∗ .ϕ1,2 − ν1,2

...

2λinnν−1,nν ∗ .ϕnν−1,nν
− νnν−1,nν


with the state derivative of the Lagrangian (4.51)

Lx = (A.8)

∇x1L1 + (∇x1f1)T λ1 + (∇x1ceq1)T λeq1 − (∇x1cin1)T λin1

. . .+
∑nε1
j

〈
∇x1L1,j +

(
∇x1ceq1,j

)T
λeq1,j + (∇x1cin1,j)

T λin1,j

〉
...

∇unν
Lnν +

(
∇xnν

fnν
)T
λnν +

(
∇xnν

ceqnν
)T
λeqnν

−
(
∇xnν

cinnν
)T
λinnν

. . .+
∑nεnν
j

〈
∇unν

Lnν ,j +
(
∇unν

ceqnν ,j

)T
λeqnνj

+
(
∇xnν

cinnν ,j
)T
λinnνj

〉


.
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Global OCP with saturation function constraint handling

For the saturation function approach presented in §4.5.3, the global OCP is given by

L =
nν∑
i=1

(
Li (xi,ui) + λT

i f i (xi,ui) + λeq
T

i
ceqi (xi,ui) (A.9)

+

ncini∑
l=1

[
sig

(
cini (xi,ui) ,κAi

)]
+

nεi∑
j 6=i

〈
Li,j

(
xi,xj,ui,uj

)
+ λeq

T

i,j
ceqi,j

(
xi,xj,ui,uj

)
+

ncin i,j∑
l=1

[
sig

(
cini,j

(
xi,xj,ui,uj

)
,κAi,j

)]〉)
.

As the saturation function approach does not introduce additional optimization

variables, the global optimization variable vector is consequently concatenated to

w = [uT
1 , ...,u

T
nν ,λeq

T
1 , ...,λeq

T
nν
,λeq

T
1,2, ...,λeq

T
nεi

]T (A.10)

Under use of the element-wise multiplication ∗., the sigmoid derivative is given

by:

∇xsig (cin (x,u) ,κA) = κA ∗ .sig (cin (x,u) ,κA) ∗ . (1− sig (cin (x,u) ,κA)) ∗ .∇xcin (x,u)

(A.11)

∇usig (cin (x,u)κA) = κA ∗ .sig (cin (x,u) ,κA) ∗ . (1− sig (cin (x,u) ,κA)) ∗ .∇ucin (x,u)

(A.12)

In order to improve the readability, κA is omitted as sigmoid function argument

in the following. Accordingly, the first order optimality condition (4.52) result to

211



Lw = (A.13)

∇u1L1 + (∇u1f1)T λ1 + (∇u1ceq1)T λeq1

. . .− (∇u1cin1)T κA1 ∗ .sig (cin1) ∗ . (1− sig (cin1))

. . .+
∑nε1
j

〈
∇u1L1,j +

(
∇u1ceq1,j

)T
λeq1j

. . .+ (∇u1cin1,j)
T κA1,j ∗ .sig (cin1,j) ∗ . (1− sig (cin1,j))

〉
...

∇unν
Lnν +

(
∇unν

fnν
)T
λnν

. . .+
(
∇unν

ceqnν
)T
λeqnν

−
(
∇unν

cinnν
)T
κAnν ∗ .sig (cinnν ) ∗ . (1− sig (cinnν ))

. . .+
∑nεnν
j

〈
∇unν

Lnν ,j +
(
∇unν

ceqnν ,j

)T
λeqnνj

. . .+
(
∇unν

cinnν ,j
)T
κAnν ,j ∗ .sig (cinnν ,j) ∗ . (1− sig (cinnν ,j))

〉
cin1

...

cinnν
cin1,2

...

cinnν−1,nν


with (4.51) the state derivative of the Lagrangian

Lx = (A.14)

∇x1L1 + (∇x1f1)T λ1 + (∇x1ceq1)T λeq1

. . .− (∇x1cin1)T κA1 ∗ .sig (cin1) ∗ . (1− sig (cin1)) \cin1

. . .+
∑nε1
j

〈
∇x1L1,j

. . .+
(
∇x1ceq1,j

)T
λeq1,j + (∇x1cin1,j)

T κA1,j ∗ .sig (cin1,j) ∗ . (1− sig (cin1,j))
〉

...

∇unν
Lnν +

(
∇xnν

fnν
)T
λnν

. . .+
(
∇xnν

ceqnν
)T
λeqnν

−
(
∇xnν

cinnν
)T
κAnν ∗ .sig (cinnν ) ∗ . (1− sig (cinnν ))

. . .+
∑nεnν
j

〈
∇unν

Lnν ,j +
(
∇unν

ceqnν ,j

)T
λeqnνj

. . .+
(
∇xnν

cinnν ,j
)T
κAnν ,j ∗ .sig (cinnν ,j) ∗ . (1− sig (cinnν ,j))

〉



.
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