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Abstract

In this paper, a dataset, named 3DBodyTex, of static
3D body scans with high-quality texture information is pre-
sented along with a fully automatic method for body model
fitting to a 3D scan. 3D shape modelling is a fundamental
area of computer vision that has a wide range of applica-
tions in the industry. It is becoming even more important
as 3D sensing technologies are entering consumer devices
such as smartphones. As the main output of these sensors
is the 3D shape, many methods rely on this information
alone. The 3D shape information is, however, very high
dimensional and leads to models that must handle many de-
grees of freedom from limited information. Coupling tex-
ture and 3D shape alleviates this burden, as the texture
of 3D objects is complementary to their shape. Unfortu-
nately, high-quality texture content is lacking from com-
monly available datasets, and in particular in datasets of
3D body scans. The proposed 3DBodyTex dataset aims to
fill this gap with hundreds of high-quality 3D body scans
with high-resolution texture. Moreover, a novel fully auto-
matic pipeline to fit a body model to a 3D scan is proposed.
It includes a robust 3D landmark estimator that takes ad-
vantage of the high-resolution texture of 3DBodyTex. The
pipeline is applied to the scans, and the results are reported
and discussed, showcasing the diversity of the features in
the dataset.

1. Introduction

Modelling the 3D body shape has applications in fash-
ion, ergonomics, online retail, entertainment and other in-
dustries. As 3D scanners have become mainstream, sev-
eral datasets of 3D body scans have been collected and pro-
posed for research or commercial purposes [7, 42, 20, 27,
9, 40, 11, 30]. The content of the datasets varies depend-
ing on the aim and the method of acquisition. Examples

Figure 1. Sample scans of the 3DBodyTex dataset.

of varying characteristics include the number of subjects
and poses, the resolution of the data, and the accompany-
ing attributes such as landmark annotations and anthropo-
metric measurements. Although all these datasets contain
the 3D shape information, in the form of triangle meshes
or point clouds, none provide clean high-resolution tex-
ture information. However, the texture information and the
3D human shape are intimately related and complemen-
tary. The two pieces of information combined provide more
dimensions to model and process, e.g. [9, 26, 16]. This
richer information is desired in several scenarios. First,
real world applications dealing with the 3D human body
shape [6, 22, 7, 18, 25, 35, 33] use cheap and low-end scan-
ning systems that provide noisy and low-quality data, usu-
ally from a single view. Applications of this type require
accurate 3D models to interpret and denoise the data ac-
cordingly. To develop such accurate models, higher qual-
ity datasets containing both 3D geometric and texture in-
formation are required. Moreover, fundamental problems
in computer vision involve modelling the human body in
2D, ranging from body pose and shape estimation from im-
ages [37, 22, 17, 8] to action recognition [29]. In this case,
large amounts of high-quality 2D data with ground truth an-
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notations, such as body landmarks, are crucial. Higher qual-
ity 3D body scan datasets with texture information allow to
generate 2D content at will, with natural-looking results and
in a controlled environment. Furthermore, compared to 2D,
the computational complexity of analysing 3D data is high,
as observed, for example, in recent geometric deep learning
techniques [12, 4]. A way to alleviate the burden of pro-
cessing 3D data directly is to substitute the analysis with
2D methods which are always a step ahead or to consider
the fusion of 2D and 3D data to improve the overall perfor-
mance [2, 15]. For example, coupling 3D shape and texture
information allows to generate realistic 2D content that can
be analysed through the lens of fast and proven 2D mod-
els [37]. To investigate the possibilities of this approach, a
higher-quality dataset of 3D body scans with texture infor-
mation is crucial.

This paper presents 3DBodyTex, a dataset of high-
quality static 3D body scans with high-resolution texture
information. 3DBodyTex complements existing datasets of
static 3D body scans and adds another dimension to the data
by incorporating high-quality texture information. The ad-
vantage of the texture, and its complementary role to the 3D
geometric data, is demonstrated by proposing a fully auto-
matic pipeline for fitting a body shape model to a 3D scan.
The pipeline includes a novel robust 3D landmark detec-
tor and pose estimator exploiting the texture information.
The pipeline works automatically even in challenging poses
with only a single 3D scan, as opposed to methods working
on scan sequences [43, 41]. Thus, the main contributions of
this paper are to:

• provide a high-quality dataset of 3D body scans in
close-fitting clothing with high-resolution texture in-
formation and high-resolution watertight meshes,

• show an example on how the texture information, ab-
sent from all other related datasets, enables novel anal-
ysis and modelling with 2D and 3D body shape data,

• present a novel robust and fully automatic pipeline
for body model fitting to a 3D scan in challenging
poses using the high-quality texture information of
3DBodyTex.

The remainder of this paper is organised as follows. The
related datasets are presented and discussed in Section 2.
In Section 3, the proposed 3DBodyTex dataset is described
and its features highlighted. Section 4 presents a novel au-
tomatic pipeline for fitting a 3D body model. It illustrates
how the unique texture feature of 3DBodyTex can be ex-
ploited in a 3D body modelling task to achieve full automa-
tion, even with challenging poses, as opposed to existent
approaches. The experimental results of the fitting method
are presented in Section 5, showcasing the diverse features
of 3DBodyTex. Finally, promising usage of 3DBodyTex to

further advance the field of computer vision is discussed in
Section 6.

2. Related datasets
There are multiple datasets of static 3D body scans avail-

able to the research community. Some are freely available
for research [7, 42, 20, 27, 9, 40, 11], others are commer-
cial such as [30]. They are reviewed and discussed below
with their advantages and disadvantages. Their purpose and
common usage scenarios are highlighted. Table 1 compares
the available datasets. The first column of Table 1 is the
proposed 3DBodyTex dataset to be released freely to the
research community. There also exist some related body
scan datasets of scan sequences [28, 10] discussed briefly at
the end of the section.

CAESAR [30] is a dataset of 3D laser scans of people
of the “European and North American population”. It is a
commercial dataset primarily intended for the industry al-
though also used in research. There are scans of about 2400
North American males and females and 2000 European sub-
jects in three poses. The dataset comes with comprehensive
body measurements taken manually. Those help improve
the design of products adapted to today’s bodies. Further
assets include anthropometric landmarks detected automat-
ically and demographic information on the participants. In
the literature, CAESAR has been widely used for statistical
body shape modelling [7, 25, 42]. The raw data comes in
the form of meshes with texture information. The meshes
have a fine resolution but contain holes. The texture is of
low resolution, tainted by body markers, dark and unevenly
illuminated.

SCAPE [7] provides a dataset of registered meshes of a
single male person in 70 poses. The dataset is popular to
learn the pose deformations of body shape models when the
pose deformations are decoupled from the shape deforma-
tions, as in the seminal SCAPE [7] body model. It is also
popular for evaluating 3D mesh registration and correspon-
dence methods. As the mesh topology is irregular, with thin
and elongated triangles, it is prone to numerical instabilities.
Moreover, the registrations have artefacts such as flipped tri-
angles and surface sliding in smooth areas. The accuracy of
the vertex correspondence between poses is thus uncertain.
The body shape is provided without texture.

SPRING [42] provides a dataset of about 3000 meshes of
males and females in a single standard “A” pose registered
on the CAESAR [30] laser scans. The meshes in dense cor-
respondence are suitable to learn the space of human shape
variation [5]. The mesh topology of SPRING is the same
as for SCAPE [7], enabling both datasets to be used in con-
junction to learn an articulated body shape model with de-
coupled pose and shape deformations [7, 22]. The authors
of SPRING propose to learn semantic parameters of the hu-
man shape space. As in SCAPE, SPRING contains regis-
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High-quality texture 3 7 7 7 7 7 7 7 7
Landmarks 3 7 7 7 7 7 3 7 3
Regular topology 3 7 7 3 3 7 3 3 3
With raw scans 3 7 7 3 3 7 3 n/a 3
# poses ≤35 70 1 ≤ 35 1 30 5 ≤ 20 3
# subjects 200 1 ≈3000 114 ≈4300 10 50 3 4400
Watertight raw scans 3 n/a n/a 7 n/a 7 7 n/a 7

# scans 400 n/a n/a 520 n/a 300 250 n/a ≈12000
# vertices ≈300k n/a n/a 180–450k n/a ≈180k ≈150k n/a ≈150k
# triangles ≈600k n/a n/a n/a n/a ≈300k ≈300k ≈90k ≈300k

With registered tem-
plate

3 3 3 3 3 3(*) 7 3 7

# registrations 400 70 ≈3000 520 4300 100 n/a 39 n/a
# vertices 6890 12500 12500 6449 6449 6890 n/a ≈45k n/a
# triangles 13776 25000 25000 12894 12894 13776 n/a ≈90k n/a

Real people 3 3 3 3 3 3 3 7 3
Freely available 3 3 3 3 3 3 3 3 7

Table 1. Comparison of static 3D body scan datasets.
(*) Only for a subset of the scans.

tration artefacts and the texture information is lacking.
MPI [20] provides a dataset of 520 scans along with the

registration of a common template. There are 114 differ-
ent persons, each in a subset of 35 poses. The dataset is
commonly used to learn statistical body shape models with
correlated pose and shape deformations. The raw scans are
high-resolution point clouds with between 180k and 450k
points. Large holes are present on horizontal areas of the
bodies because of the single angle of view of the range scan-
ner. This happens, for example, on the back and the chest
when the upper body is bent at 90 degrees. Protruding hair
is only approximately cropped on the registered meshes.
As a side effect, part of the head is cropped unrealistically.
Landmarks and texture information are not provided.

MPII Human Shape [27], similarly to SPRING [42],
provides a few thousand meshes registered on the CAE-
SAR [30] dataset. The dataset is the result of evaluating dif-
ferent approaches to build statistical body shape models. It
comes in three variants with different posture normalisation
strategies [27]. The mesh topology is the same as MPI [20]
and can be used to complement the latter for learning the
shape space. Again, the texture information is lacking.

FAUST [9] is a dataset of 300 scans of 10 people in 30
different poses. The dataset is meant as a benchmark for
3D mesh registration. The raw scans are of high resolution
with about 180k vertices and over 300k triangles. Large
holes are present in occluded regions and in the extremities
of the body. As part of the training data, 100 scans, out of
the 300, are provided with a reference registration of a com-

mon template mesh. The registration is quantified and more
accurate than most other datasets because it was produced
from dense texture patterns painted on the bodies. Unfor-
tunately, these patterns taint the appearance of the bodies
unrealistically, making the texture information only usable
as an accurate spatial reference for tasks such as mesh regis-
tration. In any case, the texture information is not provided.
As such, the dataset is challenging as a mesh registration
benchmark but it is not optimal for applications such as 3D
shape modelling and analysis or the generation of 2D data
from 3D models. Nonetheless, FAUST does show that tex-
ture information is important to model the shape more ac-
curately.

The Kinect-based 3D human body (K3D-hub)
dataset [40] is made of 250 low-quality human body
scans acquired with the Microsoft Kinect sensor. It
contains 50 different subjects in 5 different poses. Due to
the limitations of the acquisition hardware, the scans are
noisy, the body shape features are smoothed out and the
meshes contain holes. This dataset was proposed with the
aim to advance the development of methods processing
low-quality 3D body shape data. Some body landmark
annotations are provided but the texture information is not
part of the dataset.

TOSCA [11] contains 3D non-rigid shapes in a variety of
poses. It is widely used in experiments of non-rigid shape
retrieval, similarity and correspondence [23, 31]. One fe-
male and two male characters are available in 7, 12 and 20
poses, respectively. The meshes are clean but not closed.



They were generated synthetically. The shape deforma-
tions between poses are thus not representative of the hu-
man body shape. Some complex details are represented
such as the cavity of the mouth, ears and nostrils, which are
not needed in applications of shape modelling dealing with
the outer appearance. The synthetic shapes do not come
with any mapped texture information.

Some datasets provide 4D body scans (Dyna [28],
D-FAUST [10]), i.e. sequences of scans recorded over time
at high frame rates. For these datasets the focus is not
on the quantity of subjects nor the natural body texture,
but rather the body pose variation and the soft-tissue mo-
tion over time [28]. As a result, the number of subjects
is limited, even though the number of poses can be quite
high. Texture is not provided in these datasets but, as for
FAUST [9], D-FAUST [10] shows that texture information,
combined with the 3D shape, provides crucial complemen-
tary information for shape modelling.

All the datasets of static 3D scans mentioned above have
been exploited for 3D data analysis such as body shape
modelling, segmentation, shape similarity and shape cor-
respondence. The 3DBodyTex dataset, presented in Sec-
tion 3, proposes richer data with both high-resolution tex-
ture information and 3D shape. Such data offers new pos-
sibilities for 3D shape modeling using the complementary
texture information, either directly in 3D or in combination
with 2D methods.

3. Proposed 3DBodyTex dataset
The proposed 3DBodyTex dataset contains 3D scans

combining unique high-quality and high-resolution texture
information with detailed 3D body shape. Examples are
given in Figure 1. The characteristics of 3DBodyTex are
highlighted and discussed below, and compared in Table 1
to the state-of-the-art datasets discussed in Section 2.

3DBodyTex contains high-resolution textured static 3D
scans of people in close-fitting clothing. There are in total
400 scans of 200 different subjects captured in at least two
poses: a standard “U” pose and one other pose among a
fixed set of 35 poses described below. Some subjects are
represented in more than two poses. Two example poses
are presented in Figure 2.

The raw scans were captured with the Artec Shapify
Booth 3D full-body scanner [1]. The scans are high-
resolution meshes with high-quality texture information.
The texture is evenly illuminated and reflects the natural
appearance of the body. No landmarks or markers taint the
colour. The raw meshes are watertight. They contain 300k
vertices and 600k triangles with a regular topology. They
are provided unprocessed. Only the faces have been blurred
for anonymisation. The highly-detailed meshes can be fur-
ther adapted in resolution and topology to best fit target ap-
plications.

Figure 2. Example poses of the 3DBodyTex dataset for two differ-
ent subjects. First and third: The standard “U” pose common to all
subjects. Second and fourth: Examples of varied poses differing
between subjects.

As far as could be found, the proposed dataset is the first
to contain high-quality texture information. Texture of this
quality is indeed lacking in datasets freely available to the
research community, and is found only with limited quality
in the commercial CAESAR [30] dataset (see Section 2).
Texture information is crucial in many applications because
it captures an essential dimension of real body data. Com-
bined with the 3D geometric information, it allows to bet-
ter analyse and represent the body shape. It can also be
used to generate high quantities of varied synthetic content
with a realistic appearance. This is the approach used in
SURREAL [36], a dataset of 2D renderings of a lit and tex-
tured body model over real background scenes. However,
the texture used for minimal and close-fitting clothing was
generated from the limited quality CAESAR [30] dataset,
resulting in images of limited quality and realism. More-
over, the body shape was generated from a textured 3D body
shape model. This kind of model smooths out the fine de-
tails that are present in the raw scans of 3DBodyTex. Thus,
3DBodyTex can be used to create more realistic and higher
quality virtual scenes.

The provided mesh resolution is very high with 300k ver-
tices and 600k triangles. The mesh topology is watertight
and regular. This is in contrast to most datasets. All the
datasets providing only registered meshes [7, 42, 27] have
a resolution one order of magnitude lower. The FAUST [9]
and CAESAR [30] datasets attain high resolution with the
raw meshes but those contain holes. In FAUST, the local
resolution varies unpredictably from fine to coarse. The
MPI [20] dataset also provides similar resolution but on
point clouds only. Moreover, holes are present due to the
fixed angle of view of the acquisition system. The high res-
olution and the absence of holes of 3DBodyTex provides
fine details of the body shape globally without any missing
information. This is currently not available in related data
sources. This provides accurate and complete information
for applications such as body shape modelling or 2D con-
tent generation.

Subjects were scanned in a standard “U” pose and in
a subset of 35 other varied poses. In contrast to existing



Figure 3. The body landmarks of the COCO dataset [24] and the
hand landmarks of [34]. Left half: The 2D landmarks estimated
by the 2D detector [37, 14, 34] in two different views. Right half:
The 3D landmarks estimated robustly from all the 2D viewpoints
by the proposed method (Section 4.1.2). The coloured spheres
inside the translucent bodies indicate the landmark positions in
3D. As expected, the body joints lie all inside the body volume.
The finger joints are finely estimated.

datasets, the standard pose is the “U” pose instead of the
“A” pose. The advantage is that the whole body surface is
exposed to the scanner. The shape of the underarms is not
approximated as in datasets using the “A” pose. The other
pose variations were assigned randomly to scanned partici-
pants. Those poses are varied as each subject performs them
differently. There are no touching body parts; therefore, no
hidden areas on the scans. This makes 3DBodyTex a rich
and reliable dataset of human poses and shapes, as required
by a large set of 3D modelling and analysis applications.

Furthermore, the number of poses of the datasets can be
augmented by using shape deformation techniques such as
deformation transfer [35, 33]. This is especially suited to
applications that can balance the trade-off between realistic
shape deformations and having a higher number of poses.
The high-quality texture of 3DBodyTex is crucial in hav-
ing the reshaped scans keep a natural-looking appearance.
This is harder to obtain with the related textureless datasets
discussed in Section 2.

As presented above, the poses are chosen to expose the
body surface to the scanner as much as possible. Long hair
is held back or covered with a cap to expose the head, the
neck, the shoulders and the back. The standard “U” pose
exposes the underarms. Most of the subjects are scanned
in close-fitting sports clothing (tight shorts and sports bras).
Some scans come in more challenging conditions with loose
hair or additional clothing such as socks or close-fitting T-
shirts.

Additionally, reference body landmarks are provided.
These include the main body joints, the ears, the eyes, the
nose (from the COCO dataset [24]) and some keypoints of
the hands [34], see Figure 3. The landmarks were detected
automatically by the method presented in Section 4.1 on the
raw dataset without blurred faces. They contain some in-
evitable estimation errors. The knuckles of the hands have
higher noise but all other landmarks are reliably and sys-

Body model Scan

Automatic
landmark
estimation

Alignment

Shape refinement Iterate

Figure 4. Proposed automatic body model fitting pipeline.

tematically detected. They allow, for example, the accu-
rate recovery of the 3D pose of the scans, as presented in
Section 4 for the shape fitting with the body model. They
can also be used as reference points for applications such as
body segmentation and shape correspondence.

Finally, the registration of a common mesh template to
all the scans is provided. This establishes a dense corre-
spondence between the scans. The template mesh has a
clean and regular quad-based topology with 6890 vertices
and 13776 triangles. It is symmetric in the sagittal plane of
the body, making it suitable, for example, for precise tex-
turing with garments and for the definition of topological
constraints.

4. Proposed automatic fitting to a 3D scan

The unique high-resolution texture information of
3DBodyTex allows the fitting of a body model to the scans,
even in challenging poses, in a fully automatic pipeline
(Figure 4). In contrast, existing methods [19, 38, 39, 28] as-
sume manual landmark annotation. The pipeline presented
in this section improves upon related works striving towards
automation. It does not make any assumption on the input
pose [21, 40, 28], e.g. the ”A” pose. It also does the full
shape fitting instead of fitting only the pose [32].

The pipeline relies on an existing method for 2D body
landmark estimation. In this work, OpenPose [37] is used
to exploit the realistic and textured body data provided by
3DBodyTex. This method combines several attractive at-
tributes: runtime efficiency; systematic placement of land-
marks learned from manual annotations; specific to the hu-
man body; detection of skeleton and facial/hands landmarks
jointly; robustness to left/right ambiguity from front and
back views. Similar 2D methods could be used but 3D
methods gathering those attributes are, as far as could be
found, not available [12, 4]. The usage of a fast and au-
tomatic landmark estimator allows to scale the proposed
method to large datasets.

The proposed pipeline consists of three main steps. First,
the 3D scan is projected from different viewpoints onto im-
ages. The 2D body shape stays realistic thanks to the high-



resolution texture information and the scans of real people.
Second, the 3D positions of key body landmarks are esti-
mated. The 2D landmarks are detected independently in
each 2D view [37, 14, 34], then aggregated robustly into 3D
positions. Finally, a parametric body shape model is fitted to
the scan using the estimated 3D landmark positions and the
scan surface. The method relies on a pretrained body model
that can generate the 3D shape of a human body as a trian-
gle mesh from some pose and shape parameters. SCAPE [7]
is used in this work but any equivalent model would work.
The proposed fitting scheme thus takes advantage of both
texture and 3D shape information from the scan. Estimat-
ing the landmarks in 2D from multiple viewpoints enables
the correct estimation of challenging poses containing both
occlusion and ample flexing of the body parts.

The rest of this section details the pipeline with, first,
the automatic estimation of the landmarks, and then, the
formulation and solving of the body model fitting.

4.1. Body landmarks

The body landmarks serve as guides for fitting the pose
of target scan. A correspondence is thus required between
the landmarks on the body model and the scan. The Nl

considered landmarks are the main body joints and some
key anatomical points on the face and the hands (Figure 3).

The landmarks are defined manually on the body model.
It is a preparation step done once and for all independently
of the scans to be fitted. On a target scan, the landmarks
are detected automatically. The definition of the landmarks
on the body model and the automatic detection process on
a scan are described below.

4.1.1 Landmarks on the body model

The 3D landmark positions of the body model, l ∈ RNl×3,
are obtained by regressing the positions of the Nv vertices
of the mesh, v ∈ RNv×3,

l = Lv. (1)

Each row of the regression matrix L ∈ RNl×Nv corre-
sponds to a landmark. Each landmark is defined by one
vertex or several vertices in a close neighbourhood, result-
ing in sparse rows in L. For example, a body joint is defined
by the strip of vertices surrounding it such that the regres-
sion matrix outputs its centre of mass. A point landmark,
such as the tip of the nose, is defined by a single vertex or
by the set of vertices in a patch centred on the key point.

4.1.2 Automatic landmark detection

Because of the fine texture information of the 3D scans in
3DBodyTex, accurate landmark positions can be detected
automatically even in challenging poses. First, the scan is

projected from several views on images with a white back-
ground using a perspective camera model. The camera pa-
rameters and the depth of the projected points are known.
The 2D landmarks are detected automatically in each view
using an off-the-shelf 2D landmark detector [37] used as is
without fine tuning. This is illustrated with two viewpoints
in Figure 3. Using the depth information, the 3D rays join-
ing the camera to the detected landmarks are identified in-
dependently in each view.

The 3D position of a landmark is estimated by robustly
aggregating candidate positions from the different views.
To define the candidate landmark locations, the intersection
points of the rays with the scan are computed. For surface
landmarks (ears, eyes, nose and base knuckles of the hands),
the intersections are all retained as possible candidates. For
body joints, the mean of each pair of subsequent intersec-
tions is computed and retained as a candidate position. The
final landmark locations are estimated in a robust way by
taking the median of the candidate locations. The estima-
tion of the 3D position is thus resilient to bad detections
in some of the views provided enough views are generated.
Figure 3 shows the result of the 3D landmark estimation.

The views are generated systematically. The number of
views and the viewpoints can be adapted to a specific ap-
plication or to the sensitivity of the 2D detector. Overall,
the combined texture information and the real appearance
of the data allow for an automatic and efficient detection of
the landmarks in difficult poses.

4.2. Formulation of the fitting problem

The fitting of the body model to a scan happens in two
steps (Figure 4). First, the model is aligned to the scan by
using the body landmarks as guides. Second, the shape of
the model is refined to fit the scan tightly, assuming scans in
minimal form-fitting clothing. To enforce a tight fitting con-
straint, a correspondence between the points of the model
and the scan is computed.

The problem is formulated as the minimisation of the
energy function E(y, r, s). The variables are the vertex po-
sitions y ∈ RNv×3, the pose r ∈ RNp×3 and the shape pa-
rameters s ∈ RNs . The pose is encoded with Np axis-angle
3D vectors, expressing the global orientation of the model
and the relative rotations of the Np − 1 body parts. Since
the body shape model is parametric, the vertex positions are
themselves function of the pose and the shape parameters,
y = y(r, s). The energy is split in several terms

E(y, r, s) = wlEl(y)+wvEv(y)+wsEs(y)+Em(y, r, s),
(2)

with relative scalar weights w∗. The landmark fitting is en-
sured byEl(y) = ‖Ly− l̂‖22, with l̂ the set of detected land-
marks and L the landmark position regressor of the body
model, as in equation (1). The tight shape fitting is en-
sured by Ev =

∑
(y,z)∈C ‖y− z‖22, which encourages pairs



(y, z) of corresponding vertices from the body model and
the scan to be close. The construction of the set C of cor-
respondences is described in Section 4.3. The body shape
is further constrained to stay within reasonable limits of the
learned shape space. This is achieved by penalising shape
parameters more than three standard deviations away from
the mean Es =

∑
i max(0, |si|/σi − 3)2. The last term

Em is the regularisation of the mesh with the learned body
model. A body model deforms a template body mesh into
a mesh with specific body shape and pose from the corre-
sponding parameters, r and s. The particular model consid-
ered in this work, SCAPE [7], achieves body shape and pose
deformation in two steps: deformation of individual trian-
gles followed by their reconnection to get a watertight mesh.
A triangle, with vertex indices (i, j, k) and vertex positions
(xi, xj , xk), is deformed by applying some linear transfor-
mations R,Q, S ∈ R3×3 to the edges (i, j) and (i, k), i.e.
∆x′ij = RQS∆xij . The transformations are learned a
priori on a database of body scans as part of the training
of the body model [7]. The articulation of the skeleton is
encoded by R(r) and the pose-dependent deformations by
Q(r). Both depend on the pose parameters r. The shape
deformations determining the identity of an individual are
encoded by S(s) and depend on the shape parameters s.
All triangles of a body part share a common R, while Q
and S are different for each triangle. After individual defor-
mation of all the triangles, the mesh gets disconnected. To
reconnect the mesh, new vertex positions y are sought that
form a watertight mesh and that respect as much as possible
the fixed individual triangle deformations R,Q and S. This
leads to the linear optimisation problem

y∗ = arg min
y

∑
(i,j)∈E

‖RQS∆xij −∆yij‖22, (3)

with E the set of triangle edges and x the vertices of the
template mesh. This transformation and reconnection pro-
cess forms the SCAPE [7] body model. So the energy term
of equation (2) representing the body model regularisation
is Em(y, r, s) =

∑
(i,j)∈E ‖R(r)Q(r)S(s)∆xij −∆yij‖22.

However, this term makes (2) nonlinear because all the vari-
ables, r, s and y, are optimised for.

4.3. Solving the fitting problem

The alignment and shape refinement phases (Figure 4)
are solved sequentially by non-linear least squares minimi-
sation.

During the alignment phase, the shape-focused energy
terms in (2) are disabled by setting wv = ws = 0. The rela-
tive weight of the landmark fitting term is set to wl = 1. On
top of the pose parameters, the shape parameters s are also
optimised for the model to adapt to the scan dimensions.

For the shape refinement phase, all energy terms in (2)
are active with wl = wv = ws = 1. Several iterations

Figure 5. Result of the fitting on a challenging pose. Left: Target
scan. Middle: Target scan and fitted model overlaid. Right: Fitted
model.

are performed to gradually update the shape parameters s.
When the model surface is close to the scan surface, the
parameters stall and the fitting is terminated. At each iter-
ation, a vertex correspondence is established between the
model and the scan to define the shape fitting term, Ev . The
form the correspondence, for each vertex of the model, the
closest neighbouring vertex on the scan is selected. The pair
of vertices is retained if they are within a threshold distance
d, and if their vertex normals are within an angular thresh-
old α. A good initial alignment of the model is assumed to
be provided by the alignment phase.

5. Experimental results
To highlight the different features of 3DBodyTex, the au-

tomatic body model fitting pipeline of Section 4 is applied
to the scans. The results are presented in light of the differ-
ent attributes of the dataset such as pose, gender and texture.

Figure 5 shows the result of fitting a scan far from the rest
“A” pose of the body model. As can be seen qualitatively,
the correct posture is recovered correctly even though the
method is fully automatic and necessitates no annotation of
the body scan.

Figure 6 shows a quantitative evaluation of the fitting
on the “U” pose and some further challenging poses of
3DBodyTex. The distance between a scan and the model
is reported per vertex by colour mapping the values from
0 cm to 1 cm. The distance from scan to model is defined
by the Euclidean distance between each vertex of the scan
and the nearest vertex of the body model. As can be ob-
served, the fitting is good on most parts of the body with
a fitting within a few millimetres of the scan. The body
poses are again well recovered, albeit the absence of any
human intervention. Long hair is either held back or con-
tained with a cap. When there is protruding hair, as in the
second and third rows in Figure 6, it is well discarded by
the body model. The hands are also discarded by the fitting
because the body model has clenched fists whereas most of
the scans have open hands. Other difficult regions to fit are
the chin, the underarms, the lower part of the chest and the
crotch. Those regions have sharp curvature where the body
model tends to smooth out the transitions.

Overall, the body model is closely fitted to the scans.



When computing the root mean square error on the whole
body of each fitted scan and aggregating across all scans,
the mean error is 4 mm and the standard deviation 13 mm.
The deviation is mostly explained by gaps between the body
model and non-skin areas, such as the hair, as well as be-
tween the clenched fists of the body model and the open
hands of the scans.

Despite the fully-automatic nature of the pipeline, chal-
lenging poses can be recovered correctly from a single static
scan as can be seen in Figure 5 and 6.

Figure 6. Fitting error for some sample scans of 3DBodyTex in the
“U” pose and some non-trivial poses. Left: Target scan. Middle
and right: Fitting error as measured from scan to model for the
front and back views, respectively. The colour scale varies from 0
cm to 1 cm. Values over 1 cm are coloured white. This is the case
for regions discarded by the fitting because not part of the body
shape, such as protruding hair or opened hands (since the body
model has clenched fists).

6. Conclusion
In this paper, the 3DBodyTex dataset of static 3D body

scans with high-quality texture and of high resolution was
presented. It was shown how 3DBodyTex complements
or supersedes other datasets. As far as could be found,
3DBodyTex is the only dataset of diverse body scans
with high-quality texture information and watertight high-
resolution meshes. 3DBodyTex will be released freely for
academic use. The texture is detailed, evenly illuminated
and free of tainting markers or other reference patterns. The
raw scans are watertight meshes with a regular and high-
resolution topology containing 300k vertices and 600k tri-
angles. Registrations of a common template mesh to all the
scans are provided. The template mesh has a clean, regu-
lar and symmetric structure, enabling, for example, precise
texturing and the definition of physical constraints on the
body.

The unique high-quality texture and the high resolution
of the scans of 3DBodyTex is of advantage in shape mod-
elling applications. 3DBodyTex is foreseen to be used in
2D, 2.5D and 3D settings. In 2D, it can be used to gen-
erate large quantities of natural-looking 2D content. This
can be used to develop and evaluate 2D methods or also to
bypass the burden of processing 3D data directly. In 3D, it
provides realistic data with unique modalities, namely, the
texture information and the high-resolution meshes in many
combinations of body shapes and poses. Possible applica-
tions include segmentation, shape modelling, shape match-
ing, and geometric deep learning, among others.

The richness of 3DBodyTex was illustrated through the
task of fitting a 3D body shape model to 3D body scans in
challenging poses in a fully automatic pipeline. The high-
quality and realistic texture information is taken advantage
of to recover difficult body poses. This is done by lever-
aging robust and efficient 2D methods for body landmark
estimation [37]. Additionally, the proposed method scales
to large datasets. Overall, 3DBodyTex brings new possibil-
ities to develop novel methods of 3D and 2D shape analysis
in computer vision and related fields.
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