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Abstract 
 
This Thesis is the first PhD thesis written about CoSFB-Dowels. Therefore, focus of the 
scientific work presented here, was on the identification of parameters influencing the 
load-bearing behaviour in general and on parameters contributing to the load-bearing 
capacity of CoSFB-Dowels in detail. A CoSFB-Dowel is an innovative shear connector 
for steel-concrete composite slim-floor beams. It consists of circular openings drilled 
in the web of the steel section with reinforcement bars passing through and filled with 
normal concrete in-situ. 
Push-out tests have been performed already in an earlier research project initiated by 
the author. In this Thesis, detailed analysis of the test results was done and a finite 
element model developed simulating the push-out tests, which led to an improved 
understanding of the overall load-bearing behaviour. Further, the numerical model 
was used to identify and to evaluate components contributing to the stiffness, to the 
linear-elastic load and to the maximum load. The findings of this research led to the 
formulation of a mechanical model and an analytical method to evaluate the load-
bearing capacity of a CoSFB-Dowel. The analytical method was validated with the test 
results. This Thesis is concluded by a proposal allowing for a conservative 
determination of the design resistance of CoSFB-Dowels.  
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1 Introduction 

1.1 Motivation 

A research on the potential use of concrete dowels as shear connectors for slim-
floor beams was initiated in 2009 by ArcelorMittal. As employee of ArcelorMittal, 
the author investigated a possible influence of this kind of shear connector on the 
beam design. The outcome of this theoretical work led to expectation of a 
significant potential of concrete dowels for an economic optimisation of slim-floor 
beams and resulted in a subsequent test campaign comprising of 6 push-out and 
4 beam tests, financed by ArcelorMittal. The tests were carried out at the Chair of 
Prof. U. Kuhlmann at the University of Stuttgart, Germany. Results are given in 
[Stu2009]. The general outcome of these tests was supporting the findings of the 
initial study. However, the results of a push-out test with a higher concrete 
compressive strength showed a lower maximum load. This initially surprising 
result required further investigation.   
Aiming for a Technical Approval for Germany of concrete dowels as shear 
connector for slim-floor beams, further refered to as “CoSFB-Dowel”, a second test 
campaign was initiated. The author initiated this research project at ArcelorMittal 
and was responsible to define the test campaign, to design the test set-up and to 
follow the project to a successful outcome [Z-26.4-59]. The tests of the second 
campaign were also performed at the University of Stuttgart. Test results can be 
found in [Stu2011]. The Technical Approval was based on the statistical evaluation 
of the results.  
The in depth understanding of the mechanical behaviour of the CoSFB-Dowel, as 
originated from the tests results, was the main motivation of the research 
presented hereafter.  
 

 
Figure 1.1: CoSFB-Dowel [ES2014] 

 
This Thesis presents fundamental investigations of the load-bearing behaviour of 
CoSFB-Dowels. The CoSFB-Dowel is composed of openings drilled in the web of a 
hot-rolled steel section, Figure 1.1. These web-openings are equidistantly 
positioned along the beam. In transversal direction to the beam span, standard 
reinforcement bars are placed through the web-openings. On-site the chamber of 
the beam is filled with concrete. CoSFB-Dowels connect the steel section to a 
concrete slab by activating a composite action.   

CoSFB-Dowel 
in-situ concrete 

dowel bar 

slab element 

CoSFB 
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1.2 Scope 

This Thesis is the first research work investigating the load-bearing behaviour of 
CoSFB-Dowels. Focus was given on the detailed analysis of the mechanical 
behaviour based on the available results of push-out tests. Components 
contributing to the stiffness, to the linear-elastic load and to the maximum load 
are identified and evaluated. Detailed analyses of the push-out and numerical 
simulations were completed. Based on the findings of this analysis, a mechanical 
model and an analytical equation to calculate the maximum load of CoSFB-Dowels 
were derived and its applicability assessed towards the test results. The Thesis is 
concluded by a proposal allowing to determine conservatively the design 
resistance of CoSFB-Dowels. 
The literature review presents most relevant research about dowel action – the 
transfer of shear forces by a steel bar – and about the use of concrete dowels as 
shear connector, as e.g. Perfobond.  
The research starts from detailed investigation of the performed tests. Test set-up 
and the results of push-out tests on CoSFB-Dowels are given in Chapter 3.  
Understanding the important influence of the ductility of the dowel reinforcement 
on the load-bearing capacity, additional tensile tests to determine the fracture 
strain of the dowel reinforcement bars were performed at the University of 
Luxembourg in February 2018, Chapter 3. The diameter of the dowel 
reinforcement was 12mm. In one push-out test a diameter of the dowel 
reinforcement of 25mm was used. However, in this test the concrete at the 
abutment failed and therefore no information about the resistance of the load-
bearing capacity of the CoSFB-Dowels could be obtained. The investigated 
diameters of the web-opening are 25mm and 40mm, other diameters were not 
tested. No tests were carried-out under cyclic loading. Therefore, the results and 
findings of this Thesis are valid for monotonic loading only. The analysis of beams 
with CoSFB-Dowels are not part of this research work. Parametric studies, as e.g. 
varying the diameter of the dowel reinforcement were not performed.  
Based on the test results the load-bearing behaviour of CoSFB-Dowels was 
analysed in detail, Chapter 4. Comparison of the measured load-slip curves with 
varying parameters is discussed. The observation is completed by the analysis of 
damage as the specimen has been cut after testing and deformed reinforcement 
bars were taken out. This allowed to observe also the character of damage.  
The push-out tests have been further modelled using FE software Abaqus. More 
than 500 numerical simulations using 3-dimensional non-linear material 
properties and interactions were performed to develop numerical models 
allowing for the simulation of the load-bearing behaviour and the failure modes 
observed in the push-out tests. Findings of this extensive research work on 
numerical modelling are presented in Chapter 5. The numerical simulations well 
represented the tests results and allow for further investigation of the parameters, 
which have influence on the behaviour of the connector and obtained maximum 
load. The modelling confirmed the influence of the concrete compression class on 
the failure mode and provided further information about the local behaviour of 
concrete in this structural system.  
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Based on the experimental and numerical study qualitative contribution of various 
components on the load bearing of CoSFB-Dowels are derived, an analytical 
method describing dowel action and the overall load-bearing behaviour was 
developed. Analytical formulations are proposed to calculate linear-elastic load, 
Plin, before activating the concrete dowel and predict the maximum load, Pmax, 
based on the evaluation of the test results and the outcome of the numerical 
simulations. Special attention was given to the influence of the concrete 
compression class, Chapter 6. 
Finally, a proposal allowing for a conservative determination of the design value 
of the load-bearing capacity of CoSFB-Dowels is given in Chapter 7. 
Conclusions and outlook are closing the Thesis.  

1.3 Slim-Floor Construction 

Slim-Floor construction is characterized by the integration of a steel beam into a 
slab. Developped in the 19th century with the aim to increase the span of the floor 
by using hot-rolled steel sections – at that time a new and modern product – and 
improving the fire resistance of the steel sections by their integration into the slab, 
this construction method was commonly used, Figures 1.3.1 and 1.3.2. 
 

 

 
Figure 1.3.1: Historical slim-floor 
 construction [Pe1922] 

Figure 1.3.2: Prussian cap floor 
 [StK2018] 

 
But, a relatively small load-bearing capacity of the slab elements resulted in a small 
distance of the beams and a high steel consumption. And due to a high demand 
for steel in the 1st and 2nd world war, slim-floor construction was used less.  
 

 
Figure 1.3.3: Types of slim-floor beams [Sch2007] 
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The development of prefabricated slab elements, allowing for a larger beam 
distance optimising the overall steel consumption in combination with a short 
construction time, led to a revival of slim-floor construction in the years of 1980s 
[ECCS74]. Searching fo further optimisations, different forms of slim-floor beams 
have been developped, Figure 1.3.3. 
Usually the beams were designed as non-composite beams, because an activation 
of a composite action between the steel section and in-situ concrete by means of 
shear studs, welded onto the upper flange of the beam, would require either a 
reduction of the beam height or an increase of the slab thickness, Figure 1.3.4. 
 

 
Figure 1.3.4: Slim-floor beam with shear studs [SC2015] 

 
These considerations led to the development of the CoSFB-Dowel, Figure 1.1. 
Positioned in the web of a hot-rolled section, a maximum of the slab thickness can 
be used by the beam, leading to an optimization of the load-bearing capacity of 
the beam and the consumption of steel. 
As already stated in Section 1.1, simple values of the design resistance for CoSFB-
Dowels are given in a Technical Approval [Z-26.4-59]. The development of CoSFB-
Dowels - from the idea to a Technical Approval - was awarded in 2015 by the 
German Steel Construction Industry [bfs 2015]. 
An excellent overview about the historical development of composite construction 
is given in [Pel2016]. 
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2. Literature Review 

2.1 Introduction 

Even concrete dowels as shear connectors in steel-concrete composite 
construction and the transfer of shear forces in reinforced concrete structures by 
dowel action are established and well analysed construction forms, little is known 
about reinforced concrete dowels as shear connector, positioned in the web of a 
hot-rolled steel section, refered to as CoSFB-Dowel. Therefore, no direct state-of-
the-art for CoSFB-Dowels available. Consequently, this Chapter is divided into two 
main parts: First, an overview about research on dowel action is given, Section 2.2. 
Section 2.3 presents most relevant research about the application of concrete 
dowels as shear connector in composite beams. 
The load-bearing behaviour of dowel action is divided further into linear-elastic 
models, such as the beam-on-elastic-foundation model (BEF) and non-linear 
models, based on the theory of plasticity. Obviously, a linear-elastic model is 
limited to small deformations, when plastic limit analysis is appropriate to describe 
the load-bearing capacity, Section 2.2. 
The description of concrete dowels as shear connector for composite beams focus 
on metal strips (Perfobond). Chapter 2.3 presents most relevant research about 
Perfobond shear connector for composite beams. 
The research work is presented hereafter in a chronological order, allowing for a 
better understanding of the historical development. 

2.2 Dowel Action  

 
Friberg 1938 – Dowel Action in Concrete Pavements  
 

An analytical formulation of dowel action has been published by Friberg already in 
1938 [Fri1938]. Using the beam-on-elastic-foundation model (BEF), as 
mathematically described  by Timoshenko [Ti1925], Friberg focus on the design of 
dowels in transverse joints of concrete pavements. As the limitation of the vertical 
deformation is of main interest for this type of joints, Friberg is limiting the dowel 
resistance to its elastic strength. The dowel is considered as an elastic structure 
embedded into an elastic mass, Figure 2.2.1. 
 

 
Figure 2.2.1: Load and Deflection of an elastic structure 
 embedded in an elastic mass, Friberg  [Fri1938] 
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With the assumption that the dowels are not bonded to the concrete and that they 
fit snugly into the concrete, Friberg derived the following Equations. The deflection 
y0 at the joint, the bending moment M and the shear force V is given as a function 
of the position x along the bar: 

𝑦0 =
𝑃−𝛽∙𝑀0

2∙𝛽3∙𝐸𝑎∙𝐼
  (2.1) 

 −𝐸𝑎 ∙ 𝐼 ∙
𝑑2𝑦

𝑑𝑥2 = 𝑀 = −
𝑒−𝛽∙𝑥

𝛽
∙ [𝑃 ∙ sin(𝛽 ∙ 𝑥) − 𝛽 ∙ 𝑀0 ∙ (sin(𝛽 ∙ 𝑥) + cos(𝛽 ∙ 𝑥))] 

𝑑𝑀

𝑑𝑥
= 𝑉 = −𝑒−𝛽∙𝑥 ∙ [(2 ∙ 𝛽 ∙ 𝑀0 − 𝑃) ∙ sin(𝛽 ∙ 𝑥) − 𝑃 ∙ cos(𝛽 ∙ 𝑥)]  

with: 
P concentrated load, acting downwards at the joint interface 
M0 bending moment, acting at the face of the joint interface, clockwise positive 

  stiffness coefficient,with 𝛽 = √
𝐾∙𝑏

4∙𝐸𝑎∙𝐼

4
 ,  

 where K = modulus of support; b = width (diameter) of the bar; Ea = modulus 
of elasticity of the bar; I = moment of Inertia of the bar.  

 
By assuming that a point of contraflexure exists in the dowel at the center of the 

joint with a joint width a, he derives 𝑀0 = −𝑃 ∙
𝑎

2
. And finally for the maximum 

moment in the dowel: 

𝑀𝑚𝑎𝑥 = −
𝑃∙𝑒−𝛽∙𝑥𝑚

2∙𝛽
∙ √1 + (1 + 𝛽 ∙ 𝛼)2 (2.2) 

with the position xm, where the maximum moment occours in the dowel xm, 

determined with 
𝑑𝑀

𝑑𝑥
= 𝑉 = 0 from the Equation above. 

It can be directly taken, that the location of the maximum moment is independent 
from the magnitude of P. Further, the value of the modulus of the supporting 
concrete K, which may depend on the local pressure at the dowel, has only a minor 

influence on the stress distribution along the dowel, because  is proportional to 
K¼.  
 

Friberg derives the total deflection  of the joint of concrete pavements as the 
sum of the deflection at each joint face yo, the deflection due to the dowel slope 

over one-half of the joint 
𝑎

2
∙
𝑑𝑦0

𝑑𝑥
 and, the deflection of the dowel steel over one-

half of the joint 
𝑃

3∙𝐸𝑎∙𝐼
∙ (

𝑎

2
)
3

, Figure 2.2.2. Hence the deflection  is obtained with: 

∆ =
𝑃

2∙𝐸𝑎∙𝐼
∙ (

1+(1+𝛽∙𝑎)2

𝛽2 +
𝑎3

6
) (2.3) 

The deflection is direct proportional to the acting load P. 
 

  



 Chapter 2: Literature Review 

7 
 

He points out, for the application of dowels in transverse joints of concrete 
pavements the bearing stress in the concrete is the critical one. Further, that the 
steels in the dowels should have a sufficiently high yielding point, so that it is not 
reached before the bearing stress of the concrete has exceeded any possible value. 
 

 
Figure 2.2.2: Deflection of a dowel across a pavement joint, Friberg [Fri1938] 

 
 

Johansen 1949 – Dowel Action in Timber Joints 
 

A fundamental theory about connections in timber structures was published by 
Johansen [Jo1949]. He performed shear tests on timber joints with a dowel and a 
toothed dog to prevent horizontal slipping of the timber elements. According to 
Johansen the dowel action depends on its resistance to bending and the resistance 
of the supporting wood to crushing. In addition, tensional effect of the dowel, 
which depends on its resistance and to friction between the abutting surfaces, was 
analysed. Therefore, Johansen formulates the load capacity of a dowel on the basis 
of plastic material behaviour of the dowel and plastic behaviour of the embedding 
wood. The bending resistance of the dowel is reached and it bends in the balk and 
the straps, Figure 2.2.3. Johansen assumes a plastic pressure on the wood between 

the bends and the pressure against the dowel must be sH  d. As the shear force V 
is equal to zero at the position of the extremal bending moments, Mmax and Mmin, 
these must lie at the same distance z from the joint, as the transverse force in the 

joint must be 
1

2
∙ 𝑃 = 𝑠𝐻 ∙ 𝑑 ∙ 𝑧. Further, with the equation of moments between 

the bends, an equation for the load bearing capacity P can be formulated. 

𝑀𝑚𝑎𝑥 + 𝑀𝑚𝑖𝑛 = 2 ∙
𝜋

32
∙ 𝑠𝐵 ∙ 𝑑3 =

1

2
∙ 𝑃 ∙ 𝑧 = 𝑠𝐻 ∙ 𝑑 ∙ 𝑧2  

 𝑧 = √
𝜋

16
∙
𝑠𝐵

𝑠𝐻
∙ 𝑑2 = 0.442 ∙ 𝑑 ∙ √

𝑠𝐵

𝑠𝐻
  

𝑃 = 0.885 ∙ 𝑑2 ∙ √𝑠𝐵 ∙ 𝑠𝐻 (2.4) 

With: 
d  the diameter of the dowel  
sB  yield strenght of the dowel material 
sH   the pressure on the bearing surface, sH = p/d. 
p the load per unit length of the dowel 
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Figure 2.2.3: Deformed dowel bar and distribution of forces, Johansen [Jo1949] 
 
Johansen limited the bending resistance of the dowel to its elastic bending 
resistance. Further, the equations given by Johansen are not taking into acount 
any interaction of bending and tension forces and no verification of the dowel for 
shear and tension is performed.  
 
 

Rasmussen 1963 – Dowel Action in Concrete Construction 
 

Rasmussen performed shear tests on steel bars embedded into a concrete block 
and protruding at the face of the specimen [Ra1963]. At the free edge the bar was 
loaded transversely to the longitudinal direction of the bar, acting as shear. His 
test set-up is given in Figure 2.2.4.  
 

  
Figure 2.2.4: Test arrangement and results, Rasmussen [Ra1963] 
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According to Rasmussen plastic hinges develop in the bar accompanied by 
considerable crushing of the concrete under the bar. He determines the bearing 
capacity of a shear loaded dowel based on the assumption of a constant resistance 
of the concrete compression strenght under the dowel and using the plastic 
bending resistance of the dowel cross section.  Similar to the approach of Johansen 
presented before [Jo1949], Rasmussen determines the maximum load Pmax by 
formulating the equilibrium of the dowel resistance in bending and the maximum 
concrete pressure, Figure 2.2.5. 
 

 
Figure 2.2.5: Dowel deformation and loading at failure, Rasmussen [Ra1963] 

 
The maximum support pressure of the concrete is calibrated on test results. 
Therefore, his final solution requires a constant c, which was determined 
empirically. For dowel forces applied at a distance e from the concrete face, the 
dowel resistance can be predicted by: 

𝑃 = 𝑐 ∙ (√1 − (𝜀 ∙ 𝑐)2 − 𝜀 ∙ 𝑐) ∙ 𝑑2 ∙ √𝜎𝐶 ∙ 𝜎𝐹 (2.5) 

𝜀 = 3 ∙
𝑒

𝑑
∙ √

𝜎𝐶

𝜎𝐹
  

With: 
d  the diameter of the dowel 
e distance between concrete surface and point where P acts on dowel 

C cylinder strenght of concrete 

F yield stress for dowel determined by tensile tests 
c constant determined empirically, c = 1.30. 
 
The failure mode according to Rasmussen is spalling of the concrete at the free 
edge, Point A in Figure 2.2.5. Hence, a concrete pressure at Point A equal to zero 
is assumed. 
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Broms 1964, 1965 – Dowel Action in Pile Foundation 
 

A method to predict the failure load of piles driven in cohesive soils is presented 
by Broms [Br1964, Br1965]. Broms derived an analytical formulation of the failure 
load by assuming that the ultimate strength of the pile section or the ultimate 
strength of the supporting soil has been reached. Further, failure is defined by 
transforming the pile into a mechanism through the formation of plastic hinges. 
According to Broms failure takes place for piles, which are restrained (piles with 
rotational restrain at their top) and having a large penetration depth, when two 
plastic hinges form at the locations of the maximum positive and negative bending 
moments, Figure 2.2.6. 
 

 
Figure 2.2.6:  Deflection, soil reaction and bending moment for  
  a long restrained pile, Broms [Br1964] 

 
He pointed out, that for truly fixed-headed conditions the maximum negative 
bending moment is larger than the maximum positive bending moment. Hence, 
the yield strenght of the pile section is generally exceeded first at the top of the 
pile. After formation of the first plastic hinge the pile is still able to resist additional 
lateral loads until a second plastic hinge forms at the point of the maximum 
positive bending moment. The lateral earth pressure acting at failure on a laterally 

loaded pile in a saturated cohesive soil is approximately 2  cu at the ground 
surface. It is increasing with depth and reachs a maximum of eight to twelve times 
cu at approximately three times the pile diameter below the ground surface. As a 
simplification, Broms assumed the lateral soil reactions equal to zero up to a depth 

of 1.5 times the pile diameter and equal to 9  cu  D below this depth. The 
maximum moment occours at the level where the total shear force in the pile is 

equal to zero at a depth below the ground surface of 1.5  D + f. 
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The distance f can be calculated from 

𝑓 =
𝑃

9∙𝑐𝑢∙𝐷
 (2.6) 

and the ultimate lateral resistance can be determined by 

𝑃𝑢𝑙𝑡 =
2∙𝑀𝑦𝑖𝑒𝑙𝑑

(1.5∙𝐷+0.5∙𝑓)
 (2.7) 

with 
Myield  is the resistance of the pile section to bending, 
D  is the diameter of the pile and 
cu  is the cohesive strength of the soil. 
 
For the formulation of maximum working loads, maximum loads for different 
failure modes and maximum loads for non-restrained, free-headed piles it is 
refered to [Br1964, Br1965].  
 
 

Dulacska 1972 – Dowel Action in Concrete Construction 
 

Helen Dulacska formulated failure forces for dowel action of steel crossing artificial 
cracks in reinforced concrete [Du1972]. She performed shear tests with 
reinforcement, crossing cracks at different angles to explore the influence of the 
inclination. The cracks were simulated by a 0.2mm thick sheet brass separating the 
specimen in two concrete blocks. Figure 2.2.7a. The assumed forces and concrete 
pressure on the reinforcement is given in Figure 2.2.7b.  
 

a) b) 
Figure 2.2.7: a) Test set-up, b) Assumed system of forces; Dulacska [Du1972] 
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Due to the inclination of the reinforcement at the beginning of the test, the bar 
was subjected to shear and tension directly when the load was applied. With the 
assumption of an increase of the local compression of the concrete compared to 
its cube strenght by the factor 4 and a constant, determined by comparison with 
test results set to 0.05, Dulacska dervied the following empirical equation to 
determine the failure force Tf: 

𝑇𝑓 = 0.2 ∙ 𝜙2 ∙ 𝜎𝑦 ∙ sin(𝛿) ∙ [√1 +
𝜎𝑐

0.03∙𝜎𝑦∙sin2(𝛿)
− 1]  (2.8) 

with 

  bar size 

  angle of reinforcement crossing the crack 

y  yield stress of steel  

c  cube strenght of concrete 
 

 
Paulay 1974 – Dowel Action in Concrete Construction 
 

Paulay used the term of “interface shear transfer” to denote the tangential shear 
force transmitted along a plane, such as a construction joint [Pau1974]. According 
to Paulay shear is transmitted by bond, dowel action and interface friction. He 
stated, that the attempt to separate the dowel action from the other mechanisms 
of interface shear transfer is seldom successful. His test set-up and results are 
presented in Figure 2.2.8. 

 

 
Figure 2.2.8: Test set-up and results, Paulay [Pau1974] 

 
Based on 30 push-off tests, he derived the dowel strength from three basic 
mechanisms: the flexure of the dowel reinforcement, the shear across the bars 
and the kinking of the reinforcement. 
If flexure of the reinforcement predominates, the transferred shear force can be 
expected to be proportional to the cube of the bar diameter. For shear across the 
bar and kinking, the transferred shear force would be proportional to the square 
of the bar diameter. When the dowels are large, the strength of the surrounding 
concrete in bearing, rather than the yield strength of the reinforcement, limits the 
shear capacity of a dowel.  
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According to his test results the dowel force is proportional to the total area of the 
reinforcement. Paulay identified shear and kinking as the principal mechanisms of 
dowel action, Figure 2.2.9. 
 

 
Figure 2.2.9: Mechanism of dowel action, Paulay [Pau1974] 

 
 

Sourashian 1986, 1987 – Dowel Action in Concrete Construction 
 

Paviz Sourashian performed tests on dowel action aiming for an application in 
earthquake design [Sou1986]. The test set-up used was similar to the one from H. 
Dulacska [Du1972], but with increased bar diameters, Figure 2.2.10. After the 
appearance of split crack, a drop in the dowel load was reported. The dowel 
strength is formulated for a dowel bar, inclined to the shear interface and 
therefore subjected also to tension forces, Figure 2.2.11. 
 

 

 
Figure 2.2.11a: Inclined dowel bar 
 [Sou1986] 

 

Figure 2.2.10 : Test set-up [Sou1986] 
Figure 2.2.11b: Failure condition 
 [Sou1986] 
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To predict the position of the maximum bending moment in the bar the BEF model 
was used. The maximum bending moment at a distance x from the dowel load is 
given by 

𝑥 =
𝜋

4∙ √𝑘𝑓∙𝑑 𝐸𝑎∙𝐼⁄
4

  (2.9) 

with 
kf  modulus of support 
d  diameter of the bar 
Ea  modulus of elasticity of the bar 
I  moment of Inertia of the bar. 
 
Failure in the dowel bar is assumed to occur, when a plastic hinge with moment 
Mp is developped at the position x. Further, it is assumed that the concrete 
underneath the bar is crushed on a length c, measured from the crack surface. 
Beyond c up to the distance x, the bearing stress applied to the dowel bar is taken 
as equal to the value of the concrete strength fb, Figure 2.2.11b. 
The dowel strength is formulated by equilibirum of moments around the plastic 
hinge for the assumed failure condition. The ultimate dowel strenght Du is given 
by: 

𝐷𝑢 = 0.5 ∙ 𝑓𝑏 ∙ (0.37 ∙ 𝛾 ∙ 𝑑 − 𝑐)2 + 0.45 ∙ 𝑓𝑦 ∙ 𝑑2 ∙
(1−𝑇2 𝑇𝑦

2⁄ )

𝛾
  (2.10) 

where 

 √𝐸𝑎 𝑘𝑓 ∙ 𝑑⁄4    

fy dowel bar yield stress 

c length of the crushed concrete zone with 𝑐 =
0.05∙𝑓𝑦∙𝑑

𝑓𝑐
′ sin(𝛼), where fc

’ is the 

concrete compressive strenght 

fb concrete bearing strength under the bar, with 𝑓𝑏 = 37.6 ∙ √𝑓𝑐′ √𝑑
3

⁄   

T axial force in the dowel bar 
Ty plastic tensile force of the dowel bar with 𝑇𝑦 = 𝜋 ∙ 𝑑2 ∙ 𝑓𝑦 4⁄  

 
The ultimate resistance and the stiffness of dowel bars bearing on concrete 
depend on the bearing strength and the bearing stiffness (foundation modulus) of 
the concrete under the action of the dowel bars. In order to obtain more 
information about this foundation modulus, additional test were performed and 
presented by Sourashian et al. [Sou1987], Figure 2.2.12. 
 

  
Figure 2.2.12: Tests on concrete foundation modulus, Sourashian [Sou1987] 



 Chapter 2: Literature Review 

15 
 

A ductile failure in the specimen with transversal reinforcement (confined 
specimen) was observed. Sourashian concluded, that the ductility of dowel bar 
behaviour can be improved by providing confining reinforcement, but did not 
considerably influence the bearing strenght of stiffness of the concrete. According 
to Sourashian the bearing strenght, fb, can be estimated by: 

𝑓𝑏 = 8 ∙ √𝑓𝑐′ ∙ 𝑙 𝑙1⁄ ∙ (𝑤 𝑑𝑏⁄ )1/2 (2.11) 

with 
fc’  concrete compressive strenght [MPa] 
l length of concrete block 
 l1 embedment length of dowel bar 
w  distance from edge of block to center line of dowel bar 
db  bar diameter 
 
And for the determination fo the concrete bearing stiffness, Kf, he gives:  

𝐾𝑓 = 127 ∙ 𝑐1 ∙ √𝑓𝑐′ ∙ (1 𝑑𝑏⁄ )1/2 (2.12) 

with 
c1 coefficient depending upon bar spacing 
fc’  concrete compressive strenght [MPa] 
 

 
Vintzeleou 1986, 1987 – Monotonic and Cylcic Tests 

 
E.N. Vintzeleou developped analytical formulation to describe the behaviour of 
dowels embedded in concrete with the aim to predict the dowel strenght and the 
transverse displacements [Vin1986]. In addition, she analyzed the load-bearing 
behaviour of dowels under cyclic loading, which is not of interest for this Thesis, 
reference is made to [Vin1987]. 
She indentified two failure modes for dowel mechanism: Failure mode I is based 
on the yield of the bar and concrete crushing under the dowel and Failure mode II 
is concrete splitting in case of small concrete cover [Vin1986]. Focus is given here 
to Failure mode I, which is based on plastic limit analysis. Assuming that the bar 
behaves as a free-headed pile in cohesive soil as given in Figure 2.2.13.  
Failure occours, when a plastic hinge forms at a distance a, measured from the 
surface to the position of maximum bending moment [Br1964]. With the 
knowledge that in case a concentrated load is imposed on an infinitely extended 
homogenous and isotropic body, the bearing capacity of the loaded body is several 
times as high than its uniaxial value [Pra1920], she formulated the following 
quadratic equation for the dowel resistance Du.    

𝐷𝑢
2 + (10 ∙ 𝑓𝑐𝑐 ∙ 𝑒 ∙ 𝑑) ∙ 𝐷𝑢 − 1.7 ∙ 𝑑4 ∙ 𝑓𝑐𝑐 ∙ 𝑓𝑦 = 0  (2.13) 

with 
fy dowel bar yield stress 
fcc concrete compressive strength 
e eccentricity of dowel force 
d dowel bar diameter 
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Figure 2.2.13:  Failure mechanism 
 Vintzeleou [Vin1986] 

Figure 2.2.14: Plastic displacement of a 
 dowel at failure [Vin1986] 

 
In addition Vintzeleou derived an analytical formulation of the transverse 

displacement of the dowel at failure u by summing up the elastic displacement 

el and the plastic pl. For the calculation of the plastic deflection she assumed 
that the length of the concrete influenced by the dowel shear force is 

approximately equal to 2  d, the plasstic rotation p of the plastic hinge is given  

by the expression tan(𝜃𝑝) = 2 ∙ (𝜀𝑠𝑢 − 𝜀𝑠𝑦) and the depth of the plastic hinge a, 

is given by 𝑎 = 𝑑 ∙ (1 − √0.22 ∙
𝑒

𝑑

3
) √

𝑓𝑐𝑐

20
⁄ , see Figure 2.2.14. And the displacement 

of the dowel at failure is given by: 

∆𝑢= ∆𝑒𝑙 + ∆𝑝𝑙   

∆𝑢=
2∙𝐷𝑢∙𝛽∙(𝑒∙𝛽+1)

𝐸𝑐𝑐
+ 2 ∙ (𝜀𝑠𝑢 − 𝜀𝑠𝑦) ∙ 𝑑 ∙ (1 − √0.22 ∙

𝑒

𝑑

3
) √

𝑓𝑐𝑐

20
⁄   [N/mm2] (2.14) 

where 

su rupture strain of the dowel bar 

sy yield strain of the dowel bar 
Ecc Young’s modulus of elasticity of concrete 

 Foundation modulus 𝛽 = (
𝑘𝑓∙𝑑

4∙𝐸𝑎∙𝐼
)
1

4⁄

 

The test set-up is given in Figure 2.2.15 and her comparison of the theoretical 
values for the dowel strenght Du and experimental results is given in Figure 2.2.16. 
 

 

 
Figure 2.2.15: Test set-up [Vin1987] Figure 2.2.16: Theoretical dowel 

resistance and test results [Vin1986] 
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Pruijssers 1988 – Offshore Structures 
 
The aim of the research work of Pruijssers was to determine the relationsship 
between stresses and displacements occuring in the crack plane of foundations for 
offshore structures in the arctic sea [Pru1988]. He performed shearing tests with 
“low-intensity high-cycling”, Figure 2.2.17. 
According to Pruijssers, with increasing dowel force the concrete stresses at the 
vicinity of the bar exceed the uniaxial concrete compressive strenght. Because the 
sourrounding concrete provides a considerable confining pressure, thus a triaxial 
compresive zone under the bar forms. Therefore, the concrete strenght can be 
serval times as high as the uniaxial strenght and the bar becomes the weakest link. 
Pruijssers postulates that the ultimate force is reached when the bar yields and a 
plastic hinge forms, Figure 2.2.18. Formulating the equilibirum in the plastic hinge 
he considers the bond between the bar and the supporting concrete, resulting in 
a bond force, situated at a distance zn from the centreline of the bar, Figure 2.2.19. 
The bond force results in an increase of the plastic bending resistance of the bar 
of 34%, where the presence of an acting tensile force the shift zn is decreasing 
which leads to a reduction of the dowel strenght. 
 

 

 
Figure 2.2.18: Failure mechanism due to 
 plastification [Pru1988] 

 
Figure 2.2.17: Test set-up [Pru1988] Figure 2.2.19:  Equilibrium condition for 

 the plastic hinge [Pru1988] 
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Dei Poli 1992 – Shear Joints in Reinforced Concrete 
 

Dei Poli pointed out, that the analogy of a beam on elastic and cohesionless 
foundation (BEF analogy) is less applicable to describe the maximum load. At 
ultimate load situation concrete and steel exhibit nonlinear behaviour, the 
concrete is cohesive, and the embedment efficiency is affected by the geometry 
[Dei1992]. The most relevant parameter is the subgrade stiffness of the concrete 
embedment k, Figure 2.2.20. With reference to ultimate load situation, both 
concrete and steel nonlinearities have to be considered, as well as the localized 
damage within the concrete, Figure 2.2.21.  
 

 
 

Figure 2.2.20: Parameters in study of 
 dowel action [Dei1992] 

Figure 2.2.21: Limit analysis of dowel 
 [Dei1992] 

 
Further, the collapse of the dowel action may be triggered either by the local 
crushing of the concrete under the dowel or by the yielding of the dowel. But, 
eventually both phenomena are activated, because both are characterized by a 
ductile behaviour. Many researchers have evaluated the load-carrying capacity of 
the dowel strength within a limit-analysis approach, based on the simultaneous 
formation of a plastic hinge in the bar and a crushed zone in the concrete. 
Dei Poli proposed, that a constant value could be given to the subgrade stiffness k  
in the linear, elastic phase (BEF model). While in the nonlinear phase k should be 
formulated as a function of the displacement at the interface with the dowel bar 
to introduce the “damage” due to load build-up. The damage may be represented 
also by parameters other than the displacement, such as the “load level” V/Vu, 
where Vu is the ultimate capacity of the dowel and V is the actual load applied to 
the dowel. 
To analyse the transverse displacement of a long dowel embedded in concrete 
subjected to a shear load at the free edge, Dei Poli performed a set of 27 block-
type reinforced concrete specimens. The tests were performed displacement 
controlled and the displacement of the reinforcement bar was directly measured 
using ducts, Figure 2.2.22.  
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The tests were stopped at a displacement of the loaded section to a value of 1/5 
to 1/3 of the bar diameter. He observed, that at 80% of the maximum load the 
concrete under the dowel close to the forefront of the specimen started to 
deteriorate, which eventually led to the detachment of a flake. At load levels 
below 40% of the maximum load, the bars did not show any plasticization. 
 

 
 

Figure 2.2.22: Test specimen with concrete-embedded ducts [Dei1992] 
 
The load displacement curves for bar diameters 14mm, 18mm and 24mm are 
given in Figure 2.2.23. The displacement is given at two positions, section 1 (Figure 
b) and section 2 (Figure a).  
 

  
Figure 2.2.23: Load displacement curves, Dei Poli [Dei1992] 

 
Dei Poli pointed out, that for a bar at right angles to the shear plane, the ultimate 
capacity of a dowel formulated by simple limit-analysis models as proposed by 
Dulacska [Du1972] and Sourashian [Sou1986] gives reliable values. But, a possible 
incliniation of the bar affects the dowel capacity due to the acting tension force in 
the dowel.  
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Tanaka 2011 – Dowel Action in Concrete Construction 
 

To investigate the load bearing behaviour of steel bars embedded in concrete 
(dowel bars) and transversly loaded, Tanaka perfomed 14 tests [Ta2011], Figure 
2.2.24. 
 

 
Figure 2.2.24: Test specimen, Tanaka [Ta2011] 

 
Tanaka investigated the applicability of the traditonal BEF analogy for the elastic 
behaviour of dowel bars, but also a possible extension of this analogy to post 
yielding of the bars. Aim of the performed test series was to examine the dowel 
behaviour and to determine values for the foundation modulus K. After yieding of 
the dowel bar, failure occurred in the tests by spalling of the concrete under the 
dowel bar at the surface of the concrete. According to Tanaka, the measured K-
values (= foundation modulus) are likely to increase with the increase of the bar 
diameter, Figure 2.2.25. 
 

 
Figure 2.2.25: Relationship of (Kd) and (fc’d2) based on experiments [Ta2011] 
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Tanaka proposed the following equations for the load at first yielding Py, at spalling 
Psp and for the ultimate load Pu. 

𝑃𝑦 =
𝜋∙𝑑3∙𝑓𝑦

32
∙

𝛽∙𝑒𝛽∙𝐿𝑚

[(1−𝛽∙𝑔)∙sin(𝛽∙𝐿𝑚)−𝛽∙𝑔∙cos(𝛽∙𝐿𝑚)]
  (2.15) 

𝑃𝑠𝑝 = 0.84 ∙ 𝑑2 ∙ √𝑓𝑐′ ∙ 𝑓𝑦  (2.16) 

𝑃𝑢 = 1.0 ∙ 𝑑2 ∙ √𝑓𝑐′ ∙ 𝑓𝑦  (2.17) 

with 

𝐿𝑚 =
1

𝛽∙tan(
1

1−2∙𝛽∙𝑔
)
   

𝛽 = √
𝐾∙𝑑

4∙𝐸𝑎∙𝐼

4
   

d  Diameter of dowel bar 

K  foundation modulus of concrete under the dowel bar, K = 0.25  d  fc
’ 

Ea  Yound modulus of dowel material 
I  Inertia of dowel bar 
g  excentricity of the applied load to surface of specimen. 
 

Loads at at first yielding and spalling in relation to the dowel index d2 (fc’fy)0.5 are 
shown in Figure 2.2.26. 
 

 
Figure 2.2.26:  Load at first yielding and spalling in relation to  

 dowel index d2 (fc’fy)0.5, Tanaka [Ta2011] 
 
Tanaka described, that a plastic hinges forms in the dowel at distance Lm from the 
edge of the specimen. The depth Lm can be defined by elastic BEF analogy, defining 
Lm as the point of first yielding. Futher, assuming that the BEF analogy would be 
still applicable to the dowel bars in the remaining concrete after spalling, the origin 
for another axis (x’-axis) is positioned at the delaminated surface of the concrete. 
The process up to failure of the dowel is schematically given in Figure 2.2.27.    



Chapter 2: Literature Review  
 

22 
 

 

 

 
 
Figure 2.2.27: Schematics of the failure mechanism of dowel bar [Ta2011]  
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Sørensen 2017 – Limit Analysis by Second Order Plasticity Model 
 

Sørensen developed a model to describe the shear behaviour of two-sided dowel 
joints at large shear displacements in the non-linear regime [Sor2016], [Sor2017]. 
He used a second order rigid-plastic approach to establish a link between the shear 
displacement u and combinations of moment and tension that developp in the 
rebar crossing the joint by utilizing kinematic relations and the normality condition 
of plastic theory. Sørensen assumes a mechnism of two plastic hinges, and further, 

that the plastic deformations, an elongation  and a rotation , are acting in the 
plastic hinges only, Figure 2.2.28. 

 
Figure 2.2.28: Two sided joint, Sørensen [Sor2017] 

 
By establishing the kinematic relationship for the assumed mechanism he 
determined the rates of plastic deformations. Then, by imposing the normality 
condition of plastic theory and by applying the work Equation for increments of 
displacement, he derived an Equation for the maximum shear load of a smooth, 
frictionless joint Ps as a function of the displacement u. The total work is composed 
of work causing the elongation and the rotation in the plastic hinges and of the 
rebar crushing the concrete underneath. In addition, Sørensen included the 
possible contribution of friction Pf, caused by compressive stresses normal to the 
shear interface. The shear load P as a function of the displacement u is given by: 

𝑃𝑡𝑜𝑡𝑎𝑙(𝑢) = 𝑃𝑠(𝑢) + 𝑃𝑓(𝑢)  (2.18) 

with 

𝑃𝑠(𝑢) = {

1

2
∙ 𝑓𝑐𝑐,1 ∙ 𝑑 ∙

𝑙1,𝑒𝑓
2

𝑙1+𝑙2
+

1

2
∙ 𝑓𝑐𝑐,2 ∙ 𝑑 ∙

𝑙2,𝑒𝑓
2

𝑙1+𝑙2
+ 2 ∙ 𝑁(𝑢) ∙ Δ̇ + 2 ∙ 𝑀(𝑢) ∙ Θ̇; 𝑓𝑜𝑟 𝑁(𝑢) < 𝑁𝑝𝑙

2 ∙ 𝑁𝑝𝑙 ∙ Δ̇; 𝑓𝑜𝑟 𝑁(𝑢) = 𝑁𝑝𝑙

  

𝑃𝑓(𝑢) = 𝜇 ∙ 𝑁(𝑢) ∙ cos(𝜃)   

It should be noted, that this approach only predicts the non-linear behaviour. 
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Sørensen validated his model by comparison with test results. His test set-up is 
given in Figure 2.2.29. He performed 25 push-off tests, varied the quantity of bars 
crossing the shear joint and the surface conditions (Concrete or Mortar). The 
diameter of the dowel reinforcement was constant with d = 8mm. Detailed 
specification of his tests and material properties are given in Table 2.2. , results are 
given in Figure 2.2.30. For more information it is refered to [Sor2017]. 
 

 
Figure 2.2.29: Test set-up, Sørensen [Sor2017] 

 

 
Figure 2.2.30: Test results, Sørensen [Sor2017] 

 
Table 2.2: Specifications and material properties, Sørensen [Sor2017] 
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2.3 Concrete Dowels as shear connector in composite beams 

Steels strips can be used as shear connector in composite structures. The 
development of this type of connector is basically described in this Section, based 
on thorough literature review. Focus is given on the basic load transfer and 
mechnical principles of metal strips as shear connector. Puzzle-shaped shear 
connectors see e.g. [P621, P804, Se2009], are less of interest for this Thesis. 
  
 

Leonhardt, Andrä (1985, 1987, 1990) – Development of Perfobond strip, Germany 
 

Searching for a continuous shear contector with improved fatigue behaviour 
compared to shear studs, H.-P. Andrä described pull-out tests done at the 
University of Stuttgart, Germany, using a steel strip, which can be welded on the 
upper flange of a steel beam [An1985]. Aim of this research was the economical 
improvement of another type of a continuous shear connector used by Leonhardt 
[Leo1951]. Andrä performed pull-out tests on metal strips with punched 
rectangular openings of different size. The test set-up and load-slip curves are 
shown in Figure 2.3.1 and Figure 2.3.2. 
 

  
Figure 2.3.1: Test set-up, Andrä [An1985] Figure 2.3.2:  Load-slip curves, 

 Andrä [An1985] 
 
Test number 3 (= “Versuch 3”) was performed with additional stirrup 
reinforcement (“Bügel”), which demonstrated a higher load-bearing capacity and 
an increase of the ductility of specimen 3. Failure of tests number 1 and 2 
(“Versuch 1” and “Versuch 2”) occured due to splitting of the concrete specimen. 
In test 3 failure of the webs of the steel strip due to shear was observed. The 
additional reinforcement led to concrete confinement, acting as a restraint and 
consequently increasing the concrete compressive strength at the openings of the 
metal strip. 
In addition, Andrä reported about a pull-out test of a metal strip with circular 
openings, which could act as shear connector for composite beams, welded on the 
upper flange of a steel beam. Probably this was the first test of the future 
“Perfobond” shear connector. The dimensions of the metal strip, load-
displacement curve and the metal-strip after testing are given in Figure 2.3.3 and 
2.3.4.  
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To avoid splitting of the concrete perpendicular to the metal strip, Andrä added in 
total 8 transversal reinforcement bars with a diameter of 8mm outside of the 
circular openings. This type of shear connector showed a high stiffness up to 80% 
of the total load and at larger displacements a very dutcile behaviour. Andrä 
reports further, that the test was stopped at a displacement of 30mm, when still 
no failure could be observed. It is remarkable that, this metal strip achieved a shear 
resistance of 2015 kN/m, which represented the resistance of 20 traditional shear 
studs with a diameter of 22mm, according to Andrä. He pointed out, that the cost 
of the metal strip is only 1/5 of the cost of 20 shear studs, which underlined the 
economical potential of metals strips as shear connector for composite beams. 
Finally, the high stiffness at serviceability state and the ductile behaviour after 
reaching the ultimate load before failure of this type of shear connector convinced 
Andrä and Leonhardt to continue their research. 
 

  
Figure 2.3.3:  Tests on metal strip with circular 
 openings, Andrä [An1985] 

Figure 2.3.4: Metal strip 
after testing [An1985] 

 
Consequently, Leonhardt and Andrä performed further tests on metal strips with 
circular openings. Results of a series of three push-out tests on the shear 
connector tested by Andrä were publilshed in 1987 [Leo1987]. The tests were 
done at the University of Stuttgart, Germany. In this publication they refer to the 
flat steel strip with large, punched holes at close intervals as “Perfobond” strip, 
Figure 2.3.5. 
 

  
Figure 2.3.5: Perfobond connector [Leo1987] Figure 2.3.6  Local situation at 

 opening [Leo1987] 
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According to Leonhardt, the concrete going placed in the circular openings 
transfers the shear forces by aggregate interlock, acting as a concrete dowel. Two 
shear surfaces occur, one at each edge of the steel strip, Figure 2.3.6. The uplift of 
the concrete slab is prevented by the ciruclar openings in the steel strip. Tensile 
forces, resulting from the widening of the compression stresses, are first 
counterbalanced by the concrete in the opening and at further load increase, by 
the transversal reinforcement. The trajectories in compression and tension are 
given in Figure 2.3.7.  
 

  

Figure 2.3.7: Trajectories in compression and tension, Leonhardt [Leo1987] 
 
Leonhardt provided the following general explanations of the load transfer: A 
transversal reinforcement placed above the metal strip is subjected to tensile 
actions only. In case it is put through the holes, it is also subjected to shear. Failure 
of the conrete directly in the circular opening cannot occur, as long as the concrete 
is kept in place, is restraint. The horizontal shear force is divided into local pressure 
of the concrete in the openings on the web of the steel strip between the holes. 
From the web the force is transferred via the fillet welds continously to the steel 
flange. Failure modes are the shearing of the concrete dowels or of the metal strip 
at the holes. Due to the vertical and horizontal restrain of the concrete in the 
circular openings, the concrete in the holes is confined and practically cannot fail. 
It has a resistance of at least 8 times the uniaxial compressive strength. After 
reaching the load bearing resistance significant transfer of the shear force remains, 
plastic design is applicable.  
To investigate the behaviour of the Perfobond connector, Leonhardt performed 

dynamic tests with N  2,5  106 load cycles, applied at a frequency of 2.75 Hz. 
Geometry of the push-out specimen and the Perfobond strips is given in Figure 
2.3.8 and 2.3.9. Before the start of the load cycles, a static load of 800 kN was 
applied, the estimated load for the use phase. The displacement measured at the 
cycling tests remained at very low level, around 0.12mm and no damage was 
observed after the load cycles. Therefore, static testing till failure of the 3 
specimens was done. The resulting load-slip curves are given in Figure 2.3.10. Test 
1 failed due to shearing of the metals strip (steel failure). Due to a defect on the 
loadpress for test 2, the load was applied as impact load. Consequently, the 
corresponding displacements could not be recorded. Failure occured due to 
shearing of the concrete dowels. Test 3 was performed displacement controlled 
and an ultimate load of 1830 kN was reached.  
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Failure occured due to shearing of the steel strip and of the concrete dowels 
simultaneously. Leonhardt pointed out, that the Perfobond shear connector 
showed a much better behaviour (no slip increase with increasing load cylces) than 
headed shear studs. For further reference see also [An1990].  
 

  
Figure 2.3.8: Push-out specimen 
 [Leo1987] 

Figure 2.3.9:  Geometries of tested 
 Perfobond [Leo1987] 

 
Based on his test observations Leonhardt pointed out, that at low load levels the 
shear connection behaves rigid, while at increasing load the stiffness of the shear 
connection is reducing. Further, after the shear resistance is reached, load is still 
transfered by friction, curve III in Figure 2.3.10. The splitting of the concrete 
specimen at the shear surfaces is prevented either by transversal reinforcement 
or by external pressure (e.g. transversal bending of the slab or by prestressing). 
Even at huge displacements of several millimiters the friction coefficient is nearly 
not reducing.   
 

 
Figure 2.3.10: Load-displacement of static push-out tests after cycles [Leo1987] 
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According to Leonhardt shear failure of the concrete dowels happened for test III 

at a concrete shear stress of around u  1.3  W. Based on this observation and 
assuming the steel strip is designed as such, that no shear failure can occur in the 
strip, he proposes to use as design resistance for the conrete dowel the follwing 
equation, where index c indicates possible concrete failure and index s steel 
failure: 

𝐷𝑃𝐵𝐿,𝑐 = 1.4 ∙ 𝑑2 ∙ 𝛽𝑊𝑁 ≤ 𝐷𝑃𝐵𝐿,𝑠 = 1.44 ∙ 𝐴𝑠 ∙ 𝛽𝑠  (2.19) 

with 
PBL Perfobond steel strip 
d diameter of web opening 

WN concrete cube strenght 
As smallest surface of the steel web 

s yield strenght of steel strip 
 
To limit the concrete pressure in the opening, the thickness of the steel strip t 
should be chosen that the following equation is fulfilled: 

𝐷𝑃𝐵𝐿,𝑐,𝑑 (𝑑 ∙ 𝑡)⁄ ≤ 6 ∙ 𝛽𝑊𝑁  (2.20) 

Further, to prevent splitting of the concrete, transveral reinforcement has to be 

added. By assuming an angle of tan  = 0.4 of the compression strut and by 
reducing the stresses to 50% of the yield stress, Leonhardt proposed a minimum 
surface of the transversal reinforcement As,q of: 

𝐴𝑠,𝑞 > 0.8 ∙ 𝐷𝑃𝐵𝐿,𝑐 𝛽𝑠𝑞⁄   (2.21) 

with 

sq yield strenght of reinforcement 
 
A comparison of shear resistance of Perfobond strip (PBL) with shear studs (KBD) 
is given in Figure 2.3.11. Reading the diagram it has to be considered, that the 
resistance of shear studs was calculated according to [DIN1981]. 
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Figure 2.3.11:  Shear resistance of Perfobond strip (PBL) in comparison to shear 
 studs (KBD), Leonhardt [Leo1987] 

 
In a following publication [An1990] the design of the dowel resistance was slightly 

modified to a value of DPBL,c = 1.0  d2  WN, when the transverse (splitting) 

reinforcement remained at a value of As,q = 0.8  1.4  d2  WN / sq. 
 
The research from Leonhardt and Andrä concluded in an technical approval for the 
“Perfobondleiste” [Z-26.4-38]. The design method given in [Z-26.4-38] is based on 
a the partial safety factor method, while in the research presented in [An1985], 
[Leo1987], [An1990], still a global safety factor is used to derive design values. 
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Patent and technical Approval from Brendel 1987 - Kombi-Verdübelung  
 

At the time Andrä and Leonhardt investigated the load-bearing behaviour of 
Perfobond, Brendel performed research on a puzzle shapped shear connector. In 
1987 he applied for a Patent for the so called “Kombi-Verdübelung”. Rules for the 
application of Kombi-Verdübelung were defined in a technical approval [Z-26.4-
39], Figure 2.3.12. 
 

  
Figure 2.3.12: Kombi-Verdübelung, Brendel [Z-26.4-39] 

 
Later this Technical Approval was extended to different Geometries [Z-26.4-56]. 
 
 

University of Armed Forces, Munich, Germany - Research on Concrete Dowels 
 

A mechanical model to describe the load-bearing behaviour of concrete dowels 
was developped by Otto Wurzer [Kr1997a]. Based on test observations and results 
obtained with nonlinear finite-element modelling of concrete dowels, he describes 
the load transfer by a concrete dowel as follows: The composite force is 
transmitted from the steel strip to the concrete slab by extreme local compression 
(effect of partial area loading), which acts at the contact surfaces of the hole. The 
area, where the load spread is taking place in the concrete dowel, may be 
separated in two main parts named zone A and zone B, Figure 2.3.13. In the load 
transmission zone A, concrete is confined causing triaxial compression. There the 
bearing and deformation behaviour of the concrete depends mainly on the pore 
structure of the cement stone. Above a critical load step, crushing of pore sides 
occurs caused by the triaxial compression. Afterwards damaged concrete fills up 
the pores. In the load distribution zone B compression acts longitudinal and 
tension transverse to the direction of the load spread. Cracking parallel to the 
composite force occurs, when the transverse stresses exceed the tensile strenght 
of the concrete. After cracking the splitting reinforcement of the concrete dowel 
takes the transverse tensile forces. Nominal transverse reinforcement close to the 
concrete dowel participates as well. 
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A limit state is reached, when the pores in zone A are completely filled with 
damaged concrete material and no further volume reduction is possible there. The 
pulverized material causes a quasi-hydrostatic pressure on the confining concrete, 
which may lead to splitting of the concrete slab and finally to local wedging-off of 
parts of the slab surface close to the dowels, [Kr1997b].   
 

  

Figure 2.3.13: Loading of concrete 
 dowel, Kraus [Kr1997b] 

Figure 2.3.14: Spring model concrete 
 dowel [Kr1997b] 

 
To evaluate the slip corresponding to the shear load P, Wurzer derived a spring 
model with the following components (Figure 2.3.14): 

𝑠(𝑃) = 𝑠𝑆 + 𝑠𝐴 + 𝑠𝐵 + 𝑠𝐶   (2.22) 

with  
sS local deformation of the steel stems, remaining between the holes 
sA crushing of the pore structure in cement stone of zone A 
sB the deformations of the compression filed in zone B 
sC lateral strain, cracking and crack opening in zone B. 
 
Wurzer performed overall 42 push-put tests on concrete dowels, investigating the 
influence of different geometries of the stem opening, the concrete compression 
class, transverse reinforcement and loading of the concrete slab. Test set-up and 
geometry is given in Figure 2.3.15. 
 

 
Figure 2.3.15: Push-out test and geometries of concrete dowels [Kr1997b] 
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A typical load-slip curve is given in Figure 2.3.16. Wurzer divided the load-slip curve 
into three parts: - Part I, at lower load steps only small deformations occur. To 
remove adhesion between the steel strip and the concrete, 25 load cycles have 
been introduced in at the beginning of the test. In Part II, longitudinal splitting 

cracks occur in the concrete slab at a load level Pcrack  0.75  Pmax, which cause a 
sharp increase in deformation with further load increase. The maximum shear load 
Pmax is reached, when the local parts of the slab surface are wedging-off close to 
the concrete dowels. After reaching Pmax the load is decreasing slowly at further 
slip increase. Some of test results are given in Figure 2.3.17. He found a nearly 
linear relationsship of the maximum load Pmax and the uniaxial concrete 
compression strenght fcm. An increase of the surface of the transversal 
reinforcement Asq was also leading to an increase of Pmax. In addition he pointed 
out, that increasing dimensions of the opening is also leading to an increase of 
Pmax, which he explained with an increase of the contact surface between steel 
strip and concrete, Figure 2.3.13. However, he observed a reduction of the local 
compressive stresses in the contact surface with an increase of the dimensions of 
the opening. For further information it is refered to [Wu1998]. 
 

  
Figure 2.3.16:  Typical load-slip curve, 
 Kraus [Kr1997b] 

Figure 2.3.17: Relation between Pmax 
and concrete compression strenght 
[Kr1997b] 

 
Based on the above described mechanical model, Wurzer proposes the following 
design concept for the determination of the design shear resistance PRd of 

concrete dowels at the ultimate limit state. The factor  depends on the 
dimensions and the shape of concrete dowels. To avoid splitting of the concrete a 
minimum transversal reinforcement has to be added, which should be should 
designed for 50% of PRd: 

𝑃𝑅𝑑 = 𝜂 ∙ 𝑓𝑐𝑘 ∙ ℎ ∙ 𝑠 ∙
1

𝛾𝑣
  (2.23) 

where 

 factor, found by statistical evaluation of test results 
fck characteristic zylinder strenght of the concrete 
h height of holes of concrete dowels 
s thickness of steel strip 

v partial safety factor v = 1.25  
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Cedrik Zapfe refined and extended the above described mechnical model from 
Wurzer [Za2001]. He investigated the behaviour of concrete dowels under cyclic 
loading and performed push-out and beam tests. Main parameter in his push-out 
tests was the geometry of the concrete dowels (opening geometry) and the 
concrete compression strength. In all tests performed by Zapfe transversal 
reinforcement with varying surface was present. He defined three failure criteria 
for static loading: local pressure failure, punching failure and dowel shearing off 
failure. The different failure modes and the corresponding design equations as 
proposed by Zapfe are given in Figure 2.3.18. 
 

 
Local pressure failure: 

𝑃𝑅𝑑1 = 72.7 ∙ √𝑓𝑐𝑘 ∙ ℎ𝑑 ∙ 𝑡𝑤 ∙
1

𝛾𝑣
  (2.24) 

 

 
Punching failure: 

𝑃𝑅𝑑2 = 25.6 ∙ ℎ𝑡𝑐
2 ∙ 𝑓𝑐𝑡𝑘 ∙ 𝜌𝑖 ∙

1

𝛾𝑣
   (2.25) 

with 
𝜌𝑖 = 1 + (𝐸𝑎 𝐸𝑐𝑚⁄ − 1) ∙ 𝐴𝑑 

 
Shearing off failure: 

𝑃𝑅𝑑3 = 23.4 ∙ 𝐴𝑑 ∙ 𝑓𝑐𝑡𝑘 ∙ 𝜌𝑖 ∙ 𝑓ℎ ∙
1

𝛾𝑣
  (2.26) 

with 
𝑓ℎ = (1.2 − ℎ𝑑 180⁄ ) ≤ 1 

 
Figure 2.3.18: Failure criteria according to Zapfe, with v = 1.25 [Za2001] 

 
For further information it is refered to [Za2001]. 
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For the Thesis presented here, the local concrete pressure failure as described by 
Wurzer [Wu1998] and Zapfe [Za2001] is of special interest. In [Za2003] Zapfe 
pointed-out: Based on dismantled concrete dowels after push-out test execuation 
the existance of a highly stressed zone in the contact areas between steel faces 
and concrete dowels could be proved, where load influences effected an 
approximate hydrostatic stress state depending on the concrete dowel shape and 
the grade of cording effectiveness of the sourrounding concrete material. 
For concrete dowels close to the edge of the slab he observed a punch cone failure, 
similar to a failure observed for shear stud placed in the ribs of metal decking. He 
defines this failure by applying shear stresses along the coating surface of a regular 
cone. Shearing off failure is defined by a double cut shearing off within the conrete 
material at the edges of the steel web perforation, with a modified shear area for 
large openings, which is considered by an empirical form factor. According to 
Zapfe this failure criterion is limited to deeply in the concrete slab placed concrete 
dowels. His research work was continued by [Bu2011], [Wa2011]. 
 
 

Reitz 2003 – Investigations on Perfobond as Ductile Shear Connector 
 

Dieter Reitz perfomed push-out tests on Perfobond with diameters of the 
openings from 40mm to 54mm. The concrete compression strenght, measured on 
cubes, varied from 36 MPa to 60 MPa [Re2003]. He confirmed the findings of other 
researchers of a ductile load-bearing behaviour of Perfobond. Based on his test 
observations he proposed design Equations considering shear failure of the steel 
strip and concrete failure. He defined the design load for concrete by: 

𝑃𝑅𝑑 = 1.45 ∙ 𝐾𝑐 ∙ 𝑑2 ∙ 𝑓𝑐𝑘 ∙
1

𝛾𝑣
  (2.27) 

where 

𝐾𝑐 = 2 ∙
𝑙3

𝑙1
− 0.15 ≤1 

l3 shortest distance of the openings, Figure 2.3.19 
l1 shortest distance of the opening to the edge, Figure 2.3.19 
d Diameter of the opening, Figure 2.3.19 
fck characteristic zylinder strenght of the concrete 

v partial safety factor v = 1.25  
 

 
Figure 2.3.19: Geometry according to Reitz [Re2003] 
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Zheng 2016 – Parametric Study on Perfobond 
 
ShuangJie Zheng performed a parametric study on the shear capacity of circular-
hole and long-hole Perfobond shear connectors [Ze2016]. By analysing in detail 
the obtained failure modes, she derived numerical models simulating the failure 
modes observed in the experiments, Figure 2.3.20. Further, she refined the shear 
mechanism of Perfobond as given in [Kr1997b], by introducing a rebar in the 
opening, Figure 2.3.21. For more information it is refered to [Ze2016]. 
 

 
Figure 2.3.20: Comparison of numerical simulation and test, Zheng [Ze2016] 

 

  
Figure 2.3.21a: Mechanism with rebar, 
 Zheng [Ze2016] 

Figure 2.3.21b: Mechanism according 
 to Kraus [Kr1997b] 
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Perfobond – additional Research 
 
The research on Perfobond is still a subject of interest and ongoing research. The 
author of this Thesis reviewed many other publications than given here before and 
analysed its relevance for CoSFB-Dowels. A short list of analysed publications is 
given hereafter. 
Josef Fink published a design model for a continuous shear connector called 
“Kronendübel” (crowndowel) [Fi2007], which has a slightly different shape 
compared to the Kombi-Verdübelung from Brendel [Z-26.4-39]. 
More research about perfobond shear connector and concrete dowels as shear 
connector for composite beams was done in Canada by Oguejiofort, see e.g. 
[Ogu1997] and at the University of Coimbra, Portugal. Isabel Valente investigated 
the load-bearing behaviour using lightweight concrete [Val2004], [Val2009]. 
General research about the load-bearing behaviour of Perfobond shear 
connectors was perfomed and published e.g. by [Via2008], [Via2009], [Ca2010], 
[Ro2011], [Via2013] just to name a few. 
Numerous investigations on Perfobond on various geometries and parameters 
was performed in Asia, e.g. [Je2009], [Ah2010], [Ki2013], [Ma2014], [Su2014], 
[Ch2016], even to using Perfobond as connector in steel-concrete joints [He 2016]. 
More recent research is dealing with the application of high-strenght material 
[Hau2005], [P621], [Fel2007], [P804], [Gu2009], [Hei2012] and about the 
investigation of the influence of transversal bending on the load-bearing 
behaviour of concrete dowels [Cl2016]. 
An excellent overview about research on concrete dowels can be found in 
[Hei2011] and [Wi2013]. 
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2.4 Shear Connection by Transversal Bars  

In 2008 Matti V. Leskelä published a design proposal for a shear connection 
composed of uniformly distributed web-openings along the beam and transverse 
rebars [Les2008]. According to Leskelä the shear connection for composite slim-
floor beams can reside in any location of the interfaces between the components 
(steel section and concrete slab) [ECCS138]. Thus, the vertical position of the 
transverse reinforcing bars – acting as shear connector – can be specified in such 
way that the assembly is most easy, Figure 2.4.1. 
Leskelä performed push-out tests where a single transversal bar connects two 
blocks of concrete on sides of a steel web plate with circular holes. The holes have 
a diameter of 75mm or 150mm, the transversal reinforcement bar diameters of 
16mm, 20mm and 25mm. The holes are filled with in-situ concrete. In addition, he 
varied the position of the bar in relation to the edge of the hole, Figure 2.4.2. 
 

 
 

Figure 2.4.1:  Transversal bar as 
 connector [Les2008] 

 Figure 2.4.2: Tests performed by 
  Leskelä [Les2008] 

 
His proposal to assess the load-bearing capacity is based on an Equation derived 
by Rasmussen for shear connections using bolts cast in concrete [Ra1963], when 
Leskelä adapted some factors in accordance with his test results. He defines the 
shear resistance of one leg as: 

𝑃𝑅𝑑,1 = 𝑚𝑖𝑛{𝛼𝑅 ∙ 𝑑2 ∙ √𝑓𝑐𝑘 ∙ 𝑓𝑠𝑘;  𝑘𝑅𝑦 ∙ 𝐴𝑠𝑐 ∙ 𝑓𝑠𝑘}/𝛾𝑣  (2.28) 

where 
𝛼𝑅 = 2.5 − 0.065 ∙ (𝑑 − 16) ≤ 2.5 
𝑘𝑅𝑦 = 0.8 − 0.025 ∙ (𝑑 − 16) ≤ 0.8 

d Diameter of the transversal reinforcement bar 
fck characteristic zylinder strenght of the concrete 
fsk characteristic strenght of the bar 
Asc cross sectional area of the bar 

v  safety factor, with  v = 1.25 
 

Thus for two legs the design value is obtained with PRd = 2  PRd,1. Leskelä describes, 
that the resistance of his tests was defined for a slip of 6mm. But, slips of 10mm 
and more were obtained even without any fracture of the bar. Equation (2.28) is 

valid for nominal diameters of the transversal reinforcement bar from 16mm  d 

 25mm. Further reference is made to [Les2005] and [Les2006]. 
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3 Testing of CoSFB-Dowels 

3.1 Introduction 

A first test series of CoSFB-Dowels was performed in 2009. This series consist of 
standard push-out tests to analyse the load bearing behaviour of the shear 
connection and shear beam and long span beam tests to verify its load bearing 
behaviour applied on beams. The push-out tests in 2009 were done using Cofradal 
200 decking [Co200]. The analysis of the load-bearing behaviour of this decking is 
not part of this Thesis, consequently results of test series from 2009 are not taken 
into account for the research work presented here. The results of the push-out 
tests performed in 2009 showed, that an increase of the concrete compression 
class is not always leading to an increase of the load bearing capacity of the shear 
connection [Stu2009]. 
Therefore, another campaing of push-out tests with varying parameters was 
performed in 2011. The aim of this campaing was to evaluate in detail the 
influence of the concrete compression class, the web thickness and the diameter 
of the web opening on the load bearing behaviour of CoSFB-Dowels. In addition, 
one series of push-out tests was done with a varied diameter of the dowel 
reinforcement, Series 2-2b, which could not be evaluated together with the other 
series because of a different failure mode. Results of this test campaign were 
already published, as e.g. [CC2013], [Stb2014a], [Stb2014b], [ES2014], [Stu2011]. 

3.2 Push-Out Tests 

3.2.1 Overview 

From the campaings of push-out tests with CoSFB-Dowels, only the tests from 
2011 are considered in this research work, because a solid concrete slab was used. 
For completion reasons, also the 2009 parameters and results are briefly given in 
Table 3.2.1. The shop drawing of Series 2011 are given in Annex A. 

3.2.2 Test specimen, testing procedure and measurement 

The test procedure and measurements are performed in accordance with EN 
1994-1-1 [EN1994]. A push-out specimen consits of two concrete slabs and two 
hot rolled sections with CoSFB-Dowels. To allow for a concreting of the slabs in 
horizontal position - the CoSFB-Dowel should be applied for composite slim-floor 
beams - each slab of the specimen had to be concreted seperatly. Special care was 
given to a simultaneous concreting of all three specimens for each series. Before 
testing, the steel sections were welded together to obtain a symmetrical 
specimen. Due to the excellent planeity of the lower edge of the concrete slabs, 
no mortar bed was put under the speciemen, Figure 3.2.2.1. 
The dimension of the specimens, the load introduction and the positioning of the 
dowel reinforcement can be found in Figure 3.2.2.2. Each slab was connected with 
5 CoSFB-Dowels to the steel section. The axe-to-axe distance of the web openings 
was for all tests fixed to 125mm. The dowel reinforcement bars had a length of 
180cm with an additional 90 degree end-hook to assure perfect anchorage.  
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All steel surfaces were treated with oil before concreting to reduce possible 
friction action between concrete and steel section to a minimum. The load 
introduction was done at the upper edge of the steel sections with the help of a 
load introduction plate, assuring an even load introduction to each steel section. 
 

 
Figure 3.2.2.1: Push-out Test Specimen [Stu2011] 

 
To allow for the evaluation of the development of strains in the dowel 
reinforcement and the overall load-bearing behaviour, strain gauges were placed 
at the dowel bars and extensometers to measure the relative slip between discrete 
points of the specimen and the steel plate, the specimen was placed onto. 
 

 
Figure 3.2.2.2: Scematic Drawing of Push-out Tests [CC2013] 
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Table 3.2.1: Overview - CoSFB Push-out Tests 2009 + 2011 [Stu2009], [Stu2011] 

Year Series Test Section 
tweb 

[mm] 

web 
opening 

[mm] 

dowel 
reinf.  
[mm] 

Concrete 
Class 

[MPa] 

max.  
Load 
[kN] 

2
0

0
9 

P1 

1 

HE220M 15.5 40 12 

31.8 2141 

2 34.9 2292 

3 35.3 2070 

P2 

1 

HE220M 15.5 40 12 

45.6 2249 

2 36.4 2343 

3 36.3 2254 

2
0

1
1

 

1a 

1 

HE220M 15.5 40 12 

26.8 1895.5 

2 26.6 1930.5 

3 26.8 2065 

1b 

1 

HE220M 15.5 40 12 

54.4 1668 

2 54.7 1612.5 

3 56.1 1684 

2-1a 

1 

HE240A 7.5 40 12 

29.2 1579.5 

2 29.6 1841 

3 29.6 1764.5 

2-1b 

1 

HE240A 7.5 40 12 

56.9 1536 

2 60.0 1582.5 

3 57.6 1655.5 

2-2a 

1 

HE220M 15.5 25 12 

32.2 2033 

2 32.6 2022 

3 33.3 2034 

2-2b 

1 

HE220M 15.5 40 25 

38.6 4143 

2 41.1 3993 

3 40.4 3798.5 

2-3 

1 

HE220M 15.5 25 12 

37.7 1377.5 

2 38.4 1486 

3 38.7 1386 

 
The position of the strain gauges is shown in Figure, 3.2.2.2. For the reinforcement 
bars in layer 1, 3 and 5 only one strain gauges was put at the centerline of the 
specimen. Gauges on bars in layer 3 and 5 were placed at the lower edge of the 
bar, when the bar in layer 1 had to be turned by 180 degrees before concreting, to 
avoid that the end hook sticks-out at the upper edge of the specimen after 
concreting. Therefore, the strain gauge on the reinforcement bar on level 1 was 
finally positioned at the upper edge of the bar. The dowel reinforcement in layer 
2 and 4 had strain gauges at 5 positions: - at each end one strain gauge and three 
strain gauges at the centre and at a distance of 250mm of the centre towards each 
end. The three strain gauges were put at an angle of 120degrees to allow for 
measuring possible bending of the reinforcement bar. Because the strain gauges 
have to be placed on a flat surface to measure correctly, the diameter of the 
reinforcement had to be reduced slightly.   
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Extensometers were used to measure the relative slip between the concrete slabs 
and the steel sections and the steel plate the specimens were placed onto at 
specific points. The position of the extensometers are given in Figure 3.2.2.3. In 
detail:  
-  Extensometers 1 and 1-1 are placed at the centreline of the specimens, 
-  Extensometers 2 and 2-2 between the horizontal load introduction beam and 

the upper edge of the concrete slabs to allow for the determination of a possible 
inclination of the load introduction beam, 

-  Extensometers 4 and 4-4 and 6 and 6-6 allowed to identify a possible separation 
of the concrete slabs from the steel section (requirement of EN 1994-1-1, Annex 
B.2.4(4) [EN1994]), 

-  in combination with 3 and 3-3 and 5 and 5-5 a possible inclination of the concrete 
slabs can be determined.  

-  The relative displacement between the steel sections and the concrete slabs is 
measured with the extensometers “Soben” and “Sunten”. With the values of 3 and 
3-3 and 5 and 5-5 the slip between the steel sections and the concrete slabs was 
calculated. 

 

 
Figure 3.2.2.3: Position of Extensometers [Stu2011] 
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3.2.3 Material properties 

3.2.3.1 Concrete 

Together with the concreting of the push-out specimens, cubes with dimensions 
15cm x 15cm x 15cm and rectangular prisms with dimensions 53cm x 10cm x 10cm 
were concreted [DIN12390-1], [DIN12390-2]. Per push-out series ten cubes and 
nine prisms were produced and stored next to the push-out specimens. Three 
cubes per series were stored under water. At the day of the push-out test, the 
corresponding material properties were determined with the cube tests (concrete 
compression strenght, [DIN12390-3]) and the prisms (bending tensile strength, 
[DIN12390-4]). An overview of the cube and prism test results, given as mean 
values, and the time of testing is given in Table 3.2.3.1.he compression strength is 
given as cylinder value, calculated from the cube tests. The given results were 
performed by testing at the University of Stuttgart, Germany.  

 
Table 3.2.3.1: Test Results - Concrete 

Series 
Concreting 

Date 

Cube and 
Prism 
Tests 

Concrete compression 
strength 

Concrete Tensile 
Strength 

fctm [MPa] 
fc,cube 
[MPa] 

fc,cyl* 
[MPa] 

1a 29.04.2011 

16.06.2011 33.1 26.8 4.1 

17.06.2011 32.8 26.6  

27.06.2011 33.1 26.8  

1b 06.05.2011 
28.06.2011 67.2 54.4 5.1 

29.06.2011 67.5 54.7  

2-1a 12.05.2011 

30.06.2011 69.3 56.1 4.0 

04.07.2011 36.0 29.2  

05.07.2011 36.6 29.6  

2-1b 18.05.2011 
06.07.2011 36.5 29.6 5.3 

07.07.2011 70.2 56.9  

2-2a 26.05.2011 
11.07.2011 74.1 60.0 4.4 

12.07.2011 71.1 57.6  

2-2b 10.06.2011 
20.07.2011 39.7 32.2 4.7 

21.07.2011 40.2 32.6  

2-3 01.06.2011 
13.07.2011 41.1 33.3 4.7 

20.07.2011 47.7 38.6  

* Converted from cube test to cylindrical compression strength, fc,cyl = 0.81 x fc,cube 
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3.2.3.2 Reinforcement 

Two different diameters had been used as dowel reinforcement, diameter 12mm 
and 25mm. Only three tensile tests were performed per diameter, because the 
dowel reinforcement bars were delivered from the same production series. The 
tensile strength was determined by a standard tension test according to 
[DIN50125] and [DIN10002], at the University of Stuttgart, Germany. The results 
of the tensile tests are given in Table 3.2.3.2. 
  
Table 3.2.3.2: Test Results - Reinforcement 

Diameter 
[mm] 

Test 
Cross-sectional area 

[mm2] 
Rp0,2 

[MPa] 
Rm 

[MPa] 
Yield strain 

[-] 

12 

1 111.4 529.9 583.6 2.65 x 10-3 

2 111.2 527.7 580.6 2.64 x 10-3 

3 111.2 534.6 583.4 2.67 x 10-3 

Mean value: 111.3 530.6 582.5 2.65 x 10-3 

25 

1 495.2 524.5 633.2 2.62 x 10-3 

2 496.2 526.3 632.1 2.63 x 10-3 

3 497.0 537.2 645.3 2.69 x 10-3 

Mean value: 496.1 529.3 636.9 2.65 x 10-3 
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3.2.3.3 Structural Steel 

The testing of the material properties of the hot-rolled steel sections was 
performed in the laboratories of ArcelorMittal. The test specimens were taken 
from the top flange right “FR”, left “FL” and at the centre of the web, indicated 
with “W”, in accordance with [EN6892]. Results are given in Table 3.2.3.3. 
 
Table 3.2.3.3: Test Results - Structural Steel 

Specimen Position 
ReH 

[MPa] 
ReL 

[MPa] 
Rm 

[MPa] 
Strain 

[-] 

ROA1 
(HE240A) 

FR 439 431 523 2.195 x 10-3 

FL 443 440 523 2.215 x 10-3 

W 503 476 578 2.515 x 10-3 

Mean value:  462 449 541 2.308 x 10-3 

ROM1 
(HE220M) 

FR 364 356 496 1.820 x 10-3 

FL 373 365 506 1.865 x 10-3 

W 396 393 506 1.980 x 10-3 

Mean value:  378 371 503 1.888 x 10-3 

ROM2 
(HE220M) 

FR 392 379 505 1.960 x 10-3 

FL 364 360 500 1.820 x 10-3 

W 395 392 505 1.975 x 10-3 

Mean value:  384 377 503 1.918 x 10-3 

ROM3 
(HE220M) 

FR 367 363 506 1.835 x 10-3 

FL 387 377 514 1.935 x 10-3 

W 399 391 518 1.995 x 10-3 

Mean value:  384 377 513 1.921 x 10-3 

ROM4 
(HE220M) 

FR 362 359 500 1.810 x 10-3 

FL 380 377 509 1.900 x 10-3 

W 397 392 512 1.985 x 10-3 

Mean value:  380 376 507 1.898 x 10-3 

 

3.2.4 Opening of the specimens 

After testing, selected push-out specimens were opened by cutting to obtain 
information about the deformation of the dowel reinforcement and the concrete 
damage near to the web opening, Figure 3.2.4.1. The cut was done at the edge of 
the web, through the concrete slab and the upper flange. 
 
The deformation of the some dowel reinforcement bars is shown in Figure 3.2.4.2. 
From the deformed shape after testing the assumption of a shear dominated 
failure with two shear surfaces at the edge of the web of the reinforcement seems 
to be reasonable.  
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Figure 3.2.4.1: Cutting of Push-out Specimen 

 

  
Figure 3.2.4.2: Extracted Dowel Reinforcement Bars 

 
Directly in the web opening, the concrete matrix was totally destroyed. The 
concrete stone was crushed to sand and could be scratched out of the web 
opening very easily. Outside of the web opening the concrete was locally, under 
the dowel reinforcement damaged, where the concrete matrix next to the 
reinforcement bar seemed to remain undameged, Figure 3.2.4.3. 

 

  
Figure 3.2.4.3: Concrete in the web-opening 
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Opening of Test speciments in 2012 
 

In addition, the author opended one specimen per push-out Series by hand, some 
results are given in Figure 3.2.4.4. 
 
Push-out Test 1a: 

 

 

 
Push-out Test 1b: 

 

 

 
Push-out test 1b: 

 

Push-out Test 2-2b: 

 
Figure 3.2.4.4: Opening of Specimens by hand 
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3.2.5 Test results 

The load-slip curves for the 2011 push-out test series are given in Annex B1 and 
B2. Hereafter only the curve for tests 1a is given, Figure 3.2.5. The relative 
displacement between the steel sections and the concrete slabs is calculated by 
the measurement of the extensometers “Soben” and “Sunten” in combination with 
the values of 3 and 3-3 and 5 and 5-5.  

 

 
Figure 3.2.5: Load-Slip curves for Series 1a 

 
The measurements of the strain gauges are given in Annex B3. 
 

3.3 Additional Tests on Dowel Reinforcement 

Additional tensile tests on dowel reinforcement bars extracted by the author from 
push-out specimens (cf. Section 3.2.4) were done at the University of Luxembourg. 

Aiming to measure the rupture strain r and the cross sectional area at rupture Ar, 
the tests were performed displacement controlled, with a maximum test speed of 
2.25mm/min. With the obtained data a true stress-logarithmic strain curve of the 
dowel reinforcement could be derived, which is required as input in Abaqus 
[Abaqus] for the simulation of ductile damage of metals and shear damage it is 
refered to Chapter 5. 
Figure 3.3.1. presents the engineering stress-strain curve calculated from the 
measured load-displacement curve. As reference length l0 (length before testing) 
the length between the fixation points, the clamps was taken. Additionally, two 
marks were fixed on the bar using red tape and the distance between the marks 
measured before and after testing. Figure 3.3.2 shows the dowel reinforment for 
test 1a, pictures for the other tensile test specimens after rupture are given in 
Annex B4. 
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Figure 3.3.1: Stress-strain curves from tensile tests, Uni LU 2018 

 
After testing also the circumference at rupture Ur was measured. To improve the 
precision fo the measured values, the double circumference was measured, Table 
3.3. This value was used to calculate the average diameter at rupture dr and the 
corresponding cross sectional area at rupture Ar. 

𝑈𝑟 = 𝜋 ∙ 𝑑𝑟 ⇒ 𝑑𝑟 =
𝑈𝑟

𝜋
=

25.9𝑚𝑚

𝜋
= 8.24mm 

𝐴𝑟 = 𝜋 ∙ (
𝑑𝑟

2
)

2

⇒ 𝐴𝑟 = 𝜋 ∙ (
8.24

2
)

2

= 53.4𝑚𝑚2 

Compared to the nominal cross sectional area before testing (A0 = 113.1mm2), the 
reduction of area was 53%. Using the assumption of a linear relationship of true 
stress versus logarithmic strain, a true-stress logarithmic strain curve was 
determined [Ar2011]. It is further assumed, that the onset of necking is starting at 
the ultimate stress and a reduction of the cross sectional area starts at this point. 
The true stress at rupture are now calculated with: 

𝜎𝑟,𝑡𝑟𝑢𝑒 =
𝜎𝑟 ∙ 𝐴0

𝐴𝑟
=

379.7 ∙ 113.1

53.4
= 804.5𝑁

𝑚𝑚2⁄   

Table 3.3: Tensile Tests Uni LU 2018 – Test Results (Engineering stresses) 

Specimen Length Onset of Necking Rupture 
Circumference 

after testing 

 l0
a 

[mm] 
l1

b 
[mm] 

Strain 
[0/00] 

Stress 
[N/mm2] 

Strain 
[0/00] 

Stress 
[N/mm2] 

2 x Ur 
[mm] 

1a 93 111.9 12.804 596.45 20.147 370.12 51.0 

1b – 1 93 111.7 12.642 593.68 19.892 385.96 52.5 

2 - 1b – 1 91 110.3 13.824 596.06 21.020 368.24 51.0 

2 - 1b – 2 91 110.1 13.226 589.09 20.726 394.31 53.0 

2 – 3 – 1 110 128.3 10.366 592.41 16.483 377.46 51.5 

Averagec:   13.12 593.8 20.45 379.7 Ur = 25.9mm 
a l0 = Length between the clamps before testing 
b l1 = Length between the clamps after testing 

Stress  [MPa] 

Strain  [0/00] 
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c Test 2-3-1  not considered in calculation of average values 

 

  
 
Figure 3.3.2: Tensile Test Specimen 1a, Uni LU 2018 

 
For the numerical simulation also the value of elongation of the bar in relation to 
the necking zone is requried input data. Assuming the reduction of the cross 
section along the bar follows the function of logarithmic naturalis (ln-Function) 
and the Volume of the specimen did not change during the test, the average 
elongation can be calculated with: 

𝑙0
∗ ∙ 𝑟0

2 ∙ 𝜋 ≈ (𝑙0
∗ + ∆𝑙∗) ∙ (𝑟1 +

𝑟0−𝑟1

2
)
2

∙ 𝜋 (3.1) 

with 
r0 nominal radius before testing 
r1  minimum radius after testing, calculated from measured Ur, Table 3.3 

l*  calculated elongation of the bar  

l0* + l*  length between the points of r0 and r1, calculated from ln-Function 
 

𝑙0
∗ ∙ 𝑟0

2 ≈ (𝑙0
∗ + ∆𝑙∗) ∙ (𝑟1 +

𝑟0−𝑟1

2
)
2

 (3.2) 

𝑙0
∗ ∙ 62 ≈ 5.6 ∙ (4.12 +

6−4.12

2
)
2

⇒ 𝑙0
∗ = 3.98𝑚𝑚  

(𝑙0
∗ + ∆𝑙∗) − 𝑙0

∗ = ∆𝑙∗ = 5.6 − 3.98 = 1.62𝑚𝑚  

 
And finally, the plastic strain at rupture of the necking zone is calculated: 

𝜀𝑟
∗ =

∆𝑙∗

𝑙0
∗ =

1.62

3.98
= 0.407 ⇒ 𝜀𝑟

∗ = 40.7% 

 



 Chapter 4: Evaluation of Push-out Tests 

51 
 

4 Evaluation of Push-out Tests 

4.1 Test Overview and Results 

The test program was defined in such a way, that besides of the non-avoidable 
variation of the concrete compression strength, only one parameter was varied 
from one test series to another. Hence, by simple result comparison the influence 
of the relevant parameter on the load-bearing behaviour could be investigated, 
Table 4.1.1. 
 
Table 4.1.1: Push-out test Series 2011, investigated parameters  

Series 
tw 

[mm] 

O web-
opening 

[mm] 

d, diameter 
dowel bar 

[mm] 

fcm
a 

[MPa] 

Influence of varied 
parameter 

by comparison with 

1a 15.5 40 12 26.7 

fcm 
tw 

O 
d 

1a – 1b  
1a – 2-1a 
1a – 2-2a 
1a – 2-2b 

1b 15.5 40 12 55.1 

fcm 
tw 

O 
d 

1b – 1a 
1b – 2-1b 
1b – 2-2a 
1b – 2-2b 

2-1a 7.5 40 12 29.5 
fcm 
tw 

2-1a – 2-1b 
2-1a – 1a 

2-1b 7.5 40 12 58.2 
fcm 
tw 

2-1b – 2-1a 
2-1b – 1b 

2-2a 15.5 25 12 32.7 O 2-2a – 1a, 2-2a – 1b 

2-2b 15.5 40 25 40.0 d 2-2b – 1a, (2-2b – 1b) 

2-3b 15.5 25 12 38.3 
Influence of concrete in the 
web-opening 

a) Average value for the Series of three push-out tests 
b) Series 2-3: concrete infill in the web-opening 

 
The maximum load obtained in the experiments, Pe,max, and the initial stiffness Sini, 
which is defined as a load versus slip ratio, is given as average value for each series 
in Table 4.1.2. In addition, a load corresponding to the maximum load level in the 
linear range was defined, Pe,lin. Up to displacements corresponding to Pe,lin the 
stiffness remains constant at the value Sini. For load levels higher than Pe,lin a 
significant stiffness decrease was observed for all performed push-out tests. The 
determination of Sini and Pe,lin for test Series 1a is shown in Figure 4.1.1. The 
definition of Sini and and Pe,lin for test Series 1b, 2-1a, 2-1b, 2-2a and 2-2b is given 
in Annex B2. A detailed explanation for this significant decrease of the initial 
stiffness is presented in Section 4.2 and Chapter 6. 
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Table 4.1.2: Results push-out test Series 2011  

Series 
fcm

a 
[MPa] 

Initial Stiffnessa 
[kN/mm] 

Pe,lin
a 

[kN] 
Pe,max

a 
[kN] 

Pe,static
a 

[kN] 

1a 26.7 2346 793 1964 1808 

1b 55.1 2950 979 1655 1505 

2-1a 29.5 2346 682 1728 1547 

2-1b 58.2 2638 911c 1591 1443 

2-2a 32.7 2500 766 2030 1890 

2-2b 40.0 3359 965 3978d 3540d 

2-3b 38.3 - - 1417 1233 
a) Average value for the Series of three push-out tests 
b) Series 2-3: concrete infill in the web-opening 
c) Test 2-1b-P3 not considered 
d) Failure of the concrete at the support and not of the dowel reinforcement 

 

 
Figure 4.1.1: Push-out test Series 1a, definition of Sini and Pe,lin 

 

The influence of various parameters, namely fcm, tw, d and O, on the load-bearing 
behaviour is shown in the subsequent Figures. The reader might bear in mind, that 
a small variation of fcm for all tests was not avoidable due to the character of the 
material. 

 
  

Test 
Pe,lin 
[kN] 

Sini 
[kN/mm] 

1a-P1 814.0 2931 

1a-P2 773.5 1956 

1a-P3 790.5 2151 

 
 

Pe,lin 

Sini 

Slip s [mm] 

Load P [kN] 
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Influence of fcm: Comparison of test Series 1a with 1b and 2-1a with 2-1b 
 
A significant influence on the load-bearing behaviour has the concrete 
compression class. When comparing results of Series 1a with 1b not only an 
influence on the maximum load could be observed, but also on the overall load-
bearing behaviour, Figure 4.1.2. A higher value of fcm is leading to an increase of 
Pe,lin and an accentuated reduction of stiffness at a higher load level, leading to a 
horizontal plateau of the load-slip curve. No further load increase is possible, 
which might be due the absence of friction. The load-slip curves of Series 1a show 
a reduction of stiffness already at a lower load level, but further load increase is 
still possible before a plateau is reached at a higher slip. It is remarkable that lower 
values of fcm led to higher maximum load and higher ductility. This observation 
could be confirmed by comparison of Series 2-1a with 2-1b, where steel profiles 
with a smaller web-thickness were tested, Figure 4.1.3.  
 

  
Figure 4.1.2: Series 1a and 1b Figure 4.1.3: Series 2-1a and 2-1b 

 
 

Influence of tw: Comparison of test Series 1a with 2-1a and 1b with 2-1b 
 
No significant influence of the varied web thickness tw on the maximum load Pe,max 
could be found, Figures 4.1.4 and 4.1.5. However, a slight tendency of smaller web 
thickness towards a reduction of the maximum load and towards an earlier failure 
of the dowel reinforcement could be observed. This influence of tw is further 
considered in Section 4.2, where an analytical formulation of Plin is derived. 
 

  
Figure 4.1.4: Series 1a and 2-1a Figure 4.1.5: Series 1b and 2-1b 

  

Pe [kN] Pe [kN] 

s [mm] s [mm] 

s [mm] s [mm] 

Pe [kN] Pe [kN] 
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Influence of d: Comparison of test Series 1a with 2-2b and 1b with 2-2b 
 
An increase of the diameter of the transversal dowel reinforcement d from 12mm 
to 25mm had a significant influence on the maximum load, Figures 4.1.6 and 4.1.7. 
In series 2-2b, no failure of the dowel reinforcement was obtained. Instead, the 
concrete next to the support failed. Therefore, the maximum load measured does 
not give information about the possible dowel resistance and could not be used to 
formulate an analytical equation for d = 25mm. Nevertheless, Pe,lin was observed 
and included into the analytical formulation of Pt,lin, see Section 4.2. 
 

  
Figure 4.1.6: Series 1a and 2-2b Figure 4.1.7: Series 1b and 2-2b 

 
 

Influence of O: Comparison of test Series 1a with 2-2a and 1b with 2-2a 
 

No influence of a reduction of the web-opening O from 40mm to 25mm on the 
value of the maximum load was observed. However, the maximum load was 

reached at smaller displacements for O = 25mm. In addition, failure of the dowel 
reinforcement occured at smaller slip, the dowel behaved less ductile compared 

to O = 40mm, Figure 4.1.8.  
A comparison of series 1b with 2-2a is presented in Figure 4.1.9. The load-bearing 

behaviour is mainly determined by fcm and less by the variation of O, which 
confirms the above described influence of fcm. 
 

  
Figure 4.1.8: Series 1a and 2-2a Figure 4.1.9: Series 1b and 2-2a 

 

  

Pe [kN] Pe [kN] 

s [mm] s [mm] 

s [mm] 

Pe [kN] 

s [mm] 

Pe [kN] 
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4.2 Test Analysis 

In order to develop an analytical formulation of the load bearing capacity of CoSFB-
Dowels, possible correlations of the test results were investigated. The most 
important results are presented hereafter. In the previous Section, the influence 
of fcm on the behaviour of load bearing has been shown. It is expected that the 
concrete compression strength have a significant influence on the maximum 
experimental load, Pe,max. In Figure 4.2.1a a plot of Pe,max versus the concrete 
compression strength fcm is shown. No unambiguous relationship between fcm and 
Pe,max is observed. In fact, the maximum load is even inverse proportional to fcm. 

 
 
Elastic limit, Pe,lin – Concrete Component 

 
Hence, a relationship between fcm and the limit of the linear range, Pe,lin, has been 
investigated, Figure 4.2.1b. A slight increase of the load with increasing concrete 
strength can be observed. The reader might remember, that test Series 2-2b failed 
due to concrete failure at the abutment of the push-out test and not, as for the 
other test series, due to failure of the dowel reinforcement. 
 

  

 

Figure 4.2.1a: Pe,max versus fcm Figure 4.2.1b: Pe,lin versus fcm  
 
As shown in Section 4.1, other parameters apart from fcm had influence on the 
load. Different possible interactions have been investigated. Excellent correlation 

was found for Pe,lin versus fcm  tw  O with  = Pe,lin / fcm  tw  O , Figure 4.2.2. 
 

 

 

Figure 4.2.2:  versus fcm  tw  O  

 = 36.919  (fcmtwO)-0.713 
(R2 = 0.9709) 

fcm  tw  O  [kN] 

 [-] 

Pe [kN/Dowel] Pe,lin [kN/Dowel] 

fcm [MPa] fcm [MPa] 

d = 25mm 
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In the analytical formulation of  the test Series 2-3 was not taken into account. 
Also the result of test 2-1a-P3 was not considered, because this result is not 
representative for the given configuration, see Figure B2.4 of Annex B2. Comparing 
the results of test Series 1a with Series 2-2b no influence of the dowel 
reinforcement on Pe,lin could be found. But, due to the limited amount of available 
test results, this might be subject of further investigations. The above described 
process is leading to the following theoretical formulation of the linear load, Pt,lin: 

𝑃𝑡,𝑙𝑖𝑛 = 𝜂 ∙ 𝑓𝑐𝑚 ∙ 𝑡𝑤 ∙ ∅𝑂 (4.1) 

with 
𝜂 = 36.919 ∙ (𝑓𝑐𝑚 ∙ 𝑡𝑤 ∙ ∅𝑂)−0.713 [kN].  

The factor  can be interpreted as a confinement factor for the uniaxial concrete 
compression strength fcm, which is related to the triaxial stress state in the 
concrete in the web-opening. Previous investigations on the resistance of concrete 
bearing strength under local pressure found smaller confinement factors 
[Sou1987], [Li1989], [Ko2011]. The relatively high confinement of the concrete in 
CoSFB-Dowels is caused by the restrain of the concrete in the circular opening and 
by the concrete in the chamber of the steel profile. In accordance with previous 
findings about concrete confinement [Ri1928], [Ri1929], [Md1988] and others, the 

concrete confinement factor  is inversely proportional to the concrete 

compression strength, fcm,  and to the volume of confined concrete, tw  O. The 
load Pt,lin as defined by the above given Equation 4.1 represents the maximum load 
transferable by the concrete component, limited by a local concrete compression 
strength. This finding corresponds to findings of previous researchers as e.g. given 
by Leonhart, Wurzer, Zapfe and others. 
After Plin is reached, the activation of the dowel reinforcement is initiated, which 
is confirmed by the measurement of strain gauges, Figures 4.2.3 and 4.2.4. As 
shown in Figure 4.2.3, the dowel reinforcement in level 1 (the nearest to the load 
introduction) is activated first, consecutively the other dowel bars are activated.  
 

  
Figure 4.2.3: Test 1a – P1  

 
As explained in Chapter 3, the strain gauge was fixed on the upper edge of the 
dowel reinforcement of level 1. Three strain gauges were fixed on the 
reinforcement bars at level 2 and 4, Figure 3.2.2.2. Their positive and negative 
values allow for the conclusion, that the bar is subjected to bending. With the 
assumption, that all dowel bars are activated in the same way, the negative strain 

Pe [kN] Pe [kN] 

10-3 [m/m] 10-3 [m/m] 

Pe,lin = 793 kN 
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measured on level 1 compared to the postive values of level 3 and 5 (the strain 
gauges was fixed at the lower edge of the bar), also indicates bending of the 
reinforcement. Only very small strains could be measured below Pe,lin. These 
observations are confirmed by all test results, see Figures in Annex B3. The 
activation of the dowel action exceeding Pe,lin could be confirmed by numerical 
simulation, Chapter 5. With increasing deformation of the dowel axis friction 
forces are activated. 
 

  
Figure 4.2.4: Test 1b – P2  

 
 

Initial Stiffness, Sini 
 
In the linear phase of the load-slip curves the increase of the load by several 
hundred kN is corresponding to a slip value of only 0.1mm, which results in values 
larger than 2000kN/mm for the initials stiffness, Sini. Hence, a high sensitivity of 
the calculated values for Sini in relation to the measured slip values was found. 
Further, the measurement of slip values below 0.1mm are within the tolerances 
of the testing devices. Therefore, the obtained Sini-values are scattered and the 
author decided not to derive an analytical formulation for the initial slip. 
Nevertheless, based on the average slip Sini for each test series, some general 
tendencies could be identified: 
 
- Comparing the initial stiffness of test Series 1a with Series 1b and of Series 2-

1a with 2-1b, a slight proportionality of the stiffness to the concrete 
compression strength could be observed, Figure 4.2.5 and Table 4.1.2. 

- No significant influence of the web thickness tw (comparison of Series 1a with 
2-1a and 1b with 2-1b) could be found. 

- No influence of the diameter of web-opening O could be found.  
- Compared to test Series 1a and 1b, Series 2-2b shows a higher value of the 

initial stiffness Sini. This may lead to the conclusion, that the diameter of the 
dowel reinforcement d has a certain influence on Sini. However, more tests to 
validate this assumption and to derive a formulation for Sini are needed.   
  

10-3 [m/m] 10-3 [m/m] 

Pe [kN] Pe [kN] 

Pe,lin = 979 kN 
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Figure 4.2.5: Sini versus fcm  

 

Dowel action, P 
 
The difference between the maximum load obtained by testing Pe,max and the 
linear load Pe,lin for all push-out tests is given in Table 4.2. The load corresponding 

to dowel action was defined as Pe = Pe,max – Pe,lin. No direct correlation for Pe to 
the web-opening or to the web-thickness could be found for the performed push-

out tests, Figure 4.2.6. However, it was found that Pe is inversely proportional to 
fcm, Figure 4.2.7.  
 

  

 

Figure 4.2.6: Pe versus fcm  tw Figure 4.2.7: Pe versus fcm  

 
The diameter of the dowel reinforcement was 12mm, only varied for test Series 2-

2b with d = 25mm. Despite a certain influence on Pe is shown in Figures 4.2.6 and 
4.2.7, the available amount of test data is not sufficient to perform scientific 
investigations of the influence of the bar diameter. Nevertheless, the influence of 

d is considered in the proposed analytical formulation for Pe, Chapter 6.  
  

Pe [kN] 

fcm [MPa] fcm  tw [N/mm] 

Pe [kN] 

Sini [kN/mm] 

fcm [MPa] 

d = 25mm d = 25mm 

Sini vs fcm 
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Table 4.2: Results push-out test Series 2011, Pe  

Series 
fcm 

[MPa] 
Pe,lin 
[kN] 

Pe,max 
[kN] 

Pe = Pe,max Pe,lin 
[kN] 

1a-P1 26.8 814.0 1895.5 1081.5 

1a-P2 26.6 773.5 1930.5 1157.0 

1a-P3 26.8 790.5 2065.0 1274.5 

1b-P1 54.4 940.0 1668.0 728.0 

1b-P2 54.7 987.0 1612.5 625.5 

1b-P3 56.1 1010.5 1684.0 673.5 

2-1a-P1 29.2 701.5 1579.5 878.0 

2-1a-P2 29.6 659.5 1841.0 1181.5 

2-1a-P3 29.6 685.0 1764.5 1079.5 

2-1b-P1 56.9 887.0 1536.0 649.0 

2-1b-P2 60.0 935.0 1582.5 647.5 

2-1b-P3 57.6 1652.5 1655.5 - 

2-2a-P1 32.2 744.5 2033.0 1288.5 

2-2a-P2 32.6 772.0 2022.0 1250.0 

2-2a-P3 33.3 780.0 2034.0 1254.0 

2-2b-P1 38.6 856.0 4143.0 3287.0 

2-2b-P2 41.1 1047.5 3993.0 2945.5 

2-2b-P3 40.4 991.5 3798.5 2807.0 

 

Figure 4.2.8 presents Pe per dowel for test Series with d = 12mm and concrete in 
the web-opening (Series 2-2b and 2-3 are not shown) versus fcm. In addition, the 
theoretical plastic shear resistance Vt,pl and tension resistance Nt,pl for the dowel 
reinforcement is marked. The resistance values are calculated as follows: 

𝑉𝑡,𝑝𝑙 = 𝜋 ∙
𝑑2

4
∙

𝑓𝑦

√3
= 𝜋 ∙ 62 ∙

530.6

√2
= 34.6𝑘𝑁 (4.2) 

𝑁𝑡,𝑝𝑙 = 𝜋 ∙
𝑑2

4
∙ 𝑓𝑦 = 𝜋 ∙ 62 ∙ 530.6 = 60.0𝑘𝑁 (4.3) 

The theoretical plastic shear resistance of the dowel reinforcement Vt,pl, defines a 
lower limit of the load bearing capacity of the dowel action using a higher concrete 
compression strength (Series 1b and 2-1b). Shear is the dominating action on the 
dowel reinforcement and consequently the failure is dominated by a shear failure 
of the reinforcement, Figure 4.2.8 Series 1b, 2-1b. The results of tests performed 
with a lower concrete compression strength (Series 1a, 2-1a, 2-2a) showed a 
tension dominated failure of the dowel reinforcement, which could be confirmed 
by analysing the after testing extracted reinforcement bars, Figure 4.2.8 Series 1a, 
2-1a, 2-2a.  
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Figure 4.2.8: Pe per dowel versus fcm – Tension and Shear dominated Failure 
 

The load Pe for Series 1a, 2-1a and 2-2a is close to the value of the theoretical 
plastic tensile strength Nt,pl. But, because the dowel bar is subjected to tension, 
bending and shear, possible interaction of these forces has to be considered and 
the full plastic tensile strength may not be reached. Additional effects as e.g 
friction may also contribute to the load transfer. The influence of friction is 
investigated by numerical simulation, Chapter 5. 
 
The load-slip curves for push-out Series 2-3 are given in Figure 4.2.9. All three tests 
were performed without concrete infill of the web-openings. Due to the absence 
of this concrete infill, possible load transfer by the “concrete component” as above 
described was eliminated. The maximum load obtained is higher than the 
theoretical plastic tensile strenght of the reinforcement, which indicates the 
activation of friction forces.  
 

Pe [kN/Dowel] 

fcm [MPa] 

 2  Vt,pl = 69.3 kN 

 2  Nt,pl = 120.0 kN 
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Figure 4.2.9: Load-slip curves Series 2-3 

 
Finally some of the irregluarities found by opening of the specimens are presented. 
This might give possible explanations of the result of test 2-1b-P3. Unfortunatelly 
only one push-out specimen per series was opened, no pictures are available for 
Series 2-1b-P3. 
 

   
Figure 4.2.10: Test 
2-1b-P1, Friction 

Figure 4.2.11: Hooked bar, test 2-2a-P3 

 
In Figure 4.2.10 a scratch path of the dowel reinforcement bar on the web of the 
steel section after cracking is shown. Figure 4.2.11 presents a dowel reinforcement 
bar,  which did not detach from the web-opening after cracking. It was hooked at 
the edge of the web, which certainly had influenced the measured load-slip values 
 

  

 2  Nt,pl10 Dowels = 1200 kN 

Pe [kN] 

s [mm] 
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4.3 Conclusions from Test Analysis 

The test observations and the analysis of test results lead to the following 
explanations of the load bearing behaviour. 
 
Sini: As main influencing parameters on the initial stiffness Sini the concrete 

compression strength fcm could be determined. Also small influence of 
the diameter of the web-opening was found. Further tests seem to be 
necessary to allow for final conclusions, especially about a possible 
influence of the diameter of the dowel reinforcement. 

Plin: The load level defined as Plin, is influenced by the concrete compression 
strength fcm and the size of the web-opening, expressed as the product 

tw  O. In addition, an increase of the uniaxial concrete compression 
strength due to the increased strength of concrete on small bearing area 
[Li1989] and the triaxial stress state in the web-opening is influencing 
Plin. 

Pmax, P: The maximum load Pmax is composed of a concrete component Plin and 

the activation of the dowel reinforcement, “dowel action”, P. The 
activation of the dowel reinforcement depends on the strength of the 
bar on shear and tension and to its ability to crush the concrete 
underneath. Therefore, Pmax depends on the strength of the bar in 
relation to the local bearing strength of the concrete. This relationship 
is decisive for a possible activation of catenary action of the dowel 
reinforcement.  

 
Finally, the load-bearing behaviour of CoSFB-Dowels can be described: 
An elastic behaviour of the specimen was observed up to the limit of Plin. Reaching 
the load level of Plin damage of the concrete in the web-opening starts and is 
quickly progressing. Damage corresponds to a reduction of the local stiffness and 
consequently, no additional load can be transferred by this load path anymore. 
In the presence of transversal reinforcement bars through the web-opening, 
further load increase beyond Plin is possible. This second load path (= dowel 
action), is determined by the diameter of the dowel reinforcement, its ultimate 
strength and its strain at failure, the rupture strain. The dowel reinforcement is 
subjected to shear forces and, at larger deformations of the dowel axis, to tension. 
By keeping the diameter and the strength of the dowel reinforcement constant 
and varying only the concrete strength, the following behaviour was observed: 
- At high concrete strength, the dowel bar is subjected mainly to shear forces. 

The bar is not able to damage the concrete underneath, the axis of the bar 
cannot deform. The bar is subjected to shear forces only, failure of the dowel 
reinforcement will occur due to shear.  

- At lower concrete strength, the dowel bar is able to crush, to damage the 
concrete underneath and creates a space, allowing its axis to deform. The 
dowel bar is subjected to shear and in relation to the increase of the 
deformation of its axis, to tension. This effect was described by Paulay 
[Pau1974] as “kinking”. 
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5 Numerical Simulation of Push-Out Tests 

5.1 Introduction 

The Series of experimental push-out tests performed in 2011 at the University of 
Stuttgart has been simulated using FE software Abaqus [Abauqs]. The aim of the 
simulations was to investigate the internal flow of strain, stresses and forces and 
further, to identify the contribution of each component (dowel reinforcement, 
concrete, friction) to the overall load-bearing behaviour. First results of the 
numerical simulation of CoSFB-Dowels have been already published by the autor 
[NS2015], [SC2015], [ES2017]. 
A 3D solid model of the push-out tests has been developped using non-linear 
material laws to analyse the influence of the concrete compression class, the web 
thickness and the diameter of the web-opening on the load-bearing behaviour. 
More than 500 simulations have been performed. The model has been validated 
by comparison to the results of the push-out tests. Further, a sensitivity study has 
been performed. 
The numerical simulation of the given problem presents a highly non-linear 
problem with material and contact nonlinearities and large displacements. The 
simulation has been performed using quasi-static analysis in ABAQUS EXPLICIT, 
which allows better convergence than ABAQUS STANDARD in the presence of 
multiple contact definition. Following the recommendations of other researchers 
modelling push-out tests of composite members [Qur2011], the speed of 
simulation was set at 0.25mm/sec. This speed has proven to be adequate 
considering the energy balance verification [Qur2010]. The computation time was 
optimized by using the standard approach of mass scaling. The influence of 
different mass scale factors was analysed. For all in this document presented 
simulations the mass is artificially increased by a factor of 1000.  

5.2 Numerical Model 

5.2.1 Geometry, Boundary Conditions 

One axis of symmetry of the push-out test specimen has been used to reduce the 
size of the model and consequently the overall computing time. The model is 
composed of a concrete slab, a hot rolled section HE220M or HE240A, dowel 
reinforcement and a reinforcement mesh in the concrete slab above the upper 
flange of the hot rolled steel section. Further, a steel plate has been modelled to 
represent the floor, on which the specimen has been placed. The displacement of 
this steel plate was blocked in all three global directions, when at the axis of 
symmetry only the displacement in y-direction was blocked, Figure 5.2.1. 
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Figure 5.2.1: Geometry of numerical model 

5.2.2 Finite Element Mesh 

A type of solid element, which is most suitable to deal with non-linear materials 
and contacts at the same time was used, a C3D8R element: an 8-node linear brick, 
reduced integration with hourglass control. This element type has been applied to 
all the hexahedral mesh elements. The reinforcement mesh above the upper 
flange of the steel section is modelled as a wire, not solid element, and therefore 
beam elements, type T3D2 were applied. Each part of the model has been 
partitioned separately, which enabled to create the mesh as a structural mesh, 
using solid hexahedral elements. The mesh around the dowel reinforcement bars 
has been made locally finer, as larger deformations and stresses will appear in this 
area, Figure 5.2.2. 
 

 
Figure 5.2.2: Finite element mesh 
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5.2.3 Load 

A load introduction plate has been connected to a part of the hot rolled section. 
The plate has been coupled with a reference point, which was placed on the axis 
of symmetry. To simulate a displacement controlled testing, a displacement has 
been applied to this reference point. The reference point allows easily record the 
load-displacement curve, Point RP-1 in Figure 5.2.2. 

5.2.4 Interactions, Contact Definition 

The chosen modelling allowed for the definition of different interactions between 
the individual parts. If not otherwise indicated, hard contact as normal and as 
tangential behaviour different friction coefficients were applied. Also between the 
foundation steel plate and the concrete slab, the influence of different values of 
friction coefficients in tangential direction was analysed. The contact between the 
dowel reinforcement and the concrete was split into two principal areas: one for 
the part of the dowel bar in the slab and another one for the dowel bar in the 
chamber of the hot-rolled steel section, Figure 5.2.4. For the part of the bar in the 
slab, a tie constraint at the contact surface between the bar and the concrete was 
chosen. The slab was set as master and the dowel bar as slave surface. For the part 
of the dowel bar in the chamber various types of contact were analysed, cf. Section 
5.4. 
 

  
Figure 5.2.4: Areas for contact definition of the dowel reinforcement 
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5.3 Material Models 

5.3.1 Introduction 

Various constitutive laws are available in Abaqus, which allow very accurately 
simulate behaviour of the material in specific load conditions. These models often 
enable compensating interactions between elements of the system either to 
simplify the numerical analysis or because the interaction cannot be defined. To 
allow for the simulation of the failure of the dowel reinforcement as obtained in 
the tests, material models with ductile and shear damage have been applied for 
the dowel reinforcement. When it was possible to use simplified material models 
for structural steel and reinforcement mesh, because no damage has been 
observed in these parts. The concrete material has been modelled using Concrete 
Damage Plasticity. Influence of various parameters has been analysed and are 
presented in this Thesis. 

5.3.2 Structural Steel 

The structural steel has been modelled as a simple bilinear elasto-plastic material 
and applied to the hot-rolled steel section. The characteristic parameters of the 
material have been defined based on the results of tensile tests for specimens 
taken from the flange and the web as follows, Table 3.2.3.3: 
fy = 375 MPa, fu = 506 MPa, εu = 0.15, Young modulus 210 GPa, Poisson ratio 0.3 

5.3.3 Reinforcement Mesh, Q257 

Similarly to the structural steel, the material of reinforcement mesh (Q 257) has 
been also modelled as a simple bilinear elasto-plastic material. The following 
parameters were used: 
Q 257: fy= 530.7 MPa, fu = 582.7 MPa, εu = 0.05, Young modulus 200 GPa, Poisson 
ratio 0.3 

5.3.4 Dowel Reinforcement 

The failure observed in the push-out tests was determined by the dowel 
reinforcement reaching its rupture strain, cf. Chapter 3. Therefore, the material 
model used for the dowel reinforcement shall allow for an adequate simulation of 
the failure mode. Abaqus [Abaqus] gives the possibility for modelling progressive 
damage and failure in ductile metals, in conjunction with the Mises plasticity 
model. In general, an undamaged elastic-plastic response in form of true stress-
strain relations, a damage initiation criterion (onset of failure/damage) and the 
evolution of damage has to be defined as input. By using this approach the failure 
modes observed in the push-out tests of the dowel reinforcement can be 
simulated adequately. A material model based on damage is consequently applied 
as explained in the subsequent paragraphs, see also [Pav2013]. The following parts 
are citations from [Abaqus]. 
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Damage and failure for ductile metals [Abaqus] 
 
Material failure refers to the complete loss of load-carrying capacity as a result of 
progressive degradation of the material stiffness. The stiffness degradation 
process is modeled using damage mechanics. As illustrated in Figure 5.3.4.1, the 
stress-strain behaviour of the material shows distinct phases. The initial material 
response is linear elastic up to point b, followed by plastic yielding with strain 
hardening from point b to c. Beyond point c there is a marked reduction of load-
carrying capacity until rupture, c – d. The deformation during this last phase is 
localized in a neck region of a specimen used in tensile test. Point c identifies the 
material state at the onset of damage, which is referred to as the damage initiation 
criterion. Beyond this point, the stress-strain response c – d is governed by the 
evolution of the degradation of the stiffness in the region of strain localization. In 
the context of damage mechanics c – d can be viewed as the degraded response 
of the curve c – d’ that the material would have followed in the absence of damage. 
 

 
Figure 5.3.4.1: Typical stress-strain behaviour [Abaqus] 

 
Thus, the specification of a failure mechanism consists of the following parts: - the 
definition of the effective (or undamaged) material response; - a damage initiation 
criterion; - a damage evolution law. The material data for materials with ductile 

behaviour should be given as “true” stress true and logarithmic strain ln. They can 
be derived from test data (engineering stress) using the following equations: 

𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑡𝑒𝑠𝑡 ∙ (1 + 𝜀𝑡𝑒𝑠𝑡)  (5.1) 
𝜀𝑙𝑛 = ln(1 + 𝜀𝑡𝑒𝑠𝑡)  (5.2) 

The logarithmic plastic strain can be calculated with 

𝜀𝑙𝑛
𝑝𝑙 = 𝜀𝑙𝑛 − 𝜀𝑒𝑙 = ln(1 + 𝜀𝑡𝑒𝑠𝑡) −

𝜎𝑡𝑟𝑢𝑒

𝐸
  (5.3) 

where E is the Young modulus of the base material. 
 

The undamaged elastic-plastic response is simply modelled by using classical 
metal plasticity assuming that yielding of the metal is independent of the 
equivalent pressure stress (Mises yield surface): this observation is confirmed 
experimentally for most metals. The Mises yield surface is used to define isotropic 
yielding, it is defined by giving the value of the uniaxial yield stress as a function of 
uniaxial equivalent plastic strain. 
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As damage initiation criterion, which represents the onset of damage/failure, two 
main mechanisms causing the fracture of a ductile metal are considered: ductile 
fracture due to the nucleation, growth, and coalescence of voids; and shear 
fracture due to shear band localization. Based on phenomenological observations, 
these two mechanisms call for different forms of the criteria for the onset of 
damage [Hoo2004]. By specifying multiple damage initiation criteria for the same 
material, they are treated independently. Once a particular initiation criterion is 
satisfied, the material stiffness is degraded according to the specified damage 
evolution law for that criterion. 
The ductile criterion assumes that the equivalent plastic strain at the onset of 

damage 𝜀𝐷̅
𝑝𝑙

 is a function of stress triaxiality and strain rate: 𝜀𝐷̅
𝑝𝑙(𝜂, 𝜀 ̅̇𝑝𝑙), where  = 

-p /q is the stress triaxility, p is the pressure stress, q is the equivalent Mises stress 
and 𝜀̅̇𝑝𝑙 is the equivalent plastic strain rate. The stress triaxility is given by: 

𝜂 =
−𝑝

𝑞
=

(𝜎1+𝜎2+𝜎3) 3⁄

1
√2

⁄ ∙√(𝜎1−𝜎2)2+(𝜎2−𝜎3)2+(𝜎3−𝜎1)2
  (5.4) 

with the principal stresses 1, 2 and 3. 
The criterion for damage initiation is met when the following condition is satisfied: 

𝜛𝐷 = ∫
𝑑𝜀̅𝐷

𝑝𝑙

𝜀̅𝐷
𝑝𝑙

(𝜂,𝜀̇̅𝑝𝑙)
= 1 (5.5) 

where 𝜛𝐷 is a state variable that increases monotonically with plastic 
deformation. At each increment during the analysis the incremental increase in 

𝜛𝐷 is computed as   𝛥𝜛𝐷 =
𝛥𝜀̅𝐷

𝑝𝑙

𝜀̅𝐷
𝑝𝑙

(𝜂,𝜀̇̅𝑝𝑙)
≥ 0. (5.6) 

The shear criterion is a phenomenological model for predicting the onset of 
damage due to shear band localization. The model assumes that the equivalent 

plastic strain at the onset of damage 𝜀𝑆̅
𝑝𝑙 is a function of the shear stress ratio and 

strain rate: 𝜀𝑆̅
𝑝𝑙(𝜃𝑆, 𝜀 ̅̇

𝑝𝑙). Here 𝜃𝑆 = (𝑞 + 𝑘𝑆 ∙ 𝑝) 𝜏𝑚𝑎𝑥⁄  is the shear stress ratio max 

is the maximum shear stress, and kS is a material parameter. The criterion for 
damage initiation is met when the following condition is satisfied:  

𝜛𝑆 = ∫
𝑑𝜀̅𝐷

𝑝𝑙

𝜀̅𝑆
𝑝𝑙

(𝜃𝑆,𝜀̇̅𝑝𝑙)
= 1 (5.7) 

where 𝜛𝑆 is a state variable that increases monotonically with plastic deformation 
proportional to the incremental change in equivalent plastic strain. At each 
increment during the analysis the incremental increase in 𝜛𝐷 is computed as  

Δ𝜛𝑆 =
Δ𝜀̅𝐷

𝑝𝑙

𝜀̅𝑆
𝑝𝑙

(𝜃𝑆,𝜀̇̅𝑝𝑙)
≥ 0. (5.8) 

The evolution of damage is defined by a description of the rate of degradation of 
the material stiffness once the corresponding damage initiation criterion has been 
reached. At any given time during the analysis the stress tensor in the material is 
given by the scalar damage equation 𝜎 = (1 − 𝐷) ∙ 𝜎, where D is the overall 
damage variable and 𝜎 is the effective, undamaged stress tensor computed in the 
current increment. 𝜎 are the stresses that would exist in the material in the 
absence of damage. The material has lost its load-carrying capacity when D = 1.  
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The characteristic stress-strain behaviour of a material undergoing damage is 
illustrated in Figure 5.3.4.2. In the context of an elastic-plastic material with 
isotropic hardening, the damage manifests itself in two forms: softening of the 
yield stress and degradation of the elasticity. The solid curve in the Figure 
represents the damaged stress-strain response, while the dashed curve is the 
response in the absence of damage. The damaged response depends on the 
element dimensions to minimize the mesh dependency on the results. 
 

 
Figure 5.3.4.2: Progressive damage degradation [Abaqus] 

 

In the Figure 𝜎𝑦𝑜 and 𝜀0̅
𝑝𝑙 are the yield stress and equivalent plastic strain at the 

onset of damage, and 𝜀𝑓̅
𝑝𝑙 is the equivalent plastic strain at failure; that is, when 

the overall damage variable reaches the value D = 1. The overall damage variable, 
D, captures the combined effect of all active damage mechanisms and is computed 
in terms of the individual damage variables, di. 

The value of the equivalent plastic strain at failure, 𝜀𝑓̅
𝑝𝑙, depends on the 

characteristic length of the element and cannot be used as a material parameter 
for the specification of the damage evolution law. When material damage occurs, 
the stress-strain relationship no longer accurately represents the material's 
behaviour. Continuing to use the stress-strain relation introduces a strong mesh 
dependency based on strain localization, such that the energy dissipated 
decreases as the mesh is refined. A different approach is required to follow the 
strain-softening branch of the stress-strain response curve. Instead, the damage 
evolution law is specified in terms of equivalent plastic displacement, 𝑢̅𝑝𝑙, or in 
terms of fracture energy dissipation, Gf. Hillerborg's (Hil1976) fracture energy 
proposal is used to reduce mesh dependency by creating a stress-displacement 
response after damage is initiated. Using brittle fracture concepts, Hillerborg 
defines the energy required to open a unit area of crack, Gf, as a material 
parameter. With this approach, the softening response after damage initiation is 
characterized by a stress-displacement response rather than a stress-strain 
response.  
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The implementation of this stress-displacement concept in a finite element model 
requires the definition of a characteristic length, L, associated with an integration 
point. The fracture energy is then given as  

𝐺𝑓 = ∫ 𝐿 ∙ 𝜎𝑦𝑑𝜀̅𝑝𝑙
𝜀̅𝑓
𝑝𝑙

𝜀̅0
𝑝𝑙 = ∫ 𝜎𝑦𝑑𝑢̅𝑝𝑙𝑢𝑓

𝑝𝑙

0
. (5.9) 

This expression introduces the definition of the equivalent plastic displacement, 
𝑢̅𝑝𝑙, as the fracture work conjugate of the yield stress after the onset of damage 
(work per unit area of the crack). Before damage initiation 𝑢̇̅𝑝𝑙 = 0; after damage 
initiation 𝑢̇̅𝑝𝑙 = 𝐿 ∙ 𝜀̅̇𝑝𝑙.  
The definition of the characteristic length depends on the element geometry and 
formulation: it is a typical length of a line across an element for a first-order 
element; it is half of the same typical length for a second-order element. This 
definition of the characteristic length is used because the direction in which 
fracture occurs is not known in advance. Therefore, elements with large aspect 
ratios will have rather different behaviour depending on the direction in which 
they crack: some mesh sensitivity remains because of this effect, and elements 
that have aspect ratios close to unity are recommended. 
Each damage initiation criterion may have an associated damage evolution law. 
The damage evolution law can be specified in terms of equivalent plastic 

displacement, 𝑢̅𝑝𝑙, or in terms of fracture energy dissipation, Gf. Both of these 
options take into account the characteristic length of the element to alleviate 
mesh dependency of the results. 
The overall damage variable, D, captures the combined effect of all active 
mechanisms and is computed in terms of individual damage variables, di, for each 
mechanism.  
Once the damage initiation criterion has been reached, the effective plastic 
displacement, 𝑢̅𝑝𝑙, is defined with the evolution equation 𝑢̇̅𝑝𝑙 = 𝐿 ∙ 𝜀̅̇𝑝𝑙, where L is 
the characteristic length of the element. The evolution of the damage variable 
with the relative plastic displacement is specified in exponential form.  
Assuming an exponential evolution of the damage variable with plastic 
displacement, as shown in Figure 5.3.4.3. The relative plastic displacement at 

failure, 𝑢̅𝑓
𝑝𝑙, and the exponent  can be specified. The damage variable is given as 

𝑑 =
1−𝑒

−𝛼∙(𝑢̅𝑝𝑙 𝑢̅
𝑓
𝑝𝑙

⁄ )

1−𝑒−𝛼 . (5.10) 

 

 
Figure 5.3.4.3: Exponential evolution of damage [Abaqus] 
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5.3.5 Concrete 

5.3.5.1 Introduction 

Concrete material shows a quasi-brittle fracture behaviour. After reaching its 
ultimate strength a fracture connected with decreasing stress develops. To 
simulate numerically the fracture behaviour of concrete, the cement matrix, 
aggregates and interfacial transition zones are homogenized within the 
macroscale material law and a corresponding set of material parameters. Thus, 
the definitions given in the following are valid only for simulations done in 
macroscale, size of whole specimens in the order of a scale of meters [Hae2015]. 
 
Modeling of reinforced concrete in Abaqus is accomplished by combining standard 
elements, using this plain concrete cracking model, with “rebar elements”—rods, 
defined singly or embedded in oriented surfaces, that use a one-dimensional strain 
theory and that can be used to model the reinforcing itself. The rebar elements 
are superposed on the mesh of plain concrete elements and are used with 
standard metal plasticity models that describe the behaviour of the rebar material. 
This modeling approach allows the concrete behaviour to be considered 
independently of the rebar, so this section discusses the plain concrete cracking 
model only. Effects associated with the rebar/concrete interface, such as bond slip 
and dowel action, cannot be considered in this approach except by modifying 
some aspects of the plain concrete behaviour to mimic them (such as the use of 
“tension stiffening” to simulate load transfer across cracks through the rebar). It is 
generally accepted that concrete exhibits two primary modes of behaviour: a 
brittle mode in which microcracks coalesce to form discrete macrocracks 
representing regions of highly localized deformation, and a ductile mode where 
microcracks develop fairly uniformly throughout the material, leading to 
nonlocalized deformation. The brittle behaviour is associated with cleavage, shear 
and mixed mode fracture mechanisms that are observed under tension and 
tension-compression states of stress. It nearly always involves softening of the 
material. The ductile behaviour is associated with distributed microcracking 
mechanisms that are primarily observed under compression states of stress. It is 
often associated with hardening of the material, although subsequent softening is 
possible at low confining pressures. The cracking model described here models 
only the brittle aspects of concrete behaviour.  

5.3.5.2 Uniaxial behaviour of concrete in compression 

The uniaxial behaviour of concrete is obtained from compression tests and 
presented in form of stress-strain relationship. Three regions can be distinquished: 
an elastic, a hardening and a softening region, Figure 5.3.5.2. For the definition of 
the elastic and the hardening region the non-linear stress-strain relationship 
according to section 3.1.5 of EN 1992-1-1 [EN1992] is applied. The softening 
branch is defined by applying a fracture energy approach (‘Crushing energy”), 
which is similar to the softening of concrete in uniaxial tension. This crushing 
energy method has been first proposed by Feenstra [Fee1996], a description is 
given in [Krä2004].  
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Figure 5.3.5.2: Stress-strain relationship of concrete in 
 uniaxial compression [EN 1992] 

 
This leads to the following definition of the stress-strain relationship of concrete 
under uniaxial compression. 

Region 1 – Elastic:  
𝜎𝑐(𝜀𝑐)

𝑓𝑐𝑚
= 𝐸𝑐𝑚 ∙

𝜀𝑐

𝑓𝑐𝑚
 (5.11a) 

Region 2 – Hardening:  
𝜎𝑐(𝜀𝑐)

𝑓𝑐𝑚
=

𝑘∙𝜂−𝜂2

1+(𝑘−2)∙𝜂
 (5.11b) 

where: 
 𝜂 = 𝜀𝑐 𝜀𝑐1⁄  
 𝜀𝑐1is the strain at peak stress according to Table 3.1 [EN1992] 
 𝑘 = 1.05 ∙ 𝐸𝑐𝑚 ∙ |𝜀𝑐1| 𝑓𝑐𝑚⁄ , with fcm and Ecm according to [EN1992] 
 fcm = determined from tests, see Chapter 3 
 𝐸𝑐𝑚 = 22 ∙ (𝑓𝑐𝑚 10⁄ )0.3 with fcm in [MPa]. 

Region 3 – Softening:  
𝜎𝑐(𝜀𝑐)

𝑓𝑐𝑚
=

1
𝑓𝑐𝑚

⁄

2+𝛾𝑐∙𝑓𝑐𝑚∙𝜀𝑐1
2∙𝑓𝑐𝑚

+𝛾𝑐∙𝜀𝑐+
𝛾𝑐

2∙𝜀𝑐1
∙𝜀𝑐1

2
 with c > 0  (5.11c) 

with  

 𝛾𝑐 =
𝜋2∙𝑓𝑐𝑚∙𝜀𝑐1

2∙[
𝐺𝑐𝑙
𝑙𝑒𝑞

−
1

2
∙𝑓𝑐𝑚∙(𝜀𝑐1∙(1−𝑏)+𝑏∙

𝑓𝑐𝑚
𝐸𝑐𝑚

)]
2 

where 
leq  is the characteristic length of the respective FE integration point. It 

depends on type, quadrature rule and form of the element [28] and 

should fulfill the following equation 𝑙𝑒𝑞 ≥
𝐺𝑐𝑙

𝑓𝑐𝑚∙(𝜀𝑐1(1−𝑏)+𝑏∙
𝑓𝑐𝑚
𝐸𝑐𝑚

)
. 

b  scalar parameter representing split of inelastic strains into plastic and 
damaging parts, set to 0.5, [Krä2004]. 

Gcl  crushing energy, set to 20 kN/m [Vo1993] 
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5.3.5.3 Uniaxial behaviour of concrete in tension 

In Abaqus [Abaqus] the postfailure behaviour for direct straining across cracks can 
be specified either by means of a postfailure stress-strain relation or by applying a 
fracture energy cracking criterion. Because the specification of postfailure 
behaviour by a stress-strain relation would introduce, in cases of little or no 
reinforcement, a mesh sensitivity in the results (the finite element predictions do 
not converge to a unique solution as the mesh is refined because mesh refinement 
leads to narrower crack bands), the fracture energy criterion as proposed by 
Hillerborg [Hil1976] for concrete cracking is used in this research. Hillerborg 

defines the energy required to open a unit area of crack in Mode I 𝐺𝑓
𝐼 as a material 

parameter, using brittle fracture concepts. With this approach, the concrete's 
brittle behaviour is characterized by a stress-displacement response rather than a 
stress-strain response. Under tension, a concrete specimen will crack across some 
section; and its length, after it has been pulled apart sufficiently for most of the 
stress to be removed (so that the elastic strain is small), will be determined 
primarily by the opening at the crack, which does not depend on the specimen's 
length. This fracture energy cracking model is invoked by specifying the postfailure 
stress as a tabular function of displacement across the crack, as illustrated in Figure 
5.3.5.3. 
 

 
Figure 5.3.5.3: Postfailure stress-displacement curve [Abaqus] 

 
The implementation of the stress-displacement concept in a finite element model 
requires the definition of a characteristic length associated with a material. The 
characteristic crack length is based on the element geometry and formulation: it 
is a typical length of a line across an element for a first-order element; it is half of 
the same typical length for a second-order element. This definition of the 
characteristic crack length is used because the direction, in which cracks will occur, 
is not known in advance. Therefore, elements with large aspect ratios will have 
rather different behaviour depending on the direction in which they crack: some 
mesh sensitivity remains because of this effect. Elements that are as close to 
square as possible are, therefore, recommended.  
To define the fracture energy the proposal given in [fib2010] is applied. This 
approach has successfully been used to simulate similar problems as e.g. the load-
bearing behaviour of shear studs in composite slabs [Qur2011]. The fracture 
energy is defined as the energy required to propagate a tensile crack of unit area, 
it is dissipated in friction and plastic deformation in the fracture area [fib42]. 
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It depends primarily on the water/cement ratio, the maximum aggregate size and 
the age of the concrete, in absence of detailed test data it can be estimated as: 

𝐺𝐹 = 73 ∙ 𝑓𝑐𝑚
0.18 (5.12) 

with fcm is the mean compressive strength in MPa. 
 
It has been found [Qur2011] that an exponantial expression derived by Cornelissen 
et al [Cor1986] is adequate to define the softening response of concrete using the 
fracture energy concept. This exponantial function can be formulated as: 
𝜎𝑡

𝑓𝑡
= 𝑓(𝑤) −

𝑤

𝑤𝑐
∙ 𝑓(𝑤𝑐) (5.13) 

𝑓(𝑤) = [1 + (
𝑐1∙ 𝑤

𝑤𝑐
)
3

] ∙ 𝑒
−(

𝑐2 ∙ 𝑤

𝑤𝑐
)
 (5.14) 

where 
c1 = 3, c2 = 6.93 [Cor1986] 
w is the crack opening displacement 
wc is the crack opening displacement at which stress can no longer be transferred 

wc = 5.0  Gf/ft for normal weight concrete [fib2010]. 
 
The tensile damage dt is obtained with 𝑑𝑡 = (𝑓𝑐𝑡𝑚 − 𝜎𝑡) 𝑓𝑐𝑡𝑚⁄ , with 𝑓𝑐𝑡𝑚 = 0.3 ∙

(𝑓𝑐𝑚 − 8)2 3⁄  according to [EN1992].  

5.3.5.4 Multiaxial behaviour - Concrete Damage Plasticity 

The Concrete Damage Plasticity (CDP) model is a continuum, plasticity-based, 
damage model for concrete. It assumes that the main two failure mechanisms are 
tensile cracking and compressive crushing of the concrete material. The evolution 

of the yield (or failure) surface is controlled by two hardening variables, 𝜀𝑡̂
𝑝𝑙 and 

𝜀𝑐̂
𝑝𝑙, linked to failure mechanisms under tension and compression loading, it is 

refered to 𝜀𝑡̂
𝑝𝑙 and 𝜀𝑐̂

𝑝𝑙 as tensile and compressive equivalent plastic strains, 
respectively. The uniaxial tensile and compressive response of concrete is 
characterized by damaged plasticity, Figure 5.3.5.4.1. 
 

 
Figure 5.3.5.4.1: Concrete in uniaxial loading in tension [Abaqus] 
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Under uniaxial tension the stress-strain response follows a linear elastic 

relationship until the value of the failure stress, t0, is reached. The failure stress 
corresponds to the onset of micro-cracking in the concrete material. Beyond the 
failure stress the formation of micro-cracks is represented macroscopically with a 
softening stress-strain response, which induces strain localization in the concrete 
structure. 

Under uniaxial compression the response is linear until the value of initial yield,c0. 
In the plastic regime the response is typically characterized by stress hardening 

followed by strain softening beyond the ultimate stress, cu. This representation, 
although somewhat simplified, captures the main features of the response of 
concrete, Figure 5.3.5.4.2. 
 

 
Figure 5.3.5.4.2: Concrete in uniaxial loading in compression [Abaqus] 

 
It is assumed that the uniaxial stress-strain curves can be converted into stress 
versus plastic-strain curves. (This conversion is performed automatically by 
Abaqus from the user-provided stress versus “inelastic” strain data, as explained 
below.) Thus,  

𝜎𝑡 = 𝜎𝑡(𝜀𝑡̃
𝑝𝑙, 𝜀̃𝑡̇

𝑝𝑙 , 𝜃, 𝑓𝑖), 

𝜎𝑐 = 𝜎𝑐(𝜀𝑐̃
𝑝𝑙, 𝜀̃𝑐̇

𝑝𝑙, 𝜃, 𝑓𝑖), 

where the subscripts t and c refer to tension and compression, respectively; 

𝜀𝑡̃
𝑝𝑙and 𝜀𝑐̃

𝑝𝑙are the equivalent plastic strains, 𝜀̃𝑡̇
𝑝𝑙and 𝜀̃𝑐̇

𝑝𝑙 are the equivalent plastic 

strain rates,  is the temperature, and 𝑓𝑖 = (𝑖 = 1, 2, … ) are other predefined field 
variables.  
As shown in the Figures here before, when the concrete specimen is unloaded 
from any point on the strain softening branch of the stress-strain curves, the 
unloading response is weakened: the elastic stiffness of the material appears to 
be damaged (or degraded). The degradation of the elastic stiffness is characterized 
by two damage variables, dt and dc, which are assumed to be functions of the 
plastic strains, temperature, and field variables:  

𝑑𝑡 = 𝑑𝑡(𝜀𝑡̃
𝑝𝑙, 𝜃, 𝑓𝑖); 0 ≤ 𝑑𝑡 ≤ 1, 

𝑑𝑐 = 𝑑𝑐(𝜀𝑐̃
𝑝𝑙, 𝜃, 𝑓𝑖); ; 0 ≤ 𝑑𝑐 ≤ 1. 

The damage variables can take values from zero, representing the undamaged 
material, to one, which represents total loss of strength. 
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If E0 is the initial (undamaged) elastic stiffness of the material, the stress-strain 
relations under uniaxial tension and compression loading are, respectively:  

𝜎𝑡 = (1 − 𝑑𝑡) ∙ 𝐸0 ∙ (𝜀𝑡 − 𝜀𝑡̃
𝑝𝑙), (5.15) 

𝜎𝑐 = (1 − 𝑑𝑐) ∙ 𝐸0 ∙ (𝜀𝑐 − 𝜀𝑐̃
𝑝𝑙). (5.16) 

The “effective” tensile and compressive cohesion stresses are defined as: 

𝜎𝑡̅ =
𝜎𝑡

(1−𝑑𝑡)
= 𝐸0 ∙ (𝜀𝑡 − 𝜀𝑡̃

𝑝𝑙), (5.17) 

𝜎𝑐̅ =
𝜎𝑐

(1−𝑑𝑐)
𝐸0 ∙ (𝜀𝑐 − 𝜀𝑐̃

𝑝𝑙). (5.18) 

The effective cohesion stresses determine the size of the yield (or failure) surface. 
 
 

Defining tension stiffening [Abaqus] 
 
The postfailure behaviour for direct straining is modeled with tension stiffening, 
which allows to define the strain-softening behaviour for cracked concrete. 
Tension stiffening is required in the concrete damaged plasticity model. Within 
this research tension stiffening is specified by applying a fracture energy cracking 
criterion. Alternatively, the postfailure behaviour could also specified using a 
stress-strain relationship, but, when there is no reinforcement in significant 
regions of the model, this approach would introduce unreasonable mesh 
sensitivity into the results. Means that the finite element predictions do not 
converge to a unique solution as the mesh is refined, because mesh refinement 
leads to narrower crack bands. This problem typically occurs if cracking failure 
occurs only at localized regions in the structure and mesh refinement does not 
result in the formation of additional cracks. 
Therefore, the fracture energy proposal according to Hillerborg (1976) [Hil1976] is 
used. Which is adequate to allay the concern for many practical purposes. 
Hillerborg defines the energy required to open a unit area of crack, Gf, as a material 
parameter, using brittle fracture concepts. With this approach the concrete's 
brittle behavior is characterized by a stress-displacement response rather than a 
stress-strain response. Under tension a concrete specimen will crack across some 
section. After it has been pulled apart sufficiently for most of the stress to be 
removed (so that the undamaged elastic strain is small), its length will be 
determined primarily by the opening at the crack. The opening does not depend 
on the specimen's length. This fracture energy cracking model can be invoked by 
specifying the postfailure stress as a tabular function of cracking displacement, as 
already shown in Figure 5.3.5.3.  
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Defining compressive behaviour [Abaqus] 

The stress-strain behaviour of plain concrete in uniaxial compression outside the 
elastic range can be defined in Abaqus [Abaqus] by providing compressive stress 

data as a tabular function of inelastic (or crushing) strain, 𝜀𝑐̃
𝑖𝑛. Positive (absolute) 

values should be given for the compressive stress and strain. The stress-strain 
curve can be defined beyond the ultimate stress, into the strain-softening regime. 

Hardening data are given in terms of an inelastic (or crushing) strain, 𝜀𝑐̃
𝑖𝑛, instead 

of plastic strain, 𝜀𝑐̃
𝑝𝑙. The compressive inelastic strain is defined as the total strain 

minus the elastic strain corresponding to the undamaged material, 𝜀𝑐̃
𝑖𝑛 = 𝜀𝑐 − 𝜀0𝑐

𝑒𝑙 , 

where 𝜀0𝑐
𝑒𝑙 = 𝜎𝑐 𝐸0⁄ , as illustrated in Figure 5.3.5.4.3. 

 

 
Figure 5.3.5.4.3: Definition of the compressive inelastic strain 𝜀𝑐̃

𝑖𝑛  [Abaqus] 
 
Unloading data are provided to Abaqus in terms of compressive damage curves, 

𝑑𝑐 − 𝜀𝑐̃
𝑖𝑛, as discussed below. Abaqus automatically converts the inelastic strain 

values to plastic strain values using the relationship  

𝜀𝑐̃
𝑝𝑙 = 𝜀𝑐̃

𝑖𝑛 −
𝑑𝑐

(1−𝑑𝑐)
∙

𝜎𝑐

𝐸0 
. (5.19) 
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Yield function [Abaqus] 
 
The model in Abaqus makes use of the yield function of Lubliner et. al. (1989) 
[Lu1989], with the modifications proposed by Lee and Fenves (1998) [Lee1998] to 
account for different evolution of strength under tension and compression. The 

evolution of the yield surface is controlled by the hardening variables, 𝜀𝑡̃
𝑝𝑙 and 𝜀𝑐̃

𝑝𝑙. 
In terms of effective stresses, the yield function takes the form 

𝐹 =
1

1−𝛼
∙ (𝑞̅ − 3 ∙ 𝛼 ∙ 𝑝̅ + 𝛽 ∙ (𝜀𝑡̃

𝑝𝑙) ∙ 〈𝜎́𝑚𝑎𝑥〉 − 𝛾 ∙ 〈−𝜎́𝑚𝑎𝑥〉) − 𝜎𝑐(𝜀𝑐̃
𝑝𝑙) = 0 (5.20) 

with  

 𝛼 =
(𝜎𝑏0 𝜎𝑐0⁄ )−1

2∙(𝜎𝑏0 𝜎𝑐0⁄ )−1
; 0 ≤ 𝛼 ≤ 0.5, 

 𝛽 =
𝜎̅𝑐(𝜀̃𝑐

𝑝𝑙
)

𝜎̅𝑡(𝜀̃𝑡
𝑝𝑙

)
∙ (1 − 𝛼) − (1 + 𝛼), 

 𝛾 =
3∙(1−𝐾𝑐)

2∙𝐾𝑐−1
. 

Here,  

𝜎́𝑚𝑎𝑥  is the maximum principal effective stress; 
(𝜎𝑏0 𝜎𝑐0⁄ ) is the ratio of initial equibiaxial compressive yield stress to initial 

uniaxial compressive yield stress (the default value is 1.16); 
Kc is the ratio of the second stress invariant on the tensile meridian, 

q(TM), to that on the compressive meridian, q(CM), at initial yield for 
any given value of the pressure invariant p such that the maximum 
principal stress is negative, 𝜎́𝑚𝑎𝑥 < 0 (see Figure 5.3.5.4.4); it must 
satisfy the condition 0.5 < Kc < 1.0 (the default value is 2/3); 

𝜎𝑡(𝜀𝑡̃
𝑝𝑙)  is the effective tensile cohesion stress; 

𝜎𝑐(𝜀𝑐̃
𝑝𝑙) is the effective compressive cohesion stress. 

 
Typical yield surfaces are shown in Figure 5.3.5.4.4 on the deviatoric plane and in 
Figure 5.3.5.4.5 for plane stress conditions.  
 
 

  
Figure 5.3.5.4.4: Yield surfaces in 
the deviatoric plane, corresponding 
to different values of Kc [Abaqus] 

Figure 5.3.5.4.5: Yield surface in plane 
stress [Abaqus] 
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5.3.5.5 Concrete confinement 

The concrete in the web-opening is restrained by the steel web and by the concrete 
in the chamber of the steel section. Therefore, this part of the concrete is able to 
resist a compression much higher than only its uniaxial compression strength. The 
influence of concrete confinement in the web-opening only and in the whole 
chamber of the hot-rolled section are analysed in this Thesis, Figure 5.3.5.5.1.  
As proposed by Mander [Md1988] the confined concrete compressive strength fcc 
and the corresponding confined strain ecc can be determined with: 

𝑓𝑐𝑐 = 𝑓𝑐 + 𝑘1 ∙ 𝑓1 (5.21) 

𝜀𝑐𝑐 = 𝜀𝑐 ∙ (1 + 𝑘2 ∙
𝑓𝑙

𝑓𝑐
) (5.22) 

with the lateral confining pressure fl, which has to be determind by comparison of 
the numerical results with test results. The factors k1 and k2 are taken as 4.1 and 
20.5 as given by Richart et al. [Ri1928]. 
 

  
Figure 5.3.5.5.1: Zones of concrete confinement 

 
The uniaxial stress-strain curve for confined concrete can be divided into three 

parts. An elastic range from zero up to a proportional stress of 0.5fcc as defined by 
Hu et al. [Hu, 2003]. The Young’s modulus of confined concrete Ecc is calculated 
using the following empirical equation [ACI318M]: 

𝐸𝑐𝑐 = 4700 ∙ √𝑓𝑐𝑐   [MPa] (5.23) 

From the proportional stress 0.5  fcc up to the confined concrete strength fcc a non-
linear part follows, which can be determined by the stress values f with: 

𝑓 =
𝐸𝑐𝑐∙𝜀

1+(𝑅+𝑅𝐸−2)∙(
𝜀

𝜀𝑐𝑐
)−(2∙𝑅−1)∙(

𝜀

𝜀𝑐𝑐
)
2
+𝑅∙(

𝜀

𝜀𝑐𝑐
)
3 (5.24) 

where  represents the strain values between the proportional strain and the 

confined strain cc corresponding to the confined strength fcc, RE and R are 
calculated from: 

𝑅𝐸 =
𝐸𝑐𝑐∙𝜀𝑐𝑐

𝑓𝑐𝑐
 (5.25) 

𝑅 =
𝑅𝐸∙(𝑅𝜎−1)

(𝑅𝐸−1)2
−

1

𝑅𝜀
 (5.26) 

As recommended by Hu and Schnobrich [Hu1989] the constants R and R are taken 
as equal to a value of 4. 
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The third part of the confined concrete stress-strain curve is a descending part, 

from the confined concrete strength fcc descending to a value rk3fcc at a 

corresponding strain of 11cc, Figure 5.3.5.5.2. The factor k3 is calculated by the 
method given by [Mir1992] or by [Hu2003]. The factor r takes into account the 
influence of the concrete compression strength. According to Giakooumelis and 
Lam [Gia2004] a value of r = 1.0 can be used for a concrete cube strength of 30 MPa 
and for a concrete cube strength equal or greater than 100 MPa a value of 0.5. For 
the here presented research work a value r = 1.0 is used. 
 

 
Figure 5.3.5.5.2: Concrete confinement [Elb2011] 
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5.4 Development of a Numerical Model for Series 1a 

5.4.1 Introduction 

The development of a numerical model for the simulation of test Series 1a (Table 
5.4.1) and the influence of the most important parameters is shown. Unless noted 
otherwise, the following basic set of parameters has been used, input data is given 
in Annex C: 
- The friction coefficient between steel section and concrete, referred further to 

as “global” friction was set to 0.1. Frictionless contact was applied for the 
friction between the steel plate (foundation) and the concrete slab. 

- The tensile strength of the concrete was set to the tested value, Table 3.2.3.1. 
For test series 1a a value of 4.1 MPa was used. 

- In accordance to [Qur2011] the fracture energy was increased to a value of  

𝐺𝐹 = 6 ∙ 73 ∙ 𝑓𝑐𝑚
0.18. 

- As standard contact between the part of the dowel reinforcement bar in the 
chamber of the steel section and the concrete the option “rough” was chosen 
and for the part of the dowel reinforcement in the concrete slab tie contact 
was applied, not allowing for any slip between the bar and the concrete. 

- Default value of the dilation angle of 36° for concrete damage plasticity was 
used. 

- True stress-strain relationship for the dowel reinforcement was introduced 
and the maximum elongation for ductile damage was in accordance with the 
tensile tests, Section 3.4. 

- No values for the ultimate deformation of shear damage were available. 
Therefore, this parameter was developed by comparison of the load-slip curve 
obtained by testing with the one from numerical simulation, Figure 5.4.2.1. 

To analyse possible sensitivity of the results to the size of the finite element mesh, 
the mesh size of the dowel reinforcement and of the concrete in the chamber of 
the steel section was varied. Due to the chosen damage approach and the 
dependency of the ultimate displacement to the mesh size, cf. Section 5.3.4 the 
characteristic length, consequently the mesh size had an influence on the results, 
which could not be avoided. As expected, a reduction of the mesh size, while 
keeping the values for the displacements at failure unchanged, was leading to a 
less ductile behaviour, no significant influence on the maxium load was observed.   
 
Table 5.4.1: Geometry of push-out Series 1a 

Series 
tw 

[mm] 
O web-opening 

[mm] 
d, diameter 

dowel bar [mm] 
fcm 

[MPa] 

1a 15.5 40 12 26.7 

5.4.2 Influence of various parameters 

Almost 500 simulations were performed to identify influencing parameters and to 
determine the values. From these simulations with varied input parameters, only 
the most significant results are given hereafter, describing their influence on the 
behaviour of CoSFB-Dowel. The following investigation leads to understanding of 
the behaviour of CoSFB-Dowel, which could not be concluded from the 
experimental tests only. The findings were used to develop an analytical model.   
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Shear Damage – Influence of Displacement at Failure 
 
To allow for shear failure of the dowel reinforcement, the option “Shear Damage” 
in Abaqus [Abaqus] was used. As damage initiaton criterion the strain at the onset 
of necking derived by the displacement controlled tensile tests (cf. Section 3.4) 
was implemented. For the evolution of damage, the option of an exponential 
function was chosen. Displacement at failure for shear damage had to be given as 
an input. Because this value could not be directly derived by testing, it has been 
determined by comparison of the numerically obtained load-slip curves with the 
load-slip curves from experimental tests. The full set of input parameters required 
for shear damage are given in Annex C. Figure 5.4.2.1 shows the numerically 
obtained load-slip curves for varied values of the displacement at failure. The 
values for the displacement at failure uf are given in relation to the strain at the 

onset of necking n. multiplied by a characteristic length L, which is the length of 
the finite element (L = 2mm).  
 

 
Figure 5.4.2.1: Influence of displacement at failure for shear damage, uf 

 
An increase of the displacement at failure up to values 10 x L lead to an increase 
of the maximum load, while further increase is only influencing the ductility. The 

value uf = 10 x L x n was chosen to represent the test results in an adequate 
manner and was set as standard value for further numerical analysis.  

  

P [kN] 

uf = 10 x L x n  

uf = 1 x L x n  

uf = 2 x L x n  

uf = 3 x L x n  

uf = 5 x L x n  

uf = 15 x L x n  

uf = 20 x L x n  

uf = 25 x L x n  

uf = 40 x L x n  

Slip [mm] 

Test 1a-P3  

Test 1a-P2  

Test 1a-P1  



 Chapter 5: Numerical Simulation 

83 
 

Ductile Damage – Influence of Displacement at Failure 
 
For the evolution of ductile damage [Abaqus] the option “Displacement” was 
chosen to minimize influence of the finite element mesh size on the results. 
Damage starts at the onset of necking and reaches a value of 1.0 at rupture. The 

strain at rupture r was determined by tensile tests, (cf. Section 3.4). To obtain the 

displacement values, the values for plastic strain pl have to be multiplied by a 
characteristic length L, which depends on the size of the finite elements and the 
type of the used elements. For the used C3D8R elements Pavlovic [Pav2013] 
determined a factor of 3.1 x L (L = 2mm). Some results for varied displacements 

values in relation to the plastic strain pl are given in Figure 5.4.2.2.  
 

 
Figure 5.4.2.2: Influence of plastic displacement for ductile damage, upl   

 
The value 3.1 x L according to Pavlovic seems to represent the test results in an 
adequate manner. Therefore, this value was used for further analysis.  
 

  

P [kN] 

Slip [mm] 

upl = 0.5 x L x pl  

upl = 3.1 x L x pl  

upl = 5 x L x pl  

upl = 20 x L x pl  

Test 1a-P3  

Test 1a-P2  

Test 1a-P1  
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Influence of concrete tension strength and fracture energy 
 
To analyse the influence of the concrete tensile strength fctm on the load-slip curve, 
numerical simulations with different values for the tensile strength are 
performed.Results are presented in Figure 5.4.2.3.  
 

 
Figure 5.4.2.3: Influence of concrete tension strength, fctm 

 
An increase of fctm is leading to small increase of the maximum load, while for 
smaller values a higher ductility could be observed. The author decided to use for 
further numerical simulations the by testing obatained value for the tensile 
strength, with fctm = 4.1 MPa.  

 
According to fib 2010 [fib 2010] the fracture energy GF can be calculated with 𝐺𝐹 =

73 ∙ 𝑓𝑐𝑚
0.18. For the simulation of similar problems, as e.g. the load-bearing 

behaviour of shear studs, Researchers varied the value of GF from the above given 
equation [Qur2011]. The variation of GF is given in Figure 5.4.2.4, the influence of 
the fracture energy on the load-slip curve in Figure 5.4.2.5.  
 
 
 
 
 
 
 
 
 

P [kN] 

Slip [mm] 

fctm = 2.12 MPa (EN)  

fctm = 3.1 MPa  

fctm = 5.1 MPa  

fctm = 4.1 MPa (Test)  

Test 1a-P3  

Test 1a-P2  

Test 1a-P1  
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Figure 5.4.2.4: Varation of fracture energy, GF  

 

 
Figure 5.4.2.5: Influence of fracture energy, GF 

 
The fracture energy GF has only a minor influence on the load-slip curve. This result 
confirms that the tensile behaviour of concrete is not decisive for CoSFB-Dowel, 
which is in line with the observations from the experimental tests.  
 
 

  

Slip [mm] 

P [kN] 

ct [MPa] 

Cracking displacement [mm] 

 fctm [MPa] 

Ecm   

ct 

Test 1a-P3  

Test 1a-P2  

Test 1a-P1  

𝐺𝐹 = 1 ∙ 73 ∙ 𝑓𝑐𝑚
0.18  

𝐺𝐹 = 4 ∙ 73 ∙ 𝑓𝑐𝑚
0.18  

𝐺𝐹 = 6 ∙ 73 ∙ 𝑓𝑐𝑚
0.18  

𝐺𝐹 = 8 ∙ 73 ∙ 𝑓𝑐𝑚
0.18  

𝐺𝐹 = 1 ∙ 73 ∙ 𝑓𝑐𝑚
0.18  

𝐺𝐹 = 4 ∙ 73 ∙ 𝑓𝑐𝑚
0.18  

𝐺𝐹 = 6 ∙ 73 ∙ 𝑓𝑐𝑚
0.18  

𝐺𝐹 = 8 ∙ 73 ∙ 𝑓𝑐𝑚
0.18  
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Influence of friction 
 
Friction defined in the numerical modal was Coulomb-Friction. The friction force F 
depends on pressure perpendicular to a surface and a friction coefficient. The 
influence of friction between the specimen and the supporting plate 
(“Foundation”) and the steel section and the concrete (“Global”) was analysed by 
performing numerical simulations with varied friction factors. The results for 
varied friction factors are presented in Figure 5.4.2.6 and Figure 5.4.2.7.  
 

 
Figure 5.4.2.6: Influence of friction between foundation and specimen 

 

 
Figure 5.4.2.7: Influence of friction between steel section and concrete 

 
Higher friction factors lead to an increase of the maximum load and to a decrease 
of the ductility. No influence on the initial stiffness was found. Friction is a 
parameter, which has often a significant influence on the behaviour, but it is 
impossible to measure experimentally in the composite structure. Therefore, it is 
typically derived by comparison of the results with parametrical variation. 
   

Slip [mm] 

P [kN] 

P [kN] 

Slip [mm] 
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Influence of the dilation angle 
 
One of the input parameters of Concrete Damage Plasticity in Abaqus [Abaqus] is 
the dilation angle. It expresses the angle of inclination of the failure surface 
towards the hydrostatic axis, measured in the meridional plane. Physically it can 
be interpreted as a concrete internal friction angle [Kmi2011]. To analyse its 
influence on the load-slip curve, numerical simulations with varied values for the 
dilation angle were performed. Results are presented in Figure 5.4.2.8.  
 

 
Figure 5.4.2.8: Influence of dilation angle 

 
A dilation angle between 26° and 36° has proven to be adequate to simulate the 
push-out test Series 1a. The author decided to remain to the standard value of 36° 
for the simulation of all test series. It is worth mentioning that some researchers 
work on calibration of CDP model and identification of the most appropriate 
dilation angle in relation to different structural elements of reinforced concrete 
structure e.i. beam to column joint [Szc2015].  
 
 
 

 
 

  

Slip [mm] 

P [kN] 

 

 

 

 
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Influence of reinforcement mesh 
 
In all performed push-out tests a standard reinforcement mesh, a Q257, was 
placed above the upper flange of the steel section, cf. Figure 5.4.2.9. The possible 
influence of this reinforcement mesh was analysed by varying the diameter of the 
reinforcement bars, while keeping the distance between the bars. This way the 
reinforcement ratio has been differentiated.  
 

 

 
Figure 5.4.2.9: Reinforcement 
mesh [Stu2011] 

5.4.2.10: Concrete tension damage -  
 longitudinal crack 

 
A very small reinforcement mesh (Q 131) is leading to a reduction of the maximum 
load. Analysing the results of the numerical simulation in detail, the appearance of 
a longitudinal crack at the edge of the upper flange, progressing with increasing 
load along the steel section could be identified, Figure 5.4.2.10.  
 

 
Figure 5.4.2.11: Influence of reinforcement mesh above the upper flange 

 
The Q 424 had only a minor influence on the load-bearing behaviour, Figure 
5.4.2.11. This indicates that the certain minimum of reinforcement mesh is 
necessary and further increase of the ration has no more influence.  

Slip [mm] 

P [kN] 
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Influence of contact definition for the dowel reinforcement 
 
The numerical simulation of the load-bearing behaviour up to failure of the dowel 
reinforcement requires the development of a numerical model, allowing for an 
adequate simulation of the local behaviour of the dowel reinforcement in the web-
opening and next to it. Therefore, the contact definition between the dowel 
reinforcement and the surrounding concrete was varied, results are given in Figure 
5.4.2.13. For the description of different forms of contact, as “Tie”, “Friction” and 
“Rough” it is refered to [Abaqus]. Besides different contact definitions for the total 
length of the dowel reinforcement were analysed, here only the definition of 
contact in the zone of the chamber of the steel section is given, Figure 5.4.2.12. 
 

 
Figure 5.4.2.12: Variation of contact between dowel bar and concrete  

 

 
Figure 5.4.2.13: Influence of contact definition for dowel reinforcement 

 
The conctact type has an influence not only on the load-slip, but also on the 
deformation shape, development and position of plastic hinges and development 
of internal forces. The tie connection outside of the chamber has been justified by 
the results obtained from the measurement of the strain gauges.   
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5.5 Simulation of Test Series 1b 

The set of input parameters developped based on the numerical simulation of 
Series 1a, see section 5.4, has been applied to simulate the push-out tests Series 
1b. This Series has a higher concrete compression strength, fcm. It has been also 
expected that the global friction factor might need to be modified. As explained 
earlier the friction remains test related and different values of friction were used 
to identify to most appropriate. Figure 5.5.1 shows results for friction factor 0.0 (= 
frictionless) and 0.1. Geometrical parameters for Series 1b is given in Table 5.5. 
 
Table 5.5: Geometry of push-out Series 1b 

Series 
tw 

[mm] 
O web-

opening [mm] 
d, diameter 

dowel bar [mm] 
fcm 

[MPa] 

1b 15.5 40 12 55.1 

 

 
Figure 5.5.1: Simulation of Series 1b, Variation of global friction 

    
Comparing the results obtained by numerical simulation with the test results, the 
configuration “frictionless” seems to be more adequate to simulate Series 1b. It 
was also found that the concrete stiffness degradades at a too low load level – at 
around 1000 kN, the concrete compression damage starts too early. 
 
The concrete in the chamber and especially in the web-opening is restrained by 
the concrete slab and the steel section. Therefore, concrete confinement 
approach was applied, Section 5.3.5.5. The definition of a stress-strain relationship 
of confined concrete depends on various parameters, where the lateral pressure 
fl is most representative.  
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Selected numerical results with different values of lateral pressure, given as the 
ration fl/fcm are presented in Figure 5.5.2. The corresponding load-slip curves are 
presented in Figure 5.5.3. 
 

 
Figure 5.5.2: Stress-strain relationship for concrete confinement 

 
In addition, a zone of confined concrete had to be defined. The author decided to 
analyse two possible zones of concrete confinement: 1) confinement only in the 
web-opening, 2) confinement in the whole chamber of the steel section.  
 

 
Figure 5.5.3: Influence of concrete confinement, Series 1b 

 

c [-] 

c [MPa] 

 fcc 

cc  

 rk3fc 

11cc  

web-opening 
fl/fcm = 0.50     

web-opening 
fl/fcm = 0.10     

chamber 
fl/fcm = 0.05     

no confinement   

Slip [mm] 

P [kN] 

fl/fcm = 0.05   

fl/fcm = 0.10   
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Concrete confinement in the web-opening has little influence on the load-bearing 
behaviour, which is related to the small volume of concrete in the web-opening. 
Applying concrete confinement in the whole chamber of the steel section leads to 
a huge increase of the maximum load even for very small values of lateral pressure.  
Because of the difficulty to define the zone of confined concrete and the sensitivity 
of the results to this zone, the author decided not to apply concrete confinement 
at all in the further analysis and to propose a different approach. 
A method, which has been already presented by the author in [ES2017] with an 
extended “compression-plateau” of the stress-strain relationship of the concrete 
is applied. The idea behind is the following: concrete subjected to compression 
stresses is crushed, material is pushed into the pores of the concrete matrix first, 
before failure of this concrete matrix happens by breaking the connection 
between the cement and the stones, which is a quasi-ductile behaviour. In relation 
to the CoSFB-Dowels the concrete slab provides a flexible restrain of the concrete 
in and next to the web-opening. The expansion of this restrained concrete in a 
direction perpendicular to the principal direction of the compression stress is fully 
blocked by the flanges of the steel section and partially by the concrete slab. This 
partial restrain allows for expansion of the concrete but, compared to the standard 
uniaxial compression test of concrete, at the same load level the deformation is 
much smaller. The concrete behaves more ductile than the observed behaviour of 
a uniaxial compression test. Therefore, numerical simulations are performed by 
applying an “extended-plateau”. The length of the plateau was simply derived by 

plateau = n x c1. The factor n was varied and the numerically obtained results 
compared to test results. The applied stress-strain relationsships of concrete with 
extended-plateau are given in Figure 5.5.4, corresponding load-slip curves are 
given in Figure 5.5.5.  
 

 
Figure 5.5.4: Concrete compression model with extended-plateau 

 

c [MPa] 

plat.= 5 x c1   

plat.= 8 x c1   

plat.= 3 x c1   

plat.= c1 (no plat.) 

c [-] 
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Figure 5.5.5: Influence of extended-plateau, Series 1b 

 

An extension of the concrete compression plateau in the range 3 x c1  plateau  5 

x c1 seems to be most adequate to simulate the performed push-out tests. This 
approach is leading to promising results. However, further validation should be 
done in relation to the plateau when more test results are available. 
 

  

plat.= c1 (no plat.) 

plat.= 8 x c1   

plat.= 3 x c1   

plat.= 5 x c1   

Slip [mm] 

P [kN] 



Chapter 5: Numerical Simulation  
 

94 
 

5.6 Simulation of Test Series 2-1a and 2-1b 

The geometry of Series 2-1a and 2-1b differ from previously analysed Series 1a and 
1b by web thickness of the steel section, which is tw = 7.5mm while for the other 
tests it was tw = 15.5mm, Table 5.6. Results are presented in Figures 5.6.1 and 
5.6.2. 
 
Table 5.6: Geometry of push-out Series 2-1a and 2-1b 

Series 
tw 

[mm] 
O web-opening 

[mm] 
d, diameter 

dowel bar [mm] 
fcm 

[MPa] 

2-1a 7.5 40 12 29.5 

2-1b 7.5 40 12 58.2 

 

 
Figure 5.6.1: Simulation of Series 2-1a 

 
As for simulation of Series 1a, also for Series 2-1a a factor 0.1 for global friction is 
aplied to reproduce the test results adequately. It can be observed that the test 
results for this Series differ for each push-out more than for the previous Series. 
The results of the simulation fit well within the range obtained from the tests.  
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Figure 5.6.2: Simulation of Series 2-1b 

 
Similar as for the simulation of Series 1b, where the concrete compression class 
was higher, concrete confinement or the extension of the plateau may lead to a 
better simulation of the test results.  
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5.7 Simulation of Test Series 2-2a 

The push-out test Series 2-2a was performed with a reduced diameter of the web-
opening of 25mm instead of 40mm, Table 5.7. Results are given in Figure 5.7.  
 
Table 5.7: Geometry of push-out Series 2-2a 

Series 
tw 

[mm] 
O web-opening 

[mm] 
d, diameter 

dowel bar [mm] 
fcm 

[MPa] 

2-2a 15.5 25 12 32.7 

 
 

 
Figure 5.7: Simulation of Series 2-2a 

 
The input parameters derived by detailed analysis of Series 1a are adequate to 
simulate the test Series 2-2a. As for simulation of Series 1a, the factor for “Global 
Friction” should be set to a value of 0.1. It should be taken into account, that a 
larger variation of the web-opening may need adaptation of the numerical model.  
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5.8 Simulation of Test Series 2-2b 

The simulation of the Series 2-2b with a diameter of the dowel reinforcement of 
25mm (Table 5.8), for two different friction factors for “Global Friction” between 
the steel section and the concrete, is presented in Figure 5.8.  
 
Table 5.8: Geometry of push-out Series 2-2b 

Series 
tw 

[mm] 
O web-opening 

[mm] 
d, diameter 

dowel bar [mm] 
fcm 

[MPa] 

2-2b 15.5 40 25 40.0 

 

 
Figure 5.8: Simulation of Series 2-2b 

 
Application of the set of input parameters derived by the analysis presented as 
defined earlier was not proper to reproduce the load-bearing behaviour and the 
failure mode of this test. This can be explained by the fact, that no detailed test 
data was available to define damage models of the rebar diameter 25mm. Instead, 
a data for the ductile and shear damage obtained from test of bar diameter 12mm 
was applied. The tests of bar diameter 12mm has been presented in Section 3.4. 
It is expected that the larger is the diameter of the bar the less ductile it is. 
Investigation of the damage parameters is necessary to correctly develop a model.  
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5.9 Simulation of Test Series 2-3 

Test Series 2-3 was performed with Silicone infill in the web-openings instead of 
concrete. In the numerical simulation the Silicone infill was simply simulated by a 
very soft material, represented by a bi-linear stress-strain relationship with a 

young modulus of Esoft = 1000 MPa and plastic stress u,soft = 10 MPa. The influence 
of friction between steel profile and concrete (“Global Friction”) was analysed by 
performing several numerical simulations with varied friction factor. Two results 
of those simulations are presented in Figure 5.9. Geometry is given in Table 5.9. 
 
Table 5.9: Geometry of push-out Series 2-3 

Series 
tw 

[mm] 
O web-opening 

[mm] 
d, diameter 

dowel bar [mm] 
fcm 

[MPa] 

2-3 15.5 25 12 38.3 

 

 
Figure 5.9: Simulation of Series 2-3 
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5.10 Conclusions from Numerical Simulation 

Many different simulations have been performed to analyse an influence of 
various parameters on the behaviour of CoSFB-Dowel and to gain confidence in 
the developed model to correctly reproduce the experimental tests. The results of 
the simulation allow to extract more detailed information related to the 
development of forces, deformation and failure mechanism. An activation of the 
dowel reinforcement is of significant interest for this research.  
To identify this activation, the shear force V in direction of the acting load P and 
the corresponding bending moment M are given in Figure 5.10.2. The forces were 
extracted from the results of the numerical simulation for Series 1a, the simulation 
was performed with the input parameters presented in Section 5.4. The forces are 
taken from the integration of principal stress of the cross sectional area of the 
dowel reinforcement bar (= Slices) at certain positions along the dowel 
reinforcement. To identify the evolution of these forces, they are printed at 
different time steps of the simulation, which corresponds to different values of the 
slip, Figure 5.10.1. 
 

 
Figure 5.10.1: Simulation of Series 1a, Conclusion 

 
The forces are presented for the dowel bar positioned in the middle of the 
specimen, level 3, cf. Figure 3.2.2.2.  
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Dowel reinforcement with Position of Slices: 
 

 

 
 

a) 

b) 
Figure 5.10.2: Forces Dowel Reinforcement: a) Shear Force b) Bending Moment 
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From the Figure 5.10.2a it can be observed that the shear force in the dowel 
reinforcement is increasing with increasing slip and corresponding increase of the 
load P. It is of interest that the position of the maximum shear force along the 
dowel bar is at the point of zero bending moment and is not varying for increasing 
load P. Failure of the dowel reinforcement in the simulation corresponds to the 
slip value, when the maximum shear force in the dowel bar is reached. 
In Figure 5.10.2b it is shown, that the bending moment is increasing very quickly 
and reaches the maximum at small slip values already. At increasing slip, the 
position of zero bending moment and its maximum is not changing, while, after 
the maximum moment is reached, the bending moment is reducing progressively. 
In addition, the development of tension forces along the dowel reinforcement for 
increasing slip is presented, Figure 5.10.3. With increasing slip, the activation of 
the dowel bar on tension develops, reaching its maximum when the maximum 
load P is reached. After failure of the bar the tension force is reducing. 
 

 
 

Figure 5.10.3: Tension Forces Dowel Reinforcement 
 
Analysing the tension force it should be noted, that the numerically obtained 
distribution of this force along the dowel bar depends strongly on the definition of 
the contact between the bar and the surrounding concrete and the transfer of 
bond stresses. In the numerical simulation a constant contact was defined as 
“Rough”, while in the performed push-out tests bond stresses might evolve and 
even reduce with increasing slip. 
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In Figure 5.10.4 the activation of the dowel reinforcement in respect to shear and 
bending versus slip is shown. The evolution of shear is presented at a distance of 
11.7 mm from the axis of symmetry and the evolution of bending moment at a 
distance of 0mm (= Position at the axis of symmetry) and at 27.3mm from axis of 
symmetry, Figure 5.10.2. With increasing slip s, the shear force in the bar is 
increasing, while the bending moment is initially rapidly increasing at relatively 
small slip up to its maximum and then decreasing slowly. 
 
 

 
a) 

 

 
b)  

Figure 5.10.4: Evolution of Forces in the dowel bar: a) Shear b) Bending Moment 
 
Finally, the development of the stresses in the dowel reinforcement bar for the 
bar in middle position of the specimen (Figure 5.10.5) and the development of 
damage is presented, Table 5.10.1 and Table 5.10.2. 
 

 
a) 

 
b) 

Figure 5.10.5: a)  Position of dowel 
 reinforcement bar 

b) Cut for illustration of 
 concrete damage 

 
The qualitative development of stresses are given for the part of the dowel 
reinforcement in the chamber of the steel section. The stresses are given in 
relation to global coordinates, the deformation of the axis of the dowel 

reinforcement is considered. Axial stresses 11 and shear stresses 13 are given in 
Table 5.10.1.  
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Table 5.10.1: Stress development in dowel reinforcement 

Slip 
[mm] 

11 (in longitudinal bar-direction) 13 (in the direction of the load P) 

0.164 

  

3.685 

  

9.146 

  

14.58 

  

18.76 

  

26.02 
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The evolution of the concrete damage is presented in Table 5.10.2. The damage is 
shown at the level of the axis of the dowel reinforcement, cf. Figure 5.10.5. 
  
Table 5.10.2: Evolution of concrete compression and concrete tension damage 

Slip 
[mm] 

Compression Damage Tension Damage 

0.164 

  

3.685 

  

9.146 

  

14.58 

  

18.76 

  

26.02 
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6 Formulation of the Load-Bearing Capacity, Pmax 

6.1 Introduction 

In this Chapter the load-bearing capacity of a CoSFB-Dowel is formulated by a 
simplified analytical approach. It has been identified that the load-bearing 
capacity, the maximum load Pmax, is composed by two main components: a 
concrete component Plin and dowel action PDowel (= activation of the dowel 
reinforcement bar). In addition, friction forces Pf may develop and contribute to 
the maximum load. 
The analysis of the push-out tests in combination with the findings obtained by 
numerical simulation, led to the following explanation of the load-bearing 
behaviour of CoSFB-Dowels: Up to a value of Plin, the acting load is transferred 
mainly by the concrete. This is explained by the large volume, strength and 
stiffness of the concrete in relation to the relatively small stiffness of the dowel 
reinforcement bar, cf. Chapter 4. At the level of Plin the strength and stiffness of 
the concrete in the web-opening starts to degradate, which is numerically 
simulated by damage. Consequently, an activation of the dowel reinforcement 
starts and increasing the load P further to values above Plin, shear forces in the 
dowel reinforcement increase. Is the local concrete strength towards the shear 
capacity of the dowel reinforcement bar relatively small, the bar is able to crush 
the concrete underneath and is creating a space, which allows the axis of the bar 
to deform [ES2014]. A mechanism of plastic hinges in the bar develops and the 
reinforcement bar is activated in tension. This mechanism is related to locally large 
deformations of the dowel bar and friction forces may develop in addition. Failure 
occurs when the maximum elongation of the material of the reinforcement bar is 
exceeded. Is the shear capacity of the dowel reinforcement small in relation to the 
local concrete compression strength, the above described mechanism cannot 
develop and the dowel action PDowel is determined by the shear capacity of the 
dowel reinforcement only. This behaviour is linked to locally small deformations 
and no friction is activated. 
Based on these findings the load-bearing capacity can be expressed by the 
following equation: 

𝑃𝑚𝑎𝑥 = 𝑃𝑙𝑖𝑛 + 𝑃𝐷𝑜𝑤𝑒𝑙(+𝑃𝑓) (6.1) 

The described load-bearing mechanism is determined by 3-dimensional non-linear 
material behaviour and interactions between concrete and reinforcement bar. 
This highly non-linear and complex behaviour of CoSFB-Dowels is formulated in 
the following by a simplified 2-dimensional analytical approach. 
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6.2 Concrete Component, Plin 

As already given in Chapter 4.2, the load level of Plin is mainly determined by the 
concrete and its compression strength, fcm. Therefore, Plin can be interpreted as a 
“concrete component” participating on the total load bearing capacity of CoSFB-
Dowels. In order to determine an analytical formulation for Plin, the standard 
method of the statistical measure by the coefficient of determination is applied, 
Figure 6.2.1. 
 

 
Different possible correlations for Plin were investigated, leading to a semi-
empirical Equation for the contribution of the concrete, Pt,lin: 

𝑃𝑡,𝑙𝑖𝑛 = 𝜂 ∙ 𝑓𝑐𝑚 ∙ 𝑡𝑤 ∙ ∅𝑂𝑝𝑒𝑛𝑖𝑛𝑔  

With = 36.919 ∙ (𝑓𝑐𝑚 ∙ 𝑡𝑤 ∙ ∅𝑂)−0.713 , which was derived from the coefficient of 
determination. The unit of the term 𝑓𝑐𝑚 ∙ 𝑡𝑤 ∙ ∅𝑂 has to be in [kN].  
 
Finally the following formulation for Pt,linear is obtained: 

𝑃𝑡,𝑙𝑖𝑛 = 36.919 ∙ (𝑓𝑐𝑚 ∙ 𝑡𝑤 ∙ ∅𝑂)0.287 (6.2) 

In the formulation of , the test Series 2-3 was not taken into account. Further, 
the result of test 2-1a-P3 was not considered, because this result is not 
representative for the given configuration, see Figure B2.4 in Annex B2. Comparing 
the results of test Series 1a with Series 2-2b no influence of the dowel 
reinforcement on Pe,lin could be found. This might be subject of further 
investigations. 

  

 
Figure 6.2.1: Correlation of experimental values of Pe,lin versus fcm  tw  O 

 = 36.919  (fcmtwO)-0.713 
(R2 = 0.9709) 

fcm  tw  O  [kN] 

 [-]  vs. fcm  tw  O  [kN] 



 Chapter 6: Analytical Formulation 

107 
 

The accuracy of Equation 6.2 in comparison to the test results is given in Figure 
6.2.2. 
 
 
 

 
Figure 6.2.2: Comparison of Pe and Pt according to Equation 6.2 
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6.3 Dowel Action, PDowel 

The load-bearing capacity of the concrete in the web-opening is reached at Plin. 
Increasing the load further, concrete softening develops and additional load is 
transferred by the dowel reinforcement. This activation of the dowel 
reinforcement is further refered to as dowel action. The development of an 
analytical formulation of the load-bearing capacity of the dowel is based on the 
assumption that a mechanism of three plastic hinges in the dowel reinforcement 
develops, Figure 6.3.1.  

 
Figure 6.3.1: Development of a mechanism in the dowel reinforcement 

 
Aim of the presented analytical approach is the determination of the limit state, 
to identify the maximum load the dowel reinforcement can transfer. The limit 
state is defined either by reaching the deformation capacity of the dowel bar or 
by reaching the cross-section capacity on shear before the mechanism can 
develop. As initial stage the dowel bar is still undeformed and is subjected 
simultaneously to shear and tension, with the maximum shear force at the 
interface, Figure 6.3.2. It is assumed that the capacity of the bar on bending is 
reached, the plastic hinges are fully developed (M = Mpl). The bar is still not 
subjected to tension (N = 0). The concrete bearing strength has reached its 
maximum under the bar, having a constant, plastic value. To account for the 
strength increase of the concrete due to triaxial stress state and due to local 
loading, the uniaxial compression strength is increased by an enhancement factor 
c, which also allows to distinguish between the concrete in the web-opening and 
next to it. In case the concrete compression strength under the bar is larger than 
the shear capacity of the dowel reinforcement the initial shear force, Vini, is larger 
than the shear capacity of the bar, Vpl. The mechanism cannot develop and the bar 
fails on shear. Thus, the bar is not able to significantly crush the concrete 
underneath, the dowel axis remains straight and no tension is activated in the bar. 
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With increasing deformation of the bar and softening of the concrete, the shear 
force in the bar is reducing, Figure 6.3.3. This happens, when the dowel bar is able 
to crush the concrete underneath, the dowel axis can deform and a mechanism of 
three plastic hinges develops, Figure 6.3.1. The deformation of the axis of the 
dowel bar is enlarging with further increase of the load.  Tension force develops in 
the bar, while the shear force is simultaneously decreasing leading to a higher 
maximum load.  

 

 

Figure 6.3.2: Undeformed state and 
distribution of moment and shear 

Figure 6.3.3: Deformed state with 
distribution of contact pressure 

 
The limit state is reached, either when the deformation capacity of the dowel bar 
or the cross-section capacity on shear is reached. To calculate the maximum load 
PDowel, the load-displacement response P(u) has to be derived as a function of the 
displacement u. 

 
Cross-section Capacity for Shear and Tension 

 
The yield condition for a circular cross section subjected to shear and tension 
forces is given by:  

𝑓(𝑉,𝑁) =
𝑉

𝑉𝑝𝑙
+

𝑁

𝑁𝑝𝑙
− 1 = 0 (6.3) 

with: 

𝑉𝑝𝑙 = 𝜋 ∙
𝑑2

4
∙
𝑓𝑢

√3
 

𝑁𝑝𝑙 = 𝜋 ∙
𝑑2

4
∙ 𝑓𝑢 

fu = ultimate strength of the dowel reinforcement.  
 
  

Vini 
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Development of a Mechanism 
 
The load transferred by dowel action PDowel is formulated as a function of the 
vertical displacement u. It is based on the assumption of a plastic mechanism with 
three plastic hinges, cf. Figure 6.3.1. With increasing displacement u, tension 
forces in the dowel reinforcement gradually develop, until the dowel is subjected 
to tension only. A state of pure catenary action can be reached, if the dowel 
material provides sufficient ductility. The non-linear behaviour of the dowel is 
described by second order plasticity, as formulated by Sorensen for two sided 
joints, cf. Chapter 2 and [Sor2017].  
As described already before, the mechanism can only develop in case the bar 
provides sufficient shear capacity. Further, at the initial stage the shear capacity 
of the bar is not reached and the bar is able to crush the concrete underneath to 
cut its way through. 
Rigid-plastic material is assumed for concrete and reinforcement bar, 
displacements are due to accumulated plastic deformations in the plastic hinges 
only. Their position depends on the bending capacity of the dowel reinforcement 
and the concrete compression strength. Assuming the position of the plastic 
hinges is not changing once they are created, the plastic hinges must undergo also 

elongations  in addition to their rotation . The rates of the plastic deformations 
are determined by establishing the kinematic relationship for the assumed 
mechanism. By imposing the normality condition of plastic theory and by applying 
the work Equation for increments of displacements, the load P is formulated as a 
function of the displacement u.  
The herafter given equations are fully based on the work already published by 
Sorensen [Sor2017], and adapted to CoSFB-Dowels where necessary. 
 
 
Mechanism and kinematic relationships [Sor2017] 
 
The relative shear displacement u, is considered as a monotonic function of time, 
the problem is treated as static displacement controlled and a displacement 
velocity equal to unity is assumed: 

u(𝑡) = 𝑡 (6.4) 

The relationship between the displacement u and the rotation in the plastic hinges 

 is given as: 

tan(𝜑) =
𝑢

𝑙1+𝑙2
 (6.5) 

By assuming the elongation  is concentrated in the plastic hinges, the following 

relationship between u and  can be established: 

𝑢2 + (𝑙1 + 𝑙2)
2 = (𝑙1 + 𝑙2 + 2 ∙ Δ)2 

𝑢2 + (𝑙1 + 𝑙2)
2 = (𝑙1 + 𝑙2)

2 + 4 ∙ Δ ∙ (𝑙1 + 𝑙2) + 4 ∙ Δ2 
𝑢2 = 4 ∙ Δ ∙ (𝑙1 + 𝑙2) + 4 ∙ Δ2 

Δ = −
𝑙1+𝑙2

2
+

𝑙1+𝑙2

2
∙ √1 + (

𝑢

𝑙1+𝑙2
)
2

 (6.6) 
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Hence, the rates of plastic deformations in the hinges can be as: 

φ̇ =
𝑑𝜑

𝑑𝑡
=

𝑑𝜑

𝑑𝑢

𝑑𝑢

𝑑𝑡
=

𝑙1+𝑙2

(𝑙1+𝑙2)2+𝑢2  (6.7) 

Δ̇ =
𝑑Δ

𝑑𝑡
=

𝑑Δ

𝑑𝑢

𝑑𝑢

𝑑𝑡
=

𝑢

2∙√(𝑙1+𝑙2)2+𝑢2
  (6.8) 

And the following kinematic condition of the bar can be established: 

Δ̇

𝜑̇
=

𝑢

2
∙ √1 + (

𝑢

𝑙1+𝑙2
)
2

  (6.9) 

 
 

Constitutive relationships and section forces in the plastic hinges [Sor2017] 
 
The capacity of the cross section on tension and shear are: 

𝑁𝑝𝑙 = 𝜋 ∙
𝑑2

4
∙ 𝑓𝑢  (6.10) 

𝑀𝑝𝑙 =
1

6
∙ 𝑑3 ∙ 𝑓𝑢  (6.11) 

fu = ultimate strength of the dowel reinforcement.  
 
Plastic deformations may initiate when the yield condition for axial tension and 
bending of the circular cross section is fulfilled. The yield condition can be 
formulated as (see Annex D for details): 

𝑓(𝑀,𝑁) =
𝑁

𝑁𝑝𝑙
+

2

𝜋
∙ [𝑎𝑟𝑐𝑠𝑖𝑛 ((

𝑀

𝑀𝑝𝑙
)
1/3

) − (
𝑀

𝑀𝑝𝑙
)
1/3

∙ √1 − (
𝑀

𝑀𝑝𝑙
)
2/3

] − 1 = 0 

 (6.12) 

According to the normality condition of plastic theory the rates of deformations 
must fulfill the following constitutive relationship: 

𝜑̇ = 𝜆 ∙
𝑑𝑓

𝑑𝑀
= 𝜆 ∙

8

𝜋∙𝑑3∙𝑓𝑦
∙

1

√1−(
𝑀

𝑀𝑝𝑙
)

2/3
  (6.13) 

Δ̇ = 𝜆 ∙
𝑑𝑓

𝑑𝑁
= 𝜆 ∙

4

𝜋∙𝑑2∙𝑓𝑦
  (6.14) 

where  is a positive constant proportional to  the displacement velocity. The ratio 
of the plastic strain rates can be formulated as: 

Δ̇

𝜑̇
=

𝑑

2
∙ √1 − (

𝑀

𝑀𝑝𝑙
)
2/3

  (6.15) 

By combining the kinematic conditions and the state of stresses in the plastic 
hinges, the bending moment in the plastic hinges M(u) for any given displacement 
u is formulated: 

𝑀(𝑢)

𝑀𝑝𝑙
= [1 − (

𝑢

𝑑
)
2

∙ (1 + (
𝑢

𝑙1+𝑙2
)
2

)]
3/2

  (6.16) 
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For increasing displacement u, the bending moment M(u) is progressively 
reducing. The tension force N(u) may thereafter be determined by imposing 
f(M,N) = 0 in the above given Equation for M(u). 

𝑁(𝑢)

𝑁𝑝𝑙
= 1 −

2

𝜋
∙ [𝑎𝑟𝑐𝑠𝑖𝑛 ((

𝑀(𝑢)

𝑀𝑝𝑙
)
1/3

) − (
𝑀(𝑢)

𝑀𝑝𝑙
)
1/3

∙ √1 − (
𝑀

𝑀𝑝𝑙
)

2/3

]  (6.17) 

 
 

Effective stress distribution in the concrete [Sor2017] 
 
The assumed displacement field for the rebar implies that it has to cut its way 
through the concrete and thereby causes local crushing of the concrete. To 
determine in detail the entire stress distribution within the development of this 
simplified approach is not possible and might be subject of further investigations. 
To take into account for the triaxial stress conditions developed in the concrete 
and for the bearing strength to local pressure, the uniaxial compressive strength 
is increased by applying an enhancement factor c [Sor2017] see also e.g. [Li1989], 
[Ra1963]. 

𝑓𝑐𝑐 = 𝑐 ∙ 𝑓𝑐   (6.18) 

where c > 1, has to be determined by comparison with the test results. Due to the 
geometry of the web-opening, separate enhancement factors are used for the 
concrete in the web-opening and outside of the web-opening. 
To determine the position of the plastic hinges an uniformly distributed contact 
pressure over the lengths l1 and l2 of magnitude fcc,1 and fcc,2 is assumed, Figure 
6.3.1. By setting up the vertical force equilibrium and moment equilibrium for the 
part of the rebar between the plastic hinges and by assuming the moment capacity 
of the rebar as Mpl, it is possible to establish the following equations to calculate 
l1 and l2: 

Σ𝑉 = 0: 𝑙2 =
𝑓𝑐𝑐,1

𝑓𝑐𝑐,2
∙ 𝑙1 

ΣM = 0: 𝑀𝑝𝑙 − 𝑑 ∙ 𝑓𝑐𝑐,1 ∙ (𝑙1)
2 ∙

1

2
= 𝑑 ∙ 𝑓𝑐𝑐,2 ∙ (𝑙2)

2 ∙
1

2
− 𝑀𝑝𝑙  

𝑙1 = √
2

3
∙

𝑑

√1+
𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

∙ √
𝑓𝑦

𝑓𝑐𝑐,1
≤

𝑡𝑤

2
  (6.19) 

𝑙2 = √
2

3
∙

𝑑

√1+
𝑓𝑐𝑐,2
𝑓𝑐𝑐,1

∙ √
𝑓𝑦

𝑓𝑐𝑐,2
  (6.20) 

The position of one plastic hinge is at the centreline of the web and therefore 

known, l1 is determined by l1 = ½  tw. Further, assuming the concrete in the web-
opening and in the chamber having originally the same uniaxial concrete 
compression strength fcm, the ratio of the enhacement factors c1/c2 is determined 
and c1 can be calculated with: 

𝑐1
2

𝑐2
+ 𝑐1 =

8

3
∙

𝑓𝑦

𝑓𝑐𝑚
∙

𝑑2

𝑡𝑤
2 ⇒ 𝑐1 = −

𝑐2

2
+ √

𝑐2
2

4
+

8

3
∙

𝑓𝑦

𝑓𝑐𝑚
∙

𝑑2

𝑡𝑤
2 ∙ 𝑐2  (6.21) 
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When dowel action is accompanied by tension in the rebar (and in the end 
completely replaced by catenary action) the average contact pressure must 
decrease due to the assumed material properties and the equilibrium conditions. 
Since concrete is not a perfect rigid-plastic material, there will be a softening effect 
which in turn reduces the concrete pressure when the concrete experiences too 
large compressive strains. Therefore, due to material properties, redistribution of 
the contact pressure will take place as u increases. In addition to this, the 
redistribution of stresses must take place in such a way, that equilibrium can be 
mantained when catenary action starts to develop in the rebar.  
By setting up the vertical force equilibrium and moment equilibrium for the part 
of the rebar between the two plastic hinges for the deformed state (Figure 6.3.3) 
and by utilizing that the plastic hinges are subjected to M(u) and N(u), the 
relationship between u and the effective lengths l1,ef and l2,ef can be determined. 
For further information about the analytical formulation it is referred to Annex D: 

𝑙1,𝑒𝑓 = 𝑙1 ∙ [1 − √1 −
𝑀(𝑢)

𝑀𝑝𝑙+(
𝑢

2
)
2
∙ 𝑑 ∙ 

𝑓𝑐𝑐,1∙𝑓𝑐𝑐,2

(𝑓𝑐𝑐,1+𝑓𝑐𝑐,2)

]   (6.22) 

𝑙2,𝑒𝑓 = 𝑙2 ∙ [1 − √1 −
𝑀(𝑢)

𝑀𝑝𝑙+(
𝑢

2
)
2
∙ 𝑑 ∙ 

𝑓𝑐𝑐,1∙𝑓𝑐𝑐,2

(𝑓𝑐𝑐,1+𝑓𝑐𝑐,2)

]   (6.23) 

It appears that the effective length is equal to the initial lengths, when u = 0 and 
reduces to zero when u has reached a value that makes M(u) = 0. The latter 
situation corresponds to a transition to full catenary action where the plastic 
hinges turn into moment-free hinges. Therefore, the rebar will no longer 
experience contact pressure between the two hinges, but instead acts as a tie. 

 
 

Load displacement response [Sor2017] 
 

Using the work Equation it is now possible to determine a load-displacement 
response. A stationary situation with displacement u and load P(u) is used as a 

starting point from which an increment of displacement, u is considered. The 
external work WE is then given by: 

𝑊𝐸 = 𝑃(𝑢) ∙ 𝛿𝑢  (6.24) 

The internal work has contributions from the energy dissipated in the plastic 

hinges – with the rotation  and the elongation  of plastic hinges outside of the 

web-opening and 2 and 2 in the web-opening, Figure 6.3.1 - as well as the 
energy absorbed when the concrete crushes under the bar: 

𝑊𝐼 = 2 ∙ (𝑓𝑐𝑐,1 ∙ 𝑙1,𝑒𝑓 ∙ 𝑑 ∙
1

2
∙
𝑙1,𝑒𝑓

𝑙1
∙ 𝛿𝑢1 + 𝑓𝑐𝑐,2 ∙ 𝑙2,𝑒𝑓 ∙ 𝑑 ∙

1

2
∙
𝑙2,𝑒𝑓

𝑙2
∙ 𝛿𝑢2 + 2 ∙ 𝑁(𝑢) ∙

𝛿Δ + 2 ∙ 𝑀(𝑢) ∙ 𝛿φ) (6.25) 
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The incremental displacement and deformation quantities u1, u2,  and , can 

be expressed in terms of u through the following relationships (with t = u): 

𝛿φ = φ̇𝛿𝑢  (6.26a) 

𝛿Δ = Δ̇𝛿𝑢 (6.26b) 

𝛿𝑢1 =
𝑙1

𝑙1+𝑙2
 ∙ 𝛿𝑢 (6.26c) 

𝛿𝑢2 =
𝑙2

𝑙1+𝑙2
 ∙ 𝛿𝑢 (6.26d) 

By inserting the Equations above into the formulation of the internal work and by 
setting up the work equation WE = WI, the following solution is obtained for the 
load-displacement response of a perfectly smooth (frictionless) shear connection: 

𝑃(𝑢) = 𝑃𝐷𝑜𝑤𝑒𝑙(𝑢) (6.27) 

𝑃𝐷𝑜𝑤𝑒𝑙(𝑢) = 𝑓𝑐𝑐,1 ∙ 𝑑 ∙
𝑙1,𝑒𝑓

2

𝑙1+𝑙2
+ 𝑓𝑐𝑐,2 ∙ 𝑑 ∙

𝑙2,𝑒𝑓
2

𝑙1+𝑙2
+ 4 ∙ 𝑁(𝑢) ∙ Δ̇ + 4 ∙ 𝑀(𝑢) ∙ φ̇ (6.28) 

Here M(u), N(u), Δ̇, Θ̇, l1 and l2 can be expressed as explicit functions of the 
displacement u as shown earlier. The solution is valid as long as u is less than the 
displacement capacity umax. 
 
 
Inclusion of friction 
 
With increasing deformation u and increasing tension forces in the dowel bar, 
friction forces may develop. The friction force Pf might be assumed with: 

𝑃𝑓(𝑢) = 𝜇 ∙ 𝑁(𝑢) ∙ cos(𝜑)  (6.29) 

In the absence of detailed research about friction coefficients for CoSFB-Dowels, 

the author decided to apply a friction factor of  = 0.3, which is smaller than the 
friction factor given by section 6.7.4.2 (4) of EN 1994-1-1 [EN1994]. The influence 
of a possible friction force acting directly in the plastic hinge as described by 
Pruijssers [Pru1988] is not considered. 
The above described method and the corresponding equations are fully based on 
the method developed and presented by Jesper Harald Sorensen [Sor2017], 
completed by possible shear failure of the dowel reinforcement and adapted to 
the current problem.    
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6.4 Limit Condition for a CoSFB-Dowel 

Based on the analytical formulations derived before, the limit conditions for a 
CoSFB-Dowel are determined. A limit state is reached, when the cross-section 
capacity of the dowel reinforcement on shear is reached before a mechanism can 
develop. Or, in case the shear capacity is not reached and a mechanism can 
develop, the limit state is defined by the elongation capacity of the dowel 

reinforcement, max. This leads to the following limit equations: 
 

Shear Failure 
 

V

Vpl
 1  (6.30) 

with  

𝑉 = 𝑓𝑐𝑐,1 ∙ 𝑙𝑒𝑓,1 ∙ 𝑑 

𝑉𝑝𝑙 = 𝜋 ∙
𝑑2

4
∙
𝑓𝑢

√3
 

fu = ultimate strength of the dowel reinforcement, 

The following limit condition for shear can be derived:  

𝑓𝑐𝑐,1

𝑓𝑢
∙
𝑙𝑒𝑓,1

𝑑
∙
√3 ∙ 4

𝜋
 1 (6.31) 

 
Deformation Capacity of the Dowel Bar 
 

Δ = −
𝑙1+𝑙2

2
+

𝑙1+𝑙2

2
∙ √1 + (

𝑢𝑚𝑎𝑥

𝑙1+𝑙2
)
2

≤ Δ𝑚𝑎𝑥 (6.32) 

With 

𝑙1 = √
2

3
∙

𝑑

√1+
𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

∙ √
𝑓𝑦

𝑓𝑐𝑐,1
≤

𝑡𝑤

2
   

𝑙2 = √
2

3
∙

𝑑

√1+
𝑓𝑐𝑐,2
𝑓𝑐𝑐,1

∙ √
𝑓𝑦

𝑓𝑐𝑐,2
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6.5 Evaluation of the Analytical Method to determine PDowel 

The derived analytical formulation for PDowel is evaluated by comparison to the 
push-out test, results are presented in Table 6.5.1. Focus is given to the evaluation 
of PDowel, as the accuracy of Equation 6.1 to determine Plin was already shown in 
Section 6.2, Figure 6.2.2. As already pointed out in the previous sections, the 
derived Equation to determine the maximum load for dowel action, PDowel, is based 
on the assumption that a mechanism of three plastic hinges in the dowel 
reinforcement develops or the shear capacity of the bar is reached beforehand. 
The concrete in the web-opening and in the chamber is restrained by the steel 
profile and by the concrete slab. The developed analytical method is based on the 
approach already developed by Sorensen [Sor2017]. It enables to quantify the 
influence of each component on the load-bearing capacity of CoSFB-Dowels, but 
it is less adequate for a simulation of the non-linear part of the load-slip curve. 
 
 

 
 
Figure 6.5.1: Evaluation of PDowel(u) 

 
The enhancement factors were empirically determined by comparing values for 
PDowel, calculated with Equations (6.28) and (6.29), with the test results Figure 6.5.1 
presents the components contributing to PDowel(u): crushing of the concrete, 

bending and tension. In addition, the calculated elongation  of the bar is given. 
The confinement of the concrete strength under the bar was considered by an 
enhancement factor c2 = 5.0. This value has to be proven to be adequate for CoSFB-
Dowels within the given test range. The influence of the enhancement factor is 
shown in Figure 6.5.3.   

u [mm] 

c2 = 5.0 

 c1 = 10.9 
fcm = 26.7 MPa 
tw = 15.5 mm  

O = 40 mm  
d  = 12 mm  [mm] 

 [mm] 

catenary 
action 

PDowel (u) [kN/Dowel] 

P (u) 
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With increasing displacement u the load P(u) is first decreasing, which is related to 
the applied method for concrete softening, then P(u) is quickly increasing. In case 
P(u = 0) < 2 x Vpl, the mechanism can develop and the limit state is defined by the 
maximum elongation of the bar. The contribution of the bending moment and the 
concrete are decreasing, when at the same time the contribution of tension is 
increasing.  
 
The development of tension force and the reduction of shear force in the dowel 
reinforcement is presented in Figure 6.5.2. Between the plastic hinges the tension 
force is assumed to be constant, no bond stresses between the bar and the 
concrete are considered. The shear force is given for the position of its maximum 
value, at the shear interface. With increasing displacement u, the tension force in 
the bar is increasing until its capacity on tension is reached. While simultaneously, 
due to the inclination of the axis of the bar and the softening of the concrete, the 
shear force is decreasing.  
 
 
 

 
 
Figure 6.5.2: Development of tension in the dowel reinforcement 

 
The influence of the enhancement factor is presented in Figure 6.5.3. The 
evolution of the load P(u) is given up to a displacement u = 30mm and the 

corresponding elongation  is indicated. For a lower concrete bearing strength, for 
smaller enhancement factors, a higher maximum load is reached. Altough, to 
reach this higher load a higher ductility of the dowel bar is required. In practice, 
the dowel reinforcement has limited ductility and the dowel reinforcement will fail 
because its maximum elongation is reached.  

u [mm] 

PDowel (u) [kN/Dowel] 

 Npl  

 Mpl  

catenary 
action 

 = 3.35mm c2 = 5.0 

 c1 = 10.9 
fcm = 26.7 MPa 
tw = 15.5 mm  

O = 40 mm  
d  = 12 mm 
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Figure 6.5.3: Influence of enhancement factor 

 
Friction was not considered in the Figures given before. As already pointed out by 
the author, the derived analytical method is not foreseen to reproduce the non-
linear part of the experimentally obtained load-slip curve. It is not possible to 
reproduce non-linear material behaviour and complex interactions by a simplified 
analytical method. Nevertheless, to illustrate the influence of different friction 

factors , a comparison to test series 1a is given in Figure 6.5.4.  
 

 
Figure 6.5.4: Influence of friction on Pt,Dowel and comparison to Series 1a 

 

u [mm] 

PDowel (u) [kN/Dowel] 

Factor-c2: 
fcm = 26.7 MPa 
tw = 15.5 mm  

O = 40 mm  
d  = 12 mm 

 = 8.5mm 

 = 6.3mm 
 = 7.3mm 

 = 4.3mm 

s, u [mm] 

Pe, Pt [kN] 

Pt calculated with: 

c2 = 5.0  c1 = 10.9 
fcm = 26.7 MPa 
tw = 15.5 mm  

O = 40 mm  
d  = 12 mm 

 = 0.1 

 = 0.0 

 = 0.3 

 = 0.5 
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Finally, the dowel action, Pt,Dowel, has been calculated for different values of the 
concrete compression strength, fcm, and compared with the experimentally 
obtained values, Pe,Dowel. In accordance with Chapter 3.4 the estimated maximum 

elongation of the dowel reinforcement was set to max = 3.2mm and a friction 

factor  = 0.3 was used. The capacity of the dowel bar on shear and tension was 
calculated with the ultimate strength, fu. Results are presented in Table 6.5.1. 
 

Table 6.5.1: Determination of Pt,Dowel and comparison with Pe 

Test fcm c2 c1 l2 umax (umax) Pt Pf Pt,Dowel Pe 

 [MPa] [-] [-] [mm] [kN] [kN] [kN] [kN] 

1a 26.7 5.0 10.9 16.2 18.5 3.2 81.4 31.1 112.4 117.1 

1b 55.1 Shear failure for c2 > 6.6 76.1 - 76.1 67.6 

2-1a 29.5 5.0 23.6 16.9 17.4 3.2 85.3 30.1 115.5 104.6 

2-1b* 58.2 Shear failure for c2 > 4.3 76.1 - 76.1 64.8 

2-2a 32.7 5.0 9.7 14.3 17.9 3.2 83.8 30.5 114.3 126.4 

2-2b 40.0 Diameter of dowel reinforcement bar d = 25mm 

2-3 38.3 No concrete in the web-opening 
*Test 2-1b-P3 not considered 

 
With: 

umax  maximum displacement, corresponding to (umax) 

(umax)  maximum elongation of the dowel reinforcement, with (umax) = 3.2mm 
Pt theoretical load-bearing capacity of the dowel w/o friction 
Pf theoretical force transferred by friction, 𝑃𝑓(𝑢) = 𝜇 ∙ 𝑁(𝑢) ∙ cos(𝜑)  

Pt,Dowel theoretical load-bearing capacity of the dowel including friction 

Pe experimental load-bearing capacity of the dowel, ∆𝑃𝑒 = 𝑃𝑒,𝑚𝑎𝑥 − 𝑃𝑒,𝑙𝑖𝑛 
 
For a constant diameter of the dowel reinforcement, the development of a 
mechanism depends on the concrete compression strength. A mechanism 
developped for Series 1a, 2-1a and 2-2a., when for Series 1b and 2-1b the shear 
capacity of the bar was reached, before the mechanism could develop. Because 
no detailed test data for the contribution of the dowel action was available for 
Series 2-2b and 2-3, no comparison with the analytical method could be done.  
Due to the absence of scientific investigations on the enhancement factor for 
CoSFB-Dowels, more test results are required to investigate possible correlations 
of the enhancement factor to the concrete compression class, the geometry of the 
web-opening and to the diameter of the dowel reinforcement. The derived 
method provides excellent information about the load-bearing behaviour and 
enables to quantify the maximum load of CoSFB-Dowels. However, due to the 
limited range of the concrete compression strength used in the tests, more tests 
are required to validate the method, especially for concrete compression strength 

in the range 33 MPa  fcm  55 MPa. 
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7 Design Proposal 

7.1 Introduction 

Based on the findings presented in the previous Chapters, the maximum load is 
composed by a concrete component, Plin, dowel action, PDowel, and Friction, Pf, 
Figure 7.1. 

 
Figure 7.1: Components of a CoSFB-Dowel 

 
In Section 6.2 it is shown, that Plin depends on the concrete compression strength, 
the web thickness, the diameter of the web-opening and an empirically 

determined factor , see Equation (6.2). As shown in Section 6.3, the possible 
development of a mechanism of three plastic hinges is of significant importance 
for value of PDowel. Is the shear capacity of the dowel reinforcement compared to 
the compression resistance of the confined concrete located next to the web-
opening rather small, then no mechanism can develop and the value of PDowel is 
determined by the shear capacity of the bar. In case the shear capacity is larger 
than the local compression strength of the confined concrete, the before 
described mechanism in the dowel reinforcement can develop, which leads to an 
increase of the contribution of the dowel bar on the overall load-bearing capacity. 
However, the available test data was not sufficient to determine the initiation of 
the mechanism. Therefore, the author decided to limit the value of PDowel 
conservatively and safe sided to a lower boundary, the plastic shear resistance of 
the dowel bar. Consequently, the possible contribution of friction, Pf, is neglected, 
because the development of friction cannot be assured for in case of a shear 
failure. Finally, a design Equation for the shear resistance of a CoSFB-Dowel is 
formulated as the sum of the concrete component, Plin, and the dowel action, 
PDowel: 

𝑃𝑅𝑑 = 𝑃𝑅𝑑,𝐶𝑜𝑆𝐹𝐵−𝐷𝑜𝑤𝑒𝑙 = 𝑃𝑅𝑑,𝑙𝑖𝑛 + 𝑃𝑅𝑑,𝐷𝑜𝑤𝑒𝑙 (7.1) 

with 
PRd,lin  design value of the concrete component 
PRd,Dowel  design value of the dowel action 
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7.2 Design Resistance of the Concrete Component, Plin 

The linear range of the load-slip curve is limited by a concrete component, Plin, cf. 
Section 6.2. A strong correlation of Plin to the web thickness, the diameter of the 
web-opening and the concrete compression strength was identified, Figure 6.2.1. 
To determine the theoretical value of this concrete component, Pt,lin the following 
Equation was derived: 

𝑃𝑡,𝑙𝑖𝑛 = 𝜂 ∙ 𝑓𝑐𝑚 ∙ 𝑡𝑤 ∙ ∅𝑂𝑝𝑒𝑛𝑖𝑛𝑔 (7.2) 

with 

 empirical factor derived from the coefficient of determination 
𝜂 = 36.919 ∙ (𝑓𝑐𝑚 ∙ 𝑡𝑤 ∙ ∅𝑂)−0.713  
 
 

Determination of the design Equation for Plin 
 
To derive the design resistance of the concrete component PRd,lin a statistical 
evaluation of Equation 7.2 is done according to Annex D8.2 of EN 1990 [EN1990], 
see Table 7.2. 
 
Mean value of correction factor: 

𝑏 =
∑(𝑃𝑒,𝑙𝑖𝑛 ∙ 𝑃𝑡,𝑙𝑖𝑛)

∑(𝑃𝑡,𝑙𝑖𝑛 ∙ 𝑃𝑡,𝑙𝑖𝑛)
=

123403.4

123302.8
= 1.0008 ≈ 1 

𝛿𝑖 =
𝑃𝑒,𝑙𝑖𝑛

𝑏 ∙ 𝑃𝑡,𝑙𝑖𝑛
 

∆𝑖= ln(𝛿𝑖) 

∆ ̅ =
1

𝑛
∙ ∑∆𝑖

𝑛

𝑖=1

= −0.0012 

∑(∆𝑖 − ∆̅)2 = 0.0523 

 
Standard deviation of the error terms: 

𝑠∆
2 =

1

𝑛 − 1
∙ ∑(∆𝑖 − ∆̅)2 =

1

17 − 1
∙ 0.0523 = 0.0033 

 
Coefficient of variation of errors: 

𝑉𝛿 = √𝑒𝑥𝑝(𝑠∆
2) − 1 = √𝑒𝑥𝑝(0.0033) − 1 = 0.0572 ≤ 0.20  

 
Standard deviation of the concrete strength “C35” and of the web-thickness 
according to [Hei2011] and [MC2001]: 

𝑉𝑓𝑐 = 0.124 

𝑉𝑡𝑤 = 0.100  

For the diameter of the web-opening no standard deviation was considered, 
because the holes up to diameter 40mm are typically drilled. 
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Table 7.2: Statistical evaluation of Equation 7.2 

Series 
Pe,lin 
[kN] 

Pe,lin 
[kN/Dowel] 

Pt,lin 
[kN] 

Pe,lin 
/ Pt,lin 

i i (∆𝑖 − ∆̅)2 

1a 814.0 81.4 82.7 0.98 0.983 -0.017 0.0002 

 773.5 77.4 82.5 0.94 0.937 -0.065 0.0041 

 790.5 79.1 82.7 0.96 0.955 -0.046 0.0020 

1b 940.0 94.0 101.4 0.93 0.927 -0.076 0.0056 

 987.0 98.7 101.5 0.97 0.972 -0.029 0.0008 

 1010.5 101.1 102.3 0.99 0.987 -0.013 0.0001 

2-1a 701.5 70.2 68.8 1.02 1.019 0.019 0.0004 

 659.5 66.0 69.1 0.95 0.953 -0.048 0.0022 

 685.0 68.5 69.1 0.99 0.991 -0.009 0.0001 

2-1b 887.0 88.7 83.3 1.06 1.064 0.062 0.0039 

 935.0 93.5 84.6 1.10 1.104 0.099 0.0100 

 1652.5 - -  -  -   -  - 

2-2a 744.5 74.5 76.2 0.98 0.977 -0.023 0.0005 

 772.0 77.2 76.4 1.01 1.009 0.009 0.0001 

 780.0 78.0 76.9 1.01 1.013 0.013 0.0002 

2-2b 856.0 85.6 91.9 0.93 0.931 -0.071 0.0049 

 1047.5 104.8 93.5 1.12 1.120 0.113 0.0130 

 991.5 99.2 93.1 1.07 1.065 0.063 0.0041 

 
Coefficient of variation of resistance function Vrt: 

𝑉𝑟𝑡
2 =

1

𝑔𝑟𝑡
2 (𝑋𝑚)

∙ ∑(
𝜕𝑔𝑟𝑡

𝜕𝑋𝑖
∙ 𝜎𝑖)

2
𝑗

𝑖=1

= ∑(
𝜕𝑔𝑟𝑡

𝜕𝑋𝑖
∙

𝜎𝑖

𝑔𝑟𝑡(𝑋𝑚)
)
2

𝑗

𝑖=1

 

with i = standard deviation for variable Xi (i
2 = Vi). 

 
Table 7.3: Partial differentiation of Equation 7.2 

Variable 
𝜕𝑔𝑟𝑡

𝜕𝑋𝑖
 

𝜕𝑔𝑟𝑡

𝜕𝑋𝑖
∙

1

𝑔𝑟𝑡(𝑋𝑚)
 

fcm 
36.919 ∙ 0.287 ∙ (𝑡𝑤 ∙ 𝑑𝑂𝑝𝑒𝑛𝑖𝑛𝑔)

0.287

∙ 𝑓𝑐𝑚
−0.713 

0.287

𝑓𝑐𝑚
 

tw 36.919 ∙ (𝑓𝑐𝑚 ∙ 𝑑𝑂𝑝𝑒𝑛𝑖𝑛𝑔)
0.287

∙ 0.287

∙ 𝑡𝑤
−0.713 

0.287

𝑡𝑤
 

dOpening [ - ] [ - ] 

 
Coefficient of variation of the resistance function is therefore: 

𝑉𝑟𝑡
2 = (

0.287 ∙ 𝜎𝑐

𝑓𝑐𝑚
)
2

+ (
0.287 ∙ 𝜎𝑡𝑤

𝑡𝑤
)
2

= (0.287 ∙ 0.124)2 + (0.287 ∙ 0.100)2 = 

𝑉𝑟𝑡
2 = 0.0021  
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Coefficient of variation: 

𝑉𝑟
2 = 𝑉𝛿

2 + 𝑉𝑟𝑡
2 = 0.05722 + 0.0021 = 0.0054 

 
Characteristic value of the resistance rk: 

𝑟𝑘 = 𝑏 ∙ 𝑔𝑟𝑡(𝑋𝑚) ∙ 𝑒𝑥𝑝(−𝑘∞ ∙ 𝛼𝑟𝑡 ∙ 𝑄𝑟𝑡 − 𝑘𝑛 ∙ 𝛼𝛿 ∙ 𝑄𝛿 − 0.5 ∙ 𝑄2) 

𝑄𝑟𝑡 = 𝜎𝑙𝑛(𝑟𝑡) = √ln(𝑉𝑟𝑡
2 + 1) = √ln(0.0021 + 1) = 0.0457 

𝑄𝛿 = 𝜎𝑙𝑛(𝛿) = √ln(𝑉𝛿
2 + 1) = √ln(0.05722 + 1) = 0.0572 

𝑄 = 𝜎𝑙𝑛(𝑟) = √ln(𝑉𝑟2 + 1) = √ln(0.0054 + 1) = 0.0731 

𝛼𝑟𝑡 =
𝑄𝑟𝑡

𝑄
=

0.0457

0.0731
= 0.6247 

𝛼𝛿 =
𝑄𝛿

𝑄
=

0.0572

0.0731
= 0.7816 

 
The values for the coefficients of variation are taken from [MC2001] and therefore 

are “known”, consequently the values for k and kn are taken from Table D1 of EN 

1990 [EN1990] for “Vx known”, with k = 1.64 and kn = k20 = 1.68: 

𝑟𝑘 = 𝑏 ∙ 𝑔𝑟𝑡(𝑋𝑚) ∙ 𝑒𝑥𝑝(−𝑘∞ ∙ 𝛼𝑟𝑡 ∙ 𝑄𝑟𝑡 − 𝑘𝑛 ∙ 𝛼𝛿 ∙ 𝑄𝛿 − 0.5 ∙ 𝑄2) 
𝑟𝑘 = 1.0008 ∙ 𝑔𝑟𝑡(𝑋𝑚)

∙ 𝑒𝑥𝑝(−𝑘∞ ∙ 0.6247 ∙ 0.0457 − 𝑘𝑛 ∙ 0.7816 ∙ 0.0572 − 0.5 ∙ 0.07312) 

𝑟𝑘 = 0.8836 ∙ 𝑔𝑟𝑡(𝑋𝑚) 

 
Calculation of the design value of resistance rd, with Table D2 of EN 1990 [EN1990] 

for “Vx known”, with kd, = 3.04 and kd,n = kd,20 = 3.16: 

𝑟𝑑 = 𝑏 ∙ 𝑔𝑟𝑡(𝑋𝑚) ∙ 𝑒𝑥𝑝(−𝑘𝑑,∞ ∙ 𝛼𝑟𝑡 ∙ 𝑄𝑟𝑡 − 𝑘𝑑,𝑛 ∙ 𝛼𝛿 ∙ 𝑄𝛿 − 0.5 ∙ 𝑄2) 
𝑟𝑑 = 1.0008 ∙ 𝑔𝑟𝑡(𝑋𝑚)

∙ 𝑒𝑥𝑝(−3.04 ∙ 0.6247 ∙ 0.0457 − 3.16 ∙ 0.7816 ∙ 0.0572 − 0.5 ∙ 0.07312) 

𝑟𝑑 = 0.7946 ∙ 𝑔𝑟𝑡(𝑋𝑚) 

 

Calculation of the partial safety factor M: 

𝛾𝑀 =
𝑟𝑘
𝑟𝑑

=
0.8836

0.7946
= 1.1119 

 
Calculation of ratio of nominal resistance to characteristic resistance, kc: 

𝑘𝑐 =
𝑟𝑛
𝑟𝑘

=
(𝑓𝑐𝑘)

0.287

(𝑓𝑐𝑚)0.287
=

(40)0.287

(48)0.287
= 0.9490 

with mean values fck,m = 40 MPa and fcm,m = 48 MPa for a range of concrete 
compression classes from C25/30 up to C55/67 [Z-26.4-59].  
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Calculation of the partial safety factor with respect to the nominal resistance, M*: 

𝛾𝑀
∗ =

𝑟𝑛
𝑟𝑘

∙
𝑟𝑘
𝑟𝑑

=
𝑟𝑛
𝑟𝑑

=
𝑟𝑛
𝑟𝑘

∙ 𝛾𝑀 = 𝑘𝑐 ∙ 𝛾𝑀 = 0.9490 ∙ 1.1119 = 1.0553 

 
Formulation of the design equation for PRd,lin: 

𝑃𝑅𝑑,𝑙𝑖𝑛 = 𝑃𝑡,𝑙𝑖𝑛,𝑛 ∙
𝛾𝑣

𝛾𝑀
∗ ∙

1

𝛾𝑣
=

1.25

1.0553
∙
1

𝛾𝑣
∙ 36.919 ∙ (𝑓𝑐𝑘 ∙ 𝑡𝑤 ∙ ∅𝑂𝑝𝑒𝑛𝑖𝑛𝑔)

0.287
 

𝑃𝑅𝑑,𝑙𝑖𝑛 = 43.7 ∙ (𝑓𝑐𝑘 ∙ 𝑡𝑤 ∙ ∅𝑂𝑝𝑒𝑛𝑖𝑛𝑔)
0.287

∙
1

𝛾𝑣
 (7.3) 

with v = 1.25. 
 

The mean and characteristic values of Pt,lin are given in Figure 7.2. 
 
 

 
Figure 7.2: Comparison of Pe and Pt according to Equation 7.2 and 7.3 

 

  

Pe,lin [kN] 

Pt,lin [kN] 

Mean 
Characteristic 
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7.3 Design Resistance of the Dowel Action, PDowel 

As already given in Chapter 6 and Section 7.1, the dowel action is limited either by 
the shear capacity or by the ultimate strain of the dowel bar. The development of 
a mechanism of plastic hinges depends strongly on the strength of the confined 
concrete in and next to the web-opening. The available test data was not sufficient 
to consider both failure modes in a single equation. Especially due to the lack of 

test data in the range of concrete compression classes 33 MPa  fcm  55 MPa it 
was not possible to determine the multiaxial concrete strength, when the 
mechanism is not developed anymore and shear failure becomes decisive. 
Therefore, a design Equation was derived based on the shear capacity of the dowel 
reinforcement only and the development of a mechanism was not considered. In 
addition, no friction is taken into account. This approach leads to lower boundary 
estimation of the load-bearing capacity and consequently to conservative values 
of the design resistance. Hence, considering two shear interfaces per CoSFB-Dowel 
the design load, PRd,Dowel, can be determined with:  
 

𝑃𝑅𝑑,𝐷𝑜𝑤𝑒𝑙 =
2 ∙ 𝑉𝑝𝑙,𝑏𝑎𝑟

𝛾𝑀2
 (7.4) 

 
with  
𝛾𝑀2 = 𝛾𝑣 = 1.25 

𝑉𝑝𝑙,𝑏𝑎𝑟 = 𝜋 ∙
𝑑2

4
∙
𝑓𝑦

√3
 

d  = diameter of the dowel reinforcement bar 
fy  = yield strength of dowel material 
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7.4 Design Resistance of a CoSFB-Dowel 

Concluding, the design resistance of a CoSFB-Dowel, PRd, can be formulated by 
using Equation 7.1 and introducing the design Equations for PRd,lin and PRd,Dowel 
from the Sections 7.3 and 7.4. 

𝑃𝑅𝑑 = 𝑃𝑅𝑑,𝐶𝑜𝑆𝐹𝐵−𝐷𝑜𝑤𝑒𝑙 = 𝑃𝑅𝑑,𝑙𝑖𝑛 + 𝑃𝑅𝑑,𝐷𝑜𝑤𝑒𝑙 (7.1) 

with 

𝑃𝑅𝑑,𝑙𝑖𝑛 = 43.7 ∙ (𝑓𝑐𝑘 ∙ 𝑡𝑤 ∙ ∅𝑂𝑝𝑒𝑛𝑖𝑛𝑔)
0.287

∙
1

𝛾𝑣
 (7.3) 

𝑃𝑅𝑑,𝐷𝑜𝑤𝑒𝑙 =
2 ∙ 𝑉𝑝𝑙,𝑏𝑎𝑟

𝛾𝑀2
 (7.4) 

the design Equation for CoSFB-Dowel is formulated as: 

𝑃𝑅𝑑 = 43.7 ∙ (𝑓𝑐𝑘 ∙ 𝑡𝑤 ∙ ∅𝑂𝑝𝑒𝑛𝑖𝑛𝑔)
0.287

∙
1

𝛾𝑣
+

2 ∙ 𝑉𝑝𝑙,𝑏𝑎𝑟

𝛾𝑣
 (7.5) 

with  
𝛾𝑣 = 1.25. 
 
 

Range of Validity 
 
The developed Equation 7.5 is valid for the tested range of parameters only, see 
Table 7.4: 
 
Table 7.4: Validity range of Equation 7.5 

Parameter Minimum Maximum 

Concrete compression class C25/30 C55/67 

Diameter of dowel reinforcement, d 12mm 

Diameter of web-opening, O 25mm 40mm 

Web-thickness of the steel section, tw 7.5mm 15.5mm 

 
Because the contribution of the dowel action was limited to the shear capacity of 

the dowel reinforcement bar, no verification of the maximum elongation max has 
to be done. 
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8 Conclusions 
Fundamental investigations of the load-bearing behaviour of CoSFB-Dowels are 
presented in this Thesis. CoSFB-Dowels connect a steel section to a concrete slab 
activating a composite action.   
The experimental investigations showed different type of failure modes, when the 
concrete compression strength was identified as the main parameter influencing 
these modes. Throughout the numerical investigations, it has been identified that 
the specific geometry of the dowel is allowing for a local concrete confinement, 
which influences the ability of the reinforcement bar to deform and contributes to 
the load-bearing capacity of CoSFB-Dowels. Especially for higher concrete 
compression classes it has been necessary to introduce modification into the 
concrete constitutive law to account for the strength increase of the concrete due to 
triaxial stress state and due to local loading. Shear and ductile damage of the metal 
material was also incorporated to properly define the failure of the bars. All findings 

were considered in the analytical method derived. The systematic, comprehensive 
investigation of influential parameters and their interaction, allowed for a detailed 
formulation of the overall load-bearing behaviour of CoSFB-Dowels. It has been 
identified that it is determined by a concrete component, dowel action of the 
dowel reinforcement bar and friction. The contribution of these components is 
explained with the help of a typical load-slip curve, Figure 8.1.  
 
 

 
Figure 8.1: Load-bearing behaviour of a CoSFB-Dowel 

 
In the initial, elastic range a linear load-slip relationship is observed. It is mainly 
characterized by the strength and the stiffness of the concrete. The concrete 
component, Plin, is limited by the triaxial strength of the concrete in the web-
opening, the web-thickness of the steel beam and the diameter of the web-
opening.  

Slip s 

Initial stiffness, Sini 

Pmax  

Dowel action, PDowel 

Concrete component, Plin 

Friction, Pf 

Load P 

Mechanism, max 

Shear, Vpl 
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Reaching its multiaxial compressive strength, stiffness degradation (damage) 
starts to develop due to concrete crushing. Because the concrete in the web-
opening is restrained by the steel section and the concrete slab, the multiaxial 
compressive strength is much higher than its uniaxial strength. Generally, concrete 
can be clasified as a quasi-brittle material, which fails at larger strains than a brittle 
material. For details of multiaxial strain-softening of concrete, it is refered to 
[Mie1986]. Increasing the load P further, the dowel reinforcement is activated. 
Dowel action starts to develop and non-proportional slip increase is observed. The 
contribution of the dowel reinforcement bar on the load-bearing capacity of a 
CoSFB-Dowel (= dowel action), PDowel, is determined by the plastic bending 
resistance Mpl of the dowel reinforcement, its shear capacity Vpl and its elongation 

capacity (ductility), max. Is the shear capacity of the dowel reinforcement larger 
than the confined concrete compressive strength, the bar is able to crush the 
concrete underneath, creating a space and a mechanism of plastic hinges in the 
dowel reinforcement develops, Figure 8.2. In case the shear capacity is too small, 
the dowel bar is not able to damage the concrete underneath and the shear 
capacity of the bar becomes decisive. No mechanism develops in this case. 
 

 

Figure 8.2: Dowel action by a mechanism of plastic hinges 
 
In case the mechanism in the bar developed, additional load P is transferred by 
the development of tension forces (= catenary action) in the dowel bar. The 
maximum load, Pmax, is reached, when the maximum elongation of the 

reinforcement bar max is reached in the plastic hinges. Therefore, the ultimate 
load and the ductility of the CoSFB-Dowel depends strongly on the ductility of the 
material of the dowel reinforcement bar. With increasing tension in the dowel 
reinforcement, friction between concrete and the steel section develops and 
contributes to Pmax.  
As general outcome it can be concluded, that, within the tested range of concrete 
compression classes from C25/30 to C55/67, web-openings drilled in the web of 
hot-rolled steel sections with a diameter from 25mm to 40mm, dowel 
reinforcement bars in grade B500B and a diameter of 12mm at least, the 
applicability of CoSFB-Dowels as shear connector in composite beams subjected 
to static, monotonic loading has been proven. CoSFB-Dowels show an excellent 
load-bearing behaviour, a high stiffness in the elastic range and a very ductile 
behaviour reaching the load bearing capacity.    
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Outlook 
Although the applicability of CoSFB-Dowels has been proven and a conservative 
design proposal presented, additional tests should be planned and executed to 
take benefit of the possible development of a mechanism of plastic hinges in the 
dowel reinforcement bar and the corresponding increase of the load-bearing 
capacity. Focus should be on the investigation of the concrete strength in and next 

to the web-opening, especially in the range of 33 MPa  fcm  55 MPa in order to 
determine “enhancement factors” for a wider range of concrete compression 
classes.  
The numerical modelling confirmed the influence of the concrete strength, the 
web thickness and the diameter of the web-opening on the “elastic limit”, Plin. 
Additional investigations about a possible contribution of the diameter of the 
dowel reinforcement bar, especially for bar diameters > 12mm are of scientific 
interest. 
Further, tests of CoSFB-Dowels with diameters of the dowel reinforcement bar 
larger than 12mm would allow for a reduction of the quantity of CoSFB-Dowels 
per beam, allowing for an economical optimisation of composite slim-floor beams. 
Tests on web-openings with a diameter > 40mm could lead to the identification of 
an optimal opening diameter, supporting economical design of composite beams.   
Possible fields for additional investigations on CoSFB-Dowels are the influence of 
the horizontal spacing of dowel reinforcement and the position of the web-
opening in the cross-section. 
Investigations of the behaviour of CoSFB-Dowels under cyclic loading could lead to 
improved design rules for filler beam bridges.  
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Annex A – Drawings of Push-Out Tests 
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Annex B – Test Results 
 

Table 3.2.1: Overview - CoSFB Push-out Tests 2009 + 2011 [Stu2009], [Stu2011] 

Year Series Test Section 
tweb 

[mm] 

web 
opening 

[mm] 

dowel 
reinf.  
[mm] 

Concrete 
Class 

[MPa] 

max.  
Test Load 

[kN] 

2
0

0
9

 

P1 

1 

HE220M 15.5 40 12 

31.8 2141 

2 34.9 2292 

3 35.3 2070 

P2 

1 

HE220M 15.5 40 12 

45.6 2249 

2 36.4 2343 

3 36.3 2254 

2
0

1
1

 

1a 

1 

HE220M 15.5 40 12 

26.8 1895.5 

2 26.6 1930.5 

3 26.8 2065 

1b 

1 

HE220M 15.5 40 12 

54.4 1668 

2 54.7 1612.5 

3 56.1 1684 

2-1a 

1 

HE240A 7.5 40 12 

29.2 1579.5 

2 29.6 1841 

3 29.6 1764.5 

2-1b 

1 

HE240A 7.5 40 12 

56.9 1536 

2 60.0 1582.5 

3 57.6 1655.5 

2-2a 

1 

HE220M 15.5 25 12 

32.2 2033 

2 32.6 2022 

3 33.3 2034 

2-2b 

1 

HE220M 15.5 40 25 

38.6 4143 

2 41.1 3993 

3 40.4 3798.5 

2-3 

1 

HE220M 15.5 25 12 

37.7 1377.5 

2 38.4 1486 

3 38.7 1386 
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B1 – Load-Slip Curves 

 
Figure B-1a: Load-Slip Cuves Series 1a 

 

 
Figure B-1b: Load-Slip Cuves Series 1b 
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Figure B-2-1a: Load-Slip Cuves Series 2-1a 

 

 
Figure B-2-1b: Load-Slip Cuves Series 2-1b 
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Figure B-2-2a: Load-Slip Cuves Series 2-2a 

 

 
Figure B-2-2b: Load-Slip Cuves Series 2-2b 
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Figure B-2-3: Load-Slip Cuves Series 2-3 
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B2 – Load-Slip Curves, Initial Stiffness Sini and Plinear 

 

 
Figure B2.1: Push-out test Series 1a, linear range 

 

 
Figure B2.2: Push-out test Series 1b, linear range 

Test 
Plinear 
[kN] 

Sini 
[kN/mm] 

1b-P1 940.0 2608 

1b-P2 987.0 3353 

1b-P3 1010.5 2889 

 
 

Test 
Plinear 
[kN] 

Sini 
[kN/mm] 

1a-P1 814.0 2931 

1a-P2 773.5 1956 

1a-P3 790.5 2151 

 
 

Plin 

Sini 

Slip [mm] 

Pe [kN] 

Slip [mm] 

Pe [kN] 
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Figure B2.3: Push-out test Series 2-1a, linear range 

 

 
Figure B2.4: Push-out test Series 2-1b, linear range 

 

Test 
Plinear 
[kN] 

Sini 
[kN/mm] 

2-1a-P1 701.5 2362 

2-1a-P2 659.5 2141 

2-1a-P3 685.0 2534 

 
 

Test 
Plinear 
[kN] 

Sini 
[kN/mm] 

2-1b-P1 887.0 3253 

2-1b-P2 935.0 1820 

2-1b-P3 1652.5 2841 
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Pe [kN] 

Slip [mm] 
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Figure B2.5: Push-out test Series 2-2a, linear range 

 

 
Figure B2.6: Push-out test Series 2-2b, linear range 

Test 
Plinear 
[kN] 

Sini 
[kN/mm] 

2-2a-P1 744.5 2987 

2-2a-P2 772.0 2189 

2-2a-P3 780.0 2323 

 
 

Test 
Plinear 
[kN] 

Sini 
[kN/mm] 

2-2b-P1 856.0 3292 

2-2b-P2 1047.5 3408 

2-2b-P3 991.5 3378 

 
 

Slip [mm] 

Pe [kN] 

Slip [mm] 

Pe [kN] 
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B3 – Strain Measurements 
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Figure B3-1a1: Test 1a – P1  

 

  
Figure B3-1a2: Test 1a – P2  

 

  
Figure B3-1a3: Test 1a – P3  
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Figure B3-1a1: Test 1a – P1 

 

   
Figure B3-1a2: Test 1a – P2 

 

   
Figure B3-1a3: Test 1a – P3 
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Figure B3-1b1: Test 1b – P1  

 

  
Figure B3-1b2: Test 1b – P2  

 

  
Figure B3-1b3: Test 1b – P3  
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Figure B3-1b1: Test 1b – P1 

 

   
Figure B3-1b2: Test 1b – P2 

 

   
Figure B3-1b3: Test 1b – P3 
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Figure B3-21a1: Test 2-1a – P1  

 

  
Figure B3-21a2: Test 2-1a – P2  

 

  
Figure B3-21a3: Test 2-1a – P3  
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Figure B3-21a1: Test 2-1a – P1 

 

   
Figure B3-21a2: Test 2-1a – P2 

 

   
Figure B3-21a3: Test 2-1a – P3 
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Figure B3-21b1: Test 2-1b – P1  

 

  
Figure B3-21b2: Test 2-1b – P2  

 

  
Figure B3-21b3: Test 2-1b – P3  
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Figure B3-21b1: Test 2-1b – P1 

 

   
Figure B3-21b2: Test 2-1b – P2 

 

   
Figure B3-21b3: Test 2-1b – P3 
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Figure B3-22a1: Test 2-2a – P1  

 

  
Figure B3-22a2: Test 2-2a – P2  

 

  
Figure B3-22a3: Test 2-2a – P3  
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Figure B3-22a1: Test 2-2a – P1 

 

   
Figure B3-22a2: Test 2-2a – P2 

 

   
Figure B3-22a3: Test 2-2a – P3 
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Figure B3-22b1: Test 2-2b – P1  

 

  
Figure B3-22b2: Test 2-2b – P2  

 

  
Figure B3-22b3: Test 2-2b – P3  
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Figure B3-22b1: Test 2-2b – P1 

 

   
Figure B3-22b2: Test 2-2b – P2 

 

   
Figure B3-22b3: Test 2-2b – P3 
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Figure B3-231: Test 2-3 – P1  

 

  
Figure B3-232: Test 2-3 – P2  

 

  
Figure B3-233: Test 2-3 – P3  
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Figure B3-231: Test 2-3 – P1 

 

   
Figure B3-232: Test 2-3 – P2 

 

   
Figure B3-233: Test 2-3 – P3 
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B4 – Tensile Tests of Dowel Reinforcement Uni LU (2018) 

 
Table 3.3: Tensile Tests Uni LU 2018 – Test Results (Engineering stresses) 

Specimen Length onset of Necking Rupture 
Circumference 

after testing 

 l0
a 

[mm] 
l1

b 
[mm] 

Strain 
[0/00] 

Stress 
[N/mm2] 

Strain 
[0/00] 

Stress 
[N/mm2] 

2 x Ur 
[mm] 

1a 93 111.9 12.804 596.45 20.147 370.12 51.0 

1b – 1 93 111.7 12.642 593.68 19.892 385.96 52.5 

2 - 1b – 1 91 110.3 13.824 596.06 21.020 368.24 51.0 

2 - 1b – 2 91 110.1 13.226 589.09 20.726 394.31 53.0 

2 – 3 – 1 110 128.3 10.366 592.41 16.483 377.46 51.5 

Averagec:   13.12 593.8 20.45 379.7 Ur = 25.9mm 
a l0 = Length between the clamps before testing 
b l1 = Length between the clamps after testing 
c Test 2-3-1  not considered in calculation of average values 
 
 
 

 

 
Figure B2-1-a: Tensile Test Specimen 1-a, Uni LU 

 



 Annex B 

179 
 

 

 
Figure B2-1-b: Tensile Test Specimen 1-b, Uni LU 

 

 

 
Figure B2-2-1b-1: Tensile Test Specimen 2-1b-1, Uni LU 
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Figure B2-2-1b-2: Tensile Test Specimen 2-1b-2, Uni LU 

 

 

 
Figure B2-2-3-1: Tensile Test Specimen 2-3-1, Uni LU 
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Annex C – Input for Numerical Simulation (Abaqus) 

 
Input Data Abaqus for Simulation of Test Series 1a – Basic Configuration: 
 
 
Q257  

Density 0.00785 (scaled) 
Elastic 
Ea = 200000, poisson = 0.3 
Plastic 

Yield stress Plastic strain 

530.7 0 

582.7 0.05 

10 0.051 

 
 
S355 Steel section - Load introduction Plate - Foundation Plate 

Density 0.00785 (scaled) 
Elastic 
Ea = 210000, poisson = 0.3 
Plastic 

Yield stress Plastic strain 

375 0 

506 0.15 

 
 
B500S – Dowel Reinforcement bar, Diameter 12mm 

Density 0.00785 (scaled) 
Elastic 
Ea = 200000, poisson = 0.3 
Plastic 

True stress 
Plastic strain 
(Logarithmic) 

530.7 0 

593.8 0.12823 

804.5 0.18204 

826.14 0.18649 
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Ductile Damage for metals 

Fracture strain Stress Triaxility Strain Rate 

0.94750605 -1 0.001 

0.34682951 -0.33 0.001 

0.21141718 0 0.001 

0.18196845 0.1 0.001 

0.15662170 0.2 0.001 

0.12887376 0.33 0.001 

0.09986640 0.5 0.001 

0.04717355 1 0.001 

0.01052584 2 0.001 

 
Ductile Damage evolution 
Type = Displacement 
Softening = Tabluar 
Degradation = Multiplicative 

 

Damage 
Variable 

Displacement 

0.0000 0.7950 

0.2640 0.9618 

0.5280 1.1287 

0.9879 1.1562 

 
SHEAR DAMAGE 
Ks = 0.2 
Ductile Damage for metals 

Fracture strain Shear Stress Ratio Strain Rate 

0.12823 1.732 0.1 

 
Damage evolution 
Type = Displacement 
Softening = Exponential 
Degradation = Multiplicative 

 

Displacement 
at Failure 

Exponential 
Law Parameter 

2.5646 0.7 
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Concrete slab 
Concrete density = 0.0024 (scaled) 
Elastic 
Ec = 29549, poisson = 0.2 
 
Concrete Damage Plasticity – CDP 

Dilation Angle Eccentricity fb0 / fc0 K Viscosity Parameter 

36 0.1 1.16 0.667 0.00025 

 
Compressive Behaviour 

Yield stress Inelastic strain Damage Parameter 

10.6933 0 0 

13.9432 4.8E-005 0 

16.9456 0.000104 0 

19.4682 0.000176 0 

21.5538 0.000263 0 

23.2398 0.000364 0 

24.56 0.000477 0 

25.5441 0.000601 0 

26.2188 0.000736 0 

26.608 0.00088 0 

26.7333 0.001034 0 

26.6976 0.001193 0.001336 

26.591 0.001354 0.005324 

26.4152 0.001518 0.0119 

26.173 0.001684 0.020961 

25.868 0.001851 0.03237 

25.5047 0.002021 0.045959 

25.0883 0.002193 0.061534 

24.6245 0.002367 0.078884 

24.1191 0.002541 0.097789 

23.5783 0.002717 0.11802 

23.008 0.002894 0.139351 

22.4143 0.003072 0.161559 

21.8028 0.00325 0.184435 

21.1787 0.003429 0.207778 

20.5471 0.003608 0.231407 

16.8122 0.004681 0.371114 

13.5325 0.005738 0.493798 

10.8795 0.006773 0.593036 

8.8075 0.00779 0.670542 

7.2063 0.00879 0.730437 

5.9666 0.009778 0.776809 

4.9991 0.010757 0.812999 

4.236 0.011728 0.841547 

3.6269 0.012695 0.86433 
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3.1352 0.013658 0.882725 

2.7336 0.014617 0.897745 

2.4023 0.015575 0.910139 

2.1262 0.01653 0.920467 

 
Tensile Behaviour 

Yield stress Displacement Damage Parameter 

4.1 0 0 

2.0944 0.0992 0.4892 

1.2243 0.1984 0.7014 

0.8528 0.2976 0.792 

0.6546 0.3968 0.8404 

0.5048 0.496 0.8769 

0.3707 0.5952 0.9096 

0.2504 0.6944 0.9389 

0.1479 0.7936 0.9639 

0.0648 0.8928 0.9842 
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Annex D – Analytics 
 
Yield Condition for Circular Cross Section, by J. H. Sorensen [Sor2017]: 
 

 
 
Areas: 

𝐴𝑡𝑜𝑡 = 𝜋 ∙
𝑑2

4
; 𝐴1 =

𝑑2

8
∙ (𝜑 − sin(𝜑)); 

Secant length: 𝑆1 = 𝑑 ∙ sin (
𝜑

2
) 

Distance to geometric centroid: 𝑥1 =
𝑆1

3

12∙𝐴1
 

Plastic tension capacity:  𝑁𝑝𝑙 =
𝜋

4
∙ 𝑑2 ∙ 𝑓𝑦 

Normal force at full plastic stress distribution: 

𝑁 = (𝐴𝑡𝑜𝑡 − 2 ∙ 𝐴1) ∙ 𝑓𝑦 = 𝜋 ∙
𝑑2

4
− 2 ∙

𝑑2

8
∙ (𝜑 − sin(𝜑)) ∙ 𝑓𝑦 

Normalized with Npl: 
𝑁

𝑁𝑝𝑙
= 1 −

1

𝜋
∙ (𝜑 − sin(𝜑)) 

Plastic bending moment: 𝑀𝑝𝑙 =
1

6
∙ 𝑑3 ∙ 𝑓𝑦 

Bending moment at full plastic stress distribution: 

𝑀 = 𝐴1 ∙ 𝑓𝑦 ∙ 𝑋1 + 𝐴2 ∙ 𝑓𝑦 ∙ 𝑋2 = 𝐴1 ∙ 𝑓𝑦 ∙
𝑆1

3

12 ∙ 𝐴1
+ 𝐴2 ∙ 𝑓𝑦 ∙

𝑆1
3

12 ∙ 𝐴2
 

𝑀 = 2 ∙ 𝑓𝑦 ∙
𝑆1

3

12
=

1

6
∙ 𝑓𝑦 ∙ 𝑑3 ∙ sin3 (

𝜑

2
)  

Normalized with Mpl:  
𝑀

𝑀𝑝𝑙
= sin3 (

𝜑

2
) ⇒ 𝜑 = 2 ∙ 𝑎𝑟𝑐𝑠𝑖𝑛 ((

𝑀

𝑀𝑝𝑙
)
1/3

) 

Substituting  into equation for N/Npl: 

𝑁

𝑁𝑝𝑙
= 1 −

1

𝜋
∙ (2 ∙ 𝑎𝑟𝑐𝑠𝑖𝑛 ((

𝑀

𝑀𝑝𝑙
)

1/3

) − sin(2 ∙ 𝑎𝑟𝑐𝑠𝑖𝑛 ((
𝑀

𝑀𝑝𝑙
)

1/3

))) 

With: sin(2 ∙ 𝑎𝑟𝑐𝑠𝑖𝑛(𝑥)) = 2 ∙ 𝑥 ∙ √1 − 𝑥2 

 
Which finally can be expressed as yield condition: 

𝑓(𝑀,𝑁) =
𝑁

𝑁𝑝𝑙
+

2

𝜋
∙ [𝑎𝑟𝑐𝑠𝑖𝑛 ((

𝑀

𝑀𝑝𝑙
)
1/3

) − (
𝑀

𝑀𝑝𝑙
)
1/3

∙ √1 − (
𝑀

𝑀𝑝𝑙
)
2/3

] − 1 = 0  

  

 
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Equations by H. J. Sørensen [Sor2017]: 
 

𝑙1,𝑒𝑓 = 𝑙1,𝑒𝑓,𝑖𝑛 ∙ cos(𝜑); 𝑙2,𝑒𝑓 = 𝑙2,𝑒𝑓,𝑖𝑛 ∙ cos(𝜑); cos(𝜑) =
𝑙1+𝑙2

√(𝑙1+𝑙2)2+𝑢2
 

𝑙1 = √
2

3
∙

𝑑

√1+
𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

∙ √
𝑓𝑦

𝑓𝑐𝑐,1
 ; 𝑙2 = √

2

3
∙

𝑑

√1+
𝑓𝑐𝑐,2
𝑓𝑐𝑐,1

∙ √
𝑓𝑦

𝑓𝑐𝑐,2
  

𝑙1 + 𝑙2 = √
2

3
∙

𝑑

√1 +
𝑓𝑐𝑐,1

𝑓𝑐𝑐,2

∙ √
𝑓𝑦

𝑓𝑐𝑐,1
+ √

2

3
∙

𝑑

√1 +
𝑓𝑐𝑐,2

𝑓𝑐𝑐,1

∙ √
𝑓𝑦

𝑓𝑐𝑐,2
 

𝑙1 + 𝑙2 = √
2

3
∙ 𝑑 ∙ √𝑓𝑦 ∙ (

1

√𝑓𝑐𝑐,1

∙
√𝑓𝑐𝑐,2

√𝑓𝑐𝑐,1 + 𝑓𝑐𝑐,2

+
1

√𝑓𝑐𝑐,2

∙
√𝑓𝑐𝑐,1

√𝑓𝑐𝑐,1 + 𝑓𝑐𝑐,2

) 

𝑙1 + 𝑙2 = √
2

3
∙ 𝑑 ∙ √𝑓𝑦 ∙

1

√𝑓𝑐𝑐,1 + 𝑓𝑐𝑐,2

(
√𝑓𝑐𝑐,2

√𝑓𝑐𝑐,1

+
√𝑓𝑐𝑐,1

√𝑓𝑐𝑐,2

) 

𝑙1 + 𝑙2 = √
2

3
∙ 𝑑 ∙ √𝑓𝑦 ∙

1

√𝑓𝑐𝑐,1 + 𝑓𝑐𝑐,2

(
𝑓𝑐𝑐,2

√𝑓𝑐𝑐,1 ∙ 𝑓𝑐𝑐,2

+
𝑓𝑐𝑐,1

√𝑓𝑐𝑐,1 ∙ 𝑓𝑐𝑐,2

) 

𝑙1 + 𝑙2 = √
2

3
∙ 𝑑 ∙ √𝑓𝑦 ∙

√𝑓𝑐𝑐,1 + 𝑓𝑐𝑐,2

√𝑓𝑐𝑐,1 ∙ 𝑓𝑐𝑐,2

 

(𝑙1 + 𝑙2)
2 =

2

3
∙ 𝑑2 ∙ 𝑓𝑦 ∙

𝑓𝑐𝑐,1 + 𝑓𝑐𝑐,2

𝑓𝑐𝑐,1 ∙ 𝑓𝑐𝑐,2
 

𝑙1 + 𝑙2 = √
2

3
∙ 𝑑 ∙ √𝑓𝑦 ∙

1

√𝑓𝑐𝑐,1 + 𝑓𝑐𝑐,2

(
√𝑓𝑐𝑐,2

√𝑓𝑐𝑐,1

+
√𝑓𝑐𝑐,1

√𝑓𝑐𝑐,2

) 

𝑙1 + 𝑙2 = √
2

3
∙ 𝑑 ∙ √𝑓𝑦 ∙

√
1

𝑓𝑐𝑐,2

√1 +
𝑓𝑐𝑐,1

𝑓𝑐𝑐,2

(
√𝑓𝑐𝑐,2

√𝑓𝑐𝑐,1

+
√𝑓𝑐𝑐,1

√𝑓𝑐𝑐,2

) 

𝑙1 + 𝑙2 = √
2

3
∙ 𝑑 ∙ √𝑓𝑦 ∙

1

√1 +
𝑓𝑐𝑐,1

𝑓𝑐𝑐,2

(
1

√𝑓𝑐𝑐,1

+
√𝑓𝑐𝑐,1

𝑓𝑐𝑐,2
) 

𝑙1 + 𝑙2 = √
2

3
∙ 𝑑 ∙ √𝑓𝑦 ∙

1

√1 +
𝑓𝑐𝑐,1

𝑓𝑐𝑐,2

1

√𝑓𝑐𝑐,1

∙ (1 +
𝑓𝑐𝑐,1

𝑓𝑐𝑐,2
) 

𝑙1 + 𝑙2 = 𝑙1 ∙ (1 +
𝑓𝑐𝑐,1

𝑓𝑐𝑐,2
) 
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Force equilibrium V = 0: 
 𝑙1,𝑒𝑓,𝑖𝑛 ∙ 𝑑 ∙ 𝑓𝑐𝑐,1 = 𝑙2,𝑒𝑓,𝑖𝑛 ∙ 𝑑 ∙ 𝑓𝑐𝑐,2 

 ⇒ 𝑙2,𝑒𝑓,𝑖𝑛 = 𝑙1,𝑒𝑓,𝑖𝑛 ∙
𝑓𝑐𝑐,1

𝑓𝑐𝑐,2
⇒ 𝑙2,𝑒𝑓 = 𝑙1,𝑒𝑓 ∙

𝑓𝑐𝑐,1

𝑓𝑐𝑐,2
⇒ 𝑙2 = 𝑙1 ∙

𝑓𝑐𝑐,1

𝑓𝑐𝑐,2
 

Moment equilibrium  = 0: 
1

2
∙ 𝑙1,𝑒𝑓,𝑖𝑛

2 ∙ 𝑑 ∙ 𝑓𝑐𝑐,1 − 𝑙2,𝑒𝑓,𝑖𝑛 ∙ 𝑑 ∙ 𝑓𝑐𝑐,2 ∙ (
𝑙1 + 𝑙2
cos(𝜑)

−
𝑙2,𝑒𝑓,𝑖𝑛

2
) + 2 ∙ 𝑀(𝑢) = 0 

𝑑

2
∙

𝑙1,𝑒𝑓
2

𝑐𝑜𝑠2(𝜑)
∙ 𝑓𝑐𝑐,1 +

𝑑

2
∙

𝑙2,𝑒𝑓
2

𝑐𝑜𝑠2(𝜑)
∙ 𝑓𝑐𝑐,2 −

𝑙2,𝑒𝑓 ∙ (𝑙1 + 𝑙2)

𝑐𝑜𝑠2(𝜑)
∙ 𝑑 ∙ 𝑓𝑐𝑐,2 + 2 ∙ 𝑀(𝑢) = 0 

𝑙1,𝑒𝑓
2

𝑐𝑜𝑠2(𝜑)
∙ 𝑓𝑐𝑐,1 +

𝑙2,𝑒𝑓
2

𝑐𝑜𝑠2(𝜑)
∙ 𝑓𝑐𝑐,2 −

𝑙2,𝑒𝑓 ∙ (𝑙1 + 𝑙2)

𝑐𝑜𝑠2(𝜑)
∙ 2 ∙ 𝑓𝑐𝑐,2 +

4

𝑑
∙ 𝑀(𝑢) = 0 

𝑙1,𝑒𝑓
2 ∙ (1 +

𝑓𝑐𝑐,1

𝑓𝑐𝑐,2
) − 𝑙1,𝑒𝑓 ∙ (𝑙1 + 𝑙2) ∙ 2 +

4∙𝑀(𝑢)∙(𝑙1+𝑙2)2

𝑑∙𝑓𝑐𝑐,1∙((𝑙1+𝑙2)2+𝑢2)
= 0  

 
Solving for l1,ef: 

𝑙1,𝑒𝑓,1,2 =

2∙(𝑙1+𝑙2)±√4∙(𝑙1+𝑙2)2−4∙(1+
𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

) ∙ 
4∙𝑀(𝑢)∙(𝑙1+𝑙2)2

𝑑∙𝑓𝑐𝑐,1∙((𝑙1+𝑙2)2+𝑢2)

2∙(1+
𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

)
  

𝑙1,𝑒𝑓 =

(𝑙1+𝑙2)+√(𝑙1+𝑙2)2−(1+
𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

) ∙ 
4∙𝑀(𝑢)∙(𝑙1+𝑙2)2

𝑑∙𝑓𝑐𝑐,1∙((𝑙1+𝑙2)2+𝑢2)

(1+
𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

)
  

𝑙1,𝑒𝑓 =
(𝑙1+𝑙2)

(1+
𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

)
∙ [1 − √1 − (1 +

𝑓𝑐𝑐,1

𝑓𝑐𝑐,2
) ∙

4∙𝑀(𝑢)

𝑑∙𝑓𝑐𝑐,1∙ ((𝑙1+𝑙2)2+𝑢2)
]  

𝑙1,𝑒𝑓 = 𝑙1 ∙ [1 − √1 − (1 +
𝑓𝑐𝑐,1

𝑓𝑐𝑐,2
) ∙

4∙𝑀(𝑢)

𝑑∙𝑓𝑐𝑐,1∙ (𝑙1
2∙(1+

𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

)
2

+𝑢2)

]  

𝑙1,𝑒𝑓 = 𝑙1 ∙

[
 
 
 
1 −

√
1 −

4∙𝑀(𝑢)

𝑑∙𝑓𝑐𝑐,1∙ 𝑙1
2∙(1+

𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

)+
𝑑∙𝑓𝑐𝑐,1∙𝑢2

(1+
𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

)]
 
 
 
  

𝑙1,𝑒𝑓 = 𝑙1 ∙

[
 
 
 
 
 
 
 

1 −

√

1 −
4∙𝑀(𝑢)

𝑑∙𝑓𝑐𝑐,1∙ 

(

 
 

√
2

3
∙

𝑑

√1+
𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

∙√
𝑓𝑦

𝑓𝑐𝑐,1

)

 
 

2

∙(1+
𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

)+
𝑑∙𝑓𝑐𝑐,1∙𝑢2

(1+
𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

)

]
 
 
 
 
 
 
 

  

𝑙1,𝑒𝑓 = 𝑙1 ∙ [1 −
√

1 −
4∙𝑀(𝑢)

2

3
 ∙ 𝑑3∙𝑓𝑦+𝑑∙𝑢2∙

𝑓𝑐𝑐,1

(1+
𝑓𝑐𝑐,1
𝑓𝑐𝑐,2

)

]  

𝑙1,𝑒𝑓 = 𝑙1 ∙ [1 − √1 −
𝑀(𝑢)

𝑀𝑝𝑙+(
𝑢

2
)
2
∙ 𝑑 ∙ 

𝑓𝑐𝑐,1∙𝑓𝑐𝑐,2

(𝑓𝑐𝑐,1+𝑓𝑐𝑐,2)

]    

 



 
 

 
 

 
  



  

 
 

  



 
 

 
 

 


