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Abstract

Mobile Crowdsensing (MCS) has emerged in the last years and has become one of the most prominent

paradigms for urban sensing. The citizens actively participate in the sensing process by contributing

data with their mobile devices. To produce data, citizens sustain costs, i.e., the energy consumed

for sensing and reporting operations. Hence, devising energy efficient data collection frameworks

(DCF) is essential to foster participation. In this work, we investigate from an energy-perspective

the performance of different DCFs. Our methodology is as follows: (i) we developed an Android

application that implements the DCFs, (ii) we profiled the energy and network performance with a

power monitor and Wireshark, (iii) we included the obtained traces into CrowdSenSim simulator for

large-scale evaluations in city-wide scenarios such as Luxembourg, Turin and Washington DC. The

amount of collected data, energy consumption and fairness are the performance indexes evaluated.

The results unveil that DCFs with continuous data reporting are more energy-efficient and fair than

DCFs with probabilistic reporting. The latter exhibit high variability of energy consumption, i.e., to

produce the same amount of data, the associated energy cost of different users can vary significantly.
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1. Introduction

Nowadays, half of the global population lives in urban areas. This figure is projected to further

increase in the next three decades [1]. The unprecedented population growth calls for a sustainable

development of urban areas. Currently, significant research efforts are undergoing to provide efficient

services exploiting ICT solutions, such as the Internet of Things (IoT) paradigm. Smart cities aim to5
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improve the quality of life of citizens1 by providing innovative solutions for public services, such as

health care, urban safety, waste and emergency situation management [2]. Sensing is crucial in monitor-

ing infrastructures, transportation systems, environment, health but also resource consumption [3, 4].

While deploying and maintaining sensing infrastructures is very expensive, including citizens in the

loop of sensing is cost-effective and was proved to be a win-win strategy. The citizens’ participation10

to sensing activities is at the heart of the Mobile Crowdsensing (MCS) paradigm [5].

MCS has become an appealing paradigm for urban sensing in the recent years. In MCS, citizens

contribute data produced by sensors embedded in their devices, such as smartphones, tablets and

wearables [6]. The key idea of MCS is to integrate human intelligence with machine intelligence [7].

Active participation of citizens guarantees higher coverage and deeper context awareness compared to15

traditional sensor networks. Furthermore, users ensure self-maintenance and recharge of the devices

that act as sensor and communication nodes. MCS systems fit well as large-scale sensing platforms

for several types of applications such as emergency situation management, intelligent transportation

systems and health care [8]. A particular example is environmental monitoring such as detection of

obstacles [9] or potholes [10], and monitoring of watershed conditions [11]. Garbagewatch [12] relies on20

citizen participation to improve the collection and recycling process, while the National Environment

Agency of Singapore employs on a daily basis HazeWatch2 to perform air pollution monitoring, an

application previously developed at The University of New South Wales [13]. In all such applications,

the collected data is sent though cellular (e.g., 4G/LTE) or WiFi data connection to a central collector,

which is usually located in the cloud [14]. The organizer is usually responsible for user recruitment25

and task assignment prior to the start of the sensing campaign and for data analysis and processing

during the sensing campaign. The organization of a MCS campaign requires to sustain costs to reward

individuals for their involvement and to verify the accomplishment of the tasks. Consequently, it is

crucial to investigate how to maximize the efficiency of a Data Collection Frameworks (DCF), which is

defined in terms of the costs sustained by the organizer and the revenues [15]. The users sustain costs30

while contributing data too, i.e., the energy spent from the batteries for sensing and reporting data

and, eventually, the data subscription plan if cellular connectivity is used for reporting. Developing

efficient DFCs is crucial to regulate the degree of user involvement and to prevent excessive battery

drain from the mobile devices, which are fundamental limiting factors to foster user participation and

contribution [16]. At the same time, a DCF has to gather a sufficient amount of data to ensure Quality35

of Information (QoI) [17, 18].

This paper takes one step further the problem of energy efficient data collection in MCS systems.

1In the remaining part of the paper, we use terms citizens, crowd, participants and users interchangeably.
2Available at: https://www.haze.gov.sg/ and https://play.google.com/store/apps/details?id=com.vulcan.hazemon
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Despite the scientific community made numerous attempts to build effective large-scale MCS applica-

tions, the design of efficient DCFs remains a grand challenge and practically few works have attempted

to study from an experimental perspective the performance of DCFs. With this work3, we compare40

the performance of different DCFs by employing an experimental methodology. We take into account

DCFs that differ by the following features: (i) the type of data reporting4 mechanism (DRM) imple-

mented, e.g., continuous (i.e., data is delivered while produced), delayed (i.e., data is delivered once

the sensing activity has ended) and probabilistic (i.e., data transmission is occasional during sensing),

and (ii) the degree of control the collector establishes through feedback on the amount of data is still45

to be harvested. All these aspects fundamentally impact the efficiency of DCFs. We developed an

Android application that implements the various DCFs and performed energy measurements on the

smartphone through a power monitor. Furthermore, we also collected network-related measurements

exploiting Wireshark, a free and open source packet analyzer. As MCS systems require large partici-

pation to be effective, performing feasible experiments on real testbeds is often not feasible. To this50

end, simulations are a valid alternative. Hence, the collected energy- and network-measurements were

employed to feed CrowdSenSim simulator for large-scale evaluations in city-wide scenarios. Crowd-

SenSim [20] is the first tool to perform scalable MCS activities for a required duration (e.g., days) in

complex environments.

The synopsis of contributions of this work is as follows:55

• Analysis and comparison of different DCFs with different DRMs, i.e., continuous, delayed and

probabilistic data delivery.

• Implementation of an flexible Android application that supports the aforementioned DRMs to

experimentally profile: (i) the energy costs associated to sensing and reporting operations, and

(ii) communication features of data reporting such as the packet send rate and the distribution60

of packet errors.

• Inclusion of the DRMs energy profiles obtained from the analysis with the power monitor and im-

plementation of different DCFs in CrowdSenSim simulator for large-scale performance evaluation

in urban scenarios.

Our main findings are as follows:65

• The type of DRM is the key criterion that differentiates the DCFs. DCFs with continuous

reporting that implement mechanisms to block sensing and data delivery based on history of

user contribution are more effective in harvesting data from the crowd.

3A preliminary version of this work appeared in [19]
4In the remaining part of the paper, we use terms data reporting and data delivery interchangeably.
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• As expected, DCFs with probabilistic reporting exhibit high variability of energy consumption,

i.e., to produce the same amount of data, the associated energy cost of different users can be70

significantly different.

• Human mobility does not influence the per-user energy-consumption behavior of the DCFs.

Experiments performed on cities with different urban morphology show that the variation of

the average per-user energy consumption achieved with the various DCFs is minor.

The remainder of the paper is organized as follows. Section 2 presents background on DCFs in MCS75

and motivates the need for efficient DCFs. Section 3 explains how to experimentally profile performance

through real measurements on a smartphone. Section 4 proposes our novel methodology to assess the

performance of DCFs through simulations on a large scale. Section 5 illustrates performance evaluation

conducted with the CrowdSenSim simulator and, Section 6 provides a conceptual analysis of networking

changes in crowdsensing applications with the advent of the fifth generation (5G) of cellular mobile80

networks. Finally, Section 7 concludes the work presenting future directions.

2. Background and Motivation

This Section overviews related works on data collection in MCS (Subsection 2.1) and presents the

three DCFs under analysis (Subsection 2.2).

2.1. Related Works85

DCFs are developed to support data collection useful to many applications at the same time. These

DCFs usually aim to maximize a set of parameters, e.g., the temporal and spatial coverage of the

contributed data or the QoI while minimizing at the same time the costs, such as energy consumption

or monetary rewards [21]. Wu et al. [22] investigate the trade-off between the amount of acquired

data and the associated energy consumption. The authors present and analyze both off-line and on-90

line settings for task allocation. In off-line case, the entire task information is known a-priori and

does not change over time, while in the on-line scenario tasks are dynamically allocated in real-time

without any information in advance. The authors first provide an optimal algorithm for the off-line

setting. Then, they investigate the on-line setting where requests arrive dynamically without prior

information in a first-in-first-out (FIFO) manner or with an arbitrary deadline (AD). Wang et al. [23]95

investigate the problem of scheduling multiple sensing tasks with the objective of ensuring the quality

of sensed data while minimizing the energy consumption. Starting from basic cases in which sensing

process requires data from only one sensor, the authors define the Minimum Energy Single-sensor task

Scheduling (MESS) problem and design a polynomial-time optimal algorithm. Then, they consider a

generic case in which sensing tasks require data from multiple sensors to be accomplished. To solve the100
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problem of Minimum Energy Multi-sensor task Scheduling (MEMS), the authors propose an Integer

Linear Programming (ILP) formulation as well as two effective polynomial-time heuristic algorithms.

In [24], the authors propose a fair energy-efficient allocation framework whose objective is to minimize

the maximum aggregated sensing time. The problem is NP-Hard also when the information on the

tasks such as arrival and duration is known prior to the allocation. The authors first investigate the105

off-line allocation model and propose an efficient polynomial-time approximation algorithm with a

factor of 2− 1/m, where m is the number of mobile devices joining the system. Then, focusing on the

on-line allocation model, they design a greedy algorithm which achieves a ratio of at most m. Liu et

al. [25] propose a method to efficiently select users for participatory crowdsensing. Contributors are

dynamically chosen considering their willingness to acquire data and their potential, which is calculated110

considering the remaining battery in their smartphones. The distribution of tasks aims to minimize the

probability that an individual does not accomplish the assigned task. The CARDAP [26] DCF exploits

a fog computing platform to enable efficient data analytics performed in a distributed fashion. The

fog allows CARDAP to extend and augment functionality of a previously proposed general-purpose

framework called CAROMM [27]. Similarly to CARDAP, the framework proposed in [16] exploits the115

fog to perform user recruitment based on multiple criteria, including distance of the participants from

the location of the sensing task, their remaining battery charge and the user sociability defined in

terms of the amount of time and data users exchange through social media. Wang et al. [28] present

an algorithm to report information in an energy-efficient way. It classifies users into two groups. In

the first category, the target is to minimize the energy consumption while reporting data and the120

individuals pay for the data they utilize to the operators. In the second group, users aim to minimize

the cost of data reporting using communication technologies such as WiFi or Bluetooth, which are

free-of-charge.

To the best of our knowledge, there are no existing studies in the literature that investigated and

compared the performance of DCFs for large scale sensing campaigns to mimic a real MCS deployment.125

In this work, we tackle the problem from a particular angle, by first implementing and measuring the

performance of DCFs and then performing large-scale simulations with CrowdSenSim. The closest to

our work is [29], where Peng et al. investigate the trade-off between energy efficiency and fairness

between participants. They propose an allocation framework which aims to minimize the maximum

aggregate sensing time and for the experimental setup they exploit the Power Monitor to assess the130

power consumption of a smartphone under different configurations.

2.2. DCFs under Analysis

This work compares the performance of three different DCFs. Each of them has specific properties

and features that are presented in the following paragraphs. Other existing DCFs in the literature can
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be categorized as intermediate solutions of the studied ones.135

DDF - Deterministic Distributed Framework. DDF is a DCF with the objective of fostering

energy-efficient data collection in opportunistic cloud-based MCS systems that we proposed in a former

work [30]. It aims at maximizing the utility of the cloud collector in receiving data from certain sensors

in a specific region of interest, while minimizing at the same time the energy costs users sustain to

sense and deliver information. The central collector sends periodically beacons to the mobile devices to140

share the utility in receiving data from specific sensors. Then, the mobile devices take sensing decisions

locally and independently one with each other. Sensing and reporting decision are driven by several

factors such as the environmental context, the potential cost for sensing and reporting, the current

level of battery and the amount of data already contributed. When these factors are above predefined

thresholds, the systems prevent users from further contribution. Therefore, this mechanism is aware145

of the user-state, i.e., it considers the user history to drive the subsequent decisions. The DCF aims

to be fair in terms of the amount of energy spent by the users.

PDA - Probabilistic Distributed Algorithm. Montori et al. propose a distributed algorithm

based on probabilistic design to acquire data in an opportunistic scenario [31]. The algorithm is based

on limited feedback from the central collector and does not require users to complete specific task. The150

objective of this algorithm is to regulate the amount of data contributed from users in a certain region

of interest to minimize data redundancy and energy waste. Assuming that it is impossible to compute

the number of participants in a region of interest because their position can not be disclosed for privacy

reasons, the coordinator determines the number of participants through the number of observations

received. The ultimate objective is to control the number of observations in an area in order to155

guarantee a desired value, i.e., the minimum quantity of data to be harvested. To reach this goal,

the mobile devices decide independently from the collector and one with each other when to perform

sensing and reporting. The framework is memoryless. Unlike DDF, it does not take into account the

previous status of each user to determine transmission opportunities, which are independent events.

In addition, the proposed algorithm aims at maximizing the fairness among participants in order to160

not have few devices contributing much data.

PCS - Piggyback Crowdsensing. PCS is a DCF that performs data reporting exploiting the so

called smartphones opportunities [32]. The authors define smartphone opportunities those times when

smartphone users place phone calls or use applications. To this end, PCS significantly lower energy

consumption associated to reporting operations. Indeed, during smartphones opportunities, the mobile165

devices do not have to wake up the radio interface to transmit the collected data on purpose. PCS

does not include any feedback from the collector to the users, hence it can not indicate urgency for

additional data. Furthermore, if smartphones opportunities are rare, the collector might suffer because
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Figure 1: MCS data collection end-to-end: role of DCF and DRM from the user to the cloud collector

of missing data. According to these considerations, PCS is particularly suitable for delay-tolerant MCS

tasks that do not need data to be sent to the central collector as soon as users sense it.170

3. Profiling Energy Consumption of DCFs

This Section presents the methodology employed to experimentally assess the performance of DCFs.

We developed a custom Android application for smartphone which implements the aforementioned

DCFs. We perform energy measurements with a power monitor while network-related measures are

obtained with Wireshark. The results obtained and presented in this Section will be exploited in next175

Section to assess the performance of the DCFs with simulations on large scale with CrowdSenSim.

3.1. Information Delivery: the Data Reporting Mechanisms (DRM)

A DRM is the most important component of a DCF. It defines the methodology to perform delivery

of sensed information to the cloud collector. Note that a DCF consists of multiple components in

addition to the DRM, such as mechanisms to inform the users about the urgency of sensing additional180

data or to prevent transmission of not-any-longer needed information (e.g., through feedback from the

collector) and the policy to perform sensing. Figure 1 graphically shows the components of a DCF.

Every DCF implements a DRM: the ones presented in the following paragraphs are three methods

that represent popular techniques for data delivery.

Continuous-DRM (CON) Data can be delivered in a continuous fashion as soon as it is sensed.185

This approach is needed for real-time applications where users need to feed the collector with data

constantly over time. However, such continuous stream of data incurs in the highest energy cost from

the user point of view as the mobile devices need to maintain the connection active during the entire

sensing operation period. The CON method is implemented by DDF.

Delayed-DRM (DEL) With delayed reporting, data is sent after the sensing activity has ended.190

Hence, this approach decouples sensing and reporting operations and is more conservative than CON

from an energy-consumption perspective. Indeed, the network interfaces do not have to be maintained

continuously active for a prolonged period of time. DEL is useful for delay-tolerant applications where
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(a) Power measurements setup (b) Architecture of the mobile application

Figure 2: Experimental set-up

the collector does not need to harvest data in real-time. DEL is implemented by PCS, which exploits

phone calls and application usage as smartphone opportunities.195

Probabilistic-DRM (PRO) This approach considers a probabilistic reporting. It is an intermediate

solution between the two previous approaches. During each timeslot, the algorithm randomly generates

a probability p that drives the decision of delivering the sensed data. The parameter p is the checked

against δ, a feedback provided by the collector. This DRM is implemented by PDA .

3.2. The Application Architecture in a Nutshell200

The Android mobile application follows the REST guidelines and is flexible as it implements and

can be configured to operate with any of the DRMs presented in Subsection 3.1. Before describing the

architecture in detail, the following paragraph briefly overviews important existing works and standard

approaches to implement MCS applications.

3.2.1. Background205

APISENSE [33] is a popular cloud-based platform that enables researchers to deploy crowdsensing

applications by providing resources to store and process data acquired from a crowd. It presents

a modular service-oriented architecture on the server-side infrastructure that allows researchers to

customize and describe requirements of experiments through a scripting language. In addition, it

makes available to the users other services (e.g., data visualization) and a mobile application, allowing210

them to download the tasks, to execute them in a dedicated sandbox and to automatically upload data

on the server. In [34], Paganelli et al. propose a framework to supports developers in modeling web

resources, exposing them through RESTful APIs and developing applications. The framework consists

of a Web Resource information model, a middleware, and tools for developing and publishing smart

things’ digital representations on the Web. They discuss the framework in compliance with REST215
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guidelines and its major implementation choices. Mulero et al. [35] present an infrastructure for smart

cities that combines IoT and Linked Open Data paradigms to provide a scalable and responsive system

able to provide services. They exploit a REST API that receives and manages a large amount of data.

CRATER [36] is a crowdsensing platform to estimate road conditions. It provides RESTful APIs to

access data and visualize maps in the related application.220

Similarly to previous works in the area, we followed the REST guidelines to develop our application.

The REST guidelines define the methodology to develop web services. In brief, for an application to be

REST-compliant, the resources have to be self-descriptive and linked one with each other. It requires an

uniform interface to decouple the architecture and enable each part to evolve independently, exploiting

basic HTTP methods (e.g., GET and POST to exchange messages and data with the cloud) and225

HTTP response. Furthermore, our custom application has a client-server architecture and stateless

communications because each message is self-descriptive through HTTP headers. In other words, to

minimize the server’s workload each request has enough information for the server to process that

message.

3.2.2. Our Application230

The mobile application we developed can run over any Android-based smartphone. Fig. 2(b) il-

lustrates the architecture with all it components. The figure also highlights the public WiFi network

EDUROAM that provides interconnection between the smartphone and collector. Java is the pro-

gramming language employed for the implementation, while PHP is the server-side scripting language

used for the web development. The minimum supported version is Android Marshmallow 6.0 (API235

level 23), but the application is already compatible with Android Oreo 8.0 (API level 26). The server

side, i.e., the cloud collector is a laptop used to perform data processing and storage. In particular

the system exploits XAMPP (v7.1.8 - 32bit), that provides in a unique distribution Apache web server

and phpMyAdmin to manage the database. The most recent version of XAMPP features a database

based on MariaDB.240

The unique features of each DCF impact the DRM implementation design. For example, DEL

requires a database to locally store the sensed data. CON and PRO are less strict and will work

correctly if the sensed data is simply stored on a local buffer. A database ensures higher reliability

as it adds a further level of protection at application layer on top of communication retransmissions

schemes at lower layers of the protocol stack.245

3.3. Experimental Set-up

Energy profiles of these policies are obtained through the utilization of a power monitor, similarly

to previous research [37, 38]. Fig. 2(a) shows the setup for the measurements performed with the
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Figure 3: Screenshot of power monitor measurements

smartphone under analysis, which is a Wiko Sunny5. In the experiments, the smartphone runs Android

Marshmallow version 6.0 (API Level 23) and is equipped with a quad-core 1.3 GHz Cortex-A7 processor250

and has 512 MB of RAM. The smartphone also features 5 MP camera and 8 GB of flash storage. The

smartphone provides WiFi and Bluetooth connectivity, supporting 802.11 b/g/n and Bluetooth v 4.0

standards respectively. It is powered by a 1 200 mA, 3.7 V battery. In the experiments, the application

performs sensing from GPS, accelerometer and proximity sensors of the smartphone. The smartphone

delivers data to a laptop that also run the software to analyze the power measurements. The laptop255

acts like the cloud collector. Since the computational power and the hardware of the laptop offer

considerably exceeding performance of the mobile device, the hypothesis is consistent. The laptop is

a equipped with a dual-core 2.6 GHz Intel i5-4210M and 8 GB of RAM; it has a 256 GB Crucial SSD

as storage and an Realtek card for WiFi 802.11 b/g/n connectivity. The laptop runs Windows 10

OS at the time of the tests. To accomplish the power measurement campaign, we utilize the power260

monitor hardware by Monsoon6. Existing works acquired power consumption measures via software

by means of system calls [39, 40]. We exploit a different method because the power monitor directly

retrieve measurements while ensuring a higher level of accuracy. In order to collect data, the power

monitor needs to power the smartphone directly, hence in the equivalent circuit it substitutes the

internal battery. 5 000 samples per second is the sampling rate to record measures in real-time. Users265

can export readings in a csv file at the end of the measure campaign exploiting a specific software,

which also displays a real-time chart of the measurements.

5Available at: http://it.wikomobile.com/m1330-sunny
6Available at: http://www.msoon.com/LabEquipment/PowerMonitor/
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(b) Delayed DRM (DEL)
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(c) Probabilistic DRM (PRO)

Figure 4: Real energy measurements performed with Power Monitor for different data reporting mechanisms (DRMs)

3.4. Experimental Results

This Section presents the results obtained from energy and network measurements performed with

the power monitor and Wireshark for the DRM. The challenge in performing the energy measure-270

ments is to find the right baseline for comparison. Specifically, different DRM spend different times

for reporting, i.e., CON keeps active the interface all the time, while with DEL, the time in which the

interface remains active is supposed to be shorter. For such a reason, we base our measurement cam-

paign considering for all DRMs the same amount of time spent for sensing, i.e., 30 min. Consequently,

all the DRMs gather the same amount of information that needs to be delivered. However, each DRM275

spends different amounts of time for data reporting. For example, DEL performs sensing for 30 min

and then it takes other 6 min to perform reporting.

Fig. 3 shows an example of measurement profile of the application for DEL and highlights the

various activities in each point in time. We test the PRO mechanism with a feedback from the collector

δ set to 0.5 for comparison with other schemes DEL and CON, but we perform additional tests with280

various settings, namely δ = [0.25, 0.5, 0.75]. We performed the measurements with the EDUROAM

public WiFi network. This allows to test the performance of the DRMs in realistic environments while

setting-up an ad-hoc network for the tests would have achieved better results as the environment is

totally under control.

Fig. 4 compares the instantaneous current drain of the proposed DRMs while reporting data. In the285

continuous reporting approach (CON), the flow of data to transmit is bursty because the mobile device

exploits transmission opportunities as sensing readings are acquired (see Fig. 4(a)). Consequently, the

transmission time is short, but at the price of higher current drain to maintain the interface active.

Conversely, the delayed reporting approach (DEL) makes the transmission period shorter because

data transmission occurs at the end of the sensing process, allowing to establish and terminate the290

connection in a small amount of time. Fig. 4(b) clearly shows that the current drain attributed to

sensing process is on average lower than CON method, then the activation of the interface generates a

peak around 2150 s. The probabilistic reporting approach (PRO) provides intermediate performance

with respect to the two previous approaches (see Fig. 4(c)). The network interface remains active for
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Figure 5: CDF of energy spent for different reporting approaches
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Figure 6: Distribution of transmission rates

a prolonged period of time, longer than CON, but with an on-average lower current drain.295

Fig. 5 shows the CDF of the battery drain. In particular, Fig. 5(a) focuses on the various DRMs

while Fig. 5(b) focuses on the PRO mechanism and highlights the impact of δ, the probability of

transmission in each timeslot. Note that each timeslots is worth 40 s. With CON, the battery drain

is low than 75 mA for a significant fraction of the time. We highlight that such value of current is

the peak value measured in a given point in time. Compared to CON, DEL exhibits on average with300

higher instantaneous peak values. During 50% of the reporting time, while CON exhibits peak values

above 150 mA, DEL achieves values above 40 mA. Such behaviour is expected from the theoretical

results on WiFi energy consumption as one of the substantial components to the total energy budget

depends on the traffic load [41]. On the one hand, CON maintains the interface active for longer but

transmitting few packets each time. On the other hand, DEL sends higher bursts of packets during305

shorter time periods. PRO exhibits an intermediate behaviour than CON and DEL. When analyzing

PRO in Fig. 5(b), the higher the value of δ, the higher the probability to transmit. This translates in

a different distribution of the instantaneous peak values of current: with δ = 0.75, the peak values are

below 75 mA for 75% of the reporting time, with δ = 0.5 this figure becomes 62.5% of the reporting

time and drops to 48% for δ = 0.25.310

Fig. 6 shows the CDF of the packet rate transmission obtained with Wireshark. Fig. 6(a) compares
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Figure 7: Distribution of packet errors

the DRMs that exhibit substantially different distributions of packet transmission rates. Indeed, for

75% of the reporting time, PRO achieves rates as high as 10 packets/s. Compared to PRO, both CON

and DEL achieve rates as high as 40 packets/s for 75% of the reporting time. Interestingly, unlike PRO

and DEL that converge to a certain maximum rate, CON has higher variability and packet rates can be315

as high as 120 packets/s. The reason is due to the technical implementation. While DEL is basically

transmitting a unique (and bigger) file, CON transmits frequently smaller chunks. Hence, the collector

and the mobile phone have to synchronize much more often to ensure reliable data delivery. Similarly

to the result obtained for the energy (see Fig. 5(b)), Fig. 6(b) shows that also the transmission rate

varies with the increase of δ. Interestingly, the variation is evident only for low rates. For example,320

rates up to 5 packets/s occurs for 20%, 40% and 70% of the reporting time for δ = 0.25, δ = 0.5 and

δ = 0.75 respectively.

Fig. 7 shows the distribution of packet errors along time. We recall that each timeslot is 40 s long

and that a public WiFi network provides interconnection between the collector and the smartphone.

Fig. 7(a) compares the DRMs. As expected, the distribution of packet errors for DEL is concentrated325

as the data deliver is shorter. CON and PRO DRMs exhibit high variability in packet errors that

is due to the realistic environment as that the public network is not under our control. However, it

should be noted that PRO experiences a comparatively higher number of losses. Indeed, the 802.11

protocol is well known to be inefficient as its scheduling strategy is to allocate single resources to single

nodes [42]. Hence, it favors CON rather than PRO types of data transmissions.330

4. Large-scale Analysis: the Methodology

This Section presents the methodology employed to perform the large-scale evaluation. In particu-

lar, Subsection 4.1 introduces the platform for simulations and Subsection 4.2 presents the performance

metrics.
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4.1. A Primer on CrowdSenSim335

CrowdSenSim is a custom simulator that we have developed to assess the performance of crowd-

sensing activities in large urban areas [20]. CrowdSenSim supports pedestrian mobility in citywide

scenarios. All the individual walking paths are known before simulation runtime to ensure scalability

of the platform. Users contribute data according to the implemented DCF during runtime and the

simulator computes the amount of gathered data for each user and the associated battery drain for340

sensing and reporting [30]. Data generation exploits sensors that are typically available in mobile

devices. For this work, the details of the smartphone described in Section 3.3. The simulation results

can be obtained at the level of individual devices as well as the system level, which helps to analyze

DRMs and how much employed crowdsensing techniques are effective. The simulator is built with

independent modules can inter-operate one with each other. The simulator allows to perform different345

crowdsensing-related analysis such as user rewarding, task allocation or fairness between participants.

We have implemented PDA and PCS DCFs to assess and compare them with DDF. The implemen-

tation of the DCFs is based on the energy consumption model previously described and the detailed

description of amount of contributed data and battery drain is explained in detail in Subsection 5.1.

Human mobility is based on the ParticipAct dataset that was generated by a real MCS campaign of350

approximately 170 students in the Emilia Romagna region (Italy) [43]. To establish the user arrival

pattern in the simulator, we extracted the profile of the average number of contacts during 7 days

without having at disposal the dataset. Specifically, we divide into hours the total simulation period

estimating the minimum number of individuals to be allocated to have an average user contact fol-

lowing the ParticipAct profile. By definition, a unique user contact is the overlap within a timeslot355

of two user walking paths so that their distance is below a radius R. For an implementation choice,

multiple overlaps in different timeslots count as distinguished contacts, while multiple overlaps in the

same timeslot are considered unique contacts.

To assess the energy consumption for a sensing campaign in real urban environments, we include

in CrowdSenSim real traces of energy measurements for sensing and reporting. Specifically, the cost360

that each device experiences is computed proportionally to the time of contribution. The reference

power consumption profiles were obtained from 30 min long sensing traces (see Fig. 5(a)).

4.2. Performance Metrics

Amount of contributed data. The main objective of any DCF is to gather a sufficient amount of

information to capture and or monitor phenomena. Hence, the quantification of the amount of data365

that the crowd can harvest is important to assess. Other metrics related to QoI and accuracy of data

are equally important, but in this work we focus solely on the amount of contributed data as the main

objective is to compare the DCFs.
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Energy consumption. This performance metric defines the costs that users mobile devices experience

and is measured in mAh.370

Fairness. Ideally, MCS systems should gather information from the crowd by ensuring QoI. At the

same time, the collector should guarantee fair treatment to each of the participants, i.e., it should not

take advantage from a small set of users. Intuitively, users that contribute higher amounts of data,

sustain a higher energy cost to produce such data and therefore need to be rewarded adequately.

To evaluate fairness between users in a DCF, we exploit the Jain Fairness Index [44]. The index375

measures the equality in allocating a set of finite resources to users according to certain criteria. For

instance, if a user is willing to pay a sum that is twice more high than other users for a shared resource,

the scheduling algorithm should allocate to him twice the amount of resources than the other users. In

MCS context, we interpret this index as a way to measure the fairness in which a set of users contribute

to create a finite set of resources, i.e., the total amount of data delivered to the collector. Specifically,380

we measure the degree of equality in which each DCFs make users to produce their individual amount

of data and the associated energy cost. First, we define separate indexes for each of the two components

and then we define a global fairness index to incorporate both components.

Intuitively, users that walk for longer time periods are expected to contribute more data than

others. We define the data contribution fairness index (FD) as follows:

FD =

(
N∑
i=1

di

)2

N ·
N∑
i=1

d2i

, (1)

where:

di =
Di

DM
i

. (2)

Di is the amount of contributed data from user i and DM
i is the maximum amount of information

an individual could contribute in the corresponding time. FD assumes values equal to 1 when users

contribute data proportionally to the time spent walking. However, this index presents a significant

drawback if considered alone. Indeed, FD does not distinguish between two users that walk for the same

time period, but have different initial levels of battery. For this reason, we introduce an additional

index that takes into account the battery level of the devices. Specifically, a device with a higher

battery level prior to the start of the sensing process is expected to contribute higher amounts of data

than devices with a lower battery level. The index of battery fairness index (FB) is defined as:

FB =

(
N∑
i=1

bi

)2

N ·
N∑
i=1

b2i

, (3)
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where:

bi =
Bi

BT
i

. (4)

Bi and BT
i are measurements of battery level of the mobile device i (in mAh). The former is the

amount of battery drain experienced during the contribution process and the latter is the total battery385

when the mobile device starts to contribute data.

We introduce the crowdsensing fairness index (FCS) to simultaneously take into account both the

battery drain and the amount of contributed data. Specifically:

FCS = σ · FD + (1− σ) · FB , (5)

where σ is a balancing coefficient that assumes real values in [0, 1] and weights the relative importance

between the two indexes FD and FB .

5. Performance Evaluation

This Section at first introduces the evaluation scenario (Subsection 5.1) by explaining in detail the390

simulation setting and then presents the results (Subsection 5.2).

5.1. Simulation Setting

In CrowdSenSim, the layout of the city is defined in terms of a set of coordinates C containing

information on <latitude, longitude, altitude>. The set of coordinates compose the street network

of the urban area where the participants will move during runtime. They are obtained through the395

combination between an algorithm we developed running in the background of CrowdSenSim [45] and

OSMnx [46]. OSMnx is a Python package that allows the researchers to easily download and analyze

street networks of any location in the world from OSM, which is a map created by people under an

open license. It simplifies the inconsistent node topology of OSM, but it does not provide a sufficient

level of fine-grained details to MCS purposes. To fill this gap, our algorithm augments the resolution400

of street nodes, providing the possibility to simulate participants’ mobility and task allocation with

higher precision.

Fig. 8 shows the selected cities where users can move during simulation runtime: Luxembourg

City (see Fig. 8(a)), Turin (Italy) (see Fig. 8(b)), and Washington DC (USA) (see Fig. 8(c)). The

rationale for the choice of Luxembourg, Turin and Washington DC is twofold. First, the selected cities405

can be ordered by growing size. The center of Luxembourg City covers an area of 51.47 km2 with a

population of 114 090 inhabitants as of the end of 2016 and is a fast growing city with headquarters of

many international institutions (see Fig. 8(a)). The city center of Turin occupies an area of 130.17 km2

and has a population of 883 601 inhabitants as of the beginning of 2016 (see Fig. 8(b)). The city center

of Washington DC covers approximately an area of 158.1 km2 with a resident population of 672 228410
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(a) Luxembourg City (b) Turin (c) Washington DC

Figure 8: Cities taken into account for the evaluation. The green dots represent the pedestrian lanes where users walk

obtained with an algorithm running in the background of CrowdSenSim

inhabitants as of the end of 2015 (see Fig. 8(c)). The second motivation behind the choice is about

the urban morphology, which determines the street network topology. Luxembourg City shows the

common north european urban morphology with many short streets with small lanes, a high density

of crossroads in the center and few parallel large streets in the periphery. Washington DC is totally

different from Luxembourg City and its topology of street network presents large lanes with a high415

number of parallel long streets. In addition, the differences between the urban morphology in the city

center and the periphery are minimal. Turin falls in between the two former categories because of

typical roman grid street organization.

As explained in Section 4.1, the user arrival pattern exploited in CrowdSenSim is based on realistic

mobility traces and chosen simulation period is 12 consecutive hours in one day. The PartecipAct420

dataset supplies information on the user contact per-hour. Following this idea, the simulator assigns

a certain number of participants to arrive at the desired sum of contacts for each hour. In detail, we

consider a user contact when two walking paths are within a certain timeslot, so that two individuals

are in a radius of 50 m. Only one mobile device for each user generates data. The users walk

with an average speed uniformly distributed between [1, 1.5] m/s in a period of time that is uniformly425

distributed between [20, 40] minutes. Participants move over a street network in a random walk fashion

between a random generated starting and arrival point respecting the walking time constraint. The

number of users is set to 10 000, unless otherwise stated. The current battery charge is generated

considering a value of full capacity and an initial level. The full battery capacity is variable following

most popular models of smartphones available on the market and is randomly picked from a list430

including 2200 mAh (Huawei P8 Lite), 2550 mAh (Samsung Galaxy S6), 2800 mAh (LG G5) and

3300 mAh (Samsung Galaxy J7). The initial battery level when users start walking is uniformly

distributed in the range [10− 90]%.
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Figure 9: CDF average battery drain per user on large scale

5.2. Simulation Results

For performance evaluation, we conduct experiments to assess the energy consumption and the435

amount of collected data in different urban environments and the fairness of each DCF.

Energy Consumption. Fig. 9 presents the CDF of the per-user battery drain for the proposed

DRMs and the DCFs under analysis in Luxembourg City. Interestingly, the difference between DRMs

and DCFs is substantial. The reason is that DRMs lack of important components of DCFs such as

a feedback from collector on data utility or a criteria to stop contribution. Fig. 9(a) shows the CDF440

of battery drain for the DRMs, which differ by range of values and slope. The steps in the profiles

represent groups of users that have achieved a certain amount of battery drain. As expected, CON

is the most energy consuming DRM and exhibits the highest range variability while PRO and not

DEL is the less consuming DRM. However, implementing expensive DRM like CON in a DCF that

can be tuned to limit user contribution like DDF is beneficial (see Fig. 9(b)). With DDF, all the445

mobile devices spend 33 mAh at maximum. In comparison, the percentage of users that spend more

than 33 mAh for with PCS and PDA is respectively 3% and 16%. DDF reduces the percentage of

mobile devices with low battery drain. This fact highlights that the organizer of a campaign employs

effectively participants that accepted to join the campaign for gathering information and are rewarded

on this basis. On the other hand, a substantial number of devices consume a little amount of battery450

with PCS. With PDA, most users consume a bigger amount of energy compared to PCS, but it is due

to an increase of the amount of contributed data, as will be later highlighted in Fig. 13 and in Fig. 14.

Fig. 10 illustrates the similarity of battery drain across different urban environments, showing that

the urban morphology of street networks and the size of the city have a minor impact on the energy

performance of the DCFs. DDF exhibits a CDF that mimics a step function, where each step indicates455

a group of participants that has contributed to the collector a similar amount of data. Hence, they

have stopped to acquire data for one of the possible motivation: (i) the battery drain due to sensing
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Figure 10: CDF of battery drain per user for considered DCFs in different cities
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Figure 11: Amount of collected data and the associated battery drain in Luxembourg City

and reporting operations has exceeded a given value, (ii) users already reported a fixed amount of

data.

Fig. 11 presents the amount of reported information and the associated energy consumption for each460

DCF. Marks in the graphic represent the battery drain that a group of participants has consumed to

contribute a certain amount of data. Interestingly, DDF presents a low number of marks. The motiva-

tion is that mobile devices show a similar behavior because of the stopping mechanism which indirectly

controls the energy consumption. On the other side, PDA and PCS show much higher variability due

to the different reporting mechanisms: to contribute a certain amount of data, the participants spend465

different amounts of energy. This variability increases when the total contribution becomes higher.

From a practical point of view, simulations exhibit that applying an incentive mechanism based only

on the amount of acquired information misses to reward fairly individuals because of the technical

implementation of reporting policies.

Amount of Collected Data. The next experiments assess the amount of contributed data. Fig. 12470

illustrates the trajectories of 5 participants walking in Luxembourg City. The aim is to focus on the

periods of active contribution and show the differences between the DCFs. DDF allows the users to

perform continuous contribution until the mobile devices of the participants meet the conditions to

stop to contribute data. PDA shows an intermittent reporting, which is attributed to the probability

of performing data transmission. For example, the sections of the trajectories when users perform475
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Figure 12: User trajectories with the associated data contribution in Luxembourg City
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Figure 13: Heatmaps of Luxembourg city with different DCFs

continuously active contribution depend on the feedback of the collector that asks for additional data.

Hence, for all the users, the probability to transmit is high. With PCS, the user active contribution is

extremely limited and totally depends on the probability of performing user calls and their duration.

Fig. 13 shows the spatial distribution of the total amount of collected data at the end of the

simulation period for Luxembourg. The heatmap is normalized between 0 and 1 and 1 indicates a480

total of 100 MB of data generated during the entire simulation period. PDA achieves a high spatial

distribution of amount of collected data and this is because it collects data until the collector has

gathered a sufficient amount of data and lowers the transmission probability of the users. DDF shows

a lower amount of collected data in the center due to the stopping mechanism as shown in Fig. 9b. PCS

achieves the lowest amount of contributed data. Indeed, although users perform continuous sensing,485

data reporting fully depends on the probability of performing phone calls.

Fig. 14 shows the amount of contribution in Luxembourg City comparing the considered DCFs for

different number of users. DDF is able to gather a considerable amount of data due to continuous

reporting even if users stop to contribute to save energy. PDA achieves a similar amount of contributed

data of DDF. On the contrary, PCS achieves the lowest amount of acquired information and would490

most likely fail to accurately monitor area of interests. Again, the motivation lies in the reporting

mechanism implemented.
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Figure 14: Amount of contributed data for considered DCFs in Luxembourg City

Fairness. Fig. 15 compares DCFs according to the different fairness indexes presented in Section 4.2.

The results are obtained after 100 rounds of simulations. Fig. 15(a) shows the data contribution fairness

index (FD) in form of boxplots. DDF achieves the highest values of fairness in data contribution and495

the reason is twofold. First, feedback from collector regulates the amount of data generated. Second,

the contribution for each participant is fair in proportion to the amount of time they walk, i.e., users

that walk for longer time periods contribute more data. PCS, that depends on the probability of

users phone calls is less fair than DDF. In other words, users do not contribute the same amount of

data when walk for the same amount of time. PDA presents the lowest value of data contribution500

fairness because some of the users contribute significant amounts of data when the collector misses

data, but if the urgency for additional data is low the users do not contribute at all. Note that for

design choice, PDA implements the AO-S algorithm, which is a basic setting and is not as fair as the

AO-F variant [31]. In AO-S the transmission probability is determined according to a satisfactory

index determined by the collector, while AO-F takes into account user fairness by determining the505

transmission probability to balance users load. To illustrate, the transmission probability of users

that have backed-off for longer periods is higher than the one of users that reported data in previous

timeslots. Fig. 15(b) shows the results on the battery fairness index (FB). If compared to the data

fairness index, DDF presents much lower values because of the mechanism that stops users if they have

spent a certain amount of energy for data contribution. However, this does not differentiate between510

users that have high or low initial battery level. For example, upon setting the stopping threshold to

1% of the battery, the impact is different if the initial level is 10% than if it was 90%. PCS and PDA are

very similar and lower than DDF. Although none implements a stopping criteria, the implicit stopping

method is given by the amount of time the users walk. Finally, Fig. 15(c) shows the Crowdsensing

Index (FCS) which combines the previous indexes together. PCS is the most uniform is due to the lack515

of feedbacks from the collector and sporadic contribution of each mobile device during phone calls.

PDA shows a linear decrease between data and battery fairness while DDF is the opposite and exhibits

a linear increase. Such behavior is due to the underlying properties of the DCFs.
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Figure 15: Fairness Indexes

6. Discussion

The design of the fifth generation (5G) of cellular mobile networks aims at supporting higher520

mobility, massive connectivity, higher data rates and lower latency. 5G networks will dramatically

change the landscape of mobile networks and will play a significant role also in crowdsensing.

As future work, we indeed plan to investigate efficient solutions for crowdsensing applications in

5G mobile networks. The design of the fifth generation (5G) of cellular mobile networks aims at

simultaneously support various type of services like enhanced mobile broadband (eMBB) and massive525

machine type communications (mMTC), and ultra-reliable low-latency communications (URLLC).

Previous studies have focused on defining a flexible frame structure with variable duration of the basic

time unit for data transmission. In 4G systems, the Transmission Time Interval (TTI) was fixed to

1 ms. While this figure can suffice for eMBB services, to accommodate URLLC services shorter TTIs

are required [47]. Indeed, the fixed and long TTI duration is highly inefficient for sporadic transmission530

of small packets that is common in crowdsensing applications.

7. Conclusion

DCFs define the efficiency of MCS systems in terms of quality of information acquired. Effective

frameworks make minimal the energy costs associated to sensing and reporting. Profiling DCFs’ en-

ergy is crucial to assess the costs of a sensing campaign and to properly plan user incentives plans like535

monetary rewarding. This paper has made the first experimental assessment and comparison of energy

consumption of DCFs. An Android application was developed for the purpose and profiled through a

power monitor and Wireshark for network-related insights. The acquired energy measurements have

been utilized for large-scale analysis with CrowdSenSim simulator to test effectiveness of the frame-

works in Luxembourg, Turin and Washington DC. The results show that DCFs energy consumption540

differ because of the data reporting mechanism implemented: DCFs with probabilistic reporting com-

paratively achieve higher energy consumption. Furthermore, such DCFs present high variability, i.e.,
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to produce the same amount of data, the associated energy cost of different users can be significantly

different. Consequently, DCFs with continuous reporting that implement mechanisms to block sensing

and data delivery after a certain amount of contribution are more energy-effective in harvesting data545

from the crowd.
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