
1

From Clustering Supersequences to Entropy
Minimizing Subsequences for Single and Double

Deletions
Arash Atashpendar1, Marc Beunardeau3, Aisling Connolly3, Rémi Géraud3, David Mestel2, A. W. Roscoe2 and

Peter Y. A. Ryan1

1SnT, University of Luxembourg, Luxembourg
2Department of Computer Science, University of Oxford, Oxford, UK

3Département d’informatique de l’ENS, École normale supérieure, CNRS, PSL Research University, Paris, France

Abstract

A binary string transmitted via a memoryless i.i.d. deletion channel is received as a subsequence of the original input. From this,
one obtains a posterior distribution on the channel input, corresponding to a set of candidate supersequences weighted by the number
of times the received subsequence can be embedded in them. In a previous work it is conjectured on the basis of experimental
data that the entropy of the posterior is minimized and maximized by the constant and the alternating strings, respectively. In this
work, in addition to revisiting the entropy minimization conjecture, we also address several related combinatorial problems. We
present an algorithm for counting the number of subsequence embeddings using a run-length encoding of strings. We then describe
methods for clustering the space of supersequences such that the cardinality of the resulting sets depends only on the length of
the received subsequence and its Hamming weight, but not its exact form. Then, we consider supersequences that contain a single
embedding of a fixed subsequence, referred to as singletons, and provide a closed form expression for enumerating them using
the same run-length encoding. We prove an analogous result for the minimization and maximization of the number of singletons,
by the alternating and the uniform strings, respectively. Next, we prove the original minimal entropy conjecture for the special
cases of single and double deletions using similar clustering techniques and the same run-length encoding, which allow us to
characterize the distribution of the number of subsequence embeddings in the space of compatible supersequences to demonstrate
the effect of an entropy decreasing operation.

Index Terms

Binary sequences, Combinatorial mathematics, Information entropy, Hamming weight, Closed-form solution

I. INTRODUCTION

The original motivation for this work goes back to an analysis of quantum key distribution (QKD) protocols [1], which
among other things, suggested some modifications of the quantum bit error rate (QBER) estimations. These modifications led
to an information theory problem that was first investigated in [2].

In QKD protocols, it is typical for the parties, after the quantum phase, to compare bits of the fresh session key at randomly
sampled positions in order to obtain an estimate of the Quantum Bit Error Rate (QBER). This indicates the proportion of bits
that have been flipped as the result of either noise or eavesdropping on the quantum channel. This serves to bound the amount
of information leakage to any eavesdropper, and as long as this falls below an appropriate threshold, the parties continue with
the information reconciliation and privacy amplification steps.

Usually, the sample set is agreed and the bits compared using un-encrypted but authenticated exchanges over a classical
channel, hence the positions of the compared bits are known to a potential eavesdropper and these bits are discarded. In [1], it
is suggested that the sample set be computed secretly by the parties based on prior shared secrets. They still compare the bits
over an un-encrypted channel, but now an eavesdropper does not learn where the bits lie in the key stream. This prompts the
possibility of retaining these bits, but now we must be careful to bound the information leakage and ensure that later privacy
amplification takes account of this leakage.

The mathematical problem encountered in the aforementioned analysis is the following. A random bit string y of length
n emitted from a memoryless source is transmitted via an i.i.d. deletion channel such that a shorter bit string x of length m
(m ≤ n) is received as a subsequence of y, after having been subject to n −m deletions. Consequently, the order in which

arash.atashpendar@uni.lu
marc.beunardeau@ingenico.com
aisling.connolly@ens.fr
remi.geraud@ens.fr
david.mestel@cs.ox.ac.uk
bill.roscoe@cs.ox.ac.uk
peter.ryan@uni.lu

ar
X

iv
:1

80
2.

00
70

3v
2

 [
cs

.I
T

]
 4

 M
ar

 2
01

9

arash.atashpendar@uni.lu
marc.beunardeau@ingenico.com
aisling.connolly@ens.fr
remi.geraud@ens.fr
david.mestel@cs.ox.ac.uk
bill.roscoe@cs.ox.ac.uk
peter.ryan@uni.lu

2

the remaining bits are revealed is preserved, but the exact positions of the bits are not known. Given a subsequence x, the
question is to find out how much information about y is revealed. More specifically, the quantity we are interested in is the
conditional entropy [3] over the set of candidate supersequences upon observing x, i.e., H(Y |X = x) where Y is restricted
to the set of compatible supersequences as explained below.

The said information leakage is quantified as the drop in entropy [4] for a fixed x according to a weighted set of its compatible
supersequences, referred to as the uncertainty set. The uncertainty set, denoted by Υn,x, contains all the supersequences that
could have given rise to x upon n−m deletions. In [2], an alternative proof shows that this set’s cardinality is independent of
the details of x and that it is only a function of n and m. Thus, for a fixed subsequence x of length m, we consider the set of
y strings of length n (n ≥ m) that can contain x as a subsequence embedding. The weight distribution used in the computation
of entropy is given by the number of occurrences or embeddings of a fixed subsequence in its compatible supersequences, i.e.,
the number of distinct ways x can be extracted from y upon a fixed number of deletions, denoted by ωx(y). Furthermore, in the
same work it is conjectured that the constant subsequences consisting of all 1’s or all 0’s (i.e., x = 11...1 and x = 00...0)
and the alternating 1’s and 0’s (i.e., x = 1010... and x = 0101...), minimize and maximize the said entropy, respectively.
Throughout we will simply use σ to refer to the constant strings x = 0m and x = 1m.

Despite the specific context in which the problem was first encountered, the underlying mathematical puzzle is a close
relative of several well-known challenging problems in formal languages, DNA sequencing and coding theory. In fact, the
distribution of the number of times a string x appears as a subsequence of y, lies at the center of the long-standing problem of
determining the capacity of deletion channels. More precisely, knowing this distribution would give us a maximum likelihood
decoding algorithm for the deletion channel [5]. In effect, upon receiving x, every set of n − m symbols is equally likely
to have been deleted. Thus, for a received sequence, the probability that it arose from a given codeword is proportional to
the number of times it is contained as a subsequence in the originally transmitted codeword. More specifically, we have
p(y|x) = p(x|y) p(y)

p(x) = ωx(y)dn−m(1− d)m p(y)
p(x) , with d denoting the deletion probability. Thus, as inputs are assumed to be

a priori equally likely to be sent, we restrict our analysis to ωx(y) for simplicity.
In this work, we first study several closely-related counting problems involving (super/sub)-sequences and then we revisit the

aforementioned entropy question. It is worth pointing out that while questions on the combinatorics of random subsequences
requiring closed-form expressions are already quite challenging, the problem tackled in this work and first raised in [2], is further
complicated by the dependence of entropy on the distribution of subsequence embeddings, i.e., the number of supersequences
having specific embedding weights. To put this in contrast, in a related work [6], a closed-form expression is provided for
computing the number of distinct subsequences that can be obtained from a fixed supersequence for the special case of two
deletions, whereas here we need to account for the entire space of supersequences and characterize the number of times a
given subsequence can be embedded in them in order to address the entropy question. Moreover, one would have to work
out how these weights (number of embeddings) get shifted across their compatible supersequences when we move from one
subsequence to another. To the best of our knowledge, other than the original statement of the problem [2] and the conjectured
limiting entropic cases, proving the entropy extremization conjecture has not been addressed before.

A. Results and Contributions
We provide an algorithm for counting the number of embeddings of x into y as a subsequence using a run-length encoding of

strings, which is used for identifying deletion patterns that simplify the counting problem to a sequential mapping of runs from
x strings to y strings. Similar to how the cardinality of the set of supersequences that can project to a given subsequence, i.e.,
|Υn,x|, depends only on their respective lengths, we prove that the number of supersequences that admit an initial embedding
of a subsequence such that the last index of their initial embedding overlaps with their last bit, also depends only on |y| = n
and |x| = m. We then describe two clustering techniques that give rise to subspaces in Υn,x whose sizes depend only on n,m
and the Hamming weight of x, but not the exact form of x. We derive analytic expressions, as well as a recurrence, for the
cardinality of these sets. The approach and methodology used for deriving our clustering results depend heavily on the notion
of initial or canonical embeddings of subsequences in their compatible supersequences, which provide further insight into the
importance of initial embeddings.

Next, we consider the problem of enumerating supersequences that admit exactly a single occurrence of a subsequence,
referred to as singletons. We provide a closed form expression for their count using the same run-length encoding and prove
an analogous result for the minimization and maximization of the number of singletons, by the alternating and the uniform
strings, respectively.

We then revisit the original entropy extremization question and prove the minimal entropy conjecture for the special cases
of single and double deletions, i.e., for m = n − 1 and m = n − 2. The entropy result is obtained via a characterization
of the number of strings with specific weights, along with an entropy decreasing operation. This is achieved using clustering
techniques and a run-length encoding of strings: we identify groupings of supersequences with specific weights by studying how
they can be constructed from a given subsequence using different insertion operations, which are in turn based on analyzing
how runs of 1’s and 0’s can be extended or split. The methods used in the analysis of the underlying combinatorial problems,
based on clustering techniques and the run-length encoding of strings may be of interest in their own right. It is thus our hope
that our results will also be of independent interest for analyzing estimation and coding problems involving deletion channels.

3

B. Structure

We begin by providing a survey of related work in Section II. In Section III, we introduce our notation and describe the
main definitions, models, and building blocks used in our study. Next, in Section IV, we present an algorithm for counting the
number of subsequence embeddings, which relies on the run-length encoding of strings. We then explore counting problems
and clustering techniques in the space of supersequences including an analysis of a class of supersequences, referred to as
singletons, that admit exactly a single embedding of a given subsequence and prove similar extremization results for their
count. We then turn to the original entropy question in Section V and prove the minimal entropy conjecture for the special
cases of single and double deletions. Finally, we conclude by summarizing our findings and stating some open problems in
Section VI.

II. RELATED WORK

Studies involving subsequences and supersequences encompass a wide variety of problems that arise in various contexts such
as formal languages, coding theory, computer intrusion detection and DNA sequencing to name a few. Despite their prevalence
in such a wide range of disciplines, they remain largely unexplored and still present a considerable wealth of unanswered
questions. In the realm of stringology and formal languages, the problem of determining the number of distinct subsequences
obtainable from a fixed number of deletions, and closely related problems, have been studied extensively in [7]–[10]. Perhaps
it is worth noting that the same entropy minimizing and maximizing strings conjectured in [2] and studied in the present
work, have been shown to lead to the minimum and maximum number of distinct subsequences, respectively. The problems
of finding shortest common supersequences (SCS) and longest common subsequences (LCS) represent two well-known NP-
hard problems [11]–[13] that involve similar subproblems. Finally, devising efficient algorithms for subsequence combinatorics
based on dynamic programming for counting the number of occurrences of a subsequence in DNA sequencing is yet another
important and closely related line of research [14], [15].

In coding theory, and more specifically in the context of insertion and deletions channels, similar long-standing problems
have been studied extensively, and yet many problems still remain elusive. This includes designing optimal coding schemes
and determining the capacity of deletion channels, both of which incorporate the same underlying combinatorial problem
addressed in the present work. The studies in [6], [16], [17] consider a finite number of insertions and deletions for designing
correcting codes for synchronization errors and Graham [18] studies the problem of reconstructing the original string from a
fixed subsequence. More recent works on the characterization of the number of subsequences obtained via the deletion channel
can be found in [19]–[22]. Another important body of research in this area is dedicated to deriving tight bounds on the capacity
of deletion channels [21], [23]–[25] and developing bounding techniques [26].

In terms of more directly related combinatorial objects, Cullina, Kiyavash and Kulkarni [27] provide a graph-theoretic
approach for deletion correcting codes, which among other things, extends Levenshtein’s [28] result on the size of Υn,x being
only a function of n and m, to supersequences of a particular length and Hamming weight. In another more recent work by the
same authors [29], this result for binary strings is extended to q-ary strings of a particular composition, where the composition
of a q-ary string x refers to a vector of q nonnegative integers, which denote the number of times each symbol in the alphabet
appears in the string. The authors [29] show that the number of distinct supersequences of a particular composition depends
only on the composition of the original string, from which the distinct supersequences can be obtained via n−m insertions1.

Perhaps rather surprisingly, the problem of determining the number of occurrences of a fixed subsequence in random
sequences has not received the same amount and level of attention from the various communities. The state-of-the-art in the
finite-length regime remains rather limited in scope. More precisely, the distribution of the number of occurrences constitutes
a central problem in coding theory, with a maximum likelihood decoding argument, which represents the holy grail in the
study of deletion channels. A comprehensive survey, which among other things, outlines the significance of figuring out this
particular distribution is given by Mitzenmacher in [5].

III. FRAMEWORK

We consider a memoryless source that emits symbols of the supersequence, drawn independently from the binary alphabet
Σ = {0, 1}. Given an alphabet Σ = {0, 1}, Σn denotes the set of all Σ-strings of length n. Let pα denote the probability of the
symbol α ∈ Σ being emitted, which in the binary case simplifies to pα = 0.5. This means that the probability of occurrence
of a random supersequence y is given by P (y) =

∏n
i=1 pyi . The probability of a subsequence of length m is defined in

a similar manner. Throughout, we use h(s) to denote the Hamming weight of the binary string s. Throughout, we use the
combinatorics of counting multisets to enumerate all possibilities for placing n indistinguishable objects into bins marked by
m distinguishable separators such that the resulting configurations are distinguished only by the number of objects present in
each bin, which is given by

(
n+m−1

n

)
.

1Our independently derived Hamming weight clustering results in Theorem IV.4 and Theorem IV.5 partially overlap with some prior results in [27] and
[29] by D. Cullina, N. Kiyavash and A. A. Kulkarni.

4

a) Notation: We use the notation [n] = {1, 2, . . . , n} and [n1, n2] to denote the set of integers between n1 and n2;
individual bits from a string are indicated by a subscript denoting their position, starting at 1, i.e., y = (yi)i∈[n] = (y1, . . . , yn).
We denote by |S| the size of a set S, which for binary strings also corresponds to their length in bits. We also introduce the
following notation: when dealing with binary strings, αk means k consecutive repetitions of α ∈ {0, 1}. Throughout, we use
σ to refer to the constant strings x = 1m and x = 0m for succinctness.

b) Subsequences and Supersequences: Given x ∈ Σm and y ∈ Σn, let x = x1x2 · · ·xm denote a subsequence obtained
from y = y1y2 · · · yn with a set of indexes 1 ≤ i1 < i2 < · · · < im ≤ n such that yi1 = x1, yi2 = x2, . . . , yim = xm.
Subsequences are obtained by deleting characters from the original string and thus adjacent characters in a given subsequence
are not necessarily adjacent in the original string.

c) Projection Masks: We define yπ = (yi)i∈π = x to mean that the string y filtered by the mask π gives the string x.
Let π denote a set of indexes {j1, . . . , jm} of increasing order that when applied to y, yields x, i.e., x = yj1yj2 · · · yjm and
1 ≤ j1 < j2 · · · jm ≤ n.

d) Deletion Masks: A deletion mask δ represents the set of indexes that are deleted from y to obtain x, i.e., δi ∈ [n] \ π
and |δ| = n−m, whereas a projection mask π denotes indexes that are preserved. Thus, similarly, δ is a subset of [n] and the
result of applying a mask δ on y is denoted by yδ = x.

e) Compatible Supersequences: We define the uncertainty set, Υn,x, as follows. Given x and n, this is the set of y strings
that could project to x for some projection mask π.

Υn,x := {y ∈ {0, 1}n : (∃π)[yπ = x]} = {y ∈ {0, 1}n : (∃δ)[yδ = x]}

It was shown by Levenshtein [28] that that the cardinality of Υn,x is independent of the form of x and that it is only a function
of n and m, i.e.,

|Υn,x| =
n∑

r=m

(
n

r

)
. (1)

f) Number of Masks or Embeddings: Let ωx(y) denote the number of distinct ways that y can project to x:

ωx(y) := |{π ∈ P([n]) : yπ = x}| = |{δ ∈ P([n]) : yδ = x}|

we refer to the number of masks associated with a pair (y, x) as the weight of y, i.e., the number of times x can be embedded
in y as a subsequence.

g) Initial Projection Masks or Canonical Embeddings: Given yπ = x, we define π to be initial if there is no lexicograph-
ically earlier mask π′ such that yπ′ = x. π′ is a lexicographically earlier mask than π if, for some r, the smallest r members
of π and π′ are the same, but the (r + 1)-th of π′ is strictly smaller than that of π. Throughout, we will use π̃ to denote
an initial projection mask. The first embedding of a subsequence x in y is also often referred to as the canonical embedding
in the literature. Note that for a fixed mask or embedding π, the members of y up to the last member of π are completely
determined if π is initial.

h) Run-Length Encodings: A substring T of a string Y = y1y2 . . . yn over Σ is called a run of Y if T is a consecutive
sequence of the same character (i.e., T ∈ α+ for an α ∈ Σ). Let Rx,α denote the set of runs of α in x. The notion of run-
length encoding will be central to our analysis. Given an n-bit binary string y, its run-length encoding (RLE) is the sequence
rj = (aj , bj), 1 ≤ j ≤ m, such that

y = ab11 a
b2
2 · · · abmm , m ≤ n.

with aj ∈ {0, 1} and bj ∈ {1, . . . , n}. This encoding is unique if we assume that ai 6= ai+1, at which point we only need to
specify a single ai (e.g., the first one) to deduce all the others. Thus the RLE for a string y is denoted by

y = (a1; b1, b2, . . . , bm).

When the value of a1 is irrelevant, which will often be the case later on2, we will drop it form the notation. Consecutive zeros
or ones in a binary string will be referred to as blocks or runs.

Example III.1. Let y = 0011010001; then we have y = (0; 2, 2, 1, 1, 3, 1) as the first bit is zero; and we have 2 zeros, 2 ones,
1 zero, 1 one, 3 zeros, 1 one. Alternatively, (2, 2, 1, 1, 3, 1) designates simultaneously 0011010001 and 1100101110.

i) Entropy: For a fixed subsequence x of length m, the underlying weight distribution used in the computation of the
entropy is defined as follows. Upon receiving a subsequence x, we consider the set of compatible supersequences y of length
n (denoted by Υn,x) that can project to x upon n −m deletions. Every y ∈ Υn,x is assigned a weight given by its number
of masks ωx(y), i.e., the number of times x can be embedded in y as a subsequence. We consider the conditional Shannon

2Indeed, if x = yπ , then x = yπ and ωx(y) = ωx(y).

5

Table I
CLUSTERS OF SUPERSEQUENCES AND DISTRIBUTION OF SUBSEQUENCE EMBEDDINGS

x = 110

y πi ωx(y)

00110 {3, 4, 5} 1
01010 {2, 4, 5} 1
01100 {2, 3, 4}, {2, 3, 5} 2
10010 {1, 4, 5} 1
10100 {1, 3, 4}, {1, 3, 5} 2
11000 {1, 2, 3}, {1, 2, 4}, {1, 2, 5} 3

01101 {2, 3, 4} 1
01110 {2, 3, 5}, {2, 4, 5}, {3, 4, 5} 3
10101 {1, 3, 4} 1
10110 {1, 3, 5}, {1, 4, 5}, {3, 4, 5} 3
11001 {1, 2, 3}, {1, 2, 4} 2
11100 {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5} 6

11011 {1, 2, 3} 1
11101 {1, 2, 4}, {1, 3, 4}, {2, 3, 4} 3
11110 {1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5} 6

x = 101

y πi ωx(y)

00101 {3, 4, 5} 1
01001 {2, 3, 5}, {2, 4, 5} 2
01010 {2, 3, 4} 1
10001 {1, 2, 5}, {1, 3, 5}, {1, 4, 5} 3
10010 {1, 2, 4}, {1, 3, 4} 2
10100 {1, 2, 3} 1

01011 {2, 3, 4}, {2, 3, 5} 2
01101 {2, 4, 5}, {3, 4, 5} 2
10011 {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5} 4
10101 {1, 2, 3}, {1, 2, 5}, {1, 4, 5}, {3, 4, 5} 4
11001 {1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5} 4
11010 {1, 3, 4}, {2, 3, 4} 2

10111 {1, 2, 3}, {1, 2, 4}, {1, 2, 5} 3
11011 {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5} 4
11101 {1, 4, 5}, {2, 4, 5}, {3, 4, 5} 3

entropy H(Y |X = x) where Y is confined to the space of compatible supersequences Υn,x. The total number of masks in
Υn,x is given by

µn,m =

(
n

m

)
· 2n−m (2)

Let Px denote the normalized weight distribution given below

Px = {P (Y = y|X = x) for y ∈ Υn,x}.

where P (Y = y|X = x) is given by

P (Y = y|X = x) =
P (Y = y ∧X = x)

P (X = x)
=
P (X = x|Y = y) · P (Y = y)

P (X = x)
=

|{π:π(y)=x}|
(nm)

2−n

P (X = x)

=
ωx(y)2−n(
n
m

)
P (X = x)

=
ωx(y)2−n(

n
m

)∑
y′ P (Y = y′)P (X = x|Y = y′)

=
ωx(y)2−n(

n
m

)∑
y′
ωx(y′)

(nm)
2−n

=
ωx(y)∑
y′ ωx(y′)

=
ωx(y)

µn,m

We therefore have

Px =

{
ωx(y1)

µn,m
, . . . ,

ωx(yn)

µn,m

}
. (3)

Finally, for simplicity we use Hn(x) throughout this work to refer to the Shannon entropy of a distribution P corresponding
to a subsequence x as defined below

Hn(x) = −
∑
i

pi · log2(pi) (4)

where pi is given by

pi =
ωx(yi)

µn,m
.

An example illustrating these concepts is given in Table I. In addition to the distribution of weights, i.e., number of masks per
y, Hamming-weight groupings of supersequences are indicated by horizontal separators.

IV. CLUSTERING SUPERSEQUENCES, COUNTING SUBSEQUENCE EMBEDDINGS AND SUPERSEQUENCES WITH SINGLE
EMBEDDINGS

In the context of the original entropy extremization analysis, the counting problems studied in this section are motivated by
the need for gaining a better understanding of the combinatorial objects and structures involving supersequences that exhibit
specific properties with respect to a fixed subsequence. Indeed, the quantities of interest in the entropy problem are precisely
determined by the number of supersequences that admit a certain embedding weight for a fixed subsequence. Thus, the results
in this section are aimed at providing more insight into related combinatoral objects, with similar techniques used in Section V
to cluster supersequences admitting specific weights in order to establish the entropy minimization case.

To this end, we first provide a characterization of the number of subsequence embeddings based on a run-length encoding
of strings used for identifying deletion patterns that simplify the counting problem to a sequential mapping of runs from x
strings to y strings. We then consider the problem of counting singletons, that is, supersequences that admit only a single
embedding of x. We provide a closed form expression for enumerating singletons using the same run-length encoding and

6

0
0
0
0
0

1
1
1
1
1

0
0
0
0
1

1
0
0
0
0

0
1
1
1
1

1
1
1
1
0

0
0
0
1
1

1
1
0
0
0

0
0
1
1
1

1
1
1
0
0

0
1
0
0
0

1
1
1
0
1

0
0
0
1
0

1
0
1
1
1

1
0
0
0
1

0
1
1
1
0

1
1
0
1
1

0
0
1
0
0

1
1
0
0
1

1
0
0
1
1

0
1
1
0
0

0
0
1
1
0

0
1
0
1
1

1
1
0
1
0

0
0
1
0
1

1
0
1
0
0

0
1
0
0
1

0
1
1
0
1

1
0
0
1
0

1
0
1
1
0

0
1
0
1
0

1
0
1
0
1

x

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

E
n
tr
op
y

H

R
H∞

Subsequence Entropy Analysis for n=8 and m=5

Figure 1. Shannon entropy H , second-order Rényi entropy R, and Min-entropy H∞

prove an analogous result for the minimization and maximization of the number of singletons, by the alternating and the
uniform strings, respectively.

We now briefly review the results of the entropy analysis presented in [2], in which it is conjectured that the constant/uniform
string consisting of all 1’s (or all 0’s), x = 11...1, and the alternating x string, i.e., x = 1010... minimize and maximize
the entropy Hn(x), respectively. To illustrate this, the plot given in Figure 1 shows the values of the min-entropy (H∞), the
second-order Rényi entropy (R) and the Shannon entropy (H) computed for all x strings of length 5, with n = 8.

A. Counting Subsequence Embeddings via Runs

Efficient dynamic programming algorithms for computing the number of subsequence embeddings are known in the literature,
e.g., a recursive algorithm requiring Θ(n×m) operations [15]. Here we provide an alternative algorithm, which is primarily
based on the run-length encoding of strings.

Using the RLE notation, there are a few cases in which this question is easy to answer. For instance, if y = (a; k1, . . . , k`)
and x = (a; k′1, . . . , k

′
`), with the same value of `, i.e., we have the same number of blocks in x and y, then it is easy to see

that there is a one-to-one sequential mapping of blocks between x and y. This allows us to enumerate the different masks
depending on how they map the blocks to each other as follows:

ωx(y) =
∏̀
i=1

(
ki
k′i

)
. (5)

However, in the general case, the number of blocks in x and y can be different. If y = (a; k1, . . . , k`) and x = (a; k′1, . . . , k
′
`′)

do not start with the same character, we have to delete the first block to recover the case y = (a; k2, . . . , k`), and x =
(a; k′1, . . . , k

′
`′). We will now suppose that x and y start with the same character.

Here we describe an algorithm wherein for a fixed pair of x and y strings, we structure and enumerate the corresponding
space of masks by accounting for the number of different ways we can delete characters in order to merge blocks/runs such
that we can recover the simple case given in Equation (5). In the more general case, let y = (k1, . . . , k`) and x = (k′1, . . . , k

′
`′).

Definition IV.1. Let S be the set of maps f : [`′] → [`] that satisfy the following properties: f is strictly increasing and
f(i) ≡ i mod 2. A function f will define a subset of masks, by specifying blocks that will have to be completely deleted.
We group the masks according to a set of functions f that map indexes of blocks of x to indexes of blocks of y. Intuitively,

7

f maps the i-th block of x to the block of y that contains the last character of the i-th block of x. Therefore, all blocks of
y between f(i) + 1 and f(i) that are not composed of matching characters have to be deleted such that we can recover the
simple case in Equation (5).

For the subsequent analysis, recall that ki denotes the length of the run at index i, whereas k∗i refers to the actual set of
indexes of the i-th run.

Definition IV.2. Let k∗i denote the set of indexes belonging to the i-th block of y, i.e., {
∑i−1
j=1 kj ,

∑i−1
j=1 kj +1, . . . ,

∑i
j=1 kj},

F ∗(i) = {f(i− 1) + 2, f(i− 1) + 4, . . . , f(i)− 1} and F ∗(i) = {f(i− 1) + 1, f(i− 1) + 3, . . . , f(i)}, then a deletion mask
δ corresponds to f if:
• ∀i : ∪j∈F∗(i)k∗j ⊂ δ
• ∀i : k∗f(i) 6⊂ δ (this allows us to have a partition)

We call ωf the set of masks corresponding to f .

Theorem IV.1. The family (ωf)f∈S defines a partition on the set of masks from y to x.

Proof: We first show that for f 6= f ′ ∈ S, every deletion mask δ corresponding to f is different from every mask δ′

associated with f ′ (i.e., ωf ∩ ωf ′ = ∅). Since f 6= f ′, we have a smallest integer i ∈ [`] such that f(i) 6= f ′(i). We assume
without loss of generality that f ′(i − 1) = f(i − 1) < f(i) < f ′(i). Due to the condition on parity, f(i + 1) 6= f ′(i). We
distinguish between two cases:
• If f ′(i− 1) < f(i+ 1) < f ′(i), then kf(i+1) 6⊂ δ, and kf(i+1) ⊂ δ′ since f(i+ 1) ∈ F ′∗(i− 1).
• Conversely if f(i− 1) < f ′(i) < f(i+ 1), then kf ′(i) 6⊂ δ′, and kf ′(i) ⊂ δ since f ′(i) ∈ F ∗(i+ 1).

Therefore, we have δ 6= δ′. We now show that ∪f∈Sωf is the set of masks from y to x. We will use projection masks here as
they are more suitable for this proof. Let π be a projection mask such that yπ = x. We let π = {π1, . . . , πm}, where the πi
are in increasing order. Therefore, we have for all i, yπi = xi. We define φ : [n]→ [`] to be the mapping that takes an index
of y and returns the index of the block/run it belongs to, i.e., φ(a) returns the smallest i such that

∑i
j=1 kj ≥ a. We define f

such that f ∈ S and π is in ωf , by f(i) = φ(π∑i
j=1 k

′
j
). To prove that f is in S, note that given i:

• We have that f(i) ≤ f(i+ 1) since the πi are in increasing order.
• Moreover, π∑i

j=1 k
′
j

and π∑i+1
j=1 k

′
j

correspond to indexes (of y) of opposite letter (if the first one is a 1, the second is a 0

and vice versa) since
∑i
j=1 k

′
j and

∑i+1
j=1 k

′
j correspond to indexes (of x) of opposite letter.

Therefore, f(i) and f(i+ 1) are of opposite parity and f(i) < f(i+ 1).
We now prove that π corresponds to f . For a fixed i ∈ [`], let k∗f(i−1) = bkf(i−1) , i.e., the f(i− 1)-th block of y is made of

letters b. Therefore, k∗t = bkt for t ∈ F ∗(i), since t has the same parity as f(i−1). Moreover, we have b = x∑i−1
j=1 k

′
j

according

to the definition of f . So for every index h between
∑i−1
j=1 kj + 1 and

∑i
j=1 kj , xh = yπh = b, and for t ∈ F ∗(i), we have

k∗t ∩ π = ∅ (equivalently with the deletion mask δ, k∗t ⊂ δ). By definition, π∑i
j=1 kj

∈ k∗f(i) so π ∩ k∗f(i) 6= ∅ (equivalently
with the deletion mask δ, k∗f(i) 6⊂ δ).

Theorem IV.2. We have for f ∈ S, given by

|ωf | =
∏̀
i=0

(∑
j∈F∗(i) kj

k′i

)
−
(∑

j∈F∗(i)\{f(i)} kj

k′i

)
(6)

Proof: Upon the deletion induced by f , we obtain a string of the form (
∑
j∈F∗(1)

kj , . . . ,
∑
j∈F∗(`) kj). Therefore, we

have the same number of blocks in both the y string as well as the x string, and the number of masks can be computed easily
as shown in Equation (5). We first count the number of ways to choose k′i elements from k

F∗(i)
and then subtract the number

of combinations not using any of the kf(i).

Remark IV.1. We can note that F ∗(i) and F ∗(i) form a partition of [`].

Following from the preceding theorems, the total number of masks can be computed as follows

ωx(y) =
∑
f∈S
|ωf |. (7)

By summing over all f ∈ S, we get the total number |ω| of compatible masks. Note that it may happen that |ωf | = 0; this
happens when we try to trace a large block of x from a smaller block of y.

The Set S: We now determine the size of S, as a function of ` and `′. Let this size be denoted by σ(`′, `). We denote
u = b(` − `′)/2c. If f(1) = 1, then we get σ(`′ − 1, ` − 1); if f(1) = 3, we get σ(`′ − 1, ` − 3), etc. We also know that
σ(x, x) = 1 for all x, and that σ(x, y) = 0 for all x, y such that y < x. We therefore get the following recurrence:

σ(`′, `) =

u∑
i=0

σ(`′ − 1, `− 1− 2i)

8

Iterating this recursion, we get

σ(`′, `) =

u∑
i=0

u−i∑
j=0

σ(`′ − 2, `− 2− 2i− 2j),

and grouping the terms yields

σ(`′, `) =

u∑
i=0

(i+ 1)σ(`′ − 2, `− 2− 2i).

We now describe a direct combinatorial argument which gives a closed form formula for σ(`′, `) = |S|. First note that if ` 6≡ `′
mod 2 then ` cannot be in the image of f . So let ˜̀= ` if ` ≡ `′ mod 2 and ˜̀= `− 1 if not. Now the problem is to choose
[`′] elements from [˜̀] such that all the gaps have even width. Equivalently, we are interleaving the `′ chosen elements with
u = (˜̀− `′)/2 gap-segments of width 2. The number of ways to do this is plainly

|S| = σ(`′, `) =

(
`′ + u

u

)
. (8)

Example IV.1. For y = 0000111100001111 and x = 0011, we obtain ωy(x) = 300. We now compute the number of
embeddings using the run-based algorithm described above. We have ` = 4, `′ = 2 and u = (˜̀− `′)/2, which means the size
of S is |S| = σ(`′, `) =

(
l′+u
u

)
=
(

2+1
1

)
= 3. The three deletions S = {f1, f2, f3} are computed as follows: yf1 = (k1, k2) =

00001111, which amounts to ωf1 =
(

4
2

)(
4
2

)
= 36. Similarly, for f2 and f3, we get yf1 = (k1 + k3, k4) = 000000001111 and

yf1 = (k1, k2 + k4) = 000011111111, the two of which add up to 2 ×
((

8
2

)(
4
2

)
−
(

4
2

))
= 2 × 132 = 264. So the total is

ωy(x) =
∑
f∈S Ωf = 36 + 132 + 132 = 300.

B. From Maximal Initials to Hamming Clusters

Definition IV.3. Let Υc
n,x be the cluster of supersequences that have c extra 1’s with respect to x, where 0 ≤ c ≤ n−m.

Υc
n,x = {y ∈ Υn,x | h(y)− h(x) = c}.

The set of compatible supersequences is thus broken down into n−m+ 1 disjoint sets indexed from 0 to n−m such that
strings in cluster c contain h(x) + c 1’s:

Υn,x =

n−m⋃
c=0

Υc
n,x.

Definition IV.4. Maximal initials represent y strings for which the largest index of their initial mask, π̃, overlaps with the last
bit of y. In other words, the last index of the canonical embedding of x in y overlaps with the last bit of y. Recall that we
use π̃ to denote a mask π that is initial.

Mn,x = {y ∈ Υn,x | (∃π̃)[yπ̃ = x ∧max(π̃) = |y| = n]} .

Similarly, we define a clustering for maximal initials based on the Hamming weight of the y strings

Mc
n,x = {y ∈Mn,x | h(y) = h(x) + c}.

Example IV.2. For example, the initial embedding of x = 1011 in y = 110011 given by π̃ = {1, 3, 5, 6} is maximal, whereas
its initial embedding in y′ = 101011 given by π̃′ = {1, 2, 3, 5} is not maximal as the last index of π̃′ does not overlap with
the position of the last bit of y′.

A more exhaustive example illustrating these concepts is given in Table II. In addition to the distribution of weights, i.e.,
number of masks per y, clusters and maximal initials are indicated by horizontal separators and bold font, respectively.

Theorem IV.3. For given n, the cardinality of Mn,x is independent of the exact x.

Proof: It is clear that every n-element sequence that has x as an m-element subsequence has a unique initial mask π̃
that gives x. Furthermore, if we fix π, then the members of y up to the last member of π are completely determined if π is
initial. To see this, consider the case i ∈ π̃, then yi (the i-th member of y) must correspond to xj , where i is the j-th smallest
member of π̃. If i /∈ π̃, but smaller than max(π̃), then the i-th member of y must correspond to xj+1, where j is the number
of members of π̃ smaller than i. The latter follows because if this bit were xj+1, then the given π would not be initial.

We also need to observe that for a given π̃, there always exists a y that has x initially in π̃: suppose that x starts with a 0,
we set all the bits of y before π̃ to be 1. For a given value ` of max(π̃) - which can range from m to n - there are exactly(
`−1
m−1

)
π̃’s, one for each selection of the other m− 1 members of π̃ amongst the `− 1 values less than `.

9

Table II
CLUSTERS, MAXIMAL INITIAL PROJECTION MASKS AND DISTRIBUTION OF WEIGHTS.

x = 110
y π̃ ω

00110 {3,4,5} 1
01010 {2,4,5} 1
01100 {2, 3, 4} 2
10010 {1,4,5} 1
10100 {1, 3, 4} 2
11000 {1, 2, 3} 3

01101 {2, 3, 4} 1
01110 {2,3,5} 3
10101 {1, 3, 4} 1
10110 {1,3,5} 3
11001 {1, 2, 3} 2
11100 {1, 2, 4} 6

11011 {1, 2, 3} 1
11101 {1, 2, 4} 3
11110 {1,2,5} 6

x = 101
y π̃ ω

00101 {3,4,5} 1
01001 {2,3,5} 2
01010 {2, 3, 4} 1
10001 {1,2,5} 3
10010 {1, 2, 4} 2
10100 {1, 2, 3} 1

01011 {2, 3, 4} 2
01101 {2,4,5} 2
10011 {1, 2, 4} 4
10101 {1, 2, 3} 4
11001 {1,3,5} 4
11010 {1, 3, 4} 2

10111 {1, 2, 3} 3
11011 {1, 3, 4} 4
11101 {1,4,5} 3

Moreover, here we have an additional constraint, namely that the initial masks should be maximal as well, i.e., max(π̃) = n.
This means that ` = n and so we can count the number of distinct initials for the remaining m − 1 elements of x in the
remaining (n− 1)-long elements of y strings, which is simply given by

|Mn,x| = |Mn,m| =
(
n− 1

m− 1

)
(9)

Clearly the cardinality of the set of maximal initials is independent of the form of x and depends only on n and m.

Remark IV.2. Note that if we extend the analysis in the proof of Theorem IV.3 and let ` run over the range [m,n], we can
count all the distinct initial embeddings in Υn,x, given by

∑n
`=m

(
`−1
m−1

)
.

Moreover, since the bits beyond max(π̃) are completely undetermined, for a given π̃, there are exactly 2n−max(π̃) y’s that
have π̃ in common, which, incidentally, provides yet another proof for the fact that |Υn,x| is a function of only n and m
since |Υn,x| =

∑n
`=m

(
`−1
m−1

)
2n−`. This allows us to choose the x comprising m 0’s and the result in Equation (1) follows

immediately.

Theorem IV.4. All x strings of length m that have the same Hamming weight, give rise to the same number of maximal
initials in each cluster.

∀x, x′ ∈ Σm, h(x) = h(x′) =⇒ |Mc
n,x| = |Mc

n,x′ |.

Proof: We now describe a simple combinatorial argument for counting the number of maximal initials in each cluster
indexed by c, i.e., a grouping of all y ∈ Υc

n,x such that h(y) = h(x) + c. Let p and q denote the number of additional 0’s and
1’s contributed by each cluster, respectively. Furthermore, let a and b denote the number of 1’s and 0’s in x, respectively.

Similar to the method used in the proof of Theorem IV.3, due to maximality we fix the last bit of y and x, and consider
y′ = y − tail(y) and x′ = x− tail(x) where tail(s) denotes the last bit of s. Now the problem amounts to counting distinct
initials of length m− 1 in (n− 1)-long elements in each cluster by counting the number of ways distinct configurations can
be formed as a result of distributing c 1’s and (n−m− c) 0’s around the bars/separators formed by the b 0’s and a 1’s in x,
respectively.

We now need to observe that to count such strings with distinct initials, we can fix the m−1 elements of x′ as distinguished
elements and count all the unique configurations formed by distributing p indistinguishable 0’s and q indistinguishable 1’s
among bins formed by the fixed 1’s and 0’s of x′ such that each such configuration is distinguished by a unique initial.

Equivalently, we are counting the number of ways we can place the members of x′ among n− 1 positions comprising p 0’s
and q 1’s without changing the relative order of the elements of x′ such that these configurations are uniquely distinguished
by the positions of the m− 1 elements.

Intuitively, the arrangements are determined by choosing the positions of the m − 1 bits of x′: by counting all the unique
distributions of bits of opposite value around the elements of x′, we are simply displacing the elements of x′ in the n − 1
positions, thereby ensuring that each configuration corresponds to a unique initial.

10

Note that this coincides exactly with the multiset coefficient (computed via the method of stars and bars) as we can consider
the elements of the runs of x to be distinguished elements forming bins among which we can distribute indistinguishable bits
of opposite value to count the number of configurations that are distinguished only by the number of 1’s and 0’s present in
the said bins.

Thus we count the number of unique configurations formed by distributing p 0’s and q 1’s among the a 1’s and b 0’s of
x, respectively. The total count for each cluster c is given by:

(
p+a−1
p

)(
q+b−1
q

)
, which expressed in terms of the Hamming

weight of x gives

|Mc
n,x| =

(
(n−m− c) + h(x)− 1

n−m− c

)(
c+ (m− h(x))− 1

c

)
(10)

With the total number of maximal initials in Υn,x given by

|Mn,x| =
n−m∑
c=0

|Mc
n,x| =

(
n− 1

m− 1

)
.

Theorem IV.5. The size of a cluster is purely a function of n,m, c and h(x)

∀x, x′ ∈ Σm, h(x) = h(x′) =⇒ |Υc
n,x| = |Υc

n,x′ |

Proof: Let ` denote the position of the last bit of y ranging from |x| = m to |y| = n. Starting from a fixed x string, we
enumerate all y strings in cluster c by considering maximal initials within the range of `, i.e., ` ∈ [m, . . . , n].

Let g denote the number of 1’s belonging to the surplus bits in cluster c constrained within the range of the maximal initial,
[1, . . . , `]. For each `, compute |Mg

`,x| and count the combinations of choosing the remaining c − g additional bits in the
remaining n− ` bits. Let UB = min(c, `−m) and LB = max(0, c− (n− `)) and thus we get the following:

|Υc
n,x| =

n∑
`=m

min(c,`−m)∑
g=max(0,c−(n−`))

|Mg
`,m|

(
n− `
c− g

)
(11)

Finally, inserting Equation (10) into Equation (11) gives

|Υc
n,x| =

n∑
`=m

UB∑
g=LB

(
(`−m− g) + h(x)− 1

`−m− g

)(
g + (m− h(x))− 1

g

)(
n− `
c− g

)
. (12)

As shown in Equation (12), |Υc
n,x| depends on the length and the Hamming weight of x, but it is independent of the exact

form of x.

C. Simple closed form expression for the size of a cluster

We have shown that |Υc
n,x| is independent of the form of x. We can now derive a more simplified analytic expression for

this count by considering an x string of the following form: x = 11...11a00...0m, i.e., a 1’s followed by b 0’s, with a > 0
and b = m− a.

The y strings in each cluster are precisely the strings of length n that have a + c 1’s in them (and n − a − c 0’s) where
the a-th 1 (i.e., the last one in an initial choice for x) occurs before at least b 0’s. Clearly there are

(
n
a+c

)
strings with exactly

a+ c 1’s, but some of these will violate the second principle. To find an expression for counting the valid instances, we sum
over the positions of the a-th 1, which must be between a and a + z, where z = n − a − b − c is the number of added 0’s.
Thus we get the following expression

|Υc
n,x| =

h(x)+z∑
p=h(x)

(
p− 1

h(x)− 1

)(
n− p
c

)
. (13)

With z = n−m− c and p denoting the index of the a-th 1, we thus count the number of ways of picking 1’s before p and
the c 1’s after p. Note that for h(x) = 0, the cardinality of cluster c is simply given by

(
n
c

)
.

D. Recursive expression for the size of a cluster

We present a recurrence for computing the size of a cluster by considering overlaps between the first bits of x and y,
respectively. Let • and ε denote concatenation and the empty string, respectively. Moreover, let x′ be the tail of x (resp. y′

the tail of y).
• Υc

n,0•x = Υc
n−1,x + Υc−1

n−1,0•x
– First term: first bit of y is 0, find x′ in y′

11

– Second term: first bit of y is 1 (part of cluster), so we reduce c and find x in y′

• Υc
n,1•x = Υc

n−1,x + Υc
n−1,1•x

– Same arguments as above, but for x starting with 1
• Base cases:

– Υ0
n,0•x = Υ0

n−1,x

– Υ0
n,1•x = Υ0

n−1,x + Υ0
n−1,1•x

– Υc
n,ε =

(
n
c

)
– if c+ |x| > n then return 0 else Υc

n,x

It is worth pointing out that since this recursion depends on the form of x, i.e., whether or not x starts with a 0 or 1, it does not
explicitly capture the bijection between clusters of x strings that have the same Hamming weight, as proved in Theorem IV.5.

E. Enumerating Singletons via Runs

Let singletons define supersequences in Υn,x that admit exactly a single mask for a fixed subsequence x of length m, i.e.,
they give rise to exactly a single occurrence of x upon n−m deletions. We use Sn,x to denote this set.

Sn,x = {y ∈ Υn,x| ωx(y) = 1}.

To compute the cardinality of Sn,x, we describe a counting technique based on splitting runs of 1’s and 0’s in x according
to the following observations: (i) inserting bits of opposite value to either side of the framing bits in x, i.e., before the first
or after the last bit of x, does not alter the number of masks. (ii) splitting runs of 0’s and 1’s in x, i.e., insertion of bits of
opposite value in between two identical bits, does not modify the count. This amounts to counting the number of ways that
singletons can be obtained from a fixed x string via run-splitting insertions.

The number of possible run splittings corresponds to the number of distinct ways that c 1’s and (n −m − c) 0’s can be
placed in between the bits of the runs of 0’s and 1’s in x, respectively. Again, this count is given by the multiset number(
a+b−1
a

)
, where we count the number of ways a indistinguishable objects can be placed into b distinguishable bins. Note that

the number of singletons depends heavily on the number of runs in x and their corresponding lengths. The counting is done
by summing over all n−m cases and computing the configurations that lead to singletons as a function of the runs in x and
the number of additional 1’s and 0’s that can be inserted into x.

In order to do this computation, we first count the number of insertions slots in x as a function of its runs of 1’s and 0’s,
given by ρ0(x) and ρ1(x), respectively. Let rji be a run with i and j denoting its first and last index and let ρα(x) denote the
number of insertion slots in x as a function of its runs of α. To compute ρα(x), we iterate through the runs of α and in x
and count the number of indexes at which we can split runs as follows

ρα(x) =
∑

r∈Rx,α
f(r) (14)

where

f(r) =


|rji |+ 1, if i = 1 ∧ j = n

|rji |, if (i = 1 ∧ j < n) ∨ (i > 1 ∧ j = n)

|rji | − 1, otherwise
(15)

Note that if either the first bit or the last bit of a run overlaps with the first or last bit of x, the number of bars is equal to the
length of the run. If the said indexes do not overlap with neither the first nor the last bit of x, the count is equal to the length
of the run minus 1, and finally if both indexes overlap with the first and last bit of x the count is equal to the length of the
run plus 1.

We can now count the total number of singletons for given n and x as follows. Let c and b (b = n −m − c) denote the
number of 1’s and 0’s contributing to the insertions, and the total number of singletons is given by

|Sn,x| =
(
n−m+ ρ1(x)− 1

n−m

)
+

n−m−1∑
c=1

(
b+ ρ1(x)− 1

b

)(
c+ ρ0(x)− 1

c

)
+

(
n−m+ ρ0(x)− 1

n−m

)
(16)

The first and last terms correspond to the number of singletons obtained by inserting either 1’s or 0’s, but not both. The
summation over the remaining cases counts the configurations that incorporate both additional 1’s and 0’s. The final result can
be simplified to the identity below

|Sn,x| =
(
n−m+ ρ(x)1 + ρ(x)0 − 1

n−m

)
. (17)

Theorem IV.6. The constant (i.e., x = 11...1 or x = 00...0) and the alternating x strings maximize and minimize the
number of singletons, respectively.

12

Proof: This follows immediately from a maximization and minimization of the number of runs in x, i.e., ρα(x). In the
case of the all 1’s x string, which comprises a single run, every index in x can be used for splitting. Conversely, the alternating
x has the maximum number of runs |R| = m, where ∀.r ∈ Rx : |r| = 1, thus splittings are not possible, i.e., no operations
of type (ii), and the insertions are confined to pre-pending and appending bits of opposite values to the first and last bit of x,
respectively.

V. ENTROPY MINIMIZATION

We now prove the minimal entropy conjecture for the special cases of one and two deletions. Our approach incorporates two
key steps: first we work out a characterization of the number of y strings that have specific weights ωx(y). We then consider
the impact of applying an entropy decreasing transformation to x, denoted by g(x), and prove that this operation shifts the
weights in the space of supersequences such that it results in a lowering of the corresponding entropy. This is achieved using
clustering techniques and a run-length encoding of strings: we identify groupings of supersequences with specific weights by
studying how they can be constructed from a given subsequence using different insertion operations, which are in turn based
on analyzing how runs of 1’s and 0’s can be extended or split.

Definition V.1. We now define the transformation g on strings of length m as follows:

g((k1, . . . , k`)) =

{
(k1 + k2, k3, . . . , k`) if ` > 1

g(σ) = σ
(18)

Hence g is a “merging” operation, that connects the two first blocks together. As we shall see, g decreases the entropy. Thus,
one can start from any subsequence x and apply the transformation g until the string becomes σ, i.e., x = 0m or x = 1m. As
a result, σ exhibits minimal entropy and thus the highest amount of leakage in the original key exchange problem. Note that,
as indicated implicitly in the definition above, this transformation always reduces the number of runs by one by flipping the
first run to its complement.

Thus we avoid cases where merging two runs would lead to connecting to a third neighboring run, thereby resulting in a
reduction of runs by two. For example, g transforms the string x = 1001110 = (1; 1, 2, 3, 1) into x = 0001110 = (0; 3, 3, 1),
as opposed to x = 1111110 = (1; 6, 1).

The plots shown in Figure 2 illustrate the impact of the transformation g on the weight distribution as we move from
x = 101010 to x′ = 000000, i.e., 101010→ 001010→ 111010→ 000010→ 111110→ 000000.

A. Single Deletions

In this section we consider the case of a single deletion. Let x be a fixed string of length m. We study the space of y strings
of length n = m + 1 that can be masked to yield x, i.e., Y1 = {y ∈ {0, 1}n | ∃δ ∈ P([n]), yδ = x and |δ| = 1}. Recall that
we associate a weight ωx(y) to each y ∈ Y1, defined as the number of ways that y can be masked into x. Finally, we define
the entropy associated to x as the Shannon entropy of the variable Z ∈ {0, 1}n having distribution

Pr[Z = y] =
1

µ1
ωx(y).

where µ1 =
∑
y∈Υn,x

, which for the case m = n− 1 gives
(
n
m

)
2n−m =

(
n
n−1

)
2n−(n−1) = 2n.

1) Clustering Supersequences via Single Insertions: Let x = (k1, . . . , k`). A string y ∈ Y1 can take only one of the following
forms:

1) y = (k1, . . . , ki−1, ki + 1, ki+1, . . . k`) for some i ∈ [`];
2) y = (k1, . . . , ki−1, k

′
i, 1, k

′′
i , ki+1, . . . , k`), for some i ∈ [`] and where k′i + k′′i = ki and k′i 6= 0 and k′′i 6= 0;

3) y = (1, k1, . . . k`);
4) y = (k1, . . . , k`, 1).

The first case will be referred to as a “block-lengthening insertion”, denoted by 1/0, which corresponds to extending runs/blocks.
The last three cases will be referred to as “block-splitting insertions”, and denoted by 0/1, corresponding to splitting runs
or adding a new run of length 1. For the remainder of our discussion, a/b means: “a block-lengthening insertions and b
block-splitting insertions”.

Lemma V.1. Y1 is composed of3:
• ` block-lengthening insertions, resulting in strings of respective weights k1 + 1, k2 + 1, k3 + 1, . . . , k` + 1; and
• m− `+ 2 block-splitting insertions, i.e., strings of weight 1.

3A sanity check can be done to verify that we do not miss any strings, since
(m+1
m

)
+

(m+1
m+1

)
= `+m− `+ 2.

13

1 2 3 4 5 6 7
ωx(y)

0

2

4

6

8

10

12

14

F
re

q
u

en
cy

(#
y
)

Step 1, x = 101010

1 2 3 4 5 6 7
ωx(y)

0

2

4

6

8

10

12

F
re

q
u

en
cy

(#
y
)

Step 2, x = 001010

2 4 6 8 10
ωx(y)

0

2

4

6

8

10

12

F
re

q
u

en
cy

(#
y
)

Step 3, x = 111010

0 2 4 6 8 10 12 14 16
ωx(y)

0

2

4

6

8

10

12

14

F
re

q
u

en
cy

(#
y
)

Step 4, x = 000010

0 3 6 9 12 15 18 21
ωx(y)

0

3

6

9

12

15

18

21

F
re

q
u

en
cy

(#
y
)

Step 5, x = 111110

0 4 8 12 16 20 24 28
ωx(y)

0
3
6
9

12
15
18
21
24
27

F
re

q
u

en
cy

(#
y
)

Step 6, x = 000000

Figure 2. Impact of the transformation g on the weight distribution for converting x = 101010 to x′ = 000000, with n = 8,m = 6.

2) Minimal Entropy For Single Deletions:

Lemma V.2. The transformation g decreases the entropy Hn(x) for single deletions, i.e., m = n− 1.

Proof: The proof consists of computing the difference between the entropy before and after applying g, i.e., ∆1 =
Hn(x)−Hn(g(x)), and showing that this difference is positive. From Lemma V.1, after applying g,
• The block-lengthening insertions give `− 1 strings of respective weights k1 + 1 + k2 + 1− 1, k3 + 1, . . . , k` + 1.
• The block-splitting insertions give m+ 2− (`− 1) strings of weight 1.

We now compute the difference of the entropies thanks to the analyses of (k1, k2, k3, . . . , k`) and (k1 + k2, k3, . . . , k`), which
after simplification gives

∆1(k1, . . . , k`) = (k1 + 1) log
1

k1 + 1
+ (k2 + 1) log

1

k2 + 1
− (k1 + k2 + 1) log

1

k1 + k2 + 1
.

This is positive, since log 1
k1+1 , log 1

k2+1 > log 1
k1+k2+1 and (k1 + 1) + (k2 + 1) > k1 + k2 + 1.

Corollary V.2.1. For all n and any subsequence x of length m = n− 1, we have

Hn(x) ≥ Hn (σ) ,

with equality only if x ∈ {0m, 1m}.

Proof: Given any x 6= σ of length m = n − 1, it can be transformed into the string σ by a series of consecutive g
operations, as defined in Definition V.1. Each such operation can only decrease the entropy, as shown in Lemma V.2, and thus
we get a proof for the fact that Hn(x) ≥ Hn (0m).

Remark V.1. It is worth pointing out that for the special case of single deletions, the minimization of entropy by the constant
string, x = [m], can also be proved using a simple combinatorial argument as follows. For m = n − 1, in cluster c = 1 we
get a single y string with maximum weight, ωy(x) =

(
n
m

)
, corresponding to y = [n] and x = [m], and the remaining strings

in cluster c = 0 are all singletons, ωx(y) = 1. This is clearly the most concentrated distribution and hence the least entropic
one. However our analysis shows how we will deal with the more complicated double deletions case.

In the case of single deletions, we can also illustrate the utility of our approach by deriving a stronger result for the Rényi
entropy.

14

Definition V.2 (Rényi Entropy). For any α > 0 and α 6= 1, the Rényi entropy of order α of a distribution P is defined by

Hα =
1

1− α
log2

n∑
i=1

pαi

Theorem V.3. For all n and any subsequence x of length m = n− 1, and α > 0, α 6= 1, we have that σ exhibits the lowest
Rényi entropy Hα

Hα(x) ≥ Hα (σ) ,

with equality only if x ∈ {0m, 1m}.

Proof: Similar to the proof of the Shannon entropy minimization, we just have to show that g decreases the Rényi entropy
as well such that here almost all the terms also disappear and we end up with

Hα(x)−Hα (g(x)) =
α

1− α
((k1 + 1)α + (k2 + 1)α − (k1 + k2 + 1)α)

This is positive since (k1 + 1)α + (k2 + 1)α − (k1 + k2 + 1)α ≥ 0⇔ α < 1.

B. Double Deletions

This section will follow the same structure as Section V-A. We will enumerate the different supersequences and their
corresponding weights. This is summed up in Lemma V.5. We then apply our analysis to a string x, and to its image by the
function the merging operator g definition V.1.

In the case of two deletions, there are three types of insertions to consider; using the notation introduced in the previous
section, these are 2/0, 1/1, and 0/2 insertions. For a fixed string x = (k1, . . . , k`), we now analyze each case to account
for the corresponding number of supersequences and their respective weights in each cluster. We will then study how this
distribution changes when we go from x to g(x) in order to prove the following lemma:

Lemma V.4. The transformation g decreases the entropy Hn(x) for double deletions, i.e., m = n− 2.

Note that while this technique could be applied to a higher number of insertions, the complexity of the analysis blows up
already for two deletions, as the next section will show.

1) Clustering Supersequences via Double Insertions:
a) Case 2/0: The case 2/0 corresponds to the situation where the insertions do not create new blocks. This happens

when both bits are added to the same block, or when they are added to two different blocks, as follows.
The former corresponds to

y = (k1, . . . , ki−1, ki + 2, ki+1, . . . , k`)

for some i ∈ [`], which has weight ωx(y) =
(
ki+2

2

)
. There are ` strings of this type.

The latter corresponds to

y = (k1, . . . , ki−1, ki + 1, ki+1, . . . , kj−1, kj + 1, kj+1, . . . , k`)

for 1 ≤ i < j ≤ `, and has weight ωx(y) = (ki + 1)(kj + 1). There are `(`−1)
2 strings with this weight. In total, there are

`(`+1)
2 strings for the case 2/0.

b) Case 0/2: In the 0/2 case, there are only block-splitting insertions, hence all strings have weight 1. block-splitting
insertions may happen in a single block, or in two separate blocks. To ease notation, we introduce

k̃i =

{
ki − 1 if i ∈ [2, `− 1]

ki if i = 1 or i = `

The different treatments for “endpoints” 1 and ` correspond to cases (1, k1, . . . , k`) and (k1, . . . , k`, 1), whereas a block-splitting
insertion in the i-th block can happen at only ki − 1 places.
• If we insert into the first or the last block, we choose respectively k1 and k` positions, i.e., there are respectively k1 and
k` different strings.

• If we insert into any other block i, we choose amongst ki − 1 positions, which yields ki − 1 different strings.
• If we insert in different blocks, we apply the same analysis twice, independently, which gives k̃ik̃j different strings.
• If we insert twice in the same block, we get

(
k̃i+1

2

)
different strings.

In the end, the total number of 0/2 insertions is ∑
1≤i<j≤`

k̃ik̃j +
∑̀
i=1

(
k̃i + 1

2

)

15

Example V.1. If k1 = · · · = k` = 1, so that k̃1 = k̃` = 1 and k̃2 = · · · = k̃`−1 = 0, we count 3 strings.

Example V.2. For example, for 1 < i < j < l we get for all a1, a2, b1, b2 > 0 such that a1 + a2 = ki and b1 + b2 = kj , the
string k1 . . . ki−1a11a2ki+1 . . . kj−1b11b2kj+1 . . . kl. The number of such strings is (k̃i)(k̃j).

Another example: for the particular cases i = j = 1 we get for all a1, a2, a3 ∈ N with a2 strictly positive such that
a1 + a2 + a3 = k1, the string a11a21a3k2kl or (case a2 = 0) a12a3k2kl. The number of such strings is

(
k̃1+1

2

)
.

c) Case 1/1: As in the previous case, we choose a block in which we apply a block-lengthening insertion, yielding ki+1
masks; then we choose a block for a block-splitting insertion, yielding k̃i strings. However, one must be careful: to see why,
consider the following string x = 000111 = (0; 3, 3).
• If we insert a block-lengthening 0 in the first block, and then a block-splitting 1 in the last-but-one position of the first

block, we get the string y = 00010111 = (0; 3, 1, 1, 3). This string is of weight (3 + 1) + (3 + 1)− 1, since we can delete
the 0 then one of the four 1, or the 1 then one of the four 0, and we remove one so that we do not double count the
deletion of 10.

• If we insert a block-lengthening 1 in the second block, followed by a block-splitting 0 in the second position of the second
block, we obtain the same string y = 00010111 = (0; 3, 1, 1, 3).

Hence there are two ways to get each y. We will therefore exercise a preference toward the first situation, where we perform
a block-lengthening insertion in the first block, followed by a block-splitting insertion in the first block’s last-but-one position.
Let i ∈ [`].
• If i = 1, we get

∑`
j=1 k̃j(= m− `+ 2) strings of weight k1 + 1, as well as a string of weight k1 + 1 + k2. In total, we

get m− `+ 3 strings.
• If 1 < i < `, we perform a block-lengthening insertion in the block i, the number of strings we will get is (

∑
i k̃i).

Indeed the string (k1, . . . , ki−1, 1, 1, ki, ki+1, . . . , k`) will be counted for the case i− 1. Each of these strings has weight
ki + 1, except one (k1, . . . , ki, 1, 1, ki+1, . . . , k`) which has weight ki + 1 + ki+1 (the string that we will not count for
i+ 1).

• If i = `, we can keep the same formula by introducing k`+1 = 0 for the weight of the string (k1, . . . , k`, 1, 1).

Lemma V.5. Y2 is composed of:
• case 2/0: for all i in [`] we have one supersequence of weight

(
ki+2

2

)
and ∀1 ≤ i < j ≤ [`] we have one supersequence

of weight (ki + 1)(kj + 1)

• case 0/2: we have
∑

1≤i<j≤` k̃ik̃j +
∑`
i=1

(
k̃i+1

2

)
supersequences of weight 1.

• case 1/1: for all i in [`] we have m − ` + 2 supersequence of weight ki + 1 and one of weight ki + ki+1 + 1 with the
convention that k`+1 = 0.

Since the analysis is quite convoluted, we make two sanity checks on the number of supersequences and the sum of all the
weights.

Remark V.2 (Sanity check for the number of supersequences). We check the result of Lemma V.5 against Equation (1).
We give an algebraic proof in Appendix B that if (ki)i∈{1,...,`} are positive integers such that m =

∑`
i=1 ki, then we have

`(`+ 1)

2
+

∑
1≤i<j≤`

k̃ik̃j +
∑̀
i=1

(
k̃i + 1

2

)
+ 1 + `(m− `− 2) =

(
m+ 2

m

)
+

(
m+ 2

m+ 1

)
+

(
m+ 2

m+ 2

)
,

to make sure we have not missed or double-counted any strings.

Remark V.3 (Sanity check for the sum of all weights). We check the result of Lemma V.5 against Equation (2). Similarly, to
ensure that we have not missed or double-counted any weights, we give an algebraic proof in Section C showing that if there
exist positive integers (ki)i∈{1,...,`} such that m =

∑`
i=1 ki, then we have

∑̀
i=1

(
ki + 2

2

)
+

∑
1≤i<j≤`

(ki + 1)(kj + 1) +
∑

1≤i<j≤`
k̃ik̃j +

∑̀
i=1

(
k̃i + 1

2

)

+
∑̀
i=1

[(m− `+ 2)× (ki + 1) + ki + ki+1 + 1] = 4

(
m+ 2

m

)
.

2) Minimal Entropy For Double Deletions: As in Section V-A, we analyze the effects of the merging operation g on entropy.
For this, we consider the impact of g(x) = (k1 + k2, k3, . . . , k`) on the clustering results developed in Section V-B1. We will
omit the analyses when no insertions are made in the first or second block, since we will get the same weight and this will
disappear in the difference.

a) Case 2/0: For x, we had `(`+1)
2 strings of this type, we now have `(`−1)

2 , there are ` less strings and `− 1 that grow
bigger. The rest remains the same.

16

b) Case 0/2: Similar to x, we have a certain number of strings with weight 1 counted as before∑
3≤i≤j≤`

k̃ik̃j +
∑

3≤i≤`

(
k̃i + 1

2

)
However, a part of the formula changes: (

k1 + k2 + 1

2

)
+ (k1 + k2)

∑
3≤i≤`

k̃i (19)

Then, for the part of the analysis of g(x) equivalent with that of x we get(
k1 + 1

2

)
+

(
k2

2

)
+ (k1 + k2 − 1)×

∑
3≤i≤`

k̃i + k1(k2 − 1) (20)

now we take the difference between Equation (19) and Equation (20)∑
3≤i≤`

k̃i +

(
k1 + k2 + 1

2

)
−
((

k1 + 1

2

)
+

(
k2

2

)
+ k1(k2 − 1)

)
After simplifications, we obtain

∑
1≤i≤` k̃i + 1.

c) Case 1/1: In the case of x, we had

(`− 1)
∑

1≤i≤`
(k̃i − 1) +

∑
1≤i≤`

k̃i.

We now have
(`− 2)(

∑
1≤i≤`

(k̃i − 1) + 1) +
∑

1≤i≤`
k̃i + 1.

Taking the difference between now and before we get
∑

1≤i≤` k̃i + 1 − l. We have (
∑

1≤i≤l(k̃i − 1) + 1) weights (the
block-lengthening insertion in the first block) that grow bigger, the rest stays the same.

Remark V.4 (Sanity check). We can check that the numbers of strings is constant:
• Case 0/2:

∑
1≤i≤` k̃i + 1 more strings

• Case 1/1: (
∑

1≤i≤` k̃i + 1− `) less strings
• Case 2/0: ` less strings.

and
∑

1≤i≤` k̃i + 1− (
∑

1≤i≤` k̃i + 1− `)− ` = 0.

We can now compute the difference of the two entropies. Note that instead of working with the probabilities, we will
multiply everything by 4

(
m+2
m

)
(i.e., the total number of masks). We can focus on the very few strings that show a change in

weight (when an insertion is made in the first or second block).
Case 2/0: For x, we have 1 string for each of the weights

(k1 + 1)(k2 + 1), (k1 + 1)(k3 + 1), . . . ,

(k1 + 1)(kl + 1), (k2 + 1)(k3 + 1), (k2 + 1)(k4 + 1), . . . ,

(k2 + 1)(kl + 1),

(
k1 + 2

2

)(
k2 + 2

2

)
For g(x), we still have 1 string for each of the following weights:

(k1 + k2 + 1)(k3 + 1), (k1 + k2 + 1)(k4 + 1), . . . , (k1 + k2 + 1)(kl + 1),

(
k1 + k2 + 2

2

)
Case 0/2: For g(x), we have

∑
1≤i≤` k̃i + 1.

Case 1/1: For x, the remaining strings are:

Multiplicity Weight∑`
i=1 k̃i k1 + 1∑`

i=1 k̃i − 1 k2 + 1
1 k1 + k2 + 1
1 k2 + k3 + 1

17

There remains, for g(x), one string for each of the following weights k3 + 1, k4 + 1, . . . , kl + 1 and
∑

1≤i≤` k̃i + 1 strings
of weight k1 + k2 + 1 along with 1 string of weight k1 + k2 + k3 + 1. The difference of entropies is equal to the difference
between A and B defined in the following equations:

A =
∑

2≤i≤`
(k1 + 1)(ki + 1) log

1

(k1 + 1)(ki + 1)
+

(
k1 + 2

2

)
log

1(
k1+2

2

) +

(
k2 + 2

2

)
log

1(
k2+2

2

)
+
∑

1≤i≤`
k̃i(k1 + 1) log

1

(k1 + 1)
+ (k1 + k2 + 1) log

1

(k1 + k2 + 1)

+ (
∑

1≤i≤`
k̃i − 1)(k2 + 1) log

1

(k2 + 1)

+ (k2 + k3 + 1) log
1

(k2 + k3 + 1)

B =
∑

3≤i≤l
(ki + 1) log

1

(ki + 1)
+ (

∑
1≤i≤l

k̃i + 1)(k1 + k2 + 1) log
1

(k1 + k2 + 1)

+ (k1 + k2 + k3 + 1) log
1

(k1 + k2 + k3 + 1)

+
∑

3≤i≤l
(k1 + k2 + 1)(ki + 1) log

1

(k1 + k2 + 1)(ki + 1)

+

(
k1 + k2 + 2

2

)
log

1(
k1+k2+2

2

)
where A corresponds to x, and B corresponds to g(x). We are now in a position to conclude the proof of Lemma V.4.

Lemma V.6. The transformation g decreases the entropy Hn(x) for double deletions, i.e., m = n− 2.

Proof: To prove this, it suffices to show that for ` ≥ 2, ki ≥ 1, A − B > 0. The proof mostly consists of computing
partial derivatives to show that the function is increasing. We refer the reader to Section A for details.

Corollary V.6.1. For all n and any subsequence x of length m = n− 2, we have

Hn(x) ≥ Hn (σ) ,

with equality only if x ∈ {0m, 1m}.

Proof: Given any x 6= σ of length m = n − 2, it can be transformed into the string σ by a series of consecutive g
operations (cf. Definition V.1). Each such operation can only decrease the entropy, as proved in Lemma V.4, and thus we get
a proof for the fact that Hn(x) ≥ Hn (0m).

VI. CONCLUDING REMARKS

From the original cryptographic motivation of the problem, the minimal entropy case corresponding to maximal information
leakage is arguably the case that interests us the most. While our results shed more light on various properties of the space
of supersequences and the combinatorial problem of counting the number of embeddings of a given subsequence in the set
of its compatible supersequences, the original entropy maximization conjecture remains an open problem. Finally, proving
the entropy minimization conjecture for an arbitrary number of deletions as well as a more general characterization of the
distribution of the number of subsequence embeddings in supersequences of finite-length present some further open problems.

APPENDIX A
PROOF OF LEMMA V.6

Proof: The proof consists of two steps: first we show that A−B > 0 for all k1 ≥ 1 when k2 = · · · = k` = 1; then we show
that ∇(A−B) is positive along all directions others than the first one, so that an increase in any of the ki with i ≥ 2, results
in an increase of A− B. We start by simplifying the expression. To do so, we introduce the function e(x) = −x log2 x. We
also use the fact that e(xy) = xe(y)+ye(x), and develop the binomial coefficients: e

((
a+b

2

))
=
(
a+b

2

)
+e((a+b)(a+b−1)).

Then we match the sum indexes. We also introduce the notation ei = e(ki + 1).

18

Thus we can write:

A =
∑

2≤i≤l
e((k1 + 1)(ki + 1)) + e

((
k1 + 2

2

))
+ e

((
k2 + 2

2

))
+ e(k1 + 1)

∑
1≤i≤l

k̃i + e(k1 + k2 + 1)

+ e(k2 + 1)
∑

1≤i≤l
(k̃i − 1)

+ e(k2 + k3 + 1)

=
∑

3≤i≤`−1

e((k1 + 1)(ki + 1)) + e((k1 + 1)(k2 + 1)) + e((k1 + 1)(k` + 1))

+

(
k1 + 1

2

)
+ e((k1 + 1)(k1 + 2))

+

(
k2 + 1

2

)
+ e((k2 + 1)(k2 + 2))

+ e(k1 + 1)
∑

3≤i≤`−1

k̃i + e(k1 + k2 + 1) + e(k1 + 1)k̃1 + e(k1 + 1)k̃2 + e(k1 + 1)k̃`

+ e(k2 + 1)
∑

3≤i≤`−1

k̃i − `e(k2 + 1) + e(k2 + 1)k̃1 + e(k2 + 1)k̃2 + e(k2 + 1)k̃`

+ e(k2 + k3 + 1)

= (k1 + 1)
∑

3≤i≤`−1

ei + e1

∑
3≤i≤`−1

(ki + 1)

+ (k2 + 1)e1 + (k1 + 1)e2 + (k1 + 1)e` + (k` + 1)e1

+

(
k1 + 1

2

)
+ (k1 + 2)e1 + (k1 + 1)e(k1 + 2)

+

(
k2 + 1

2

)
+ (k2 + 2)e2 + (k2 + 1)e(k2 + 2)

+ e1

∑
3≤i≤`−1

ki − (`− 3)e1 + e(k1 + k2 + 1) + e1k1 + e1k2 − e1 + e1k`

+ e2

∑
3≤i≤`−1

ki − (`− 3)e2 − `e2 + e2k1 + e2k2 − e2 + e2k`

+ e(k2 + k3 + 1)

At this point we regroup all terms in ei together:

A =

2k1 + 2k2 + 2k` − 3 + 2
∑

3≤i≤`−1

ki

 e1

+

2k1 + 2k2 + k` − 2`− 1 +
∑

3≤i≤`−1

ki

 e2

+ (k1 + 1)
∑

3≤i≤`−1

ei

+ (k1 + 1)e`

+ e(k1 + k2 + 1) + (k1 + 1)e(k1 + 2) + (k2 + 1)e(k2 + 2) + e(k2 + k3 + 1)

+

(
k1 + 1

2

)
+

(
k2 + 1

2

)

19

We simplify the expression for B in the same fashion:

B = 2e(k1 + k2 + 1)
∑

3≤i≤`−1

ki + k1e(k1 + k2 + 1) + k2e(k1 + k2 + 1) + k`e(k1 + k2 + 1)

+ e(k1 + k2 + k3 + 1)

+ (`− 3)e(k1 + k2 + 1) + (k1 + k2 + 2)
∑

3≤i≤`
ei

+

(
k1 + k2 + 2

2

)
+ e((k1 + k2 + 1)(k1 + k2 + 2))

= (k1 + k2 + 2)
∑

3≤i≤`−1

ei

+

2k1 + 2k2 + k` + `− 1 + 2
∑

3≤i≤`−1

ki

 e(k1 + k2 + 1)

+ e(k1 + k2 + k3 + 1) + (k1 + k2 + 1)e(k1 + k2 + 2) + (k1 + k2 + 2)e`

+

(
k1 + k2 + 2

2

)

so that we can now compute the difference:

A−B =

−3 + 2
∑

1≤i≤`
ki

 e1

+

k1 + k2 − 2`− 1 +
∑

1≤i≤`
ki

 e2

− (k2 + 1)
∑

3≤i≤`
ei

+ (k1 + 1)e(k1 + 2) + (k2 + 1)e(k2 + 2)

+ 1− k1k2

−

−k` + `+ 2
∑

1≤i≤`
ki

 e(k1 + k2 + 1)

− (k1 + k2 − 1)e(k1 + k2 + 2)− e(k1 + k2 + k3 + 1) + e(k2 + k3 + 1)

= P (~k)e1 +Q(~k)e2 − (k2 + 1)
∑̀
i=3

ei + (k1 + 1)e(k1 + 2) + (k2 + 1)e(k2 + 2)

+ 1− k1k2 −R(~k)e(k1 + k2 + 1)− (k1 + k2 − 1)e(k1 + k2 + 2)− e(k1 + k2 + k3 + 1)

+ e(k2 + k3 + 1).

Where

P (~k) = −3 + 2
∑

1≤i≤`
ki,

Q(~k) = k1 + k2 − 2`− 1 +
∑

1≤i≤`
ki

R(~k) = −k` + `+ 2
∑

1≤i≤`
ki.

20

We now compute A−B where ki = 1 for i ≥ 2 and show that it is positive. We get:

(3`− 3 + 2k1)(k1 + 2) log2(k1 + 2) + (k1 + 1)(k1 + 3) log2(k1 + 3) + 4(`− 2)(log2 2) + 1

− [(2k1 + 2`− 5)(k1 + 1) log2(k1 + 1) + (k1 + 1)(k1 + 2) log2(k1 + 2) + 2(2k1 − `− 1) log2 2 + 9 log2 3 + k1]

= (2k1 + 2`− 5)(k1 + 1) log(k1 + 1)[log2(k1 + 2)− log2(k1 + 2)] + (3`− 3 + 2k1 + (`+ 2)(k1 + 2)) log2(k1 + 2)

+ (k1 + 1)(k1 + 2)[log2(k1 + 2)− log2(k1 + 1)] + (k1 + 1) log2(k1 + 3)

+ 4(`− 2)(log2 2) + 1− [2(2k1 − `− 1) log2 2 + 9 log2 3 + k1]

Since k1 ≥ 1 and ` ≥ 2 we have 2k1 log2(k1 + 2) + (k1 + 1) log2(k1 + 3) ≥ 2(2k1 − `− 1) log2 2, 3(`− 1) log2(k1 + 2) +
2(k1 + 2) log2(k1 + 2) ≥ 9 log2 3 and `(k1 + 2) log2(k1 + 2) ≥ k1. This suffices to conclude that A − B is positive when
ki = 1 for i ≥ 2.
We now compute the partial derivatives for i ≥ 2 and show that they are positive. The gradient can be computed term by term
thanks to linearity, observing that for any polynomial S(~k),

∂iei = − log2(ki + 1)− 1

ln(2)

∂iej = 0 (i 6= j)

∇S(~k)ej =
(
ej∂iS(~k) + S(~k)∂iej

)`
i=1

21

Hence, by denoting ~u1, . . . , ~u` the canonical basis, we have:

∇P (~k)e1 =
(
e1∂iP (~k) + P (~k)∂ie1

)`
i=1

= ∂1e1P (~k)~u1 + e1(∂iP (~k))`i=1

= ∂1e1P (~k)~u1 + 2(~u1 + · · ·+ ~u`)

= (2 + ∂1e1P (~k))~u1 + 2~u2 + · · ·+ 2~u`

∇Q(~k)e2 =
(
e2∂iQ(~k) +Q(~k)∂ie2

)`
i=1

= ∂2e2Q(~k)~u2 + (∂iS(~k))`i=1

= ∂2e2Q(~k)~u2 + ~u1 + ~u2 + ~u1 + · · ·+ ~u`

= 2~u1 + (2 + ∂2e2Q(~k))~u2 + ~u3 + · · ·+ ~u`

−∇

(
(k2 + 1)

∑̀
i=3

ei

)
= −(k2 + 1)∇

∑̀
i=3

ei − (∇(k2 + 1))
∑̀
i=3

ei

= −((k2 + 1)∂iei~ui)
`
i=3 −

(∑̀
i=3

ei

)
~u2

∇ ((kj + 1)e(kj + 2)) = −
(

log2(kj + 2) +
1

ln(2)

kj + 1

kj + 2

)
~uj

∇(1− k1k2) = −k2~u1 − k1~u2

−∇
(
R(~k)e(k1 + k2 + 1)

)
= −R(~k)∇e(k1 + k2 + 1)− e(k1 + k2 + 1)∇R(~k)

= R(~k)

(
log2(k1 + k2 + 1) +

1

ln(2)

)
(~u1 + ~u2)

− e(k1 + k2 + 1)(∂iR(~k))`i=1

= R(~k)

(
log2(k1 + k2 + 1) +

1

ln(2)

)
(~u1 + ~u2)

− e(k1 + k2 + 1)(2~u1 + · · ·+ 2~u`−1 + ~u`)

−∇(k1 + k2 − 1)e(k1 + k2 + 2) = −(k1 + k2 − 1)∇e(k1 + k2 + 2)− e(k1 + k2 + 2)∇(k1 + k2 − 1)

= (k1 + k2 − 1)

(
log2(k1 + k2 + 2) +

1

ln(2)

)
(~u1 + ~u2)

− e(k1 + k2 + 2)(~u1 + ~u2)

=

(
(k1 + k2 − 1)

(
log2(k1 + k2 + 2) +

1

ln(2)

)
− e(k1 + k2 + 2)

)
(~u1 + ~u2)

−∇e(k1 + k2 + k3 + 1) =

(
log2(k1 + k2 + k3 + 1) +

1

ln(2)

)
(~u1 + ~u2 + ~u3)

∇e(k2 + k3 + 1) = −
(

log2(k2 + k3 + 1) +
1

ln(2)

)
(~u2 + ~u3)

As is clearly visible from the above equations, we only need to consider the components along ~u2, ~u3, ~u`, and along ~ui for
any 3 < i < `. For the latter, we have

(∇(A−B))i = 2 + 1− (k2 + 1)∂iei − 2e(k1 + k2 + 1)

= 3 + 2(k1 + k2 + 1) log2(k1 + k2 + 1) + (k2 + 1)

(
log2(ki + 1) +

1

ln(2)

)
> 0.

Now, along the very similar ~u` axis,

(∇(A−B))` = 2 + 1− (k2 + 1)∂`e` − e(k1 + k2 + 1)

= 3 + (k1 + k2 + 1) log2(k1 + k2 + 1) + (k2 + 1)

(
log2(k` + 1) +

1

ln(2)

)
> 0.

22

Along ~u3,

(∇(A−B))3 = 2 + 1− (k2 + 1)∂3e3 − 2e(k1 + k2 + 1) + log2(k1 + k2 + k3 + 1) +
1

ln(2)

− log2(k2 + k3 + 1) +
1

ln(2)

= 3 + 2(k1 + k2 + 1) log2(k1 + k2 + 1) + (k2 + 1)

(
log2(k3 + 1) +

1

ln(2)

)
+ log2(k1 + k2 + k3 + 1)− log2(k2 + k3 + 1)

> 0.

Along ~u2,

(∇(A−B))2 = 2 + 2 +Q(~k)∂2e2 − (k2 + 1)∂2e2

−
∑̀
i=3

ei −
(

log2(k2 + 2) +
1

ln(2)

k2 + 1

k2 + 2

)
− k1

+R(~k)

(
log2(k1 + k2 + 1) +

1

ln(2)

)
− 2e(k1 + k2 + 1)

+

(
(k1 + k2 − 1)

(
log2(k1 + k2 + 2) +

1

ln(2)

)
− e(k1 + k2 + 2)

)
+ log2(k1 + k2 + k3 + 1) +

1

ln(2)
− log2(k2 + k3 + 1)− 1

ln(2)

= 4− (Q(~k)− k2 − 1)

(
log2(k2 + 1) +

1

ln(2)

)
− 1

ln(2)

k2 + 1

k2 + 2
− k1

+
∑̀
i=3

(ki + 1) log2(ki + 1)

+R(~k)

(
log2(k1 + k2 + 1) +

1

ln(2)

)
− 2e(k1 + k2 + 1)

+ (k1 + k2)

(
log2(k1 + k2 + 2) +

1

ln(2)

)
− e(k1 + k2 + 2)

+ log2(k1 + k2 + k3 + 2)− log2(k2 + k3 + 2)− log2(k2 + 2)

Lemma A.1. (∇(A−B))2 > 0.

Proof of Lemma A.1: Letting λ = 1
ln(2) We first show that the following line is positive

− (Q(~k)− k2 − 1)(log2(k2 + 1) + λ)− λk2 + 1

k2 + 2
− k1+

+R(~k)(λ+ log2(k1 + k2 + 1))

= λ

(
R(~k)−Q(~k) + k2 + 1− k2 + 1

k2 + 2

)
+R(~k) log2(k1 + k2 + 1)

−Q(~k) log2(k2 + 1)

= λ

(
`−1∑
i=2

ki + 3`+ 1− k2 + 1

k2 + 2

)
+R(~k) log2(k1 + k2 + 1)−Q(~k) log2(k2 + 1).

The last line is positive since in particular R(~k) log2(k1 + k2 + 1)−Q(~k) log2(k2 + 1) > (R(~k)−Q(~(k)) log2(k2 + 1) > 0.
Note that −e(k1 + k2 + 2)− log2(k2 + 2) > 0, log2(k1 + k2 + k3 + 1)− log2(k2 + k3 + 1) > 0 and the remaining quantities
are positive.

As a result, we have that A−B > 0 for all ~k such that ki ≥ 1, which establishes the theorem.

23

APPENDIX B
PROOF OF REMARK V.2

We prove that for all positive integer sequences (ki)i∈{1,...,`} such that
∑`
i=1 ki = m we have :

`(`+ 1)

2
+

∑
1≤i<j≤`

k̃ik̃j +
∑̀
i=1

(
k̃i + 1

2

)
+ 1 + `(m− `− 2) =

(
m+ 2

m

)
+

(
m+ 2

m+ 1

)
+

(
m+ 2

m+ 2

)
We fix ` and m, then proceed by induction on the sequences of (ki)i∈{1,...,`}. We first show the equality for k1 = m− `+ 1,
and ki = 1 for all i > 1.

Proof: We have on the left hand side:

`(`+ 1)

2
+

∑
1≤i<j≤`

k̃ik̃j +
∑̀
i=1

(
k̃i + 1

2

)
+ 1 + `(m− `− 2)

=
`(`+ 1)

2
+ 1 + `(m− `− 2) + (m− `+ 1)

∑̀
j=2

k̃j +

(
2

2

)
+

(
m− `+ 2

2

)
=

1

2
(`(`+ 1) + (m− `+ 2)(m− `+ 1)) + (`+ 1)(m− `+ 2) + 1

=
1

2
(m2 + 3m+ 2) +m+ 3

=

(
m+ 2

m

)
+

(
m+ 2

m+ 1

)
+

(
m+ 2

m+ 2

)
which concludes the initialization.

We now fix a sequence (ki)i∈{1,...,`}, and i0 ∈ {1, . . . , `}. We assume that the equality holds for this sequence and show
that it is true for the sequence (k′i)i∈{1,...,`} defined as k′i = ki if i 6= i0 and i 6= i0 + 1, k′i0 = ki0 − 1 and k′i0+1 = ki0+1 + 1.

Proof: We first note that only a part of the formula on the left hand side depends on (ki)i∈{1,...,`}. Letting

F
(
(ki)i∈{1,...,`}

)
=

∑
1≤i<j≤`

k̃ik̃j +
∑̀
i=1

(
k̃i + 1

2

)
,

we just have to prove that
F
(
(ki)i∈{1,...,`}

)
− F

(
(k′i)i∈{1,...,`}

)
= 0.

Expanding the above difference, we have:

(k̃i0 − k̃′i0)(

i0−1∑
i=1

k̃i) + (k̃i0+1 − k̃′i0+1)(

i0−1∑
i=1

k̃i) + k̃i0 k̃i0+1 − k̃′i0 k̃
′
i0+1

+ (k̃i0 − k̃′i0)(
∑̀

i=i0+1

k̃i) + (k̃i0+1 − k̃′i0+1)(
∑̀

i=i0+2

k̃i)

+

(
k̃i0 + 1

2

)
−
(
k̃′i0 + 1

2

)
+

(
k̃i0+1 + 1

2

)
−
(
k̃i0+1 + 1

2

)
This is equal to

k̃i0 k̃i0+1 − (k̃i0 − 1)(k̃i0+1 + 1) + k̃i0+1 +
1

2

(
k̃i0(k̃i0 + 1)− (k̃i0 + 1)k̃i0

)
− 1

2

(
k̃i0+1(k̃i0+1 + 1)− (k̃i0+1 + 2)k̃i0+1 + 1

)
= −k̃i0 + k̃i0+1 + 1 +

1

2
(2k̃i0 − 2k̃i0+1 − 2)

= 0.

This concludes the proof.

24

APPENDIX C
PROOF OF REMARK V.3

As in Section B we proceed by induction to show that if there exist positive integers (ki)i∈{1,...,`} such that m =
∑`
i=1 ki,

then we have ∑̀
i=1

(
ki + 2

2

)
+

∑
1≤i<j≤`

(ki + 1)(kj + 1) +
∑

1≤i<j≤`
k̃ik̃j +

∑̀
i=1

(
k̃i + 1

2

)

+
∑̀
i=1

[(m− `+ 2)× (ki + 1) + ki + ki+1 + 1] = 4

(
m+ 2

m

)
We fix ` and m, then proceed by induction on the sequences of (ki)i∈{1,...,`}. We first show the equality for k1 = m− `+1,

and ki = 1 for all i > 1.
Proof: We have on the left hand side of the equation:

(m− `+ 1) +

(
m− `+ 2

2

)
+ 1 +

(
m− `+ 3

2

)
+ (`− 1) ∗ 3 + (`− 1)(m− `+ 2) ∗ 2 + 2(`− 2)(`− 1) + (m− `+ 2)2

+m− `+ 3 + (`− 1)(2(m− `+ 1) + 3)− 1

= 2m2 + 6m+ 4

= 4

(
m+ 2

m

)
which concludes the initialization.

We now fix a sequence (ki)i∈{1,...,`}, and i0 ∈ {1, . . . , `}. We assume that the equality holds for this sequence and show
that it is true for the sequence (k′i)i∈{1,...,`} defined as k′i = ki if i 6= i0 and i 6= i0 + 1, k′i0 = ki0 − 1 and k′i0+1 = ki0+1 + 1.

Proof: First notice that as in Section B we can ignore all the terms that do not depends on the ki. Furthermore we can
reuse the result of Section B to remove

∑
1≤i<j≤` k̃ik̃j +

∑`
i=1

(
k̃i+1

2

)
. We also note that

∑̀
i=1

[(m− `+ 2)× (ki + 1) + ki + ki+1 + 1] =
∑̀
i=1

[
(m− `+ 2)× (k′i + 1) + k′i + k′i+1 + 1

]
since

∑`
i=1 ki =

∑`
i=1 k

′
i. We therefore define

F
(
(ki)i∈{1,...,`}

)
=
∑̀
i=1

(
ki + 2

2

)
+

∑
1≤i<j≤`

(ki + 1)(kj + 1)

and show that
F
(
(ki)i∈{1,...,`}

)
− F

(
(k′i)i∈{1,...,`}

)
= 0.

Expanding the difference we get(
ki0 + 2

2

)
−
(
k′i0 + 2

2

)
+

(
ki0+1 + 2

2

)
−
(
k′i0+1 + 2

2

)
+ ki0

∑̀
j>i0

(kj + 1)− k′i0
∑̀
j>i0

(k′j + 1) + ki0+1

∑̀
j>i0+1

(kj + 1)− k′i0+1

∑̀
j>i0+1

(k′j + 1)

= ki0 + 1− (ki0+1 + 2) + ki0S − (ki0 − 1) (S + 1) + ki0+1S
′ − (ki0+1 + 1)S′

= 1− ki0 + S − 1− S′

= 0

where S =
∑`
j>i0

(kj + 1) and S′ =
∑`
j>i0+1(kj + 1). This concludes the proof.

25

REFERENCES

[1] P. Y. Ryan and B. Christianson, “Enhancements to prepare-and-measure based qkd protocols,” in Security Protocols XXI. Springer, 2013, pp. 123–133.
[2] A. Atashpendar, A. Roscoe, and P. Y. Ryan, “Information leakage due to revealing randomly selected bits,” in Security Protocols XXIII. Springer, 2015,

pp. 325–341.
[3] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.
[4] C. E. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 5, no. 1, pp. 3–55,

2001.
[5] M. Mitzenmacher, “A survey of results for deletion channels and related synchronization channels,” in Algorithm Theory - SWAT 2008, 11th

Scandinavian Workshop on Algorithm Theory, Gothenburg, Sweden, July 2-4, 2008, Proceedings, ser. Lecture Notes in Computer Science,
J. Gudmundsson, Ed., vol. 5124. Springer, 2008, pp. 1–3. [Online]. Available: https://doi.org/10.1007/978-3-540-69903-3_1

[6] T. G. Swart and H. C. Ferreira, “A note on double insertion/deletion correcting codes,” IEEE Transactions on Information Theory, vol. 49, no. 1, pp.
269–273, 2003.

[7] P. J. Chase, “Subsequence numbers and logarithmic concavity,” Discrete Mathematics, vol. 16, no. 2, pp. 123–140, 1976.
[8] A. Flaxman, A. W. Harrow, and G. B. Sorkin, “Strings with maximally many distinct subsequences and substrings,” Electr. J. Comb., vol. 11, no. 1,

2004. [Online]. Available: http://www.combinatorics.org/Volume_11/Abstracts/v11i1r8.html
[9] D. S. Hirschberg, “Bounds on the number of string subsequences,” in Combinatorial Pattern Matching, 10th Annual Symposium, CPM 99, Warwick

University, UK, July 22-24, 1999, Proceedings, ser. Lecture Notes in Computer Science, M. Crochemore and M. Paterson, Eds., vol. 1645. Springer,
1999, pp. 115–122. [Online]. Available: https://doi.org/10.1007/3-540-48452-3_9

[10] D. S. Hirschberg and M. Regnier, “Tight bounds on the number of string subsequences,” Journal of Discrete Algorithms, vol. 1, no. 1, pp. 123–132,
2000.

[11] T. Jiang and M. Li, “On the approximation of shortest common supersequences and longest common subsequences,” SIAM J. Comput., vol. 24, no. 5,
pp. 1122–1139, 1995. [Online]. Available: https://doi.org/10.1137/S009753979223842X

[12] M. Middendorf, “On finding minimal, maximal, and consistent sequences over a binary alphabet,” Theoretical Computer Science, vol. 145, no. 1, pp.
317–327, 1995.

[13] M. Middendorf and D. F. Manlove, “Combined super-/substring and super-/subsequence problems,” Theoretical computer science, vol. 320, no. 2, pp.
247–267, 2004.

[14] S. Rahmann, “Subsequence combinatorics and applications to microarray production, DNA sequencing and chaining algorithms,” in Combinatorial
Pattern Matching, 17th Annual Symposium, CPM 2006, Barcelona, Spain, July 5-7, 2006, Proceedings, ser. Lecture Notes in Computer Science,
M. Lewenstein and G. Valiente, Eds., vol. 4009. Springer, 2006, pp. 153–164. [Online]. Available: https://doi.org/10.1007/11780441_15

[15] C. Elzinga, S. Rahmann, and H. Wang, “Algorithms for subsequence combinatorics,” Theoretical Computer Science, vol. 409, no. 3, pp. 394–404, 2008.
[16] J. D. Ullman, “On the capabilities of codes to correct synchronization errors,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 95–105,

1967.
[17] Y. Kanoria and A. Montanari, “Optimal coding for the binary deletion channel with small deletion probability,” IEEE Transactions on Information

Theory, vol. 59, no. 10, pp. 6192–6219, 2013.
[18] B. Graham, “A binary deletion channel with a fixed number of deletions,” Combinatorics, Probability and Computing, vol. 24, no. 03, pp. 486–489,

2015.
[19] F. Sala and L. Dolecek, “Counting sequences obtained from the synchronization channel,” in Proceedings of the 2013 IEEE International Symposium

on Information Theory, Istanbul, Turkey, July 7-12, 2013. IEEE, 2013, pp. 2925–2929. [Online]. Available: https://doi.org/10.1109/ISIT.2013.6620761
[20] F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Three novel combinatorial theorems for the insertion/deletion channel,” in IEEE International

Symposium on Information Theory, ISIT 2015, Hong Kong, China, June 14-19, 2015. IEEE, 2015, pp. 2702–2706. [Online]. Available:
https://doi.org/10.1109/ISIT.2015.7282947

[21] D. Cullina and N. Kiyavash, “An improvement to levenshtein’s upper bound on the cardinality of deletion correcting codes,” IEEE Transactions on
Information Theory, vol. 60, no. 7, pp. 3862–3870, 2014.

[22] Y. Liron and M. Langberg, “A characterization of the number of subsequences obtained via the deletion channel,” IEEE Transactions on Information
Theory, vol. 61, no. 5, pp. 2300–2312, 2015.

[23] S. Diggavi, M. Mitzenmacher, and H. Pfister, “Capacity upper bounds for deletion channels,” in Proceedings of the International Symposium on
Information Theory, 2007, pp. 1716–1720.

[24] A. Kalai, M. Mitzenmacher, and M. Sudan, “Tight asymptotic bounds for the deletion channel with small deletion probabilities,” in IEEE International
Symposium on Information Theory, ISIT 2010, June 13-18, 2010, Austin, Texas, USA, Proceedings. IEEE, 2010, pp. 997–1001. [Online]. Available:
https://doi.org/10.1109/ISIT.2010.5513746

[25] M. Rahmati and T. M. Duman, “Bounds on the capacity of random insertion and deletion-additive noise channels,” IEEE Transactions on Information
Theory, vol. 59, no. 9, pp. 5534–5546, 2013.

[26] O. Ordentlich and O. Shayevitz, “Bounding techniques for the intrinsic uncertainty of channels,” in 2014 IEEE International Symposium on Information
Theory, Honolulu, HI, USA, June 29 - July 4, 2014. IEEE, 2014, pp. 3082–3086. [Online]. Available: https://doi.org/10.1109/ISIT.2014.6875401

[27] D. Cullina, A. A. Kulkarni, and N. Kiyavash, “A coloring approach to constructing deletion correcting codes from constant weight subgraphs,” in
Proceedings of the 2012 IEEE International Symposium on Information Theory, ISIT 2012, Cambridge, MA, USA, July 1-6, 2012. IEEE, 2012, pp.
513–517. [Online]. Available: https://doi.org/10.1109/ISIT.2012.6284242

[28] V. Levenshtein, “Elements of coding theory,” Diskretnaya matematika i matematicheskie voprosy kibernetiki, pp. 207–305, 1974.
[29] D. Cullina, N. Kiyavash, and A. A. Kulkarni, “Restricted composition deletion correcting codes,” IEEE Transactions on Information Theory, vol. 62,

no. 9, pp. 4819–4832, 2016.

https://doi.org/10.1007/978-3-540-69903-3_1
http://www.combinatorics.org/Volume_11/Abstracts/v11i1r8.html
https://doi.org/10.1007/3-540-48452-3_9
https://doi.org/10.1137/S009753979223842X
https://doi.org/10.1007/11780441_15
https://doi.org/10.1109/ISIT.2013.6620761
https://doi.org/10.1109/ISIT.2015.7282947
https://doi.org/10.1109/ISIT.2010.5513746
https://doi.org/10.1109/ISIT.2014.6875401
https://doi.org/10.1109/ISIT.2012.6284242

	I Introduction
	I-A Results and Contributions
	I-B Structure

	II Related Work
	III Framework
	IV Clustering Supersequences, Counting Subsequence Embeddings and Supersequences with Single Embeddings
	IV-A Counting Subsequence Embeddings via Runs
	IV-B From Maximal Initials to Hamming Clusters
	IV-C Simple closed form expression for the size of a cluster
	IV-D Recursive expression for the size of a cluster
	IV-E Enumerating Singletons via Runs

	V Entropy Minimization
	V-A Single Deletions
	V-A1 Clustering Supersequences via Single Insertions
	V-A2 Minimal Entropy For Single Deletions

	V-B Double Deletions
	V-B1 Clustering Supersequences via Double Insertions
	V-B2 Minimal Entropy For Double Deletions

	VI Concluding Remarks
	Appendix A: Proof of Lemma V.6
	Appendix B: Proof of Remark V.2
	Appendix C: Proof of Remark V.3
	References

