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Abstract

Today almost every device depends on a piece of software. As a result, our life increas-
ingly depends on some software form such as smartphone apps, laundry machines, web
applications, computers, transportation and many others, all of which rely on software.
Inevitably, this dependence raises the issue of software vulnerabilities and their possible
impact on our lifestyle. Over the years, researchers and industrialists suggested several
approaches to detect such issues and vulnerabilities. A particular popular branch of
such approaches, usually called Vulnerability Prediction Modelling (VPM) techniques,
leverage prediction modelling techniques that flag suspicious (likely vulnerable) code
components. These techniques rely on source code features as indicators of vulnerabil-
ities to build the prediction models. However, the emerging question is how effective
such methods are and how they can be used in practice.

The present dissertation studies vulnerability prediction models and evaluates them
on real and reliable playground. To this end, it suggests a toolset that automatically
collects real vulnerable code instances, from major open source systems, suitable for
applying VPM. These code instances are then used to analyze, replicate, compare and
develop new VPMs. Specifically, the dissertation has 3 main axes:

The first regards the analysis of vulnerabilities. Indeed, to build VPMs accurately,
numerous data are required. However, by their nature, vulnerabilities are scarce and
the information about them is spread over different sources (NVD, Git, Bug Trackers).
Thus, the suggested toolset (develops an automatic way to build a large dataset)
enables the reliable and relevant analysis of VPMs.

The second axis focuses on the empirical comparison and analysis of existing Vulnera-
bility Prediction Models. It thus develops and replicates existing VPMs. To this end,
the thesis introduces a framework that builds, analyse and compares existing predic-
tion models (using the already proposed sets of features) using the dataset developed
on the first axis.

The third axis explores the use of cross-entropy (metric used by natural language
processing) as a potential feature for developing new VPMs. Cross-entropy, usually
referred to as the naturalness of code, is a recent approach that measures the repetitive-
ness of code (relying on statistical models). Using cross-entropy, the thesis investigates
different ways of building and using VPMs.

Overall, this thesis provides a fully-fledge study on Vulnerability Prediction Models
aiming at assessing and improving their performance.
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1
Introduction

This chapter starts by exposing the context of this dissertation, followed by an intro-
duction to software vulnerabilities. The technical background related to vulnerability
prediction modelling is then presented. Next the challenges related to the use, eval-
uation and comparison of those models are described. Finally, an overview of the
contributions of the thesis and its structure is presented.
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Chapter 1. Introduction

Figure 1.1: Vulnerabilities reported by year in the CVE Database since 1999

Source: https://www.cvedetails.com/browse-by-date.php (August 2018)

1.1 Context

Nowadays software can be found everywhere as it is not limited to the traditional
computers sphere. Software can take various forms, like apps on smartphones, em-
bedded code in laundry machines, web applications or even distributed software. As
our dependence to software grows, the threat posed by vulnerabilities is becoming
increasingly more important.

Vulnerabilities are described by the Mitre organization in charge of the Common Vul-
nerability and Exposure dictionary as a:

“weakness in the computational logic, e.g., code, found in software and
hardware components that, when exploited, results in a negative impact to
confidentiality, integrity, or availability.” [6].

Recent history is full of examples, e.g., Heartbleed [14], ShellShock [18], Apache Com-
mons [3] where a single vulnerability in software installed in billions of devices had
tremendous effects. Still, the threat level of a software vulnerability greatly depends
on factors such as exploit complexity, the nature of the impact and the attack surface.
Among the several types of vulnerabilities, code-based ones are responsible for the
majority of the exploits [121] (software, data or commands that can lead to a security
policy violation [106]).

The problem posed by vulnerabilities in software systems is not recent and can be
traced back to the origin of computers. Guidelines and good practices of software
development have indeed been suggested since the 70s [113]. Still, the globalization of
software and the potential threats from ill-intentioned people brought more attention
to the problem. This phenomenon can be observed in Figure 1.1 presenting the number
of vulnerabilities publicly reported each year since 1999. An increasing trend can be
observed with an explosion of reported vulnerabilities in the last two years.
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To ensure secure development, industrialists adopt dedicated security life cycle pro-
cesses which aim at identifying and fixing vulnerabilities [80]. Yet, due to business
pressure and lack of experience in security, developers and companies tend to overlook
these issues. To tackle these issues, various solutions have been suggested. Among
those, some aim at uncovering vulnerabilities to warn software vendors as early as pos-
sible, while others aim at helping developers at performing security inspection efforts
by pointing where to focus. In this dissertation, we are interested in this second cate-
gory, which is vulnerability prediction. This prediction category of techniques involves
methods aiming at guiding software security assurance (code reviews) and security
testing. The same techniques can also be used to guide testing tools, such as static
analysis tools, based on static rules such as Find Security Bugs [8] and the Fortify
Static Code Analyser [10], and dynamic analysis tools, such as fuzzing tools.

Prediction techniques rely on data mining and machine learning in order to guess
where vulnerabilities are. In other words, these techniques determine the software
components that are likely to be vulnerable. Those models are commonly referred
as Vulnerability Prediction Models and are the focus of this thesis. Yet there are
many other prediction models, not considered, like models that predict the number
of vulnerabilities remaining in a software system [24] ad models determining whether
vulnerabilities are exploitable [39].

VPMs first appeared in the study of Neuhaus et al., [133]. In this study, the authors
suggested that includes and function calls of a file could be used as features by a clas-
sifier to build a model predicting the likelihood of a file to be vulnerable. This idea
was previously introduced in a study of Schröter et al., [162] but targeting defects in-
stead of vulnerability. This last study falls in the category of Defect Prediction Models
(DPMs) which is related to VPMs, as DPMs have the same goal but target likely to
be defective elements. In fact most of the approaches that have been introduced in
the context of VPMs can be linked to one introduced for DPMs. This link can be
explained by the fact that vulnerabilities can be seen as a special kind of defect. Yet,
VPMs face different problems than DPMs. First and quite (un)fortunately (depend-
ing on the point of view), vulnerabilities unlike defects are hard to find and fewer
in numbers which hinder the creation of such models. As they rely on examples to
determine the likelihood of an element to belong to one category instead of another.
Second it requires quite a different identification process than defects. For instance,
seeking for vulnerabilities requires an attacker’s mindset [122] to understand and ex-
ploit the weaknesses of a system, whereas, defects are usually (easily) noticed by users
or developers during the “normal” operation of the system while vulnerabilities pass
unnoticed. Furthermore, vulnerabilities are critical [80, 121], while many bugs are not,
i.e., they are never fixed. Finally, most developers have a better understanding of how
to identify and deal with defects than with vulnerabilities. All of this points make the
creation of such models far more difficult as the number of examples available to train
a model are limited and developers will have trouble to interpret the model outputs.
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Figure 1.2: IBM 7094

Source: www.computer-history.info

1.2 Software Vulnerabilities

In this section, we detail the notion of software vulnerability and its related glossary.

Software vulnerabilities exist since the birth of computers and their history is tightly
related to the one of hacking. First reference to hacking was made in 1963 when some
people after analysing the frequencies used for the digit routing code of phones, man-
aged to replicate the signal to make free phone calls [13]. Whereas, the first reported
software vulnerability only occurred two years later, i.e., in 1965. The vulnerability
was in the text editor of the CTSS operating system running on IBM7090 (see 1.2).
Back then text editors were designed to be used by one user at a time, on a given
resource. Thus, when two system programmers tried to edit the same file simultane-
ously, the text editor swapped the welcome message file with the one containing all
passwords, resulting in passwords being printed to every user when they were logging
to the system.

In software security, such problem is considered as a vulnerability when one or more
of the following principle is impacted: Confidentiality, Integrity or Availability. In this
specific case, the password of all users being printed clearly corresponds to a breach in
Confidentiality Since then, software vulnerabilities often hit the news especially in the
past years where example such as the Heartbleed vulnerability in OpenSSL [14] that
affected two third of the world servers are still fresh in the mind of people.

Yet, despite constant remainder, the definition of what is a vulnerability is still debated.
Krsul in his PhD thesis [106] defined it back in 1998 as:

“An instance of an error in the specification, development or configuration
of a software such that its execution can violate the security policy.”
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Table 1.1: Terms used throughout the thesis ( CVE, NVD, CWE and CVSS).

Term & Acronym Explanation

Common Vulnerability Exposures (CVE) Unique vulnerability identifier for publicly disclosed vulnerabilities.

National Vulnerability Database (NVD) Database recording all vulnerabilities in the CVE list and enhancing it with information like CVSS and CWE.

Common Weakness Enumeration (CWE) Unique vulnerability type identifier that links to a type list (used by NVD to categorize vulnerabilities).

Common Vulnerability Scoring System (CVSS) Score (between 0 and 10) representing the severity of a vulnerability based on its impact, attack vector and complexity.

While Ozment [141], almost a decade later, suggested using the term “mistake” instead
of “error” to better relate to the IEEE Standard Glossary of Software Terminology.
Similarly Dowd et al., [56] defined a software vulnerability as:

“Specific flaws or oversights in a piece of software that allows attackers to
do something malicious: expose or alter sensitive information, disrupt or
destroy a system, take control of a computer system or program.”

In these three definitions, the terms “error”, “mistake” and “flaw” are used to define
a vulnerability, while they refer to the same global idea, they do not hold the same
meaning. In this regard, Ghaffarian et al., [68] suggested favouring the use of “fault”
to refer to the cause of a vulnerability and suggested the following definition:

“A software vulnerability is an instance of a flaw, caused by a mistake in
the design, development, or configuration of software such that it can be
exploited to violate some explicit or implicit security policy.”

Interestingly among those definitions, the one provided by Dowd et al., is the only
one clearly stating an impact on one of the security principle, i.e., Confidentiality,
Integrity and/or Availability, while the other refers to a violation of security policy.
This is less significant as those impacts are commonly acknowledged and thus implied
when referring to security policy violations.

Over the past two decades, the understanding and management of vulnerabilities were
greatly improved. This is mainly due to the apparition of databases referencing pub-
licly exposed vulnerabilities. Among those, the most famous one is the Common
Vulnerability Identifier (CVE) List. The CVE system grants to each publicly disclosed
vulnerability a unique identifier that can be used to retrieve information on it. The
CVE List is the dictionary mapping all those identifiers to a brief description of their
corresponding vulnerability and any relevant references to it.

While the CVE system is quite famous, it turns out that most people when mentioning
it are in fact referring to the National Vulnerability Database (NVD). The National
Vulnerability Database (NVD) is a database built upon the CVE List established by
the National Institute of Standards and Technology (NIST) and the U.S. government
in order to encourage secure software development, public disclosure and management
of vulnerabilities. NVD enriches each CVE entry with information such as severity
(named as CVSS) and type (named as CWE) of a vulnerability. Moreover data is
continuously updated by the NVD staff [15].
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Among the information found in the NVD, two are of particular interest in this
manuscript, the Common Vulnerability Scoring System (CVSS) and the Common
Weakness Enumeration (CWE). The Common Vulnerability Scoring System (CVSS)
system captures the principal characteristics of a vulnerability and produces a numer-
ical score ranging from 0 to 10 reflecting its severity. This score can be translated into
qualitative representation, such as low (0.1-3.9), medium (4.0-6.9), high (7.0-8.9), and
critical (9.0-10.0) to assist in the prioritization of vulnerability. The current version of
the CVSS is the 3.0 which was released in June 2015[22]. The CWE is a categoriza-
tion system for software weaknesses and vulnerabilities. It is driven by a community
project with the goals of understanding flaws in software. It is used by the NVD to
categorize vulnerabilities and is currently in version 3.1 [7].

In the remaining part of this manuscript, we rely on the NVD as a source of information
and use the CVSS and CWE systems as means to measure the severity and category
of a vulnerability. Table 1.1 summarizes those terms.

1.3 Background on Vulnerability Prediction

1.3.1 Vulnerability Discovery

Finding vulnerabilities manually is a daunting time consuming task requiring specific
skills that most software vendors can’t afford. Due to the criticality of the matter, a
large amount of effort has been invested over the years by both academic and indus-
trial actors to suggest and develop automatic vulnerability discovery techniques. Yet,
finding a perfect approach that will detect vulnerabilities in a sound and complete way
i.e., detect all vulnerabilities (complete) without false alarms (sound), is impossible.
Thus most of the current research is focussed on suggesting approaches that perform
better than previous ones wrt. some criteria. Those methods can usually be classified
into three categories, static analysis, dynamic analysis and hybrid analysis.

Static analysis: directly analyses the source code of the program without executing
it. The analysis is performed using diverse abstraction of the program. This type of
approach is likely to find a high number of vulnerabilities but has the default of often
raising too many false alerts. Rule-based static analysis tools typically falls into this
category. Another well-known type of approach falling in this category is “Tainted
Data-flow Analysis” where the flow to sensitive program statements known as “sinks”
of untrusted data input is tracked.

Dynamic analysis: monitors the behaviour of a program when executed with a
specific set of inputs. As the number of possible input to a program is infinite, these
approaches focused on providing the best possible set of input wrt. to criteria such
as coverage. The drawback is the opposite problematic of static analysis approaches,
fewer but real vulnerabilities will be reported. The most famous type of approach
falling into this category is perhaps fuzz testing, where valid inputs are mutated and
fed to the program to test it.
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1.3. Background on Vulnerability Prediction

Hybrid analysis: combines static and dynamic analysis to obtain the best of the two
worlds. Unfortunately, such techniques often suffer from the drawbacks of both. This
combination can happen both ways, either using dynamic analysis as a way to prune
the results of a static analysis or using static analysis to guide the dynamic analysis.

More recently, a fourth category of techniques, relying on the application of data
mining and machine learning techniques to discover vulnerabilities, have appeared.

1.3.2 Leveraging Machine Learning and Data Mining tech-
niques

Data mining consists in the extraction of knowledge from large amount of data. Ac-
cording to Han et al., [72], it can be broken into in the following steps: (1) data
extraction (2) data cleaning and integration (3) data selection and transformation (4)
knowledge mining and (5) visualization and communication. Machine learning in this
context refers to techniques building complex models that can be used, among other
things, to make predictions. ML techniques can be divided in three types: supervised
learning, unsupervised learning and reinforcement learning.

Supervised learning: learns a function that maps an input to an output based on
training set. The training set is composed of labelled example, where each example
is composed of an input vector and a label, i.e., the desired output. This type of
algorithm is traditionally used for classification purpose.

Unsupervised learning: functions similarly except that the example from the train-
ing set are unlabelled. The algorithm has to identify patterns and structures in the
training set to create its own group. It is usually used for clustering purposes.

Reinforcement learning: learns to take actions in a dynamic environment with a
system of rewards and penalties in order to achieve certain goals. It has numerous
applications ranging from robotics to recommendation systems.

In the context of vulnerability discovery, according to Ghaffarian et al., [68], most of the
approaches that use data mining and machine learning techniques can be categorized
into three main categories: anomaly detection approaches, vulnerable code pattern
recognition and vulnerability prediction models.

Anomaly detection: uses unsupervised learning approaches to automatically extract
a model of normality or mine rule from the source code and detect vulnerabilities as
deviant behaviour. A recent example is the work from Yamaguchi et al., [194] that
suggests an approach to automatically detect missing checks in code.

Vulnerable Code Pattern Recognition: uses mostly supervise learning to extract
patterns from large samples of vulnerable code and then use pattern matching tech-
niques to detect vulnerabilities. A good example is the work targeting SQL injection
performed by Shar et al., [164].

More examples of this two types of approaches are presented in Section 2.2.
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Figure 1.3: Vulnerability Prediction Modelling pipeline

Vulnerability Prediction Modelling: which is the topic of this dissertation, uses
(mostly) supervised learning techniques to build prediction models based on a set of
features and then used the model to evaluate the likelihood of a software component
to be vulnerable. The study performed by Shin et al., [167] is a good example of it.

1.3.3 Vulnerability Prediction Modelling

VPM is one of the numerous applications of prediction modelling. It aims at classifying
software components as likely vulnerable with the ultimate goal to support testing and
code review. Another instance of prediction modelling, as mentioned before, is Defect
Prediction Modelling (DPM), which goal is to classify software components as likely
buggy instead of vulnerable. More broadly, prediction modelling in the context of
software engineering refers to the guidance that a model trained on historical data
and/or part of a software project can offer by categorizing the software component
according to specific properties of interest.

VPM, unlike previously introduced categories of approaches doesn’t aim at directly
finding vulnerabilities. Its goal is instead to help prioritize the security testing efforts.
This makes VPM closer to other predictions modelling approaches (especially those
regarding DPM) than of the other vulnerabilities discovery approaches.

Still, VPM faces some very specific problems starting by the data availability. The base
of prediction modelling is to learn a model out of a large quantity of data, which in the
case of vulnerabilities is problematic as these, by their nature, are few. Additionally,
this raises the issue of unbalanced datasets as the vulnerability will always be in the
minority in the training dataset.

Though, the pace of research in the area (presented in Chapter 2) has not decreased
since the seminal work of Neuhaus et al., [133] in 2007. Works in the area, aside of
some minor differences, all follow a similar process, as demonstrated in Figure 1.3. It
is clear when observing this process that VPM is a data mining application as each
step presented in Figure 1.3 can be mapped to one of the steps from the definition of
Han et al., [72].
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This process can be summarized as follows: (1) The subject(s), i.e., the software
project(s), on which the evaluation will be performed is chosen. (2) Vulnerabilities
of the selected subject(s) are collected and (3) transformed into a dataset. (3) The
dataset is split into training and testing set(s). (4) Features used by the evaluated
approach are extracted for all components of the training set. (5) Those extracted
features are used to train a chosen classifier. (6) The model obtained through the
classifier training is then used to predict whether components from the testing set are
likely to be vulnerable or not. (7) In case the correct label of the components present
in the testing set is known, the overall performance of the model is measured. Those
steps are further details in the next paragraphs.

1) subject selection is the first step of any VPM study. Software projects have
different properties that are likely to affect the outcome of a study. Additionally, low
quality and quantity of vulnerability data to train also have the potential to impact
the performance of the models. Thus, a candidate subject should have a long and
well-reported history of vulnerability. This explains that projects like Mozilla Firefox
and the Linux Kernel have often been used to perform VPM studies as they are (1)
security-sensitive (2) open source and (3) have a long history of reported vulnerability.
Still, as this is not the case of a vast majority of projects, some researcher found a way
around this issue that will be presented in the next paragraph.

2) vulnerability collection is perhaps the most critical part of any VPM studies
and more generally any vulnerability related studies. Once the subject chosen, the
next step is to collect the largest number of “real” vulnerabilities for this subject.
This is usually done by collecting patches that fixed vulnerability, then considering as
vulnerable every component that needed to be modification.

All these limitations on the subjects led some researchers to rely on a different ground
truth to obtain vulnerability data. They suggested using the output of security ori-
ented Automated Static Analyses (ASA) tools as indicators of vulnerability. Thus any
component containing at least one warning returned by the tool would be considered
as vulnerable. This idea was first suggested by Scandariato et al., [161] on the premises
of the result obtained by Walden et al., [183] which shown a strong correlation between
vulnerabilities and warning returned by ASA tools. While this enables a broader use
of VPM, such ground truth remains questionable as the model obtained after training
will likely return the likelihood of the ASA tools returning a warning instead of the
likelihood to have a vulnerability. This is especially problematic as those tools tend to
produce a lot of false alarms.

3) dataset creation transforms the set of collected vulnerabilities into a dataset con-
taining both vulnerable and non-vulnerable examples. It can be considered as the first
step really proper to VPM, as previous steps are common with most of vulnerabilities
studies.

To create a dataset to train and/or evaluate a VPM on, the granularity level must first
be chosen. In a sense the granularity level is the entity (code parts) that will be pre-
sented to developers. Evidently, different granularity levels offer different advantages
[126]. For instance, the line level granularity can be direct but produce many false
warnings and be too fine grained for the developers to identify the issue.
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Most of the study adopt the file-component granularity level following the findings
of Morrison et al., [126], who found that the file (component) level was sufficient for
Microsoft developers to work with.

Once the granularity selected, the source of the non-vulnerable components, i.e., the
type of dataset must be determined. Almost all studies opt for release based datasets.
In release based datasets, one or several releases of the subject are downloaded and
every component affected by a vulnerability that impacted a given release is consid-
ered as vulnerable for the said release while all the others are declared non-vulnerable.
Another possibility suggested by Perl et al., [150] while opting for commit-level gran-
ularity is to fill the dataset with random commits not related to vulnerabilities.

3) evaluation method is the part used to validate approaches. In the context of
prediction modelling, it corresponds to the way to split the dataset into training and
testing set(s).

The most common evaluation method is random splitting also called leave one out
where a percentage of the dataset (usually 66%) is selected at random to be used as
training and the remaining part, also named holdout, as testing. The percentage of
each label is kept in both set at the same level as in the original dataset. The splitting
can be repeated (usually 50-100 times) to ensure the generalization of the results.

Another common methodology is stratified k-fold cross validation, which can be con-
sidered as a specific application of random sampling. This method consists in splitting
at random the dataset into k subsets with the same proportion between vulnerable
and non-vulnerable components as the dataset (stratified). Each fold is then used as
testing set while the others are used for training. This leads to the creation and evalu-
ation of k models, where usually k equals to 5 or 10. This type of experiment can also
be repeated several times (usually 10) to validate the results.

Another way when several releases of the subject are available is to train on one or
several releases and evaluate on another one (usually more recent). This provides a
more realistic setting of experimentation, i.e., as a company would use it, but has the
drawback of being sensitive to the problem of vulnerabilities spanning over multiple
releases, i.e., present in both training and testing set.

Finally, in case the dataset possesses some temporal property, it can be split according
to some chosen time point, i.e., everything before a given point in time is used as
training while everything after is used as testing.

4) feature extraction is the central part of any VPM approach. When suggesting
an approach, researchers are in fact suggesting a set of properties of the component
to use as features for the ML algorithms. These properties can be take various forms
and even use results from dynamic and/or static analysis.

The feature extraction phase then consists in computing for each component of the
dataset those features. This phase can be realized before or after the split into training
and testing set.
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Table 1.2: Confusion Matrix in VPM

Reality
Vulnerable Non-vulnerable Total

Prediction
Vulnerable TP FP TP + FP
Non-vulnerable FN TN FN + TN

Total TP + FN FP + TN N

5) model building results in the creation of the model. First, a matrix M that
use the feature elements of the feature list as columns and the component to train on
values as rows is created. A last column is then added to M indicating the label of
the component i.e., whether the component is vulnerable or not. Then, this matrix
is fed to a classifier that will return a model. The most common type of classifier
found in VPM studies is by far Decision Trees. Decision Trees have the advantage of
being human readable and quite easy to interpret. The most famous algorithm of this
category probably being Random Forest (RF).

6) component classification is the phase where elements from the testing set are
given to the model for prediction. For each element to test, a vector containing all the
features values is first created then used as input for the model. The model will then
return its prediction. Traditionally in VPM the classes are vulnerable or non-vulnerable
which makes it a binary classification problem.

In case of evaluation, labels are known which makes it possible to evaluate the predic-
tion. A model can either predicts that a component is vulnerable while it is not (False
Positives - FPs), non-vulnerable while it is vulnerable (False Negatives - FNs), vulner-
able while it is (True Positives - TPs) and non-vulnerable while it is (True Negatives -
TNs). Note that as we are mainly interested in vulnerabilities they are considered as
the positive case.

Once all predictions evaluated, the overall performance of the model is usually reported
in a confusion matrix (see Table 1.2) that can then be used to measure the performance.

7) performance measurement is the final step of any empirical study on VPM and
is used to evaluate the model.
The most common way to evaluate consists in computing precision and recall metrics
from the confusion matrix. These are defined as:

Precision = TP / (TP + FP )
Recall = TP / (TP + FN)

Precision represents the probability of a component to be correctly classified as
vulnerable. While, recall represents the probability of a vulnerable component to be
correctly classified. Yet, it is hard to compare models using these metrics as they
represent different aspects (often competitive) of the classification problem. A good
general metric used in defect prediction studies [166, 38] and some of the VPM ones
[93] is the Matthews Correlation Coefficient (MCC) [118].
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MCC is related to chi-square statistic for a binary classification and is defined as:

MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

As such, MCC returns a coefficient between -1 and +1. A value of 1 indicates a
perfect prediction whereas a value of -1 a perfect inverse prediction. A coefficient of 0
indicates that the classifier performance is equivalent to random.

Another commonly encountered metric in VPM studies is the F1 score metric which
is the harmonic average of the precision and recall, where an F1 score reaches its best
value at 1 (perfect precision and recall) and worst at 0.

F1 = Precision×Recall
Precision+Recall

Finally, as the output of VPM is supposed to guide the inspection effort, some authors
[171] focused their effort on metrics called Component Inspection Ratio, noted as CI
and Component Inspection Reduction, noted as CIR. CI is the ratio of components
predicted as vulnerable (that is, the number of components to inspect) to the total
number of components for the reported recall:

CI = (TP + FP ) / (TP + FP + FN + TN)

Whereas CIR is the ratio of the reduced number of components to inspect by using
the model compared to a random selection to achieve the same recall:

CIR = (Recall − CI) / Recall

1.4 Challenges

1.4.1 Overview

In today’s connected world, software systems are pervasive. Thus, a vulnerability found
in one of those systems has the potential to impact billions of users. Unfortunately,
it is not possible for every software vendor to continuously test their entire codebase.
First of all, uncovering vulnerabilities unlike bugs require specific skills and knowledge
that developers don’t necessarily possess. Then, the cost of searching the entire code
base remains which represents millions of lines of code for the largest projects.

To help reduce this cost, researchers came up with various methods to guide the
security testing effort. Among those, vulnerability prediction modelling has shown
some promising results and research in this area has been pretty active over the past
few years.
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Most of the studies suggesting new approaches for vulnerability prediction modelling
fail to compare their results with previously introduces ones. Furthermore, the way
approaches are evaluated often differs from one study to another. This difference
can originate from the choice of the dataset, ground truth, evaluation methodology,
performance metrics or a combination of those. This makes impossible the comparison
of results across studies, which can give an impression of fuzziness and instability. In
order to pursue its evolution, research on vulnerability prediction modelling need more
comparison and replication studies acknowledging what has already been proposed.
Still, novel approaches should continue to emerge but they should always be compared
to previous ones. One possibility for a novel approach could be the use of “naturalness
of code” that has been successfully applied for defect prediction [156].

In the following, an overview of the main challenges addressed in this thesis is presented.

1.4.2 Challenges addressed in this thesis

Collecting Vulnerabilities: One of the many factors explaining the lack of empir-
ical studies in this line of research is the absence of standard vulnerability datasets,
which could be used to evaluate VPM. Indeed most of researchers starts by creating
their own datasets. This hinders research in the area as creating a dataset is hard.
Indeed, information required is usually scattered in different places. Additionally more
than one project should be used to build such a dataset in order to verfify the gener-
alization. Ideally, those projects should in addition have a large number of reported
vulnerabilities, be security-sensitive and open source, which reduces the candidates.

In fact, from the researcher point of view, the creation of a dataset is interesting as it
ensures a full control over and understanding of the data. Yet this is counterproductive
at a larger scale. Moreover, as new vulnerabilities are found on a daily basis, a dataset
can quickly be outdated and bias the results.

Finally, vulnerability datasets are not only useful for vulnerability prediction mod-
elling, but can also be used for a large variety of analysis. Among the possible anal-
yses, the ones analysing vulnerabilities properties are of special interest as when put
together with the results of VPM, they can help developers understand the output of
the model.

Challenge #1:
The first challenges addressed in this thesis is the automatic collection of vulnerable
code instances. The collection process can be used in order to make a reliable, evolutive,
multi-project and large dataset that is suitable for vulnerability analysis.

Evaluating the Existing VPM Approach: Previous studies on VPM often do
not compare their results with previous works. One explanation, aside from the use
of different datasets, lies in the fact that the target and evaluation methodology of
the studies are usually different. Hence, even if the metrics used for measuring the
performance of the models are the same (which is not always the case) it is unwise
to compare the result obtained following a 10-fold cross validation to ones obtained
performing next release validation.
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The only remaining solution for researcher willing to compare their result with other
approaches is thus to replicate them using their dataset, evaluation methodology and
target. Unfortunately, only a couple of studies provide replication framework and
researchers have thus to recreate the approach based on the information available
on the papers. Replicating approaches is time consuming which explains the lack of
comparison.

Challenge #2:
The second major challenge addressed in this dissertation is the replication and com-
parison of existing approaches.

Suggesting a new approach based on naturalness: The application of Natural
Language Processing (NLP) to software engineering has received a growing interest
in the recent years [25]. In particular, the study of software naturalness [77] has
given birth to many approaches for generating source code, e.g., code completion [77],
synthesis [155], review [76], obfuscation [115] and repairs [154]) and performing static
analyses [81, 104, 140].

The naturalness of software is the measure of how surprising is a software component
to a statistical language model trained on other software components. Intuitively, one
might think that a “surprising” component might be suspicious. Yet, interestingly, the
naturalness of software has never been used for security-related tasks. Additionally, the
fact that it has been successfully applied to the area of defect prediction [156] makes
it an even more interesting candidate for building a VPM approach upon. History of
VPM has shown that approaches working for defect prediction are usually good candi-
date for vulnerability prediction. Still, the diverse ways to compute naturalness, e.g.,
tokenization, n, smoothing techniques,..., require careful thinking on which settings to
use as features.

Challenge #3:
The third major challenge addressed in this dissertation is the development of a new
VPM approaches based on the notion of naturalness.

Using Naturalness of software for Software Engineering: As stated before the
study of software naturalness led to the development of many approaches. Still, the
spectrum of it possible usages is large and has not been fully explored and some fields
of research could benefit from it, like mutation testing.

Mutation Testing mutates part of a program to evaluate its test suite. To test a
mutant, it needs to be executed against the test suite. One of the main issues of
mutation testing is that generated mutants are numerous and testing them all can
take time, while not all of them are of interest. Thus, some preliminary analysis to
reduce their number is required and naturalness could be a good indicator to select
mutants.

Challenge #4:
The last challenge addressed in this thesis is how naturalness could be used for other
software engineering tasks.
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Figure 1.4: Thesis structure

1.5 Contributions and Thesis structure

This thesis is composed of five parts. The first part introduces the thesis, technical
background and the state of the art. Then, the next three parts propose solutions to
address the main challenges presented in Section 1.4. Finally, the last part concludes
the thesis.

Each challenge is addressed using the methodology shown in Figure 1.4. At first, a
preliminary study motivates the challenge, then a proposition to tackle the challenge
is made under the form of a publicly available framework enabling further analysis.
Finally, a validation study is presented. While Parts II and III address respectively
the challenges 1 and 2, Part IV focuses on the naturalness of software and addresses
the last two challenges (3 and 4).

Part I: Introduction and state of the art. is composed of the present Chapter
(1), which introduces the context of this thesis and Chapter 2 which presents the state
of the art regarding vulnerability prediction modelling.

Part II: Analysing and collecting vulnerabilities. addresses the challenge of col-
lecting information on vulnerabilities to build a dataset. Chapter 3 presents a manual
analysis of Android vulnerabilities. This analysis highlights the difficulties faced by
researchers when trying to collect and analyse a large number of vulnerabilities. Then,
Chapter 4 presents Data7, a publicly available extensible framework that automati-
cally collects vulnerability fixes and information. This framework can be used as base
for a VPM evaluation but also to support empirical analysis of vulnerabilities like the
one presented in Chapter 5. This chapter presents an analysis of vulnerability fixes
according to their types and severities and gives pointers for specific VPM analysis.

The contributions presented in this part are based on work that has been presented in
the following papers:

• Matthieu Jimenez, Mike Papadakis, Tegawende F. Bissyandé, and Jacques Klein. Pro-
filing android vulnerabilities. In 2016 IEEE International Conference on Software
Quality, Reliability and Security (QRS), pages 222–229, Aug 2016

• Matthieu Jimenez, Mike Papadakis, and Yves Le Traon. An empirical analysis of vul-
nerabilities in openssl and the linux kernel. In 23rd Asia-Pacific Software Engineering
Conference, APSEC 2016, Hamilton, New Zealand, December 6-9, 2016, pages 105–
112, 2016
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• Matthieu Jimenez, Yves Le Traon, and Mike Papadakis. Enabling the continous analy-
sis of security vulnerabilities with vuldata7. In IEEE International Working Conference
on Source Code Analysis and Manipulation, 2018

Part III: Investigating Vulnerability Prediction Models is dedicated to the sec-
ond of four challenges of this thesis, the replication and comparison of existing VPM
approaches. Chapter 7 starts by presenting an exact independent replication study of
three of the main VPM approaches on a dataset of Linux Kernel vulnerabilities built
using the framework of Chapter 4. Following this experience, chapter 8 presents an ex-
tensible framework that allows practitioners to replicate, evaluate and compare VPM
approaches. This framework is then used in Chapter 9 to perform the largest empir-
ical study on VPM comparing the three approaches replicated before using different
settings and evaluation criteria.

The contributions presented in this part are based on work that has been presented in
the following papers:

• Matthieu Jimenez, Yves Le Traon, and Mike Papadakis. Enabling the continous analy-
sis of security vulnerabilities with vuldata7. In IEEE International Working Conference
on Source Code Analysis and Manipulation, 2018

• An Empirical Study on Vulnerability Prediction of Open-Source Software Releases
(under review)

Part IV: Naturalness of Software addresses the third and fourth challenges that
are related by their use of naturalness. Chapter 11 presents a study on the use of
naturalness for software engineering. The focus is put on the effect of code represen-
tation and language models parameters on naturalness. The chapter also introduces
a framework to compute naturalness of software, which is used to create a VPM ap-
proach studied and evaluated in Chapter 12in an effort to address the third challenge.
Finally, Chapter 13 address the last challenge by presenting an empirical study on the
use of naturalness for the selection of “fault-revealing” mutants.

The contributions presented in this part are based on work that has been presented in
the following papers:

• Matthieu Jimenez, Maxime Cordy, Yves Le Traon, and Mike Papadakis. On the impact
of tokenizer and parameters on n-gram based code analysis. In 34th IEEE International
Conference on Software Maintenance and Evolution, ICSME 2018, Madrid, Spain,
September 23-29 2018, 2018

• Matthieu Jimenez, Thierry Titcheu Checkham, Maxime Cordy, Mike Papadakis, Mari-
nos Kintis, Yves Le Traon, and Mark Harman. Are mutants really natural? a study
on how “naturalness” helps mutant selection. In 12th International Symposium on
Empirical Software Engineering and Measurement, ESEM 2018, Oulu, Finland, 11-13
October 2018, 2018

Finally, this dissertation is concluded in Chapter 15, where possible future research
directions are discussed.
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2
State of the Art

This chapter presents a list of works and studies on VPMs and provides an overview
of works on related research topics introduced in Section 1.3. Special care was taken to
exhaustively cover all the published studies until the time of writing.

Contents
2.1 VPMs: Over a decade of studies . . . . . . . . . . . . . . . 20

2.2 Analysing and detecting vulnerabilities . . . . . . . . . . . 33
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Figure 2.1: Numbers of published papers related to VPMs per year since 2007

2.1 VPMs: Over a decade of studies

The first paper we found related to VPMs was published in 2017 and is that of Neuhaus
et al., [133], entitled “Predicting Vulnerable Software Components”. Since then, the
field receives increasing attention from the research community.

Figure 2.1 presents the number of papers related to VPMs, categorized according
to their publication year. The figure shows a constant publication trend as no year
passed without any related publication. Interestingly, most of the studies we analyse,
differ one another by either the features that are used to build the models, or by the
granularity level on which the trained model is working, e.g., file, modules, function,...

In this section, we present all of these works as follows: First we present works relying
on dependency analysis. Next, we present all studies using source code metrics. Then,
papers using text mining techniques are discussed. After that, a category of works
relying on Attack Surface Approximation (ASAp)s is presented. Finally, we present
studies that are combinations of other approaches.

2.1.1 Dependencies Analysis

The paper of Neuhaus et al., [133] can be considered as the first attempt to build a
VPM. The authors suggest using the include and the function call contains in a file as
features to a ML algorithm. This approach is based on the intuition that vulnerable
files are likely to share similar sets of imports and function calls which could be used
to identify them. The idea is in accordance to the work performed by Schröter et al.,
[162], which aims at predicting defects. The authors begin this study by performing a
correlation analysis of import/function calls and vulnerabilities on a dataset of Mozilla
Firefox vulnerabilities to validate the intuition. In their evaluation, the authors per-
form random splitting and experiment two approaches, one using the includes of the
file as features while the other use its function calls. To build the models, the authors
opt for the Support Vector Machine (SVM) algorithm.
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Their results show that a recall of 45% and precision of 70% can be achieved. These re-
sults, although not great, were considered encouraging. The authors also find out that
against the common belief, files that are vulnerable once are unlikely to be vulnerable
again.

Neuhaus et al., [132] extend this idea to the analysis of dependencies between packages
in Red Hat. Indeed, most packages in Red Hat require the installation of other packages
before starting their installation, this process can lead to long chains of dependencies
that might be conflicting and propagate vulnerabilities. Similarly, the authors start
by providing evidence that vulnerabilities indeed correlate with dependencies using
a dataset containing more than 3,000 packages. Then, they perform an analysis to
find out the dependencies that increase the chances of a package to be vulnerable
(“beasts”) and those that reduce it (“beauties”). Next, they use their dataset to build
and evaluate VPMs using dependencies of binaries as features. To build the models,
two different ML algorithms are considered, the first one SVM that has already been
used in the previous study has the benefit of being less prone to overfitting. The
second one, C4.5 is a decision tree based algorithm and thus has as major benefit to be
understandable by humans. The authors find out that models using SVM algorithms
are performing better and reach a median precision of 83% and a median recall of 65%.
Finally, the authors explore the possibility to use a linear regression model to predict
packages that might turn out to be vulnerable in the upcoming months. The use of
this technique on their dataset led to the flagging of 25 packages, from which 9 turned
out to be vulnerable.

Nguyen et al., [137] further investigate the power of dependencies as features by
analysing the relation between software elements at various granularity, e.g., com-
ponents, class, functions, variable instead of sticking to a single one. In the previous
studies, the dependencies were either at the file level, or the binary one, which means
that they can be represented as a simple text elements. However, dependencies in
lower granularity cannot be represented as such and are traditionally presented under
the form of graphs, which are not convenient to use as features. To tackle this issue,
the authors suggest extracting metrics from dependency graphs and use those as fea-
tures. To compute those metrics, the authors rely on two kinds of graphs, Member
Dependency Graphs (MDG) which are direct graphs built from data items and method
of a software system and focus on member levels and Component Dependancy Graphs
(CDG) which can be generated from the MDG by gathering all member nodes of a
same component node into a component node. In total, 22 metrics based on these
graphs are presented. The authors evaluate models built on those metrics on two ver-
sions of the JavaScript engine of Mozilla Firefox with 5 different ML algorithms and
find out that in terms of recall Bayesian Network (BN) performs best with score values
reaching 75%, while SVM and Neural Network (NN) outmatch all others in terms of
precision by reaching score values up to 85%.

Table 2.1: Summary of 2.1.1

Study Features Dataset Granularity Evaluation Method Algorithm Result
Neuhaus et al., [133] Include, Function calls Mozilla Firefox File 2/3 split (40 times) SVM Precision 70%, Recall 45%
Neuhaus et al., [132] Dependencies 3000 Red Hat Packages Binary (Package) 2/3 split (50 times) SVM, C4.5 Precision 83%, Recall 65%
Nguyen et al., [137] Dependancy graph metrics Mozilla Firefox File 10 fold cross validation BN, Näıve Bayes (NB),

NN, RF, SVM
Precision 68%, Recall 60%
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2.1.2 Code Metrics

Extracting code metrics from a graph model has the advantage of having a prediction
model with a fixed number of features. This guarantees that the dimension of the
model will not depend on the training set. This leads to another category of VPMs
approaches presented in this section that use metrics computed from the source code
to build their models. The initial studies in this line of works are those carried out by
the studies of Shin et al., .

The seminal study of Shin et al., [169] is the starting point of all studies that use
complexity metrics to build VPMs. Shin et al., [169] investigated whether complex
code correlates with vulnerabilities and whether there are significant differences in code
complexity between vulnerable and faulty code. To verify this, the authors compute
a set of 9 complexity metrics for each function present in the 4 releases of Mozilla
Firefox. Among those metrics, we can cite MacCabe Cyclomatic Complexity (MCC),
essential cyclomatic complexity, nesting and Lines of Code (LoC). Overall, they found
a weak correlation between vulnerable code and complexity and that vulnerable code
tend to be more complex than the faulty one.

The results of the previous study are then used by the same authors [168] to build
VPMs. The idea is directly inspired by the work of Nagappan et al., [130] for defect
prediction. In this work, the authors explore 3 different scenarios (1) predict faulty
functions from all functions which is a typical case of DPMs (2) predict vulnerable
functions from all functions and (3) predict vulnerable functions from faulty functions.
For each scenario they build a model using the 9 metrics and binary Logistic Regression
(LR) as a ML algorithm. The evaluation is performed on a dataset composed of 6
versions of the JavaScript engine of Mozilla Firefox. The author found that in the
first two scenarios, a low false positive rate (high precision) was achievable but at the
price of a high false negative rate (low recall), which can be problematic if aiming at
reliability. Regarding the third scenario, the results turned out to be inconclusive as
no common trends between any of the experiments could be observed.

Shin et al., [170] extend their work to the use of execution complexity metrics as
opposed to the previous ones that were static. The intuition is that metrics collected
during software execution may be effective for identifying vulnerable code locations.
The idea is borrowed from the work of Khoshgoftaar et al., [99] applied to DPMs. The
new metrics are number of calls, inclusive execution time and exclusive execution time.
Those metrics can be computed while performing usual tasks on the software with tools
such as Callgrind. In addition to static and execution metrics, the authors also look
into dependency metrics similar to those of Nguyen et al., [137] but based on the work
of Zimmermann et al., [200]. In total, 23 metrics are studied. The authors first evaluate
the discriminative power of the metrics on Firefox and Wireshark. Results suggest that
almost all of the metrics show significant discriminative power on the Firefox dataset
while it’s not the case for Wireshark. Regarding execution metrics, 2 of them show
discriminative power for Firefox but none for Wireshark. Then, the authors build 4
VPMs models using LRs, one per type of metrics and one combining them and find
out that models using dependency metrics perform best in terms of precision while the
execution metrics ones are interesting for File Inspection Reduction.
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Shin et al., [167] perform an even more extensive study on the use of Complexity, Code
Churn and Developer Activity (CCD) metrics for vulnerability prediction. If the use of
complexity metrics is a logical extension of the previous works, the use of Code Churn
and Developer Metrics can be considered as novel. Similarly to the previous works, the
idea to use those metrics can be traced back to the work of resp. Nagappan et al., [129]
and Meneely et al., [123] in the context of DPMs. In total, the authors suggest the use
of 28 metrics (14 complexity, 3 code churn and 11 developer activity) and test their
discriminative and predictive power against two open source projects Mozilla Firefox
and Red Hat Linux. More information on those metrics can be found in chapter 7.
Among the 28 metrics, the discriminative power of 24 metrics was supported for both
projects. Regarding the evaluation of the predictive power of the metrics, the authors
consider both univariate and multivariate model built using several classifier but only
present the result of LR as the result were similar. Regarding the univariate model,
i.e., model using only one metric, only the number of changes of a file and its number
of developers provided result acceptable by the authors chosen threshold (over 70%
recall and below 25% of false alarm) for both projects. As for multivariate models,
4 kinds were considered, one per type of metrics and one combining them all, the
model using Code Churn metrics performed the best in Firefox, while the one using
developer activity performed the best for Red Hat, the model using all metrics being
the most stable between the two projects. The authors conclude that model based on
development history are stronger than ones based on complexity.

In a last study Shin et al., [171] investigate the use of traditional DPM based on Com-
plexity Code Churn and Fault history metrics for vulnerability prediction. The authors
consider three scenarios (1) a model is built on faulty data and evaluate whether a file
is faulty (2) a model is built on faulty data and evaluate whether a file is vulnerable and
(3) a model is built on vulnerable data and evaluate whether a file is vulnerable. They
evaluate those scenarios on 2 releases of Mozilla Firefox using different classifiers but
only presenting the result of LR as they claim that result are similar for all classifiers.
They find that result varies greatly depending on the chosen threshold for the classi-
fier, i.e., classifier usually returns a probability of the element under test belonging to
a given class and the threshold corresponds to the minimum probability required for
this element to be considered of this class. Hence depending on the chosen threshold,
the recall and precision value can be inverted. Yet, results suggest that traditional
DPMs could replace specialized VPMs. This is explained by the authors as the “nee-
dle effect”, i.e., the lack of vulnerable example to build the model, indeed the authors
observe as well that if models built on faulty data are given the same amount of faulty
example than their vulnerable counterpart, then results are similar. The consequence
of this effect are investigated in Chapter 9.

Chowdhury et al., [48, 49] introduce the idea of using coupling and cohesion metrics
in addition to the complexity ones as indicators of vulnerabilities especially for Object
Oriented Program. For each category of metrics, the authors suggest metrics that can
be computed at code level or design level. All code level metrics are similar to the
ones of Shin et al., [167] while design level ones are novel to the area. In a first study
[48], they investigate whether these metrics correlate with vulnerability using Firefox
as a case study and found that complexity and coupling metrics are indeed strongly
correlating with vulnerability while cohesion metrics have a medium correlation.
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Then in an extension of this study [49], they use those metrics to build models and test
4 different classifiers (C4.5 Decision Tree, RF, LR and NB) on 52 releases of Firefox.
They found out that algorithm based on a decision tree (RF and C4.5) outperforms
the other algorithms and could reach 75% of recall and 28% of false positive rate.

Table 2.2: Summary of 2.1.2

Study Features Dataset Granularity Evaluation Method Algorithm Result
Shin et al., [168] Complexity JSE Mozilla Firefox File - LR False Positive 1%, & False Negative 90%
Shin et al., [170] Static and Execution complexity,

dependencies
Mozilla Firefox, Wireshark File 10*10 fold cross validation LR Precision 67-80%, Recall 12%

Shin et al., [167] Complexity, Code Churn
Developer activity

Mozilla Firefox, Red Hat File 10*10 fold cross validation
next release validation

LR, J48, RF, NB, BN Recall 85% & False Alarm 24%

Shin et al., [171] Complexity, Code Churn
Fault history

Mozilla Firefox File 10*10 fold cross validation BN, J48, RFLR Threshold 0.5: Recall 70% Precision 49%
Threshold 0.84: Recall 36% Precision: 76%

Chowdhury et al., [49] Complexity, Coupling
Cohesion

Mozilla Firefox File 10*10 fold cross validation NB, RF, C4.5, LR Recall 75% False Positive: 28%

2.1.3 Attack Prone Components

All these works based on metrics focus on file level prediction which is the most used
granularity for VPMs, yet it is possible to work at different granularity. This part
presents a series of works related to the prediction of Attack Prone Components (APC)s
performed at the module level by Gegick et al., .

APCs are a subset of Vulnerability Prone Components that are likely to be exploited.
Indeed the existence of a vulnerability is not always paired to an exploit. In fact, most
of vulnerabilities haven’t reported exploit.

The vision paper of Gegick et al., [187] is the first of this series. It introduces the
different definitions, ideas and experimental processes that are used in all of their
studies. Among the various suggestions, the most important one is to use results of
ASAs tools to identify vulnerabilities and more precisely compute metrics from the
warning. In a following technical report, Gegick et al., [67] present their use case
which is a large Cisco project of over 1.2 million lines of code along with the chosen
metrics (1) ASAs tool internal metrics (2) LoCs and code churn (3) Count and density
of pre-and post-release failure (security and non-security-related). They also describe
the Classification and Regression Tree (CART) ML algorithm selected to build models.
Next, the authors present the results obtained while testing on 25 components out of
the 38 that the project is composed of[66]. They build one model per category of
metrics and one combining them all and find that the model using all metrics performs
best achieving 8% of false positive and 0% of false negative.

In a follow-up study [65], the authors investigate the use of unit tests and static
inspection in addition to the formerly introduced metrics as features. The authors
achieve a precision of 80% and a recall of 48.8% in the best case.

Table 2.3: Summary of 2.1.3

Study Features Dataset Granularity Evaluation Method Algorithm Result
Gegick et al., [66] ASAs, LoCs

code churn, failure count
Cisco Module 5 fold cross validation CART False Positive 8% & False Negative 0%

Gegick et al., [65] ASAs, LoCs, code churn
unit tests, static inspection

Cisco Module 5 fold cross validation CART Precision 80%, Recall 48.8%
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2.1.4 Text Mining

This part is devoted to studies suggesting using techniques from the text analysis field
to build models. Similarly to previously introduced approaches, the idea of reusing
text analysis techniques for vulnerability prediction can be traced back to works on
defect prediction such as the one performed by Hata et al., [75].

In a position paper, Hovsepyan et al., [79] introduce a novel approach based on tech-
nique from the text analysis area called bag of words. The idea according to the
authors is to consider raw source code as text and apply text analysing techniques
on it instead of using “cooked” features, e.g., code metrics. Hence, they suggest to
tokenize the code as any regular English text and create a bag of words out of it. The
bag of words can then be used as a feature by a ML algorithm. The authors evaluated
the idea on a dataset composed of 19 releases of K9 mail Android applications. In
this study, vulnerabilities (obtained through the use of an ASAs dedicated to security)
present in the first release are used to train a model and which is then applied on
all following releases. Results obtained were considered as encouraging result with an
average recall of 88% and precision of 85%.

In a follow-up work, Scandariato et al., [161] evaluated the same approach on 20
Android open source applications and Drumel a php project. In a similar manner,
the authors rely on a static analysis tool to build their dataset of vulnerabilities. The
choice of relying on this kind of ground truth instead of one based on vulnerability
reports is justified by the authors on the basis of results obtained by Walden et al.,
[183] showing that there is a strong correlation between warning from security static
analysis tool and vulnerabilities. In this study, the authors evaluate their models using
3 different means: (1) next release prediction (2) cross validation and (3) cross project
predictions. They found interesting results, reaching in average a recall of 77% and a
precision of 90%. More information on this study can be found in chapter 7.

Pang et al., [143] suggest using a Bag of N-Grams instead of a Bag of Words as feature
to create the model. To evaluate this idea, they use the data of 4 of the Android
applications from the study of Scandariato et al., [161]. The authors perform both
cross validation and cross project prediction and obtained a precision of 95% and a
recall of 87% for cross validation and a precision of 67% and a recall 63% in the case
of cross project prediction. The same authors [144] extend their study to the use of a
deep NN instead of SVMs use in the first study and found slightly better result with
both precision and recall close to 95%. However, in both papers the authors emphasize
on the need for more experiments to validate those results.

All works on text mining based approach share the advantage of their simplicity, in
a similar manner another kind of approach consists in the analysis of crash report
instead of source code.

Table 2.4: Summary of 2.1.4

Study Features Dataset Granularity Evaluation Method Algorithm Result
Hovsepyan et al., [79] Bag of Words K9 Mail Android File Next Release - Accuracy 87%, Precision 85%and Recall 88%
Scandariato et al., [161] Bag of Words 20 Android Applications, 3 PHP File 10 fold cross validation, next release and cross Project NB, RF Precision 90%and Recall 77%
Pang et al., [143] N-Grams 4 Android Applications File 5 fold Cross Validation, Cross Project SVMs Precision 95%and Recall 87%
Pang et al., [144] N-Grams 4 Android Applications File 5 fold Cross Validation, Cross Project Deep NN Precision 95%and Recall 95%
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2.1.5 Attack Surface Approximation

In this part, approaches suggested by Theisen et al., leveraging crash dumps to identify
part of system that might be vulnerable are presented.

Crash dumps are frequently used to localized defects in a program [185], thus Theisen
et al., [177] came up with the idea of applying it to vulnerabilities. In particular, they
introduce the notion of ASAp, an automated approach to identify parts of a system
that are contained on the Attack Surface through the analysis of the stack trace of
crash reports. ASAp has two major interests, first it can be used as a replacement
of traditional VPMs to find potential vulnerable components, second it can be used
to narrow down the space VPMs should investigate. To investigate the usefulness of
ASAp, the authors evaluate using a dataset of Windows 8 vulnerabilities [201] and
use crashes from 3 different sources (kernels, user and fuzzing tools) as features. The
authors in a first time compared the results obtained by ASAp against a traditional
VPMs based on code metrics and found better precision and recall for both binary and
file level. Then the authors look whether ASAps could be used to improve results of
traditional VPM and found that it was the case even if the gain were marginal. They
also found that crash from fuzzing tool are redundant with kernels and user crash.

In a follow-up study, the same authors [178] investigate how to reduce the number
of traces required to perform ASAps while maintaining acceptable results. Indeed,
the analysis of all stack traces can be really expensive. While performing the same
experiments as in their previous paper on Firefox and Windows datasets, they found
that simply performing a 10-fold random sampling at 10% just was only reducing the
result by 3% while significantly reducing the cost of analysis.

In the previous sections, studies introducing new approaches were presented, the next
one introduced those that tried to combine them.

Table 2.5: Summary of 2.1.5

Study Features Dataset Granularity Evaluation Method Algorithm Result
Theisen et al., [177] Code Metrics &

ASAps
Windows 8 Binary & File 100* 2/3 split RF Precision 69%and Recall 10%

2.1.6 Combined Approaches

Perl et al., [150] study the effect of using metadata contained in source code repositories
in addition to code metrics to flag vulnerability contributing commits (VCC). Software
evolves over time and most of the time developers rely on a Version Control System
(VCS) to keep track of the changes, making commits (changes) a natural unit of
evolution worth studying. The authors thus gather a dataset of 170,000 commits from
66 Open Source Github projects from which 640 are flagged as vulnerable. Among
the metrics selected by the authors to use as features for VPM identifying VCC, most
are previously introduced metrics like code churn and developer activity, but some are
novel and extracted straight from the VCS such as commit messages (converted into a
bag of words). The authors then build a model using the SVM algorithm and data up
to the end of 2010 as training and the one following as testing. In the end, the model
reached a precision of 60%, while obtaining a recall of 25%.
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Zhang et al., [199] propose, on the other hand, to combine code metrics and text mining
techniques. To do so, the authors present an approach combining the result from 6
different classifiers, three train on code metrics, and three on text mining. To combine
the different predictions into a single one, the authors suggest using another classifier
(RF) on top that use the confidence score of each classifier for each training example
as training. The authors evaluate this approach on the same dataset as Walden et al.,
[184] (see 2.1.7) composed of 3 PHP applications. Overall, the authors managed to
improve the precision in every case while only improving the recall in one case.

Moshtari et al., [127] investigate the power of complexity and coupling metrics on cross
project prediction especially the case of projects programmed in different languages.
The authors built their model with the same features as in Shin et al., [169] study
but also add what they refer as included vulnerable header metrics (IVH). This last
category of metrics corresponds to the number of headers related to sensitive calls
like IO, network, databases, memory and systems and is in fact inspired by the work
of Neuhaus et al., [133]. To evaluate the possibility to use models trained on those
features for cross prediction, the authors build a dataset based on 5 Open Source
Software (Apache Tomcat, Eclipse, OpnScada, Mozilla Firefox and Linux kernel) using
the output of a security ASA tool as ground truth. The authors found that the
combination of complexity metrics and IVH was greatly improving the results with
recall reaching up to 87%.

Yu et al., [196] propose a tool named “Harmless” to guide security review process
by building an active learning model based on code metrics, text mining and crash
log. On the opposite of the previously presented studies that predict whether files are
vulnerable in batch, the idea of the tool is to order the file to review according to
their chance of being vulnerable. Hence, the goal is not to have an accurate binary
prediction but to have most of the vulnerable file highly ranked, i.e., to obtain a recall
of 100 for the least cost. To evaluate their tool, they compare it to other approaches
on the same dataset as Theisen et al., [177] and found better result than models built
using only one kind of approach .

In this section, works combining different approaches to build better ones have been
introduced, yet that is not the only way to improve the results. In the next section,
an overview of studies that tries to improve the results using different ML techniques
is given, along with the one that replicate and evaluate the impact of existing VPMs.

Table 2.6: Summary of 2.1.6

Study Features Dataset Granularity Evaluation Method Algorithm Result
Perl et al., [150] Code Metrics, VCS info 66 Open Source Projects Commits Time Split SVM Precision 60%and Recall 25%
Zhang et al., [199] Code Metrics, Text Mining 3 PHP Applications File 10 fold cross validation RF,NB, C4.5 Precision 25-67%and Recall 4-69%
Moshtari et al., [127] Complexity, Coupling &

Dependency
Tomcat, Eclipse, OpnScada
Firefox, Linux kernel

File Cross Project NB, LR, RF,
clustering

ROC 80% and Recall 87%

Yu et al., [196] Code Metrics, Text Mining,
ASAp

Mozilla Firefox File Cost Active Learning 53% of files for 100% Recall
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2.1.7 Replication, Improvement and Impact studies

Finally, in this section, studies that replicate and evaluate the practicality of existing
approaches as well as those exploring techniques to improve the results like dimension-
ality reduction.

Following their work on text mining [161], Walden et al., [184] compare the result
obtain by models built using bags of words against one’s using code metrics from
Shin et al., [167] study. To perform this comparison, they build a dataset of 3 PHP
Applications Drummel, Moodle and PHPmyAdmin containing 223 vulnerabilities and
cross validate the results. In the end, the authors found that text mining models were
always performing better than their code metrics counterparts.

Hovsepyan et al., [78] extend this study to the use of those models for future prediction
instead of classical cross validation from one release to the other on a dataset containing
9 releases of Firefox and 15 releases of Google Chrome. They find that when training
on one release and keeping the model is more stable than training a new model based on
the previous release each time a new release is made available. Models using previous
release perform in average 5-10 % worse than models trained on an old release.

Stuckman et al., [173] investigate the effect of dimensionality reduction techniques on
VPMs. They consider 5 techniques, Feature Subset Selection (FSS), Entropy Reduc-
tion (FS), Principal Component Analysis (PCA), Sparse Principal Component Analy-
sis (SPCA) and CFA and evaluate them on two approaches one based on code metrics
and one based on bag of words. The authors reuse the PHP dataset presented in the
work of Walden et al., [184] to evaluate the performance of the different techniques.
The authors find that CFA technique can slightly improve code metrics models while
no techniques can improve the bag of words ones. Still, the use of dimensionality re-
duction techniques reduces the gap in computation time between code metrics-based
models and text mining ones, while just slightly worsening the results.

Zimmermann et al., [201] were the first to investigate the use of VPM in an industrial
context and to replicate studies. The authors test models using complexity, churn,
coverage, dependency and organizational metrics and their combination as well as
models based on dependency and evaluate it on Windows Vista at the binary level.
First, the authors confirm the existence of a weak correlation between the metrics
and vulnerabilities. Then they build metrics models using LR and dependency models
using SVM and find that combination models are performing better among the metrics
ones, while ones based on dependencies have a better recall for the same precision.

Morrison et al., [126] further investigate the reproducibility of the results on Windows 7
and 8 at two granularities binary and file level. Indeed, results at the binary level tends
to be good, but they are less actionable, while results of file level are insufficient but
actionable. The authors evaluate different models based on 29 metrics from 6 different
categories of metrics, churn, complexity, dependency, legacy, size and vulnerability
history and a large set of classifiers. After analysing the results, the authors conclude
that in the current state, results are not good enough to be of actual use. Indeed at
best, a precision of 76% or a recall of 42% is reached at binary level, resp. 47% or 14%
at file level, which is far from the initial goal of 70% recall and precision.
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Moshtari et al., [128] replicate the study of Shin et al., [167] but only using complexity
and coupling metrics. They start by performing an experimentation similar to the one
of Shin et al., , i.e., performing next release validation, on a dataset of 35 releases of
Mozilla Firefox and find precision and recall above 90%. Then the authors investigate
whether the same result can be achieved in a cross project prediction context but find
at best a precision of 20% and a recall of 31%.

Alves et al., [26] replicate 18 experimentation from state-of-the-art studies using soft-
ware metrics on a dataset of 2875 vulnerability patches from 5 software Firefox, Linux
kernel, httpd, glibc, XenHV [27]. Overall, the authors find that the accuracy metric
is not relevant and that other metrics such as informedness and markedness are more
interesting. They also observe that models using RF are performing better in all cases.

Table 2.7: Summary of 2.1.7

Study Features Dataset Granularity Evaluation Method Algorithm Result
Walden et al., [184] Code Metrics, Text Mining Drummel, Moodle, PHPmyAdmin File 5 fold cross validation RF Precision +0.5-5%, Recall +4-10%
Hovsepyan et al., [78] Code Metrics, Text Mining Mozilla Firefox, Google Chrome File next release validation RF Recall -5-10%
Stuckman et al., [173] Code Metrics, Text Mining Drummel, Moodle, PHPmyAdmin File 10 fold cross validation,

next release validation
RF -

Zimmermann et al., [201] Code, Dependancy,
Organizational, Coverage Metrics,
Dependencies

Windows Vista Binary 2/3 random split LR, SVM Precision 66%, Recall 20%

Morrison et al., [126] Code, Dependancy, Legacy
and Vulnerability History

Windows 7 & 8 Binary
File

100 * 2/3 random split Recursive Partitioning (RP),LR,
SVM, NB, RF ,Tree Bagging (TB)

Precision 76%, Recall 42%

Moshtari et al., [128] Complexity, Coupling Apache Tomcat, Eclipse,
OpnScada, Firefox, Linux kernel

File next release
cross project

BN, J48,NB, LR, RF, clustering Precision 97% and Recall 91%

Alves et al., [26] Code Metrics Firefox, Linux kernel,
httpd, glibc, XenHV

File - - -

2.1.8 Summary

VPMs have received an increasing amount of attention over the past few years. This
chapter gathered and introduced 32 papers directly related to VPM. In Table 2.8, we
can observe that models based on code metrics-based features have been used in most
of the studies. Hence, the LoC metrics have been used in at least one model in 80 %
of the presented studies. This trend is somehow similar to the one observed in DPM,
where those models that are easy to build and evaluate are often used as a comparison
basis. In terms of results, text mining based techniques seem to outperform the others
according to the works considering it. Yet its high computation demand is clearly a
downside, that dimensionality reduction can just slightly temper.

The use of the different ML algorithms is summarized in Table 2.9, where we see that
many different possibilities have been tested. RF is the most used technique, present
in more than 50% of the related studies, and seems to be the best performing. LR
which easy to interpret outputs have been largely used as well with less success.

The projects used to build the evaluation datasets of the studies are presented in Table
2.10. Firefox have been extensively used, this can be explained by the high number
of vulnerabilities reported and the ease to collection information on them through
the MFSA. Still the use of a project remains tightly linked to the researchers. In
most cases, a new group working on VPMs lead to the introduction of a new dataset,
which hinders replication and comparison between studies. The explanation of this
multiplication of datasets, which sometimes doesn’t even share the same ground truth,
i.e., based on vulnerability reports, or the output of an ASA, lies in the fact that most
are not publicly available.
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Table 2.9: Table of ML algorithms used in the different studies

Paper
ML

SVM C4.5 NB BN RF NN LR J48 CART Clustering TB RP

Neuhaus et al., [133] X

Neuhaus et al., [132] X X

Nguyen et al., [137] X X X X X

Shin et al., [168] X

Shin et al., [170] X

Shin et al., [167] X X X X X

Shin et al., [171] X X X X

Chowdhury et al., [48] X X X X

Gegick et al., [66] X

Gegick et al., [65] X

Scandariato et al., [161] X X

Pang et al., [143, 144] X X

Theisen et al., [177, 178] X

Perl et al., [150] X

Zhang et al., [199] X X X

Moshtari et al., [127] X X X X

Walden et al., [184] X

Hovsepyan et al., [78] X

Stuckman et al., [173] X

Zimmermann et al., [201] X X

Morrison et al., [126] X X X X X X

Moshtari et al., [128] X X X X X X

Total 7 3 8 4 13 2 9 3 2 2 1 1
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2.2 Analysing and detecting vulnerabilities

In this section, an overview of works on related research topics such as vulnerability
analysis and discovery is presented.

2.2.1 Vulnerability discovery

As presented in Section 1.3, when trying to discover vulnerabilities in a software,
different techniques can be used other than VPMs which focus more on narrowing
down the search space for vulnerabilities. Hence we can cite, Security oriented Static
Analysis tools, Fuzzing tools, Penetration testing, ...

Static Application Security Testing (SAST) Tools [20] which falls under the category
of static analysis approaches, analyse the source code or a compiled version of it to
find vulnerabilities. This type of tool usually relies on an existing set of rules that
will highlight the vulnerabilities. One of their main benefits is their scaleability and
their understandable output. They are particularly well fit for finding vulnerabilities
like buffer overflow and SQL injection. However they are neither sound, nor fitted
to detect authentication problem or access control issues. Examples of such tools are
FindSecBugs [9] and Fortify [10].

Fuzzing Tools [11] belong to dynamic analysis approaches and are black box soft-
ware testing tools trying to find bugs in implementation by injecting malformed/semi-
malformed data in an automated way. Fuzzers tend to find simple bugs. Yet if the bug
provokes a crash, it can be considered as a vulnerability as there is an impact on the
availability. Interestingly, the less a fuzzer is knowing about the expected input, the
more error it will return. A real downside of fuzzers is their hard to interpret output.

Another possibility is to use penetration testing (pentest) either in an automated way
or manual one. Pentest is generally used to find whether the system is exposed to
known vulnerabilities, but can as well lead to the discovery of new vulnerabilities.

Austin et al., [31] investigate those techniques and their complementarity on Tolven,
CCHR and Open EMR, i.e., exploratory manual penetration testing, static analysis,
automated penetration testing and systematic manual penetration testing, the latter
finding the most vulnerabilities while observing that vulnerabilities found by static
analysis tools were of different kinds.

DaCosta et al., [52] study is one of the first on automated vulnerability retrieval. The
authors suggest that function near a source of input are the likeliest to contain a
vulnerability and hence build a tool named FLF (Front Line Functions) detecting such
functions and evaluate it on 31 vulnerabilities from MICQ, elm, dhcpd and openSSH.

Yamaguchi et al., [192] introduce an approach that extract api call from software to
create a vector space, which then by computing similarity can be used to investigate
the calls close to a reported vulnerability. They evaluate it on a dataset based on
the Linux kernel and ffmpeg and found 2 new vulnerabilities and one exploit. They
then extend this approach [193] to the analysis of Abstract Syntaxic Tree (AST). They
evaluate it on a new dataset and found several 0-day vulnerabilities.
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2.2.2 Extrapolating information on Vulnerabilities

VPMs are used to predict components that are likely vulnerable, but it is not the only
possible usage of prediction models for vulnerabilities.

As an example, Alzhami et al., [24] suggest an approach to guess the number of vulner-
abilities in a system. To do this, the authors rely on two metrics (1) the vulnerability
density and (2)the vulnerability discovery rate and use them to build a model. They
perform an evaluation on 5 version of Windows and 2 of Red Hat Linux and observe
that most of the vulnerabilities discovered lately in the life of a system are linked to
the release of a new version. While, Pokhrel et al., [153] suggest on the other side to
rely on the use of time series predictive model to predict the number of vulnerabilities
present in a system and found interesting result with a non-linear model.

With a close concern, Zhang et al., [197] try to determine whether using metadata
from the NVD, the time to the next vulnerability discovery could be predicted but
found negative result. Using the same source of information, Bozorgi et al., [40] try to
create models to determine whether a vulnerability is in fact exploitable based on the
field of CVE.

2.2.3 Vulnerability Analysis

To design VPMs, it is important to first understand vulnerabilities. In this regard, re-
searchers have conducted various studies to deepen their knowledge on vulnerabilities.

Bosu et al., [37] investigate whether code reviews that are led by humans can indeed
identify potential vulnerabilities. To do so, they analyse 267,046 code review from 10
major Open Source Software and found positive results. They also discover that in
agreement with common belief less experienced developers are 1.8 to 24 times more
likely to introduce a vulnerability. Another logical discovery is that the likelihood of
introducing a vulnerability increase with the number of lines that is modified. This can
be directly linked to the result of Perl et al., [150] which try to identify Vulnerability
Contributing commits. A less obvious result is that the risk to introduce a vulnerability
is higher in the case of a file modification than in a file creation, meaning that files are
unlikely to be vulnerable from the start.

Pianco et al., [151] analyse the change history of vulnerable function of software with
the goal to determine if some change metrics could be of use as indicators. The authors
investigate this on 17,000 function from Mozilla Firefox and the Linux Kernel and found
some correlation.

Ferreira et al., [58] research whether the configuration complexity has an impact on
the occurrence of vulnerability in a program. Configuration complexity represents the
specific configurations the program will handle. Typically in C program, it can be
linked to the presence of if def. After the analysis of the configuration complexity
of the Linux Kernel, the authors found that vulnerable function had indeed higher
variability than non-vulnerable ones.
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3
A Manual Analysis of Android

Vulnerabilities

To be of real use, VPMs require their users to understand vulnerabilities, their origins
and consequences. If the latter is often clearly described in vulnerability reports, the
former is not always as clear and might need additional crawling. Moreover, such
information is necessary to build a VPM. This chapter by presenting an analysis of the
origins of all Android Vulnerabilities reported between 2008-2014 introduces to the first
challenge of this dissertation, while providing an interesting insight on vulnerabilities
affecting the Android operating system.
This chapter is based on work that has been published in the following paper:

• Profiling android vulnerabilities (QRS’16)
M Jimenez, M Papadakis, TF Bissyandé, J Klein
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3.1 Introduction

As presented in Chapter 2, different solutions have been suggested to predict and
discover vulnerabilities, yet before even relying on such approaches, it is important for
practitioners to get accustomed with vulnerabilities. This was demonstrated by Baca
et al., [32] that shown that the experience of developers greatly impacts the benefits
of the use of static analysis tool and/or a prediction models. This is also important
for researchers, as it can inspire them or simply deepen their understanding. Yet,
studies on the nature and origins of vulnerabilities are fewer than ones on vulnerability
discovery. A major reason for this is the extensive manual work required to gather and
analyse data on vulnerabilities. This chapter presents such an analysis performed on
Android vulnerabilities focusing on the root causes of vulnerabilities.

Android is currently the most used operating system for hand-held devices such as
smartphones, and is trending in other embedded system products, such as TV sets and
Internet boxes. In the first quarter of 2018 alone, 329 million Android devices were
sold, which represents 85% of the market [83]. These sales also exceed, by far, the
number of personal computers that were sold in the entire year 2016 (269 million [84]).
A direct consequence of this widespread adoption is that a single vulnerability within
Android, or one of its embedded libraries, can impact a huge number of users.

Such vulnerabilities should thus be corrected as soon as possible. However, Android
suffers from a huge fragmentation of the actively used versions. Indeed, by the end
of 2017, 28% of the devices connecting to the Google Play Store are still running a
“Lollipop” Android Version that was released in 2014 and only 15% of the devices use
the latest version of Android released end of 2016. Thus, patching vulnerabilities that
are present in more than one version turns out to be a tremendous task.

To find those likely vulnerable parts, we first need to understand what is a vulnerability
in the current context. In other words, we need to provide an answer to the following
questions:

From what kind of defects are the vulnerabilities coming from? Are they hard to fix?
What are the kind and the role of the vulnerable components?

To answer these questions, we manually investigate the code changes that were made
to fix known Android vulnerabilities from 2008 to 2014. This investigation focus on
three properties of vulnerabilities: root cause, complexity of the vulnerable part and
location. The root cause helps to understand the vulnerability’s origin, whereas the
complexity suggests the easiness or difficulty of removing it, while the location gives
indications about the most vulnerable parts of the system under investigation. In the
remainder of the chapter, we refer to those root causes as issues.

To study likely true and exploitable Android vulnerabilities, we need a reliable ground
truth and hence chose to use information from the NVD. The experience in crawling
this data highlighted the difficulty to use the NVD for performing comprehensive and
large-scale study of vulnerabilities.
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Figure 3.1: The four layers of the Android operating system.

This chapter involves intensive manual work to collect missing/hidden information
on Android vulnerabilities recorded in the NVD. This information includes the often
missing links to the relevant patches, which are necessary to the creation of any VPM,
as well as some valuable information that is hidden in the description or in the natural
language, of the vulnerability.

Based on the complete dataset, A taxonomy of the issues that are reported in CVEs is
built. A characterization of the fixes made to correct the vulnerabilities is also made by
summarizing (1) their origin (2) the complexity of the code where the vulnerabilities
are found (3) the complexity of the fixes themselves and (4) the different actions that
were necessary to fix the vulnerabilities.

To sum up, the contributions of this chapter are:

• A collection of Android vulnerabilities present in the NVD enriched
with information mined outside of it is introduced. This collection
is available at :https://github.com/electricalwind/ReasearchData/tree/
master/AndroidVulnerabilities/Android

• Findings of an empirical study on Android vulnerabilities are presented.

• The difficulty of crawling the NVD are described.

3.2 Background on Android
The Android Operating System is composed of four layers, which are depicted by
Figure 3.1. The first layer is a modified Linux kernel. The layer on top of the Linux
kernel encompasses C/C++ Libraries, Java Core Libraries and the Dalvik Virtual
Machine (DVM), which has been renamed as Android Runtime (ART). The DVM
and the ART are used to run user applications and embedded applications written
in the Java programming language. Finally, the third layer contains built-in Android
applications while the last layer is for user applications.

Since Android is Open Source (available on Github[1] and on GoogleSource[2]), prac-
titioners and researchers can adapt and use it for their specific needs. In this study,
we focus on vulnerabilities related to the Android system, i.e., the second (libraries
and DVM) and third (built-in applications) layers (highlighted in gray on Figure 3.1).
The vulnerabilities affecting the two other layers, i.e., the kernel or the applications,
are not considered since these vulnerabilities are respectively reported as Linux or
application-specific.
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3.3 Methodology

This chapter’s analysis is based on all vulnerabilities related to Android reported be-
tween 2008 and 2014 in the NVDs (42). The analysis can be summarized by the
following steps (1) mining the NVD to find the actual reported issues and their corre-
sponding patches (2) classifying the vulnerabilities (3) Analysing the vulnerabilities.

The described process is designed to answer the three following Research Questions
(RQs):

RQ1. What kinds of issues cause vulnerabilities? Can we categorize them?

RQ2. In which components the Android vulnerabilities are located?

RQ3. How vulnerabilities are fixed?

3.3.1 Vulnerability & Issue Mining

The first step is to retrieve Android Vulnerabilities from the NVDs. To this end, we
manually mine the database to look for vulnerabilities related to Android. Unfortu-
nately and despite the fact that NVDs provides a lot of useful information, this is
not enough. In particular, information on the following three elements are lacking :
Vulnerable components, Bug reports, Patches. As a result, an exploration of all the
external resources provided via links within CVE is needed.

While crawling all the links present in our set of CVE, we found out that about 20% of
the links are dead and 72% in the case of links pointing to patches or bug reports. In
fact, this issue is not specific to Android as it turns out that only 30% of the external
links declare in CVE are still valid and even less when restricting to solely patch links.

This hinders the data mining process as it implies additional searches to find the new
location of the resource. This issue can only be solved through an extensive manual
search of the related repositories, i.e., browsing of the git commit history, looking for
keywords present in the vulnerability description. In the end, patches for 31 out of the
42 vulnerabilities were found.

3.3.2 Taxonomy of the Issues Related to Android Vulnerabil-
ities

Once all the sought patches and bug reports collected, the classification of vulnera-
bilities according to their origin can start. Since classifying a vulnerability requires a
deep understanding of it, we only consider vulnerabilities for which we are able to find
related patch(es).

The goal of this classification is to obtain a taxonomy of the issues related to Android
vulnerabilities. Many researches have been conducted to categorize bugs, e.g., [21, 19].
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However, these categories turn out to be quite impractical to our set of vulnerabilities
as they either A) don’t fit in a single category or B) are fitting in too many. To tackle
this problem, we use mind mapping as a way to extend existing bug taxonomies. Mind
mapping is a technique suggested by Vijayaraghavan et al., [69] that constructs a tax-
onomy by incrementally considering one issue after the other. This process allows the
taxonomy to evolve over time, i.e., to improve its accuracy with each newly considered
issue.

To correctly classify the considered issues, the following methodology is applied. First
a complete analysis the commits and/or patches along with their related source code
is made. Then bug and vulnerability reports and their available comments are inves-
tigated. Next, the information retrieved from the first two steps are crossed to try
answering the following question: What was the problem, what kind of mistake led to
the vulnerability and at which state of the project the issue emanates from. Finally,
the category that fits best for the issue at hand is selected. Note that when an issue
doesn’t fit in an existing category, a new category is created.

3.3.3 Analysis

After classifying all vulnerabilities, we proceed with the analysis of the components
they originate from and the changes that were needed to patch them.

To better understand the origin of the vulnerabilities, two aspects of the vulnerable
components are investigated (1) their purpose and (2) their complexity.

Purpose of the Component: This information indicates which part of the Android sys-
tem tends to have the most vulnerabilities. To this end, we design top level categories
of purposes and classify the vulnerable components, according to them.

Complexity Analysis of a Component: Shin et al., [169] in their study show that there
is a correlation between code complexity and the appearance of vulnerabilities. Thus,
we measure the MCC [119] of the functions that were changed to fix the vulnerability
and compare it with the complexity of the other functions located in the same file to
see if a similar pattern can be observed.

Once the origin of the vulnerability established, we investigate the complexity of the
vulnerability itself. First an analysis of the patches and a synthesization of their
contents is performed. Then the following metrics to measure the complexity of the
vulnerabilities are used:

1. Number of commits: Number of commits required to correct the vulnerability.

2. Number of modified files: Number of modified, deleted or created files.

3. Number of Changed Lines of Executed Code (CLoEC): Number of modified,
added or deleted lines of code. Empty lines and bracket lines are ignored and
commands spanning over multiple lines are measured as a single line. This metric
can also be referred as Code Churn in the literature with the difference that we
don’t take into account modification on commented lines.
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Figure 3.2: The issue taxonomy

Mind map of issues related to Android vulnerabilities.

4. Cyclomatic Complexity of Change (CyCC)[36] The CyCC metric measures the
number of linearly independent sequences of changed statements from entry to
exit in a changed program. It represents the least complex changes needed to
remove the studied defect [36]. It is computed the same way that the Cyclomatic
Complexity except that it uses the Change Sequence Graph (CSG [35]) instead of
the Control Flow graph. The CSG is a control flow graph that only contains basic
blocks that were changed. A Cycc superior to 2 indicates that the change was
complex as it involves the addition or modification of more than two independent
linearly path.

CLoEC metric represents a raw measure of the number of code changes. While, CyCC
quantifies the complexity of changes by considering only the independent code places
that the developer has to consider. Thus, CLoEC and CyCC are complementary
indicators of the difficulty of fixing a vulnerability.

3.4 Results

This section presents the results obtained while applying the methodology presented in
Section 3.3 on the dataset of Android vulnerabilities. First the causes of the vulnerabil-
ities and introduced a taxonomy (3.4.1) are identified. Then information regarding the
nature of the vulnerable components (3.4.2) are reported. Finally, in Section 3.4.3, the
findings related to the changes necessary to patch Android vulnerabilities are detailed.
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3.4. Results

3.4.1 RQ1: Categorizing the Causes of Vulnerabilities

The analysis revealed a total of 43 different issues. Those were processed according to
the methodology presented in Section 3.3.2 to build the mind map presented in Figure
3.2.

The suggested mind map is composed of three main nodes Design, Code and Test.
They refer to the moment of the phase of development the issue likely occurred. The
second layer of nodes corresponds to the cause of the issue. 8 types of nodes were
identified, i.e., Resource Management, Data, Semantic, Initialization Bug, Forget to
remove debug features, Flow, Unauthorized Access, and Insecure Protocol. The third
layer, which appears only in the Code part, enable a finer grained categorization of
the issues. This layer is composed of 9 nodes, i.e., Buffer overflow, Incorrect pointer
dereference, Stack consumption, Input not verified, Serialization issues, Unprotected
use of a function, Missing / Incorrect implementation of a feature, Object not rightly
created, and Wrong initialization of data.

Table 3.1 shows the frequency of the categorized issues extracted from the mind map.
Most of the issues are in fact originating from the coding part (about 70%), which is
not surprising as other studies on faults and failures, e.g., Hamill et al., [71], showed
that failures are heavily associated with coding faults. However, the number of issues
related to design is surprisingly high (about 28 %). This can be explained by the
number of issues related to permission handling. A deeper analysis shows that a great
number of issues are in fact a missing or incorrect implementation of a feature, which
occurs when developers misunderstand or misinterpret requirements.

The taxonomy allows to distinguish 13 kinds of issues that cause Android vulnerabili-
ties. Those categories can be helpful during a code review to determine what to look
for. Yet, this new taxonomy raises the question of what are the actual differences be-
tween the vulnerability origins and consequences ? In other words, do the introduced
categories differ from the vulnerability types as reported in the NVD, i.e., CWE. After
performing a comparison, only two of the suggested categories are overlapping with
the CWE: (1) Input validation (CWE category) and input not verified (taxonomy) (2)
Buffer errors (CWE category) and buffer overflow (taxonomy).

Except those categories, no overlaps have been observed. Yet, this overlapping is
understandable as in these cases the CWE categories of vulnerabilities are in fact
describing the origin of the vulnerabilities.

From those results, it is clear that the suggested issue taxonomy provides different
information than the CWE field of vulnerability reports.
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Table 3.1: Distribution of the issues in the taxonomy.

Origin Kind Number Total (%)

Design

Flow 4

12 (27.90%)Insecure protocol 1

Unauthorized access 7

Code

Resource Management

30 (69.77%)

Buffer overflow 4

Incorrect pointer dereference 1

Stack consumption 1

Data

Input not verified 7

Serialization issue 1

Semantic

Unprotected use of a function 3

Missing/incorrect implem. of a feature 11

Initialization

Object not rightly created 1

Wrong initialization of data 1

Test Forgot to remove debug feature 1 1 (2.32%)

3.4.2 RQ2: Vulnerable Components

Role of the vulnerable component After analysing all the vulnerabilities, 9 kinds
of top level components can be distinguished, Driver, Library, Messaging, Networking,
Access Control, Browsing, Cryptography, Dalvik and Debug. The result of this analy-
sis is presented in Figure 3.3. Hence, 9 vulnerabilities are originating from components
related to web browsing, while 7 from components in charge of access control, which is
directly linked to the numerous issues related to the handling of permission. Cryptog-
raphy related components turn out to be as well quite vulnerable with 6 vulnerabilities.
Interestingly those vulnerabilities are directly linked to a lack of understanding on how
cryptography works and how it should be implemented.

Complexity of the vulnerable components

In the second part of the component analysis, the granularity is reduced to the file
level. Hence, the cyclomatic complexity of all vulnerable functions and comparing it
to the average complexity of all the other functions that are present in the same files is
computed, for a total of 40 vulnerable functions from 3 programming languages, i.e.,
Java, C and C++. As it is not possible to compute the complexity for vulnerabilities
caused by errors within XML or RC files.

Figure 3.4a presents the results of this computation on a logarithmic scale. The hori-
zontal axis corresponds to the average complexity of the vulnerable file and the vertical
axis corresponds to the complexity of the vulnerable function. The gray line represents
the y = x function. Thus, points above this line indicates that the vulnerability was
located in a function that was more complex than the other present in the file.
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3.4. Results

Figure 3.3: Android vulnerable components.
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Figure 3.4: Complexity of the vulnerable components and of the fixes.

Almost all vulnerable function turns out to have a higher cyclomatic complexity than
the rest of the functions. In fact, only two cases are less complex. However, these rep-
resent functions that needed to be updated in combination with the one that actually
contain the fix and were indeed complex. This fact confirms that vulnerabilities tend
to appear in functions that have a higher complexity than the average.

3.4.3 RQ3: Fix Analysis

The last part of this study of Android vulnerability investigate the changes required
to fix a vulnerability. These are described in terms of change types and complexity.

Kind of Change Table 3.2 shows the type of changes that were required to fix
the vulnerabilities and their distribution. Among the patches that we were able to
retrieve, 60% of them consisted in the addition of one or more lines of codes, 23%
were modifications of existing codes and 17% were solely removing code.
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Table 3.2: Distribution of the code changes needed to fix vulnerabilities.

Type Kind Description Number Total

Add

Condition(s) If then else 19

36 (60.0%)

Authorization Permission in android manifest 2

Function + Use of it Creation of a new function 5

Class + Use of It Creation of a new class 2

Exception raise Try catch or throw 3

Define or initialization Variable 5

Remove

Condition(s) If then else 2

10 (16.7%)
Use to a function If the function was vulnerable 5

File Deprecated and vulnerable files 2

Authorization Permission in the Android manifest 1

Modify

Call to a method Changing arguments 8

14 (23.3%)
Condition Modifying expression 1

Function Rewrite of a function 4

Complete rewrite Rewrite of the all component 1

In fact, one third of those changes are additions of one or more conditions, meaning that
the developer’s mistake was mostly failing to adequately check something in the code.
Removing actions are frequently used to remove some “resources” that are not needed.
The modification changes are rather simple ones like a call to a method, changing the
arguments that are passed to it in order to avoid triggering a vulnerability. In only one
case the issue required a complete rewrite. This means that in most cases vulnerability
fixing doesn’t imply large and deep refactoring of the code and can be done within the
vulnerable function.

Complexity of the Changes If vulnerability fixes are usually simple, this doesn’t
mean that the fix actions are neither easy nor don’t impact the code complexity. Figure
3.4b’s boxplots presents the results of the 4 metrics introduced in 3.3.3 allowing us to
investigate the impact of fixes. Regarding commits, in almost all cases only one commit
was required to patch an Android vulnerability. On the side of file modification, on
average, it involved the modification of 2 different files and 17 lines of codes. As of
the CyCC metric, we found an average value of 4, which indicates that on average
four linearly independent paths had to be changed. This can be interpreted as very
complex according to the authors of the metric Böhme et al., [36]. Thus if Android
vulnerabilities can be solved at the function level, the efforts required to fix this function
remain quite complex.

3.5 Discussion
The study presented in this chapter can be summarized by the following findings.
Android vulnerabilities are always located among the most complex functions of the
system, which confirm the hypothesis of Shin et al., [169]. Their removing is complex
and requires changes on code parts located on (in average) 4 linearly independent paths
accounting for an average of 17 lines of code. In 50% of the cases, they are located in
the Browsing, Cryptographic and Access Control components.
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Moreover one out of four vulnerabilities (i.e., 25%) are due to a missing or an incorrect
implementation of a feature, while 60% of the effort needed for removing a vulnerability
is due to conditions adding.

3.6 Threats to Validity

A first threat to validity of this study is that required a lot of manual processing.
Thus, it is not possible to ensure that all the produced results are fully accurate. As
an example, a misinterpretation of the nature of a patch or a wrong categorization of
an issue remains possible. This is reduced by reproducing the different analysis three
times. Additionally, the data are made publicly available, thus, enabling replication
and independent validation of the results.

Another threat to the validity lies in the use of the CyCC metrics. This metric is used
as it has been used by the literature for the study of regression bugs [36]. However,
it might not be appropriate for describing vulnerability complexity. To reduce this
threat, it is combined with other metrics like CLoEC.

Finally, the biggest threat to validity is the fact that the only source of vulnerability
used is the NVD and is limited to the vulnerabilities reported before 2014. Even if the
set is consequent, its size remains small. It is not certain that the result would be the
same with vulnerabilities reported after this date.

3.7 Conclusion

This chapter presented a deep analysis of the issues, components and patches related
to Android vulnerabilities. Our study was performed on all Android vulnerabilities
reported in the CVE-NVD database up to 2014.

This study introduces the challenges faced by practitioners faced when investigating
vulnerabilities and that will be addressed in the next chapters. First of all, gathering
information on vulnerabilities is requiring intensive manual work, which is impractical
for any large-scale studies such as a vulnerability prediction model one. An automated
way of collecting them is thus necessary. Yet, the development of an automated tool
to gather vulnerability information might be considerably hindered by the problem
of broken links in the NVD, especially patch ones. In addition, the two functions
from Figure 3.4a which complexity were lower than the other are the perfect example
of noise in a dataset, i.e., functions that are linked to the vulnerable parts, but not
mandatorily vulnerable on their own, which can disturb results.
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4
Data7: A Vulnerability Fixes Collection

Framework

Studies on security vulnerabilities require the analysis, investigation and comprehen-
sion of real vulnerable code instances. However, as introduced in the previous chapter
collecting and experimenting with a sufficient number of such instances are challenging.
To cope with this issue and address the first challenge of this thesis, we introduced in
this chapter an extensible framework and dataset of real vulnerabilities, automatically
collected from software archives called Data7. This framework supports the collection
of information all reported vulnerabilities from 4 security critical open-source systems,
i.e., Linux Kernel, WireShark, OpenSSL, SystemD including fixes for 1,600 out of the
2,800 vulnerabilities. The framework also supports the collection of additional software
defects and is used as the basis of all subsequent studies.
This chapter is based on work that has been published in the following paper:

• Enabling the Continuous Analysis of Security Vulnerabilities with VulData7
(SCAM 18)
M Jimenez, Y Le Traon, M Papadakis
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Chapter 4. Data7: A Vulnerability Fixes Collection Framework

4.1 Introduction

In section 2.1.8, we observed that there is no standard dataset for studies on VPMs,
and more generally for the analysis of vulnerability. One of the reason lies in the fact
that most authors are not releasing their dataset along with their study to enable repli-
cation, hence forcing any newcomers in the area to build their own dataset. Still, some
publicly available datasets exist but they encompass their own issues. Perl et al., [150]
made their dataset available but this one is only containing suspected vulnerability
contributing commits and not actual vulnerability fixes which reduces the field of its
possible use. In addition, the link to this dataset present in the paper is not available
anymore. Walden et al., [184] released their dataset on PHP application which was
reused by Zhang et al., [199] but this dataset turns out to be relatively small. Alves
et al., [27] and Gkortzis et al., [70] both released vulnerability datasets but those are
processed datasets, i.e., they only contain the metrics of the vulnerable files, not the
actual vulnerable files, which hinder the use of new approaches. Moreover as most of
the dataset, these datasets once released are never updated anymore or at the price of
additional analysis. Hence, there is a need for an up-to-date, publicly available, large
dataset of vulnerabilities providing information on the vulnerabilities as well as the
patches that corrected them in their integrality.

In this chapter, we tackle the first challenge by introducing an extensible framework
and dataset of real vulnerabilities, automatically collected from software archives called
Data7 answering those 4 requirements.

Information on vulnerabilities: Chapter 3 highlighted the challenges faced by prac-
titioners when trying to gather such information, e.g., broken links. In this framework,
we gather all required information on vulnerabilities of a given project by crossing in-
formation available in the NVD and git history. In particular the problem of dead
patch link is tackled through the extraction of information on the patch directly from
the link, i.e., commit hash.

Large Dataset : To be useful, datasets require a large number of vulnerabilities. This
reduces the number of subjects that datasets can be built upon to those having a high
number of reported vulnerabilities. Additionally, as the use of few subjects threatens
the external validity of empirical studies [189], the framework requires to work on
more than one subjects. Ideally these subjects should share versioning technology and
vulnerabilities reporting systems, so the collection of information can be performed in
a similar fashion for all of them. With all of this in mind, we picked Linux Kernel,
WireShark, OpenSSL and SystemD as initial subject for Data7 as they all rely on
NVD and Git, but Data7 can be extended to any project using both. Mozilla Firefox
that has been used as the subject by most of the studies on VPMs was ineligible to
this last criterion as it still relies on SVN as VCS.

Updatable: Most datasets are never updated once released, yet new vulnerability
emerged on a daily basis and files that were once considered as non-vulnerable might
turn out to be in fact vulnerable. Hence, it is important to update datasets with the
latest information available. Thus, Data7 is capable of updating with little cost its
information, i.e., only new and modified vulnerabilities are investigated.
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Publicly Available: Data7 is available at https://github.com/electricalwind/

data7

In summary, this chapter introduces Data7 which:

• provides a set of real vulnerabilities for 4 security critical systems. The current
version includes 2,800 vulnerabilities and 1,600 patches.

• brings together related code, its commits and all related information, i.e., CVE
number, vulnerability description, CWE number (if applicable), time of creation,
time of last modification, CVSS severity score, bug ids (if existing), list of im-
pacted versions.

• is automated. Once configured, it extracts and links information from the related
software archives (through Git and NVD reports) to create a dataset that is
continuously updated with the latest information available.

• includes all reported and mentioned (in the software archives) vulnerabilities.
Special care was taken in order to make the dataset as complete as possible
(with respect to what can be mined) by searching both sources of information
(links on NVD and Git messages). As a result we managed to mine vulnerabilities
with assigned CVE that have not yet been recorded in NVD.

• is flexible and easily extensible. Our framework links NVD with Git and thus, it
involves little effort in configuring and importing data from additional projects.
It includes all available processed and “raw” information (commit hashes, commit
timestamps, commit messages and fixes - files in their states before and after fix),
in order to be useful and extensible for research purposes. It also retrieves the
complete related code bases to ease analysis.

• provides a friendly interface for retrieving the related information. It includes
utilities (such as XML exports, Git utilities, CWE Importer and others) for
common analysis tasks which eases the access and analysis of the set.

4.2 Information and Collecting Process

Data7 is a framework that brings together vulnerability reports, vulnerable files and
their patches for a given project. The framework is automated, it retrieves, stores and
updates the sought data with the latest available information. In short the main in-
formation that can be retrieved is the following: (1) CVE (2) Vulnerability description
(3) CWE (if applicable) (4) time of creation (5) time of last modification (6) CVSS
(7) Bug ids (if existing) (8) list of impacted versions (9) list of commits that fixed
the vulnerability. These contain the commit hash, timestamp and message, and the
commit fixes (files in their states before and after fix).
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Table 4.1: Dataset Statistics

Systems No Vulnerabilities No Fixed Vulnerabilities Average CVSS Unique Vulnerable Files

Linux Kernel 2,082 1,202 5.41 1,508

Wireshark 531 265 4.99 221

OpenSSL 187 126 5.34 164

SystemD 9 5 5.76 5

Total 2,809 1,598 5.38 1,898

A high-level view of the Data7 architecture and process can be described as follows:
For a given project P, Data7 clones in a local folder the git repository, connects to the
NVD database and downloads all the available XML feeds for vulnerabilities for a given
period of time (normally this should be in the range from 2002 to the current year).
Then, Data7 parses the XML feeds and retrieves all vulnerabilities reported for the
specified period of time. For each vulnerability, it retrieves and saves all declared links
(links mentioning bug reports or direct links to fixing commits). Then, Data7 follows
these links and retrieves the related commit information (for each vulnerability that
had a link to a fixing commit). To account for missing links, the framework searches
the version history of the project to identify (in the related commit messages) for a
CVE Identifier or a bug id that was mentioned in the vulnerability report. Based on
this information Data7 retrieves vulnerable and fixed versions.

To support continuous analysis, the framework can be automatically updated. Thus,
it checks NVD for the latest information and updates its data. In case new data are
there, Data7 will pull vulnerabilities reported for P and create a new entry if there
is a new vulnerability or update as necessary. In a nutshell, for each vulnerability
entry, the framework checks for new links or commit fixes and/or bug id. It then pulls
the repository, retrieves the new (vulnerable) commits, checks for bug ids and CVE
Identifiers and updates the dataset.

4.3 Subjects

At the time of writing Data7 contains data for 4 major security critical projects. While
the framework is completely automated, we restrict the analysis to these projects
because we are interested in collecting a large number of instances (in a per project
basis) and the tool is working only with Git. Thus, we mined C programs, which tend
to have more reported vulnerabilities. Nevertheless, the purpose of Data7 is to provide
a framework to support the collection and mining of vulnerabilities.

We collected data for the following four projects:

• Linux kernel: started in 1991 as a hobby by Linus Torvalds. The Linux kernel
is now shipped in billions of devices (embedded in all Android devices). It is
the biggest OSS with more than 19.5 million lines of code and more than 14,000
contributing developers.
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Table 4.2: Top-10 most frequent vulnerabilities

Each entry represents a pair of the form CWE id (frequency).

Rank Linux Wireshark OpenSSL SystemD

1 264 (318) 20 (136) 310 (32) 20 (3)

2 200 (219) 399 (108) 399 (28) 264 (2)

3 399 (212) 119 (98) 116 (17) 362 (2)

4 119 (204) 189 (51) 200 (15) 787 (1)

5 20 (161) 400 (14) 20 (12) 119 (1)

6 189 (106) 74 (9) 189 (11) -

7 362 (89) 476 (8) 362 (5) -

8 476 (45) 134 (5) -

9 284 (45) 200 (4) - -

10 416 (28) - - -

Table 4.3: Most frequent CWE definitions

CWE id Description

264 Permissions, Privileges, and Access Controls

200 Information Exposure

399 Resource Management Errors

119 Improper Restriction of Operations within the Bounds of a Memory Buffer

20 Improper Input Validation

189 Numeric Errors

400 Uncontrolled Resource Consumption (’Resource Exhaustion’)

310 Cryptographic Issues

116 Improper Encoding or Escaping of Output

362 Concurrent Execution with Shared Resource and Improper Synchronization
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While these numbers are important, they are not the main reason for choosing the
Linux kernel as a candidate for our study. As mentioned earlier, the Linux kernel
has to deal with many security aspects, it is the software with the second highest
number of reported vulnerabilities (according to CVE). Another main reason
behind this choice is the fact that the community behind the Linux kernel is well
organized. This makes it relatively easy to get relevant and reliable information
on vulnerabilities. A last criterion worth mentioning is the stability of the version
control system, which is used in our study to gather the vulnerable files. In the
past few years, many OSS adopted git as version control system, making links to
a previous version control system as reported in the vulnerability reports invalid.
As the Linux kernel community created git in 2005, the Linux kernel was the first
to adopt it. This gives us access to over ten years of history to study. According
to our data, the project has 2082 reported vulnerabilities.

• Wireshark: is packet analyser enabling the analysis of network traffic, protocols
and interface controllers. It is mainly used for troubleshooting of related network
issues and to support development. It is available on all operating systems and is
open source. The project firstly named ethereal was renamed following a fork as
Wireshark in 2006. Since then 531 vulnerabilities were reported for the project.

• OpenSSL: is a widely used library that provides implementations of the SSL
and TLS protocols (used extensively in communications). The project code is not
that big (it contains approximately 650k lines of codes) but due to its criticality
[16] it is often subject to attacks. The project started in 1998 and migrated to
Git in 2013. The migration was successful and no significant loss of information
occurred making possible to access all the versioning information directly from
the git history. Currently, the project involves 187 vulnerabilities.

• SystemD: is the service manager for the Linux operating system. As such, its
main goal is to unify the services and configurations of the Linux systems. It is
used in the Data7 tool as an example project. So far, 5 vulnerabilities have been
reported for this system.

Overall, the descriptive statistics of our data are shown in Table 4.1. The table records
details about the number of vulnerabilities (column “No Vulnerabilities”), number of
vulnerabilities with available patches (column “No Fixed Vulnerabilities’), the average
severity score of the collected vulnerabilities (column “Average CVSS’), the average
score of the collected vulnerabilities with patches (column “Average CVSS Fixed”) and
the number of unique vulnerable files involved (column “Unique Vulnerable Files”).

In total our data contain 2,809 vulnerabilities and for 1,598 of them we retrieved a
patch. These account for a collection of 1,898 vulnerable files with an average severity
of 5.34.

Table 4.2 records the 10 most frequent types of vulnerabilities (according to CWE
categorization) per project. Each entry on this table represents a pair of the form
vulnerability type (CWE id) and the frequency it appeared in the project. The list
(description) of the vulnerability types (CWE id) is given in Table 4.3.
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4.4. Accessing the Generated Dataset

Figure 4.1: VulData7 API

4.4 Accessing the Generated Dataset

The generated dataset can be access in two ways, either through a JAVA API, or
through a generated XML file.

4.4.1 Java API

Upon the creation (or the update) of the dataset, the user will receive a Data7 Java
object. This object contains information about the project, some required data that
are used by the tool to optimize its update action and the dataset in the form of a
VulnerabilitySet Object.

Among the data used by the tool to optimize its update, two can be used for other
purposes (i) a mapping of bug ids to commit hashes and (ii) a mapping of all CVE iden-
tifiers that were found in commit messages and are not present in the CVE database.
While the first one (i) can be used to create a Bug Dataset (see Section 7.7 for details),
the second one (ii) offers the possibility to observe vulnerable fixes before the release of
the vulnerability report. As an example, in its latest run, our tool found that the com-
mit [5] was made to address the CVE-2018-10840 which is not yet public. A glimpse at
the commit message informed us that there was an issue with ext4 extended attributes.
This list can thus be seen as a way to retrieve data related to all new vulnerabilities.

The VulnerabilitySet object is the dataset itself and is composed of the following
elements: a list of every vulnerability ever reported for the chosen project (list of Vul-
nerability objects) and the time of the last update. A Vulnerability object contains all
of the information mentioned in Section 4.2, which in essence includes the information
that was found in the vulnerability reports. The Vulnerability object also includes a
list of all the commits (Commit object) that were reported as fixing commits. A Com-
mit object includes the hash, the message, the timestamp of the commit and a list of
files that were modified by it (FileFix Object). A FileFix object records information on
the time of last modification before the given commit and its corresponding previous
hash as well as the file in its state before and after commit (FileInterest object). A
FileInterest object contains the text of the file and its fullPath in the project.

All information related to the fields of each object that is accessible through the API
is presented (as a UML diagram) in Figure 4.1.
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4.4.2 XML Exporter

Once the dataset is created, the user is offered the possibility to export the data to an
XML file. The generated XML file contains only vulnerabilities for which fixes were
found. The file also includes all relevant information from the NVD database.

The schema of the generated file is presented in Listing 1.

Listing 1 XML schema

<?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>

<data7 last_updated="YYYY -MM -DD HH:mm:ss CEST"

project="project name">

<cve id="CVE -YYYY -XXXXXX" last_modified="timestamp">

<cwe></cwe>

<score></score>

<description ></description >

<affectedVersions >

<version ></version >

</affectedVersions >

<bugs/>

<patches >

<commit hash="aaaaaaa" timestamp="xxxxxxx">

<message ></message >

<files >

<file>

<before hash="aaaaaaaa" path="src/file.c">

Content of the file

</before >

<after path="src/file.c">

Content of the file

</after >

</file>

</files >

</commit >

</patches >

</cve>

</data7>

4.5 Using the Framework

4.5.1 Installation, Generation and Export

The tool can be downloaded from GitHub and the latest version can be found at
https://github.com/electricalwind/data7/releases. Data7 requires maven and
Java (version 8 or higher). To proceed with the installation, the user should type mvn
install in a terminal at the location of the project (where it was downloaded). The
project can then be used from any maven project by adding the dependency presented
in Listing 2.
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Succeeding with the compilation, the user needs to define a path (to the place where
the binary will be saved) and create an instance of an importer. These steps are quite
simple as demonstrated on the following Java code (Listing 3).

As shown in Listing 4, to export to XML format, an instance of an exporter must be
created before calling the XML export function (Listing 4).

4.5.2 Integrating other tool or database

The Data7 framework offers the possibility to export the data to another tool through
listeners (which should be provided by the user). Indeed, when creating or updating a
dataset, the user has the possibility to declare Listeners. These listeners should use the
DatasetUpdateListener interface. Thus, a potential listener could use the notifications
to populate an SQL database.

Listing 2 Dependency to add in pom.xml

<dependency >

<groupId >lu.jimenez.research </groupId >

<artifactId >data7 </ artifactId >

<version >1.3 </ version >

</dependency >

Listing 3 Generating a dataset

ResourcesPath path = new ResourcesPath("Path To Save Tour Data

into");

Importer importer = new Importer(path);

Data7 data7 = importer.updateOrCreateDatasetFor

(CProjects.LINUX_KERNEL);

Listing 4 Exporting to xml

Exporter exporter = new Exporter(path);

exporter.exportDatasetToXML(data7);

4.6 Additional Tooling

To ease analysis, Data7 includes three custom-made libraries. These include:

Git Utils: This library is coded in Kotlin and provides useful functions related to
the mining of Git repositories. In short, the library provides methods related to the
retrieval of files from specific commits, the retrieval of commits modifying a file, git-
Blame, etc....
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Misc Utils: This library has been coded in Kotlin and contains useful functions for
common tasks such as downloading a file, unzipping a file, normalizing a (directory)
path and getting the recursive list of directories.

CWE Importer: This library collects and reports data related to the CWE (types
of vulnerabilities). The library can be invoked by calling Importer.getListOfCWE();.
This call downloads (from NVD) the descriptions of the CWE, which are parsed and
stored. Data related to the hierarchy of CWE types are also collected.

Further details about the utilities supported by the Data7 framework can be found in
the website of the tool.

4.7 Limitations

Data7 is an ongoing project aiming at the automatic mining, analysis and evaluation
of software defects and security vulnerabilities. As such, the current version has some
potential limitations, which are discussed in this section.

The dataset is automatically constructed by mining software archives. This results
in some noise in our data. We have no guarantee that what we retrieve is in fact
vulnerability patches or that the vulnerabilities have been really fixed. Additionally,
no attempt is made to prune or minimize the commits of the retrieved versions to the
most likely causes. Another limitation regards the retrieved data, which may include
some duplicated instances (due to commits residing in different branches). This fact
depending on the performed analysis may be or may not be an important issue.

Process tackling these limitations are in fact introduced in the chapter presenting the
VPM framework built upon this framework (8). Nevertheless, data provides by the
Data7 framework is a good starting point to any Vulnerability analysis study.

4.8 Conclusion

In this chapter, we introduced Data7, a framework and dataset supporting the contin-
uous collection and analysis of security vulnerabilities. Currently, the dataset involves
2,800 reported vulnerabilities, with 1,600 fixes, for 4 large security critical systems. A
considerable effort was made in making this toolset automated, extensible and easy
to use, with the goal of providing the community with the means to support research
and analysis at a large scale. As the framework was built on top of Git and NVD
it is simple to include additional open source projects. The addition of new projects
requires a simple configuration (setting the appropriate links and paths), if the new
projects use Git (with reported vulnerabilities on NVD) and a couple of extensions for
other software archives. The dataset will be used as the basis of all following chapters,
starting by the next one that proposed an analysis of the vulnerabilities of OpenSSL
and Linux Kernel made on previous version of Data7.

Data7 is provided under the Apache Licence (Version 2.0) and is publicly available on
GitHub: https://github.com/electricalwind/data7
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5
An Automated Analysis of OpenSSL and

Linux Vulnerabilities

In this chapter, a possible use of the data collected by the Data7 framework is presented.
One of the intended use of the framework is indeed to better understand vulnerabili-
ties, hence we investigate the characteristics of vulnerabilities from 2 of the framework
subjects, i.e., the Linux Kernel and OpenSSL. In particular, we seek to analyse and
build a profile for vulnerable code, which can ultimately help researchers in building au-
tomated approaches like VPM. Thus, in a similar but automated fashion as chapter 3,
we examine the location, severity and category of vulnerable code along with its relation
with traditional software metrics. Overall, the analysis of more than 2,200 vulnerable
files accounting for 863 vulnerabilities is performed and reported.
This chapter is based on work that has been published in the following paper:

• An Empirical Analysis of Vulnerabilities in OpenSSL and the Linux Ker-
nel(APSEC 16)
M Jimenez, M Papadakis, Y Le Traon
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5.1 Introduction

Vulnerabilities remain nowadays a problematic issue that most developers fail to com-
pletely grasp. The difficulty lies in the fact that seeking for vulnerabilities requires an
attacker’s mindset [122] that can foresee and exploit weaknesses.

In Chapter 3 an analysis of the vulnerabilities of Android was presented and provided
interesting insight on them. However, due to the considerable manual effort, the scale
of the analysis remained relatively small. Chapter 4 introduced a dataset enabling to
perform larger scale vulnerability analysis study. Thus, in the chapter, we exploit this
dataset to broaden the understanding of vulnerabilities by performing an analysis of
all vulnerabilities for which fixes exist from the 2 most security critical software of the
set, i.e., Linux Kernel and OpenSSL.

In this context, we investigate the metric profile of vulnerabilities according to their
types, i.e., CWE focusing on 4 properties: i) location, ii) severity, iii) code metric pro-
file and iv) impact on this profile when the vulnerability is fixed. Overall, this study
is based on data gathered by the data7 framework as of June 2016 and involves more
than 2,200 vulnerable files accounting for 862 distinct vulnerabilities. In total 35 soft-
ware metrics are computed and reported building the profiles. These profiles are then
linked with the location, type and severity, i.e., CVSS of the studied vulnerabilities.

After the analysis, it turns out that 20 different CWE types are used for Linux and
OpenSSL vulnerabilities. Among those types, 9 are the most prevalent ones while only
3 and 2 are the most severe ones in the OpenSSL and Linux kernel, respectively. In
addition, most of the vulnerabilities are located in 2 and 4 directories for the OpenSSL
and Linux projects, respectively. Finally, the most interesting finding is that vul-
nerability types profiles differ depending on the studied project. This indicates that
the conception of a generic VPM approach operating in a cross project setting would
be rather hard, which is confirmed by several studies [161, 127]. In particular, our
results suggest that future research should focus on building a “personalised” vulnera-
bility prediction model for every type of vulnerability or by targeting the most critical
categories.

Overall, the contributions of this chapter are the following:

• It presents the results of a study on more than 2,200 vulnerable files, which
account for 862 different vulnerability reports from two securities critical systems,
the Linux kernel and OpenSSL.

• It constructs a metric profile for every major type of vulnerabilities for both
considered systems. This profile includes the location of the vulnerability, its
severity, its code metrics and its impact when fixing the vulnerable code.

• It shows that metric profiles differ among the different types of vulnerabilities
and projects.

• It introduces a new metric based on Graph Edit Distance (GED) to compute the
impact of a fix the code.
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5.2 Research Questions

Due to their importance, vulnerabilities are a popular research subject. The commu-
nity has organized its efforts by creating a set of software weaknesses (namely CWE)
and a scoring system for severity (namely CVSS), based on exploitability and impact
metrics. An interesting starting point for this analysis is to identify the prevalence of
the vulnerabilities according to their types and severity. Thus, we ask:

RQ1. Which are the types of vulnerabilities that are most prevalent in the
Linux kernel and OpenSSL? Can we link categories with severity?

The answer to this question will provide better insight on data present in the dataset
and reveals the types were vulnerabilities are more prevalent. It also reveals the cate-
gories with the most severe vulnerabilities.

The next step of regards the vulnerability location, i.e., which part of the software
system a vulnerability is originated from. Together with the categorization, this infor-
mation will provide useful insights regarding the weaknesses of the different sections
of the studied projects.

RQ2. Is the location of the vulnerable files linked to the vulnerability types
and/or their severity?

After studying the vulnerabilities themselves, the next step is to analyse the vulner-
able files, i.e., files that needed to be modified to fix the vulnerability. As shown in
chapter 2 this level of granularity for analysis is the most commonly used for VPM.
Thus, the result of this analysis could help by assessing the prediction power of some
characteristics of vulnerable files. This leads to the following question:

RQ3. What are the characteristics of vulnerable files per considered type?

Another interesting point to consider that was investigated in chapter 3 is the extent to
which a vulnerability fix impacts a file. For example, are those fixes complex or simple?
Can we observe different patterns when fixing same specific types of vulnerabilities?
All these concerns guide us to our next research question:

RQ4. What is the impact of fixing a vulnerability on the metric profile we
use?

An analysis of the impact could help to flag some commits as vulnerability fixes, as
well as provide some insights on the vulnerability fixes.

61



Chapter 5. An Automated Analysis of OpenSSL and Linux Vulnerabilities

Table 5.1: Vulnerability Dataset Statistics

Linux kernel OpenSSL
Num of Vulnerabilities CVE 768 95
Num of Commits 899 382
Num of vulnerability types (CWE) 20 11
Vulnerable Files/ Unique 1615/951 619/102

5.3 Methodology

5.3.1 Dataset

This study uses all the fixes retrieved by the data7 framework as of June 2016. Table 5.1
presents the statistics of this dataset. Overall, Data7 managed to collect fixes for 52%
of the CVE from the Linux kernel, and 59% from OpenSSL. The table records the
number of commits, the number of different CWE and the number of vulnerable files
that were retrieved. Note that a vulnerability can be fixed by more than one commit
and a file can be vulnerable several times.

5.3.2 Characterization of Vulnerable Files and Fixes

To build the profile, 35 metrics are considered. Those metrics are similar to the one
suggested by Shin et al., [167] to build their VPM and are categorized as follows:

Basic Metrics: lines of code, blank lines, commenting lines, comment density, prepro-
cessor lines, number of variable, number of declared functions. These metrics provide
information regarding the profile of the vulnerable files.

Code Metrics: all variants of cyclomatic complexity (strict, modified and stan-
dard), essential complexity, maximum nesting, fan in and fan out. Note that these
are function-level metrics and we are working at the file level so we computed for each
file the metrics on all the function and kept the maximum, average and sum values.
These metrics characterize the structure of the code and their definition can be found
at [17].

Code churn: number of changes and number of lines added, deleted, modified in the
history of the file.

Developer history: number of developers currently working on the file (git blame),
number of developers that have worked on the file.

These metrics are computed through an especially developed software named FileMet-
ric presented in Section 5.6.

To measure the impact of a vulnerability fix, the delta of all the previously suggested
metrics between the vulnerable file and the fixed one is measured. This provides
information related to the nature of the patch that fixes the vulnerability. Yet, it does
not give a general overview on the impact of the change on the code. In view of this,
we introduce a new metric detailed in the following subsection.
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Table 5.2: CWE appearing in this chapter

CWE Definition
20 Improper Input Validation

119
Improper Restriction of Operations
within the Bounds of a Memory Buffer

189 Numeric Errors
200 Information Exposure
264 Permissions, Privileges, and Access Controls
310 Cryptographic Issues

362
Concurrent Execution using Shared Resource
with Improper Synchronization (’Race Condition’)

399 Resource Management Errors
0 Vulnerabilities without a CWE Number

5.3.3 GED

Measuring the impact of a vulnerability fix is not an easy task. Making a ‘diff’ on the
fixed and vulnerable files, which is a common practice, only reveals changes at the line
level and does not consider the control flow. To measure the impact on the program
flow, we compute the control flow graph (CFG) of the related functions before and
after the modifications. Then, we compute a GED between the two graphs. Graph
edit distance was first formalized by Sanfeliu et al., [158] and is used to measure the
similarity between two graphs. A survey on its possible use has been conducted by
Gao et al., [64]. The main idea here is to evaluate the minimum edit “cost” of going
from the vulnerable CFG to the fixed CFG, by attributing different costs for an edge
or a vertex of the graph replacement, deletion or insertion. For our study, we chose
to attribute a value of 2 for replacement, 1 for insertion, 1 for deletion. This measure
will indicate to what extent the patch modified the control flow of the function. As
this measure is also a function level metric, we compute the GED for all functions of
a file and sum them up after. The GED of an unmodified function being 0.

5.3.4 Experimental Process

Once all vulnerable files are collected by the Data7 framework, we compute the metrics
both in the state before and after the vulnerability fixes. We then compute all deltas
and the graph edit distances. Once in possession of all the metrics, the results are
analysed by grouping the vulnerable files according to their CWE types.
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Figure 5.1: Severity (CVSS score) per type of vulnerability (CWE)

n indicates the number of vulnerable files in the dataset for this category.
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Figure 5.2: Maximum complexity of Linux Kernel vulnerable files
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Figure 5.3: Metrics of Vulnerable Files for the Linux Kernel
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Table 5.3: Location of the vulnerable files in OpenSSL

Directory Number of Vulnerable Files CVSS Score
most represented CWE

(number of vulnerable files)
apps 9 6.77 CWE-20 /CWE-399 (4)
crypto 286 5.82 CWE-310 (90)
engines 9 6.67 CWE-399 (6)
ssl 314 5.52 CWE-310 (90)

5.4 Results

5.4.1 RQ.1: Types of Vulnerabilities and Severity

When analysing the data, it turns out that specific types of vulnerabilities are rather
scarce. As the goal of this analysis is to identify trends, we filter them out and focus
only on the most common ones. Thus, we set a threshold of 50 vulnerabilities for
the Linux Kernel and 30 for OpenSSL. This leave us with 9 types of vulnerabilities
reported in Table 5.2 that are the most prevalent in the studied systems.

After identifying the vulnerability types, the focus is brought upon severity. Figure 5.1
presents the severity per type, ordered (from top to bottom) by the number of vul-
nerable files present in each category. Quite logically, the most represented categories
(order) of one system are not the ones of the other. This is explained by the functional-
ity differences of the studied systems. With respect to CVSS score the most consistent
category over the two software systems is the “Improper Restrictions Of operations
within the bounds of a memory buffer” (CWE-119) which reach a high average severity
of 7 for both systems.

Overall, the results show that out of the 20 types of vulnerabilities, 9 are prevalent
and among them the most severe ones are the CWE-200 and CWE-119, for the Linux
Kernel and CWE-119, CWE-399 and CWE-362, for OpenSSL.

5.4.2 RQ.2: Location of the Vulnerabilities

Table 5.3 and 5.4 present the results of the investigation on the whereabouts of vul-
nerable files. It is important to note that only the main directories appear here, i.e.,
depth of 1. This choice was made in order to maintain consistency between OpenSSL
and Linux due as OpenSSL file structure has fewer branches. An interesting result is
that OpenSSL vulnerabilities are either emanating from the crypto directory or the
ssl one. This is linked to the fact that the most represented category is related to the
“Cryptographic” issues (Figure 5.1b). Interestingly, the most severe vulnerabilities are
located on the “apps” directory, but it involves a much lower number of vulnerabili-
ties. Overall, among the two most vulnerable directories (crypto and SSL), those in
‘crypto” directory are more severe.
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Table 5.4: Location of the Vulnerable Files in the Linux Kernel

Directory Number of Vulnerable Files CVSS Score
most represented CWE

(number of vulnerable files)
arch 241 4.46 CWE-264 (120)
crypto 81 2.35 CWE-264 (66)
drivers 239 4.95 CWE-119 (55)
fs 339 5.60 CWE-200 (95)
kernel 117 5.92 CWE-200 (49)
mm 71 5.83 CWE-264 (22)
net 423 5.26 CWE-200 (76)
security 38 5.85 CWE-119 (12)
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Figure 5.4: Maximum complexity of OpenSSL vulnerable files

Regarding the Linux kernel, the directory with the most vulnerable files is the “net”
directory, which is in charge of the network functionalities and has half of its vulnerabil-
ities categorized as “Information Exposure”. Interestingly, the problem of permission
and privileges seems to occur mostly in the “arch” and “crypto” directories, whereas
buffer errors are mostly present in the “drivers” and “security” directories. Looking at
the severity, the “kernel” directory seems to be the more problematic followed closely
by the “mm” responsible for the memory management one.

Overall, the results suggest that the analysis of the vulnerability history of a project
can provide interesting insight on the specific problem of a given part of software.

5.4.3 RQ.3: Characteristics of Vulnerable Files

Only the 8 software metrics possessing the strongest discrimination power are presented
in this section to improve readability.

Linux Kernel Figures 5.2 and 5.3 present the results related to the 8 selected met-
rics for the Linux Kernel. We observe that vulnerable files related to “Permissions,
Privileges, and Access Control” (CWE-264) contain less complex functions than any
other type of vulnerabilities. They also have fewer lines of code, lines added, variables
declared and a smaller group of developers working on it. This indicates that files
dealing with permission rights do not require complex algorithms and are less likely to
be modified once been written.
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Figure 5.6: Impact of Fixes for Linux kernel

Vulnerable files related to “Numeric Errors” (CWE-189) appear in the most complex
functions (according to “Cyclomatic Complexity”, “Essential Complexity” and “Fan
In”). The same files are also having the highest number of lines of codes and declared
variables. This may suggest that numeric error, i.e., improper calculation or conversion
of numbers, are more likely to be found in complex functions than in simple ones.

High “Fan Out” values, i.e., the number of called functions plus global variables, and
high number of developers result in “Race Conditions” problems. This indicates that
code parts related to concurrency also has high “Fan Out”, which in term requires
special attention. These files are also important and seem to have a central interest in
the project as there is also a high number of developers working on them.

We also observe that vulnerable files without a category (CWE-0) have average values
for all metrics, which may suggest that these vulnerabilities are indeed a mixture of
categories waiting to be categorized.

OpenSSL Figures 5.4 and 5.5 present the results for OpenSSL. A quick comparison
with the values obtained from the Linux Kernel indicates that there are differences
between the maximum cyclomatic and essential complexity while interestingly lines of
code remain in the same range of values.

The category of vulnerable files with the higher score in most metrics are those that
are uncategorized vulnerabilities (CWE-0) which might indicate that in the case of
OpenSSL uncategorized vulnerabilities are of another category than the existing ones.

Regarding “Race Conditions” (CWE-362) vulnerable files, we observe that they occur
when many developers are involved (like in the Linux kernel). While in the case of
“Cryptographic Issues” (CWE-310) which is the most represented type of vulnerabil-
ities in OpenSSL, we observe a low maximum complexity compared to other types of
vulnerabilities, except for “Fan Out” result.
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Figure 5.7: Impact of Fixes for OpenSSL

5.4.4 RQ.4: Impact of Vulnerability Fixes

Linux Kernel Figure 5.6 presents the results for 4 of the metrics. Regarding the
complexity, the impact of a fix is similar for most of vulnerabilities except for “In-
formation Exposure”, which reduces the complexity. This result is surprising, as one
could expect an increase of complexity from additional checks. Looking at graph edit
distance metrics, fixes for CWE-264 are the ones that are less impacted whereas the
fixes for “ Numeric Errors” are the ones with the greatest impact. This was expected
as those vulnerabilities were the ones with the higher complexity observed for most
metrics.

OpenSSL Figure 5.7 shows the OpenSSL results. A first observation is that there are
much larger variations from one category to another than in the case of the Linux ker-
nel. Fixes of CWE-119 files seem to have a larger impact on the cylomatic complexity
increasing it by a value of two, on average, and the highest delta in lines of codes. In
the “Fan In”, i.e., the number of function calls plus global variable reads, the highest
variation is observed for CWE-362 fixes. Regarding graph edit distance, the fixes with
the most impact on the CFG are the ones from “Information Exposure” (CWE-200)
files followed by “Races Conditions” CWE-362. Interestingly, these two types are also
among the top ones of the Linux kernel for this metric.

5.5 Threats to Validity

Regarding threats to construct validity, the first one is that the categorization of vul-
nerabilities might be inconsistent, since this is a manual process performed by different
people. It is likely that different points of view on which category a vulnerability be-
longs to might exist. In addition the hierarchy of the category might be problematic
as well. However, given the well-organized community behind these projects and the
high attention they received, this concern should be limited to a small percentage of
the vulnerabilities.

In this study, a vulnerable file is a file that had to be modified to fix a vulnerability.
Thus, all the files from a fixing commit were added in the dataset. Yet, some commits
might include fixes for some other things than the said vulnerability, hence adding
noise to our dataset. As this is against common practices, it should not impact the
results too greatly.
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A third concern is the fact that data taken from the Data7 framework are automatically
gathered and not curated. Hence if a vulnerability has two identical fixing commit due
to branching, we might end up with duplicated data. After analysis, this problem only
occurred a couple of times and can be solved by using some heuristics that will be
presented in 8.

Regarding internal validity, potential bugs in the implementation may also influence
the results by providing incorrect measures. To reduce this threat, the implementation
was carefully tested and verified. Moreover, as metrics for all files are computed the
same way, this should not have much influence on particular reported profiles as similar
variations, in the measurements, should be observed with other tools.

Finally, regarding external validity, this study is limited to two open source software
systems written in C. Thus, the results might not be generalizable to systems written
in other languages. This is partly indicated by the results which show that different
profiles exist, between the two projects, for the same types. However, these two projects
are typical examples of safety-critical applications.

5.6 Additional Tooling

To perform this study a specific library named FileMetrics was developed. The File-
Metrics library provides utilities to computing common metrics of a C file from Java
programs. The library allows to compute all metrics presented in this study and more
generally those from the study from Shin et al., [167]. There are several reasons for the
creation of this library. First, there is no other existing library to compute this metric
in Java. Second, it is not possible to rely on the tool use by previous studies such as
the ones from Shin et al., [169, 167, 171], i.e., the Understand tool, as it requires the
full project and we are only in possession of the commit. In addition, this tool is pro-
prietary and requires heavy tooling to run which prevents its good integration. Still,
all metrics from the library that are common with the Understand tool are computed
according to the definition found in the Understand tool to obtain similar result.

To perform such analysis on C files, the first step is to retrieve the AST from the file,
we achieve this by using the Joern tool developed by Yamaguchi et al., [192]. Then
the metrics can be computed and in case Control Flow Graph (CFG) is required we
use the corresponding utility from Joern.

The library is written in Kotlin and take the file, i.e., its content as String, as an input.

Listing 5 Using File Metrics in Kotlin

val cm = CodeMetrics(fileContent)

cm.cyclomaticComplexity ()

Listing 5 present how to use the library. Once the constructor the following metrics
can be computed: Blank Lines, LoC, Preprocessor Lines, Lines of comments, Com-
ment/LOC ratio, Number of Function, Number of Variable declaration, Cyclomatic
Complexity of all Function (Standard, Strict, Modified), Essential Complexity of all
Function, Fan in/out.
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The library can also be used to retrieve information in the file at different granularity.
For example, at the function level, the library can return the list of parameters of the
function, calls, assignment and declarations while at the file level, it can return the list
of function name and global variable.

Regarding the computation of GED which is important in this study, the library inte-
grates the code of the Hungarian Algorithm by Hakon Drolsum Rokenes available on
Github [12] and offer to compute it with and without the Levenshtein distance.

FileMetrics is available at https://github.com/electricalwind/FilesMetrics.

5.7 Conclusion

In this chapter, we analysed the characteristics of the vulnerabilities from Linux kernel
and OpenSSL for which the Data7 framework was able to retrieve fix. We found that
the profile of vulnerabilities varies depending on their type. This suggests that VPM
could be tuned to target specific types of vulnerabilities instead of considering just
vulnerability. Yet this might be complicated due to the needle effect. Indeed breaking
the already small group of vulnerability models can train on to even smaller subgroup
would considerably impact the performance.

Overall, the analysis of the 2,200 vulnerable files, related with 862 vulnerabilities reveal
that 20 types of vulnerabilities are used for those projects. 9 of them are the most
prevalent ones and only few are really critical (3 for OpenSSL and 2 for the Linux
kernel). These results suggest that building specialized models targeting these critical
types of vulnerabilities would be of interest. We investigate this specific case in Chapter
9.

Another important finding is that the profiles are system-specific, which means that it
is hard to draw conclusions on vulnerability types since vulnerabilities have different
profiles in the two studied systems. This suggests that the use of prediction models
that are trained on one project may fail on another and hence the creation of cross-
project vulnerability models, as attempted by existing approaches [167, 161, 127], with
reasonable performance seems to be quite hard if not impossible.

Additionally, the results show that the location of the vulnerable files can provide
useful information on where and which type of vulnerabilities to look for. Also our
results suggest that vulnerability criticality is related to its location. Interestingly,
file location is not really considered by any of the existing vulnerability prediction
methods. A possible reason for this is that location is a nominal property linked to
the software system under analysis and can only be used for specific project prediction
and not for cross system ones.

Finally, the results indicates that fixing vulnerabilities in Linux does not involve many
changes (from source code editing point of view). While in OpenSSL the fix process is
more complex than in Linux and requires many changes in different parts of the code.
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6
Wrapping Up Part II

To create or understand the results of VPMs, the first important step is to better un-
derstand vulnerabilities and the reason why the suggested approaches could work. Thus,
in this first part, the emphasis was put on the analysis of Software Vulnerabilities. In
the first Chapter (3), an analysis of Android Vulnerabilities was presented. This anal-
ysis focused on specific properties of vulnerabilities such as the origin, the complexity
of the vulnerable components and the location of the vulnerability. Performing this in-
vestigation highlighted one of the main challenges practitioners faced when attempting
such tasks, i.e., gathering enough and relevant data. This challenge is not limited to
the analysis of vulnerability but impact all fields of research targeting vulnerabilities,
starting by VPM. To tackle it this, in the second Chapter (4), a framework that auto-
matically collect vulnerability fixes was introduced. This framework is fully automated,
extensible and publicly available. The dataset generated by this framework is among the
largest of its kind and can be continuously updated with the newest data available. Then
in the last chapter of this part (5), an analysis of the vulnerability found by the frame-
work is performed. This analysis focused on the kind and severity of the vulnerability
and led among other findings to the discovery that these properties are system-specific.
In the next part, the emphasis will be put on the replication and analysis of existing
VPM approaches in order to tackle the second challenge of this dissertation.
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Investigating Vulnerability
Prediction Models





7
A Replication Study of Existing VPMs

Approaches on the Linux Kernel

Over the past decade, several VPM approaches have been suggested, such as ones
based on Code Metrics or even Text Mining. Yet as observed in Chapter 2 no external
study tried to compare the different approaches on a common ground. In order to
address the second challenge, we aim in this chapter at making a reliable replication and
comparison of the main approaches. Thus, we seek for determining their effectiveness
under different scenarios. To achieve this, we rely on the data gathered by the Data7
framework for the Linux Kernel as of June 2016. Based on this, we then built and
evaluate prediction models. Overall, we observe that an approach based on the import
or function calls performs best when aiming at future vulnerabilities, while a text mining
approach works best when aiming at random instances. We also find that models based
on Code Metrics perform poorly.
This chapter is based on work that has been published in the following paper:

• Vulnerability Prediction Models: A case study on the Linux Kernel (SCAM 16)
M Jimenez, M Papadakis, Y Le Traon
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7.1 Introduction

In Chapter 2, a review of all studies on VPM was performed. One outcome of this
review is the absence of a study that compared the different suggested approaches.
Ideally, such a comparison between approaches should be performed by a third party,
i.e., researchers that are not involved in the development of one of the approaches. Yet,
the only real comparison study is from Walden et al., [184], which introduced the Text
Mining approach. In addition, their study only compares two approaches, i.e., Code
Metrics and Text Mining. On the other hand, studies introducing new approaches
tend not to make reliable and comprehensive comparison with previously introduced
ones and are often not releasing their dataset.

Therefore, in this chapter we aim to replicate and compare different VPMs approaches.
As we plan of using the data gathered by the Data7 framework to perform this study,
we select among the possible approaches the three main ones, i.e., Software Metrics
[167], Text Mining [161] and Includes and Function Calls [133] ,that are not requiring
additional data such as crash logs [177] or result from ASA [65].

To perform this study, the choice is made to rely solely on data from the Linux Kernel
as they are the most numerous. In addition, as shown by the results of Chapter 5
and previous studies it is rather unlikely that the models will work in a cross project
prediction setting. Hence it is better to focus on a single project at a time. The
data gathered by the Data7 framework is used to create two different settings one
“experimental” emphasing on the ability of the tested models to distinguish defects
from vulnerabilities, and one “realistic” exploring the performance of the models in a
more realistic context, i.e., the proportion of vulnerable files is approximately equal
to the proportion reported on the Linux release.

In line with previous studies, we make the evaluation at the file granularity level as it
was confirmed as actionable by Microsoft Windows developers [126].

The study aims at making a comprehensive evaluation of the studied approaches by
reliably setting the training and evaluation datasets. Thus, the investigation is based
on two scenarios, one that splits the training and evaluation sets at random and a
“practical” one, based on time, where with respect to given reference time points
(release times), we train on the past vulnerabilities and to predict (evaluate) the future
ones. Overall, the study involved a set of 1,640 vulnerable files, 54,000 clear files and
870 experiments.

The results show the importance of the element selection when building a dataset.
Indeed, models can perform better or similarly in a largely unbalanced dataset, which
is closer to the reality, than in a balanced dataset composed of similar but distinct
elements, i.e., , bugs and vulnerability.

Overall, the data suggests that the variations on the studied application scenario can
greatly influence the performance of the prediction approaches. In our two scenarios,
we find that when aiming at future vulnerabilities, the approach based on includes
and function calls is performing better, while when aiming at random instances of
vulnerabilities irrespective to time, text mining outperforms the other approaches.
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7.2. Research Questions

In summary this chapter makes the following contributions:

• It performs an exact independent replication of three of the main vulnerability
prediction approaches in the context of the Linux kernel, using both “experimen-
tal” and “realistic” datasets.

• It investigates the predictability power, using past data to predict future ones,
of the three main vulnerability prediction methods.

• It provides evidence that certain parameters and evaluation choices can have
a major impact on the drawn conclusions. Therefore, future research needs to
consider them in their evaluations.

7.2 Research Questions

The goal of the present study is to replicate and compare three of the main VPMs
approaches in the literature, i.e., software metrics [167], text mining [161] and includes
and function calls [133]. Interestingly, these have never been neither replicated nor
compared; each study has been evaluated on different contexts and custom datasets.
Thus, the need to deal with their external validity and comparing them on a large and
reliable “ground truth” dataset is evident.

Arguably one of the most important questions in predictive modelling is the ability
of the developed models to identify, among several elements, the ones that it seeks
for. In our context, VPMs should be able to distinguish between vulnerable and
non-vulnerable files. Among non-vulnerable files some are closer to vulnerabilities,
i.e., buggy files. Indeed, vulnerabilities are often referred as security bugs and thus
considered as a subgroup of bugs. Hence, it is interesting to determine if the approaches
are able to determine this subgroup, i.e., vulnerabilities, or are just pointing toward
the upper group.

Thus, the first research question investigates whether the studied approaches can dis-
tinguish the vulnerable from buggy files.

RQ1. Are the vulnerability prediction models capable of distinguishing between vul-
nerable and buggy files?

A positive answer to this question will provide a good indication if the studied methods
are of any value in our context.

Being able to distinguish vulnerable files does not imply that the model is actually
useful for developers. This was investigated by Morrison et al., [126] who found that
when a tiny proportion of files is vulnerable, the usefulness of the prediction models
is hindered. Therefore, we seek to investigate the effectiveness of the examined ap-
proaches under cases that are closer to reality, i.e., when the proportion of vulnerable
and non-vulnerable files in the studied data set are close to the ratios that are found
in the Linux kernel (3% of files have a vulnerability history). Thus, we ask:

RQ2. What is the discriminative power of vulnerability prediction models in distin-
guishing between vulnerable and non-vulnerable files in a realistic environment?
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This question is as an attempt to investigate the actual prediction power of the studied
approaches. Evidently, a high (respectively low) accuracy indicates a relatively good
(respectively bad) prediction. Also, the difference between the results of RQ2 from
those of RQ1 demonstrates the impact of the datasets (proportion of vulnerable files)
on the discriminative power of the models.

To address these two research questions, two distinct datasets named “experimental”
and “realistic” are created. These datasets will be presented in Section 7.3.

Although in RQ2 we use what we call the “realistic” dataset, this does not accu-
rately assess the predictability power of the developed models in identifying future
vulnerabilities. In other words, we need to investigate the extent to which future vul-
nerabilities can be captured by the developed prediction models when trained on past
data. Therefore, we investigate the ability of the models to capture the vulnerabilities
of the different Linux kernel releases using the data of the past releases.

RQ3. How effective are the vulnerability prediction models in predicting future vul-
nerabilities when using past data?

The answer to this question provides a complete picture regarding the practicality
of the approaches. Additionally, a relatively good accuracy on the predictions will
indicate that vulnerabilities share the same characteristics over time, since they are
captured by the prediction models.

Up to this point, the discussion is solely based on the effectiveness perspective. How-
ever, we have left aside any discussion regarding the cost of each method. This infor-
mation can be useful for researchers or practitioners dealing with frequently changed
data. Thus, our last research question evaluates the time and memory needed to train
and develop each of our models.

RQ4. What is the cost in terms of memory and time consumption of building the
studied vulnerability prediction models?

7.3 Dataset

As explained in Section 1.3.3, to perform any VPM study a large and reliable dataset
is mandatory. Thanks to the Data7 framework this is not an issue. Still the Data7
framework only collect vulnerability fixes and is thus not directly usable for Vulnera-
bility Prediction Modelling. This section review the procedure that was used to create
suitable datasets.

To answer the different research questions, we built two distinct datasets: one corre-
sponding to RQ1, i.e., the “experimental” dataset, which is composed of a slightly
unbalanced set of vulnerable and likely to be buggy files, and another one designed
for RQ2, the “realistic dataset”, which is close to the practical cases (fully unbalanced
instead of slightly). To answer RQ3, we used both datasets.
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7.3.1 Experimental Dataset

This first dataset is created to determine whether models are able to distinguish vul-
nerable files from closely related ones, i.e., likely to be buggy but non-vulnerable.

To gather buggy files, we rely on the bug collector extension of the Data7 framework
that is presented in Section 7.7. It is noted that even if the major part of these gathered
files are buggy, some might not. Thus in the following we refer to those files as ”likely
to be buggy”. Overall we collected about 4,900 likely to be buggy files, which put
together with the 1,640 vulnerable files accounting for 743 vulnerabilities found by the
Data7 framework, resulted in a proportion of the vulnerable files of 20%.

7.3.2 Realistic Dataset

This dataset is designed to investigate whether the models are able to flag vulnerable
files under a realistic setting, i.e., in an environment where vulnerable files would be
uncommon. This implies the creation of a largely unbalanced dataset. After some
preliminary analysis, it turns out that about 3% of the files in Linux have a history of
being vulnerable, 47% are linked to bug patches and 50% were never impacted by a
vulnerability or a bug.

Thus to reproduce these proportions, we randomly select for every vulnerable 31 files
that were never declared as vulnerable. These 31 files are mined from the project
according to the time that vulnerability was declared, i.e., we ignore the changes that
made after this point in time. To be as close to the reality as possible, among these
31 files we randomly select 15 of them from a pool of files that have a history of
being linked to a bug patch and the remaining 16 from a pool of files that were never
implicated in a patch. Thus, we constructed a set of approximately 52,500 files that
reflect the actual ratios of vulnerable, buggy and non-vulnerable files in Linux, i.e., 3%
vulnerable, 47% of being linked to bug patches and 50% clear files.

7.4 Studied Methods

Replicating a vulnerability prediction study is not always straightforward since several
points have to be considered and some decisions taken by the authors of the initial
study might be unknown. To avoid bias we use the same machine learning techniques
and the same filters as those applied in the original study. Still, filters used are not
always clearly indicated in all the studies.

While Section 7.3 presented, the choice made for the second (Data collection) and third
step (Dataset building) of VPM evaluation process presented in Figure 1.3, this section
describes how we proceed with the replication of the selected approaches regarding step
4 (feature extraction) and 5 (Model building).
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7.4.1 Include and Function Calls

This approach is based on a simple intuition, which is that vulnerable files share similar
sets of imports and function calls. Thus, Neuhaus et al., [133] built two models using
the profile of either imports or function calls to discriminate between vulnerable files
and non-vulnerable ones.

Features Extraction To build such models, we first extract for each file under analysis
its includes and its function calls. To do so, we use a simple regular expression for
gathering the includes and use the AST of the files to retrieve the function calls.
Similarly to Chapter 5, we rely on Joern to retrieve the AST.

Machine Learning Technique Once all the features extracted, we first proceed
with a filtering phase. Indeed, the number of different Includes and Function Calls
over the whole dataset might be too high, and causes dimensionality issue. Neuhaus
et al., suggest using minimum support, i.e., a minimum amount of time a potential
feature should appear in the training set to be kept as a feature, and set it to 5% for
Function calls and 3% for Includes. Regarding the learning technique, Neuhaus et al.,
[133] decided to use a SVM algorithm with a linear kernel for this task. We used the
Weka[23] core library and its libSVM module for the replication.

7.4.2 Software Metrics

Shin et al., conducted many studies using software metrics (see Section 2.1.2). We
replicate their most comprehensive one based on complexity, code churn and developer
activity metrics. These metrics were used as an indicator of software vulnerabilities
[167], mainly due to their success in defect prediction.

Features Extraction In their work, Shin et al., created 4 models: one for each kind
of metrics, and one combining them. We report results for the combined one since
this gave the best results. To build such models, we first have to make the metric
measurements for the studied files.

Complexity. In the original study, 14 complexity metrics were suggested. These were
broken down into three categories,i.e., intra-file complexity, coupling and comments
density. These metrics were computed using the Understand tool.

Code Churn. The original work was suggesting the use of 3 metrics, number of changes,
number of changed lines and number of added lines. The way to retrieve these metrics
is not described in the original work but is easy to assume.

Developer Activity Metrics. The initial study used a tool developed by its authors
which was not available. Thus, we had to reimplement it. However, in their study
Shin et al., discovered that the only interesting metric of this category for vulnerability
prediction was the “number of developers who have worked on every component”. To
minimize the risk of bugs in the implementation as well as the computation cost, we
only focused on this one as it can be easily retrieved from the git history. Indeed, the
cost of computing a whole developer network for the remaining metrics is important
given the size of the Linux kernel.

To retrieve all the aforementioned metrics, we use the tools introduced in Section 5.6.
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Figure 7.1: Evaluation methods and datasets that were used to answer our RQs.

Machine Learning Technique Shin et al., hypothesized that a subset of either
complexity, code churn and developer activity metrics or a combination of them could
predict vulnerable files. To select the right subset for each case, we, as suggested, only
keep the three best metrics to build the model using Information Gain as ranking.
Regarding machine learning, we used as in the original study LR with Weka.

7.4.3 Text Mining

Text mining was suggested for vulnerability prediction by Scandariato et al., [161]. The
underlying idea of their study was to suggest a method capable of choosing features
without any human intuition. This is in contrast to the other two approaches we
replicated. As we stated, this approach creates a bag of words from the source code of
the training files under and builds a model based on them.

Features Extraction The feature extraction of this approach is quite straight for-
ward. The file’s source code is split into tokens which are imported to a vector of
unigrams. Then, the frequency of each unigram in the file is computed. The delimiters
for the tokens are based on the language punctuation characters and the frequency is
not normalized. In this replication, we reimplement the proposed tokenizer by adapting
it for the C language.

Machine Learning Technique Once all the features have been extracted, we proceed
in a similar manner as the include and function calls by creating a list of all unigrams
that are present in all the files of the training set. Then, we built the feature matrix
based on it.

Yet, instead of using minimum support, Scandariato et al., suggested discretizing the
count of each word and making it binary using the method of Kononenko [105]. The
discretization is first computed on the training set and then apply on the testing set.
The features rendered useless by the discretization (all binary values are the same in
the training set) are then removed.This part required search to retrieve the right filters
with the right options in Weka, similarly to what was used by the authors.

In the end, we figure out that the first filter to use is “Discretize” with the options
“Kononeko”, makes binary and use bin number activated and the second one was
“RemoveUseless”. The need for these two filters is to reduce the number of features
which are exploding (up to 2 million in our dataset). Thus, we found out that these
filters were indeed able to divide the number of features by 10. Finally, we use RF
with 100 trees for the machine learning part as the authors found that this algorithm
was performing better than the other algorithms.
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7.5 Methodology

In this section we detail the evaluation methodology used to answers the different
research questions, this corresponds to the third step of the vulnerability evaluation
process presented in Figure 1.3.

For RQ1, we use the experimental dataset and two evaluation methods; stratified
10-fold-cross-validation and random splitting. We use cross validation since this is
the main evaluation method used by the previous studies i.e., [184, 133, 167, 161].
However, the use of two independent datasets, one for training and one for evaluation
is important to get reliable results. Therefore, we also use random split to split the
dataset into two sets of the same size. To check the generalization, we repeat the
process 50 times to create 50 distinct experiment settings.

To answer RQ2, we use the realistic dataset and random splitting repeated 50 times.
Regarding RQ3, we split our datasets according to 20 reference points, i.e., time split.
Each reference point corresponds to a release date of the Linux kernel, from the 2.6.28
(released 25 December 2008) to the 3.7 (released 10 December 2012). To evaluate the
effectiveness of the studied classifiers, we rely on precision and recall and MCC metrics
presented in Chapter 1.3.3.

The evaluation methods and datasets are summarized in Figure 7.1.

7.6 Results

7.6.1 RQ1: Experimental Dataset

Table 7.1 records the average precision and recall values, when running 10 times a
stratified 10 fold cross validation on the experimental dataset. It should be noted that
median values are very close to the average ones. From these data we can observe
that three methods are performing reasonably well with an MCC close or equal to
0.6: includes, function calls and text mining. These approaches have precision above
70% which is often mentioned as a “practical threshold”. Recall values for these two
methods are approximately 60%. The model of software metrics performed worse, with
relatively low recall and MCC.

Figure 7.2a shows the precision and recall values of all the studied approaches. We
present them under the form of a bag plot to visualize the variation between the
performed repetitions of the random splits and ease the comparison. Evidently, the text
mining approach is performing best in terms of precision and recall. It even manages to
be above the “practical threshold” with respect to precision; with an average value of
76.3%, while its average recall is 53%. This impression is further confirmed by the result
of the MCC presented in Figure 7.3b where the Text Mining approach outperforms
by far the other approaches. Includes, Function Calls and Software Metrics while
achieving similar MCC score around 0.15, performs differently in terms of precision
and recall. Includes and Function Calls achieved in average 30% of both precision and
recall, while software metrics approach provides an interesting precision ranging from
35% to 55% but at the price of a low recall, which is less than 10%.
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(a) Experimental (RQ1) (b) Realistic (RQ2)

Figure 7.2: Bagplot of precision over recall

When using random split for the experimental and realistic datasets.
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Figure 7.3: MCC box plots

When using random split for the experimental and realistic datasets.
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Table 7.1: Precision, recall and MCC for cross validation

experimental dataset RQ1.

Software Metrics Includes Function Calls Text Mining

Precision 65% 70% 67% 76.5%
Recall 22% 63% 64% 58%
MCC 0.28 0.59 0.58 0.60
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Figure 7.4: Time split for the experimental dataset (RQ3)

7.6.2 RQ2: Realistic Dataset

RQ2 regards the random split evaluation on the realistic dataset. Figure 7.3b displays
the MCC results. Text mining clearly outperforms the other approach with an average
MCC of 0.65. While observing the result in terms of precision and recall (Figure 7.2b),
we can see that this is mostly driven by a great precision close to 100%. Interestingly,
the software metrics model is the second best with an average MCC of 0.27 and an
average precision of 60%. Include and Function calls are both performing poorly with
MCC close to 0.1, meaning that these kinds of approaches in this context perform
barely better than a random classification.

7.6.3 RQ3: Evaluation with respect to Time

RQ3 regards the evaluation of the studied methods when using past data to predict
future vulnerabilities. Figure 7.4 depicts the results while applying on the experimental
dataset. From this data we can observe that the most precise approach remains the
Text Mining one. Its best precision, of approximately 78%, is achieved in the first
studied release. Includes and Function Calls are following closely with a precision
ranging from 60% on the last release to a maximum of 71%, on the 8th studied release.
Precision of the Software Metrics is slowly decreasing from 48% to 40%. All the recall
values have an opposing trend, i.e., they improve over time, which is logical as the
number of vulnerable case to train on, increases. Surprisingly, the best recall values
are obtained by the Includes and Function Calls methods, with results ranging from
32% to 62%. Text mining performs slightly worse, with results ranging from 22% to
50%. Regarding MCC, we observe that Include, & Function calls and Text Mining are
performing similarly.
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Figure 7.5: Time split for the realistic dataset (RQ3)

Figure 7.5 presents the results with respect to the realistic dataset. Interestingly, these
are not so different from those we got for the experimental dataset. The Text Mining
is still the most precise. Regarding the recall, Function calls is performing better
managing to get more than half of the vulnerabilities for the latest releases. This
can be observed on the MCC graph where Function calls is the best approach for all
releases, while Includes and Text mining perform similarly.

7.6.4 RQ4: Memory and Time Cost

In the previous RQs, we focused on measuring the effectiveness of the models with
respect to different settings. In these regards, the text mining approach seems to
be the best in most of the cases. Yet, this comes at a price; time and in memory
consumption.

Perhaps the biggest issue is the cost in memory. Indeed to run the experiments on
the realistic dataset, 200 GB of memory was required in average by the Text Mining
method, while half of it were required for Includes and Function Call with respectively
80 GB and 120 GB. In this regard and despite its poor performance, the Software
Metrics is quite thrift in memory with only 4 GB required. Arguably, these numbers
are partly due to the Weka library, which might not be the best choice for large
datasets. Yet, the impact of dimensionality on memory, i.e., the number of features
used by the model is quite visible and model with an unfixed set of features are doomed
to consume a lot of memory.

Regarding the time required to run the different parts of our study, we observed the
following: Text mining is extremely fast for the extraction of features but requires
some time to both train and test (up to 3h in the case of the realistic dataset). This
is due to the explosion of features caused by the use of bag of words and due to the
use of several filters in order to reduce them. The Software Metrics, due to its small
number of features, is really fast with respect to training and testing (less than 10s).
However, the feature extraction phase is time consuming as it requires for each file to
build the AST and browsing its complete history, which is especially impacting in the
case of the Linux kernel. The Includes and Function Calls model seems to offer a nice
trade-off with a fast time to extract the needed features and a shorter time than text
mining to build, learn and evaluate. It is noted that Function Calls usually have a
higher number of features than Includes and thus require more preprocessing.
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Table 7.2: Defect Statistics

defects not declared as vulnerabilities

Systems No Defects No Fixed Defects Unique Defective Files

Linux Kernel 3,160 5,193 2,428

Wireshark 3,871 8,019 1,907

OpenSSL 2,442 7,741 1,733

SystemD 1,868 3,538 925

Total 11,341 24,491 6,993

7.7 Additional Tooling

In this section, a description of the BugCollector extension of the Data7 framework
is presented. The Bug Collector extension supports the collection of software defects
(other than vulnerabilities). The purpose of this extension is to collect data related to
potential defects and their patches. Indeed, as explained in Chapter 4, to retrieve the
highest possible number of vulnerabilities in a project, Data7 links the references of
bug ids (mentioned in vulnerability reports) with commit messages. Using the same
process, Data7 can also collect defects mentioning (in the commit messages) bug ids
and bug fixes.

Bug Collector stores all the related information in a separate dataset. In particular,
the Bug Collector includes a list of commits that fixed a bug which contains their hash,
timestamp, message and patches (files in their states before and after fix). Table 7.2
records descriptive statistics about the collected bugs as of June 2018.

7.7.1 Collection Process

For a given dataset DV generated by the Data7 framework for a project P , two cases
arise whether the project declares the bug id in its commit message or just mentions a
bug correction. In the first case, the defect dataset DB can be generated from DV (see
Listing 6) , in the other case a pass through all the commits is required (see Listing
7).

7.7.2 Using the tool

To create and update a bug dataset, only a configured installation of the data7
tool is required. Listing 8 present how to use the tool. More information on
the tool is available on its Github page https://github.com/electricalwind/

Data7-BugCollector.
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Listing 6 Bug Tracker ID mentioned in commit message

for each (bugID found in DV){

if (bugID not link to a vulnerability){

for each (commit attached to bugID){

add commit information to DB}}

else {

if(bugID exists in DB){

remove all commits link to BugID from

DB}}

}

Listing 7 Mention to a bug fix

for each (commit in P history)

if (not yet processed)

search mention to a fix in the commit message

if (found)

add commit information to DB

for each (commit in DB)

if (commit used in DV)

remove commit from DB

Listing 8 Generating a Bug dataset

ResourcesPathExtended path = new ResourcesPathExtended("Path

To Save Tour Data into");

Importer importer = new Importer(path);

BugCollector bugCollector = new BugCollector(path);

BugDataset bd =

bugCollector.updateOrCreateBugDataset(projectName);

// simply loading a dataset

BugDataset bd = new

ExporterExtended(resourcesPathExtended).loadBugDataset(projectName);

Table 7.3: Comparison with related work

Time-based results recorded as (Y / Z) refer to (Experimental dataset / Realistic
Dataset). The mark ‘X’ denotes the absence of reported results by the previous study.

Includes and Function calls Software Metrics Text Mining
Neuhaus et al., [133] This paper Shin et al., [167] Shin et al., [171] Walden et al., [184] This paper Scandariato et al., [161] Walden et al., [184] This paper

Cross validation
Precision 70 70 3 - 5 9 2-52 65 90* 2-57 76

Recall 45 64 87 - 90 91 66-79 22 77* 74-81 58

Time
Precision X 64 / 73 3 X X 42 / 39 86* X 74 / 93

Recall X 48 / 46 79 - 85 X X 16 / 24 77* X 37 / 27

*Estimated from the graphs and reported data of the paper.
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7.8 Discussion

7.8.1 Implications

The study concerns two scenarios: one that corresponds to the random split of the
datasets and one corresponding to the time split.

A direct implication of the results is that in this context, historical data are good
in supporting relatively accurate predictions on future vulnerabilities. This is quite
encouraging since it suggests that VPMs can be useful and practical. As shown in
Figures 7.4 and 7.5 the top-performing prediction models achieve precision values of
approximately 75% with recall of approximately 50%, which are judged by the studies
of Morrison et al., [126] and Shin et al., [171] as satisfactory. Interestingly we found
a small influence of the imbalanced data (as shown by the differences between Figures
7.4 and 7.5) on our results. This is probably due to the difference in the dataset, still
as it is contrary to the results reported by Morrison et al., [126], there is a need for
further research on the impact of data imbalance on the prediction models.

Another important findings highlighted by the results regard the MCC values found.
The MCC coefficient quantifies the quality of the predictions when compared to a
random one. Thus, an MCC value equal to 1 represents a perfect prediction, while 0
a random prediction one. Therefore, all of our predictions (under all studied settings)
are far better than the random ones (since we get MCC values in the range of 0.25 -
0.6) which indicates that the built models do manage to learn relatively well.

Interestingly, the results of the practical case (time split) are closer to those of cross
validation (Table 7.1). This can be explained by the fact that Linux kernel vulnerabil-
ities can be well predicted by the historical data (as discussed in the beginning of this
section). Thus, most of these data are probably selected by the 9 training folds that
are used in every of the 10-fold cross validation iterations. Therefore, 10-fold cross
validation gives similar results with the random split. Of course if historical data were
not enough, cross validation would probably provide an overestimation of the models’
performance.

Overall, the data suggest that in the practical case (time split) the most effective
approaches are the one based on the Includes and the Function Calls. This is somehow
surprising since these methods were the first to be suggested. In contrast, the Text
Mining technique is by far the best one when considering the general scenario or
favouring precision over recall. This could be seen as an ability of Text Mining to
easily learn what the training data have to offer, whereas Include and Function Calls
require a more representative training dataset.

7.8.2 Differences With Previous Studies

In this study, we replicate three of the main VPM methods. A natural question to ask
is how the presented results compare with ones reported in previous studies. Table 7.3
summaries this data. Interestingly, there are some differences especially regarding the
recall values. Regarding the Includes and Function Calls methods [133], our data are
in line with those reported in literature (case of cross validation), i.e., same precision
values with slightly better recall ones.
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7.9. Threats to Validity

With respect to the software metrics method, we found completely different results
from previous studies [167, 171, 184], i.e., better precision and significantly lower
recall. This difference could be explained by the way we construct our datasets and/or
by the fact that undersampling is used in these studies to balance the datasets which
may have impacted the drawn result.

Finally, with respect to the text mining approach we observed comparable result in
terms of precision with the study of Scandariato et al., [161]. The recall found was,
however, lower than the one claimed, up to 50% in the case of time splits. In the study
of Walden et al. [184] there was a large variation on the reported results, i.e., 2%
of precision in a case while, 57% on another one. This makes a comparison with our
study difficult and probably irrelevant. Nevertheless, the same study only used cross
validation where we found a better precision and worse recall than them.

7.9 Threats to Validity

Regarding construct validity, we rely on the Data7 framework to collect bugs and vul-
nerability fixes. This framework ensures the retrieval of known and fixed vulnerabilities
but, undiscovered or non-fixed vulnerabilities are ignored. This might result in false
negatives with a potential impact on our measurements. However, given the size of the
Linux kernel and the long history of vulnerability reports, we believe that it is unlikely
to have many such cases.

Regarding internal validity, this work only considers source code files written in C, but
these are not the only files that can be linked to vulnerabilities. For instance, there are
parts of the Linux kernel which are written using assembly code. However, since the
great majority of the Linux kernel is written in C, it limits the impact of this threat.
Additionally, potential bugs in the implementation may also influence our results.
Also we might unintentionally not re-implement exactly the original approaches. To
reduce these threats we carefully inspected all of our code, parameters and experiment
decisions with respect to the exact replication of the previous approaches. We also
manually tested and verified the implementation. Since the results are in line with
previously published ones, these threats are not of particular importance. Furthermore,
following the suggestion of Shin et al., [167], we used the three best metrics according
to Information Gain to build Software Metrics model. Still there is a possibility that
additional metrics could provide different results.

Regarding external validity, the study is limited to the Linux Kernel and thus, our
results might not be generalizable to other projects or contexts. However, we studied
a real, large and widely used project; the Linux kernel. Also, we studied a large num-
ber, much larger than any previous study, of real vulnerabilities (actually all reported
vulnerabilities in NVD). On the other hand, studies presented in the remaining part
of this thesis will use more projects.
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7.10 Conclusions

In this chapter, we performed an exact independent replication of three of the main
VPM approaches, Software Metrics, Includes and Function Calls and Text Mining in
the context of the Linux Kernel. We showed that several parameters like the evaluation
method, application scenario and the composition of the dataset, often ignored in
literature, can have a major impact on the reported results. We also demonstrated
that when aiming at predicting future vulnerabilities, the Includes and Function Calls
methods offers an interesting trade off, while when aiming at random instances of
vulnerabilities, Text Mining clearly outperforms the other methods.

While this study provides us with insight on VPM, some issues remain to be addressed.
First of all, are the settings suggested by the authors of the initial studies really the
best? Second, what is the real impact of unbalance datasets on the performance of
VPMs? Finally, do the results generalize to other projects? These issues are addressed
in the next chapters, starting by the presentation of a framework to evaluate VPM.
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8
FrameVPM: a Framework to Build and

Evaluate VPMs

Replication and comparison of approaches are important and necessary process. Yet,
aside from the study from Walden et al., [184] and the one presented in the previ-
ous chapter, there is no study comparing different VPM approaches. To facilitate,
the development of new approaches and ease the comparison with previously proposed
ones, hence tackling our second challenge, we introduce a framework named FrameVPM
(standing for Framework for Vulnerability Prediction Modelling) allowing the evalua-
tion and comparison of VPMs. This framework is an extension of the Data7 framework
presented in chapter 4 and is composed of three different parts. The first one “organize”
transforms the dataset gathered by Data7 into one that is suitable for evaluating VPM
approaches. The second one “analyze” deals with the feature extraction of the different
approaches on this dataset, while the last one “learning” handles the ML aspects and
the evaluation of the approaches.
This chapter is based on a project available on Github : https: // github. com/

electricalwind/ framevpm .
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Figure 8.1: FrameVPM parts in VPM evaluation

8.1 Introduction

In this chapter, we introduce the FrameVPM framework. FrameVPM extends the
Data7 in order to enable the comparison between VPMs. FrameVPM is composed of
three different parts, the first one, called “organize”, transforms the data gathered by
Data7 into one that is suitable for evaluating VPMs. The second one, called “analyze”,
deals with the feature extraction of the different approaches on the dataset, while the
third one, called “learning”, performs the ML and the evaluation of the methods.
Figure 8.1 how the different part of the FrameVPM fits into the context of VPM.

The collection of vulnerabilities is handled by the Data7 framework presented in Chap-
ter 4. However, collected data is not suitable to perform vulnerability prediction as
it contains only vulnerable examples. Thus a dataset transformation is required (step
3). Previously, we perform this through the augmentation of this set with buggy files
(“experimental” dataset) and with clean files (“realistic” dataset). This augmentation
process is handled by the “organize” component of the FrameVPM framework.

Once the dataset ready, the next step is features extraction (4). In the case of Text
Mining techniques, this means tokenizing the files and extracting bags of words, while
for Code Metrics, this implies computing the metrics for each file. This part of the
process is handled by the “analyze” component of the FrameVPM framework.

The last step is the actual evaluation, which is handled by the “learning” component
of the framework. The evaluation can be split in three parts, the first one regards the
evaluation methodology (3). Typically, in the previous chapter, three possibilities were
explored, stratified 10-fold cross validation, random splitting and time-based splitting.
The second part concerns the choice of the ML settings (5), i.e., classifier, filters, while
the third one is the execution of approach(es) (6).

The framework currently supports all projects handled by the Data7 framework and
integrates the 3 approaches presented in the previous chapter along with a new one
that uses the naturalness of Software as a feature. We introduce the new approach in
the Chapter 12. The following section provides additional information on the different
components as well as examples on how to use the framework.
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8.2 Details on the Framework

8.2.1 Organize component

The “organize” component gathers (using the Data7 framework) and transforms the
data, suitable for the training and evaluation of VPM. Depending on the purpose of
the experiment, several strategies are possible. The first one, consists of gathering
non-vulnerable data with instances from another category (similar to what we did in
the previous chapter). This strategy is useful to evaluate the distinction capabilities of
the models. However, it is not helpful when evaluating the real usage of a VPM, i.e.,
as it would be used by developers. A second strategy, which is the one implemented
by the “organize” component, consists in mapping the vulnerabilities to the software
releases they impacted to create a release-based dataset. Most of previous studies on
VPMs are in fact relying on release-based datasets. Those datasets can then be used
for evaluating one release at a time with strategies such as cross validation or random
split, or using a set of releases for training and another for testing.

Mapping vulnerabilities to the impacted releases can be done using the information
provided by the NVD (NVD provides a list of impacted versions per recorded vulnera-
bility). Though, it is impractical to study every single release of each project. Thus, a
subset of release has to be selected. In the case of the projects from the Data7 frame-
work, we select 64 versions of Linux from 2.6.12 to 4.15, 22 versions of Wireshark (all
major, i.e., ending with 0) and 10 versions of OpenSSL (all major). In our study, the
collected vulnerabilities are mapped to the selected releases. In case a vulnerability
has no match to any of the selected releases, we matched it to the closest one (previous
release) according to the commit timestamp. Arguably this can introduce some errors
in our data. This is not considered as important given the large number of releases
that we considered and the fact that the vulnerability introduction is quite likely to
be much earlier than the vulnerability discovery time.

Once we make the mapping, the vulnerable files should be extracted from the vul-
nerability fixes in order to declare files in the releases as vulnerable or not. This is
straightforward as a simple look at the file modified by the commits fixing the vul-
nerability is sufficient. Still, as explained in Chapter 4, data generated by the Data7
framework is raw and contains a lot of noise when applied to VPM. These cases are the
following: First, some commits found by Data7 are not fixing commits but ones that
add regression test to prevent the vulnerability to return. To prevent this, we don’t
consider file present in testing directory as vulnerable. Second, duplicate commits exist
in the dataset. Indeed, when fixing different branches several commits with the same
content can be made. Similarly, one commit can fix several vulnerabilities and thus be
declared more than once. These two cases are not especially problematic when simply
stating if a given file in a release is vulnerable, but reveal troublesome as we keep for
each vulnerable file in a release the information on its related vulnerability and fix
to allow further evaluation. To handle this, we maintain a list of all seen commits
along with a hash of their commit message. Thus, if several commits have the same
content, we only keep the first one, while if the same commit appears in more than
one vulnerability, we add the information of this vulnerability to the concerned files.
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Finally, it is possible that a vulnerability is fixed in more than one commits, as seen
in Chapter 3, thus if the same file is modified more than once to fix the vulnerability
it is not wise to keep several “fixed” versions of the files. Thus, we only keep the file
in its original and final version as additional information on the vulnerability.

In addition, the framework offers the ability to integrate bug fixes to this mapping
using the output of the Bug Collector package. In case such a choice is made, an
additional filtering is performed to remove commits that have the same commit message
as vulnerabilities.

8.2.2 Analyze Component

The “analyze” component is in charge of computing all the necessary metrics, i.e., fea-
tures of the different approaches, for all the files present in the dataset. This component
uses the output of the organize component as input and will download automatically
all the releases which possess vulnerabilities from the internet to obtain all the files
from the releases to compute the metrics on.

Metrics can be computed separately on a per approach basis or in one run. Once
computed, the metrics are stored and will not need to be recomputed again. So far, 8
sets of metrics are implemented, but it is possible to add metrics for new approaches
by simply extending the Analyze class and implementing the processFeatures method.

Here are the already implemented set of metrics: Simple Metrics, Complexity Metrics,
Code Churn and Developer Metrics, Include, Function Calls, Bag of Words, Previous
Release Naturalness, Other File Naturalness.

The first 6 metrics correspond to the one used for the approaches previously investi-
gated and can be measured at one file at a time, while the last two are from a novel
approach that will be introduced in Part IV, which required additional knowledge. It
should be noted that the computation of the first five set of metrics is conditioned
to the analysis of C project which is not a problem in the current state of the Data7
framework.

8.2.3 Learning Component

The “learning” component is handling everything related to the evaluation of the
models. Starting by determining training and testing set.

As mentioned above, several possibilities exist when performing evaluation on a release
dataset. Currently, only two strategies are implemented, last release validation and
three last release validations. While the first one trains on one release and evaluates on
the next one, the second trains on the last three releases and evaluates on the next one.
These strategies have been previously used by Hovsepyan et al., [78], resp. Shin et al.,
[167]. However the framework is not limited to those strategies and can be extended
through the ExperimentSplitter class.
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In addition to the determination of the training and testing set, the framework offers
the possibility to choose the class to be evaluated. Indeed, depending on to the option
to select in the organize component, the files of a given release will be categorized in
3 or 5 categories, i.e., Vulnerable, Vulnerable History, (Buggy, Buggy History) and
Clear. Thus, if the traditional way of performing the evaluation of VPM involves a
binary classification with vulnerable and non-vulnerable components, it is possible in
FrameVPM to completely customize the evaluation, like performing a ternary classifi-
cation by integrating Bug to the class, or even to ignore given types of files in the set
to perform an evaluation of bugs against vulnerabilities like in the previous Chapter.
Currently, three strategies are implemented, the traditional one considering everything
that is not vulnerable as non-vulnerable, a ternary classification considering files that
have a history of being buggy or vulnerable as clear, and a last one only keeping likely
to be buggy files and vulnerable files in the dataset.

Regarding the ML part, the framework rely on Weka [23] 3.9.2. Thus, any classifier
and filters present in Weka are available.

Once everything id set, the approaches can be evaluated. The evaluation can be
performed in a two-phase process. In the first step, the training and testing sets
are created by retrieving the desired features for each one of the models using the
results of the “analyze” component. Then, the chosen classifier is trained and the
evaluation is performed on the testing set. Note that an approach in the learning
component is not directly linked to an approach in the analysis component. Hence it
is possible to create in the learning component new methods by combining the metrics
from different techniques or use only parts of the metrics. Currently, 6 approaches are
offered, i.e., Code Metrics (combining all code metrics), Includes, Function Calls, Bag
of Words, Naturalness (see 12) and CodeMetricsNaturalness (combines Code Metrics
and Naturalness approach).

8.3 Using the Framework

The output of each component is automatically saved and can be accessed through
a JAVA API. For the case of the “learning” component the framework also offers a
Comma Separated Value (CSV) exporter.

Figures 8.2, 8.3 and 8.4 present the information related to the field of the objects saved
by resp. the “organize”, the “analyze” and the “learning” component under the form
of an UML diagram.

As already explained, components need to be run in the following order (1) organize
(2) analyze and (3) learning. The “organize” component returns a ProjectData object
containing a map of ReleaseData objects. The ReleaseData object holds information
related to vulnerable (and likely to be Buggy, if the option is selected) files of the
release.
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The “analyze” component should be executed individually for each considered ap-
proach. The component first loads the corresponding ProjectData object and in case
it has been run on a different approach previously the ProjectAnalysis Object that
stores the additional results of the current analysis. At the end of the execution,
the ProjectAnalysis object is returned with the included metrics of each one of the
approaches.

The “learning” component has two steps. The first one is the output of the evaluation
strategy, i.e., training and testing sets under the form of a List of Experiment objects.
Those objects stored the analysis data of the training and testing set. This process
duplicates the analysis data but ensures that all approaches can be evaluated on the
same sets. The second one is the final results, for a given classifier and for a given list of
experiments under the form of an ApproachResult object. This object contains a map
of the different experiment results. This map contains in turn the result of all samples
of the testing set including the distribution probabilities, as well as information on the
sample.

The framework can be downloaded from GitHub and the latest version can be found at
https://github.com/electricalwind/framevpm. FrameVPM requires maven and
Java (8+). To proceed with the installation, the user should type mvn install in a
terminal at the location of the project. The project can then be used from any maven
project by adding the dependency presented in Listing 9.

Succeeding to the compilation, the user needs to define a path (to the place where
the binary will be saved). Then Listing 10 indicates how to run the organize and
analysis components. Note that the boolean parameter in the method balance() of the
Organize class indicate whether information from the bug dataset should be integrated,
while the runAll() methods from the Analyse class allow to perform the analysis for
all registered approaches.

Listing 11 presents an example of the use of the learning component. First a class model
needs to be chosen. In the example, the traditional binary classification vulnerable,
non-vulnerable component is chosen. Then, the way to split the dataset into training
and testing is determined, in this case, using the last three releases as training and
the next one as testing. Next, the approach to evaluate is picked, here Bag of Words.
Finally, the approach can be run with a selected classifier that can be found in the
Classifiers class. The smote parameter indicates whether the SMOTE algorithm [44]
should be used. This algorithm is often used in presence of largely unbalanced datasets
to oversample the minority class. Additionally the last two lines show how to export
the result to a CSV file.

Listing 9 Dependency to add in pom.xml to use FrameVPM

<dependency >

<groupId >lu.jimenez.research </groupId >

<artifactId > framevpm </artifactId >

<version >1.0 </ version >

</dependency >
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Listing 10 Calling the Organize and Analyze Components

ResourcesPathExtended pathExtended = new

ResourcesPathExtended("Path To Save Tour Data into");

Project project = CProjects.LINUX_KERNEL;

new Importer(pathExtended).updateOrCreateDatasetFor(project);

new

BugCollector(pathExtended).updateOrCreateBugDataset(project.getName ());

new Organize(pathExtended , project.getName ()).balance(true);

new Analyse(pathExtended , project.getName ()).runAll ();

Listing 11 Evaluating an Approach in FrameVPM

ResourcesPathExtended pathExtended = new

ResourcesPathExtended("Path To Save Tour Data into");

Project project = CProjects.LINUX_KERNEL;

//...

ClassModel classModel = new VulNotVul ();

ReleaseSplitter experimentSplitter = new

ThreeLastSplit(pathExtended , project.getName ());

List <Experiment > experimentList =

experimentSplitter.generateExperiment ();

Approach [] approaches = new BagOfWordsApproach(experimentList ,

model);

ApproachResult result = approach.runWith(classifier , smote);

CSVExporter csvExporter = new CSVExporter(pathExtended);

csvExporter.exportResultToCSV(project.getName (),

experimentSplitter.getName (), classModel , result);

8.4 Limitations

FrameVPM is still in its early days and is thus less mature than its Data7 counterparts.
As such, the current version has some potential limitations, which are discussed here.

First of all, some functionalities are still missing especially in the learning component.
Good examples are the Experiment Splitter and Class Models parts with only two, resp.
three strategies implemented so far. Still the implementation of additional strategies
can be done easily by extending the abstract classes. Regarding the evaluation of
approaches, some changes to the architecture may be done in the future to ease the
use of filters. Another limitation directly linked to the maturity of the project is its
lack of documentation aside from the present chapter. Still as the next chapter will
show, the framework is already functional and will improve over time.
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8.5 Conclusion

In this chapter, we introduced the FrameVPM, a framework exploiting the data gath-
ered by the Data7. FrameVPM purpose is the training and evaluation of prediction
models in experimental and realistic settings. The framework is composed of three
different components that should be executed in a given order.

Currently, the framework allows the computation of 8 sets of metrics used by 6 different
state of the art VPMs, but can easily be extended with additional metrics and/or
approaches. The toolset despite being in its early days, it can already be used to
perform large scale comparisons between different approaches. In the context of this
document, the framework is used in chapter 9 and 12.
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9
An Evaluation of VPMs wrt. Severity and

Mislabelling Noise

In previous studies, VPMs have always been evaluated on different datasets, settings
and features. Chapter 7 presented an exact independent replication of 3 approaches.
Yet, this study only address two of these concerns, i.e., different datasets and features.
Indeed replicating an approach does not require the exploration of alternative settings,
e.g., ML algorithms, filters. This can bias conclusion as there is no guarantee that
the suggested settings are indeed the best one. Additionally, previous studies mainly
focused on the “raw” performances of VPMs without investigating some of their speci-
ficity like how they handle severe vulnerabilities or the issue of “mislabeling noise”.
Thus, this chapter presents the largest experimental study of VPMs investigating all
the aforementioned points. The evaluation is performed using FrameVPM framework,
presented in chapter 8, on three projects handled by Data7 (Linux Kernel, Wireshark
and OpenSSL).
This chapter is based on yet unpublished material.
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9.1 Introduction

In Chapter 7 an exact independent replication of three of the main VPM approach
was presented. The results although interesting can be discussed as to truly replicate
an approach settings like classifiers and filters are bound to be the same as those from
the original study. Yet those settings are not guaranteed to be the “best” ones. In all
three original studies, results of only one classifier is presented along with a word from
the authors stating that it is the best one.

Furthermore, none of the previous approaches takes into account vulnerability sever-
ity. Nevertheless the ability to predict, not only vulnerable components but also severe
ones, is important for any practical deployment, because many remediation strategies
naturally involve prioritization according to severity. With the existing state of knowl-
edge, there is no scientific evidence that predictive modelling does not, for example,
merely identify low severity vulnerabilities, while failing to identify any high severity
vulnerabilities. Yet, results from Chapter 5 suggest that it should be possible to tune
models to find severe vulnerabilities.

In order to address these issues, a comprehensive empirical study of the three main
previously proposed approaches is conducted using FrameVPM. In particular the use
of five widely used classifiers is investigated.

The question of vulnerability severity is addressed by investigating the ability of each
technique to predict, not only vulnerabilities, but their ability to prioritize the most
severe ones. An additional phase of tuning is performed by systematically attempting
to improve the prioritization performance of each classifier, both by weighting accord-
ing to severity, and also by enlarging the set of training data to include additional
examples of defects believed not to contain vulnerabilities.

An investigation of the sensitivity of the predictive models to the presence or absence
of the vulnerabilities is as well performed, by applying the models both before and
after the vulnerabilities have been fixed. With this extra aspect of the experimental
methodology, we seek to provide an approach to a form of “round-trip” validation;
the classifier should predict that the vulnerability is present before fix, and absent
after it. Although this is a very demanding criterion from the ML point of view, it
provides important information to the practitioner. Should it turn out that VPM
are good in general, but perform poorly in this additional more specific sensitivity
evaluation, then a practitioner could use vulnerability prediction to prioritize human
follow-up investigations, thereby partly mitigating the primary scaleability concern of
prioritizing such follow-up according to likelihood and severity. However, the engineer
could not (and should not) rely on specific predictions, relating to the presence or
otherwise of vulnerabilities in particular pieces of code.

Finally, it is unlikely that a practitioner could ever hope to have a complete and reliable
ground truth on which to train any model. New vulnerabilities can be (and are) iden-
tified in long-standing and widely used code. New techniques converting apparently
non-vulnerable faults into vulnerabilities are also designed. Vulnerability discovery is
an adversarial process, in which those seeking to exploit faults keep innovating.
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Table 9.1: Vulnerability Dataset

Systems No. of Vulnerabilities Average CVSS No. of Vulnerable Components

Linux Kernel 1,202 5.41 1,508

Wireshark 265 4.99 221

OpenSSL 126 5.34 164

Total 1,593 5.38 1,898

A practitioner could only hope to train a predictive model on a partial ground truth
that would include miss-classified faults and code. Inevitably, some code would be
miss-classified as non-vulnerable, due to the presence of as-yet-undiscovered faults.
More importantly for vulnerability detection, some previously identified and apparently
innocent faults may subsequently turn out to induce vulnerability.

To address this issue of mislabeled data (also known as “mislabelling noise” [125, 174])
we also investigate the impact of noisy historical vulnerability data on the predictive
performance. That is, we construct a predictive model at time t, based on all vulnera-
bilities known at the time t, and use it for predictions in subsequent releases. Because
we also have information on additional vulnerabilities discovered in those subsequent
releases (and also present-yet-undetected at the time t), we thus have partial informa-
tion about Miss classifications that can yield insights into the resilience of predictive
models in the presence of realistic noise.

In summary this chapter makes the following contributions:

• It provides evidence that prediction modelling can indeed be effective (MCC
values of 0.80, 0.65 and 0.40 on Linux, OpenSSL and Wireshark).

• It shows that the RF is the algorithm working best for all considered approaches.

• It shows that relatively low precision is achieved when predicting severe vulner-
abilities, but overall with good top ranked suggestions (having 7, 5 and 1 severe
components in the top-10 ranks).

• It demonstrates that vulnerability prediction can identify all severe vulnerable
components by considering at most 60% of the systems’ components.

• Finally, it shows that performance is significantly inhibited by the needle effect
[167] (few vulnerable training instances compared to non-vulnerable ones) and
the availability of accurate data.

9.2 Experimental Environment

9.2.1 Studied Systems

Similarly to Chapter 7, we perform the study on a large dataset of vulnerabilities
gathered by the Data7 framework. The 3 projects with the largest number of vulner-
abilities were chosen, i.e., the Linux kernel, the OpenSSL library and the Wireshark
tool. Table 9.1 reports a summary of the collected data
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Yet compared to chapter 7 the decision was made to evaluate on a release basis in-
stead of a commit basis to be closer to realistic use cases. As such we use data from
previous release(s) to predict the vulnerable components of the next release. To char-
acterize such data, we map the vulnerabilities with the releases they affected (using
the NVD data). This is somehow safe, as we can approximate when each vulnerability
was removed given the exact vulnerability fix time. This mapping is realized by the
“organize” component of the FrameVPM framework introduced in the last chapter.

All in all, the investigation was done on 64 versions of Linux from 2.6.12 to 4.15, 22
versions of Wireshark (all major, i.e., ending with 0), 10 versions of OpenSSL (all
major).

9.2.2 Selected Approaches and Classifiers

Similarly to chapter 7, we chose to investigate the three main VPM approaches, i.e.,
Imports and Function Call, Bag of Words, Code Metrics. Yet, to avoid bias from a
specific classifier we considered five popular ones, i.e., AdaBoost, J48, KNN (k=5),
LR and RF. These classifiers are typically used in prediction studies. To train and
evaluated the models we used the learning component of FrameVPM (8).

As mentioned before in Chapters 2 and 7 the dimensionality, i.e., the number of
features, can be a problem. In Code Metrics, the feature matrix has a fixed number
of columns, i.e., one per metric. This is not problematic, but Imports, Function Call
and the Bag of Words approaches have a non-constant number of columns (these
are determined by the features extracted from the training set), which is likely to
introduce dimensionality issue. To handle this we used minimum support as suggested
by Neuhaus et al., [133] and set it to 5%.

9.3 Research Questions

In this section, the research questions we aim to answer in this empirical study are
discussed, while Section 9.4 describes in greater details the experimental design and
analysis we undertook to answer them.

In prediction modelling, a good practice is to analyse the characteristics of the un-
derlying data to better understand the problem. This kind of analysis similar to the
one presented in Chapter 5 can explain poor results like for example, if we have a
significant prevalence of non-severe issues, it is expected that the prediction models
are unable to perform well. This motivates the first question:

RQ1: How many and how severe are the reported vulnerabilities in security intensive
subjects?

To answer RQ1 we count for each considered release of the systems, the ratio of vul-
nerable components and distribution of severities.

After checking data quality, we proceed to design and build prediction models. In
particular, our second research question investigates how effective are prediction models
at identifying vulnerable components between consecutive software releases:

RQ2: How well the models identify vulnerable components between software releases?
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This investigation is needed to confirm the results obtained in chapter 7. To answer
RQ2 we carry out a comprehensive empirical analysis of 74 releases of our three subject
systems by using five classifiers, i.e., AdaBoost, J48, KNN, LR and RF, with three
different sets of independent variables gathered following the approaches proposed in
previous work, i.e., Imports, Function Calls, Code Metrics and Bag of Words.

If we confirm that prediction models can identify vulnerable components, we can turn
our attention to predict the severity of such vulnerabilities, thus asking:

RQ3: Do prediction models identify severe vulnerabilities?

To answer RQ3, we use the same techniques and independent variables as for RQ2,
but restrict our attention to severe vulnerable components, i.e., we predict whether a
component is likely to hold a severe vulnerability or not (binary dependent variable).
Following the recommendation of NIST (CVSS v2.0 and v3.0 Ratings) [22] we consider
severe the vulnerabilities with a CVSS value higher than 7.

Once we assess the predictive ability of the models, we further investigate whether
augmenting the training sets with more information, either human- or defect-based,
could improve the performance of the above prediction models:

RQ4: Can we improve the accuracy of severe vulnerabilities prediction by providing
prediction models with either severity- or defect-based information?

To answer RQ4, we repeat the analysis carried out for RQ3 but we use modified
training sets to build the models, and compare their performance against the models
built using the original training sets. In particular, we include in the training sets
custom weights to the vulnerabilities based on their CVSS values and also on defect-
related information. We examined three ways to assign the weights: Assigning the
exact CVSS number as weight, assigning a larger weight to the severe vulnerabilities,
assigning a lower weight to those components which were defective but still considering
them as vulnerable.

To better understand the robustness of vulnerability prediction, we evaluate the ability
of the methods at specific corner cases such as vulnerable components that were fixed
at the evaluation time. In particular, we evaluate the prediction probability produced
by the models on components directly before and after vulnerability fixes, which has
been an overlooked aspect in literature [110]:

RQ5: How sensitive are the prediction models at contrasting components before and
after vulnerability fixes?

Another frequent issue regards the creation of models based on incomplete or misla-
belled data [174]. In the case of vulnerability prediction, this problem can occur when
vulnerabilities that have not been yet reported at the training time are part of the
training data as non-vulnerable components. This fact can mislead the classifiers as
it mistakenly learns vulnerable components as clean. To investigate this, we train the
prediction models using the information available at release time and evaluate against
previous results. Thus, we ask:

RQ6: How sensitive are the prediction models to vulnerabilities unreported at the time
of training?
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9.4 Experimental Design and Analysis

9.4.1 Methodology

To evaluate VPMs and answer our RQs we performed the following analysis using the
FrameVPM framework.

For every considered release, we iteratively train on the previous release(s) and evaluate
on the current one. We consider two typical cases, training on the last release, similar
to Hovsepyan et al., [78] and Harman et al., [73], and training on the last three releases,
similar to Shin et al., [167, 171]. We start the evaluation from the fourth release and
on (since we need at least three releases to train on). We consider releases with at least
10 vulnerable components. This restriction is mandatory in order to have sufficient
data for analysis.

This means that we ended up evaluating on 61, 6 and 7 releases of Linux, Openssl and
Wireshark.

A usual problem in prediction modelling and especially in VPM is the class imbalance
one [44]. This is because we have few vulnerable components (less than 10% per
release) compared to the non-vulnerable ones, which makes it hard for the classifiers
to identify the properties of the minority class, which is the one of interest. To deal
with this issue we investigate the use of the SMOTE Algorithm [44]. In particular we
repeated our experiments with and without it. All previous studies just let their data
as such or chose to apply an over or under sampling algorithms such as SMOTE but
never investigated the impact of using one.

Another usual issue, regards the use of classification algorithm with the different ap-
proaches. As it is not certain which classifier fits best with a given approach for the
problem at hand, we examined their combined use on the data.

9.4.2 Pre-Analysis

The experiment involves a large number of settings that require the repetition of the
analysis 35,520 times, as we need to investigate 4 approaches with 5 classifiers, 2
validation ways (using the last three or one releases), 2 ways of handling imbalance
(using/not using SMOTE) for the 3 systems of interests (74 releases studied in total)
and for 6 different independent variables (answering RQs 2, 4, 6). To deal with this
issue, we first determine the best combination of the pair (classifier, prediction method)
for all the releases on our corpus and then we applied the best-performing ones to
answer the RQs. In particular, we gathered the results of RQ2 for all combination and
ranked the performance of the classifiers for a given approach. Then, we computed
the average rank of all pairs and normalized them to obtain a value between 0 and 1.
This score indicates the best classifier for each approach. The results are presented in
Table 9.2 and show that the best general ranking is RF (it achieves the best results in
all columns). Therefore, we used this pair in our analysis. The best general ranking is
RF (it achieves the best results in all cases). Therefore, we used this pair in the rest
of the analysis.
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Table 9.2: Relative ranking of classifier-method pairs

The values indicate the ratio of best performing method among the results of the
method (best combination per column). It is noted that these are ranking-based results
(normalized according to each method-column) and are not comparable between methods
(rows are not comparable).

Classifier Bag Of Words Code Metrics Function Calls Imports

AdaBoost 0.41 0.22 0.39 0.30

J48 0.75 0.64 0.67 0.69

KNear 0.52 0.64 0.41 0.56

LR 0.56 0.62 0.66 0.55

RF 0.75 0.87 0.86 0.90

We then evaluate whether we should use SMOTE or not and whether we should train
on the last three releases or just on the last one. We thus, computed all the MCC values
and compared them using the Wilcoxon signed rank test. We found that SMOTE can
sometimes have a positive effect, with statistically better performance metrics for all
the approaches and classifier combination we examined. We also found no statistically
significant differences between the last releases and the last three releases. Though,
we decided to perform our analysis using the last three releases as it provided slightly
more stable results than when using just the last one.

In conclusion, in the rest of the analysis we use the following settings: training using
SMOTE on the last three releases with the RF classifier.

9.4.3 Performance Measurements

To evaluate the effectiveness of the studied classifiers, we rely on precision and recall
and MCC metrics presented in Chapter 1.3.3.

Yet, classifiers are in fact not directly returning a class in which an element is suppos-
edly belonging, but are instead returning a probability of the said element to belong
to a class. This probability can then be used to classify the element into one of the
classes, depending on a threshold. This probability of a component to be vulnera-
ble according to a model that we call Prediction probability PredP , can be used as a
ranking basis where component would be ranked in ascending order. The position of
a specific component in this ranking gives us its relevant ranking, which we denote as
RR.

Since we are interested in a subset (severe vulnerabilities) of our classification results,
we also need a metric related to the effort put in by the users. We thus, consider
the number of components that need inspection in order for someone to inspect all
vulnerable components. We define this metric as:

Score = #components need inspection
#components
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The Score metric represents the effort needed to inspect all vulnerable components.
As users may focus on the most likely cases, we also need a metric focussing on the
top ranked components. We define the top-n metric. This is defined as the number of
vulnerable components in the top n places of the RR. We use n value of 10. When
there are multiple vulnerabilities in one component, we consider the component as
vulnerable and retain the most severe vulnerability score.

9.4.4 Analysis

To answer RQ1 we record the number and distribution of severity values of the systems
components we analysed. We report the results as boxplots per release and analysed
system.

To answer RQ2 we evaluate the prediction ability of the studied methods by using the
performance metrics (recall, precision and MCC).

To answer RQ3 we evaluate the prediction ability of the studied methods to pinpoint
severe vulnerabilities (vulnerabilities with CVSS above 7) using the performance met-
rics (recall, precision and MCC). We also evaluate their RR according to the Score
and top-10 metrics that we defined in Section 9.4.3. This is done by considering vul-
nerabilities with CVSS above 7 as vulnerable and the others as non-vulnerable (during
the evaluation).

To answer RQ4 we assign customize weights related to vulnerability severity on the
vulnerable components. This can potentially give a higher value on the components
with higher CVSS and result in better severe vulnerability predictions. More precisely,
we examined three strategies; CVSS using the CVSS values as training weights; Severe
using a weight of two for the components with severe vulnerabilities, while weight of
one for the rest; CVSS & Buggy similar to CVSS strategy, by considering buggy files
as vulnerable with weight of one.

It is noted that the CVSS & Buggy approach attempts to further tackle the class
imbalance problem by augmenting the vulnerable component set with defective com-
ponents, as suggested by Shin et al., [171]. We thus, mined defects for the programs
under analysis by searching the commit messages for bug identifiers. Then, by con-
sidering defects as vulnerabilities (only on the training phase) and assigning them a
much lower weight than that of vulnerabilities we attempt to better tune our classifiers.
We evaluate the methods by repeating the analysis of RQ3 on the specific weighted
training sets.

To answer RQ5 we evaluate the prediction ability of the studied methods by comparing
the PredP of the vulnerable components before and after their patching obtained from
RQ2, as described in Section 9.4.3.

To answer RQ6 we evaluate the ability of the methods by training on the set of known
vulnerabilities (at release time) and evaluating on the whole set of vulnerabilities. The
evaluation is performed by repeating the analysis of RQ2 with altered training sets.
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Figure 9.1: Ratio of vulnerable components per release (RQ1).

(a) Openssl (b) Wireshark (c) Linux Kernel

Figure 9.2: Distribution of severities, per release (RQ1).

9.5 Results

9.5.1 RQ1: Prevalence and Severity of Vulnerabilities

Figure 9.1 shows the ratio of vulnerable components per release for the three considered
projects. This data shows that the ratio of vulnerable components is between 1-7%
for all the systems we studied. Such a ratio indicates a largely unbalanced dataset,
which can be challenging for the prediction modelling methods. We also observe that
the number of vulnerable components rises up each major release.

Figure 9.2 shows the distribution of the severities (CVSS values) of vulnerable files.
We see that for all three projects, the distribution of severities is relatively constant
over the releases. The results of Wireshark seem more disparate, which is due to the
few data points involved.

9.5.2 RQ2: Performance of Vulnerability Prediction

Figure 9.3 records the distribution of the predictions’ evaluation metrics (MCC,
Precision and Recall) for all methods and subjects we consider. Interestingly, the
results are consistent for all the studied subjects, with the Bag of Words and Function
Calls methods achieving the best results, i.e., yield the highest MCC. Code Metrics is
the most precise method, but overall this advantage is small. With respect to recall,
Bag Of words clearly outperforms the other methods.
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Figure 9.3: Performance metrics for all vulnerable components (RQ2).

We also observe very good results for the Linux subject with median values of MCC,
Precision and Recall being above 0.8 for all approaches (except the recall of CodeMet-
rics). The results for OpenSSL are lower than those of Linux, but overall good. The
results of Wireshark are much lower with Recall and Precision values less than 0.5.
This is mainly due to the low prevalence of vulnerabilities in the project releases of
Wireshark as we showed in RQ1.

To further validate our findings, we perform inferential statistical analysis on our re-
sults. The lower triangular of Table 9.3 records the p-values and the effect size measures
Â12. Focusing on the white cells, we can observe that all the p-values are significant and
all Â12 are lower than 0.5 indicating that Bag of Words achieves the best prediction
results (though without sizeable difference).

Overall, statistical analysis confirms the box plots observations: there is a small degree
of variation in the performance of the different approaches over different programs.
Nevertheless, based on our data, we can conclude that Bag of Words offers the best
performance.

9.5.3 RQ3: Performance of Severe Vulnerability Prediction

Figure 9.4 presents the results related to severe vulnerabilities. As expected, perfor-
mances are decreased as we focus on fewer instances, i.e., only on severe vulnerabil-
ities. Yet, this analysis shows that the relative performance differences between the
approaches is small and the trends are slightly different from those shown in RQ2. We
see that the Bag of words outperforms the other approaches on OpenSSL and Linux,
but not in Wireshark. In Wireshark the code metrics is the best performing approach.

The upper cells of Table 9.3 indicate that Bag of Words is the best performing approach
with all Â12 score above 0.5. Though, the difference between the Bag of Words and
Function Calls is so small that it could be characterized as unimportant.

Having compared the performance of the prediction methods, we evaluate the best
performing one, i.e., the Bag of Words, with the score and top-10 metrics. Figure 9.5,
presents the scores and top-10 for all vulnerable components and only the severe ones.
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Table 9.3: RQs 2-3

This table comprises two separate triangular sets of results. The lower triangle presents results comparing approaches
based on all vulnerable components, while the upper triangle shows results comparing approaches based on severe
vulnerable components. Each cell contains a p-value and a A12 (line, column) effect size measurement.

Bag Of Words Code Metrics Function Calls Imports

Bag Of Words - 1.10E-03/0.53 1.38E-04/0.51 1.27E-04/0.53

Code Metrics 1.34E-13/0.44 - 0.9405/0.49 2.23E-02/0.50

Function Calls 5.72E-10/0.47 5.87E-05/0.54 - 0.1796/0.51

Imports 1.78E-19/0.41 1.80E-04/0.46 5.74E-15/0.43 -
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Figure 9.4: Performance metrics for severe vulnerable component (RQ3).

We observe that the score related to all vulnerable components is poor, especially for
the Linux Kernel with a median above 0.9. This means that 90% of the components
need to be inspected in order to inspect all vulnerable components. Yet when inves-
tigating the score of severe predictions, we observed an important decrease indicating
that severe vulnerabilities are ranked much higher.

Regarding the top-10 metrics, we observed that for the Linux Kernel and OpenSSL al-
most all the first 10 files are vulnerable which indicates good performance. Predictions
of the severe vulnerabilities are much lower, which means that most of the top-ranked
components are not severe vulnerable.
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Figure 9.5: Score & top-10 metrics for Bag of Words (RQ2, RQ3).
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Figure 9.6: Performances for the five weighting strategies (RQ4).

9.5.4 RQ4: Augmenting Training Data to Improve Predic-
tions

Figure 9.6 presents the performance of the three adopted strategies along with the
standard one (all weights set to 1) with and without SMOTE. The figure presents the
distributions of MCC, Precision and Recall for Bag of Words. We observe that the
strategies have a small impact on precision (with the exception of the ‘bug’ strategy).
This can be explained by the fact that only in the ‘bug’ strategy we are altering the
learning phase by adding examples. Interestingly, we observe that it is possible to
increase the recall with the CVSS and buggy strategies indicating that we can trade
precision with recall. By inspecting the MCC values we see that the CVSS strategy
cannot really improve the results as it improves them in OpenSSL and Wireshark but
worsen them in Linux.

Interestingly, we observe that the adopted strategies help prioritize severe components
by ranking them higher. This is shown in Figure 9.7 which depicts the score and top-
10 metrics. In particular, we observe that score values have not changed, while the
top-10 values have significantly improved. In the normal case 4, 9 and 9 out of the
top-10ranked components in the three systems we study are vulnerable, with 1, 3 and
3 of them being severely vulnerable, while ‘severe’ strategy improves to 1, 5 and 7.

Overall these results suggest that it is possible to prioritize by ranking at the top places
the most severe vulnerabilities but not to prominently improve prediction performance.
A potential explanation is that the CVSS values are human computed scores, which
are non-deterministic. Another explanation can be that we still train on all vulnerable
instances. Nevertheless, it is still interesting to see that a model based on defects
performs well in OpenSSL. A potential explanation of this is that due to the nature of
OpenSSL, its bugs have stronger links with vulnerabilities than in the other projects.

9.5.5 RQ5: Sensitivity to Vulnerability Fixes

Figure 9.8 shows the difference in probability of a component to be vulnerable before
and after a vulnerability fix. We expect this value to be negative since fixed components
should be less likely to be vulnerable. However, our results show that this is not the
actual case.
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Figure 9.7: Score and top-10 metrics for Bag of Words (RQ4).
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Figure 9.8: Vulnerability probability before and after vulnerability fix (RQ5)

This can be seen as a sign that prediction models indicate components that pro-
vide good opportunities for vulnerabilities to emerge. In view of this, the fact that
the model points out to components where vulnerabilities observed indicates that the
model somehow does what it is supposed to do. Nevertheless, what the prediction
model actually does is to learn from features that are related to the vulnerabilities
such as dangerous function calls. These features are unlikely to change much when
vulnerabilities are fixed.

9.5.6 RQ6: Sensitivity to Mislabelling Noise

This RQ investigates the practical applicability of the prediction models. Thus, it
investigates the predictions that one can achieve by using the reported vulnerabilities
at the software release time. This means that the training happens on the reported,
at the release time, vulnerabilities. This fact introduces noise and bias on the predic-
tion methods as vulnerable components that have not been reported at that time are
considered (labelled) as non-vulnerable. Additionally, training on the available infor-
mation results on an overall small number of vulnerable components, which makes the
problem severely unbalanced.

Figure 9.9 shows our results. ‘experimental’ results are those obtain with the knowledge
of all vulnerabilities (all vulnerable components are labelled as vulnerable and all non-
vulnerable are labelled as non-vulnerable). ‘realistic’ results are those obtained with the
restrictive knowledge of vulnerabilities (labelled vulnerable components are those that
have been reported at the release time, while the rest are labelled as non-vulnerable).

Finally, ‘noiseless’ results are those obtained when removing the vulnerable components
from the training set (labelled vulnerable components are those that have been reported
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Figure 9.9: Prediction performance with subsets and noisy data (RQ6).

at the release time, vulnerable components related to unreported vulnerabilities are
removed and the rest are labelled as non-vulnerable). This ‘noiseless’ results allow
controlling for misclassification and unbalanced.

The figure shows a drastic drop-of-all-performance indicators between the ‘experimen-
tal’ set and the ‘noiseless’ set. This drop is attributed to the reduction of data in the
minority class which creates an even more unbalance training set, whereas the smaller
difference between ‘noiseless’ and ‘realistic’ corresponds to the effect of the noise in-
troduced by misclassifying actual vulnerable files as non-vulnerable in the training set.
We observe that this effect is smaller in comparison to the other when it comes to
comparing the ‘realistic’ set with the ‘experimental’ set.

9.6 Threats to Validity

Potential defects in our FrameVPM framework may unintentionally influence our re-
sults. To reduce this threat, we carefully inspected our code and tested it. Threats
may also arise due to the classifiers configuration. All classifiers were configured with
the hyper-parameters setting of WEKA: although using a same default setting allowed
us to compare all the techniques on a level playing field, performing hyper-parameter
tuning could further improve performance [160, 117, 61, 175].

Also, we did not use the SVM classifier as in the study of Neuhaus et al., [133] due
to technical problems with WEKA when using it on the bag of words and metrics
methods. Nevertheless, we achieved better results with RF than with the SVM for the
particular case of Neuhaus et al., Additionally, previous research on bag of words [161]
and metrics [167] showed that RF and LR performed better than SVM.

Finally, it is not possible to claim that the results generalize beyond the subjects
studied. However, to reduce this threat, we studied three large open-source systems
with a large number (3-4 times larger than in previous studies) of real (reported in
NVD) vulnerabilities.
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9.7 Related Work on Bug Severity Prediction

Previous work has focused on the construction of vulnerability prediction models but
no previous study has investigated the severity of vulnerabilities, while bug severity
has been considered in previous study. This section offers an overview of such studies.

Menzies and Marcus [124] proposed a rule learning technique to assign severity levels
to bug reports. They tokenize bug reports, perform stop word removal, stemming and
use term frequency-inverse document frequency, information gain and a classification
approach named Ripper rule learner [51].

Lamkanfi et al., [108] used text mining to assign severity levels to bug reports. This
method extracts word tokens, processes them, and feeds them into a Naive Bayes
classifier. Different from Menzies and Marcus, they classify coarse grained bug severity
labels, i.e., severe/non-severe, based on Bugzilla severity classesand omitting normal
severity bugs from their analysis. Subsequently, Lamkanfi et al., [109] extended their
work by exploring additional classification algorithms and showing that Naive Bayes
classifier performs better than other approaches on a corpus of 29,204 bug reports.

Chaturvedi and Singh [42] observed that specific machine learning techniques are ap-
plicable in determining the bug severity levels with reasonable accuracy and f-measure.
The same authors [43] predicted the severity of close source (NASA’s PITS Projects
and Issue Tracking System) and open-source projects (Eclipse, Mozilla and GNOME)
using the same techniques and found that SVM works reasonably well for open source
and NB for closed source projects.

Tian et al., [179] proposed an information retrieval based the nearest neighbour
method. Similar to the work by Lamkanfi et al., [108, 109] they consider bug re-
ports on Bugzilla repositories of various open-source projects and benchmarked their
approach with that of Menzies and Marcus [124] on a corpus of more than 65,000
bug reports. The results of this study revealed that the approach of Tian et al., [179]
achieved significant F-measure improvements.

Yang et al., [195] proposed a method for the bug triage and bug severity prediction
that uses historical bug reports for extracting topic(s) and then maps the bug reports
related to each topic. The authors found that reports having similar multi-features
(e.g., component, product, priority and severity) with new bug reports can be used to
suggest the most appropriate developer to fix each bug and predict bug severity.

Zhang et al., [198] proposed a concept profile-based severity prediction technique that
analyses historical bug reports and builds concept profiles. The authors evaluated the
performance of their proposal to use bug reports from the bug repositories of Eclipse
and Mozilla Firefox finding that it works effectively for prediction of the severity of a
given bug.

Tian et al., [180] pointed out that the proposed approach to assess the performance of
automated classification approaches, which factors in the noisy nature of bug reports.
Armaghan et al., [30] attempted to predict the severity level of bug reports opened in
future releases/development cycles. They used a text mining to extract the summary
terms and trained a classifier using these terms.
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9.8 Conclusion

In this chapter, we presented the largest empirical study on vulnerability prediction
models. This study done with FrameVPM shows that VPM can indeed reach good
performance when trained on sufficient and accurately labelled data. However, per-
formance becomes poor when considering realistic partial and miss-labelled data. The
miss-labelled data together with the needle effects [171], vulnerabilities are the major
factors behind this drop in performance. The study also shows that severe vulnerabil-
ity prediction is possible and can be improved. A final finding is the poor performance
of the said models to detect a fix of vulnerabilities. This confirms that models should
be used as a guide for the review process but not as accurate detectors.
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Wrapping Up Part III

In the second part of the thesis the emphasis was put on how to collect and better
understand vulnerabilities. In this second part, the focus was shifted to the comparison
of existing VPMs in order to address the second challenge. In the first Chapter 7,
an exact independent replication of three of the main approaches was presented. This
replication was performed on a dataset of Linux kernel vulnerabilities under different
settings. Evaluating the ability of the models to distinguish either between bugs and vul-
nerabilities, either vulnerabilities in a largely unbalanced dataset. Overall, the results
suggested that approaches based on Imports and Function Calls offered the best trade-
off memory/time/performance while Bag of Words approach was the best performing
one. Performing this study highlighted the fact that replicating and comparing exist-
ing approach is a hard and time-consuming task. To enable further research in the
area to compare themselves with current state of the arts techniques, Chapter 8 intro-
duced FrameVPM a framework to evaluate VPMs. This framework is then used in the
Chapter 9 to perform the largest empirical study on VPMs. This study confirmed that
existing approaches can reach great performances in experimental setting but face sig-
nificant drop in performance when facing more realistic with partial and miss-labelled
data. Additionally the study validated that the output of the models should be used as
a guiding process and not as indicators as the model often fail to detect fixes. On the
other hand, the study also showed that severe vulnerability prediction is possible and
can be improved.
The next part will focus on the “Naturalness of Software”.
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11
An Empirical Study on the Use of

Naturalness on Source Code

Source code like natural language is composed of small snippets that are repetitive and
follow predictable patterns. This phenomenon called by researchers as naturalness of
the language can be used to build language models. Recent research shows that language
models, such as n-gram models, are useful at a wide variety of software engineering
tasks, e.g., code completion, bug identification, code summarization, etc. In this part,
we aim at building a VPM approach based on them, yet, the use of such models re-
quires the appropriate set of numerous parameters. Moreover, the different ways one
can read code essentially yield different models (based on the different sequences of
tokens). In this chapter, we focus on n-gram models and evaluate how the use of to-
kenizers, smoothing, unknown threshold and n values impact the predicting ability of
these models.
This chapter is based on work that has been published in the following paper:

• On the Impact of Tokenizer and Parameters on N-Gram Based Code Analysis
(ICSME’18)
M Jimenez, M Cordy, Y Le Traon, M Papadakis
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Chapter 11. An Empirical Study on the Use of Naturalness on Source Code

11.1 Introduction
NLP [95] techniques realize the assumption that humans exploit partially the complex-
ity of the language by following particular norms. Thus, natural language is composed
of small snippets that are repetitive and follow predictable patterns. This phenomenon
is called by researchers as the naturalness of the language. Recently, the study of Hin-
dle et al., [77] showed that source code follows the same trend. This means that code
(small code snippets) is also repetitive and predictable.

This observation paves the way for using statistical language models for code analysis.
Among the possible usage of those models, we are especially interested in applying
them to build a VPM approach. This application seems promising as such models
have been proved useful for providing code completion [77], complementing static bug
finders [156, 186], automatically generating code explanations [82] and synthesizing
code from natural-language specifications [114]. Many other interesting applications
exist and have been surveyed by Allamanis et al., [25].

N-gram models operate by tokenizing documents, i.e., breaking these into words, and
calculating the number of times every sequence of n words appear in a given document
corpus. Based on that they estimate the likelihood that a given sequence appears.
Their application requires setting parameters such as the length n of the sequences,
the unknown threshold (ignoring tokens that appear fewer times than the threshold)
and the smoothing technique (scoring unknown sequences).

In the case of code, the appropriate way of tokenizing documents e.g., source files is
not evident as code can be processed in many ways. Naturally, one can read code as
any text document, that is, typically from left to right and top to bottom. However,
developers tend to follow the flow of the program (that is not necessarily sequential)
by taking advantage of the code characteristics, e.g., the grammar (programming lan-
guage) used, while automated tools like compilers rely on program abstractions such
as flow graphs and AST.

Overall, the prominent use of n-grams for source code analysis requires setting a num-
ber of parameters. Previous work in the area set them as in the case of natural
language. However, given the differences between code and natural language, it is im-
perative to revalidate and tune the application of the language models in the context of
code. This is because there is no empirical evidence related to the generalization of the
existing results, from the natural language field to the source code analysis field. For
instance, choosing the most appropriate smoothing technique (way of treating unseen
sequences), is not evident due to the vocabulary and structural differences between
code and text. Moreover, as there is a plethora of parameter possibilities, there is a
need for checking the sensitivity of the models w.r.t. these choices and the overall
impact of the untuned parameter selection.

We therefore, investigate the effect of code representation on language models. We use
the tokenizers presented in Table 11.1. The first two correspond to “an outsider’s point
of view”, i.e., the reader does not have knowledge about the code structure. The next
two correspond to “a developer’s point of view”, i.e., the reader knows the grammar
of the language. Whereas the last four correspond to “the automated tools point of
view”, i.e., the reader is a parser transforming code to a representation like AST.
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The differences of ‘UTF’ with ‘UTF woc’ and ‘Java Parser’ with ‘Java Parser woc’ are
due to the way comments are handled. This differentiation is useful as comments can
generate noise in the models. The last four tokenizers differ from the way an AST is
processed (typically in depth-first or in breadth-first order), and whether or not the
AST is pruned of redundant nodes. This is important as language models work with
sequence of tokens, which in this case are the different orders that one can visit the
tree representations.

In this chapter, the problem of tuning n-gram models to a given purpose is addressed
by evaluating 120 different configurations of n-gram models (6 n values, 4 smoothing
techniques, and 5 unknown thresholds) combined with the above-mentioned tokenizers.
These configurations are implemented in a tool publicly available presented in Section
11.8. In the first part of the evaluation, we assess the capability of the configurations
to capture regularities within 20 open-source Java projects.

For each project and configuration, we compute the cross entropy of the project. The
cross entropy is a measure commonly used in NLP to assess the efficiency of a language
model. Intuitively, it represents how “surprised” a model trained on a given set of
documents is when it encounters an unseen one. Therefore, the best configurations
should give the lowest entropy, given that one can find local regularities within a given
project [77, 181]. This allows us to check the sensitivity of the approach with respect
to the studied configurations.

Comparing tokenizers is tricky as each involves its own specific building blocks. Thus,
entropy values cannot be compared directly. We bypass this problem by comparing the
tokenizers according to the relative entropy differences and the entropy-based rankings
of source code files, i.e., we measure whether models judge and select the unlikeliest
or likeliest files similarly.

To further strengthen the study, in the third part of the evaluation we consider a
particular experimental scenario and demonstrate that the use of different tokenizers
leads to contradictory conclusions. We thus investigate whether buggy files are more
likely to have higher cross-entropy values than non-buggy ones, and whether fixing
bugs results in a reduced file cross-entropy. These objectives were inspired by the
study of Ray et al. [156] and represent a concrete example of research that can be
influenced by n-gram model tuning.

Overall, the study involves 20 large open source Java projects and a dataset of 3,800
bugs. The results show that the Modified Kneser-Ney smoothing technique performs
best. Choosing an n value equal to 4 or 5 seems to be the most appropriate choice
for all tokenizers. Perhaps more importantly, we find a large disagreement between
the tokenizers and show that not all of them are appropriate for particular problems.
We further demonstrate this by investigating the link between entropy and bugginess,
showing that only 2 out of our 8 tokenizers are capable of exploiting this link.
Interestingly, our results show that the closer, to human perspective (unprocessed
code), the used tokenizer is, the better the model is at detecting the effects of bug
fixes. In this regard, tokenizers treating code as pure text are thus the winning ones.
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Table 11.1: Studied Tokenizers

Tokenizer Representation Delimiter Technology Specificities
UTF Raw Non-Alphanumeric Terrier -
UTF woc Raw Non-Alphanumeric Terrier without comments
Java Parser Raw Java Grammar Java Parser -
Java Parser woc Raw Java Grammar Java Parser without comments
AST Depth First AST Node Java Parser depth first
AST Breadth First AST Node Java Parser breadth first
Pruned AST Depth First AST Node Java Parser Pruned, depth first
Pruned AST Breadth First AST Node Java Parser Pruned, breadth first

In summary this chapter makes the following contributions:

• It identifies and explores the impact of different parameters on the predictability
of the n-gram models for code.

• It demonstrates large disagreements between the predictions of models that use
different tokenizers.

• It provides evidence that untuned n-gram models have the potential of biassing
research conclusions.

11.2 Background on N-Gram Models

Language models operate on sequences of words and compute their probability distri-
bution. In code analysis, such sequences are the code fragments such as source files,
Java classes or specific code lines. Words are the constituent tokens of the code frag-
ments. Let s = t1, . . . , tm be a finite sequence of tokens. We denote by P (t1, . . . , tm)
the non-zero probability that can be estimated for s by a given language model. The
model is first trained on a set of sequences, named the training corpus. The train-
ing process determines the probability distribution of the known sequences, which in
essence compose our model. The distribution typically results from the computation
of the maximum likelihood estimates, that is, the probability of a (sub-)sequence is
given by the number of times it appears in the training set divided by the number of
(sub-)sequences in the set.

N-gram models are a particular type of language models that are fast to train and
easy to use. Their origin can be traced back to Shanon’s work [163] that presented
the task of guessing the next letter in a text. Such models statistically estimate the
probability that a token follows a given preceding sequence. Accordingly, the prob-
ability of a sequence is defined as the product of the probability of each token to
follow its prefix. Thus, P (s) = P (t1)P (t2 | t1)P (t3 | t1t2) . . . P (tm | t1 . . . tm−1).
N-grams also assume a Markov property of order n − 1. Thus, the probability of
occurrence of a token in a sequence depends on the n − 1 previous tokens, i.e.,
P (ti | t1 . . . ti−1) = P (ti | ti−n+1 . . . ti−1). Then, the probability of a sequence becomes
a product of n-sized conditional probabilities. For example, for n = 3 the probability
of s is given by P (s) = P (t1)P (t2 | t1)P (t3 | t1t2) . . . P (tm | tm−2tm−1). Following the
above equation, an estimate of the probability of s is the product of estimates for its
constituent conditional probabilities (based on the training corpus).
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A maximum likelihood estimate for P (ti | ti−n+1 . . . ti−1) is obtained by dividing
the number of occurrences of ti−n+1 . . . ti by the number of occurrences of the pre-
fix ti−n+1 . . . ti−1.

Interestingly, the training corpus is not the only one that can impact the utility of an
n-gram model. There are multiple parameters that can influence these results, with
the most obvious one being the size n. To evaluate alternative models, one can carry
out intrinsic evaluations to measure the performance of the models on some unseen
data. In our case, this test corpus consists of code fragments that were not part of
the training corpus. Then a model m1 has a higher utility than a model m2 if it can
better predict the sequences of the test corpus. In other words, m1 assigns a higher
probability to the test corpus. In practice, one does not use the raw probability but
rather rely on a derived measure named cross entropy. It is given by :

H(s) = − 1

m
logP (s)

which, for an n-gram model of size n, is equivalent to

H(s) = − 1

m

m∑
i=1

logP (ti | ti−n+1 . . . ti−1)

A lower cross-entropy thus means a better model. Intuitively, the cross-entropy indi-
cates how “surprised” the model is when confronted to s. More formally it describes
the average number of bits required to encode the data from the test set that have
a distribution P using the code that is optimal for a distribution Q (the model built
using the training set).

The choice of the n-gram size n can have a major impact on the model utility. Indeed,
a higher n allows the model to better discriminate the sequences of tokens. However,
it takes a longer time and more memory to train since more sequences have to be
considered when computing the conditional probabilities.

Another point that can influence the model is the way it deals with unknown words.
It may indeed happen that the model encounters some tokens (in the test corpus)
that never appeared in the training corpus. The probability of this token is thus zero
according to the model, which leads to an infinite cross entropy. In source code, this
problem typically arises when new variable names are introduced. Of course, it is
unrealistic to consider all potential variable names. The vocabulary of our model is
thus not closed.

A common way to deal with this issue is to replace all words with less than k occur-
rences in the training corpus with a special token <UNK> (where k > 0). Since <UNK>

occurs in the training corpus, the model estimates and assigns some probability values
for this token. Then, each time an unknown word appears in the test corpus, the
model interprets it as <UNK> and assigns it a non-zero probability. The aforementioned
parameter k, named the unknown threshold, obviously affects the quality of the model
since it modifies the estimated probability value of every token.
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A similar problem occurs when dealing with data sparsity. As it is rather unlikely
to observe every possible sequence of tokens in a training corpus, it might happen
that sequences absent from the training corpus appear for the first time in the test
corpus. This is even more common than unknown words, especially for higher-sized
n-grams that work with long sequences. To prevent the model from assigning zero
probabilities to these sequences, several smoothing techniques have been proposed.
Intuitively, smoothing reserves a part of the probability mass for the unseen sequences,
and estimates a probability for known sequences based on the rest of the probability
mass. Smoothing has the effect of improving the accuracy of the models, especially in
the case of probability estimated from few counts.

There are many smoothing techniques but we only focus on the four most popular ones.
For additional details on the subject please refer to the comprehensive survey of Chen
and Goodman [47]. We study the following four techniques: Witten Bell [33, 188],
Absolute Discounting [134], Kneser Ney [103] and Modified Kneser Ney [47].

Witten Bell was first introduced for text compression, but it can be used for smoothing
language models as well. It is an instance of another smoothing technique called
Jelinek Mercer [86] where the n-th order smoothed model is defined recursively as a
linear interpolation of the maximum likelihood for n-th order and the (n-1)th order
smoothed models. This technique uses as λ the probability of observing an n-gram for
the first time, i.e., the number of n-grams appearing more than once over this number
plus the total count of n-gram.

Absolute Discounting involves an interpolation between higher order and lower order.
Instead of multiplying the higher order by a computed λ, a fixed discount is subtracted
from it.

Kneser Ney is an extension of Absolute Discounting with a cleverer way of computing
the discount, based on the idea that lower-order models are significant only when the
number of occurrences is small or zero in the higher-order model.

Modified Kneser Ney is a further improvement that uses three different discounts
depending on the number of occurrences of the considered n-gram.

Like the unknown threshold, the choice of a specific technique is important as it impacts
the cross entropy returned by the model. Earlier work on software naturalness [77]
argue that Kneser-Ney is the most appropriate, but have not presented detailed ex-
periments confirming this claim. As we will see, our experiments fill this gap and
empirically evaluate the different techniques w.r.t. other parameter values.
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11.3 Research Questions

Our aim is to investigate how the different parameters involved when building n-gram
models impact the source code analysis tasks. In particular we seek to investigate
the parameters related to the size n, the smoothing technique and the way code is
tokenized. This is important as the factual differences between natural language and
source code have not been exploited. For instance, natural language almost always
flows sequentially, while the source code includes many conditional jumps, which may
necessitate a different analysis. Therefore, the use of different tokenizers should play
a major role on the model’s utility. Thus, our first research question is:

RQ1: What is the impact of the different parameters on n-gram models when used
for source code analysis? Is there an optimal configuration for all tokenizers?

We answer this question by computing, for 8 different tokenizers, the average cross
entropy of 20 Java projects using 24 sets of parameter configurations, i.e., 6 n values *
4 smoothing techniques. Then we check whether optimal parameters stand out across
all the tokenisers.

Measuring the cross entropy provides an insight into the relative performance of studied
configurations. However, this information, i.e., low or high entropy values, says nothing
about the use of different tokenizers for distinguishing source code files with respect
to naturalness of code. Indeed, cross entropy measures the distance of the test corpus
from the generated model with respect to the involved building blocks of the model
trained on the training corpus. Different tokenizers rely on different views of the code
and hence result in models trained on different building blocks. Since the building
blocks differ, we cannot directly compare the tokenizers with cross entropy.

To bypass this problem, we compare the tokenizers with respect to the relevant infor-
mation they provide, i.e., their ability to distinguish and rank source code files (natural
and unnatural ones). Hence our second research question regards the information that
different tokenizers learn:

RQ2: Do models built based on different tokenizers learn the same information for
the same code?

To answer RQ2 we consider specific configurations that return good results (in terms of
lower cross entropy). Then, we measure the relative agreement between the tokenizers,
by computing the correlation between the cross-entropy values they provide on the
source code files we study. We deem this comparison as valid as it measures the
relative volume of agreement between the entropy value differences and their relative
rankings with respect to a set of source code files. We also consider the correlation
between these entropy values and the number of lines of code in order to check the
effects of size on our results. Strong correlations indicate a large agreement between
the tokenizers, while weak correlations indicate a disagreement.
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As we will see later, our results show a large disagreement between tokenizers. Yet, it
is unclear whether these differences are capable of impacting the findings of research
studies. Thus we ask:

RQ3: Does the use of different tokenizers has the potential of impacting research
results?

To answer this question, we set a simple experiment investigating whether buggy files
are more likely to have higher entropy values than non-buggy ones and whether fixing
bugs results in a reduced file entropy. These objectives were inspired by the study
of Ray et al., [156], which investigates the link between buggy lines of code and
naturalness (and the impact of bug fixes on it).

Finally, we investigate the use of a ‘special’ parameter of the n-gram models. This is
the unknown threshold k, which determines the confidence on the estimations made
by the models. This is a special parameter as it involves a trade-off between the
accuracy of the model and the information it captures. Thus, by setting the threshold
at higher values we get more accurate but also more coarse-grained models. Therefore
we investigate:

RQ4: What is the impact of setting the unknown threshold at different levels?

We examine this issue by using 5 unknown thresholds k and measuring their impact
on both entropy and results of RQ3.

11.4 Methodology

In this section, we first introduce the dataset we used in all of the experiments. Then
we present the toolchain that we developed to build n-gram models out of the source
code and carry out analyses on these models. Finally, we describe the evaluation
process.

11.4.1 Test Subjects

To answer the research questions, we rely on data gathered from 20 open source soft-
ware from the Apache Commons project [59]. Apache Commons comprises reusable
open source Java software projects which are intensively developed and maintained.
At the time of writing this paper, a query about “org.apache.commons” on Github re-
turned close to 7,000,000 different Java files. This indicates that the selected projects
are popular.
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Table 11.2: Dataset Statistics

Project Latest Files kLoC Versions Bugs
BCEL 6.1 488 75 5 93
BeansUtils 1.9.3 257 72 18 155
CLI 1.4 50 12 6 91
Collections 4.1 525 118 12 186
Compress 1.15 329 70 18 309
Configuration 2.2 457 125 15 325
CSV 1.4 28 8.4 5 67
DBUtils 1.7 92 15 8 23
EMail 1.4 47 12 8 51
FileUpload 1.3.3 54 10 10 67
IO 2.5 227 55 14 213
JCS 2.2.1 562 102 6 102
Jexl 3.1 108 23 8 126
Lang 3.6 318 141 20 567
Math 3.6.1 970 218 16 830
Net 3.6 270 59 20 246
Pool 2.4.2 79 24 22 154
Rng 1.0 124 14 1 3
Text 1.1 104 25 2 38
VFS 2.2 382 52 4 214
Total - 5,471 1,230 218 3860

Building our experiments around Apache Commons projects has many benefits. First,
the projects follow strict development guidelines. This fact has a potential effect of
improving the performance of language models (as repetitiveness is encouraged). We
deemed this as an advantage as it reflects industrial settings where code conventions
and implicit coding rules are followed throughout whole companies. Second, each one of
the selected projects has its own usage context and implements different functionalities.
This fact challenges our models, whose performance should generalize over all projects.
This counterbalances the facility offered by coding conventions while further increasing
the transferability of the results to real-world or industrial projects (indeed, a company
typically develops software for slightly different application domains). Third, every
Apache Commons project report their bugs on the same platform with similar reporting
guidelines. This facilitates the creation of a bug dataset, which is required to address
RQ3.

Apache Commons involve 41 projects. We selected 20 based on the following criteria:
Date of the last update. A recent update indicates that the project is still active
and of interest. It also means that developers continue to fix bugs.

Size of the project. A larger project increases the size of the training corpus, and
thereby reduces the risk of overfitting for our models.

Length of project history. A long history usually implies a higher number of bugs
to study and the possibility to observe whether results generalize over releases.
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From the data of the 20 projects we select (recorded in Table 11.2), we analyse their
Java files. Everything else was not considered as it contains irrelevant information for
the study. In the first two and the last research questions we analyse the source code of
the latest project release. For the third research question, which involves the analysis
of bugs, we had to go back in the project history in order to identify and collect a large
set of bugs. As a consequence, we had to gather multiple releases of the projects and
identify the versions containing the studied bugs. We also had to identify the versions
where these bugs were removed (fixed). As this process is really similar to the one of
the Data7, we implement the following procedure:

1. We crawl the full commit history of the projects and identify all the commits
that mention an issue ID.

2. For each issue ID we check whether the issue is mentioned on the issue tracker.
We then check whether it refers to a bug and if so, we retrieve the affected
version.

3. For each issue ID referring to a bug, we go back to the corresponding commits
and get the list of files modified by these commits. Then we store those files and
flag them as fixing the previous buggy version.

Table 11.2 presents the characteristics of the dataset as of end 2017. Latest is the
latest version of the project at the time of writing, which is also the version we consider
for RQs 1, 2 and 4. Files is the number of Java files in this version. kLoC is equal
to the number of lines of code of the version (in thousands). Versions refer to the
total number of versions of the project we studied in RQ3. Finally, Bugs refers to the
number of unique bug-related issues retrieved by the above procedure.

11.4.2 N-Gram Model Configurations

Tokenizers We build n-gram models from source code using 8 tokenizers. Details
about the tokenizers we use are presented in Table 11.1. These can be categorized in
three main groups. The distinction between the groups regards the representation of
the source code. Thus, the first group (first two rows in Table 11.1) comprises tokeniz-
ers that treat code as text and directly use it as input. In these cases a sequence of
words is separated by delimiters. The second group (rows three and four in Table 11.1)
comprises tokenizers that delimit code based on the language grammar. Tokenizers
of the third group, (the last four rows in Table 11.1), are defined based on the AST
representation of the code. Thus, these tokenizers perform the tokenization based on
a serialized representation of the AST.

The tokenizers of the first group are standard UTF tokenizers. These are similar to
the one used by the open-source search engine Terrier [176]. They split the text into
groups of alphanumeric tokens while still keeping the delimiters in the sequence. The
only difference between the two is that in the first considers the complete file, whereas
the second ignores comments. This should give us insights about the sensitivity of the
models wrt. code comments. Note that previous works tend to completely ignore code
comments, e.g., [77].
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UTF tokenizers take all non-alphanumeric characters as delimiters. This fact may yield
inappropriate tokenizations for specific cases. For example, variable names using an
underscore are separated in three. A similar case is the float numbers (also separated
in two words). This motivated the need for the second group of tokenizers. Thus, the
Java Parser and Java Parser woc tokenize code according to the language (Java)
grammar. This implies a correct identification of the Java tokens. Another effect
of using the grammar is that the Java Parser considers a block of comments as a
single token. Thus, ignoring comments should have a minor impact on our models. In
our implementation we perform the parsing based on the Java Parser tool [149]. The
reason behind this choice is that this tool facilitates the treatment of AST by providing
specific data structures,i.e., following the visitor design pattern, which was useful for
implementing the remaining tokenizers.

The four tokenizers of the third group differ in the way they process the program’s
AST. The first two of them, serialize the complete AST (they print the type of every
node as well as package, method, and variable names) in a specific order that depends
on the visit strategy, i.e., breadth first or depth first. The last two tokenizers of this
group implement a pruned version of the serialization process (only the text of non-
redundant nodes is considered). We consider a node as redundant when it does not
directly correspond to a string in the source code. In other words, this node serves a
structural purpose, e.g., every variable name is preceded by a node of type NameExpr.
Studying all these alternative tokenizers helps us understand whether the visit strategy
and the redundancies in the ASTs have a significant impact on our results.

Language Modeling To compute the cross entropy, we need to use some code parts
as a training corpus and some others as a test corpus. We thus, define an n-gram model
as a stateful service interface with two methods: (1) train, which takes as input a
corpus and trains the model accordingly; (2) entropy, which returns the cross entropy
of an input sequence of tokens based on the trained model. Our implementation uses
the Kyoto Language Modeling Toolkit (Kylm) [131]. Kylm is an established tool
developed in Java that provides all the functionalities needed for our experiments.
Indeed, it allows one to specify the size n of an n-gram model, its unknown threshold,
and the associated smoothing technique.

11.4.3 Research Protocol

RQ1 To address RQ1, we consider 24 configurations, which are the combinations of n
values 2 to 7 with 4 smoothing techniques (absolute discounting, Kneser-Ney, modified
Kneser-Ney, and Witten-Bell).

For each tokenizer t, project p and configuration c, we build an n-gram model param-
eterized by c, and compute the average cross-entropy over 10-fold cross validation of
p’s source code tokenized by t. This leads to a total of 3,840 cross validations.

Each iteration of a given 10-fold cross validation involves 90% of the source files for
training the models, whereas the remaining ones compose the test corpus. We operate
on a file-level granularity as it is common in defect prediction, and for simplicity when
using the AST tokenizers. Indeed, in Java, ASTs are built by class, and a (public) class
is commonly contained within one file. It is noted that for now, we set the unknown
threshold k to 1, as the influence of the unknown threshold k is studied in RQ4.
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RQ2 To address RQ2, we build an n-gram model m based on the configuration that
is the most representative (identified in RQ1) and, for every tokenizer t, we make m
compute the cross entropy of all source files tokenized by t. Then, we check whether
there is a correlation between the cross-entropy values across each pair of tokenizers.
This allows us to check whether tokenizers agree between them when comparing the
source code files. We also verify the existence of a correlation between the number
of Lines of Code (LoC) and the entropy values associated to each tokenizer to check
whether our observations are influenced by the code size.

To perform the comparisons, we carry out two correlation tests. First, we compute
the Pearson correlation coefficients to formally assess whether there is a strong linear
relationship between the tokenizers, i.e., the entropy values change similarly among the
files when using different tokenizers). We also check this relation with the LoC. Second,
we measure the ordinal association between the same variables using the Kendall’s tau
coefficients. Ordinal relations differ from the linear relations as they do not consider
the size of the differences between the values. This allows determining whether the
code files are ranked differently according to their entropy and LoC.

RQ3 To address RQ3 we investigate the influence of tokenizers on the findings of a
research experiment we design. Thus, we investigate whether (1) buggy files tend to be
more unnatural than non-buggy ones and (2) fixing a bug makes a file more natural.

For (1), we compute the entropy of each file successively in the release using all other
files for training. This process ensures a common training and evaluation ground that
is deterministic and reproducible. This way we avoid using large training corpus and
focus on the relative differences between the files under analysis and the rest of the
project. The idea is that the more improbable a file, w.r.t. the others of the same
project, the more likely it is to be problematic. Future work includes the use of cross-
project training or past-release project training.

Based on the entropy values, we can observe whether files flagged as buggy have indeed
a higher cross entropy. Then for (2), we compute, for each buggy file, its cross entropy
in the release just before the patch and after the patch. We use a model built on
the last affected release – excluding the assessed file – and analyse the percentage of
difference between the two cross-entropy values.

To see the actual impact of the tokenizers, we compare the conclusions that one can
draw for the above experiments when using one tokenizer instead of another. In case
of contradictions, we can conclude that the tokenizer choice is important (as a different
choice may imply a different conclusion for a given task).

RQ4 To study, the impact of the unknown threshold, we repeat the analysis followed
in RQ1, but for different thresholds. Thus, the following values of k are studied, 1,
2, 4, 8 and 16. This adds up 15,360 new 10-fold cross validation to the one done for
RQ1. Then we study the impact of this parameter on the findings of RQ3. To do
so, we measure the differences between buggy and non-buggy code and the impact on
entropy when fixing a file (using a k equal to 8). Finally, we compare these results
with those obtained in RQ3.
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Figure 11.1: Cross entropy of source code files

When using different smoothing techniques for AST breadth-first tokenizer and n = 4.

Statistical Comparison To judge the significance of the observed differences we use
standard statistical tests. We used the Wilcoxon signed-rank test to measure the arbi-
trariness of our results. We choose the Wilcoxon hypothesis test as it is non-parametric
and thus, it does not make any normality assumptions. As it is typically performed,
we adopt a significance level of 0.05, below of which we consider the differences sta-
tistically significant. To measure the size of differences we used the Vargha Delaney
effect size Â12, which quantifies the size of the differences (statistical effect size).

11.5 Results

11.5.1 RQ1: Optimal Configuration

We start the analysis by identifying the impact of the smoothing techniques on the
entropy of the source code files. Our analysis is based on the principle that a smoothing
technique giving lower entropy values than another one for the same files, tokenizers
and n-values is preferable. We therefore computed every combinations of n-values,
smoothing techniques and tokenizers to identify the most appropriate configurations.

The results are consistent across all tokenizers and n-values: they show that the Mod-
ified Kneser Ney smoothing is the most appropriate which is in line with what was
found by the NLP community[47]. Although the difference with Kneser Ney is thin, it
is statistically significant (using Wilcoxon signed-rank test) and has Â12 values in the
range from 0.50 to 0.53. Figure 11.1 presents an example of our data for the case of
the AST breadth-first tokenizer and n equal to 4.

Having shown that the Modified Kneser Ney is the best smoothing technique, we turn
to see the impact of choosing an appropriate n-value. Again, we have similar trends for
the n-values across the different tokenizers. However, we observe that some tokenizers
do converge faster than others. For instance, the UTF tokenizer stabilizes when n
equals 5 while the depth-first tokenizer does not. Figures 11.2a and 11.2b demonstrate
these results. We also observe that benefits of using n values higher than 4 is small, all
the n-values result in statistically significant differences. In particular, all the tokenizes
have Â12 values in the range from 0.54 to 0.65 when comparing n=4 with n=5. These
drop to 0.53 to 0.57 when comparing the n=5 with n=6. Therefore, the general most
appropriate choices are the n=4 or n=5. The AST depth first and the “Java Parser”
tokenizers are the only ones that continue to improve (slightly) beyond n=6.
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(a) UTF tokenizer
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(b) AST depth-first tokenizer

Figure 11.2: Cross entropy of source code files

when using different tokenizers with Modified Kneser Ney smoothing for n-values in
the range n=2..7.

Table 11.3: Correlations between tokenizers and number of lines of code

Upper (resp. lower) diagonal gives, for each pair, the median of the Pearson correlation
coefficients (resp. Kendall’s tau coefficients) over all projects.

LoC UTF UTFw JP JPw DF BF PDF PBF

LoC 0.52 0.32 0.31 0.29 0.25 0.15 0.24 0.17

UTF 0.52 0.83 0.78 0.77 0.71 0.60 0.74 0.64

UTFw 0.32 0.66 0.90 0.90 0.88 0.79 0.91 0.81

JP 0.29 0.60 0.77 0.99 0.89 0.81 0.90 0.79

JPw 0.29 0.60 0.77 0.93 0.91 0.82 0.92 0.79

DF 0.30 0.57 0.73 0.76 0.79 0.85 0.96 0.78

BF 0.14 0.47 0.62 0.65 0.66 0.70 0.85 0.94

PDF 0.28 0.58 0.76 0.77 0.78 0.84 0.69 0.85

PBF 0.15 0.48 0.62 0.64 0.64 0.64 0.80 0.70

11.5.2 RQ2: Tokenizer Correlations

The second research question examines the correlation between the cross-entropy values
returned by the 8 tokenizers. We also consider the correlation between these values and
the number of LoC. We computed the correlation coefficients for all files by considering
every pair of tokenisers (and LoC). Table 11.3 summarizes the results. It gives the
median of the coefficients over all projects for each pair. The upper triangle of the
table records the Pearson coefficients, whereas the lower one is about the Kendall’s
tau coefficients. A higher coefficient means stronger correlation. All coefficients are
statistically significant with a p-value lower than 0.05 in every case.

A first observation is that Pearson coefficients are higher than Kendall’s coefficients
for each pair of tokenizers. This indicates that large differences in cross-entropy are
more likely to lead to an agreement between the tokenizers than smaller differences.
The strongest correlations are in the case of JP with the JPw. If we exclude this case,
the Pearson correlations are in the range of 0.60 to 0.96, while the Kendall ones are in
the range of 0.47 and 0.84.
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Another general observation is that the correlation between LoC and the cross-entropy
values is generally weak (< 0.33). The only exception is the UTF tokenizer, which has
a correlation with LoC of 0.52. This is due to comments. Indeed, UTF is the only
tokenizer that tokenizes comments as any English text. The JP tokenizer includes
comments as well, but considers a block of comments e.g., the Javadoc of a method, as
a single token. The impact of comments for this tokenizer is thus limited, as witnessed
by the strong correlation between JP and JPw (Pearson 0.99; Kendall 0.93). Given
the difference in the way code and natural language are written, it is expected that
comments significantly increase cross entropy. Moreover, the number of comments is
likely to increase with the number of lines of code. We also see that AST tokenization
further reduces the correlation with LoC (≤ 0.25). Indeed, the number of tokens
depends on the number of AST nodes, which is not necessarily proportional to LoC.

Interestingly, we observe that the differences between the ways the AST is visited, in
a breadth-first or depth-first manner, plays an important role, as it gives the lowest
correlation values. Generally, the breath-first tokenizers give in all cases, lower cor-
relations than their depth-first counterparts. This indicates that breadth-first AST
tokenizers capture the most different information than any other tokenizer. In other
words, the disagreement with the other tokenizers is higher. This can be explained
by the fact that the other tokenizers have inherently different views of the code, i.e.,
structure-oriented versus sequence-oriented.

We also observe that there are no significant differences between AST tokenizers (re-
gardless of the visit strategy) and their respective pruned variants. Redundant nodes
thus have a limited impact on the captured information. More generally, it might im-
ply that how the AST is constructed is unimportant, although this must be confirmed
by additional experiments with alternative parsing tools.

Taken together, the results suggest that tokenizers indeed judge code files differently.
They tend to agree on the majority of the cases but still they tend to disagree on a
significant number of cases.

11.5.3 RQ3: Impact on results: Bug Analysis

Having confirmed that tokenizers from different groups learn (largely) different things,
our third research question regards their possible impact on the findings of an exper-
imental study. To answer this question, we investigate the hypothesis that bugs are
linked with naturalness. We do so by checking whether unnatural files are more likely
to be buggy than the natural ones. In case we find significant differences, we can
conclude that a link between bugs and naturalness exists. However, this link might
simply be the result of other (unknown) factors (such as the size of files, the defects’
location or others). In other words, we need to show that entropy is linked with both
presence and absence of bugs. To control for arbitrary factors, we check whether fixing
a file reduces its entropy. In case we observe a reduction in most of the case, then we
have strong evidence supporting our hypothesis, while in the opposite case we do not.
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Figure 11.3 reports the results for all considered project releases and tokenizers. From
these we can make two main observations. First, buggy files have a higher entropy
than their non-buggy counterparts regardless of the tokenizers used. This provides a
first indication that our hypothesis might hold (this result is inline with the results of
Ray et al., [156]).

Second, UTF and pruned AST based models present the largest variance in entropy
which could make them targets of interest when using them for prediction modelling.

Figure 11.4 presents the results obtained when studying the entropy differences between
the buggy and the fixed versions of our files, following the procedure described in
Section 11.4.3. We observe that in many cases, the cross entropy is indeed slightly
reduced (values are below 0) after the fix process. However this does not for a clear
majority (approximately 50% of the files have values higher or equal to zero, median
values are 0). This means that fixing a file might reduce the entropy or might not,
which in turn indicates that bugs appear in files that are unnatural but naturalness
is not necessarily linked with the presence of bugs. Considering the starting point of
naturalness i.e., developers tend to write code that is repetitive, hence more natural,
this means that bugs are located in files further from developers usual comfort zone.

Perhaps the most interesting observation is that the differences are more accentuated
in the case of UTF tokenizers. These are the only models having median values below
0. As all other tokenizers have their median almost at 0, we can conclude that one
can get evidence supporting our hypothesis, only by using the UTF tokenizers. We
also statistically examine the differences and find that they are statistically significant
with an effect size, close to 42% (when comparing the UTF tokenizers and the others).
Interestingly, these cases are the only ones with both statistical significance and effect
size differences. The difference between JP, BF and DF are not statistically significant
whereas the difference between BF, DF and their pruned counterparts are significant
(though with negligible effect size). To make these results clear, Figure 11.5 shows the
level of agreement (on the impact of fix) between the tokenizers, i.e., how frequently
every pair of tokenizers agree that fixing a file results in reduced or increased entropy.
From these results we see that tokenizers largely disagree on their judgements.

The above results imply that the closer, to human perspective (unprocessed code), the
used tokenizer is, the more robust the n-gram model is in detecting the effects of a fix.
Thus, only UTF tokenizers are robust in this regard. This is also interesting as the
UTF tokenizers are not the ones with the lowest entropy.

To summarize, we found that tokenizers have the potential of changing the conclusions
of a research study. We demonstrated that only 2 out of the 8 tokenizers are robust
at detecting (as they should) the differences between buggy and fixed files. Therefore,
researchers need to be cautious that their conclusions may change if they use different
tokenizers. Moreover, our data suggest that the most prominent choice of tokenizer
for bug identification is the UTF.
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Values represent the ratios of files judged similarly by the tokenizers (increase or de-
crease).

11.5.4 RQ4: Setting the “unknown threshold”

In n-gram model related literature, a specific parameter called unknown threshold is
often evoked, but has never been examined. Increasing this parameter may make the
entropy lower but at the price of a less general model.

Figure 11.6 presents the results we obtain in the experiment of RQ1 while observing
five different values of k. We observe a huge decrease in entropy as k increases. This
means that the model copes better with low-count tokens. For source code, this could
be explained by the fact that the model is removing variable or function names that
are barely used. While this could be interesting in some situations, e.g., when one is
interested in general patterns or trends, it can have a negative impact on naturalness-
based studies. In Figure 11.7, we present a comparison of the values obtained with
two different k, i.e., k = 1 and k = 8 for two of our tokenizers.

In Figure 11.7a we observe the reduction in entropy between the two values of k, yet
the difference between buggy files and non-buggy ones is still clear. However, Figure
11.7b reveals that the reduction of entropy after a fix is compromised when increasing
k. This is more interesting in the case of AST depth-first tokenizer, where for k = 8
the entropy increases in more cases than for k = 1. This can be explained by the
fact that a high entropy is caused by unlikely tokens which are removed when using
a higher k, gathering them under a common, more likely one. This, in turn, reduces
the opportunity to observe the effect of a fix: If the new token introduced by the fix
replace an unknown one but has a lower probability than the unknown the entropy
could increase in some case.
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11.6 Threats to validity

The generalization of the result is again a threat to validity. In this chapter, we used
Java projects from Apache Commons, which may not be representative. Similarly,
the results might not hold on other programming languages. We choose the Apache
Commons to gather a large variety of projects with different functionalities. Moreover,
Apache is a large organization and follows a similar development process with many
other organizations.

Similarly, we showed that tokenizer impact the n-gram models in Java. We expect
a similar result on other languages as the basic differences between the sequences of
tokens and ASTs appear in all languages. However, we still do not know whether
n-gram models are similarly sensitive when using other languages.

Another threat to validity regards the toolchain that will be presented in the next
section. To build the toolchain, different external tools are integrated, thus an error
in one of those tools or in our integration could influence the result. To mitigate
this, we only rely on tools that are known to be reliable. Terrier, from which we
use their UTF tokenizer, is a well-known information retrieval framework. We also
carefully tested our tokenizers to ensure of their behaviour. Java Parser is also used
by more than 50 libraries and 100 projects on Github, and many companies use it
and update it regularly. Nevertheless, as all tokenizers were carefully integrated (using
their documentation) and tested, we do not consider this threat as important.

KYLM is widely used for comparing many recent n-gram approaches, e.g., the work of
Pickhardt et al., [152]. Since this tool considered as relevant by the NLP community,
we believe it is trustworthy. Of course we carefully analysed and tested it before using
it. To further reduce these threats we will make our toolchain and data available once
the paper is accepted.

A threat related to construct validity regards the way we built the defect dataset (used
in answering RQ3). The dataset used for this research question is automatically gen-
erated using git commit messages and the JIRA Apache bug tracker. Thus, imprecise
information or wrongly categorized issues in the tracker or misleading commit mes-
sages could generate noise in our data. However, given the strict guidelines used for
the development and reporting of bugs in Apache Commons project, we believe that
this could only be the case for a small percentage of the files. Therefore, the influence
on the results would be relatively small.
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11.7 Related Work on the Naturalness of Software

The application of machine learning to software engineering has received a growing
interest in the recent years [25]. In particular, the study of software naturalness [77] has
given birth to many approaches for generating source code ,e.g., code completion [77],
synthesis [155], review [76], obfuscation [115] and repair [154]) and performing static
analyses [81, 104, 140].

According to Allamanis et al., ’s survey [25], n-grams are among the most popular lan-
guage models. They have been used mainly for code completion [77, 136, 135, 157, 181],
program analysis [81], bug detection [156], code review [76], and information extrac-
tion [165, 191]. Despite being popular we are unaware of any systematic and empirical
evaluations that analyse the sensitivity of these models w.r.t. their parameters, al-
though many papers give a few insights.

In their seminal work on code naturalness, Hindle et al., [77] already inform us that
Kneser-Ney smoothing gives good results for software corpora. However, they state
that “these are very early efforts in this area”, which motivated our systematic eval-
uation of other smoothing techniques. According to their experiments, the reduction
of cross entropy with higher-order n-grams saturates around 3- or 4-grams, whereas
our evaluation shows that the reduction from 4-grams to 5-grams remains statistically
significant in many cases. Finally, they tokenize code just like any English text and
do not consider alternatives like AST-based tokenization.

In [136], Nguyen et al., add semantic information, e.g., the data type of a variable, to
lexical tokenization in order to improve code suggestion. Their approach inherently
considers n-grams of multiple sizes; thus we do not know how a fixed n-gram size would
affect their results. Also they used only additive smoothing, which is the simplest but
arguably the less efficient technique [62, 63].

A subsequent work [135] tackle the problem of suggesting API calls. With this objective
in mind, the authors argue that graph-based representations (e.g., AST and control flow
graph) are more appropriate than n-grams computed from lexical tokenization. Based
on such representations, they implemented API suggestion algorithms that outperform
8-gram models equipped with additive smoothing. These results motivate our interest
towards AST tokenization, although we found that lexical (UTF) tokenizers are better
than AST tokenizers at detecting bugs. Similarly, Hsiao et al., [81] tokenize a program
using a dependency graph (representing data-flows between the program statements).
Their tokenizer hardly scale from 5-gram onwards, but even with smaller n-gram sizes
it outperforms 7-gram models obtained from lexical tokenization. The authors do not
mention the use of any smoothing technique.

Tu et al., [181] propose a cache model that captures local regularities. Their eval-
uation shows that the best results (in terms of cross-entropy reduction) are obtained
by combining the cache with standard n-gram models, as these capture different reg-
ularities. They also show that the size of the cache has a significant impact on cross
entropy, and suggest that trigrams are sufficient. They do not explicitly mention what
smoothing technique they use. As before, we argue that 4-grams and even 5-grams
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can yield significant improvements in some cases, and that the choice of a smoothing
technique is not without impact. On the other side we did not consider integrating a
cache model, which is an interesting direction for future work.

Raychev et al., [157] focus on suggesting API calls. The originality of their approach
lies in that it combines n-grams with recurrent neural networks. Their experiments
show a substantial improvement in effectiveness over standard n-grams, yielding 90%
of relevant suggestions in top 3 candidates. They rely on trigrams and Witten-Bell
smoothing, but did not study how these choices affect their results.

In a peripheral work, Hellendoorn et al., [76] correlate the naturalness of pull requests
in GitHub (computed by n-gram models) to their acceptance rate and the degree
to which the requests are debated. They acknowledge the importance of choosing
an appropriate size and smoothing technique, although they do not report on the
sensitivity of their approach wrt. these parameters.

Sharma et al., [165] propose an approach to identify tweets related to the software
industry. More precisely, they use n-gram models to compute the cross entropy of
tweets, and rank these accordingly. They evaluate the effectiveness of their approach
with different n-gram sizes, and discover that 4-grams still offer an interesting marginal
gain. As for smoothing, they assess only the Katz back off model [98] and do not
consider the other alternatives.

Saraiva et al., [159] perform a study on n-gram model specificities for source code,
but focused on different research questions than the present paper. They first attempt
to determine whether building language models specific to an application or specific
to a developer can lead to better results. Then they investigate the importance of
the temporality of language models. They found out that developer- and application-
specific models were indeed performing better than general models, while temporality
has little to no effect.

Finally, Yadid and Yahav [191] make use of n-gram models to correct and complete
code fragments that were extracted from video tutorials. They use unigrams and
bigrams conjointly, but have not investigated other parameter settings. Also, they do
not mention the smoothing technique they use.

The above discussion highlights that n-grams is a frequently used statistical model.
Many of the previous studies recognize the importance of the chosen parameters, but
paradoxically evaluate only a few configurations. Moreover, none of the previous ap-
proaches considers alternative representations and their impact on the experimental-
conclusion one can draw. Thus, our paper raises the awareness of what can go wrong
and what should be tuned in order to draw reliable experimental conclusions.
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11.8 Additional Tooling

To perform this study, a framework named TUNA (TUning Naturalness-based Anal-
ysis) that enable the performance of naturalness-based analyses of source code was
developed. This framework is composed of 4 different modules, one for building the
defect dataset, one for tokenizing source code, one for building N-Gram models and
a last one for replicating the presented experiments. TUNA is the first open-source
end-to-end toolchain to carry out source code analyses based on naturalness and is
available at: https://github.com/electricalwind/tuna.

The defect dataset module is close to the Data7 framework as most of the code is
shared. The module currently only works with Apache projects but can be extended
at will. The major difference with the Data7 consists in the fact that information is
first retrieved from the version history and then checked on the bug tracker, whereas
Data7 first collect information from vulnerability reports.

The tokenizer module contains various tokenizers for source code. Currently, tokenizers
for JAVA and C programming languages are implemented. For each language at least
one tokenizer exists per types of representation presented in the chapter.

The N-Gram module allows to parameterize n-gram models, train them based on
tokenized source code, and compute the cross-entropy of one or more source files.
The module provides an implementation based on Kylm [131]. Following the interface
segregation principle, alternative implementations can easily be added in the future.

11.9 Conclusion

Research on naturalness of code is focussing on assisting software engineering tasks
using n-gram models. However, the use of such models requires setting a number of
parameters. In this chapter, we perform a study and show that the choice of smoothing,
tokenizer, unknown threshold and n values can impact the predicting ability of the
models. We demonstrate that the Modified Kneser-Ney smoothing technique performs
best, while n-values equal to 4 or 5 are generally appropriate. We also show that the
closer, to human perspective (unprocessed code), the underlying representation is, the
more robust the n-gram model is. This suggests that the most prominent choice of
tokenizer, wrt. bug identification is the UTF one. Finally, we demonstrated with an
experiment that researcher can come to wrong conclusions if they do not properly tune
their models.

These results lead to the conclusion that in order to use N-Gram model to build VPM,
only choosing one setting would result in a loss of information. Models built on different
source of information learn different things and depending on the settings results may
vary as well. Thus in the next chapter, several settings will be considered to build an
approach.
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12
A New VPM Approach Based on

Naturalness

In chapter 9, a large experimental study of VPMs using FrameVPM was presented. In
this chapter, we suggest to extend this study with the results obtained by two additional
approaches, one based on naturalness only and one combining naturalness and Code
Metrics. Indeed, previous research showed that defects and naturalness were linked,
thus it is likely that vulnerability and naturalness are as well linked.
This chapter is a direct extension of chapter 9.
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12.1 Introduction

Chapter 9 presented the largest experimental study of VPMs. This study highlighted
some issues with existing approaches starting by the fact that models tend to overlook
the fix of a vulnerability. This means that models output cannot be directly trusted
but should be instead used as a guiding process. A possible explanation lies in the
fact that the features the models are learning on are unlikely to really change after
the fix. Another issue raised regarded “mislabelling noise”, performances of existing
approaches drastically drop when confronted to the issue.

In this context, the development of new approaches is necessary. Naturalness presented
in the previous chapter seems like an interesting candidate to build an approach upon.
Indeed as naturalness measure the degree of surprise of a language model when given
a piece of text, an approach based on it should thus be more sensitive to changes
in the text such as fixes. Moreover, previous studies [156] have shown a direct link
between buggy code and naturalness which open the doors to studies on naturalness
and vulnerabilities.

To build an approach, the choice of features is of upmost importance. In the case of a
model based on naturalness, a feature corresponds to a specific setting of a Language
Model. Chapter 11 taught us that models build on different code representation learn
different things, thus an approach should consider more than one representation. Addi-
tionally different parameters of the language models such as n and unknown threshold
should be considered. A last point that has not been raised in the previous chapter
is on what the language model should learn. Indeed , like in the previous chapter
one could consider training the language model on all other files of the release. The
resulting naturalness would thus represent how the file fit in the current version of the
project. On the other hand, one could also consider training on the previous release.
The naturalness would thus give indication on the evolution of the file or if it was
created, in the meantime, how the file fit in the project.

Thus, in this chapter, we extend the study of chapter 9 by considering 2 additional
approaches, one build upon naturalness values from different settings and another one
combining the naturalness approach and the Code Metrics one. Code Metrics and
Naturalness approaches are both approaches with a predetermine number of features
which make their combination quite natural. In particular this extension focus on how
well both approaches performs in a standard environment and whether they handle
the two aforementioned issues better than the original approaches.

In summary this chapter makes the following contributions:

• It presents an extension of Chapter 9 with two novel VPM approaches based on
Naturalness.

• It reveals that models based solely on naturalness are not sustainable.

• It shows that models combining Code Metrics and Naturalness are in fact per-
forming better than models based on Bag of Words in realistic setting (with
mislabelling).
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12.2 Research Questions

In this extension, we evaluate two additional approaches, the emphasis is thus put
on the comparison in performances. Thus some research questions from the initial
study don’t need to be reinvestigated, starting with the first one which regards the
distribution of class and severity in the dataset. However the second and third research
questions are of interest in this extension. Thus we reformulate them as:

RQ1: How well the newly introduced approaches identify vulnerable components be-
tween software releases compared to existing ones?

RQ2: Do the new approaches identify severe vulnerabilities?

The forth research question from the initial study was investigating the possibility to
tune those models to find more severe vulnerabilities. The results being positive, this
question is not further develop in this extension.

The fifth original research question is of particular interest in our case. Indeed this
question was investigating the robustness of the approach to the presence vulnerable
components that were fixed at the evaluation time. Naturalness being by design more
sensitive to change in text should provide better result in this situation than existing
approaches:

RQ3: Are Naturalness-based-approaches less sensitive to the issue of vulnerability
fixes?

Finally, the last initial research question regarded the creation of models based on
incomplete or mislabeled data [174], which in the case of vulnerability prediction occurs
when vulnerabilities that have not been yet reported at the training time are part of
the training data as non-vulnerable components. Approach previously investigated
were particularly sensitive to this with important drop in performances. As this is an
important problem often overlooked, we ask:

RQ4: Are Naturalness-based-approaches less sensitive to vulnerabilities unreported at
the time of training?
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12.3 Naturalness Based Approaches

In this section, the design and setting chose to build the naturalness approach are
detailed. The first part focus on the different elements requires to obtain a representa-
tive set of features, while the second present how these features are transformed into
approach.

12.3.1 Feature Extraction

To build a VPM based on naturalness values, it is necessary to obtain different values
of naturalness that will be used as features. Ideally each value should be independent
and bring new information that would help build a better model. Fortunately, results
of the previous chapter indicates that N-Gram Models built on different tokenizers
learn different information. Thus by using different tokenizers, we can obtain several
naturalness-value accounting for different information. Yet the different tokenizers
used for the previous study were designed solely for Java programs and all projects
from the Data7 framework are coded in C. Thus, additional tokenizers were added in
Tuna to handle C projects. Hence, for this study we rely on 3 different tokenizer each
one accounting for one the code representation presented in the previous chapter, i.e.,
UTF tokenizer, Lemme Tokenizer and AST Tokenizer. While the UTF tokenizer is the
same as the Java one, the Lemme Tokenizer is based on the C grammar of ANTLR
and the AST one used the output of the Joern tool.

Tokenizers are not the only parameter that can be modified to obtain naturalness values
with different meanings. Indeed, as naturalness is a measure of the degree of surprise a
language model trained on a given corpus when faced with a piece of text, its essential
part lies in its training corpus. The same value of naturalness given by models trained
on different corpus cannot be interpreted similarly as if the same training corpus were
used. In the previous chapter, the choice was done to compute the relative naturalness,
i.e., each file was evaluated against a model trained on all the other files of the project.
This setting provide interesting result as it gives a notion to how close a file is from the
rest of the project. Still this requires to create one model per file to evaluate, which can
become problematic in the case of large projects such as the Linux Kernel with more
than 20,000 files to evaluate per release. Another setting commonly used by previous
studies [156, 77] consists in training on the previous version. This offers the advantage
that only one model needs to be created per release to analyse instead of one per file.
Yet it has the inconvenient that a file that has not been modified in between will be
present in both training and evaluation which could bias the analysis. Moreover, in this
setting it is not possible to compute the naturalness of the first release as there is no
training corpus available. Both solutions having their up and downside, we integrate
both of them for each tokenizer. Those two solutions are integrated in FrameVPM as
OtherFilesNaturalness and PreviousReleaseNaturalness.

Finally, previous chapter shown that some Language Models parameters could influence
the output such as the n and the unknown threshold. To be as complete as possible we
investigate the use of two different n and thresholds, 4 and 6, resp. 1 and 4. Regarding
the smoothing technique as the choice of Modified Kneser Ney was undoubtedly the
best, we decide to only use this one.

This results in a set of 24 naturalness based features on which we can build an approach.
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12.3.2 Naturalness VPMs

Once all features computed, it is possible to build VPMs. In this extension, we investi-
gate two types of models using those features. The first one named “Pure Naturalness”
solely rely on those features. The results of this model should give indicators as of the
potential of naturalness as indicators of vulnerability. Yet, naturalness might not
be enough on its own and a model might require additional data to better perform.
Among the previously introduced approaches, only the Code Metrics one can ideally
be combined with a Naturalness one. Indeed, both approaches rely on a predetermine
number of features which guarantee that they will all be considered by the model, while
in the case of Imports and Function calls and Bag of Words the naturalness features
might be “lost” among all the other features, thus making the analysis of the benefit of
naturalness impossible. Thus the second type of models investigate combine features
from the Code Metric and Naturalness approach.

12.4 Results

12.4.1 RQ1: Performance of Naturalness Based Approach

Figure 12.1, similarly to fig. 9.3, records the distribution of the predictions’ evaluation
metrics (MCC, Precision and Recall) for all methods and subjects we consider. Inter-
estingly, the Pure Naturalness approach doesn’t perform well at all in terms of recall
and MCC with average values below 0.2 for the three projects. The results in terms
of precision are slightly better but stay behind the other approaches. Regarding the
combination of Naturalness and Code Metrics, we observe a slight drop in recall and
MCC compared to the Code Metrics approach in most of the cases, but interestingly
this is offset by an increase in precision. This suggests that Naturalness on its own is
not enough to build a VPM but could be used to tune the precision of a model at the
cost of the recall.

Interestingly, the results are consistent for all the studied subjects, with the Bag of
Words and Function Calls methods achieving the best results, i.e., yield the highest
MCC. Code Metrics is the most precise method, but overall this advantage is small.
With respect to recall, Bag Of words clearly outperforms the other methods.

Regarding the statistical analysis on our results presented in the lower triangular of
Table 12.1, we can observe that all the p-values are significant except regarding im-
ports and the combination of Naturalness and Code Metrics and all Â12 in the last
two lines are lower than 0.5 indicating that they are not performing better than the
other approach. Additionally if the Combination of Code Metrics and Naturalness is
performing reasonably worse than the other approach, the Pure Naturalness approach
if not performing at all with Â12 of 0 in every case.

Overall, statistical analysis confirms the box plot observations, the two suggested ap-
proaches perform worse than the existing ones.
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Figure 12.1: Performance metrics for all vulnerable components (RQ1).

Table 12.1: RQs 1-2

This table comprises two separate triangular sets of results. The lower triangle presents results comparing approaches
based on all vulnerable components, while the upper triangle shows results comparing approaches based on severe
vulnerable components. Each cell contains a p-value and a A12 (line, column) effect size measurement.

Bag Of Words Code Metrics Function Calls Imports Naturalness and CM Pure Naturalness

Bag Of Words - 1.10E-03/0.53 1.38E-04/0.51 1.27E-04/0.53 5.98E-04/0.53 9.2E-26/0.89

Code Metrics 1.34E-13/0.44 - 0.9405/0.49 2.23E-02/0.50 1.49E-01/0.51 6.25E-26/0.91

Function Calls 5.72E-10/0.47 5.87E-05/0.54 - 0.1796/0.51 6.73E-01/0.52 1.45E-25/0.91

Imports 1.78E-19/0.41 1.80E-04/0.46 5.74E-15/0.43 - 4.50E-01/0.50 1.25E-25/0.90

Naturalness and CM 6.90E-20/0.39 6.34E-15/0.44 6.56E-14/0.41 3.9E-1/0.48 - 1.55E-25/0.88

Pure Naturalness 4.9E-26/0 4.9E-26/0 4.9E-26/0.0 7.76E-26/0.0 4.9E-26/0.0 -

12.4.2 RQ2: Performance of Severe Vulnerability Prediction

Figure 12.2 presents the results related to severe vulnerabilities. Similarly to what
was observed in previous chapter, the performances of the two new instance decrease.
Yet, this time the precision of the combined approach is not better than of the original
approach. In fact it performs worse for all measures and project, with the exception
of the Linux Kernel where the results are somehow similar.

The upper cells of Table 12.1 indicate that none of the result of the combined ap-
proach are statistically significant except with Bag of Word which makes impossible
the comparison with other approaches. Overall it seems that for severe vulnerability
the combined approach provides similar result than the existing one. Regarding the
pure naturalness approach, result is again disappointing with really low A12 value,
which confirms that naturalness cannot be used alone.
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Figure 12.2: Performance metrics for severe vulnerable component (RQ2).
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Figure 12.3: Vulnerability probability before and after vulnerability fix (RQ3)

12.4.3 RQ3: Sensitivity to Vulnerability Fixes

Figure 12.3 shows the difference in probability of a component to be vulnerable before
and after a vulnerability fix. Ideally, values should be negative since fixed components
should be less likely to be vulnerable. If existing approaches fail to show such trend,
the two suggested approaches provide better result with a lower difference but remain
most of the time positive. While the Pure Naturalness shows the lowest difference but
results from previous research questions demonstrated that it cannot be used alone,
the results of the combined approach is encouraging as a drop is still observed which
means that the addition of naturalness features can reduce the sensitivity to the issue
of fixes.

12.4.4 RQ4: Sensitivity to Mislabeling Noise

This RQ investigates the predictions that one can achieve by using the reported vul-
nerabilities at the software release time. This means that the training happens on the
reported, at the release time, vulnerabilities. In the original study, only the results of
the Bag of Word were presented as it was shown as the best performing approach by
previous research questions.

Figure 12.4, 12.5, 12.6 shows the results obtained when comparing the result of Bag
of Words, Code Metrics and Combined approaches. As a remainder ‘experimental’
results are those obtained with the knowledge of all vulnerabilities (all vulnerable
components are labelled as vulnerable and all non-vulnerable are labelled as non-
vulnerable). ‘realistic’ results are those obtained with the restrictive knowledge of
vulnerabilities (labelled vulnerable components are those that have been reported at
the release time, while the rest are labelled as non-vulnerable). Finally, ‘noiseless’
results are those obtained when removing the vulnerable components from the training
set (labelled vulnerable components are those that have been reported at the release
time, vulnerable components related to unreported vulnerabilities are removed and the
rest are labelled as non-vulnerable).
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Figure 12.4: MCC of the approaches with subsets and noisy Data (RQ4).

Bag Of Words (left), Code Metrics (center) and Combined (right)
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Figure 12.5: Precision of the approaches with subsets and noisy Data (RQ4).

Bag Of Words (left), Code Metrics (center) and Combined (right)

Interestingly the figures show that in terms of Precision and MCC models using Code
Metrics are performing better in the noiseless and realistic setting than the ones using
Bag of Words, especially for OpenSSL. This could mean that models based on Code
Metrics generalize better and are less impacted by the mislabeling and unbalance,
whereas Bag of words model will be more specific and will perform better on a full
dataset. Regarding the combined approach an even more interesting phenomenon
is observed, the drop between noiseless and mislabeled data is reduced in all cases
compared to the Code Metrics approach. This drop is corresponding to the cost
of mislabeling data, thus its reduction means that the addition of naturalness can
counter some of the effect of mislabeling. Overall, even though the results are quite
poor the combined approach is the one performing best in the realistic setting, which
was unexpected given the result of the first research questions.
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Figure 12.6: Recall of the approaches with subsets and noisy Data (RQ4).

Bag Of Words (left), Code Metrics (center) and Combined (right)

12.5 Conclusion

In this chapter, we presented an extension of the study presented in chapter 9. This
extension introduced two new VPM approaches one based solely on naturalness values
as features and one combining code metrics and naturalness. While the first one gave
overall disappointing results, the latter offered some interesting findings. Hence, it
turns out that the use of naturalness can reduce the sensitivity of existing models to
issues such as already fixes vulnerabilities and mislabeling noise. This indicates that
naturalness features have the potential to improve other approaches but cannot be used
in a standalone setting. Results also showed that while Bag of words undoubtedly
remains the best approach in an ideal setting, in a realistic a combination of Code
Metrics alone or even better combine with Naturalness can perform better.
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13
A Negative Result, the Naturalness of

Mutants

Previous chapter presented studies exploiting the naturalness of software for software
engineering tasks such as bug detection and vulnerability prediction. The state of the
art is filled with various applications of the naturalness, but interestingly, there is little
to few studies applying it to the context of software testing. In this chapter, we address
our fourth challenge by considering the naturalness of software as a way to improve
the selection of “fault revealing” mutants. We seek to identify how well artificial faults
simulate real ones and ultimately understand how natural the artificial faults can be.
The intuition behind this suggestion is that natural mutants, i.e., mutants that are
predictable and are semantically useful and generally valuable. It is as well expected that
mutants located on unnatural code locations will be of higher value than those located
on natural code locations. Based on this idea, this chapter proposes mutant selection
strategies that rank mutants according to a) their naturalness b) the naturalness of their
locations and c) their impact on the naturalness of the code that they apply to. An
empirical evaluation of these issues is performed on a benchmark set of 5 open-source
projects. Overall the findings are negative but they are of interest as they confute a
strong intuition, i.e., fault revelation is independent of the mutants naturalness.
This chapter is based on work that has been published in the following paper:

• Are mutants really natural? A study on how “naturalness” helps mutant selection
(ESEM’18)
M Jimenez, T Checkam, M Cordy, M Papadakis, M Kintis, Y Le Traon, M
Harman
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Chapter 13. A Negative Result, the Naturalness of Mutants

13.1 Introduction

Empirical and experimental evaluations of software testing are typically performed by
using artificial faults. These faults are seeded in selected programs and are used as the
objectives for comparing techniques. Thus, the techniques and test cases are assessed
by measuring their ability to detect these types of faults.

This type of assessment is known as fault seeding or mutation testing. Fault seeding
is performed by altering the syntax of the programs. Thus, researchers transform
(mutate) the syntax of the programs with the aim of generating program versions
(mutants) that are semantically different. By demonstrating (revealing) the semantic
differences between the mutants and the original program, one can effectively measure
test effectiveness [46, 29, 148].

Evidently, as the mutant faults are generated by altering the programs’ syntax, they
alter the program semantics. However, how semantically useful are such artificial
faults? In practice, most of the mutants tend to have a major effect on the program
semantics, which makes them non-useful to testers (since they are trivial and can be
revealed by too many tests). Whereas testers need mutants with a small effect on the
program semantics as these are hard to reveal and result in strong test cases [139, 145].
Nonetheless, the key question is how well mutants (which are in a sense artificial faults)
mimic real code and real faults?

To this end, recent research has indeed shown that some (very few) mutants are realistic
[29, 148]. However, since the number of realistic mutants is very small, compared to
the total number of mutants [28, 148], these have almost no practical effect [46, 145]. In
other words, mutation introduces a very large number of non-interesting (bad) mutants
and very few interesting (good) ones. This raise the question of how to select mutants
that are semantically useful and natural, e.g., simulate well real code and faults.

To identify semantically useful mutants, we need a model capable of capturing the
goodness of mutants. Previous research has focused on identifying the types of mutants
that are the most important ones [107, 147]. However, these techniques have little or no
success as they fail to outperform the random mutant selection [107, 45]. One potential
explanation could be that it is the location of the mutants that make mutants good
and not their type. Another potential explanation could be that good mutants are the
result of the combination of the location with the mutant type.

Nevertheless, we need a model capable of identifying the interesting program locations,
interesting mutant types and interesting pairs of location and types. Thus, in this chap-
ter, we investigate the use of N-Grams models, as an approximation mechanism for
capturing the program semantics and select mutants. Ideally N-Grams models should
be able to exploit the implicit rules, coding conventions and general repetitiveness of
source code and categorize mutants (and their locations) as “natural”, i.e., mutated
code that is likely to appear in a code base (follow the implicit coding norms of de-
velopers), and “unnatural”, i.e., mutated code that is unlikely to appear in the code
base.
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Naturally, the notion of “naturalness” raises the question of how natural or unnatural
mutants are, since they are simulated faults. This intriguing question motivated the
study and desire to understand the properties and connections between program syntax
and semantics from a testing (fault revelation) perspective.

The intuition is that natural mutants (considered as probable by such models) are
more valuable than the unnatural ones because they follow the implicit norms and the
way programmers code. Mutants located on unnatural code locations, which previous
research linked with error proneness [156], are thus expected to be of higher value than
those located on natural code locations.

In essence, the question regards the likelihood for developers to do things wrong.
Natural code fragments are easier for developers to compose and more probable of being
semantically right (since they are highly repetitive) than unnatural code fragments
[156]. Thus, we expect that mutants making a code fragment more natural, while
at the same time being semantically different from the original version, to have more
utility than mutants making a code fragment less natural. This is because such mutants
are likely to introduce expected semantic deviations, which have small effect on the
program semantics. Furthermore, such mutants are worth investigating since they
form likely alternatives to the original code.

To investigate this hypothesis, we consider a set of real bugs from 5 Java open source
projects. We measure the naturalness at both the file level of granularity (used to
compute the naturalness of mutated files, i.e., Java classes) and at the statement level
(used to compute the naturalness of the original and mutated code statements).

We use the naturalness measurements to rank the mutants according to: a) the natu-
ralness of mutated code files, b) the naturalness of the original code statements and c)
the impact on the naturalness of the mutated statement(s) (difference on the natural-
ness of the original and mutated code). We evaluate these ranks wrt. their probability
to be killed by test cases that reveal real faults. Thus, we assess whether mutants
ranked higher are indeed preferable than those ranked lower (i.e. their killing implies
the revelation of real faults).

In summary this chapter makes the following contributions:

• It presents the negative results of an empirical study on the use of naturalness
for mutant selection.

• It confutes the afore presented intuition and thus increase the understanding of
the interconnections of program syntax, program semantics and software faults.

• It shows that the fault revealing utility of mutants is independent of their natu-
ralness

157



Chapter 13. A Negative Result, the Naturalness of Mutants

13.2 Background on Mutation Testing

Mutation is a well-studied technique with increasing popularity among researchers
and practitioners alike, as it is evident from the most recent survey in the area [147].
Mutation works by inserting artificial faults into the program under test, termed the
original program, thus, creating many different versions of it, each one containing
a single syntactic change. These versions are called mutants. Mutants are used to
evaluate test cases based on their ability to distinguish the mutants behaviour from that
of the original program. If such a test case exists (or can be created) for a particular
mutant, then we term the mutant killed (or killable). A mutant is termed“fault-
revealing” with respect to a particular fault if the test cases that kill it are a subset of
the test cases that can also reveal that fault, i.e., lead the program under test to an
observable failure.

Not all mutants can be killed by test cases. In such a case, we say that the mutants
remain live and we need to investigate why this happened. A mutant can remain
live after its execution with test cases for two reasons, either the test cases are not
“strong” enough to exhibit the behavioural differences between the mutant and the
original program, thus, indicating a weakness of our test suite, or the mutant is an
equivalent one. Equivalent mutants are syntactically different versions of the original
program but semantically equivalent, meaning that their behaviour is the same to the
original program for every the possible inputs.

Mutation systematically introduces syntactic changes to the original program. These
changes are based on specific, predefined rules called mutations or mutant operators.
Such operators can replace relational operators with each other, replacing > with
<, for example, or increase the values of variables by inserting appropriate arithmetic
operators to variable usages. Research has shown that the choice of mutation operators
and their implementation affects the effectiveness of mutation and its tools [29, 101],
thus, it is important to carefully select the mutants and the tools that one uses when
applying mutation.

In mutation testing the identification of “valuable” mutants is a known open issue [148].
Previous research has shown that the majority of the mutants is redundant and this
can induce severe problems in the mutation test assessment process [146, 107]. This
means that not all the mutants are of equal value. Indeed, some few mutants are useful,
while the rest (majority) are easy-to-kill, are duplicates of other mutants [100], or are
redundant wrt. to the useful ones. This begs the question: How can we distinguish the
valuable mutants before analysing them?, or equally, Do valuable mutants have specific
properties that can distinguish them from the less valuable ones?. In this chapter, we
attempt to use the naturalness of software to answer these questions.
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13.3 Research Questions

We start our investigation by checking whether mutants alter the naturalness of a
project and to which direction (make the code more natural or unnatural). This
poses:

RQ1: What is the impact of mutants on the naturalness of code?

We answer this question by checking the differences in the naturalness of the original
and mutant program files. We also check the number of mutants having the same
naturalness values. The answer to this question ensures that we can leverage natural
language models in mutation testing. Given that we found evidence that mutants
have different naturalness values, we turn to design naturalness-based mutant selection
strategies. We thus, investigate the fault revelation ability of the mutants that can be
categorized as natural and unnatural. Hence:

RQ2: Is “natural” mutant selection stronger than the “unnatural” mutant selection?

To answer RQ2, we need to know the probability of revealing a fault when killing a
mutant, for every mutant in our set. We therefore repeatedly applied mutation testing
on our benchmark sets and compute the fault revelation of both natural and unnatural
mutant sets (of different sizes). We report on the differences in fault revelation of three
strategies based on: (1) the naturalness of mutated code fragment (2) the naturalness
of the original code fragments and (3) the impact of mutants on the naturalness of
the code (entropy difference between the original and mutated code fragments). This
information is useful for designing effective naturalness-based mutant selection strate-
gies.

After experimenting with the different naturalness-based mutation testing strategies,
we evaluate them with respect to other methods. Previous research has shown that the
most effective mutant selection strategy is the random mutant selection one [107, 145].
Thus, our next RQ is:

RQ3: How does naturalness-based mutant selection compares with random selection?

To demonstrate whether there are benefits related to the naturalness-based mutation
testing, we repeatedly compute the fault revealing probabilities of the compared ap-
proaches and determined their fault revelation probabilities.
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Table 13.1: Java Subjects Details

Test Subject Description LoC #Faults Used

JFreeChart A chart library 79,949 19

Closure Closure compiler 91,168 92

Commons Lang Java utilities library 45,639 30

Commons Math Mathematics library 22,746 74

Joda-Time A date and time library 79,227 15

Total - 318,729 114

13.4 Methodology

13.4.1 Test Subjects: Real Faults, Mutants and Test Suites

For the experiment, 5 real-world projects and 230 bugs from the Defects4J database
[96] are used. Defects4J includes a reproducible set of real faults mined from source
code repositories, along with scripts that facilitate the conduction of experiments on
these faults. In total, we consider 357 real-world faults accompanying the test sub-
jects. This last point justifies the use of Defect4J instead of the two defect datasets
introduced in this dissertation, i.e., in chapter 4 and 11, as they are not storing the
tests corresponding to the fault which is required to validate mutants.

The first four columns of Table 13.1 present details about the test subjects: their
names, a small description, the source code lines (reported by the cloc tool [4]) and
the number of faults available.

To compose test pools with a large number of tests, data from the study of Papadakis
et al., [148] are used. It involves two state-of-the-art test generation tools (EvoSuite
[60] and Randoop [142]). The test pools are composed of the available developer test
suites and 20 test suites, 15 from EvoSuite and 5 from Randoop. In total the test
pools are composed of 1,375,341 automatically generated tests and 58,131 tests from
the project developers.

For the creation of mutants, Major [97] is used. Major implements the main mu-
tation operators i.e., the Arithmetic (AOR), Logical Connector Replacement (LCR),
Relational (ROR), Bitwise (BTW), Shift (SFT), Unary Operator Insertion (UOI) and
Statement Deletion (SDL). This tool is robust, easy to use and has been used to study
the relationship between faults and mutants. It also operates at the source code level,
which is necessary for calculating the naturalness of the source code. In the experi-
ments, we apply the tools on the fixed program versions of the datasets using all the
supported operators.
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13.4.2 N-Gram Model Building

To compute the naturalness of the mutant, we rely on the Tuna framework presented
in chapter 11.

Two tokenization schemes are considered, one at the file level of granularity and one
at the statement level. The file-level tokenized content is the result of tokenizing the
code files, i.e., Java classes, as a whole. The line-level tokenized content is the result
of separating the tokens according to the statements they belong in the code files. It
is noted that the comments are discarded.

Regarding the settings for the N-Gram Model, we pick according to the result of chapter
11 the following parameters: n equals to 4 with Modified Kneser Ney as smoothing
technique and set unknown threshold to one.

Overall, to compute the naturalness of all mutants, we proceed as follows (for every
mutated file):

1. Collect and tokenize all source code files of the projects containing the mutated
file under evaluation

2. Exclude the file that has been mutated

3. Use the resulting set of source files as the training corpus to build two N-Gram
models, one at the file-level and another one at the line-level

4. For the mutant files (test corpus):

• Tokenize the mutant.

• Compute its cross entropy as well as the original one using the file-level
model.

• Do a diff between the line level tokenized versions of the original and the
mutant.

• Measure the cross entropy (naturalness) of the deleted lines and added lines
using the line level model and attribute it to the original and mutant, re-
spectively.

13.4.3 Evaluation Process

To answer the stated RQs, we applied mutation testing on the project files where the
faults appeared. We then measured the naturalness of all the original and mutant files
using the process described above. Since the models are measuring the naturalness of
code fragments based on the training corpus, we need to separate the training from
the evaluation corpus in order to avoid biasing the ability of the model.

Thus, for each fault, we train our models on all the project files excluding the faulty
ones, which is the default strategy adopted in Chapter 11 and the strategy known as
Other file Naturalness in Chapter 12. This establishes a clear separation of training
and evaluation targets as it ensures that the same files do not belong to both training
and evaluation.
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To answer RQ1 and show that the syntactic differences of mutants can be scored by
language models (ranked according to their naturalness), we collect all mutants and
categorize them according to the entropy of the original files (we record the entropy
differences of the original and mutant files). We thus seek to identify trends regarding
the syntactic transformations introduced by the mutants e.g., whether mutants make
natural files more or less natural.

To answer RQ2 and demonstrate the ability of naturalness to assist mutation testing,
we rank the mutants according to their naturalness. We investigate three scenarios:
the naturalness of the a) mutant location, b) mutated file and c) absolute difference
of the original and mutant files. To check whether natural or unnatural cases are
interesting, we rank the mutants in an increasing and decreasing order (of entropy)
and contrast their fault revelation abilities. To determine fault revelation we repeatedly
apply mutation testing by selecting the x% of the top rank mutants (we consider sets
of 0, 5%, 10%, 15% to 100%) and compute the fault revelation probabilities of these
sets. To account for coincidental and other random factors, we applied our process
1,000 times for every considered set of mutants.

The fault revelation probabilities of the selected mutant sets were computed by mea-
suring the ratio of the times that the faults were revealed by the test suites that kill
all the considered mutants. The test suites that kill the candidate mutant sets were
selected based on the following procedure: We start from empty test sets and stop
when we kill all the mutants. At each step we select the next mutant in the list and
randomly pick a test that kills it (selected from the pool of the available test suites).
To avoid composing test suites with large redundancies we remove all the mutants that
are killed by every test we select. In case no test kills a targeted mutant, we discard the
mutant. This process mimics what a tester does when she uses mutation testing [29]
and ensures that the selected tests are relevant to the mutants we study. Overall, this
is a typical evaluation process that has been followed by many studies [111, 29, 146].

To answer RQ3 and compare with the random mutant selection we repeat the process
followed in RQ2 for random mutant orderings. To cater for the stochastic nature of
the random orderings we repeat this process 100 times and compare our results with
the naturalness-based orderings.

13.5 Results

13.5.1 RQ1: Impact of Mutants on Naturalness

The first research question checks whether mutants change the cross entropy of the
code under analysis. Thus, we check the ability of the N-Gram models at identifying
the syntactic changes introduced by mutants. To do so, we compare the cross entropy
of the mutated (and original) code files.

Table 13.2 records the distribution of entropy values of the mutants. We can observe
that entropy can distinguish the great majority of the mutants. Figure 13.1 presents
the entropy differences between the mutant and the original files. The boxplot presents
the values resulting by subtracting the entropy of the mutated file to the one of the
original. Thus, positive values indicate that mutants are less natural than the original,
while negative values the opposite.
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Figure 13.1: Cross Entropy difference between mutant and original files

We observe that mutants alter the cross entropy of the code with the majority of them
making the code less natural.

Table 13.2: Distribution of entropy values

Number of mutants with equal entropy values and their frequency. For instance, 83,707
mutants have unique entropy values, while 10,347 mutants have entropy value equal to
another mutant.

No of mutants 1 2 3 4 5 6 7 8 ¿=9

Frequency 83,707 10,347 2,506 1,203 550 361 253 176 511

We observe that models can indeed capture the syntactic differences between the orig-
inal and the mutant files. Interestingly, we observe that mutants sometimes make the
code more natural and sometimes less natural. The tendency is to make the code less
natural as the majority of the mutant files have higher entropy than the original files.
In our results, only 30% of the mutant are more natural than the original.

Overall, the results suggest that mutants change the cross entropy of the code under
analysis and they make it sometimes more and sometimes less natural. This leads
us to the question of whether there is a link between the value of mutants and their
naturalness.

13.5.2 RQ2: “Natural” Vs “Unnatural” Mutant Selection

This RQ regards the design of naturalness-based mutant selection strategies. To this
end, we need to evaluate whether natural or unnatural mutants are preferable. We
thus, collect all the mutants from our subjects and measure their entropy, using both
the file-level and statement-level tokenizers. We then collect a) the entropy of the
code fragments where mutants are applied (using, the statement-level tokenizer) b)
the entropy of the mutant files (using, the file-level tokenizer), and c) the absolute
difference in entropy between the original and mutated files (using, the file-level tok-
enizer) and form naturalness-based mutation testing strategies (by ranking mutants in
an increasing and decreasing order).
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Figure 13.2: Identifying fault revealing mutants

Natural VS Unnatural program locations, Natural VS Unnatural mutant files and Big
VS Small mutants’ impact. The x-axis records ratios of the top ranked selected mutants,
while the y-axis records the fault revelation ability of the two selected strategies, i.e.,
fault revelation of natural and unnatural mutants. Higher values indicate higher fault
revelation.

These three entropy measurements help us investigate which ones of the strategies we
can compose leads to interesting mutant sets. We investigate these particular cases
because they involve interesting properties: a) regards the locations that should be
mutated, b) regards the natural/unnatural order of mutants, while c) regards the
‘extreme’ mutants, i.e., choosing mutants that impact the entropy measure too much,
either by making the code much more natural or much more unnatural.

We apply naturalness-based mutation testing by ranking mutants in an increasing
and decreasing entropy order, i.e., we follow the procedure explained in the previous
section, and obtain the fault revelation ability of our mutant sets. Here we compare the
increasing and decreasing entropy orders in order to identify the strategy that leads to
the most promising results. We use the same number of mutants in every comparison to
establish a fair comparison. In the following subsections we discuss the results related
to the cases a), b) and c). All our results are presented by computing the differences
in the fault revelation values of the increasing and decreasing order strategies. Thus,
by observing positive values we can conclude that increasing strategies are preferable
over the decreasing ones.

Mutant Locations Figure 13.2a depicts the results related to the fault revelation
ability of the mutants located on natural and unnatural code locations for several ra-
tios of selected mutants. Higher values indicate that natural locations are preferable.
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Figure 13.3: Fault Revelation of naturalness and random mutant selection

The x-axis records ratios of selected mutants and the y-axis records the fault revelation
for every fault considered.

We observe a small difference in favour of the natural locations over the unnatural
ones. To validate this, we performed a Wilcoxon signed-rank test and found no sta-
tistical differences (at the a < 0.05 significance level). These results suggest that the
naturalness of the code locations is not discriminative of the fault revelation ability of
the mutants. In other words, ranking mutants according to the naturalness of their
location is not really helpful (is not a good feature of the semantic usefulness of the
mutants).

Mutant Files Figure 13.2b records the results regarding the fault revelation ability
of the natural and unnatural mutants. Natural mutants are those having mutant files
(whole files) with low entropy. In this case the results show a tendency towards the
natural mutants but the difference is small. By performing a Wilcoxon signed-rank
test we find statistical differences (at the a < 0.05 significance level) when selecting in
the range 5% to 25%. When selecting more than 25% of the mutants the differences are
not significant. When measuring the effect size of the differences, using the Vargha and
Delaney Â12 [182], we get values of approximately 0.57 to 0.58 (meaning that natural
mutants are preferable in 57-58% of the cases). Interestingly the fault detections of
both natural and unnatural mutants are much higher than those of the natural or
unnatural locations indicating a potential of such strategies.

Mutants Impact Figure 13.2c records the results regarding the strategies with ex-
treme impact, i.e., abs(original entropy - mutant entropy) (impact on the entropy of
the file). The underlying idea is that the ‘extreme’ mutants (mutants with the largest
impact) are more interesting than non-extreme ones. Unfortunately, the results indi-
cate that this choice does not matter much (since almost all such values are close to
each other. The differences are not statistically significant indicating that the impact
on the naturalness is not a discriminative factor that we could use.
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13.5.3 RQ3: Naturalness Mutant Selection VS Random

This RQ regards the comparison of naturalness-based mutation testing with a baseline
in order to see if it is of any practical value. To investigate this, we select the two best
performing strategy, i.e., selecting the most natural mutants, and compare them with
the random selection. As we discussed earlier, random mutant selection forms a tough
baseline and thus, by demonstrating that the naturalness outperforms the random
selection, we effectively establish an approach capable of discriminating between good
and bad mutants.

Figure 13.3 summarizes the results of the comparison. The boxes record the fault
revelation ability of the mutant sets that are composed of (0-100%, in steps of 5%)
of the considered mutants. As can be seen the naturalness-based strategy performs
similarly to the random mutant selection. By performing a Wilcoxon test, we find
that the results are not statistically significant. This means that the differences are
marginal and we cannot expect any important benefit.

13.6 Discussion

13.6.1 Visualizing Naturalness and Fault Revelation

To further investigate the relation between naturalness and fault revelation, we visual-
ize the data (with the hope to see some general trends that might not be captured by
the analysis). Figure 13.4 plots the naturalness (naturalness of the original file minus
the naturalness of the mutant file) and fault revelation probabilities for every mutant
we consider. In the figure we observe that there is no exploitable pattern.

Mutants with high fault revelation (points on the x-axis with values above 0.5) are
spread across all the spectrum of naturalness values. Mutants with low or no fault
revelation (close to 0 value on the x-axis) have the most extreme negative values.
Nevertheless, the visualization helps us demonstrate the absence of relation between
the examined variables.

13.6.2 Additional Attempts with Negative Results

Our results are in a sense negative (the expected benefit was not reached). However,
this could be attributed to a number of parameters that were not considered. To
account for some of them, we repeated the experiment (without any success) with
different parameters. Thus, we also used the different tokenizers included in TUNA,
we also composed models by considering n-values up to 10, and also considered the
use of a much larger training corpus, i.e., train on the 20 (related) Java programs from
Chapter 11 and we measured the number of tests and equivalent mutants required (by
the naturalness-based and random mutant selection) to reach the same level of fault
revelation. All these attempts yielded quite similar results and overall no significant
differences between naturalness-based and random mutant selection was found.
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Figure 13.4: Fault Revelation probabilities and naturalness

The x-axis records fault revelation probability of each mutant (measured by counting
the number of tests that kill the mutant and at the same time expose a real fault) and
the y-axis records the naturalness value of every mutant.

13.7 Threats to Validity

The generalizability of the results is a common threat to the external validity of exper-
imental study. To mitigate this threat, the use of real-world projects with real faults
was considered.

A potential threat affecting the internal validity of this study stems from the sets of
mutants and test suites which were used. We used state-of-the-art mutation testing
tools supporting all the mainstream mutation operators [102].

To compose the test pools, multiple test suites that were generated by state-of-the-art
test generation tools were used, i.e., Randoop [142] and EvoSuite [60]. Although it is
possible that different tests may lead to different results, the practice employed reflects
what current test case generation research has to offer in large-scale experiments.

Threats that affect the construct validity of our study concerns the metrics we used.
To evaluate mutant ranking we used fault-revealing mutants and fault revelation prob-
abilities approximated by multiple test executions. These metrics are appropriate since
fault revelation forms the purpose of testing.

Regarding the cost of mutation we measured and controlled the number of mutants.
This is an intuitive choice that assumes that the cost of mutation testing is dependent
on the number of the mutants involved. Yet, it might not represent the actual cost of
the mutation testing practice. Here it must be mentioned that the cost of computing
the naturalness is not considered as this practice requires one-off computation, common
to the whole targeted code-based.
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13.8 Related Work on Mutation Testing

Mutation Testing is a well studied, fault-seeding technique with a rich background both
in theoretical and practical advances. A summary of these advances can be found in
the recent survey of Papadakis et al., [147] which summarizes the advances in the area
between 2007–2016, complementing previous surveys [138, 87].

The quality of mutants and how to generate “good” mutants have concerned re-
searchers for many years. This problem has many facets. First, the question “what
changes should be applied to the program under test” can be posed. This is directly
related to the mutation operators that one should use. Although mutation research has
expanded the available mutation operators to handle multiple and diverse artefacts,
ranging from mobile applications [54, 112] to models [34, 55], and includes specialized
sets of operators, e.g., energy-[85], security-[116] and memory-related [190] ones, it is
not clear what constitutes a “good change” for mutant creation. Ultimately, a “good”
mutant will be a fault-revealing one (for testing purposes), i.e., it will be killed by test
cases that reveal underlying faults in the program under test [46].

Offutt et al., [139] introduced a theoretical model of the “size” of program faults
which makes the separation between its syntactic and semantic characteristics. The
syntactic size of a fault is related to the source code of the program under test and how
it differs from its correct counterpart and the semantic size to the divergence between
the program under test and its specification due to the presence of the fault. Thus,
the authors suggest that mutants having a small semantic size are more valuable to
testing.

Semantic mutation testing has been proposed as a different way to generate mutants
that affect the semantics of the language of the artefact under test rather than the
syntax [50, 53]. Thus, the semantic mutants simulate a different category of faults
than the traditional ones and are more useful in several scenarios. Since semantic
mutants are realized by syntactic changes in the source code of the program under
test, naturalness can be used to evaluate their quality.

Sridharan and Namin [172] attempt to rank mutants by focusing on mutation operators
that are likely to generate mutants that will not be killed by a specific test suite. Their
approach is based on a probabilistic, Bayesian model which analyses a small portion
of the generated mutants and the available test suite to rank the whole set of mutants.
The basic difference between this approach and the previous ones is that they depend
on the available test suite whereas our approach leverage mutants’ naturalness and is
applied statically.

Other studies attempt to create mutation operators that resemble real faults by
analysing previous faults that developers have made. Brown et al., [41] mine fault-
fixing commits from the version control history of projects and extract fault-fixing
patterns. Based on these patterns, they propose new mutation operators that reverse
the patterns, thus, creating faulty program versions (mutants). Linares-Vásquez et al.,
[112] created a taxonomy of faults found in Android applications and propose a new
set of Android mutation operators based on these patterns. However, the utility of
these techniques have not yet been evaluated wrt. to their ability to reveal faults.
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13.9 Conclusion

Naturalness has been used for a large variety of Software Engineering tasks, in this
chapter we addressed the fourth challenge by evaluating its use in the context of “fault-
revealing” mutant selection. We investigated whether a link exists between the natu-
ralness of mutants and the semantic alterations of real faults and found no evidence of
such link. We also demonstrated that the naturalness-based mutant selection performs
similar (slightly worse) than the random mutant selection. The findings also suggest
that mutants (and their locations) coupled with faults are both natural and unnatural.

These results are of interest for both the software engineering and testing community.
They indicate for the first one that as promising as naturalness of software seems, it has
its limit. While for the second, it increases the understanding of the interconnections
of program syntax, program semantics and software faults, as it confutes the natural
intuition.
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14
Wrapping Up Part IV

The previous part largely focused on the evaluation, replication and comparison of
VPM. In this part, we developed new approaches based on the naturalness of software
and therefore addressed the third challenge of the thesis. Yet to develop this new ap-
proaches the right parameters needed to be found. Thus in Chapter 11 an empirical
study on the effect of parameters on naturalness was presented. This study revealed that
the choice of the code representation was of utmost importance as models trained with
different code representations were learning different things. Based on this experience,
the study of Chapter 9 was extended in Chapter 12 with 2 novel VPM approaches, one
using solely naturalness values as features and one combining code metrics values with
naturalness. The results of the first one were disappointing and validated that natural-
ness could not be used alone. The results of the second, on the other hand, were really
interesting as the precision compared to Code metrics alone was improved in most of
the case. Moreover, it turned out that the combination with naturalness can reduce the
sensitivity of the approaches to issues such as already fixes vulnerabilities and mislabel-
ing noise, which are two of the main issues that were pointed out in the original study.
Naturalness can be used for a variety of tasks and as the results obtained out of the
first two chapters of this part, Chapter 13 attempted to apply it to a different context,
mutation testing, which is in line with the fourth and last challenge of this thesis. More
precisely, this chapter investigated whether there was a link between naturalness and
the fault revelation utility of mutants. The results turned out to be negative with no
evidence of a link. Still, they were considered as interesting as they confute a natural
intuition and indicates that despite its great potential naturalness of software is no “pot
of gold”, which the results of the VPM approach based only on naturalness confirm.
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15
Conclusion

This chapter concludes the dissertation and presents future research directions.
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This chapter is organised as follows. Section 15.1 summarises the contributions of this
dissertation before Section 15.2 discusses potential directions for future work.

15.1 Summary

The threat posed by vulnerabilities is increasing as software becomes pervasive. To
deal with this issue, a number of strategies have been devised over time. Still, the best
cure remains prevention. Thus many software vendors integrated security policy and
inspection to their development process. Yet, uncovering vulnerabilities requires an
“attacker mindset” [120], which is not evident for most developers. Additionally, cov-
ering in a continuous way the entire code base is impractical and too costly especially
for projects of millions LoC. In order to guide security inspection efforts, researchers
suggested and evaluated various types of methods. Among them, vulnerability predic-
tion modelling techniques offer promising results. Vulnerability Prediction Modelling
is an active research area, appeared in 2007 by the seminal work of Neuhaus et al.,
[133]. VPM uses supervised learning techniques to build prediction models based on a
set of features and then used these models to evaluate the likelihood, to be vulnerable,
of software components. Yet and despite, the growing attention paid to this area of
research, there is a clear lack of replication and comparison studies of the approaches
that have been suggested over time, which hinders the development of the area. One
of the possible reasons for that is the absence of established publicly available datasets
and the difficulty to create them. Additionally, as most of the existing studies do not
provide any replication framework, such a comparative study is hard to make.

In this context, we identified and addressed two main challenges: (1) Collecting vul-
nerabilities in order to make a reliable, evolutive, multi-projects and large dataset
enabling vulnerability prediction modelling, (2) Replicating and Comparing existing
approaches.
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Additionally, we proposed and investigated the use of naturalness (cross entropy mea-
sure) as a potential candidate feature. This proposition was inspired by its successful
application on various software engineering tasks especially DPM [156].

This led to identification of two additional challenges addressed in this dissertation: (3)
Developing a new VPM approach based on the Naturalness of Software, (4) Exploring
the use of the Naturalness of Software for other Software Engineering tasks.

This work presented a series of frameworks that can be combined to form a complete
framework for the development, evaluation, replication and comparison of vulnerability
prediction model approaches along with studies that motivated and validated those
frameworks. The architecture of the complete framework is depicted in Figure 15.1.

In the first part, we started by introducing the context, technical background and the
challenges in Chapter 1. Then, we discussed the state of the art in Chapter 2.

The second part focused on addressing the first challenge of collecting the vulnerabili-
ties. Chapter 3 first presented a manual analysis of Android vulnerabilities. The study
emphasized on three properties of vulnerabilities, their root causes, complexity and lo-
cation. The studies revealed that vulnerabilities are almost always located among the
most complex function, which confirmed the choice of Shin et al., [169] to use it as
a feature for vulnerability prediction. More importantly the study highlightened the
issue faced by researching when trying to collect information on vulnerabilities.
Chapter 4 offered a solution to this issue, which is as well the first challenge by intro-
ducing an extensible framework that automatically collects vulnerability information
and fixes from the NVD and the version history of software projects. The framework
currently supports 4 projects, i.e., the Linux kernel, Wireshark, OpenSSL and Sys-
temd and can seamlessly update its information.
Chapter 5 then presented an analysis of OpenSSL and the Linux Kernel vulnerabil-
ity based on the data collected by the framework. In this analysis, a profile of each
category of vulnerability present in those systems was built using information such as
severity, code metrics and location. The results of this profiling were full of insight
opening new perspective for vulnerability prediction. Hence, the profiles showed that
the profiles are type-specific meaning that vulnerability type prediction modelling. The
results also suggested that severity could be used as a target for prediction. Finally, the
“expected” discovery of the fact that these profiles are system specific cast a shadow on
the long-lasting dream of vulnerability prediction modelling, cross project prediction.
Finally, Chapter 6 concluded this part by summarizing its content.

The third part was guided by the second challenge of replicating and comparing the
existing VPM approaches. Chapter 7 presented a replication study of three of the main
VPM approaches, i.e., includes and function calls as suggested by Neuhaus et al., [133],
Code Metric suggested by Shin et al., [167] and Text Mining proposed by Scandariato
et al., [161]. Results demonstrated the importance of the evaluation methodology, a
parameter often ignored by previous studies. They also showed that when training on
past vulnerabilities to predict “future” ones, the models based on Includes and Func-
tion Calls offers an interesting trade-off time to compute/results, while Text Mining
clearly outperforms the others in terms of “raw” performances, i.e., not considering
time to compute.
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This replication study highlighted the difficulty to replicate (finding all the right
settings) and compare (using the same evaluation methodology) existing VPM ap-
proaches. Thus based on the experience built upon the previous chapter, Chapter 8
introduced a framework to evaluate, replicate and compare VPM approaches. This
framework is built on top of the Data7 framework from Chapter 4 and is composed of
three distinct parts each one handling specific aspect of the evaluation models. The
framework supports the integration of new approaches and currently offer 6 different
approaches.
Chapter 9 then presented using this framework the largest empirical study on VPM.
This study confirmed the good performance of the different approaches when trained
on sufficient and accurately labelled data. However, it was as well observed that the
performances become poor when the models are placed against more realistic data,
i.e., partial and miss-labelled data. This difference was demonstrated to be mainly
due to the lack of vulnerability example referred as the “needle effect” by Shin et al.,
[164] and not to the fact that data are mislabelled as one could expect. Finally, the
poor performance of the models to detect a fix of vulnerabilities were confirmed, which
supports the idea that VPM should be used as a guide and not as detectors.
Similarly to the previous part, Chapter 10 concluded this part with a summary of it.

The fourth part investigated the use of the Naturalness of Software. Chapter 11 pre-
sented a study on the impact of the choice of smoothing, tokenizer, unknown threshold
and n values on the predicting ability of the N-Gram models that are used to com-
pute naturalness. In particular, the study investigated whether this choice has the
potential to impact previous and future findings and it turned out that the answer
was positive. The major impacting factor found was the way to feed the source code
to the N-Gram model, i.e., the code representation. Interestingly, it appeared that
the most interesting code representation to find defects was the closest to the human
representation. These results led to the conclusion that in order to make the most out
of the computation of naturalness, several code representations need to be considered.
Using these findings, Chapter 12 tackled the third challenge by introducing two novel
VPM approaches in an extension of the study from chapter 9. The first one used only
naturalness values computed using different settings, while the second one combined
this approach with the code metric one. It turned out that naturalness cannot be used
alone but is interesting when combined to Code Metrics, with observed effect such as
an increase in precision and a reduction in sensitivity to the problem of vulnerability
fixes and mislabelling noise. Overall, it seems like naturalness can be a good comple-
ment to model helping them to generalize better.
Finally, Chapter 13 addressed the last challenges by investigating whether a link existed
between the naturalness of mutant and their “fault-revealing” capability. Following
the findings of Chapter 11 several configurations were considered but the results turned
out to be negative. These results remain nonetheless interesting as they contradict the
natural intuition and as when put together with the negative results of the naturalness
only VPM approaches remind to researchers that as promising as “Naturalness” seems
it is no “Pot of Gold”.
In a similar way to Chapter 6 and 10, Chapter 14 concluded this part.
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15.2 Future research directions

15.2.1 Extending the Data7 Framework

Chapter 4 introduced the Data7 framework that is used all along the dissertation. The
framework is mature but still face some limitations. First of all, the data are stored
in a flat way, which means that no navigation is possible in the dataset which is not
problematic for vulnerability prediction modelling but is more troublesome in the case
of vulnerability analysis. Second, the data are not versioned. The state of knowledge
on vulnerabilities evolves in time, i.e., new exploits and fixes can be reported. In the
current implementation every update on the vulnerability information overwrite the
previous entry. This is not especially problematic but when investigating the problem
of mislabelling noise it would be preferable to know the exact state of knowledge at
the time we desire to investigate. These two concerns can be easily handled through
the use of temporal graph databases such as Greycat [74]. The navigation would be
solved by the transposition of the flat data into a graph, while the versioning would
be ensured by the temporality. A first step in this direction, not yet available, has
already been made.

15.2.2 Broadening the Scope of VPM

Chapter 5 showed that metric profile differs depending on the type of vulnerability.
These findings open the door to approach predicting the type of vulnerability instead
of just vulnerability. This type of approach could take several forms, a first possibility
would be an approach that target a specific type of vulnerability alike what we did
with the severity. Yet, this is likely to come at the price of an increased “needle
effect” as we reduce the number of elements in the minority class. A second possibility
would be to directly try to predict the type of vulnerability. This doesn’t solve the
needle effect but transform the classification from a binomial to a multinomial problem
which complicates the measures of performances, still it might be an interesting setting
to experiment. A last solution would be to chain a traditional VPM with a type
specialized one. This would reduce the “needle effect” but the impressions of both
models would then add up. None of these solutions are perfect, but they should
nonetheless be investigated.

Another way to broaden the scope of VPM is to combine it with DPM to perform a
trinomial classification, i.e., creating an approach building model that predicts defects
and vulnerabilities. Such approach could potentially build better model as the spread
between the different class would be more balanced. Additionally, it would likely reduce
the number of components that are predicted as clear when they are vulnerable. This
could be of great use for security inspection effort, as practitioners could first focus
on components that are predicted as vulnerable and then the one predicted as defect.
The evaluation of such models is already possible in FrameVPM and initial evaluation
have already been made.
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15.2.3 Analyzing Vulnerability Fixes

The Data7 framework stores the fixes of the vulnerabilities, in this dissertation those
are not fully exploited, i.e., the vulnerable form is almost always the only one studied.
Yet, vulnerability fixes are essential to the understanding of what makes a vulnerability
a vulnerability. Thus, further analysis would be of great interest. This could take the
form of a standard analysis like the one presented in chapter 5, but could also lead to
the creation of a model detecting them. Indeed, not every vulnerability has declared
fixes but they are still supposed to have been fixed. Thus predicting whether a fix is a
vulnerability fix could help detect those fix or even better detect unknown vulnerability
corrected by the fix. To create this kind of model, some feature specific to code changes
would be required. Naturalness could be an interesting source of features, either by
computing the diff between the naturalness of the vulnerable and fixed version of the
component alike what was done for mutants in Chapter 13, either by usual textual
representation of the patch like line diff or AST diff [57]. ged introduced in Chapter 5
might as well be an interesting feature to explore.
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15.2. Future research directions

List of Papers and Tools

Published papers included in the dissertation

• Profiling android vulnerabilities (QRS 16)
M Jimenez, M Papadakis, TF Bissyandé, J Klein [91]

• Vulnerability Prediction Models: A case study on the Linux Kernel (SCAM 16)
M Jimenez, M Papadakis, Y Le Traon [93]

• An Empirical Analysis of Vulnerabilities in OpenSSL and the Linux Kernel(APSEC
16)
M Jimenez, M Papadakis, Y Le Traon [92]

• Enabling the Continuous Analysis of Security Vulnerabilities with VulData7 (SCAM
18)
M Jimenez, Y Le Traon, M Papadakis [90]

• On the impact of tokenizer and parameters on n-gram based code analysis (ICSME
18)
M Jimenez, M Cordy, Y Le Traon, M Papadakis [89]

• Are mutants really natural? A study on how “naturalness” helps mutant selection
(ESEM 18)
M Jimenez, T Checkam, M Cordy, M Papadakis, M Kintis, Y Le Traon, M Harman
[94]

Published papers not included in the dissertation

• Analyzing complex data in motion at scale with temporal graphs (SEKE 17)
T Hartmann, F Fouquet, M Jimenez, R Rouvoy, Y Le Traon [74]

Paper currently under Submission

• Do Prediction Models Find Important and Severe Vulnerabilities?
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List of papers and tools

Tools and Dataset developed during the thesis

• Data7 Framework https://github.com/electricalwind/data7

• VPM Framework https://github.com/electricalwind/framevpm

• TUNA: TUning Naturalness-based Analysis (ICSME 18)
M Jimenez, M Cordy, Y Le Traon, M Papadakis [88]
https://github.com/electricalwind/tuna

• FileMetrics https://github.com/electricalwind/FilesMetrics

• Android Vulnerabilities dataset https://github.com/electricalwind/

ReasearchData/tree/master/AndroidVulnerabilities/Android
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