Clones of pivotally decomposable operations

Miguel Couceiro¹ and Bruno Teheux²

- ¹ LORIA Equipe Orpailleur, CNRS Inria Nancy Grand Est, Université de Lorraine miguel.couceiro@inria.fr
 - ² University of Luxembourg, Mathematics Research Unit, bruno.teheux@uni.lu

Several classes of operations $f\colon A^n\to A$ admit a decomposition scheme

$$f(\mathbf{x}) = \Pi(\mathbf{x}_k, f(\mathbf{x}_k^1), f(\mathbf{x}_k^0)), \qquad k \le n, \tag{1}$$

where $\Pi: A^3 \to A$ and $\{0, 1\} \subseteq A$, and where \mathbf{x}_k^c denotes the *n*-tuple obtained from \mathbf{x} by substituting its *k*-th component by $c \in A$. Shannon decomposition (or Shannon expansion) [2,5] is an instance of (1) for Boolean functions, where $\Pi(x, y, z) = xy + (1 - x)z$. More recent examples include the class of polynomial operations over a bounded distributive lattice. They are decomposable [3] as in (1) for $\Pi(x, y, z) = (x \wedge y) \lor (x \wedge z) \lor (y \wedge z)$.

More generally, if $\Pi: A^3 \to A$, we say that a class of operations on A is Π -decomposable [4] if it is the class of those operations that satisfy (1). In this talk, we investigate those Π -decomposable classes of operations that constitute clones. The results presented in this talk are published in [1].

References

- M. Couceiro, B. Teheux. Pivotal decomposition schemes inducing clones of operations. *Beiträge zur Algebra und Geometrie*. 59 (2018) 25–40.
- R.E. Barlow, F. Proschan. Importance of system components and fault tree events, Stochastic Process. Appl. 3 (1975) 153–172.
- 3. J.-L. Marichal. Weighted lattice polynomials, Discrete Math. 309 (2009) 814-820.
- J.-L. Marichal, B. Teheux. Pivotal decompositions of functions, *Discrete Appl. Math.*, 174:102–112, 2014.
- C.E. Shannon. A symbolic analysis of relay and switching circuits, Trans. Am. Inst. Electr. Eng. 57 (1938) 713–723.