
Research Article
PRESENCE: Monitoring and Modelling the Performance
Metrics of Mobile Cloud SaaS Web Services

Abdallah A. Z. A. Ibrahim ,1 Muhammad Umer Wasim,1,2 Sebastien Varrette ,1

and Pascal Bouvry 1,2

1FSTC-CSC/ILIAS–Parallel Computing and Optimization Group (PCOG), University of Luxembourg, 2 Avenue de l’Université,
L-4365 Esch-sur-Alzette, Luxembourg
2Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg City, Luxembourg

Correspondence should be addressed to Abdallah A. Z. A. Ibrahim; abdallah.ibrahim@uni.lu

Received 18 January 2018; Revised 4 May 2018; Accepted 21 May 2018; Published 14 August 2018

Academic Editor: Andrea Gaglione

Copyright © 2018 Abdallah A. Z. A. Ibrahim et al. 'is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Service Level Agreements (SLAs) are defining the quality of the services delivered from the Cloud Services Providers (CSPs) to the
cloud customers. 'e services are delivered on a pay-per-use model. 'e quality of the provided services is not guaranteed by the
SLA because it is just a contract. 'e developments around mobile cloud computing and the advent of edge computing
technologies are contributing to the diffusion of the cloud services and the multiplication of offers. Although the cloud services
market is growing for the coming years, unfortunately, there is no standard mechanism which exists to verify and assure that
delivered services satisfy the signed SLA agreement in an automatic way. 'e accurate monitoring and modelling of the provided
Quality of Service (QoS) is also missing. In this context, we aim at offering an automatic framework named PRESENCE, to evaluate
the QoS and SLA compliance of Web Services (WSs) offered across several CSPs. Yet unlike other approaches, PRESENCE aims at
quantifying in a fair and by stealth way the performance and scalability of the delivered WS. 'is article focuses on the first
experimental results obtained on the accurate modelisation of each individual performance metrics. Indeed, 19 generated models
are provided, out of which 78.9% accurately represent the WS performance metrics for two representative SaaS web services used
for the validation of the PRESENCE approach.'is opens novel perspectives for assessing the SLA compliance of Cloud providers
using the PRESENCE framework.

1. Introduction

As per NIST definition [1], Cloud Computing (CC) is a re-
cent computing paradigm for “enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or
service provider interaction.” 'ese resources are operated by
a Cloud Services Provider (CSP), which typically delivers its
services using one of three traditional models: Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS), or Software-
as-a-Service (SaaS) [2, 3]. 'is classification has since evolved
to take into account the federation of more andmore diverse
computing resources. For instance, recent developments

around Fog and Edge computing permitted to enlarge the
scope of CC around Mobile CC, which offer new types of
services and facilities to mobile users [4–7]. 'is leads to
stronger business perspectives bringing more and more
actors in the competition as CSPs.

In this article, we focus on the performance evaluation of
Web Services (WSs) deployed in the the context of the SaaS
model by these actors acting as CSPs.'ese services could be
used through cloud users’ mobile devices or normal com-
puters [8, 9]. In practice, WSs are delivered to the cloud
customers on a pay-per-use model while the performance
and Quality of Service (QoS) of the provided services are
defined using services contracts or Service Level Agreement
(SLA) [10, 11]. In particular, SLAs define the conditions and
characteristics of the provided WS and its costs and the

Hindawi
Mobile Information Systems
Volume 2018, Article ID 1351386, 14 pages
https://doi.org/10.1155/2018/1351386

mailto:abdallah.ibrahim@uni.lu
http://orcid.org/0000-0001-5268-043X
http://orcid.org/0000-0001-9011-851X
http://orcid.org/0000-0001-9338-2834
https://doi.org/10.1155/2018/1351386

penalties encountered when the expected QoS is not met
[12, 13]. Unfortunately, there is no standard mechanism
which exists to verify and assure that delivered services
satisfy the signed SLA agreement. Accurate measures of the
provided Quality of Service (QoS) is also missing most of the
time, which render even more difficult the possibility to
evaluate on a fair basis different CSPs. 'e ambition of the
proposed PRESENCE framework (PeRformance Evaluation
of SErvices on the Cloud) is to fill this gap by offering an
automated approach to evaluate and classify in a fair and by
stealth way the performance and scalability of the delivered
WS across multiple CSPs.

In this context, the contributions of this paper are four-fold:

(1) 'e presentation of the PRESENCE framework, the
reasoning behind its design and organization

(2) 'e definition of the different module composing the
framework and based on a Multi-Agent System
(MAS) acting behind the PRESENCE client, which
aim at tracking and modeling the WS performance
using a predefined set of common performance
metrics

(3) 'e validation and first experimental results of this
module over two representative WSs relying on
several reference backend services at the heart of
most WSs: Apache HTTP, Redis, Memcached,
MongoDB, and PostgreSQL

(4) 'e cloud Web Service (WS) performance metrics
models such as throughput, transfer rate and latency
(read and write) for HTTP, Redis, Memcached,
MongoDB, and PostgreSQL.

'e appropriate performance modeling depicted in this
paper is crucial for the accuracy and dynamic adaptation
expected within the stealthmodule of PRESENCE, which will
be the object of another article. 'is article is an extended
version of our presented paper during the 32nd IEEE In-
ternational Conference of Information Networks (ICOIN),
2018 [14], which received the best paper award. Compared to
this initial paper, the present article details the modelling of
the Web Services performance metrics and brings 19 gen-
erated models, out of which 78.9% accurately represent the
WS performance metrics for the two SaaS WSs.

'is paper is organized as follows: Section 2 details the
background of this work and reviews related works. 'e
PRESENCE framework is described in Section 3, together
with some implementation details. We then focus on the
validation of the monitoring module on several reference
backend services at the heart of most WSs—details and
experiment results are discussed in Section 4. Finally, Sec-
tion 5 concludes the paper and provides some future di-
rections and perspectives opened by this study.

2. Context and Motivations

As mentioned before, a SLA defines the conditions and
characteristics of a given WS, their costs and the penalties
encountered when the expected QoS is not met. Measuring
the performances of a given WS is therefore key to evaluate

whether or not the corresponding SLA is satisfied—
especially from a user point of view which can thus request
penalties to the CSP. However, accurate measures of the
provided Quality of Service (QoS) is missing most of the
time as performance evaluation is challenging in a cloud
context considering that the end-users do not have a full
control of the system running the service. In this context,
Stantchev in [15] provides a generic methodology for the
performance evaluation of cloud computing configurations
based on the Non-Functional Properties (NFP) (such as,
response time) of individual services. Yet, none of the steps
were clearly detailed, and the evaluation is based on a single
benchmark, measuring a single metric. Lee et al. in [16]
propose a comprehensive model for evaluating quality of
SaaS after defining the key features of SaaS, deriving the
quality attributes from the key features and defining the
metrics for the quality attributes. 'is model serves as
a guideline to SaaS provider to characterize and improve the
provided QoS but obviously does not address user-based
evaluation. However, we used part of the proposed ontology
to classify our own performance metrics. Gao et al. [17]
propose a Testing-as-a-Service (TaaS) infrastructure and
report a cloud-based TaaS environment with tools (known as
CTaaS) developed to meet the needs in SaaS testing, per-
formance, and scalability evaluation. One drawback of this
approach is that its deployment cannot be hidden from the
CSP, which might in returnmaliciously increase the capacity
of the allocated resources to mitigate artificially the evalu-
ation in favor of its own offering. Wen and Dong in [18]
propose a quality characteristics and standards for the se-
curity and the QoS of the SaaS services. Unfortunately, the
authors did not propose any practical steps to evaluate the
cloud services, but only a set of recommendations.

Beyond pure performance evaluation, and to the best of
our knowledge, the literature around SLA assurance and vi-
olation monitoring is relatively sparse. Cicotti et al. in [19, 20]
propose a quality of services monitoring approach and SLA
violation reporter which are based on APIs queries and events.
Called QoSMONaaS, this proposed approach is measuring the
Key Performance Indicator (KPI) for the services provided
from the CSPs to the cloud customers. Ibrahim et al. in [10, 21]
provide a framework to assure SLA and evaluate the per-
formance of the cloud applications. 'ey use the simulation
and local scenarios to test the cloud applications and services.
Hammadi and Hussain in [22] propose a SLA monitoring
framework by a third party. 'e third party assesses the QoS
and assures the performance and no violation in the SLA.
Nevertheless, none of the abovementioned approaches feature
the dynamic adaptation of the evaluation campaign as foreseen
within the PRESENCE proposal.

Finally, as regards to the CSPs ranking and classification,
Wagle et al. in [23, 24] provide a ranking based on the
estimation and prediction of the quality of the cloud pro-
vider services. 'e model of estimating the performance is
based on the prediction methods such as ARIMA & ETS.

Motivated by recent scandals in the automotive sector,
which demonstrate the capacity of solution providers to
adapt the behaviour of their product when submitted to an
evaluation campaign to improve the performance results,

2 Mobile Information Systems

this article presents PRESENCE, which aims at covering
a large set of real benchmarks contributing to all aspects of
the performance analysis while hiding the true nature of the
evaluation to the CSP. Our proposal is detailed in the next
section.

3. PRESENCE: Performance Evaluation of
Services on the Cloud

An overview of the PRESENCE framework is proposed in
Figure 1 and is now depicted. It is basically composed of five
main components:

(1) A set of agents, each of them responsible for a specific
performance metric measuring a specific aspect of
the WS QoS. 'ose metrics have been designed to
reflect scalability and performance in a representa-
tive cloud environment. In practice, several reference
benchmarks have been considered and evaluated to
quantify this behaviour.

(2) 'e monitoring and modeling module, responsible
for collecting the data from the agent, which is used
together with an application performancemodel [25]
to assess the performance metric model.

(3) 'e stealthmodule, responsible to dynamically adapt and
balance the workload pattern of the combined metric
agents to make the resulting traffic indistinguishable
from a regular user traffic from the CSP point of view.

(4) 'e virtual QoS aggregator and SLA checker module,
which takes care of evaluating the QoS and SLA
compliance of the WS offered across the considered
CSPs. 'is ranking will help decision maker to
determine which provider is better to use for the
analyzed WS.

(5) Finally, the PRESEnCE client (or Auditor) is re-
sponsible for interacting with the selected CSPs and
evaluating the QoS and SLA compliance of Web
Services. It is meant to behave as a regular client of
the WS and can eventually be distributed across
several parallel instances even if our first imple-
mentation operates a single sequential client.

3.1.9ePRESENCEAgents. 'ePRESENCE approach is used
to collect the data which represent the behaviour of the CSP
and reflect the performance of the delivered services. In this
context, the PRESENCE agents are responsible for a set of
performance metrics measuring a specific aspect of the WS
QoS. 'ose metrics have been designed to reflect scalability
and performance in a representative cloud environment,
covering different criteria summarized in Table 1. 'e
implementation status and coverage of these metrics within
PRESENCE at the time of writing is also detailed.

Most of these metrics are measured through a set of
reference benchmarks, and each agent is responsible for
a specific instance of one of these benchmarks. 'en
a multiobjective optimization heuristic is applied to evaluate
the audited WS according to the different performance

domains raised by the agents. In practice, a low-level
hybrid approach combining Machine Learning (for deep
and reinforcement learning) and evolutionary-based met-
aheuristics compensate the weaknesses of one method with
the strengths of the other. More specifically, a Genetic
Programming Hyper-heuristic (GPHH) approach will be
used to automatically generate heuristics using building
blocks extracted from the problem definition and the
benchmarks domains. Such a strategy has been employed
with success in [26, 27], and we are confident it could be
efficiently applied to fit the context of this work. It is worth to
note that the metrics marked as not yet implemented within
PRESENCE at the time of writing are linked to the cost and
the availability of the checked service. 'e current paper
validates the approach against a set of classicalWSs deployed
in a local environment and introduces a complex modelling
and evaluation for the performance metrics.

As regards the stealthmodule, PRESENCE aims at relying
on a GA [28] approach to mitigate and adapt the concurrent
executions of the different agents by evolving their respective
parameters and thus the visible load pattern toward the CSP.
AnOracle is checked upon each iteration of the GA and based
on a statistical correlation of the resulting pattern against
a reference model corresponding to a regular usage. When
this oracle is unable to statistically distinguish the outgoing
modeled pattern of the client from a regular client, we
consider that we can apply one of the found solutions for
a real evaluation campaign of the checked CSP. Finally, the
virtual QoS aggregator and SLA checker rely on the CSP
ranking and classification proposed byWagle et al. in [23, 24].

3.2. Monitoring and Modeling for the Dynamic Adaptation of
the Agents. 'e first step to ensure the dynamic adaptation
of the workload linked to the evaluation process resides in
the capacity to model accurately this workload based on the
configuration of a given agent. Modelling the performance
metric will help the other researchers to generate data
representing the CSP’s behaviour under a high load and
under the normal usage in just a couple of minutes without
any experiments. In this context, the multiple runs of the
agents are stored and analyzed in a Machine Learning
process. During the training part, the infrastructure model
representing the CSP side which contains the SaaS services is
first virtualized locally to initiate the first collection of data
sample and setup the PRESENCE client (i.e., the auditor)
based on a representative environment. 'e second phase of
the training involves “real” runs permitting the modeling of
each metrics. In practice, PRESENCE relies on a simulation
software called Arena [29] to analyse the data returned from
the agents and get the model for each individual perfor-
mance metric. Arena is a simulation software by Rockwell
Corporation. It is used in different application domains,
from manufacturing to supply chain and from customer
service and strategies to internal business processes. It in-
cludes three modules, respectively, called Arena Input
Analyser,Output Analyser, and Process Analyser. Among the
three, the Input Analyser is useful for determining an ap-
propriate distribution for collected data. It allows the user to
make a sample set of raw data (e.g., latency of Cloud-based

Mobile Information Systems 3

WS) and fit it into a statistical distribution. 'is distribution
then can be incorporated directly into a model to develop
and understand the corresponding system performance.

'en, assuming such a model is available for each
considered metric, PRESENCE aims at adapting its client c′

(i.e., the auditor) to ensure the evaluation process is per-
formed in a stealth way. In this paper, 19 models have been
generated for each agent—they are listed in the next section.
Of course, once a model is provided, we should validate it,
that is, ensure that the model is an accurate representation of
the actual metric evolution and behaves in the same way.

'ere are many tests that could be used to validate on the
models generated. 'ese tests are used to check the accuracy
of the models by verifying on the null hypothesis. 'e tests
are such as t-test, Wilcoxon–Mann–Whitney test, and
Anova test. In PRESENCE, this is achieved by using t-test by
comparing means of raw data and statistical distribution
generated by the agent analysis. 'e use of t-test is based on
the fact that the variable(s) in question (e.g., 'roughput)
is normally distributed. When this assumption is in doubt,
the nonparametric Wilcoxon–Mann–Whitney test is used
as an alternative to the t-test [30]. As we will see, 78.9% of
the generated models are proved as an accurate represen-
tation of the WS performance metrics exhibited by the
PRESENCE agents. In the next section, the modelling of the
performance metrics are detailed besides the experiment
results of PRESENCE.

4. Validation and First Experimental Results

'is section presents the results obtained from the PRES-
ENCE approach within themonitoring and modelingmodule
as a prelude to the validation of the stealth module and the
virtual QoS aggregator and SLA checker left for the sequel of
this work.

Example: redis, memcached,
mongoDB, postgreSQL etc.

Cloud provider n

Web service A Web service A

Cloud provider 1

Client cA1

Client cA2

Client cAn

Client cB1

[Distributed] PRESEnCE client c’ (auditor)

Client cB2

Client cBm

WS performance
evaluation

Stealth module:
dynamic load adaptation

Monitoring
modeling

Workload/SLA analysis

Performance evaluation

On-demand evaluation of
SaaS web services

across multi-cloud providers
based on:

PRESEnCE

Agent/metric 1 Agent/metric 2 Agent/metric k

Virtual QoS
aggregator/SLA checker

SL
A

/Q
oS

V
al

id
at

or

Predictive
analytics

Analyze Ranking

FIGURE 1: Overview of the PRESENCE framework. 'e figure is reproduced from Ibrahim et al. [14] (under the Creative Commons
Attribution License/public domain).

TABLE 1: Performance metrics used in PRESENCE.

Domain Metric/Implementation status Metric type

Scalability

Number of transactions ✓
Workload/
performance
indicator

Number of requests ✓
Number of operations ✓
Number of records ✓
Number of fetches ✓

Reliability

Parallel connections (clients) ✓

WorkloadNumber of pipes ✓
Number of threads ✓
Workload size ✓

Availability

Response time ×

Performance
indicator

Up time ×

Down time ×

Load balancing ×

Performance

Latency ✓
Performance
indicator

'roughput ✓
Transfer rate ✓
Miss/hit rate ✓

Costs Installing costs × Quality
indicatorRunning costs ×

Security
Authentication ✓ Security

indicatorEncryption ✓
Auditability ✓

4 Mobile Information Systems

4.1. Experimental Setup. In an attempt to validate the ap-
proach on realistic workflows, we tested PRESENCE against
two traditional and core web services:

(1) A multi-DataBase (DB) WS, which offers both SQL
(i.e., PostgreSQL 9.4) and NoSQL DBs. For the later
case, we deployed two reference in-memory data
structure stores, used as a database, cache, andmessage
broker, that is, Redis 2.8.17 (redis.io) and Memcached
1.5.0 (memcached.org), as well as MongoDB 3.4, an
open-source document database that provides high
performance, high availability, and automatic scaling.

(2) 'e reference HTTP Apache server (version 2.2.22-
13), which is used for testing a traditional HTTP WS
on the cloud.

Building such a CSP environment was performed on top
of two physical servers running Ubuntu 14.04 LTS (Trusty
64) connected over a 1 GbE network.

On the PRESENCE client side, 8 agents are deployed as
KVM guests, that is, virtual machines running CentOS 7.3
over 4 physical servers. Each agent is running one of the
benchmarking tool listed in Table 2 to evaluate the WS
performance and collecting data about the CSP behaviour.
Each PRESENCE agent thus measures a specific subset of
performance metrics and attributes and also deals with spe-
cific kinds of cloud servers. Eachmeasurement is consisting of
an average over 100 runs collected by the PRESENCE agent to
make the data statistically significant. 'e tools used for
performance evaluation are several reference benchmarking
such as Yahoo Cloud Serving (YCSB) [31], Memtire [32],
Redis benchmark [33], Twitter RPC [34], Pgbench [35], HTTP
load [36], and Apache AB [37]. In addition, iperf [38] (a tool
for active measurements of the maximum achievable band-
width on IP networks) is used in the closed environment for
the validation of PRESENCE, as it provides an easy testimonial
for the WS access capacity. 'e general overview of the
deployed infrastructure is provided in Figure 2.

4.2. PRESENCE Agents Evaluation Results. 'e targeted WS
of each deployed agent is precised in Table 2.'e PRESENCE
approach is used to collect the data which represent the
behaviour of the CSP, and these data also can indicate and
evaluate the performance of the services. As mentioned in
the previous section, there are many metrics that can rep-
resent the performance. PRESENCE uses some of these
metrics as a workload to the CSP’s servers and the others as
results from the experiments. For example, the number of
requests, operations, records, transactions, and fetches are
metrics which representing the scalability of the CSP and are
used by PRESENCE to increase the workload to see the
behaviour of the servers under the workload. Other metrics
like parallel or concurrency connections, number of pipes,
number of threads, and the workload size are representing
the CSP reliability are also used by PRESENCE to increase
the workload during the test. Other metrics like response
time, up time, down time, transfer rate, latency (read and
update), and throughput are indicating the CSP perfor-
mance and availability and PRESENCE used them to

evaluate the services performance. Because PRESENCE uses
many tools to evaluate and benchmark the services, it can
deal with most of the metrics. But, there are two or three
common metrics we will model and represent them in the
results, such as latency, throughput, and transfer rate. 'ere
are other metrics that represent the security and the costs of
the CSPs, and all those metrics are summarized in Table 1 in
the previous section. 'e different parameters (both input
and output) which are used for the PRESENCE validation are
provided in Table 3. We now provide some of the numerous
traces produced by the execution of the PRESENCE agents
when checking the performance of the DB and HTTP WSs.

Figure 3 shows the Redis, Memcached, and Mongo
measured WS performance under the statistically significant
stress produced by the PRESENCE agent running the YCSB
benchmarking tool. Figure 3(a) shows the throughput of the
three backends and demonstrates that the Redis WS is the
best in this metric when compared to the other two WSs
where it has the highest throughput. 'is trend is confirmed
when the latency metric is analysed in Figures 3(b) and 3(c).

Figure 4 shows the Redis and Memcached measured WS
performance under the stress produced by the PRESENCE
agent running the Memtier benchmarking tool. 'e pre-
vious trend is again confirmed in our runs; that is, the Redis-
based WS performs better than the Memcached backend for

Table 2: Benchmarking tools used by PRESENCE agents.

Benchmark tool Version Targeted WS

YCSB 0.12.0 Redis, MongoDB, memcached,
DynamoDB, etc.

Memtire-Bench 1.2.8 Redis, memcached
Redis-Bench 2.4.2 Redis
Twitter RPC-Perf 2.0.3-pre Redis, memcached, Apache
PgBench 9.4.12 Postgresql
Apache AB 2.3 Apache
HTTP Load 1 Apache
Iperf v1, v3 Iperf server

Cloud data center

Web serverDatabase server

SaaS web services

- Redis
- Memcached
- MongoDB
- DynamoDB
- Postgresql
- Apache HTTP
- Iperf

Cloud
servers

FIGURE 2: Infrastructure deployed to validate the PRESENCE frame-
work. 'e figure is reproduced from Ibrahim et al. [14] (under the
Creative Commons Attribution License/public domain).

Mobile Information Systems 5

http://memcached.org

all metrics, for example, throughput, latency, and transfer
rate. As noticed in the three plots from the Memtier agents,
the latency, throughput, and transfer rate of the Memcached
WS have increased suddenly in the end. Such behaviour was
consistent across all runs and was linked to the memory
saturation reached by the server process before being clearer.
Still upon DB WS performance evaluation, Figure 5 details
the performance of the PostgreSQL WS under the stress
produced by the PRESENCE agent executing the PgBench
benchmarking tool. 'e figure shows the normalized re-
sponse time of the server and the normalized (standardized)
number of Transactions per Second (TPS). 'e response
time is the latency of the service when the TPS corresponds
to its throughput. 'e performance of the WS is affected by
the increased workload which is represented by the in-
creasing number of TPSs and parallel clients. 'e increasing
of the TPS let the response time increasing even if the TPS
was going down, and after filling in the memory, the TPS
decreased again and response time returned back again to
a decrease. 'is behaviour was consistent across the runs of
the PgBench agent. Finally, Figure 6 shows the average runs
of the PRESENCE agent executing the HTTP Load bench-
mark tool when assessing the performance of the HTTPWS.
We exhibit on each subfigure the behaviour of both the la-
tency and throughput against an increasing number of fetches
and parallel clients, which increases the workload of the WS.

Many more traces of all considered agent runs are
available but were not displayed in this article for the sake of
conciseness. Overall, and to conclude on the collected traces
from the many agent runs depicted in this section, we were
able to reflect several complementary aspects of the twoWSs
considered in the scenario of this experimental validation.
Yet, as part of the contributions of this article, the generation
of accurate models for these evaluations is crucial. 'ey are
detailed in the next section.

4.3. WS Performance Metrics Modeling. Outside the de-
scription of the PRESENCE framework, the main contri-
bution of this article resides more on the modeling of the
measured WS performance metrics from the data collected
by the PRESENCE agents rather than the runs in themselves
depicted in the previous section. Once these models are
available, they can be used to estimate and dynamically adapt
the behaviour of the PRESENCE client (which combine and
schedule the execution of all considered agents in parallel) so
as to hide the true nature of the evaluation by making it
indistinguishable from a regular client traffic. But this cor-
responds to the next step of our work. In this paper, we wish
to illustrate the developed model from the PRESENCE agents
evaluations reported in the previous section. 'e main ob-
jective of the developed model is to understand the system
performance behaviour relative to various assumptions and
input parameters discussed in previous sections. As men-
tioned in Section 3.2, we rely on the simulation software called
Arena to analyse the data returned from the agents and get the
model for each individual performance metric. We have
performed this analysis for each agents, and the results of the
models are presented in the below tables. Of course, such
a contribution is pertinent only if the generated model is
validated—a process consisting in ensuring the accurate
representation of the actual system and its behaviour. 'is is
achieved by using a set of statistical t-tests by comparing the
means of raw data and statistical distribution generated by the
Input Analyzer of the Arena system. If the result shows that
both samples are analytically similar, then the model de-
veloped from statistical distribution is an accurate repre-
sentation of the actual system and behaves in the same way.
For each model detailed in the tables, the outcomes of the t-
tests in the form of the computed p value (against the
common significance level of 0.05) is provided and dem-
onstrate if present the accuracy of the proposed models.

Table 3: Input/output metrics for each PRESENCE Agent.

PRESENCE agent
Input parameters

#Transactions #Requests #Operations #Records #Fetches #Parallel
clients #Pipes #'reads Workload

size
YCSB ✓ ✓ ✓ ✓
Memtire-Bench ✓ ✓ ✓ ✓
Redis-Bench ✓ ✓ ✓ ✓
Twitter RPC-Perf ✓ ✓
PgBench ✓ ✓ ✓
Apache AB ✓ ✓
HTTP Load ✓ ✓
Iperf ✓

PRESENCE agent
Output parameters

'roughput Latency Read
latency

Update
latency

CleanUp
latency

Transfer
rate

Response
time Miss Hits

YCSB ✓ ✓ ✓ ✓ ✓ ✓
Memtire-Bench ✓ ✓ ✓ ✓ ✓
Redis-Bench ✓
Twitter RPC-Perf ✓ ✓ ✓ ✓
PgBench ✓ ✓
Apache AB ✓ ✓
HTTP Load ✓ ✓ ✓
Iperf ✓

6 Mobile Information Systems

Tables 4–6 show the model of the performance metrics
such as latency (read and update) and throughput for the
Redis, Memcached, and MongoDB services by using the
data collected with the YCSB PRESENCE agents. In
particular, Table 4 shows that the Redis throughput is Beta
increasing, Redis latency (read) is Gamma increasing,
and Redis latency (update) is Erlang increasing with

respect to the configuration of the experimental setup
discussed in the previous sections. Moreover, as p values
(0.757, 0.394, and 0.503) are greater than 0.05, the null
hypothesis (the two samples are the same) is accepted as
compared to alternate hypothesis (the two samples are
different). Hence, the models for throughput, that is,
−0.001 + 1∗BETA(3.63, 3.09), latency (read), that is,

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

Number of operations

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Servers (throughput)
Redis
MongoDB
Memcached

0 2000 4000 6000 8000 10000
Number of records

(a)

Redis
MongoDB
Memcached

0 2000 4000 6000 8000 10000

0

10000

20000

30000

40000

50000

Number of operations

U
pd

at
e l

at
en

cy
 (μ

s)

Servers (update latency)

0 2000 4000 6000 8000 10000
Number of records

(b)

Redis
MongoDB
Memcached

Servers (read latency)

0 2000 4000 6000 8000 10000

0

20000

40000

60000

Number of operations

Re
ad

 la
te

nc
y

(μ
s)

0 2000 4000 6000 8000 10000
Number of records

(c)

FIGURE 3: YCSB Agent Evaluation of the NoSQL DBWS. (a) 'roughput, (b) update latency, and (c) read latency. 'e figure is reproduced
from Ibrahim et al. [14] (under the Creative Commons Attribution License/public domain).

Mobile Information Systems 7

−0.001 + GAMM(0.0846, 2.39), and latency (update), that
is, −0.001 + ERLA(0.0733, 3), are an accurate represen-
tation of the WS performance metrics exhibited by the
PRESENCE agent in Figure 3.

Similarly, Table 5 shows that MongoDB throughput and
latency (read) are Beta increasing and latency (update) is
Erlang increasing with respect to the configuration setup.
Moreover, as p values (0.388, 0.473, and 0.146) are greater
than 0.05, the null hypothesis (the two samples are the same)
is accepted as compared to alternate hypothesis (the two
samples are different). Hence, the models for throughput,
that is, −0.001 + 1∗BETA(3.65, 2.11), latency (read), that is,
−0.001 + 1∗BETA(1.6, 2.48), and latency (update), that is,

−0.001 + ERLA(0.0902, 2), are an accurate representation of
the WS performance metrics exhibited by the PRESENCE
agents in Figure 3.

Finally, Table 6 shows that Memcached throughput
and latency (read) is Beta increasing and latency (update) is
Normal increasing with respect to configuration setup.
Again, as p values (0.106, 0.832, and 0.794) are greater than
0.05, the null hypothesis is accepted. Hence, the models for
throughput, that is, −0.001 + 1∗BETA(4.41, 2.48), latency
(read), that is, −0.001 + 1∗BETA(1.64, 3.12), and latency
(update), that is, NORM(0.311, 0.161), are an accurate
representation of the WS performance metrics exhibited by
the PRESENCE agents in Figure 3.

0 2000 4000 6000 8000 10000

0e + 00

1e + 05

2e + 05

3e + 05

4e + 05

5e + 05

6e + 05

Number of requests

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Server restarted

Memtier−Bench
Redis
Memcached

(a)

Memtier−Bench
Redis
Memcached

0 2000 4000 6000 8000 10000

0

10

20

30

40

Number of requests

La
te

nc
y

(s
)

Server restarted

(b)

Memtier−Bench
Redis
Memcached

0 2000 4000 6000 8000 10000

0

5000

10000

15000

20000

Number of requests

Tr
an

sfe
r r

at
e (

Kb
/s

ec
)

Server restarted

(c)

Figure 4: Memtier Agent Evaluation of the NoSQL DBWS. (a)'roughput, (b) latency, and (c) transfer rate.'e figure is reproduced from
Ibrahim et al. [14] (under the Creative Commons Attribution License/public domain).

8 Mobile Information Systems

'e above analysis is repeated for the Memtier
PRESENCE agent—the corresponding models are pro-
vided in Tables 7 and 8 and summarize the computed
model for the WS performance metrics such as latency,
throughput, and transfer rate for the Redis and Memc-
ached services by using the data collected from PRESENCE

Memtier agents. For instance, it can be seen in Table 7 that
the Redis throughput is Erlang increasing with respect to
time and assumptions in previous section. Moreover, as p

value (0.902) is greater than 0.05, the null hypothesis is
again accepted as compared to alternate hypothesis (the
two samples are different). Hence, the Erlang distribution

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

1.0

Number of transactions per client

N
or

m
al

iz
ed

 T
PS

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 re
sp

on
se

 ti
m

e (
la

te
nc

y)

20 50 80

Number of parallel clients

Pgbench
TPS
Response Time

FIGURE 5: PgBench Agent on the SQL DB WS. 'e figure is reproduced from Ibrahim et al. [14] (under the Creative Commons Attribution
License/public domain).

0 50000 100000 150000 200000

0.0

0.2

0.4

0.6

0.8

1.0

Number of fetches

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
 (f

et
ch

es
/s

ec
)

0.0

0.2

0.4

0.6

0.8

1.0300 650 1000

Number of parallel clients

N
or

m
al

iz
ed

 la
te

nc
y

HTTP load
Throughput
Latency

(a)

200 400 600 800 1000

20

40

60

80

100

120

Number of parallel clients

A
ve

ra
ge

 la
te

nc
y

(m
se

c)

20

40

60

80

100

120
30000 120000 190000

Number of fetches

A
ve

ra
ge

 la
te

nc
y

co
nn

ec
tio

n
(m

se
c)

HTTP load
Latency (avg (msec))
Connection latency (avg (ms))

(b)

Figure 6: HTTP Load Agent Evaluation on the HTTPWS.'e figure is reproduced from Ibrahim et al. [14] (under the Creative Commons
Attribution License/public domain).

Mobile Information Systems 9

model of 'roughput, that is, −0.001 + ERLA(0.0155, 7),
is an accurate representation of the WS performance
metrics exhibited by the PRESENCE agents in Figure 4(a).
'e same conclusions on the generated models can
be triggered for the other metrics collected by the PRES-
ENCE Memtier agents, that is, latency and transfer
rates. Interestingly, Table 8 reports an approximation
(blue curve line) for multimodel distribution of memc-
ached throughput and transfer rate. 'is shows a failure
of a single model to capture the system behaviour with
respect to the configuration setup. However for the same
setup, memcached latency is Beta increasing, and as its
p value (0.625) is greater than 0.05, the null hypoth-
esis is accepted. Hence, the model for latency, that is,
−0.001 + 1∗BETA(0.99, 2.1), is an accurate representation

of theWS performance metrics exhibited by the PRESENCE
agents in Figure 4(b).

To finish on the DB WS performance analysis using
PRESENCE, Table 9 exhibits the generated model for the
performance model from the Pgbench PRESENCE agents.'e
first row in the table shows the approximation (blue curve line)
for multimodel distribution of the throughput metric, thus
demonstrating the failure of a single model to capture the
system behaviour with respect to the configuration setup.
However for the same setup, the latency metric is log normal
increasing, and as its p value (0.682) is greater than 0.05, the
null hypothesis (i.e., the two samples are the same) is accepted
as compared to alternate hypothesis, that is, the two samples
are different. Hence, the model for latency, that is,
−0.001 + LOGN(0.212, 0.202), is an accurate representation

TABLE 4: Modelling DB WS performance metrics from YCSB PRESENCE Agent: Redis.

Metric Distribution Model Expression p value (t-test)

'roughput Beta

−0.001 + 1∗BETA(3.63, 3.09)

where
BETA(β, α)

β � 3.63
α � 3.09

offset � −0.001

f(x) �
(xβ−1(1−x)α−1)/B(β, α) for 0< x< 1
0 otherwise,

􏼨

where β is the complete beta function given by
B(β, α) � 􏽒

1
0 tβ−1(1− t)α−1 dt

0.757(>0.05)

Latency read Gamma

−0.001 + GAMM(0.0846, 2.39)

where
GAMM(β, α)

β � 0.0846
α � 2.39

offset � −0.001

f(x) �
(β−αxα−1e−(x/β))/Γ(α) for x> 0
0 otherwise,

􏼨

where Γ is the complete gamma function given by
Γ(α) � 􏽒

inf
0 tα−1e−1 dt

0.394(>0.05)

Latency update Erlang

−0.001 + ERLA(0.0733, 3)

where
ERLA(β, k)

k � 3
β � 0.0733

offset � −0.001

f(x) �
(β−kxk−1e−(x/β))/(k− 1)! for x> 0
0 otherwise

􏼨 0.503(>0.05)

Table 5: Modelling DB WS performance metrics from YCSB PRESENCE Agent: MongoDB.

Metric Distribution Model Expression p value (t-test)

'roughput Beta

−0.001 + 1∗BETA(3.65, 2.11)

where
BETA(β, α)

β � 3.65
α � 2.11

offset � −0.001

f(x) �
(xβ−1(1−x)α−1)/B(β, α) for 0<x< 1
0 otherwise,

􏼨

where β is the complete beta function given by
B(β, α) � 􏽒

1
0 tβ−1(1− t)α−1 dt

0.388(>0.05)

Latency read Beta

−0.001 + 1∗BETA(1.6, 2.48)

where
BETA(β, α)

β � 1.6
α � 2.48

offset � −0.001

f(x) �
(xβ−1(1−x)α−1)/B(β, α) for 0<x< 1
0 otherwise,

􏼨

where β is the complete beta function given by
B(β, α) � 􏽒

1
0 tβ−1(1− t)α−1 dt

0.473(>0.05)

Latency update Erlang

−0.001 + ERLA(0.0902, 2)

where
ERLA(β, k)

k � 2
β � 0.0902

offset � −0.001

f(x) �
(β−kxk−1e−(x/β))/(k− 1)! for x> 0
0 otherwise

􏼨 0.146(>0.05)

10 Mobile Information Systems

of the WS performance metrics exhibited by the PRESENCE
agents in Figure 6. As regards the HTTP WS performance
analysis using PRESENCE, we decided to report in Table 10
the model generated from the performance model from the
HTTP Load PRESENCE agents. Again, we can see that we fail
to model the throughput metric with respect to the config-
uration setup discussed in the previous section. However, for
the same setup, the response time is Beta increasing, and as its
p value (0.165) is greater than 0.05, the null hypothesis is
accepted. Hence, the model for latency, that is, −0.001 + 1∗
BETA(1.55, 3.46), is an accurate representation of the WS
performance metrics exhibited by the PRESENCE agents in
Figure 6.

Summary of the obtained Models: In this paper, 19
models were generated which represent the performance
metrics for the SaaS Web Service by using the PRESENCE

approach. Out of the 19 models, 15 models, that is, 78.9% of
the analyzed models are proved to have accurately represent
the performance metrics collected by the PRESENCE agents,
such as throughput, latency, transfer rate, and response time
in different contexts depending on the considered WS. 'e
accuracy of the proposed models is assessed by the reference
statistical t-tests, performed against the common signifi-
cance level of 0.05.

5. Conclusion

Motivated by recent scandals in the automotive sector
(which demonstrate the capacity of solution providers to
adapt the behaviour of their product when submitted to an
evaluation campaign to improve the performance results),
this paper presents PRESENCE, an automatic framework

Table 7: Modelling DB WS performance metrics from Memtier PRESENCE Agent: Redis.

Metric Distribution Model Expression p value (t-test)

'roughput Erlang

−0.001 + ERLA(0.0155, 7)

where
ERLA(β, k)

k � 7
β � 0.0155

offset � −0.001

f(x) �
(β−kxk−1e−(x/β))/(k− 1)! for x> 0
0 otherwise

􏼨 0.767(>0.05)

Latency Beta

−0.001 + 1∗BETA(0.648, 1.72)

where
BETA(β, α)

β � 0.648
α � 1.72

offset � −0.001

f(x) �
(xβ−1(1− x)α−1)/B(β, α) for 0<x< 1
0 otherwise,

􏼨

where β is the complete beta function given by
B(β, α) � 􏽒

1
0 tβ−1(1− t)α−1 dt

0.902(>0.05)

Transfer rate Erlang

−0.001 + ERLA(0.0155, 7)

where
ERLA(β, k)

k � 7
β � 0.0155

offset � −0.001

f(x) �
(β−kxk−1e−(x/β))/(k− 1)! for x> 0
0 otherwise

􏼨 0.287(>0.05)

Table 6: Modelling DB WS performance metrics from YCSB PRESENCE Agent: Memcached.

Metric Distribution Model Expression p value (t-test)

'roughput Beta

−0.001 + 1∗BETA(4.41, 2.48)

where
BETA(β, α)

β � 4.41
α � 2.48

offset � −0.001

f(x) �
(xβ−1(1−x)α−1)/B(β, α) for 0<x< 1
0 otherwise,

􏼨

where β is the complete beta function given by
B(β, α) � 􏽒

1
0 tβ−1(1− t)α−1 dt

0.106(>0.05)

Latency read Beta

−0.001 + 1∗BETA(1.64, 3.12)

where
BETA(β, α)

β � 1.64
α � 3.12

offset � −0.001

f(x) �
(xβ−1(1−x)α−1)/B(β, α) for 0<x< 1
0 otherwise,

􏼨

where β is the complete beta function given by
B(β, α) � 􏽒

1
0 tβ−1(1− t)α−1 dt

0.832(>0.05)

Latency update Normal

NORM(0.311, 0.161)

where
NORM(meanμ, stdDevσ)

μ � 0.311
σ � 0.161

f(x) � (1/σ
���
2π

√
)e−(x−μ)2/2σ2 for all real x 0.794(>0.05)

Mobile Information Systems 11

which aims at evaluating, monitoring, and benchmarking
Web Services (WSs) offered across several Cloud Services
Providers (CSPs) for all types of Cloud Computing (CC) and
Mobile CC platforms. More precisely, PRESENCE aims at
evaluating the QoS and SLA compliance of Web Services
(WSs) by stealth way, that is, by rendering the performance
evaluation as close as possible from a regular yet heavy usage

of the considered service. Our framework is relying on
a Multi-Agent System (MAS) and a carefully designed client
(called the Auditor) responsible to interact with the set of
CSPs being evaluated.

'e first step to ensure the dynamic adaptation of the
workload to hide the evaluation process resides in the ca-
pacity to model accurately this workload based on the

Table 10: Modelling HTTP WS performance metrics from HTTP load PRESENCE Agent.

Metric Distribution Model Expression p value (t-test)

'roughput — — —

Latency Log normal

−0.001 + 1∗BETA(1.55, 3.46)

where
BETA(β, α)

β � 1.55
α � 3.46

offset � −0.001

f(x) �
1/(σx

���
2π

√
)e−(ln(x)− μ)2/2σ2 for x> 0

0 otherwise
􏼨 0.165(>0.05)

Table 9: Modelling DB WS performance metrics from Pgbench PRESENCE Agent.

Metric Distribution Model Expression p value (t-test)

'roughput — — —

Latency Log normal

−0.001 + LOGN(0.212, 0.202)

where
LOGN(log Meanμ, LogStdσ)

μ � 0.212
σ � 0.202

offset � −0.001

f(x) �
(xβ−1(1−x)α−1)/B(β, α) for 0<x< 1
0 otherwise,

􏼨

where β is the complete beta function given by
B(β, α) � 􏽒

1
0 tβ−1(1− t)α−1 dt

0.682(>0.05)

Table 8: Modelling DB WS performance metrics from Memtier PRESENCE Agent: Memcached.

Metric Distribution Model Expression p value (t-test)

'roughput — — —

Latency read Beta

−0.001 + 1∗BETA(0.99, 2.1)

where
BETA(β, α)

β � 0.99
α � 2.1

offset � −0.001

f(x) �
(xβ−1(1−x)α−1)/B(β, α) for 0<x< 1
0 otherwise,

􏼨

where β is the complete beta function given by
B(β, α) � 􏽒

1
0 tβ−1(1− t)α−1 dt

0.625(>00.05)

Latency update — — —

12 Mobile Information Systems

configuration of the agents responsible for the performance
evaluation.

In this paper, a nonexhaustive list of 22 metrics was
suggested to reflect all facets of the QoS and SLA compliance
of a WSs offered by a given CSP. 'en, the data collected
from the execution of each agent within the PRESENCE
client can be then aggregated within a dedicated module and
treated to exhibit a rank and classification of the involved
CSPs. From the preliminary modelling of the load pattern
and performance metrics of each agent, a stealth module
takes care of finding through a GA the best set of parameters
for each agent such that the resulting pattern of the
PRESENCE client is indistinguishable from a regular usage.
While the complete framework is described in the seminal
paper for PRESENCE [14], the first experimental results
presented in this work focus on the performance and net-
working metrics between cloud providers and cloud
customers.

In this context, 19 generated models were provided, out
of which 78.9% accurately represent the WS performance
metrics for the two SaaS WSs deployed in the experimental
setup. 'e claimed accuracy is confirmed by the outcome of
reference statistical t-tests and the associated p values
computed for each model against the common significance
level of 0.05.

'is opens novel perspectives for assessing the SLA
compliance of Cloud providers using the PRESENCE
framework. 'e future work induced by this study includes
the modelling and validation of the other modules defined
within PRESENCE and based on the monitoring and mod-
elling of the performance metrics proposed in this article. Of
course, the ambition remains to test our framework against
a real WS while performing further experimentation on
a larger set of applications and machines.

Data Availability

'e data used to support the findings of this study are
available from the corresponding author upon request.

Disclosure

'is article is an extended version of [14], presented at the
32nd IEEE International Conference of Information Net-
works (ICOIN), 2018. In particular, Figures 1–6 are
reproduced from [14].

Conflicts of Interest

'e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

'e authors would like to acknowledge the funding of the
joint ILNAS-UL Programme onDigital Trust for Smart-ICT.
'e experiments presented in this paper were carried out
using the HPC facilities of the University of Luxembourg
[39] (see http://hpc.uni.lu).

References

[1] P. M.Mell and T. Grance, “SP 800–145.'eNISTdefinition of
cloud computing,” Technical Report, National Institute of
Standards & Technology (NIST), Gaithersburg, MD, USA,
2011.

[2] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing:
state-of-the-art and research challenges,” Journal of Internet
Services and Applications, vol. 1, no. 1, pp. 7–18, 2010.

[3] A. Botta,W. DeDonato, V. Persico, and A. Pescapé, “Integration
of cloud computing and internet of things: a survey,” Future
Generation Computer Systems Journal, vol. 56, pp. 684–700, 2016.

[4] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud
computing: a survey,” Future generation computer systems
Journal, vol. 29, no. 1, pp. 84–106, 2013.

[5] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and
N. Venkatasubramanian, “Mobile cloud computing: a survey,
state of art and future directions,” Mobile Networks and
Applications Journal, vol. 19, no. 2, pp. 133–143, 2014.

[6] Y. Xu and S. Mao, “A survey of mobile cloud computing for
rich media applications,” IEEE Wireless Communications,
vol. 20, no. 3, pp. 46–53, 2013.

[7] Y. Wang, R. Chen, and D.-C. Wang, “A survey of mobile
cloud computing applications: perspectives and challenges,”
Wireless Personal Communications Journal, vol. 80, no. 4,
pp. 1607–1623, 2015.

[8] P. R. Palos-Sanchez, F. J. Arenas-Marquez, and M. Aguayo-
Camacho, “Cloud computing (SaaS) adoption as a strategic
technology: results of an empirical study,”Mobile Information
Systems Journal, vol. 2017, Article ID 2536040, 20 pages, 2017.

[9] M. N. Sadiku, S. M. Musa, and O. D. Momoh, “Cloud
computing: opportunities and challenges,” IEEE Potentials,
vol. 33, no. 1, pp. 34–36, 2014.

[10] A. A. Ibrahim, D. Kliazovich, and P. Bouvry, “On service level
agreement assurance in cloud computing data centers,” in
Proceedings of the 2016 IEEE 9th International Conference on
Cloud Computing, pp. 921–926, San Francisco, CA, USA,
June-July 2016.

[11] S. A. Baset, “Cloud SLAs: present and future,” ACM SIGOPS
Operating Systems Review, vol. 46, no. 2, pp. 57–66, 2012.

[12] L. Sun, J. Singh, and O. K. Hussain, “Service level agreement
(SLA) assurance for cloud services: a survey from a trans-
actional risk perspective,” in Proceedings of the 10th In-
ternational Conference on Advances in Mobile Computing &
Multimedia, pp. 263–266, Bali, Indonesia, December 2012.

[13] C. Di Martino, S. Sarkar, R. Ganesan, Z. T. Kalbarczyk, and
R. K. Iyer, “Analysis and diagnosis of SLA violations in
a production SaaS cloud,” IEEE Transactions on Reliability,
vol. 66, no. 1, pp. 54–75, 2017.

[14] A. A. Ibrahim, S. Varrette, and P. Bouvry, “PRESENCE: to-
ward a novel approach for performance evaluation of mobile
cloud SaaS web services,” in Proceedings of the 32nd IEEE
International Conference on Information Networking (ICOIN
2018), Chiang Mai, 'ailand, January 2018.

[15] V. Stantchev, “Performance evaluation of cloud computing
offerings,” in Proceedings of the 3rd International Conference
on Advanced Engineering Computing and Applications in
Sciences, ADVCOMP 2009, pp. 187–192, Sliema, Malta,
October 2009.

[16] J. Y. Lee, J. W. Lee, D. W. Cheun, and S. D. Kim, “A quality
model for evaluating software-as-a-service in cloud com-
puting,” in Proceedings of the 2009 Seventh ACIS International
Conference on Software Engineering Research, Management
and Applications, pp. 261–266, Haikou, China, 2009.

Mobile Information Systems 13

http://hpc.uni.lu

[17] C. J. Gao, K. Manjula, P. Roopa et al., “A cloud-based TaaS
infrastructure with tools for SaaS validation, performance and
scalability evaluation,” in Proceedings of the CloudCom 2012-
Proceedings: 2012 4th IEEE International Conference on Cloud
Computing Technology and Science, pp. 464–471, Taipei,
Taiwan, December 2012.

[18] P. X. Wen and L. Dong, “Quality model for evaluating SaaS
service,” in Proceedings of the 4th International Conference on
Emerging Intelligent Data and Web Technologies, EIDWT
2013, pp. 83–87, Xi’an, China, September 2013.

[19] G. Cicotti, S. D’Antonio, R. Cristaldi, and A. Sergio, “How to
monitor QoS in cloud infrastructures: the QoSMONaaS ap-
proach,” Studies in Computational Intelligence, vol. 446,
pp. 253–262, 2013.

[20] G. Cicotti, L. Coppolino, S. D’Antonio, and L. Romano, “How
to monitor QoS in cloud infrastructures: the QoSMONaaS
approach,” International Journal of Computational Science
and Engineering, vol. 11, no. 1, pp. 29–45, 2015.

[21] A. A. Z. A. Ibrahim, D. Kliazovich, and P. Bouvry, “Service
level agreement assurance between cloud services providers
and cloud customers,” in Proceedings–2016 16th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Com-
puting, CCGrid 2016, pp. 588–591, Cartagena, Colombia, May
2016.

[22] A. M. Hammadi and O. Hussain, “A framework for SLA
assurance in cloud computing,” in Proceedings–26th IEEE
International Conference on Advanced Information Net-
working and Applications Workshops, WAINA 2012,
pp. 393–398, Fukuoka, Japan, March 2012.

[23] S. S. Wagle, M. Guzek, and P. Bouvry, “Cloud service pro-
viders ranking based on service delivery and consumer ex-
perience,” in Proceedings of the 2015 IEEE 4th International
Conference on Cloud Networking (CloudNet), pp. 209–212,
Niagara Falls, ON, Canada, October 2015.

[24] S. S. Wagle, M. Guzek, and P. Bouvry, “Service performance
pattern analysis and prediction of commercially available
cloud providers,” in Proceedings of the International Con-
ference on Cloud Computing Technology and Science, Cloud-
Com, pp. 26–34, Hong Kong, China, December 2017.

[25] M. Guzek, S. Varrette, V. Plugaru, J. E. Pecero, and P. Bouvry,
“A holistic model of the performance and the energy-
efficiency of hypervisors in an HPC environment,” Concur-
rency and Computation: Practice and Experience, vol. 26,
no. 15, pp. 2569–2590, 2014.

[26] M. Bader-El-Den and R. Poli, “Generating sat local-search
heuristics using a gp hyper-heuristic framework,” in Artificial
Evolution, N.Monmarché, E.-G. Talbi, P. Collet, M. Schoenauer,
and E. Lutton, Eds., pp. 37–49, Springer, Berlin, Heidelberg,
Germany, 2008.

[27] J. H. Drake, E. Özcan, and E. K. Burke, “A case study of
controlling crossover in a selection hyper-heuristic frame-
work using the multidimensional knapsack problem,” Evo-
lutionary Computation, vol. 24, no. 1, pp. 113–141, 2016.

[28] A. Shrestha and A. Mahmood, “Improving genetic algorithm
with fine-tuned crossover and scaled architecture,” Journal of
Mathematics, vol. 2016, Article ID 4015845, 10 pages, 2016.

[29] T. T. Allen, Introduction to ARENA Software, Springer,
London, UK, 2011.

[30] R. C. Blair and J. J. Higgins, “A comparison of the power of
Wilcoxon’s rank-sum statistic to that of Student’s t statistic
under various nonnormal distributions,” Journal of Educa-
tional Statistics, vol. 5, no. 4, pp. 309–335, 1980.

[31] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”

in Proceedings of the 1st ACM symposium on Cloud computing
SoCC’ 10, Indianapolis, IN, USA, June 2010.

[32] Redis Labs, memtier_benchmark: A High-9roughput
Benchmarking Tool for Redis & Memcached, Redis Labs,
Mountain View, CA, USA, https://redislabs.com/blog/
memtier_benchmark-a-high-throughput-benchmarking-tool-
for-redis- memcached/, 2013.

[33] Redis Labs, How Fast is Redis?, Redis Labs, Mountain View,
CA, USA, https://redis.io/topics/benchmarks, 2018.

[34] Twitter, rpc-perf–RPC Performance Testing, Twitter, San Francisco,
CA, USA, https://github.com/AbdallahCoptan/rpc-perf, 2018.

[35] Postgresql, “pgbench—run a benchmark test on PostgreSQL,”
https://www.postgresql.org/docs/9.4/static/pgbench.html, 2018.

[36] A. Labs, “HTTP_LOAD: multiprocessing http test client,”
https://github.com/AbdallahCoptan/HTTP_LOAD, 2018.

[37] Apache, “ab—Apache HTTP server benchmarking tool,”
https://httpd.apache.org/docs/2.4/programs/ab.html, 2018.

[38] 'e Regents of the University of California, “iPerf—the ulti-
mate speed test tool for TCP, UDP and SCTP,” https://iperf.fr/,
2018.

[39] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos,
“Management of an academic HPC cluster: the UL experi-
ence,” in Proceedings of the 2014 International Conference on
High Performance Computing & Simulation (HPCS 2014),
pp. 959–967, Bologna, Italy, July 2014.

14 Mobile Information Systems

https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redis.io/topics/benchmarks
https://github.com/AbdallahCoptan/rpc-perf
https://www.postgresql.org/docs/9.4/static/pgbench.html
https://github.com/AbdallahCoptan/HTTP_LOAD
https://httpd.apache.org/docs/2.4/programs/ab.html
https://iperf.fr/

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable
Computing

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scienti�c
Programming

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

