
Paul Hauseux1,  Jack S. Hale1,  Raphaël Bulle1, Franz 
Chouly2, Alexei Lozinski2 and Stéphane P. A. Bordas1

 July 23, 2018

Uncertainty Quantification in Finite Element 
Models: Application to Soft Tissue Biomechanics

13th World Congress in Computational Mechanics (WCCM XIII) and 2nd Pan 
American Congress on Computational Mechanics  (PANACM II)

July 22-27, 2018 Marriott Marquis

 1

1University of Luxembourg, 2Bourgogne France Comté University



Context: Soft-tissue biomechanics simulations 
with uncertainty

‣  Uncertainty in parameters (material properties, loading, geometry, etc.) in 
biomechanics problems can influence the outcome of simulation results.

‣Assessing the effects of uncertainty in material parameters in soft tissue models.
‣ Stochastic FE analysis. Random variables/fields.

‣  Objective: propagate and visualise this uncertainty with non or 
partially-intrusive methods (Forward UQ).

‣ Parameter identification (Inverse Problems in a Bayesian Setting).
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General framework

F (u,!) = 0‣ Stochastic non-linear system:

‣ Probability space:

‣Random parameters:

(⌦,F , P )

! = (!1,!2, . . . ,!M )

‣Objective: provide statistical data for the solution of the problem.

‣ Integration (to determine the expected value of a quantity of interest):

E[�(u(�))] =
�

�
�(u(�))dP (�)
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E[�(u(�))] =
⇥

�
�(u(�))dP (�) �

Z�

z=1

pz�(u(�z))

Direct integration

Monte-Carlo method [Caflisch 1998]:

Algorithm:

  while            :

‣ choose randomly      .

‣ evaluate                 .

‣ add the contribution to the sum.

z < Z

�z

�(u(�z))
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‣Converge «in law»: 1% for 10000 realisations, slow but independent of the 
dimension !

‣Necessity to improve the convergence.

Convergence

Work done:

‣ Low discrepancy sequences (Sobol, Hamilton, …): quasi MCM [Caflisch 1998].

‣Multi Level Monte-Carlo techniques [Giles 2015], Polynomial Chaos 
Expansion [Matthies 2008] and non-intrusive SGFEM methods that only 
require access to a deterministic residual [Giraldi et al. 2014].

‣MC methods by using sensitivity information (SD-MC) [Cao et. al 2004, Liu et 
al. 2013].
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Estimator [Cao et. al 2004, Liu et al. 2013]:

MC methods by using sensitivity information
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This variance reduction method increases the accuracy of sampling 
methods. Here we only consider the case of the first-order sensitivity 
derivative enhanced Monte-Carlo method. By using sensitivity information 
computational workload can be reduced by one order of magnitude over 
commonly used schemes.

Main difficulty: 

??



Implementation (DOLFIN/FEniCS) [Logg et al. 2012], advantages:

‣UFL (Unified Form Language).

‣Most existing FEM codes are not able to compute the tangent linear model and 
the sensitivity derivatives. However, it is possible with DOLFIN for a wide range of 
models with very little effort [Alnæs 2012, Farrell et al. 2013].

‣We also use dolfin-adjoint to automatically derive the adjoint equations (first and 
second order) and their FE discretisation from UFL description. This gives us access 
to routines for calculating the gradient and Hessian-vector action of the QoI with 
respect to the parameter(s).

‣Complex models with only few lines of Python code.
‣ Parallel computing (Ipyparallel and mpi4py).

Python package for uncertainty quantification:

‣Chaospy [Feinberg and Langtangen 2015] to provide different stochastic objects (global 
sensitivity analysis, polynomial chaos exapnsion, etc.)

Numerical implementation
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DOLFIN/FEniCS implementation: an example
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 nu_var = variable(Constant(omega))
 F = nu_var*u_.dx(0)*u_t.dx(0)*dx + 0.5*u_.dx(0)*u_t*dx\
       - 0.5*(u_**2).dx(0)*u_t*dx

 J = derivative(F, u_, u) 
 solve(F == 0, u_, bcs, J=J)

‣Forward problem, generalized Burgers equation with stochastic viscosity:

‣The standard Newton method:



‣The tangent linear system:

@F (u,!)

@u| {z }
U⇥U

du

d!|{z}
U⇥M

= � @F (u,!)

@!| {z }
U⇥M

U: size of the deterministic problem 
M: number of random parameters

linear system to solve to evaluate du/dm !

Fu = derivative(F, u, du) 
Fd = - diff(F, omega) 
dudomega = Function(V) 
A, b = assemble_system(Fu, Fd, bcs=bcs)  
solve(A, dudomega.vector(), b, “lu")

DOLFIN/FEniCs implementation: an example
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The complete implementation is only around 130 lines and the Docker image 
with the full software environment is included in: https://dx.doi.org/10.6084/
m9.figshare.3561306 [Hauseux, P. and Hale, J.S. and Bordas, S. 2016]

https://dx.doi.org/10.6084/m9.figshare.3561306
https://dx.doi.org/10.6084/m9.figshare.3561306


‣Different hyper-elastic models implemented (Mooney-Rivlin, Neo-Hookean, 
Holzapfel and Ogden [Holzapfel and Ogden 2009]).
‣Random variables/fields to model parameters [Adler 2007].
‣ Strain energy function for the Holzapfel and Ogden model:

‣ for example 3RV:

Stochastic FE analysis of brain deformation
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Brain deformation with random parameters 
1 MC realisation.

Confidence interval 95% 
MC simulations.

Stochastic FE analysis of brain deformation 
Numerical results (8 RV, Holzapfel model)
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The complete FEniCS implementation, the Docker image with the full 
software environment, the benchmarks problems and all associated data 
are available: http://bitbucket.org/unilucompmech/stochastic-hyperelasticity, 
http://doi.org/10.6084/m9.figshare.4900298 [Hauseux et al. 2018]

http://bitbucket.org/unilucompmech/stochastic-hyperelasticity
http://doi.org/10.6084/m9.figshare.4900298


Numerical results: convergence

Fig. Center of the sphere:  expected 
value of the displacement in the x direction as 
a function of Z with a confidence level at 95%.
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Global sensitivity analysis (HO model)

Quantity of interest: displacement magnitude of the target.
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‣Sobol sensitivity indices [Sobol 2015, Saltelli 2002] 



Random Fields

Two realisations of RF, with a log-normal distribution, 
for the parameter C1 (in MPa).
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‣Different methods: Karhunen–Loève expansion [Adler 2007], Fast 
Fourier transform [Nowak 2004], Gaussian random fields with Matérn 
covariance functions from the solution of a stochastic PDE [Lindgren et al. 
2011].  



Numerical results (Mooney-Rivlin solid) 
ML Monte-Carlo technique: ML-PCE

Histogram (MC and ML-PCE methods).
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‣Monte Carlo method with use of Polynomial Chaos Expansion to improve the 
convergence [Matthies 2008, Hauseux 2016].



Parameter identification (Inverse Problems in a 
Bayesian Setting)
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‣ Inverse and forward problems are strongly connected. In a bayesian setting 
[Matthies et al. 2017], developing methods that reduce the number of evaluations 
of the forward model to an absolute minimum to achieve convergence is crucial 
for tractable computations.

‣Objective: identify a PDF in a Baysesian setting (and not a deterministic constant). 
We take into account the heterogeneity of  the material.

‣ Linear (LBU) and quadratic (QBU) Baysesian updates (similar to Kalman filter with 
PCE techniques).

‣Didactic example : (1D beam)

Data: 20 samples, one QoI per sample. 



Numerical results: Parameter identification 
(Inverse Problems in a Bayesian Setting)

Numerical results for the 1D didactic example. 
We want to identify the PDF of the Young’s modulus. 
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Conclusion
Stochastic modelling:

‣Random variables/fields to model parameters with a degree of uncertainty: 
application to brain deformation.

Partially-intrusive Monte-Carlo methods to propagate uncertainty:

‣ By using sensitivity information (tangent linear approach/adjoint approach) and 
multi-level Monte Carlo methods we demonstrate that computational workload 
can be reduced by at least one order of magnitude over commonly used schemes.

‣Global and local sensitivity analysis.

Numerical implementation:

‣ Implementation: DOLFIN [Logg et al. 2012] and chaospy [Feinberg and Langtangen 2015].
‣Non-linear hyper-elastic models (Mooney-Rivlin, Neo-Hookean, Holzapfel and 

Ogden [Holzapfel and Ogden 2009]).
‣ Ipyparallel and mpi4py to massively parallelise individual forward model runs accros 

a cluster.

Parameter identification (Inverse Problems in a Bayesian Setting).
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