
Event detection and localization in mobile robot
navigation using reservoir computing

Eric A. Antonelo1, Benjamin Schrauwen1, Xavier Dutoit2, Dirk Stroobandt1,
Marnix Nuttin2

1 Electronics and Information Systems Department, Ghent University, Belgium
2 Department of Mechanical Engineering - Katholic University of Leuven, Belgium

Eric.Antonelo@elis.ugent.be

Abstract. Reservoir Computing (RC) uses a randomly created recur-
rent neural network where only a linear readout layer is trained. In this
work, RC is used for detecting complex events in autonomous robot navi-
gation. This can be extended to robot localization based solely on sensory
information. The robot thus builds an implicit map of the environment
without the use of odometry data. These techniques are demonstrated
in simulation on several complex and even dynamic environments.

1 Introduction

Autonomous robot navigation systems have been extensively developed in the
literature [1–4]. Early navigation strategies are either deliberative (generation
of robot trajectories based on path planning) or reactive (robot control based
on a direct mapping of sensory input to actions). Current state-of-the-art au-
tonomous robot control architectures are hybrid [1]: they have an underlying
reactive controller which takes care of the real-time critical and simple tasks
such as obstacle avoidance; while an upper deliberative control layer steers this
reactive part. Information flow in this architecture is both downwards, from ab-
stract deliberative tasks to concrete physical reactive behaviours, and upwards,
from physical data to abstract symbols used for deliberation.

This paper investigates two cases of upward information flow: a system for
recognizing complex robot events in particular environments (such as detecting
if the robot goes through a door, given only sensory input); and a system for
determining the current robot location, solely based on sensory information.
Both are achieved using the same setup.

These tasks have been shown to be difficult [5]. Traditional algorithms based
on the Simultaneous Localization and Mapping (SLAM) concept are expensive
to implement due to limited computational efficiency and also hold uncertainties
during the calculation of the robot’s pose [5].

This work uses an implicit way of forming a representation of the robot’s en-
vironment that is based on a Recurrent Neural Network (RNN), more specifically
using Reservoir Computing (RC). This is a term that groups three similar com-
puting techniques, namely, Echo State Networks [6], Liquid State Machines [7],

and BackPropagation DeCorrelation [8]. All three techniques are characterized
by having an RNN that is used as a reservoir of rich dynamics and a linear read-
out output layer. Only the readout layer is trained by supervised learning, while
the recurrent part of the network (the so called reservoir) has fixed weights, but
is scaled so that its dynamic regime is at the edge of chaos. Theoretical analysis
of reservoir computing methods [9] and a broad range of applications [10] (which
often even drastically outperform the current state-of-the-art [11]) show that RC
is very powerful and overcomes the problems of tradititonal RNN training such
as slow convergence and computational requirements.

The short-term memory, present in these networks, is crucial for solving the
event detection and localization tasks. It is not only the instantaneous sensory
inputs that are needed to solve the tasks, but also the sensory history [12] and
dynamics.

It has already been shown in [13] that RC can be used to detect events in an
autonomous robot setting. This work extends these results by also considering
dynamic environments for event detection, and goes largely beyond that work
by using it to construct implicit maps of the environment for robot localization.

The idea of employing a neural network as a localization model for the robot
is also inspired by biological systems. Experiments accomplished with rats show
that the hippocampus in their brain forms activation patterns that are associated
with locations visited by the rat. These so called place cells are the most common
evidence for such fact. They fire when an animal is in a particular location in its
environment [14].

The data (robot sensors and actuators) are generated using a simulator de-
veloped in [3]. It is a completely reactive controller trained by reinforcement
learning to explore the environment. The dataset collected from the simulator
is used to train an RC system in order to detect events as well as to predict the
robot location in particular environments.

2 Reservoir computing

The current work uses the Echo State Network approach as a learning system
for detection of events as well as for robot localisation. The random, recurrent
neural network (or reservoir) is composed of sigmoidal neurons and is modelled
by the following state update equation:

x(t + 1) = f(Winu(t) + Wx(t)), (1)

where: Win is the connection matrix from input to reservoir; W is the weight
matrix for the recurrent connections between internal nodes; f is the hyperbolic
tangent function; and u(t) is the input vector at time t. The initial state is
x(0) = 0.

The output y(t) of the network at time t is given by

y(t) = Wout

[
x(t)
1

]
, (2)

where Wout is the readout matrix.
The matrices Win and W are fixed and randomly created at the beginning.

If ni and nr denote the number of inputs and neurons inside the reservoir,
respectively, then Win is a nr × ni matrix. W is a nr × nr matrix where each
element is drawn from a normal distribution with mean 0 and variance 1. It
is then re-scaled by first dividing the matrix by its spectral radius (the largest
absolute eigenvalue) and then multiplying it by 0.95. The spectral radius of the
rescaled matrix is thus 0.95 which is close to the edge of stability (around a
spectral radius 1). The value of the spectral radius could be further optimised
for each experiment, but a quick grid search showed that 0.95 is near optimal
for all cases.

The (nr + 1)×no matrix Wout is the only matrix trained during the experi-
ment (with no denoting the number of outputs). Let ŷfish(t)3 denote the desired
output at time t, then the readout matrix is created by solving (in the mean
square sense) the following equation:

Wout ·
[
x(1) x(2) . . . x(nt)

1 1 . . . 1

]
= [ŷfish(1) ŷfish(2) . . . ŷfish(nt)], (3)

where nt is the total number of time samples.
Prior to training, the desired outputs are relabelled in order to optimise the

classification results. Each line of the original target data Ŷ represents one de-
sired output over time, and each output consists of +1 and −1. But the number
of positive desired outputs can be fairly different from the number of negative
desired outputs in each line. In order to get optimal classification through re-
gression (i.e. through solving (3) in the least square sense), each element ŷi(t)
of the i-th line ŷi of Ŷ is rescaled so that the whole line ŷi sum up to 0:

ŷi
fish(t) =





ni
++ni

−
ni

+
if ŷi(t) > 0

−ni
++ni

−
ni
−

if ŷi(t) < 0
, (4)

where ni
+ = |{ŷi(t)|ŷi(t) > 0}| and ni

− = |{ŷi(t)|ŷi(t) < 0}| denote the number
of positive and negative required outputs in the i-th line of Ŷ, respectively.

3 Robot Model and Controller

The dataset used to train reservoir networks is generated by a simulator used
in [3]. Next the environment and robot controller are described briefly. The en-
vironment of the robot is composed of repulsive and attractive objects. Each
object has a particular color, denoting its respective class. Obstacles are consid-
ered repulsive objects while targets are attractive objects [2]. The robot model is
shown in Fig. 1. The robot interacts with the environment by distance, color and

3 ŷfish(t) refers to the desired output after applying the fisher labeling given by (4)

a

g

x

-90º

Sensors

- Distance
- Colour
- Contact

Object

Robot

0º

90º

Fig. 1. Robot model

contact sensors; and by one actuator that controls the adjustment on the move-
ment direction. Sensor positions are distributed homogenously over the front of
the robot (from -90◦ to +90◦). Each position holds three sensors (for distance,
color and contact perception) [2]. In this work, the robot model has 17 sensor
positions, differing from [3]. The velocity of the robot is constant. At each iter-
ation the robot is able to execute a direction adjustment to the left or to the
right in the range [0, 15] (degrees).

The robot controller (based on [3]) is composed of hierarchical neural net-
works which are adjusted by classical reinforcement learning mechanisms. The
controller constructs its navigation strategy as the robot interacts with the en-
vironment. Only already trained robot controllers, which all show very good ex-
ploratory behavior after training, are used for generating data. The data (from
distance and color sensors, and actuator) collected from the robot simulator are
used to train and test reservoir networks in a Matlab environment using the
RCT Toolbox4 [10]. Gaussian noise is added to distance sensors data by the
robot simulator.

4 Event Detection in Robot Navigation

Event detection in noisy environments is not a trivial task. There can be very
similar scenes from the robot’s perspective so that precise event detection be-
comes very difficult to accomplish [9]. Two different experiments are conducted
for the event detection task. The environments used are shown in Fig. 2. They
are composed of a large (blue) corridor with a (yellow) target at each end (they
appear as dark and light gray objects in black and white format). During simula-
tion, the robot keeps navigating through the corridor and capturing the targets
(that are sequentially put back in the same location). There are four possible
events of predefined duration and location, which are labeled in Fig. 2. The in-
terpretation should be: when the robot passes through a predefined location, an

4 This is an open-source Matlab toolbox for Reservoir Computing which is freely
available at http://www.elis.ugent.be/rct

event should be detected (e.g. entering the corridor corner area, passing through
the middle of the corridor). The second environment is the same as the first en-
vironment, except for a new blinking object in the middle of the corridor (with
random blink interval) which can block the robot’s way.

Experiment 1 is accomplished considering the first environment and exper-
iment 2 takes place in the second environment. Both experiments take 120.000
time steps of simulation time. The original dataset is resampled by a factor of
100, resulting in a smaller dataset of 1.200 observations. The original sampling
rate is high (it takes approximately 2000 time steps to go from one side of the
simulation environment to the other), which is useful to efficiently control the
robot with the implemented controller. But when applying the sensory input to
the reservoir it is very important that the internal dynamics and memory of the
reservoir are in the same temporal range as the temporal range needed to solve
the task. We achieved this by resampling the input, which effectively slows down
the dynamics in the reservoir [15]. A grid search of the resampling rate showed
that the optimal time range was achieved with a resampling factor of 100.

The inputs to the network are distance and color sensors and a robot actuator
(current direction adjustment) suming up 35 inputs which can range from 0 to
1. Parameter configuration is as follows. The reservoir is composed of 400 nodes,
scaled to a spectral radius of |λmax| = 0.95. The readout layer has 4 output
units (one for each event detector) which are postprocessed by a winner-take-all
function. This function sets the output of the most activated neuron to 1 whereas
the others are set to −1. Note that if all the neurons output a negative value,
then the winner-take-all function set every output to −1 (this means no event is
detected). The input nodes are connected to reservoir nodes by a fraction of 0.3
and are set to -0.15 or 0.15 with equal probabilities. The performance measure
considers the number of mispredicted observations and is based on a 3-fold cross-
validation method (so, 400 observations, resampled from 40.000 time steps, are
selected as test data).

The results are shown in Fig. 3 and summarized in Table 1. Each experiment
is evaluated 30 times with different stochastically generated reservoirs and the
results are averaged over these 30 runs. It is possible that the robot develops a
cyclic and rhythmic trajectory in experiment 1 (see Fig. 3). The trained reser-
voir is able to detect the 4 events very precisely with a performance of 99 % on
test data. One could argue that the reservoir learns to recognize the rhythmic
behavior and not the actual event per se. Experiment 2 is devised to test this
hypothesis. It shows that a reservoir can still detect the events precisely (per-
formance of 95.8 % on unseen data) even though a dynamic object breaks the
rhythmic robot trajectory.

5 Localization in Robot Navigation

The previous section has shown that an RC network can be used to detect com-
plex events in robot navigation with rather good performance. Now this section
extends the experiments to robot localization tasks. Instead of only detecting

Fig. 2. Environments used for the event detection task. Four events are labeled and
shown graphically (by arrows) in the first enviroment. The second environment adds a
dynamic obstacle in the middle of the corridor, indicated by an arrow. A typical robot
trajectory (after controller learning) is shown in the second environment. Two boxes
in the environment are used as targets for the robot.

0 100 200 300 400

0

2

4

0 100 200 300 400

−1

0

1

(a) Experiment 1

0 100 200 300 400

0

2

4

0 100 200 300 400

−1

0

1

(b) Experiment 2

Fig. 3. Left: Events plot during a simulation for experiment 1 (a) and experiment 2 (b).
An asterisk represents the predicted event by the reservoir (on test data). The actual
events are points connected by lines. The mis-predictions are labeled by an extra circle.
Two small rectangles emphasize two events that are not recognized by the reservoir in
the bottom plot. Right: Neuron output for detecting event 1 for experiment 1 (a) and
experiment 2 (b). The thick line is the actual neuron output whereas the dashed line
is the desired outcome (not visible in (a)).

events, we rather want to predict the current location of the robot based on the
same kind of sensory information (giving rise to a more difficult and interesting
problem). Localization (or position detection) for mobile robots is usually com-
putationally expensive in terms of space and time requirements [5]. Traditional
algorithms are based on explicit maps which must be constructed before robot
localization is possible. This section shows how a reservoir can be used for robot
localization. Similar work which uses a Long-Short Term Memory RNN for this
task is described in [16].

Two maze-like environments are used for the robot localization task (see Fig.
4). The first environment contains 64 predefined locations, that are displayed by
small triangles labeled by numbers. Differently from [16], the entire environment
is tagged with labels (not only rooms). This feature makes it possible to use a
more precise trajectory planner.

The same reservoir parameter configuration as in the previous section is
used for the following experiments. The resampling rate for the dataset is also
100. Exceptions are: the size of the readout layer is equivalent to the number
of predefined locations in the environment; and the postprocessing function for
the readout units is the winner-take-all function which always takes the most
activated neuron and set it to 1 (the others are set to −1). So, there is always
a predicted location (in contrast to the no event detected situation in previous
section). Here also a 3-fold cross-validation is used for performance measure (last
experiment is based on a 6-fold cross-validation).

Experiment 3 is accomplished with the first environment from Fig. 4 and lasts
180.000 time steps (before resampling). The resulting robot occupancy grid can
be seen in the same figure: it shows that the reservoir is predicting the robot
location very well (on test data), with very few mispredictions that are not far
located from the actual location (10.3 % is the test error, see Table 1).

Experiment 4, accomplished in the second environment, represents a new
challenge for the reservoir-based position detector: the environment has several
symmetries and identical areas. For instance, going from position 27 to 26 looks
the same for the robot as going from position 22 to 24. The simulation has
120.000 time steps. The resulting occupancy grid in Fig. 4 shows an efficient
position detector, featuring a performance of 87.6 % of correct predictions on
test data (see Table 1).

Experiment 5 uses the third environment in Fig. 4, that is the same as the first
environment, but with additional 11 slow moving obstacles distributed through
the environment (moving obstacles are also considered in [16]). These dynamic
objects change the robot behavior and also add more noise to sensor readings.
The simulation has 360.000 time steps. The respective occupancy grid in Fig. 4

Table 1. Summarized results. For each experiment, thirty (30) runs with the same
robot dataset are accomplished (that is resampled by a factor of 100). Every run is based
on an 3-fold cross-validation method (experiment 5 uses 6-fold cross-validation). The
trainning and test errors are the mean over these 30 runs. The first two experiments are
event detection tasks whereas the other three are robot localization tasks. Experiments
2 and 5 consider dynamic objects in the environment.

Experiment Time steps Train Error Test Error

1 1200 0.6 % 1.0 %
2 1200 0.9 % 4.2 %

3 1800 2.9 % 10.3 %
4 1200 1.7 % 12.4 %
5 3600 10.9 % 22.1 %

0 100 200 300 400 500 600
0

20

40

60

(a) Experiment 3

0 100 200 300 400
0

10

20

30

(b) Experiment 4

0 100 200 300 400 500 600
0

20

40

60

(c) Experiment 5

Fig. 4. Environments used for the experiments (left) and respective resulting robot
occupancy grids (right). First environment is tagged with 64 labels displayed by small
triangles. In the occupancy grid, an asterisk represents the predicted location (on test
data, that is 1/3 of the total data) while connected points are the actual robot positions.
Mispredicted locations display an additional circle. The second environment has 29
labels distributed through very similar areas. The third environment is the same as
the first environment but with additional slow moving obstacles (represented by small
rectangles) which add more noise and dynamics to sensor readings and to the robot
trajectory, respectively.

shows that the reservoir is correct in most of the predictions (77.8 %). Some of
the mispredictions are located a bit further from the actual position, due to the
new source of dynamics and noise.

Experiments only considering distance sensors (removing actuator and color
sensor data) result in the same performance reported for the previous exper-
iments in this section. The reservoir network also copes with the kidnapping
situation (also reported in [16]). In a new experiment using the environment
from experiment 3, the robot is replaced from location 54 to location 27. The

245 250 255 260 265 270 275

20

30

40

50

60

Fig. 5. Occupancy grid after kidnapping the robot in first environment of Fig. 4. An
additional triangle is placed at the actual robot position. At time step 255, the robot is
moved from position 54 to position 27. The reservoir network takes 7 time steps until it
first predict sucessfully the current robot position (at time step 262). The robot visits
4 locations (27, 28, 22 and 21) until the sucessfull prediction.

network is able to predict sucessfully the robot position after 7 time steps (see
Fig. 5). Note that the RC network is not trained with the kidnapping situation.

6 Conclusions and future work

In this work we show that it is possible to detect complex events and locate
a robot in even dynamic environments with a random dynamic system which
is processed by just a single linear readout layer. The proposed system shows
very good performance in difficult environments such as mazes or environments
which are highly symmetric. To achieve this we only use the dynamics of the
sensory information, not the actual behaviors (as in [13]). Besides, no decrease on
reservoir performance is reported when experiments on robot localization only
consider distance sensors.

This paper only scratched the surface of what could be possible with this
technology. As future work we plan to implement it on a real robotic platform,
as it is considered the standard and best evaluation method for robotic systems.
In this way we can also make comparisons to existing SLAM techniques. Addi-
tionaly, a deliberative robotic system can now be constructed so that actual path
planning and navigation is accomplished based on the information gathered by
the RC-based localization system.

From an RC view, we could improve performance by tuning the reservoir dy-
namics and time scales for different tasks. For instance, experiments with robots
with variable speeds during simulation can be tackled by inducing distinct reser-
voir dynamics (creating different time scales in the reservoir operation). Future
work also includes the unsupervised detection and generation of locations, much
resembling actual place cells. Finally, the implicit map stored in the reservoir
could be made explicit by using an RC system in a generative setting: given
a location as input, the reservoir could start creating expectations (much like
’dreaming’) of possible paths and environments.

Acknowledgements This research is partially funded by FWO Flanders project
G.0317.05.

References

1. Arkin, R.: Behavior-based robotics. MIT Press (1998)
2. Antonelo, E.A., Figueiredo, M., Baerlvedt, A.J., Calvo, R.: Intelligent autonomous

navigation for mobile robots: spatial concept acquisition and object discrimination.
In: Proceedings of the 6th IEEE International Symposium on Computational In-
telligence in Robotics and Automation, Helsinki, Finland (2005)

3. Antonelo, E.A., Baerlvedt, A.J., Rognvaldsson, T., Figueiredo, M.: Modular neural
network and classical reinforcement learning for autonomous robot navigation: In-
hibiting undesirable behaviors. In: Proceedings of IJCNN 2006, Vancouver, Canada
(2006)

4. Guivant, J., Nebot, E., Baiker, S.: Autonomous navigation and map building using
laser range sensors in outdoor applications. Journal of Robotics Systems 17(10)
(2000) 565–583

5. Bailey, T., Durrant-Whyte, H.: Simultaneous localisation and mapping (SLAM):
Part ii state of the art. Robotics and Automation Magazine (2006)

6. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural
networks. Technical Report GMD Report 148, German National Research Center
for Information Technology (2001)

7. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
Computation 14(11) (2002) 2531–2560

8. Steil, J.J.: Backpropagation-Decorrelation: Online recurrent learning with O(N)
complexity. In: Proceedings of IJCNN ’04. Volume 1. (2004) 843–848

9. Jaeger, H.: Short term memory in echo state networks. Technical Report GMD
Report 152, German National Research Center for Information Technology (2001)

10. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: A unifying compar-
ison of reservoir computing methods. Neural Networks 20 (2007) 391–403

11. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and
saving energy in wireless telecommunication. Science 308 (2004) 78–80

12. Schönherr, K., Cistelecan, M., Hertzberg, J., Christaller, T.: Extracting situa-
tion facts from activation value histories in behavior-based robots. In: KI-2001:
Advances in Artificial Intelligence (Joint German/Austrian Conference on AI, Pro-
ceedings),, Springer (LNAI 2174) (2001) 305319

13. Hertzberg, J., Jaeger, H., Schönherr, F.: Learning to ground fact symbols in
behavior-based robots. In: Proceedings of the 15th European Conference on Arti-
ficial Intelligence. (2002) 708–712

14. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evi-
dence from unit activity in the freely-moving rat. Brain Research 34 (1971) 171–175

15. Jaeger, H., Lukosevicius, M., Popovici, D.: Optimization and applications of echo
state networks with leaky integrator neurons. Neural Networks 20 (2007) 335–352

16. Forster, A., Graves, A., Schmidhuber, J.: RNN-based learning of compact maps
for efficient robot localization. In: Proceedings of ESANN. (2007)

