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Abstract—Traditional planning and scheduling techniques still
hold important roles in modern smart scheduling systems. Real-
istic features present in modern manufacturing systems need to
be incorporated into these techniques. The real-world problem
addressed here is an extension of flexible job shop scheduling
problem and is issued from the modern printing and boarding
industry. The precedence between operations of each job is given
by an arbitrary directed acyclic graph rather than a linear
order. In this paper, we extend the traditional FJSP solutions
representation to address the parallel operations. We propose
an imperialist competitive algorithm for the problem. Several
instances are used for the experiments and the results show that,
for the considered instances, the proposed algorithm is faster and
found better or equal solutions compared to the state-of-the-art
algorithms.

I. INTRODUCTION

The real-world scheduling problem addressed in this paper
is issued from the modern printing and boarding industry.
The problem is an extended version of the flexible job shop
scheduling problem (FJSP) where jobs are allowed to be a set
of operations with an arbitrary precedence relation, thereby,
including types of jobs like those in Figure 1.

The FJSP is a generalization of the job shop scheduling
(JSP). The JSP can be stated as follows. Consider a set of
machines and a set of jobs. Each job consists of a sequence
of operations to be processed in a given order. Each operation
must be processed individually on a specific machine. The
objective is to find a processing sequence for each machine
that minimizes the completion time of the last operations
(makespan) [1]. The FJSP consider that there may be several
machines, not necessarily identical, capable of processing an
operation. Specifically, for each operation, a set of machines
on which that operation can be processed is given. The goal is
to decide on which machine each operation will be processed
and in what order the operations will be processed on each
machine so that the makespan is minimized.

In terms of computational complexity, JSP problem is
known to be one of the most difficult combinatorial optimiza-
tion problems [2], and has been proven to be an NP-hard
problem [3]. Since the FJSP problem is at least as difficult
as the JSP, it is also NP-hard.

Many methods have been presented to solve the FJSP
problem. For the FJSP, when the number of jobs is small, some
exact algorithms can be employed to solve it, for example,
mathematical programming [1]. But when the number of jobs
rises, it is difficult to find an optimal solution in a short time.
Many researchers have proposed heuristic methods to solve the
FJSP, such as genetic algorithm (GA) [4], firefly algorithm [5],
artificial bee colony [6], particle swarm optimization [7], tabu
search [8], and memetic algorithm [9].

In the literature, each job in the FJSP consists of a simple
sequence of operations, so-called path-jobs. In some industrial
environments, it is common to have jobs whose operations can
be processed simultaneously. Mutually independent sequences
of operations may feed into an “assembling” operations. Simi-
larly, there may be “disassembling” operations which split the
sequences of subsequent operations into two or more mutually
independent sequences, so-called G-job. Figure 1a shows a
representation of G-job. Moreover, some jobs may consist of
two independent sequences of operations followed by a third
that puts together the results of the first two, so-called Y-job.
Figure 1b shows a representation of Y-job. This problem will
be referred to as ”EFJSP” in this paper.

Compared to the FJSP, the literature for the EFJSP is scarce.
Vilcot and Billaut [8] considered a class of instances where
each operation in a job can have more than one predecessor,
but at most one direct successor. Similarly, Yu et al. [10]
considered a scheduling problem with parallel operations for
flight deck simulations considering G-jobs and Y-jobs. Birgin
et al. [1] considered both types of jobs with parallel operations
and proposed a mixed integer linear programming (MILP)
model which allows the precedence between operations of a
job to be given by an arbitrary directed acyclic graph (DAG)
rather than a linear order.

In this paper, we extend the usual definition of the FJSP
to allow the job to be a set of operations with an arbitrary
precedence relation. We propose a new representation to
improve the searching capabilities of the algorithm. Motivated
by the fact that it is difficult to achieve an optimal solu-
tion for medium and real size problems with mathematical
modeling due to its high computational complexity [10], we
design an improved imperialist competitive algorithm to find



(a) G-job type. (b) Y-job type.

Fig. 1: Each node represents an operation. The arcs represent precedence constraints and all arcs are directed from left to right.
The black nodes are assembling operations and gray nodes are disassembling operations.

“good enough” solutions in an acceptable time for large-sized
instances. In order to compare the ICA with other methods,
we implemented our proposed solution representation with a
genetic algorithm (GA), and a continuous firefly algorithm
(FA). The proposed ICA is experimented and compared with
other methods using 60 instances from the literature.

II. PROBLEM FORMULATION

Let (V,A) be a directed acyclic graph (DAG), where
the vertices represent the operations, and the arcs represent
precedence constraints. We are also given a set M of machines
and a function F that associates a non-empty subset F(v) of
M with each operation v. The machines in F(v) are the ones
that can process operation v. Additionally, for each operation
v and each machine k in F(v), we are given a positive rational
number pvk representing the processing time of operation v
on machine k. A machine assignment is a function f that
assigns a machine f(v) ∈ F(v) with each operation v. Given
a machine assignment f , let pfv := pv,f(v).

For each machine k, let Vk be the set of operations that can
be processed on machine k, that is, Vk = {v ∈ V : k ∈ F (v)}.
Let Bk be the set of all ordered pairs of distinct elements of
Vk. The pairs (v, w) in Bk are designed to prevent v and w
from using machine k at the same time. Let B denote the
union of all Bk. Hence, (v, w) ∈ B if and only if v 6= w and
F (v) ∩ F (w) 6= ∅.

Given a machine assignment f , let Bf be the set of all
ordered pairs of distinct operations to be processed on the
same machine, that is, Bf = {(v, w) ∈ B : f(v) = f(w)}. A
selection is any subset Y of Bf such that, for each (v, w) ∈
Bf , exactly one of (v, w) and (w, v) is in Y . A selection
corresponds to an ordering of the operations to be processed
on the same machine. A selection Y is admissible if (V,A∪Y )
is a dag.

Given a machine assignment f and a admissible selection
Y , a schedule for (V,A ∪ Y, pf ) is a function s from V to
the set of non-negative rational number such that sv + pfv ≤
sw for each (v, w) in A ∪ Y . The number sv is the starting
time of operation v. The makespan of a schedule s is the
number mks(s) := maxv inV (sv + pfv ). This definition does
not preclude idle time in the schedule; the next one focus on
non-delay schedules.

The length of a (directed) path (v1, v2, ..., vl) in the dag
(V,A ∪ Y ) is the number pfv1 + pfv2 + ...+ pfvl . For any path
P in (V,A ∪ Y ) ending at v and any schedule s, the length

of P is at most sv . For each v in V , let s∗v be the maximum
of the lengths of all paths in (V,A∪ Y ) ending at v. There is
a simple dynamic programming algorithm that computes the
tight schedule [11]. Not surprisingly, the makespan of the tight
schedule s∗ is determined by the longest path: there exists a
path P = (v1, v2, ..., vl, vl+1) in (V,A ∪ Y ) such that the
length of P plus pvl+1

equals mks(s∗) (such P is known as
a critical path).

A. MILP Model

The MILP proposed by Birgin et al. [1] can be given as
follows: find a rational number z, rational arrays s and p′, and
binary arrays x and y that

Minimize z
subject to

sv + p′v ≤ z ∀v ∈ V, (1)∑
k∈F(v)

xvk = 1 ∀v ∈ V, (2)

p′v =
∑

k∈F(v)
pvkxvk ∀v ∈ V, (3)

yvw+ywv ≥ xvk+xwk−1 ∀k∈M,∀(v, w)∈Bk, (4)
sv + p′v ≤ sw ∀(v, w) ∈ A, (5)

sv + p′v − (1− yvw)L ≤ sw ∀(v, w) ∈ B, (6)
sv ≥ 0 ∀v ∈ V. (7)

As x is binary, constraint (2) ensures that x is a machine
assignment. Then constraint (3) makes array p′ represent the
processing times of operations. In fact, p′ can be seen as an
intermediate value, not a variable, that helps to simplify the
presentation of the model. Since pv,k > 0 for all v and k, thus
p′v > 0 and so constraint (6) makes sure that yvw and ywv are
not both equal to 1. Hence, as y is binary, constraint (4) implies
that y represents a selection. Indeed, if xvk = xwk = 1, which
means v and w are assigned to machine k, then (4) forces
y to decide whether v comes before or after w. Otherwise,
constraint (4) is trivially satisfied. Once y is a selection and
p′ represents the processing times, constraints (5), (6), and (7)
make s represent a schedule. Finally, the objective function and
constraint (1) make sure z is the makespan of the schedule,
and is as small as possible. Finally, L is an upper bound on
the makespan of an optimal solution of the FJSP problem.
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Fig. 2: Moving countries toward their imperialist.

III. IMPERIALIST COMPETITIVE ALGORITHM

Encouraged by the human socio-political evolution process,
a newly developed evolutionary algorithm denominated Impe-
rialist competitive algorithm (ICA) is proposed by Atashpaz-
Gargari and Lucas [12]. Similar to other evolutionary algo-
rithms, the ICA begins with an initial population (countries).
The best countries are selected to be the imperialists. Every
imperialist has its personal set of colonies and the amount of
colonies of each empire is equivalent to its relative power to
other imperialists. The colonies of an empire evolve through
operators as assimilation and revolution using the imperialist
as an evolution target. Empires try to possess colonies of other
empires through the imperialistic competition strategy. The
main ICA concepts are illustrated in detail below.

1) Initial Countries: δ solutions (i.e. country) are generated
randomly, where each country can be defined in form of an
array

ζi = [p1, p2, ..., pη], (8)

where ζi represents the ith country, pi the variables, and η the
total number of variables, i.e. η-dimensions of the problem to
be optimized.

2) Initial Empires: α best countries are elected to be
imperialist. The remaining δ − α countries are used to create
the colony set of each imperialist. The number of colonies that
each imperialist possesses is proportional to its relative power
to other imperialists defined as

Pk =

∣∣∣∣ Yk∑α
i=1 Yi

∣∣∣∣ , (9)

where Pk is the power of the imperialist k, Yi = maxk{ck}−
ci indicates the normalized cost, and ck is the cost of the
kth imperialist. The number of initial colonies possessed by
imperialist k is calculated as round(Pk × (δ − α)), where
round is a function that gives the nearest integer of a fractional
number.

3) Assimilation and Revolution: Assimilation leads
colonies to have similar features with their corresponding
imperialist. During the assimilation strategy, colonies move

x ∼ U [0, δd] (10)

units towards their relevant imperialist, where x is a random
value generated using uniform distribution, δ is the assimi-
lation factor and d is the distance between the colony and

the imperialist. Figure 2a shows the movement of a colony
towards its imperialist.

Comparable to the mutation operator in GA, the revolution
operator is added to ICA to improve the exploration property
of the algorithm. In order to search nearby the imperialist, a
random amount of deviation

θ ∼ U [−y, y] (11)

is incorporated in the movement, where θ is a random value
generated using uniform distribution, y is a parameter that
adjusts the deviation from the original direction. Figure 2b
shows the movement of a colony towards its imperialist in a
randomly deviated direction.

4) Imperialist Exchange: If a colony is better than its
imperialist due to assimilation and revolution operations, the
position of the imperialist and the colony are changed, i.e., the
colony becomes the imperialist and vice-versa.

5) Imperialist Competition: In this step, the weakest colony
of the weakest imperialist is possessed by other stronger
imperialists. This is carried out in a stochastic way. The
possession probability for each imperialist is related to its
total cost. The better the imperialist is, the more likely it will
possess the weakest colony of the weakest empire. The total
cost, which is used as a comparison criterion in this step, is
defined by

TCi = Ci + ξ
1

nδi

∑nδi

j=1
Cij , (12)

where Ci and TCi are respectively the cost and total cost
values for imperialist i, nδi is the number of colonies of the
ith empire, Cij is the cost related to jth colony of empire
i, and ξ < 1 is the colonies consideration rate. In the
imperialist competition step, if the weakest imperialist loses all
of its colonies, then this imperialist is collapsed. A collapsed
imperialist is possessed by other imperialists as a colony.

IV. CLASSIC FJSP REPRESENTATION

According to Gao et al. [13], a discrete-valued solution
structure can be used to code the solution of FJSP. Since the
FJSP is composed of two sub-problems, its solution represen-
tation is composed of two strings, i.e., machine assignment
string (MS) and operation sequence string (OS), respectively
referred to as ϑ1 and ϑ2 in this paper, where ϑ1 denotes the
assigned machine for each particular operation, and ϑ2 denotes
the order in which the operations are to be processed in their



V 1 2 3 4 5 6 7 8 9 10

ϑ̃1 0.12 0.89 0.38 0.28 0.96 0.66 0.49 0.73 0.51 0.21

ϑ1 1 4 2 2 4 3 2 3 3 1

ϑ̃2 0.72 0.99 0.25 0.63 0.31 0.87 0.22 0.54 0.68 0.86

ϑ̃2 0.22 0.25 0.31 0.54 0.63 0.68 0.72 0.86 0.87 0.99

ϑ2 3 1 2 3 2 3 1 3 2 1

TOS 7 1 4 9 5 8 2 10 6 3

J1 J2 J3

Fig. 3: Representation of a FJSP solution based on a contin-
uous and a discrete valued structures.

assigned machines. Sections IV-A and IV-B respectively de-
scribes the discrete representation of the machine assignment
and operation sequence.

Since ICA works in continuous domains, it is necessary
to define a real-valued solution structure. Sections IV-D and
IV-E presents the proposed continuous solution structure,
also divided in two parts, where ϑ̃1 , similar ϑ1, defines the
machine operation assignment, and ϑ̃2 , similar to ϑ2, defines
the operation sequence.

The length of all strings is equal to T =
∑n
i=1 Si, where

Si is the number of operations of job i and n is the number of
jobs, and T represents the total number of operations. Figure 3
shows a random example of strings based on the given set of
machines and operations presented in Table I.

A. Discrete Machine Assignment String

Let ϑ1 = {ϑ11, ϑ12, ..., ϑ1T } represent the discrete machine
assignment string where T is the problem dimension. The
ith element in ϑ1 represents the assigned machine for the
ith operation V , and ϑ1i ∈ F(Vi). The index does not vary
throughout the whole searching process.

TABLE I: An EFJSP instance with three jobs and four
machines. Job 1 is a path-job, job 2 is a Y-job, and job 3
is a G-job. The column DFS represents the topological order
of each respective job given by depth-first search algorithm.

Job v pv,1 pv,2 pv,3 pv,4 Route DFS

1 1 2 3 4 3 1 → 2
1, 2, 32 3 5 2 2 2 → 3

3 5 1 4 4 -
2 4 4 3 4 5 4 → 6

4, 5, 65 3 3 4 2 5 → 6
6 4 3 1 4 -

3 7 3 1 3 3 7 → 8, 9
7, 9, 8, 108 5 3 1 3 8 → 10

9 4 4 2 5 -
10 3 5 4 4 -

v → u represents a conjunctive arc (v precedes u in the job route).

V 1 2 3 4 5 6 7 8 9 10

ϑ̃3 0.12 0.89 0.38 0.96 0.43 0.66 0.49 0.73 0.81 0.21

ϑ3 1 2 3 5 4 6 7 8 9 10

J1 J2 J3

Fig. 4: Representation of the topological order of the jobs of an
EFJSP instance defined based on the MBFS algorithm. Based
on ϑ3 the topology of job 1 = {1, 2, 3}, job 2 = {5, 4, 6}, and
job 3 = {7, 8, 9, 10}.

Algorithm 1 Modified Traversing Graph MBFS

1: for each job i do
2: DAG ← Ji . Ji digraph of job i
3: while ∃v ∈ DAG : v /∈ ϑ3 do
4: V ← ∅ . V vertices to visit
5: for each v ∈ DAG do
6: if Pv ⊆ ϑ3 ∨ Pv = ∅ then . Pv predec. of v
7: Add v to V end if
8: end for
9: Sort V based on cost . Ascending order

10: for each v ∈ V do
11: Add v to ϑ3
12: end for
13: end while
14: end for

B. Discrete Operation Sequence String

Let ϑ2 = {ϑ21, ϑ22, ..., ϑ2T } represent the operation se-
quence string where T is the problem dimension. The string ϑ2
represents the order in which the operations will be processed
in their designated machines. To avoid repair mechanisms,
this representation uses an unpartitioned permutation with Si
repetitions of the job numbers, i.e., every job i appear Si times
in ϑ2.

C. Translating the Discrete OS String

By scanning the ϑ2 from left to right, the fith appearance
of a job i refers to the fith operation in topological order
of the operations of job i, where fi starts with 0 and counts
the appearances of job in the string. For example, scanning ϑ2
from left to right, for every appearance of job i, fi is increased
by 1, and the fith operation on the topological order is added
to the TOS string. The translation mechanism bypasses the use
of repair mechanism since any permutation leads to a feasible
solution. For the instance shown in Table I, one possible OS
string, and TOS string is presented in Figure 3, where the
procedure of translating the OS string is represented by the
arrows between nodes of ϑ2 and TOS.

D. Continuous MS string

Let ϑ̃1 = { ˜ϑ11 , ˜ϑ12 , ..., ˜ϑ1T }, similar to ϑ1 in discrete
structure, represents the continuous machine assignment string
where ϑ̃1i ∈ [0, 1), and T is the problem dimension. The



M1 1 10

M2 7 4 3

M3 9 8 6

M4 5 2

0 1 2 3 4 5 6 7

(a) Gantt Chart of the decoded solution based on the strings given
in Figure 3, and topological order given in Table I.

M1 1 10

M2 7 4 3

M3 8 9 6

M4 5 2

0 1 2 3 4 5

(b) Gantt Chart of the optimal solution of the problem presented in
Table I.

Fig. 5: Translating the OS string with different topological order.

ith element in ϑ̃1 represents the assigned machine for the ith
operation in V , defined as

ϑ1i =
⌊
|F(Vi)| ϑ̃1i + 1

⌋
, i = 1, ..., T , (13)

where bxc indicates the greatest integer number smaller than x.
Equation (13) can be seen represented by the arrows between
every node of ϑ̃1 and ϑ1 on Figure 3.

E. Continuous OS string

Let ϑ̃2 = { ˜ϑ21 , ˜ϑ22 , ..., ˜ϑ2T }, similar to ϑ2 in discrete
structure, represents the continuous operation sequence string,
where ϑ̃2i ∈ [0, 1], and T is the problem dimension.

In order to define a sequence of jobs as ϑ2, the elements
of ϑ̃2 are ordered (ascending or descending) into ϑ̃2 . In this
way, the operations sequence is defined as

ϑ2i = h(ϑ̃2i ), i = 1, ..., T , (14)

Start
Create Initial

Population
and Evaluate

Generate
Initial

Empires

Stop
Condition
Satisfied?

End

Assimilate
Colonies

Revolve and
Evaluate
Colonies

Colony
Better

than It’s
Imperial-

ist?

Exchange
Best

Colonies
with Their
Imperialist

Compute
Total Cost
of Empires

Imperialistic
Competition

Eliminate
Powerless
Empires

yes

no

yes

no

Fig. 6: Flow diagram of the proposed algorithm.

where h is a function that gives the job id of the operation rep-
resented by the position (index) of first appearance the value
ϑ̃2i in the string ϑ̃2 . Equation (14) can be seen represented
by the colored arrows between nodes of ϑ̃2 , ϑ̃2 and ϑ2 in
Figure 3.

V. REPRESENTATION FOR THE EFJSP
Due to the arrangement of operations in Y-jobs and G-

jobs, a topological sorting algorithm can be used to define
the topological order of the operations. The topological order
is an essential feature for the translation of the OS string into
a feasible sequence that respects the precedence relationship
of all operations of a job. There exist well-known linear time
algorithms for determining the topological order of a directed
graph (digraph), e.g., Cormen [11] applies a depth-first search
(DFS) algorithm. Nevertheless, with this strategy, the order
in which parallel operations appear in the sequence is strictly
related to the strategy used to define it.

Theorem 1. Due to the parallel operations present in the
topology of EFJSP jobs, determining the operation scheduling
sequence of jobs based on fixed topological sequences does not
empower the searching method to find the optimal solutions
in some cases.

Proof. Consider ϑ1 and ϑ2 shown in Figure 3, and the job
3 presented in Table I. We denote Vi as the i operation
in V . Since in the route of the job 3 operations V8 and
V9 are parallel and independent from each other, and V8 is
the only predecessor of operation V10, the minimum starting
time of V10 is the completion time of operation V8. Since
DFS gives the topological order {7, 9, 8, 10}, throughout the
translation of the OS string, operation V9 will come before
V8 in the operations sequence. Consequently, in a situation
where V8 and V9 are assigned to the same machine, V9
will delay the starting time of V8, and as consequence, V10
will further be delayed. Based on the strings and instance
given earlier, the makespan obtained with the topological order
settled by DFS is 7. The Gantt Chart for this solution is shown
in Figure 5a. Nonetheless, considering a distinct topological
order for job 3 as {7, 8, 10, 9} or {7, 8, 9, 10}, the makespan
can be minimized to 5. The Gantt Chart for this solution is
shown in Figure 5b.

Therefore, we extend the traditional FJSP representation
adding the topological order (TP) string. The TP string ϑ̃3 =
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Fig. 8: Box plot of the makespan obtained with the experiments involving the YFJS instances.

{ϑ31, ϑ32, ..., ϑ3T }, where ϑ3i ∈ [0, 1], denotes a cost ci
for the ith operation in the Vi. In this way, for any two
parallel operations, the one with less cost comes before in
the topological order.

A modified cost-based version of the Breadth-First Search
(BFS) traversing graph algorithm is used to define the topo-
logical order of each job. In our modified traversing graph
algorithm (MBFS), a set V of vertices to be visited are
defined. The vertices included in V are those where all its
predecessors were already visited. Every vertex in V is visited
in an ascending order based on the cost defined by ϑ̃3 . The
pseudocode presented in Algorithm 1 illustrates the basic steps
of the MBFS. Figure 4 shows a random TP string ϑ̃3 for
the instance presented in Table I, where ϑ3 represents the
topological order of each job given by the MBFS algorithm.

VI. THE PROPOSED ICA ALGORITHM

Difficult problems such as FJSP demand sophisticated tech-
niques to produce reasonable results in acceptable time. It is
customarily preferable to get good sub-optimal results quickly
than to wait for days to get an optimal solution. With this
motivation, we propose an improved imperialist algorithm for
the EFJSP.

In our algorithm, each country represents an EFJSP solution.
Following the random creation of the initial population, the
best countries become imperialists and empires are created.
The population evolves with each country moving toward
its respective imperialist. Each country has its strings ϑ̃1
and ϑ̃2 assimilated by the imperialist. In our implementation,

revolution procedure is performed after every assimilation
procedure and it is composed of three steps: (1) pick a random
element of ϑ̃1 and assign a random value in [0, 1); (2) pick
a random element of ϑ̃2 and assign a random value in [0, 1];
(3) pick a random element of ϑ̃3 and assign a random value
in [0, 1]. Then, every country is evaluated and imperialist
exchange is conducted if necessary. Finally, at the end of each
iteration, the imperialist competition is performed. Two stop
conditions are used: (1) the maximum number of iterations G;
(2) the maximum number of iterations without improvement
I.
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with the Brandimarte path-job instances.
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VII. NUMERICAL RESULTS

This section presents the results of computational experi-
ments involving the algorithm. We used as benchmarks 10
FJSP instances (named Mk) introduced by Brandimarte [14],
20 EFJSP instances composed of Y-jobs (named YFJS) pro-
posed in [1], and 30 EFJSP instances composed of G-jobs
(named DAFJS) further propose in [1].

In order to compare the proposed ICA, implemented in
(C++), we implemented (C++) the most applied method for
the FJSP, a Genetic Algorithm (GA) (see Chaudhry and Khan
[15], Amjad et al. [16]). Moreover, a discrete Firefly Algorithm
(DFA) showed good results for the FJSP (see Lunardi et al. [5],
Lunardi and Voos [4], Yang [17]). In this way, in order to check
the performance of the continuous version, we implemented
(C++) a continuous Firefly Algorithm (FA).

The GA implemented is based on the classic GA’s structure
and applies a random crossover and a random mutation to
the continuous strings. Based on experiments, tournament
selection performed better than fitness proportionate selection,
and it maintains the diversity of the population. The FA that
we implemented is based on the algorithm proposed in [17].
We performed experiments for each algorithm to define the pa-
rameters, where the GA parameters are 500 individuals, 1000
generations, 0.9 crossover rate, and 0.3 mutation rate. The FA
parameters is 75 fireflies, 500 generations, 1.0 attractiveness,
and 0.35 randomization rate. For more details about of the GA
and FA check [18].

The algorithms were run by a 2*Intel Xeon E5-2680 v3 @
2.5 GHz with 24 CPUs on a Linux HPC cluster at University of

Luxembourg. We performed each experiment involving each
instance 25 times for each algorithm. Based on experiments
we find out that the best parameters for the ICA applied
for the EFJSP are G = 1000, I = 100, δ = [200, 500],
and α = [5, 15]. For the experiments involving the instances
Mk01,...Mk05, Mk07,...,Mk09, YFJSP ≤ 10, and DAFJS ≤ 10
we used δ = [250], α = [5]; for the instances Mk06, Mk10,
YFJS > 10, and DAFJSP > 10 we used δ = [400], α = [10].
Supplemental numerical results, charts, and the instances are
provided at https://willtl.github.io/etfa2018/.

Figure 9 presents the results for the instances of Brandimarte
[14]. The bars denote the mks and the lines represent the CPU
time, in seconds. This set of instances include only path-jobs.
The proposed ICA is more effective for the instances Mk06
and Mk10, and more efficient than the GA and FA for all
instances.

Figures 7, 8, 10, and 11 present the results for the two sets
of instances of Birgin et al. [1]. In the bar charts is presented
the mean CPU time (s) and the best obtained mks, and in the
box plot is showed distribution of the data of the 25 runs.

On the experiment among the Brandimarte [14] instances,
we can perceive that the ICA was able to find lower mks
values for the two hardest instances (i.e. Mk06 and Mk10),
being more efficient related to the compared algorithms. Based
on the investigations with Y-job and G-job instances, both
the GA and FA loses efficiency for larger instances. The
FA’s parameters had to be adjusted in order to increase the
searching capabilities of the algorithms. In that case, even
with readjusted parameters (e.g., a higher number of fireflies,



randomization, and iterations), it was not able to obtain similar
solutions to those that ICA and GA found. Based on the nu-
merical results, showed in [1], we can see that the MILP model
is, for some instances, more efficient for smaller instances, and
as expected, it loses efficiency for larger instances.

Here is a summary of our results. The GA is more effective
and efficient than the continuous FA for the EFJSP. The
proposed continuous ICA is a consistent and steady algorithm
for the EFJSP. The ICA obtained better values and lower
variance for most of the experiments. Based on the bounds
given by the MILP model, we can see that the GA and the
ICA decreased the gap (i.e. the distance between lower and
upper bounds) for several instances.

VIII. CONCLUSION

In the present paper, we extended the definition of the FJSP
taking into account parallel operations in the route of the jobs.
The usual representation of the FJSP was modified to improve
the searching capabilities of the algorithms. We put forward an
imperialist competitive algorithm to solve the EFJSP. In order
to evaluate the performance of the solution methods, 50 EFJSP
instances were used. Computational experiments on 10 famous
FJSP instances was performed in order to provide comparisons
with other state-of-the-art algorithms. The experiments among
the ICA and others recently published algorithms shows that
it is a feasible approach for the considered problem.
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