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Gene regulatory network inference from sparsely
sampled noisy data
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The complexity of biological systems is encoded in gene regulatory networks. Unravelling this

intricate web is a fundamental step in understanding the mechanisms of life and eventually

developing efficient therapies to treat and cure diseases. The major obstacle in inferring gene

regulatory networks is the lack of data. While time series data are nowadays widely available,

they are typically noisy, with low sampling frequency and overall small number of samples.

This paper develops a method called BINGO to specifically deal with these issues. Bench-

marked with both real and simulated time-series data covering many different gene reg-

ulatory networks, BINGO clearly and consistently outperforms state-of-the-art methods. The

novelty of BINGO lies in a nonparametric approach featuring statistical sampling of con-

tinuous gene expression profiles. BINGO’s superior performance and ease of use, even by

non-specialists, make gene regulatory network inference available to any researcher, helping

to decipher the complex mechanisms of life.
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Cellular functions are controlled by the mechanism of gene
expression, and the regulatory interconnection of genes.
Knowledge of the regulatory structure enables under-

standing of biological mechanisms, and can, for example, lead to
discoveries of new potential targets for drugs. Interactions
between genes are typically represented as a gene regulatory
network (GRN) whose nodes correspond to different genes, and a
directed edge denotes a direct causal effect of some gene on
another gene. The usual research aim is to infer the network
topology from given gene expression data. Classically, GRN
inference has been based on analysing steady-state data corre-
sponding to gene knockout experiments, where one gene is silenced
and changes in the steady-state expressions of other genes are
observed. However, carrying out knockout experiments on a high
number of genes is costly and technically infeasible. Moreover, it
can be difficult to know if the system really is in a steady state when
it is measured. By contrast, methods that infer GRNs from time
series data can infer the networks on a more global level using data
from few experiments. Therefore, GRN inference from time series
data has gained more and more attention recently1–5.

Modelling dynamical systems from time series data are a
problem with long history, in particular in the fields of
mechanical, electrical, and control engineering. Inference of
GRNs, however, adds further modelling challenges since data
collection is expensive and technically demanding. Typically gene
expression data have low sampling rates and relatively small
amount of data. Moreover, GRNs have a high number of genes
with complex, nonlinear regulatory mechanisms.

Several GRN inference problems, from different types of data,
have been posed as competitive challenges by the "Dialogue for
Reverse Engineering Assessments and Methods” (DREAM)
project2,6. In addition, different methods have been compared in
review articles1,2. Many different approaches have been taken to
solve the problem, such as graphical models7, Bayesian network
models8, information theory methods9,10, neural models5, and so
on. The main focus of this article is on methods that are based on
fitting an ordinary differential equation (ODE) model to the
observed gene expression time series data.

Most ODE-based methods transform the system identification
problem into an input–output regression problem where the inputs
are the measured gene expression values and outputs are their
derivatives that are estimated from the data. Derivative estimation
can be based on simple difference approximation3,4,11,12, spline fit-
ting13, Gaussian process fitting14,15, or regularised differentiation16,17.
The regression problem is then solved by linear methods13, fitting

mechanistic functions12,15, or a user-defined library of nonlinear
functions4,16,18,19. Also nonparametric machine learning techniques
have been used, such as random forest3 and Gaussian process
regression11,14,20. A method based on Gaussian process regression,
called “Causal structure identification” (CSI)14,20 was the best per-
former in a comparison study for network inference from time series
data1.

Another ODE-based approach is to introduce a simple enough
model class, from which trajectories can be directly simulated and
compared to the measured data. Such strategy does not suffer
badly from the low sampling rate, but the model class cannot be
too complex, and it might be too restrictive to capture the
behaviour of the real system. Linear dynamics have been pro-
posed together with a Kalman filter state estimation scheme21.
The winner of the DREAM4 in silico network inference challenge
was a method called “Petri nets with fuzzy logic” (PNFL)22,
whose model class consists of fuzzy membership functions.

This article presents BINGO (Bayesian Inference of Networks
using Gaussian prOcess dynamical models). The novelty of
BINGO is the introduction of statistical trajectory sampling. This
enables the use of a flexible nonparametric approach for model-
ling the nonlinear ODE on continuous gene expression trajec-
tories. BINGO is based on modelling gene expression with a
nonlinear stochastic differential equation where the dynamics
function (or drift function), is modelled as a Gaussian process.
This defines gene expression as a stochastic process, whose rea-
lisations can be sampled using Markov chain Monte Carlo
(MCMC) techniques. The key to overcome low sampling fre-
quency is to sample the trajectory also between measurement
times. The method pipeline is illustrated in Fig. 1. The Gaussian
process framework is very flexible, which enables capturing
complex nonlinear regulations between genes. Overfitting is
avoided by integrating out all hyperparameters in the model, and
concentrating solely on the network topologies, that are given a
sparsity promoting prior.

While BINGO is not the first GRN inference method to utilise
Gaussian processes to model the dynamics function in an ODE
model, the existing approaches11,14 treat the problem as an
input–output regression problem, with gene expression derivatives
estimated directly from the time series data. This approach yields
a probability distribution for the derivatives, whereas we obtain
a probability distribution for the continuous gene expression
trajectories. This allows by-passing the derivative estimation,
which can be a serious source of errors when the sampling rate
is low.

The continuous gene expression trajectory and the underlying GRN
topology are sampled alternately. Acceptance/rejection of the proposed
samples is based on the Metropolis−Hastings acceptance ratio, arising from
the Gaussian process dynamical model.

Data can include multiple
experiments, non-constant
sampling rate, and missing
measurements.

The confidence matrix is the
average of the (directed) GRN
adjacency matrix samples   (�).
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Fig. 1 The pipeline of BINGO. a BINGO can utilise time series data originating from any experimental technique. b A proposal trajectory sample x̂ is drawn
by perturbing slightly the current sample x(l). The proposal is then accepted (xðlþ1Þ ¼ x̂) or rejected (x(l+1)= x(l)) based on the Metropolis–Hastings
acceptance ratio. The GRN topology proposal Ŝ is constructed by adding or removing one link to/from the current topology S(l). c Output of BINGO is a
confidence matrix of posterior probabilities for the existence of links.
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BINGO is validated by comparing it with state-of-the-art
network inference methods using data from the DREAM4 in
silico network inference challenge2,23,24. Moreover, the effects of
sampling frequency and process noise are studied by applying the
method to simulated data of the circadian clock of Arabidopsis
thaliana25. Finally, BINGO’s performance on real experimental
data is demonstrated by applying it to a dataset from the synthetic
network IRMA26, and by using it on drug target identification.
BINGO outperforms state-of-the-art network inference methods
in inference from time series data.

Results
Gene expression modelled with differential equations. Gene
expression time series data Y= {y0, …, ym} are modelled as
samples from a continuous trajectory,

yj ¼ xðtjÞ þ vj; ð1Þ
where vj represents measurement noise. The continuous trajec-
tory is assumed to satisfy a nonlinear stochastic differential
equation

dx ¼ fðxÞdt þ dw; ð2Þ
where w is some driving process noise. Here, x is an Rn-valued
function, and thus also f is vector-valued,

fðxÞ ¼
f 1ðx1; ¼ ; xnÞ

..

.

f nðx1; ¼ ; xnÞ

2
664

3
775: ð3Þ

If function fi depends on xj, in the corresponding GRN there is a
link from gene j to gene i. The task in GRN inference is to
discover this regulatory interconnection structure between
variables.

BINGO is based on a continuous-time version of the so-called
Gaussian process dynamical model (GPDM). Essentially, the
dynamics function f in Eq. (2) is modelled as a Gaussian process
with some covariance function27. This defines x as a stochastic
process with probability distribution p(x∣θ), where θ denotes
hyperparameters of the Gaussian process—including the under-
lying GRN topology. Trajectory realisations from the conditional
probability distribution

pðxjθ;YÞ / pðYjx; θÞpðxjθÞ; ð4Þ
can be sampled using MCMC techniques. Here p(Y∣x, θ) is the
measurement model arising from Eq. (1). This trajectory
sampling can be regarded as statistical interpolation where the
trajectories are required to be consistent with both the measured
data and the underlying dynamical system. No additional
information is imputed in generating trajectory samples. The
decoupling of the trajectory x and the measurements Y in Eq. (4)
enable easy treatment of irregularities in time series data, such as
missing measurements and non-constant sampling frequency.

GPDM for network inference. The discrete-time GPDM28 (a.k.a.
Gaussian process state space model29,30) is based on GP latent
variable models31. It is an effective tool for analysing time series
data produced by an unknown dynamical system, or in the case
the system is somehow too complicated to be presented using
classical modelling techniques. In the original paper28, the method
was used for human motion tracking from video data. Motion
tracking problems remain the primary use of GPDMs32,33, but
other types of applications have emerged as well, such as speech
analysis34, traffic flow prediction35, and electric load prediction36.
BINGO is based on continuous-time GPDM, which is introduced

in this article, and some theory of GPDMs is presented in Sup-
plementary Notes 1–3.

A Gaussian process f is a stochastic process, that is, a function
whose values at any given set of input points form a random
variable. Gaussian processes can be seen as a generalisation of
normally distributed random variables. A Gaussian process is
defined on some index set Ξ so that for any finite collection
ξ ¼ ½ξ1; ¼ ; ξN �> 2 ΞN , the vector ½f ðξ1Þ; ¼ ; f ðξNÞ�> is nor-
mally distributed. Just like in the finite-dimensional case,
properties of a Gaussian process are completely comprised in a
mean function mðξÞ ¼ Eðf ðξÞÞ, and a covariance function
k(ξ1, ξ2)= Cov(f(ξ1), f(ξ2)). Then it holds that

½f ðξ1Þ; ¼ ; f ðξNÞ�> � N mðξÞ;Kðξ; ξÞ
� �

; ð5Þ

where mðξÞ ¼ ½mðξ1Þ; ¼ ;mðξNÞ�> and Kðξ; ξÞ is an N × N
matrix whose element (i, j) is k(ξi, ξj).

Given noisy samples ηj= f(ξj)+ vj, for j= 1,…,N with
vj � Nð0; rÞ, the value f(ξ) at a generic point ξ can be
approximated with the conditional expectation, which can be
expressed analytically

Eðf ðξÞjηÞ ¼ mðξÞ þ Kðξ; ξÞ Kðξ; ξÞ þ rI
� ��1

ðη�mðξÞÞ: ð6Þ

This is the basis of Gaussian process regression which is
extensively used in nonlinear regression problems in the field of
machine learning27. Its popularity is based on its analytical
tractability and solid roots in probability theory. For example, it is
possible to obtain confidence intervals for predictions of GP
regression. In GPDM, thanks to the analytical tractability of the
GP framework, it is possible to obtain the probability distribution
p(x∣θ) for solutions of the stochastic differential Eq. (2), which is a
vital component of BINGO.

The GP framework can handle combinatorial effects, meaning
nonlinearities that cannot be decomposed into f(x1, x2)= f1(x1)+
f2(x2). This is an important property for modelling a chemical
system—such as gene expression—where reactions can happen
due to combined effects of reactant species. For example, the
dynamics corresponding to a chemical reaction x1+ x2→ x3
cannot be modelled by _x3 ¼ f 1ðx1Þ þ f 2ðx2Þ.

In a classical variable selection problem from input–output
data ηj= f(ξj) + vj, for j= 1, …, N, where ξj 2 Rn, the task is to
find out which components of ξ does the function f depend on. In
the GP framework, variable selection can be done by a technique
known as “automatic relevance determination”37,38, based on
estimating the hyperparameters of the covariance function of f.
For BINGO, we have chosen the squared exponential covariance
function for each component fi:

kiðx; zÞ ¼ γi exp �
Xn
j¼1

βi;jðxj � zjÞ2
 !

: ð7Þ

The hyperparameters βi,j ≥ 0 are known as inverse length scales,

since 1=
ffiffiffiffiffiffi
βi;j

q
corresponds to a distance that has to be moved in the

direction of the jth coordinate for the value of function fi to change
considerably. If βi,j = 0, then fi is constant in the corresponding
direction. The mean function for fi is mi(x) = bi − aixi where ai
and bi are regarded as nonnegative hyperparameters corresponding
to mRNA degradation and basal transcription, respectively.

Network inference using BINGO is based on Bayesian
estimation of parameters βi,j: p(θ∣Y) ∝ p(Y, θ)= ∫ p(Y, x, θ)dx=
∫ p(Y∣x, θ)p(x∣θ)p(θ)dx. Again θ consists of all hyperparameters in
the method, including the interesting parameters βi,j. The integral
with respect to the continuous trajectory x is done by sampling
trajectories from the distribution p(Y∣x, θ)p(x∣θ), as described
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above. Also, all the hyperparameters are sampled, including βi,j that
are given zero-preferring priors by using an indicator matrix S,
which is the adjacency matrix of the corresponding directed graph
structure. BINGO’s output is the average of the indicator samples
(see Fig. 1). The elements of this matrix converge to posterior
probabilities of the existence of corresponding links in the GRN—
of course subjected to the validity of the underlying (implicit)
assumptions. BINGO can be applied on time series data of gene
expression produced by any experimental technique.

Benchmarking. BINGO has been benchmarked using data from
the DREAM4 in silico network challenge, simulated data from the
circadian clock of the plant Arabidopsis thaliana with different
sampling rates and process noise levels, and the IRMA in vivo
dataset. The DREAM4 and IRMA data represent systems’ adap-
tation to external perturbations, whereas the circadian clock is a
naturally dynamic, oscillating system. In all benchmark experi-
ments, BINGO is compared with four recent methods, dyn-
GENIE33, iCheMA15, ARNI4, and GRNTE9 (see Supplementary
Note 9 on the implementation of ARNI and dynGENIE3). They
are designed for inference from time series data. In addition,
DREAM4 and IRMA datasets have been used in other bench-
marking studies, and some results found in the literature and the
best performers in the DREAM4 challenge have been included in
the comparison. Standard classifier scores are used for the com-
parison, namely the area under the receiver operating char-
acteristic curve (AUROC) and the area under the precision-recall
curve (AUPR). The AUROC score gives equal weight to all pre-
dictions, whereas the AUPR is more sensitive to the correctness of
high confidence predictions. GRNs are typically sparse, causing a
class imbalance between true and false links. The low confidence
predictions therefore contain a high number of false positives,
rendering the predictions with low confidence less important. The
AUPR should therefore be considered as the primary perfor-
mance metric. Self-regulation is always excluded in the compu-
tation of the AUROC and AUPR scores as in the DREAM4
challenge. Aggregated results of the benchmark cases are illu-
strated in Fig. 2.

DREAM4 in silico network challenge: The challenge consists of
ten network inference tasks—five tasks with network size 10 and
five with size 1002,23,24,39. The simulated data consist of five time
series for each 10-gene network and ten time series for each 100-
gene network. These time series simulate microarray experiments
where static perturbations have been applied on some genes for
the first half of the recording time. The time series illustrate the
system’s adaptation to the perturbation, and its relaxation when
the perturbation is removed. Each time series consists of 21 time
points. In addition, steady-state values are provided as well as

gene knockout and knockdown data corresponding to each gene.
The 10-gene challenge provides multifactorial data, correspond-
ing to steady-state values under mild perturbations on the basal
transcription rate. This corresponds to data collected from
different cells, for example.

BINGO is first compared with the aforementioned methods
using the time series data, and then with the challenge best
performers using all available data. The use of steady-state data
from knockout/-down experiments by BINGO is discussed in
Supplementary Note 5. The best performer in a recent comparison
of network inference methods from time series data1 (in terms of
average AUPR value) was a method called “Causal Structure
Identification”14,20, which is also based on Gaussian process
regression. Its discrete-time version is included in the comparison,
since its performance was better. The 10-gene challenge winner was
“Petri Nets with Fuzzy Logic”22. The 100-gene challenge winner40

used only the knockout data. A similar method, the “median-
corrected Z-score” (MCZ)41, achieved the second highest score in
the 100-gene challenge. Any method inferring networks from time
series data can be combined with a method inferring GRNs from
steady-state data41, such as the MCZ. Unfortunately, the MCZ
requires knockouts or knockdowns of all genes, which can hardly be
expected in a real experiment. Nevertheless, the combinations
dynGENIE3*MCZ and BINGO*MCZ are included in the full data
comparison. The scores for the combined methods are the products
of the individual scores, favouring links that score high in both
methods. It should be noted that BINGO (as well as the PNFL) can
utilise also partial knockout data together with time series data. The
results on DREAM4 data are summarised in Supplementary
Table 4.

BINGO consistently outperforms other methods by a large
margin (with the exception of network 3) in GRN inference from
time series data in the 10-gene case. When using all data from the
challenge, BINGO scores slightly higher (average AUPR) than the
DREAM4 10-gene challenge winner PNFL. The average scores
are very close to each other but in the different networks there are
some rather significant differences. BINGO reaches a fairly high
AUPR in network 2, which seemed to be very difficult for all
challenge participants. The best AUPR for network 2 among the
challenge participants was 0.660, and the PNFL’s 0.547 was
second highest39. The poor performance of most methods with
network 2 is attributed to low effector gene levels in the wild type
measurement22. In contrast, BINGO’s performance is less
satisfactory with network 3, where the PNFL achieves almost
perfect reconstruction. This might be due to a fairly high in-
degree (four) of two nodes in the true network. Only one out of
eight of these links gets higher confidence value than 0.5 assigned
by BINGO. Based on Supplementary Table 4 and (ref. 1, Table 1),
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the impact of knockout data is largest in network 3. PNFL
perhaps makes better use of these data. Also the BINGO*MCZ
combination scores fairly well with network 3, but in network 2 it
loses clearly to BINGO applied to all data directly.

As in the 10-gene case, BINGO outperforms its competitors by
a clear margin in all five networks when inferring the 100-gene
networks from time series data alone, and in fact, it scores slightly
higher than the DREAM4 challenge winner. iCheMA is excluded
due to its poor scalability to high dimension. When using all data,
the combination BINGO*MCZ is the best performer, tied with
the combination dynGENIE3*MCZ. It seems that with the 100-
gene network, BINGO cannot always combine different types of
data in an optimal way. This may be due to the large number of
steady-state points where the dynamics function f should vanish.
This hypothesis is supported by the deterioration of results when
also the knockdown data is included with the knockout and time
series data. It should be noted that both the DREAM4 winner as
well as the MCZ use only the knockout and knockdown data, but
they require knockout of every gene, which is hardly realistic in a
real experiment.

Circadian clock of Arabidopsis thaliana: Realistic data were
simulated from the so-called Millar 10 model of the Arabidopsis
thaliana circadian clock25, using the Gillespie method42 to
account for the intrinsic molecular noise. This model has been
widely used to study the plant circadian clock and as a benchmark
to assess the accuracy of different network inference strategies15.
It simulates gene expression and protein concentration time series
with rhythms of about 24 h. The gene regulatory structure
consists in a three-loop feedback system of seven genes and their
corresponding proteins whose chemical interactions are described
using Michaelis–Menten dynamics. The model has been simu-
lated for 600 h in 24-h light/dark cycles to remove transients.
Then, the photoperiodic regime was switched to constant light.
Ten replicates were simulated and the first 48 h of the constant
light phase was recorded and downsampled to correspond to
sampling intervals of 1, 2, or 4 h. The time series therefore consist
of 49, 25, or 13 time points depending on the sampling interval.
Two datasets were simulated with different levels of process noise,
which is due to the random nature of gene expression. Process
noise propagates through the network and therefore it should be
beneficial to network inference algorithms.

Figure 2b–c shows the mean AUROC/AUPR values for the
methods computed from the ten replicates (see also Supplemen-
tary Table 5). BINGO and dynGENIE3 are hardly affected by the
decreasing sampling frequency. With less process noise, the

AUROC values for these two methods are very close to each other
in all cases, but BINGO has somewhat better precision
throughout the tested sampling frequencies. With higher process
noise, the results of BINGO improve clearly with all sampling
rates. For dynGENIE3, iCheMA, and ARNI the performance
improves slightly with higher process noise, at least with 1 and
2-h sampling rates. Most methods seem to be able to take
advantage of the additional excitation due to process noise. The
iCheMA and ARNI results with 4-h sampling rates and 2-h
sampling rates with low process noise are not much better than
random guessing.

In vivo dataset IRMA: A synthetic network26 was constructed
with the purpose of creating an in vivo dataset with known
ground truth network for benchmarking network inference and
modelling approaches. The network is rather small, consisting of
only five genes and eight links in the ground truth network (see
Supplementary Fig. 1). Nevertheless, this dataset can be used to
verify the performance of BINGO using real data.

The IRMA network can be “switched on” and “off” by keeping
the cells in galactose or glucose, respectively. The dataset consists
of nine transient time series obtained by qPCR technique, where
the network is either switched on (five time series) or off (four
time series) at the beginning of the experiment. These have been
averaged into one switch-on time series (with 16 time points with
20-min sampling interval) and one switch-off time series (with
20 time points with 10-min sampling interval). Typically only the
two average time series have been used, but here BINGO is
applied both on the two average time series, and on all nine time
series.

The resulting AUROC/AUPR scores are presented in Fig. 2d
(and Supplementary Table 6). The dataset has been used also in
other recent articles presenting methods ELM-GRNNminer5, and
TimeDelay-ARACNE43. They only report one network structure
as opposed to a list of links with confidence scores. Therefore it is
not possible to calculate AUROC/AUPR scores for these
methods, but their predictions can be presented as points with
the ROC and precision-recall curves obtained for BINGO and
dynGENIE3, shown in Fig. 3a, b. With such a small network, the
AUROC and AUPR values are very sensitive to small differences
in predictions. The best predicted network by BINGO using the
averaged data has five out of eight links correct, and one false
positive. The best predictions from dynGENIE3 with the same
data have either four correct links with one false positive or five
correct links with three false positives. However, it is not evident
if these best predictions can be concluded from the results. With
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BINGO it is possible to look at the histogram of the posterior
probabilities of all possible links, shown in Fig. 3c, d. In the
averaged data case, the best prediction with five true links with
one false positive stands out relatively well. Using the full data,
there are three false positives that get confidence of over 0.9.

Drug target identification. To demonstrate BINGO’s use in drug
target identification, we apply it to a microarray dataset of the
circadian clock of Arabidopsis thaliana44. The data consist of two
experiments (each with two replicates): wild type (untreated) and
nicotinamide (NAM) treated plants. The study is divided in two
parts: a study of 17 known core circadian genes, and a larger
study of 994 genes that were periodic in both datasets44. For each
study, BINGO used all available data at once. To identify direct
NAM targets, an external input was added with constant value
zero for untreated plants and one for treated plants. Links from
NAM to potential targets are modelled exactly as other links in
the network. Figure 4a, b shows posterior probabilities for all
links between the 17 clock genes. A threshold of 0.85 results in 11
links. A total of eight of those links are included in F14, a well
known circadian clock model45 (note that F14 only has 10 of the
17 clock genes considered here). With a threshold of 0.5 (sug-
gested by the gap in the histogram in Fig. 4b), 11 of the 18
modelled links are also in F14. Figure 4c shows posterior prob-
abilities for NAM targets where seven links have clearly positive
posterior probabilities. Of those, PRR9 and CRY2 were previously
identified as NAM-targets44.

To illustrate that BINGO can model large scale networks, we
applied it to 994 periodic genes in both untreated and NAM
plants. The posterior link probabilities are shown in Fig. 4d, and
the resulting network is shown in Fig. 4f. This network is likely to
reveal new gene interactions, requiring further experimental
validations. Figure 4e shows the posterior probabilities histogram
for NAM targets. Of those, CAP1 is a strong candidate that will be
experimentally validated in future work.

Discussion
A nonparametric method BINGO was proposed for GRN infer-
ence, which is based on the continuous-time GPDM. The
Gaussian process framework has proven very useful in nonlinear
regression problems arising in machine learning. Due to the
analytical tractability of Gaussian processes, it is possible to
obtain a probability distribution for the trajectories of the GPDM.
This allows MCMC sampling of the continuous trajectories,
thereby bypassing a caveat of estimating derivatives from time
series with low sampling frequency—a far too common procedure
in existing GRN inference methods.

BINGO was favourably compared to state-of-the-art methods
in GRN inference from time series data in various examples. In
particular, it was demonstrated that the approach, based on
sampling continuous gene expression trajectories, is good for
handling time series data with low sampling frequency. Moreover,
it was shown that the method can integrate steady-state data with
time series data to improve performance. BINGO was also suc-
cessfully applied on real biological data.

BINGO is computationally heavier than dynGENIE3, for
example, which is among the best methods in terms of scalability
to large dimensions. However, given the time, effort, and cost of a
gene expression experiment, the computation time is hardly as
important as the accuracy of predictions, as long as the method is
scalable to high enough system dimension. MCMC approach is
perfectly parallelisable: independent chains are run on different
processors, and the collected samples are pooled together in the
end. Parallelisation allows inference of networks of even a couple
of thousands of variables. In the NAM target identification,
BINGO was applied on a dataset with four time series of 994
genes, in which case the computation time was just under 19 h on
a desktop workstation using 20 processors, which could be
reduced by resorting to high performance computing.

Recently developed so-called single-cell techniques enable gene
expression measurements in one cell resolution for a large number
of cells at a time. The cell is destroyed in the measurement process,
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and therefore the data consist of ensemble snapshots rather than
time series. It is possible to obtain so-called pseudotime series
from such data46,47, and BINGO can be used on such time series
—although a small modification in fitting the trajectory samples to
the measurements is required, due to the large amount of mea-
surements typically obtained from single-cell measurements. The
method can also be integrated with a pseudotime estimator, but
this is left for future development.

Other interesting future research topics include applying
BINGO to solve different biological and biomedical real-data
problems. Some theory on GPDMs is presented in Supplementary
Notes 1–3. From a theoretical perspective, it would be desirable to
relax smoothness requirements and to consider process noise
with memory and/or dependence on the system’s state, which is
also more realistic from the application point of view42.

Methods
Theory on continuous-time GPDMs. The existence and uniqueness of the solu-
tions of the stochastic differential Eq. (2) are proven in Supplementary Note 1. The
method’s practical implementation is based on discretising Eq. (2) on a partition
π = {0= τ0 < τ1 < … < τM= T} of the interval of interest [0, T] using the (con-
tinuous) Euler scheme

bXt ¼ bXτk�1
þ ðt � τk�1Þfðuτk�1

; bXτk�1
Þ þ wt � wτk�1

; ð8Þ
for t ∈ [τk−1, τk] where k= 1, …, M. In Supplementary Note 2, it is shown that bX
converges to the solution of Eq. (2), as the time discretisation is refined.

Probability distribution of the trajectory. The probability distribution p(X∣θ) is
derived in this section for the discrete trajectory X ¼ ½Xτ0

; ¼ ;XτM
�, where θ

denotes collectively all the hyperparameters. The discrete trajectory is sampled
from the continuous version bXt given in Eq. (8), such that Xτk

¼ bXτk
. That is, it

satisfies

Xτk
¼ Xτk�1

þ δτkfðuτk�1
;Xτk�1

Þ þ wτk
� wτk�1

; ð9Þ
where δτk ≔ τk − τk−1, and k= 1, …, M. It holds that

pðXjθÞ ¼
Z

pðXjf ; θÞpðfjθÞdf: ð10Þ

For given f, the trajectory X is a Markov process, and therefore its distribution
satisfies

pðXjf ; θÞ ¼ pðXτ0
jθÞ
YM
k¼1

pðXτk
jXτk�1

; f; θÞ; ð11Þ

where

pðXτk
jXτk�1

; f ; θÞ ¼ 1

ð2πδτkÞn=2jQj1=2

� exp � 1
2δτk

Xτk
� Xτk�1

� δτkfðXτk�1
Þ

��� ���2
Q�1

� �
:

ð12Þ

The integral in Eq. (10) can be computed analytically (more details can be
found in Supplementary Note 3). After some more manipulation, the probability
distribution for the discretised trajectory is obtained:

pðXjθÞ ¼ pðXτ0
jθÞ

ð2πÞMn=2

Yn
i¼1

1

jΔτKiðXÞΔτ þ qiΔτj1=2

� exp � 1
2
ðXi � XiÞ> ΔτKiðXÞΔτ þ qiΔτ

� 	�1ðXi � XiÞ
� �

;

ð13Þ

where Δτ is a diagonal matrix whose element (k, k) is δτk, X :¼ ½Xτ1
; ¼ ;XτM

�> ,
and X :¼ ½Xτ0

; ¼ ;XτM�1
�> . Same notation is also used for the different

dimensions of the trajectory.
Note that p(X∣θ) corresponds to the finite-dimensional distribution of the

continuous Euler-discretised trajectory bX satisfying Eq. (8), evaluated at
discretisation points. In Supplementary Note 2, it is shown that bX converges
strongly to the solution x of Eq. (2), and therefore the finite dimensional
distributions converge as well. This means that p(X∣θ) is a proper finite
dimensional approximation of the distribution of x.

Network inference method. Consider then the original problem, that is, estimating
the hyperparameters from given time series data. Denote Y= [y0, y1, …, ym]
where yj is assumed to be a noisy sample from the continuous trajectory x, that is,
yj= x(tj) + vj, and vj � Nð0;RÞ where R= diag(r1, …, rn). The intention is to

draw samples from the parameter posterior distribution using an MCMC scheme.
Therefore, the posterior distribution is needed only up to constant multiplication.
Denoting the hyperparameters collectively by θ, the hyperparameter posterior dis-
tribution satisfies p(θ∣Y) ∝ p(Y, θ) = ∫ p(Y, x, θ)dx= ∫ p(Y∣x, θ)p(x∣θ)p(θ)dx. Here
p(Y∣x, θ) is the Gaussian measurement error distribution, p(x∣θ) will be approxi-
mated by p(X∣θ) given in Eq. (13) for the discretised trajectory X, and p(θ) is a prior
for the hyperparameters. This prior consists of independent priors for each para-
meter. The integration with respect to the trajectory x is done by MCMC sampling.
The function fi has mean mi(x)= bi − aixi where ai and bi are regarded as
hyperparameters corresponding to basal transcription (bi ≥ 0) and mRNA degra-
dation (ai ≥ 0), and the squared exponential covariance

kiðx; zÞ ¼ γi exp �
Xn
j¼1

βi;jðxj � zjÞ2
 !

: ð14Þ

The covariance hyperparameters satisfy γi > 0 and βi,j ≥ 0. The network inference is
based on estimating the parameters βi,j. If βi,j > 0, the function fi can depend on xj. In
the context of GRN inference, it indicates that gene j is a regulator of gene i.

For the MCMC sampling of the hyperparameters βi,j, indicator variables are
used48. That is, each of them is represented as a product βi,j= Si,jHi,j, where Si,j ∈ {0, 1}
and Hi,j≥ 0. The state of the sampler consists of the indicator variable S, the
hyperparameters Hi,j, γi, ri, qi, ai, bi (i, j= 1, …, n) and the discrete trajectory X. The
trajectory is sampled using a Crank–Nicolson sampler49,50 (see Supplementary
Note 7). One row of the indicator matrix S is sampled by randomly choosing one
element, and changing it from zero to one, or from one to zero. The other variables are
sampled using a Metropolis–Hastings within Gibbs sampler with random walk
proposals. A pseudo-input scheme51,52 is used to speed up the Gaussian process
framework (see Supplementary Note 6).

The full algorithm is presented in Supplementary Note 4 (and Supplementary
Table 1). In the drawn samples, the network structure information is in the
indicator variable samples S(l), where l refers to the number of the sample. The
output of the algorithm is the average of these samples, which converges as more
and more samples are collected:

1
N sample

XNsample

l¼1

SðlÞ ! EðSjYÞ: ð15Þ

Since S is zero-one valued, the element (i, j) of the matrix EðSjYÞ is the posterior
probability that βi,j is not zero, given the data Y.

For qi, ri, and γi we use noninformative inverse Gamma priors. For Hi,j, ai, and
bi we use Laplace priors (exponential), and for S we use pðSÞ / ηjSj0 where ∣S∣0
gives the number of ones in S. This prior means that the existence of a link is a
priori independent of the existence of other links, and each link exists with
probability p ¼ η

ηþ1. The parameter η ≥ 0 can be set to obtain a desired sparsity level

for the samples. It is the only user-defined parameter in the method—save for
discretisation steps and sampler step lengths. Prior distribution specifications are
discussed in more detail in Supplementary Note 8. Other simulation details and
computation times for the benchmark cases are presented in Supplementary
Tables 2 and 3.

Several time series experiments, including knockout/knockdown experiments, can
be easily incorporated by concatenating the time series. Steady state measurements are
included by adding them into the dataset as points where f(xss)= 0. These procedures
are described in Supplementary Note 5. It should be noted, however, that the con-
catenated time series should have similar properties. If this is not the case, for example
if the different time series are obtained by different experimental techniques, or the
pre-processing is different, then it is advised to use the method separately for each
dataset. External inputs, such as the perturbations (with unknown targets) in the
DREAM4 data can be included as additional state variables, which are not sampled.
This feature is included in the method’s numerical implementation. If certain genes
are interesting as potential regulators, but not as target genes, they can be included as
inputs to reduce the computational burden of the method.

Data processing. The method can handle data from any experimental technique
producing bulk time series data. It is assumed in the method that the time series
data have been pre-processed appropriately, depending on the used experimental
technique53–55. In particular, measurements between time points should be com-
parable, meaning that normalisation with respect to housekeeping genes should be
carried out. By default, the BINGO code normalises the data by scaling the
dynamical range of each gene (maxj ½yj�i �minj ½yj�i) to one. In order to avoid
noise amplification, it is important to exclude all genes from the data that are not
properly expressed. Also genes that seem to be mostly noise, should be removed.

Pre-processing steps often include background removal and nonlinear
transformations (e.g., taking logarithms). Moreover, microarray data are based on
luminescence measurements which has a nonlinear dependency on the mRNA
concentration. Constant shifts of the data have very little effect on BINGO, since
the probability distribution in Eq. (13) only depends on differences of gene
expression values between different time points. The only small effect of shifting
data comes from the GP mean mi(x)= bi − aixi where a constant shift has an effect
on the priors for ai and bi. Nonlinear transformation has a more intricate effect. Say
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zi= g(xi) with some smooth, invertible function g. If dxi= fi(x)dt+ dwi, then

dzi ¼ g 0ðg�1ðziÞÞf i g�1ðz1Þ; ¼ ; g�1ðznÞ
� 	

dt þ g 0ðg�1ðziÞÞdwi: ð16Þ
The GRN topology is not affected by the nonlinear transformation, but the
functional form, and the process noise characteristics are affected. The GP
framework is flexible, and it should be able to fit to both fi(x) and
g 0ðg�1ðziÞÞf iðg�1ðzÞÞ.

As a general rule, BINGO should work best when the data correspond as closely
as possible to the actual expression levels (that is, mRNA concentrations).
However, if the data are very spiky, that is, concentrations peak very high on few
measurement times, then a log-transformation might be beneficial, since BINGO
assumes smooth dynamics functions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The four different datasets used in the article are available as follows:
• DREAM4 in silico network inference challenge data2,23,24,39 are available at

https://www.synapse.org/#!Synapse:syn3049712/wiki/74630.
• Simulated data from Arabidopsis thaliana circadian clock are available as example

data along with the method’s code.
• In vivo dataset IRMA26 are available as supplemental data for the article, https://doi.

org/10.1016/j.cell.2009.01.055.
• Data from Arabidopsis thaliana circadian clock44 are available at: http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE19271.

Code availability
The method’s MATLAB implementation is available at https://github.com/AtteAalto/
BINGO.
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