
VISUALIZATIONS FOR THE PRINCIPLE OF MATHEMATICAL INDUCTION

ANTONELLA PERUCCA AND MILKO TODOROVIC

The Principle of Mathematical Induction (in short, PMI) is the mathematical formalization of
a “chain reaction”: one event sets off a chain of events. The first event is called base case, and
what guarantees the propagation of the reaction is called induction step. The PMI is usually
illustrated by a row of falling dominoes [4]:

There is a “classical” Principle of Mathematical Induction, and several variants: we investigate
these variants, and provide intuitive visualizations. The classical PMI can be considered to be
either an axiom or a theorem, being equivalent to the fact that every non-empty subset of the
natural numbers has a least element. All the variants can be proven with the classical PMI.

Mathematical induction is a very convenient method of proof, which can be applied to all areas
of mathematics. It is a topic of most calculus courses, and it is also helpful for mathematical
competitions. Comprehensive texts are [1, 3], online references are for example [2, 5].

THE CLASSICAL MATHEMATICAL INDUCTION

Consider a mathematical chain reaction, where the events constituting the reaction are state-
ments that are proven to be true, i.e. properties that turn out to hold. More precisely, we have a
collection of statements

P (n) with n ∈ N
and the aim is proving that all statements hold true. Notice that there is a first statement P (0),
for every statement there exists a unique successor (P (n) ; P (n+ 1)), and each statement is
eventually reached in this way starting from the first one.
The Principle of Mathematical Induction (in short, PMI) is the guarantee that a base case and
an induction step are sufficient to ensure that all P (n) hold true: the base case means proving
the first statement P (0), while the induction step means proving the following implication for
all n ∈ N:

if P (n) holds true, then P (n+ 1) holds true .

1



2 ANTONELLA PERUCCA AND MILKO TODOROVIC

• PMI Classic: Consider statements P (n) for n ∈ N. Suppose that P (0) is true (this
is the base case). Suppose that for every n ∈ N the statement P (n) implies P (n+ 1)
(this is the induction step). Then P (n) holds true for all n ∈ N.

Exercise 1: Prove that for every n ∈ N the number n3 − n is a multiple of 3.

The typical visualization of PMI Classic consists in a row of falling dominoes:

Consider infinitely many (to be precise, countably many) dominoes standing on end, and ar-
ranged in a half-line extending infinitely to the right. Looking from left to right, the first
domino represents P (0) and the (n + 1)th domino represents P (n). Proving the truthfulness
of P (n) means that the corresponding domino falls to the right. The base case means pushing
the first domino as to make it fall, and the induction step means that, if one domino falls, then
its right-hand neighbor falls as well. Thus the base case starts a chain reaction of falling domi-
noes, while the induction step guarantees that the chain reaction includes all dominoes in the
row: eventually each domino will fall.
Without the base case i.e. without a push the dominoes keep standing. A missing induction step
can be visualized by a row that at some point is not tight: if there is too much space between a
domino and the next one, then the chain reaction will not propagate.

MATHEMATICAL INDUCTION ON A COUNTABLE SET

• PMI Countably Infinite: If the set of statements is countably infinite, then it suffices
to label its elements with the natural numbers to reduce to the situation of PMI Classic.

Visually, we are arranging the dominoes in a row:
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For the set of even non-negative integers we typically choose 0 as first element, 2 as second, 4
as third, and so on (for the odd non-negative integers we would choose 1 as first element, 3 as
second, 5 as third, and so on). For the set of integers smaller than or equal to −5 it is natural to
take −5 as as first element, −6 as second, −7 as third, and so on. If we have all integers, then
we could order them as follows: 0, 1,−1, 2,−2, 3,−3 . . .
A special case of PMI Countably Infinite is the following:

• PMI Different Start: Let n0 ∈ N, and consider statements P (n) for n ∈ N with
n > n0. Suppose that P (n0) is true (this is the base case). Suppose that for every
n ∈ N with n > n0 the statement P (n) implies P (n+ 1) (this is the induction step).
Then P (n) holds true for all n ∈ N with n > n0.

For PMI Different Start we have the whole row of dominoes indexed by the natural numbers
(by considering some additional statements) and push the domino corresponding to n0. In
this way the first dominoes stay untouched, while all others will fall. We simply ignore the
first dominoes: these could either fall if pushed (the statements are true) or they are fixed (the
statements are false).

Exercise 2: Prove that for all natural numbers n > 4 we have n · (n− 1) · · · 2 · 1 > 2n.

For a non-empty finite set of statements (for an empty set there would be nothing to prove) we
have:

• PMI Finite: Let S be a non-empty finite set, and consider statements P (s) for
s ∈ S. We label the elements of S with the natural numbers from 0 to c− 1, where c
is the cardinality of S. Suppose that P (0) is true (this is the base case). Suppose that
for every n ∈ N with 0 6 n < c− 1 the statement P (n) implies P (n+ 1) (this is the
induction step). Then P (s) holds true for all s ∈ S.

Visually, the row of dominoes is finite: after finitely many steps all dominoes have fallen.

Exercise 3: Prove that for all integers n in the range from 20 to 50 the binomial coefficient(
30

n−20

)
is strictly positive.

Further variants of the PMI can be combined with PMI Countably Infinite or PMI Finite.
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THE COMPLETE MATHEMATICAL INDUCTION

• PMI Complete: Consider statements P (n) for n ∈ N. Suppose that P (0) is true
(this is the base case). Suppose that for every n ∈ N the collection of statements P (0)
to P (n) implies P (n + 1) (this is the induction step). Then P (n) holds true for all
n ∈ N.

The induction step is easier to establish with respect to PMI Classic because we can make
use of any statement from P (0) to P (n). In many situations we only need a fixed amount of
previous statements, for example we may only need P (n) and P (n − 1). Further variants of
the PMI can be combined with PMI Complete.

We may visualize PMI Complete with a row of dominoes of growing size:

The induction step means that the first dominoes together have enough elain to make the next
domino fall (one domino alone may not be sufficiently heavy to push down the next one).

Exercise 4: The Fibonacci number sequence Fn can be defined by setting F0 = 0 and F1 = 1,
and by requiring that Fn = Fn−2+Fn−1 holds for all n > 2. Prove that for all n ∈ N we have

Fn =
1√
5

[(1 +√5
2

)n
−
(1−√5

2

)n]
.

THE BACKWARDS MATHEMATICAL INDUCTION

• PMI Backwards: Consider statements P (n) for n ∈ N. Suppose that P (n) is true
for all n ∈ S, where S is an infinite subset of N (this is an infinite set of base cases).
Suppose that for every n ∈ N with n > 0 the statement P (n) implies P (n − 1) (this
is the backward induction step). Then P (n) holds true for all n ∈ N.

We are doing infinitely many applications of PMI Finite, one for each element of S (each
statement is then proven multiple times). Visually, we are pushing to the left all dominoes
corresponding to the elements of S: the chain reaction now propagates to the left.
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Exercise 5: Let n ∈ N with n > 1. Prove the inequality between arithmetic and geometric
mean of n strictly positive real numbers:

a1 + a2 + ...+ an
n

> n
√
a1a2...an .

(Hint: Prove the inequality by induction for all n that are powers of 2.)

TWO-DIMENSIONAL INDUCTION

• PMI Two-dimensional: Consider statements P (a, b) for a, b ∈ N. Suppose that
P (0, 0) is true (this is the base case). Suppose that, if P (a, 0) is true for some a ∈ N,
then P (a+1, 0) is also true (this is the first induction step). Suppose that, if P (a, b) is
true for some a, b ∈ N, then P (a, b+1) is also true (this is the second induction step).
Then P (a, b) holds true for every a, b ∈ N.

We apply PMI Classic, once on the first variable and infinitely many times on the second
variable: with the help of the first induction step one proves P (a, 0) for all a ∈ N; the second
induction step then allows to take a ∈ N and prove P (a, b) for that fixed a and for any b ∈ N.

As soon as P (a, b) is proven, we mark the point (a, b) in the plane. We mark (0, 0) because
of the base case and then, with the help of the first induction step, we mark all points on the
a-axis. With the second induction step the marking propagates upwards from any point (a, 0),
thus the marking propagates to all points (a, b) with a, b ∈ N.
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Exercise 6: Consider a function f(a, b) of two strictly positive integer variables that satisfies
f(1, 1) = 2 and such that for every a, b the following holds:

f(a+ 1, b) = f(a, b) + 2(a+ b) and f(a, b+ 1) = f(a, b) + 2(a+ b− 1) .

Prove that for every a, b we have f(a, b) = (a+ b)2 − (a+ b)− 2b+ 2.

We can easily generalize PMI Two-dimensional to finitely many variables.

GROUPING STATEMENTS

• PMI Sum of variables: Consider statements P (a, b) for a, b ∈ N. Suppose that
P (0, 0) is true (this is the base case). Suppose that, if for some n ∈ N the statement
P (a, b) is true whenever a + b = n, then the statement P (a, b) is true whenever
a+ b = n+ 1 (this is the induction step). Then P (a, b) holds true for every a, b ∈ N.

We apply PMI Classic to the statements Q(n) consisting of all P (a, b) with a+ b = n. We are
thus grouping statements together, namely those corresponding to the points on a same finite
diagonal of the first quadrant in the plane. The chain reaction propagates from one diagonal
to the next. The two pictures below represent Q(2) (which contains the statements P (2, 0),
P (1, 1), and P (0, 2)) and the induction step from Q(2) to Q(3):

Exercise 7: Prove that for all natural numbers n, k such that k 6 n the binomial coefficient(
n
k

)
is a natural number. You can make use of the known formula

(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
.

(Hint: Apply PMI Complete.)

The general framework for grouping statements is as follows. Consider statements P (s) with s
varying in a set S, and partition S into countably many subsets (for example, partition the real
numbers into countably many intervals). We leave to the reader the case of a finite partition,
which requires PMI Finite. So let us denote by Tn for n ∈ N the subsets of the partition: we
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group the statements P (s) for s ∈ Tn and apply PMI Classic.

• PMI Partition: Let S be a set, and consider statements P (s) for s ∈ S. Partition S
into countably many subsets Tn with n ∈ N. Suppose that P (s) is true for all s ∈ T0

(this is the base case). For all n ∈ N suppose that, if P (s) is true whenever s ∈ Tn,
then P (s) is true whenever s ∈ Tn+1 (this is the induction step). Then P (s) holds true
for every s ∈ S.

Domino towers represent the grouping of statements: the towers completely fall apart in the
chain reaction, i.e. all their dominoes fall (to apply PMI Complete consider towers of growing
size).

More generally consider an arrangement of dominoes: if all dominoes in some arrangement
fall, then all dominoes in the next arrangement fall.

Exercise 8: For all finite subsets F of N, prove that the number of subsets of F equals 2#F .

The sets of a partition are pairwise disjoint, so we never repeat statements in PMI Partition.
However, proving a statement multiple times is not wrong, and sometimes increasing the num-
ber of statements that one has to prove turns out to be practical. Also notice that sometimes
it is possible to fix some of the objects appearing in a problem and apply the mathematical
induction to the remaining ones.
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LARGER INDUCTION STEP

• PMI Jumps: Consider statements P (n) for n ∈ N. Let k ∈ N with k > 1. Suppose
that the statements P (0) up to P (k− 1) are true (we have k base cases). Suppose that
for every n ∈ N the statement P (n) implies P (n+ k) (in the induction step we jump
k steps ahead). Then P (n) holds true for all n ∈ N.

The set N is partitioned into k subsets, according to the remainder after division by k. We then
apply k times PMI Countably infinite. In particular, for k = 2 there is one induction for the
even numbers, and one for the odd numbers:

We may visualize PMI Jumps with k rows of falling dominoes: hitting the next domino in the
row means jumping k steps ahead in the usual arrangement.
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An alternative to PMI Jumps is doing a case distinction in the proof of the induction step
of PMI Classic. For example, instead of applying PMI Jumps for k = 2, one could prove the
induction step for the case “from even to odd” and for the case “from odd to even”.

Exercise 9: Prove that for all n ∈ N we have

(−1)n =

{
1 for n even ;
−1 for n odd .

Similarly, proving by induction the formula for the higher derivatives of the sinus function
requires either PMI Jumps with k = 4 or a case distinction with four cases.

The visualization for the case distinction is that not all dominoes fall down in the same way:
the row of dominoes goes in a zigzag, or the dominoes are not aligned (in the following picture
the dominoes are seen from above).

Summary: The Principle of Mathematical Induction is usually illustrated with a row of falling
dominoes. We investigate several variants of this principle, providing intuitive visualizations
for them.
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