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Abstract—To facilitate communication among stakeholders,
software security requirements are typically written in natural
language and capture both positive requirements (i.e., what
the system is supposed to do to ensure security) and negative
requirements (i.e., undesirable behavior undermining security).

In this paper, we tackle the problem of automatically generat-
ing executable security test cases from security requirements in
natural language (NL). More precisely, since existing approaches
for the generation of test cases from NL requirements verify only
positive requirements, we focus on the problem of generating test
cases from negative requirements.

We propose, apply and assess Misuse Case Programming
(MCP), an approach that automatically generates security test
cases from misuse case specifications (i.e., use case specifications
capturing the behavior of malicious users). MCP relies on natural
language processing techniques to extract the concepts (e.g.,
inputs and activities) appearing in requirements specifications
and generates executable test cases by matching the extracted
concepts to the members of a provided test driver API. MCP
has been evaluated in an industrial case study, which provides
initial evidence of the feasibility and benefits of the approach.

Index Terms—System Security Testing, Natural Language
Requirements, Natural Language Processing (NLP).

I. INTRODUCTION

Software security has become a major concern, with the
effect that a lot of attention is placed on the verification of the
compliance of software systems with their security require-
ments [1]. Security requirements focus on both security prop-
erties of the system and potential security threats [2], [3], [4],
[5], [6]. For instance, in use case-driven methodologies [4],
[5], [7], security use cases describe the security properties
of the system (e.g., user authentication) while misuse cases
describe malicious activities (e.g., bypassing the authorization
schema).

Security testing is driven by requirements [8] and, con-
sequently, can be divided in two categories [9], [10]: (1)
security functional testing validating whether the specified
security properties are implemented correctly, and (2) security
vulnerability testing addressing the identification of system
vulnerabilities. Although several security testing approaches
have been proposed [10], the automated generation of secu-
rity test cases from security requirements remains limited in
industrial settings. Security test cases are manually crafted
by engineers who rely on automated tools for a limited set
of activities (e.g., input generation to discover SQL injection
vulnerabilities [11]).

Most security testing approaches focus on a particular vul-
nerability (e.g., buffer overflows [12], [13] and code injection

vulnerabilities [14], [15]). These approaches deal with the
generation of simple inputs (e.g., strings, files), and cannot be
adopted to verify that the system is not prone to complex attack
scenarios involving several interactions among parties, e.g.,
stealing an invitation e-mail to register multiple fake users on
a platform. Model-based approaches are capable of generating
test cases based on interaction protocol specifications [16],
[17] and thus can potentially generate test cases for such
complex attack scenarios [18]. They require formal models,
which limits their adoption in industrial settings. Unfortu-
nately, engineers tend to avoid such models because of the
costs related to their development and maintenance, especially
in contexts where system requirements in Natural Language
(NL) are already available. There are approaches that generate
functional system test cases from NL requirements [19], [20],
[21], [22], [23]. However, these approaches can be adopted
in the context of security functional testing, but not security
vulnerability testing since they generate test cases only for
the intended behavior of the system. In contrast, security
vulnerability testing deals with the problem of simulating the
behavior of a malicious user. Our goal in this paper is to enable
automated security vulnerability test case generation from NL
requirements. Our motivation is to have a systematic way to
identify threats, to test whether they can be exploited, and to
automate testing relying exclusively on artifacts that can be
realistically expected in most environments.

In this paper, we propose, apply and assess Misuse Case
Programming (MCP), an approach that generates security
vulnerability test cases from misuse case specifications. To
generate executable test cases from misuse case specifications
we employ some concepts of natural language programming,
a term which refers to approaches automatically generating
software programs (e.g., executable test cases) from NL spec-
ifications [24], [25]. To enable the automated generation of
executable test cases, MCP assumes that security requirements
are elicited according to a misuse case template that includes
keywords to support the extraction of control flow information.
Our MCP prototype currently relies on the Restricted Misuse
Case Modeling (RMCM) template [26], [4], which presents
these characteristics. To interact with the system under test,
MCP requires a test driver API that implements basic security
testing activities (e.g., requesting a URL).

The natural language programming solution implemented
by MCP includes an initial Natural Language Processing
(NLP) step in which MCP derives models that capture the
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control flow of the activities described in a misuse case
specification. MCP then translates the derived models into
sequences of executable instructions (e.g., invocations of the
test driver API’s functions) that implement the malicious
activities. To this end, we adapt the idea, developed by other
works [27], [28], [29], [30], of combining string similarity
and ontologies [31] to generate test cases from misuse case
specifications. Similarly to other approaches, MCP builds an
ontology that captures the structure of the given test driver API
and generates executable instructions by looking for nodes in
the ontology that are similar to phrases in NL requirements.
The specificity of MCP is that it integrates additional analyses
required to enable automated testing, which include the iden-
tification of test inputs, the generation of test input values and
the generation of test oracles.

We successfully applied and evaluated our approach to an
industrial case study in the medical domain, thus showing
evidence that the approach is practical and beneficial to
automatically generate test cases detecting vulnerabilities in
industrial settings.

This paper is structured as follows. Section II provides
the background techniques on which this paper builds the
proposed test case generation approach. Section III discusses
the related work. In Section IV, we present an overview of
the approach. Sections V to VIII provide the details of the
core technical parts of our approach. Section IX presents our
industrial case study. We conclude the paper in Section X.

II. BACKGROUND

In this section we present the background regarding the
elicitation of security requirements (Section II-A), natural
language processing (Section II-B) and natural language pro-
gramming (Section II-C).

A. Eliciting Misuse Cases with RMCM

MCP assumes that misuse cases are elicited according
to a format that includes keywords capturing control flow
information. In our implementation we rely on the RMCM
format [26], [4], which is briefly presented in this section.

Restricted Misuse Case Modeling (RMCM) is a use case-
driven modeling method that supports the specification of
security requirements in a structured and analyzable form [26],
[4]. In RMCM, functional requirements are expressed as use
cases, while security requirements are captured in security use
cases and misuse cases (see an example misuse case in Fig. 1).

RMCM extends the Restricted Use Case Modeling method
(RUCM) [32] originally proposed for use case specifications.
RUCM is based on a template and restriction rules, reducing
ambiguities and incompleteness in use cases. It has been
successfully applied in many domains [33], [34], [35], [36],
[37], [38], [39], [40]. This section does not distinguish between
the original RUCM features and the extensions for RMCM,
and we furthermore focus on misuse case specifications only.

RMCM provides means to characterize basic and alternative
flows of activities in misuse case specifications as Basic

Threat Flow, Specific/Bounded/Global Alternative Flow and

1 MISUSE CASE Bypass Authorization Schema
2 Description The MALICIOUS user accesses resources that are dedicated to

a user with a different role.
3 Precondition For each role available on the system, the MALICIOUS user

has a list of credential of users with that role, plus a list functions/resources
that cannot be accessed with that role.

4 Basic Threat Flow
5 1. FOREACH role
6 2. The MALICIOUS user sends username and password to the system through

the login page
7 3. FOREACH resource
8 4. The MALICIOUS user requests the resource from the system.
9 5. The system sends a response page to the MALICIOUS user.
10 6. The MALICIOUS user EXPLOITS the system using the response page and

the role.
11 7. ENDFOR
12 8. ENDFOR
13 Postcondition: The MALICIOUS user has executed a function dedicated to

another user with different role.
14 Specific Alternative Threat Flow (SATF1)
15 RFS 4.
16 1. IF the resource contains a role parameter in the URL THEN
17 2. The MALICIOUS user modifies the role values in the URL.
18 3. RESUME STEP 4.
19 4. ENDIF.
20 Postcondition: The MALICIOUS user has modified the URL.
21 Specific Alternative Threat Flow (SATF2)
22 RFS 4.
23 1. IF the resource contains a role parameter in HTTP post data THEN
24 2. The MALICIOUS user modifies the role values in the HTTP post data.
25 3. RESUME STEP 4.
26 4. ENDIF.
27 Postcondition: The MALICIOUS user has modified the HTTP post data.
28 Specific Alternative Flow (SAF1)
29 RFS 6
30 1. IF the response page contains an error message THEN
31 2. RESUME STEP 7.
32 3. ENDIF.
33 Postcondition The malicious user cannot access the resource dedicated to

users with a different role.

Fig. 1. ‘Bypass Authorization Schema’ misuse case specification.

Specific/Bounded/Global Alternative Threat Flow (see [26],
[4] for the details). Threat flows specify unwanted incidents. A
basic threat flow describes a nominal scenario for a malicious
actor to harm the system (Lines 4 - 13 in Fig. 1). It contains
misuse case steps and a postcondition.

Alternative flows describe alternative and valid execution
scenarios; in other words, they capture failed attacks (e.g.,
Lines 28 - 33 in Fig. 1). Alternative threat flows describe
alternative attack scenarios. For instance, in Lines 14 - 20
in Fig. 1, the specific alternative threat flow SATF1 describes
another successful attack scenario where the resource contains
a role parameter. A specific alternative flow always depends
on a specific step of the reference flow. A bounded alternative
flow refers to more than one flow step while a global alterna-
tive flow refers to any step in the specification. For specific
and bounded alternative flows, the RFS keyword is used to
specify the reference flow steps (e.g., Line 31 in Fig. 1). The
IF .. THEN keyword describes the conditions under which
alternative (threat) flows are taken (e.g., Line 16 in Fig. 1).

B. Natural Language Processing (NLP)

NLP techniques extract structured information from docu-
ments in NL [41]. They implement a pipeline that executes
multiple analyses, e.g., tokenization, morphology analysis,
syntax analysis, and semantic analysis. Each pipeline step
produces results based on the output of the previous step.



{The malicious user}A0 {sends}verb {dictionary values}A1 {to the
system}A2 {through the username and password fields}AM�MNR

Fig. 2. Example SRL tags generated by CNP.

TABLE I
SOME OF THE PROPBANK ADDITIONAL SEMANTIC ROLES.

Identifier Definition
AM-LOC Indicates a location.
AM-MNR Captures the manner in which an activity is performed.
AM-MOD Indicates a modal verb.
AM-NEG Indicates a negation, e.g. ’no’.
AM-PRD Secondary predicate with additional information about A1.

In this paper, we rely on Semantic Role Labeling
(SRL) [41]. SRL is a semantic analysis technique that deter-
mines the roles played by the phrases in a sentence, e.g., the
actor affected by an activity. For the sentences “The system
starts” and “The system starts the database”, SRL determines
that the actors affected by the actions are the system and the

database, respectively. The component that is started coincides
with the subject in the first sentence and with the object in
the second sentence although the verb “to start” is used with
an active voice in both. Therefore, this information cannot
be captured by other NLP techniques like POS tagging and
dependency parsing. The SRL roles can be effectively used to
represent the meaning of a sentence in a structured form [42],
which we need to generate API calls from a misuse case step.

To perform SRL, we rely on the CogComp NLP
pipeline [43] (hereafter CNP), which has shown to be effective
in our prior research [42]. CNP tags the words in a sentence
with keywords (e.g., A0, A1, A2, AN) to indicate the roles
according to the PropBank model [44]. A0 indicates who (or
what) performs an action, while A1 indicates the actor most
directly affected by the action. The other roles are verb-specific
despite some commonalities (e.g., A2 which is often used for
the end state of an action). The PropBank model has also
some other verb-independent roles (see Table I). They are
labeled with general keywords and match adjunct information
in different sentences, e.g., AM-NEG indicating a negation.

Fig. 2 shows the SRL output for an example misuse case
step. The phrase “The malicious user” represents the actor who
performs the activity (tagged with A0); the phrase “dictionary
values” is the actor affected by the verb (i.e., tagged with A1).
The phrase “to the system” is the final location (tagged with
A2), while the last chunk of the sentence represents the manner
(tagged with AM-MNR) in which the activity is performed.

C. Natural Language Programming

Natural language programming refers to a family of ap-
proaches that automatically generate programs from NL spec-
ifications (e.g., [27], [28], [29], [30], [45]). MCP has been
inspired by techniques for building NL interpreters [27], [28],
[29], [30], in particular NLCI, a technique accepting action
commands in English to translate them into executable code.

NLCI [30] translates NL sentences describing the system
activities into sequences of API calls that implement the
intended actions. To this end, it requires an ontology that
captures the structure of the given API. To identify the API
calls, NLCI relies on a scoring mechanism using the string

similarity between the terms in the sentence and the method
and parameter names in the API.

Although inspired by NLCI, MCP differs from NCLI in
many ways: MCP directly addresses security testing, MCP
adopts a different scoring mechanism, and, finally, MCP
supports the generation of assignment statements and (input)
data structures (i.e., dictionaries), which is not supported by
NLCI (see Section VIII).

III. RELATED WORK

Security testing verifies the compliance of a software system
with its security requirements [10], [46], [47], which, in turn,
can be given as positive requirements, specifying the expected
functionality of a security mechanism, and as negative require-

ments, specifying what the system should not do [8], [9]. For
instance, a positive security requirement is “a user account
is disabled after five unsuccessful login attempts”, while a
negative security requirement is “a malicious customer should
not be able to access resources that are dedicated to users
with a different role (e.g., employee)”. This classification of
security requirements is reflected in security testing [8], [9],
[10]: (1) security functional testing validating whether the
specified security properties are implemented correctly, and
(2) security vulnerability testing addressing the identification
of system vulnerabilities. Security vulnerability testing mimics
attackers who aim to compromise the security properties of the
system (e.g., confidentiality, integrity, and availability) [10],
[48]. Security vulnerability testing requires specific expertise
for simulating attacks (e.g., identifying risks in the system and
generating tests driven by those risks), which makes test case
generation and execution difficult to automate [49].

Most vulnerability testing approaches focus on a particular
vulnerability like buffer overflow and code injection vulnera-
bilities. For instance, Appelt et al. [15] present an automated
approach that generates test inputs for SQLi attacks, while
Tripp et al. [14] provide a learning algorithm for black-box de-
tection of cross-site scripting (XSS) vulnerabilities. Ognawala
et al. [13] present a tool that uses symbolic execution to
detect memory out-of-bounds/buffer overflow vulnerabilities
caused by unhandled memory operations in a program. Those
approaches support engineers for a limited set of attack-
related activities (e.g., input generation for an SQL injection
vulnerability), and cannot be adopted to generate executable
test cases for complex attack scenarios involving articulate
interactions among parties, e.g., stealing an invitation e-mail
to register multiple fake users on a platform. In contrast, MCP
enables engineers to specify such attack scenarios in misuse
case specifications and automatically generates executable test
cases from the specifications.

Model-based testing approaches are capable of generating
test cases based on interaction protocol specifications [16],
[17] and thus can potentially generate test cases for complex
attack scenarios [18]. Model-based security testing is a rela-
tively new research field [46], where some approaches have
been proposed for security vulnerability testing (e.g., [50],
[51], [52], [53], [54], [55], [56], [57], [58], [59]). For instance,



Marback et al. [53] propose a model-based security testing
approach that automatically generates security test sequences
from threat trees. Wimmel and Jürjens [60] present an ap-
proach that generates security test sequences for vulnerabilities
from a formal model supported by the CASE tool AutoFocus.
Whittle et al. [61] provide another approach that generates
test sequences from attack scenarios in UML sequence and
interaction overview diagrams. In these approaches, however,
engineers have to transform the generated test sequences into
executable tests manually, thus leading to limited benefits.

Xu et al. [62], [63] introduce the MISTA tool that auto-
matically generates executable vulnerability test cases from
formal threat models (i.e., Predicate/Transition - PrT nets).
Jürjens [54] relies on some security extensions of UML, i.e.,
UMLsec [64], [65], [66], to generate security vulnerability
test cases from detailed UML statecharts capturing control
and data-flow. Bertolino et al. [50] present a model-based
approach for the automatic generation of test cases for security
policies specified in a process algebra language. All these
approaches require detailed formal models, which limits their
adoption in industrial settings. In fact, engineers tend to avoid
such detailed models because of the costs related to their
development and maintenance, especially in contexts where
system requirements are already available in NL.

There are approaches that generate functional system test
cases from NL requirements (e.g., [19], [20], [21], [22], [23]).
For instance, Wang et al. [21], [22] automatically generate
functional test cases from use case specifications written in
RUCM. These approaches can be employed in the context
of security functional testing, but not security vulnerability
testing since they generate test cases only for the intended
system behavior. Khamaiseh and Xu [67] present an approach
that automatically builds, from misuse case specifications, PrT
nets for the MISTA tool to automatically generate security
vulnerability test cases. For the test code generation, test
engineers have to provide some helper code and a model-
implementation mapping description which maps the individ-
ual elements of a PrT net to their implementation constructs.
In contrast, our approach does not need any helper code or
model-implementation mapping.

IV. OVERVIEW OF MCP

The process in Fig. 3 presents an overview of our approach.
MCP takes as input a set of misuse case specifications and a
test driver API implementing the functions required to test
the system (e.g., functions that load URLs). The MCP tool
prototype includes a generic test driver API for Web testing
that can be extended for system specific operations. The input
misuse case specifications should conform to a template which
enforces (i) the use of simple sentences to facilitate NLP, (ii)
the use of keywords to capture the control flow, and (iii) the
use of attack keywords to specify which inputs should be
generated according to predefined attack patterns. These are
some of the characteristics of the RMCM template, though
MCP may work with other templates.
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Fig. 3. Overview of the MCP approach.

MCP generates as output a set of executable security test
cases that rely on the provided test driver API to perform the
activities described in the misuse case specifications.

An essential component of the approach is an automatically
populated ontology (hereafter MCP ontology). An ontology is
a graph that captures the types, properties and relationships
of a set of individuals (i.e., the basic blocks of an ontology).
MCP uses the ontology to model programming language and
test infrastructure concepts (Label A in Fig. 3), to capture the
relationships and structure of the classes of the test driver API
(Label B), to capture the relationships between inputs (Label
D), and to represent the variables declared in the generated test
case (Label F). We employ an OWL ontology [68] instead
of UML diagrams because OWL provides simple means to
query the modeled data. The MCP ontology is populated and
managed using Apache Jena [69].

To generate test cases from misuse case specifications, MCP
works in four phases. In the first phase, Map the test driver

API to the MCP ontology, MCP processes the test driver API
and augments the MCP ontology with individuals that model
the classes and functions belonging to the given test driver



Fig. 4. Part of the MCP ontology capturing programming language concepts.
We depict the ontology using a UML class diagram. UML classes model types
of individuals. UML associations capture properties.

API (Labels A and B). In the second phase, Generate misuse

case models, MCP relies on an NLP pipeline to derive models
that explicitly capture the control flow implicitly described in
misuse cases (Label C).

In the third phase, Identify test inputs, MCP determines the
inputs to be sent to the system. It first identifies the input
entities (Label D) and then prepares a configuration file that
will be filled out by engineers with concrete input values
to be used during testing (Label E). MCP can automatically
generate the input values when these values can be derived
by relying on predefined strategies (e.g., using grammars to
generate inputs for code injection attacks [14], [15]).

In the fourth phase, Generate executable test cases, MCP
automatically generates executable test cases from the misuse
case models (Labels C and G). Each generated test case
follows the control flow in the corresponding misuse case
model and, for each step in the model, executes an operation
implemented by the given test driver API. MCP employs a
natural language programming solution to map each step in
the misuse case model to an operation exposed by the test
driver API. This solution maps NL commands (i.e., sentences
in misuse case steps) to objects and methods of the provided
API by retrieving information from the MCP ontology (Label
F). While generating the test cases, the MCP ontology is
augmented with individuals matching the variables declared
in the test case.

We provide the MCP prototype with a set of predefined
misuse case specifications derived from the OWASP testing
guidelines [8]. These misuse cases can be reused (or adapted)
across multiple projects; in addition, security analysts can
write new, system specific misuse case specifications.

The rest of the paper provides a detailed description of
each phase of MCP shown in Fig. 3, with a focus on how
we achieved automation.

V. MAPPING THE TEST DRIVER API TO AN ONTOLOGY

We provide an ontology (i.e., the MCP ontology) with
concepts common to object-oriented programming lan-
guages (e.g., Type, Class, Attribute, Method, and
Parameter). The MCP ontology also captures the con-
cepts required to model the runtime behavior of a test case:
Instance (i.e., an instance of a Type) and Variable
(i.e., a program variable pointing to an instance). Fig. 4 shows
part of the MCP ontology; we model programming language
concepts as types, shown in Fig. 4 using UML classes.

Fig. 5. Part of the MCP ontology populated when generating a test case
for ‘Bypass Authorization Schema’. UML classes model types. UML objects
model individuals. Part-A models the test driver API. Part-B models the
variables in the scope of Line 21 of the test case in Fig. 10.
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Fig. 6. Misuse case model for the misuse case specification in Fig. 1.

MCP automatically populates the MCP ontology with types
and individuals that match the elements (e.g., methods) in
the test driver API. For example, Fig. 5-A shows part of
the populated MCP ontology that models the test driver API
used in our case study. System is a type while send is an
individual of type Method with the property methodOf set
to System (we use association links to model properties).

Although our approach is language independent, the MCP
prototype works with the test driver API in Python. Therefore,
our prototype includes a Python component that relies on
reflection to extract the names of classes, methods and method
parameters from the given API. Although the Python program-
ming language does not enforce the declaration of method
parameter types, we assume that parameter types are captured
by means of function annotations, a common practice adopted
by Python programmers to document their software [70].

VI. GENERATING MISUSE CASE MODELS

MCP automatically generates a misuse case model for each
misuse case specification (see Fig. 6). It employs an NLP
pipeline that looks for control flow keywords (e.g., IF ..
THEN, FOREACH, RFS and RESUME in RMCM) to build a
model that captures the control flow implicitly specified in the
misuse case specification. Each node in the model corresponds
to a step in the misuse case specification. For simplicity, in



Fig. 6, we indicate only the type of the control flow nodes
(i.e., CONDITION, FOREACH, ENDFOR and EXIT), while we
report the line number of the step for the remaining nodes.

We do not provide details of the misuse case model genera-
tion because it is algorithmically simple and similar to the one
adopted in our previous work [21]. Briefly, for each condition
keyword encountered (i.e., IF .. THEN), MCP generates a
control flow node that is linked to the first steps of the false
and true branches. For each iteration keyword (i.e., FOREACH
and DO .. UNTIL), it generates a node that is linked to the
node corresponding to the step in the iteration body (see the
arrows BODY in Fig. 6) and to the node matching the step
executed after the iteration (see the arrows NEXT).

VII. IDENTIFYING TEST INPUTS

MCP determines input entities (e.g., ‘role’, ‘password’,
‘username’, and ‘resource’ in Fig. 1), input relationships (e.g.,
each ‘username’ is associated to a ‘role’), and values to be
assigned to input entities.

Consistent with RMCM, MCP assumes that input entities
appear in misuse case steps with a verb that indicates that
one or more entities are sent to the system under test by an
actor (e.g., “The malicious user sends username and password
to the system” and “The malicious user inserts the password
into the system”). SRL is employed to automatically determine
sentences indicating the sending of an entity to a destination.
Depending on the verb, SRL usually tags destinations with
A2 or AM-LOC (see Section II-B). Therefore, a sentence
containing terms tagged with A2 or AM-LOC likely describes
an input activity. In such sentences, MCP looks for the entities
being sent, which match the terms tagged with A1 (i.e., the
terms affected by the verb).

MCP automatically identifies relationships between input
entities to avoid generating input values that may hamper the
detection of vulnerabilities. For example, in Fig.1, we need to
determine the roles associated to a username and password.
This is necessary, for instance, to avoid using the username
‘Mr. Phu’, who is a patient, to simulate the behavior of a
malicious doctor trying to access managers’ data. If we use
the username with the wrong role, the test case may not reveal
that the system is vulnerable (e.g., malicious doctors might be
able to access managers’ data while patients might not).

MCP relies on the fact that a relationship between input
entities can be derived from the control flow in a misuse case
specification. For example, in Fig. 1, there is a one-to-many
relationship between ‘role’ and ‘resource’ because multiple
resources are requested with the same role (see Lines 5, 7
and 8). There is a one-to-one relationship between ‘role’ and
‘username’ because only one username is sent for each role
(see Lines 5 - 6).

The MCP ontology is employed to capture input relation-
ships by creating instances of the dict type. The dict type
in the ontology is used to model the Python dictionary type,
which maps keywords to values. Fig. 7 shows part of the
populated MCP ontology that captures the input relationships
in the misuse case in Fig. 1. The dict inputs individual

Fig. 7. Part of the populated MCP ontology for Fig. 1.

contains one Key individual for each input entity in the misuse
case specifications (e.g., role, username and password).
Also, it contains additional dict individuals for each entity
appearing in an iteration (e.g., role) because these entities
usually present containment relationships (e.g., each role has
an associated username and password).

MCP relies on engineers to select input values. Automating
the generation of input values is a challenge since it entails a
complete understanding of system specifications. For example,
to generate input values from the misuse case in Fig. 1, MCP
needs existing users and roles, which cannot be automatically
extracted without the architecture of the system under test.
This information can be manually retrieved by engineers who
know the system architecture and configuration.

To guide engineers in generating input values, MCP auto-
matically generates a JSON file using the MCP ontology. The
JSON format represents the content of dictionaries in textual
form. The generated file contains input types (e.g., role)
and placeholders to be replaced by engineers with values.
Fig. 8 shows the JSON file generated from the MCP ontology
in Fig. 7. Fig. 9 shows part of the same file with values.
Note that engineers can specify more values for an input
entity as suggested by the keyword ADD-MORE-ENTRIES;
this is necessary to deal with iterations. The repeated entries
might have a complex structure like in the case of role and
resource which contain inner values (see Fig. 9).

To reveal some vulnerabilities, it is necessary to generate
a large number of input values by using a predefined input
generation strategy; this happens, for example, in the case of
misuse cases that model attacks based on dictionary values
or code injection (e.g., SQL injection). To assist engineers in
such cases, MCP requires that an input generation strategy be
indicated with a keyword in the misuse case specification (e.g.,
the keyword ‘DICTIONARY VALUES’ in Fig. 2).

To determine whether a predefined strategy needs to be
used, MCP checks the terms tagged with A1 (i.e., the entity
sent to the system) matching the keyword for the given strategy
(e.g., ‘DICTIONARY VALUES’ in Fig. 2). If so, MCP looks
for the terms tagged with AM-MNR (see Section II-B), which
are the input entities to which dictionary values are assigned
(e.g., ‘username’ and ‘password’ in the example above).



{"role": [
{

"password": "REPLACE-THIS-STRING",
"role": "REPLACE-THIS-STRING",
"username": "REPLACE-THIS-STRING"
"resource": [
{

"resource": "REPLACE-THIS-STRING",
"error_message": "REPLACE-THIS-STRING",
"role_values": "REPLACE-THIS-STRING",
"the_resource_contains_the_role_parameter_in_the_URL": "PUT-EXPRESSION",
"the_resource_contains_the_role_parameter_in_the_HTTP_post_data": "PUT...

},
ADD-MORE-ENTRIES

],
},
ADD-MORE-ENTRIES
]

}
Fig. 8. Input file generated by MCP.

{"role": [
{

"role": "Doctor",
"username": "phu@mymail.lu"
"password": "testPassword1",
"resource": [
{

"resource": "http://www.icare247.eu/?q=micare_invite&accountID=11"
"error_message": "error",

. . .
},
{
"resource": "http://www.icare247.eu/?q=micare_skype/config&clientID=36"
"error_message": "error",
"the_resource_contains_the_role_parameter_in_the_URL": False,
"the_resource_contains_the_role_parameter_in_the_HTTP_post_data": False

}, ], }
{

"role": "Patient",
. . .

Fig. 9. Part of the JSON file in Fig. 8 with input values.

VIII. GENERATING EXECUTABLE TEST CASES

MCP generates an executable test case for each misuse case
specification. In the MCP prototype, each generated test case
corresponds to a Python class that implements a method named
run. Fig. 10 shows part of the test case generated for the
misuse case in Fig. 1.

MCP declares and initializes three variables, system,
maliciousUser and inputs (Lines 3, 4 and 5 in Fig. 10).
The variable system refers to an instance of the class
System, which provides methods that trigger the functions
of the system under test (e.g., request). The variable
maliciousUser refers to the test class, since the test class
simulates the behavior of the malicious user. The variable
inputs refers to a dictionary populated with the input
values specified in the JSON input file. These three assign-
ments are given in the MCP ontology with the individuals

1 class bypassAuthorizationSchema(HTTPTester):
2 def run(self):
3 system = System(path=self.rootPath)
4 maliciousUser = self
5 inputs = self.loadInput("inputs.json")
6 roleIter = inputs["role"].__iter__()
7 while True:
8 try:
9 role = roleIter.__next__()
10 parameters = dict()
11 parameters["password"] = role["password"]
12 parameters["username"] = role["username"]
13 system.send("login page",parameters)
14 resourceIter = role["resource"].__iter__()
15 while True:
16 try:
17 resource = resourceIter.__next__()
18 if not eval(resource["the_resource_contains_a_role_
19 parameter_in_the_URL"]):
20 if not eval(resource["the_resource_contains_a_role_parameter..
21 system.request(resource)
22 maliciousUser.responsePage = system.responsePage
23 if not responsePage.contains( resource["error message"] )
24 parameters = dict()
25 parameters["resource"] = resource["resource"]
26 parameters["role"] = role["role"]
27 system.exploit(parameters)
28 else:
29 maliciousUser.abort("The MALICIOUS user CANNOT ex...")

Fig. 10. Part of the test case generated from the misuse case in Fig. 1.

maliciousUser, system and inputs (see Fig. 5-B).
MCP identifies the program elements (e.g., an API method)

to be used in the generated test case based on string similarity.
To do so, we employ a string similarity solution successfully
used in our prior work [42], i.e., a function based on the
Needleman-Wunsch string alignment algorithm [71]. To gen-
erate an executable test case, MCP processes all the nodes in
the generated misuse case model (see Fig. 6). For each control
flow node, MCP generates a control operation in the test case.
For each other node, MCP generates both a method call and
an assignment instruction by using the string similarity, and
then selects one of them according to a scoring procedure.

In the following, we present the string similarity solution
adopted by MCP, and the generation of method calls, assign-
ments, control flow instructions and oracles.

A. String Similarity Measures

The Needleman-Wunsch string alignment algorithm maxi-
mizes the matching between characters by allowing for some
degree of misalignment between them. The similarity degree
adopted by MCP is computed as the percentage of matching
characters in the aligned strings. In the rest of the paper, we
write that a string sa belonging to a set of strings S best
matches a string st if the following holds:
8s : s 2 S,D(sa, st) � D(s, st) and D(sa, st) � T
with D being the function for computing the degree of

similarity of two strings and T being a threshold, set to 0.4 in
our experiments, below which matching strings are excluded.

B. Generation of Method Calls

For each misuse case step, MCP aims to generate a method
call that performs the activity described in the sentence. To
achieve this goal, MCP must select the correct method to be
invoked (i.e., a method with a proper name and parameters
that belongs to a specific class instance) and identify which
instance variables should be passed as argument.

To identify the class instance that should expose the method
to be invoked, MCP queries the MCP ontology looking for
individuals that best match, using similarity scores, the actors
typically involved in a misuse case sentence: the system, the
actor that performs the activity (SRL label A0), the actor
affected by the activity (SRL label A1) or the actor that
receives the inputs mentioned in the sentence (SRL labels A2
and AM-LOC). For each selected individual, MCP looks for a
method that is most likely to perform the activity described in
the misuse case sentence.

MCP selects the method that maximizes a score that results
from the average of: (S1) the string similarity degree between
the method name and the verb in the sentence (to measure
how well the method name matches the activity described
by the sentence); (S2) the average string similarity degree
of all the parameters with the best matching input entity (to
determine if the method is supposed to work with the input
entities appearing in the sentence); (S3) the percentage of
terms (i.e., verb and noun phrases appearing in the misuse
case sentence) that match the method parameters (to measure
the completeness of the generated instruction, i.e., to what



extent the concepts appearing in the sentence are reflected
in the method call). The last point distinguishes MCP from
other natural language programming solutions (e.g., [30])
since these do not measure the completeness of the generated
instruction. MCP may also select a method call that best-
matches the full sentence; this is done to properly deal
with sentences describing specific attacks (e.g., “execute a
network sniffing tool” which is implemented by the method
executeNetworkSniffingTool, whose name includes
the verb and the object in the sentence).

After identifying a method as the best candidate for a misuse
case sentence, MCP generates the corresponding executable
instruction as follows. First, MCP generates the program
code corresponding to the invocation of the selected method
(e.g., system.request in Line 21 in Fig. 10). Then MCP
identifies the instance variables to pass as arguments; to this
end, MCP queries the ontology looking for instance variables
with the same type as the method parameter and with the best
matching name. For example, in the case of Line 21 in Fig. 10,
MCP selects the instance variable resource, which exactly
matches the name of the parameter of the method request.
If there is no variable matching the method parameter, MCP
derives the value to be used directly from the text of the input
entity that best matches the parameter name. This is necessary
because the misuse case specification may include some of
the values to be used during testing. If the parameter is a
string, MCP sets the value to the name of the input entity (e.g.,
"login page" in Line 13). If the parameter is a boolean,
MCP sets its value to True (this helps dealing with methods
presenting boolean flags, e.g., the method modify shown in
Fig. 5). Otherwise, MCP signals the missing parameter using
a dedicated keyword in the generated code.

MCP also deals with API methods that declare an arbitrary
number of parameters. This is the case of method send of the
class System (Fig. 5-B), which is used to send a set of input
values to the system under test and enables the specification
of inputs to be sent according to the input page. For example,
a login page may require two inputs (e.g., username and
password), while the page for registering a new user may
require more inputs. In Python, an arbitrary number of named
arguments can be passed to a method by using a dictionary
parameter. For this reason, in the presence of a dictionary
parameter whose name does not match any input entity, MCP
assumes that the dictionary parameter can be used to pass
named arguments to the method. More precisely, MCP uses
the identified dictionary parameter to pass input entities that
do not match any other method parameter. These entities are
taken into account when computing the score of the method
(point S3 above). This is what occurs when MCP processes
Line 6 of the misuse case specification in Fig. 1, which leads
to generating the code appearing in Lines 10 - 13 in Fig. 10.
The parameter pars of the method system.send is used
by MCP to pass additional parameters to the method (i.e.,
username and password).

To simplify testing further, in the presence of test driver API
methods requiring specific configuration parameters (e.g., the

method System.send requires a mapping between a page
name and its URL), engineers, instead of manually crafting a
configuration file, can provide API methods that are invoked
by MCP to automatically generate a file with the required
configuration parameters.

C. Generation of Assignments

Assignment instructions are expected to be generated when
some data (input or output) is exchanged between an actor
and the system under test. MCP relies on SRL to identify the
actor who performs the action (i.e., A0 which is supposed to
be the source of the data) and the final destination, which
is captured by the SRL labels A2 or AM-LOC. The data
being transferred correspond to the terms tagged with A1.
The assignment is then generated by looking for two instance
variables that best match the terms tagged with A0 (i.e., the
data source for the right-hand side) and A2 or AM-LOC (i.e.,
the destination for the left-hand side). The term tagged with
A1 (i.e., the data being moved) should then match an attribute
of the objects referred by the selected variables. For example,
the misuse case step “The system sends a response page to
the malicious user” (Line 9 in Fig. 1) leads to the generation
of the assignment in Line 22 in Fig. 10.

The score of the generated assignments is calculated by
computing the mean of (1) the average string similarity degree
for the terms used to identify the left-hand side and right-
hand side of an assignment (to measure the likelihood that the
selected terms match the concepts in the sentence) and (2) a
value indicating the proportion of terms of the misuse case
step that appear in the generated assignments (to measure the
completeness of the generated assignments with respect to the
concepts appearing in the step).

D. Generation of Control Flow Instructions

The generation of control flow instructions is straightfor-
ward and follows typical practices adopted in DSL-based and
model-based code generation [72]. In this section, we focus on
the generation of instructions from iterations and conditional
sentences in NL, which is not addressed by DSL-based and
model-based approaches.

Since iterations (i.e., sentences containing the keyword
FOREACH) are used to indicate that a sequence of activities
is repeated for a given set of input entities, MCP generates
a block of code that iterates over all the values of the input
variable matching the input entity mentioned in the FOREACH
sentence. For example, Lines 6 - 9 in Fig. 10 show that the
test case iterates over the elements of the list named role.

Condition sentences, instead, are used to indicate that cer-
tain activities are performed when a given condition, written
in NL, holds. In general, a condition in the test code can be
used to evaluate the truth value of either runtime data (e.g.,
the value returned by a method call) or input data (e.g., a
configuration parameter). To deal with the first case, MCP
generates a method call that best matches the condition in
NL (Line 23 in Fig. 10). If the condition sentence does not
match any method call, MCP assumes that the condition works



with test input parameters, and thus generates a condition
instruction evaluating the truth value of an input entity that
matches the sentence (Line 18 in Fig. 10). The name of the
input entity is added to the JSON input file (see the parameters
starting with the_resource_contains in Fig. 8).

E. Generation of Oracles

In executable test cases, an automated oracle is typically
implemented by means of instructions that report a failure
when a certain condition does not hold; this is, for example,
what JUnit assertions do [73]. MCP automatically generates

oracles; this is implicitly achieved during the generation of
the executable test case because MCP generates code that
matches all the use case steps, including conditions that check
erroneous outputs (e.g., Line 30 in Fig. 1) and instructions
indicating that the malicious user can exploit a vulnerability
(e.g., Line 10 in Fig. 1).

For example, the condition instruction in Line 23 of the test
case in Fig. 10 corresponds to Line 30 in Fig. 1 and determines
whether the system was not able to detect an unauthorized
access. The instruction in Line 27 of Fig. 10, which corre-
sponds to Line 10 in Fig. 1, is used to report a failure. In
the MCP prototype, the method System.exploit, which
matches misuse case steps indicating that a malicious user
exploits a vulnerability, is used to report a failure.

IX. EMPIRICAL EVALUATION

We have performed an empirical evaluation to respond to
the following research questions:

• RQ1. Does MCP correctly identify input entities?
• RQ2. Can MCP generate executable test cases from

misuse case specifications?
• RQ3. How do the generated test cases compare to manual

test cases in terms of effectiveness, soundness and costs?
Case Study System and Empirical Setup

We applied MCP to generate test cases for a healthcare
software system developed in the context of the EU project
EDLAH2 [74]. The EDLAH2 project is developing a set of
gamification-based services to engage clients (elderly people)
in physical, mental, and social activities.

The EDLAH2 system is a representative example of a
modern user-oriented system leveraging the capabilities of
mobile and wearable devices. The software components of
the EDLAH2 system are developed by professional software
engineers, with three to twenty years of experience.

The EDLAH2 engineers follow the RMCM methodology to
capture security requirements because RMCM specifications
are written in NL and thus ease communication among all the
stakeholders. The EDLAH2 misuse case specifications include
a total of 68 misuse cases which describe both general attack
patterns derived from the OWASP guidelines [8], [75] and
system specific attacks that leverage some characteristics of the
EDLAH2 system. For example, one of the EDLAH2 misuse
cases models a malicious user who generates multiple user
accounts by stealing the token of the page for inviting new
users. Over the past months, the misuse case specifications of

the EDLAH2 system have been used to manually derive test
cases (scripts for manual testing and executable test cases).

To evaluate MCP, we have developed a Java prototype,
which is available for download along with the experimental
data presented in this section [76]. We have used the MCP
prototype to generate executable test cases from 12 misuse
case specifications. We have selected 12 misuse cases targeting
the Web interface and with the highest risk according to the
OWASP risk rating methodology [8]. Nine of the test cases
manually derived from the selected misuse cases enabled the
identification of vulnerabilities in the past months.

To perform the experiments, we have used a test driver API
that was developed to support the manual implementation of
the test cases from the EDLAH2 misuse case specifications.
The API consists of ten classes and 84 methods in total.

RQ1

MCP reports the input entities in the JSON input file,
which we inspected to evaluate the capability of MCP to
determine correct input entities. We measure precision and
recall according to standard formula [77]. In our context,
true positives coincide with input entities, identified by MCP,
which are correct (i.e., necessary to perform the test). False
positives are input entities that do not correspond to software
inputs. False negatives are input entities required to perform
the attack (e.g., an input that should be provided to a form
field of a Web page), which have not been identified by MCP.

In total, MCP leads to 29 true positives (i.e, input entities
correctly identified), one false positive, and three false neg-
atives. The false positive is due to the fact that one input
entity belongs to an activity that is executed under conditions
that do not hold for the EDLAH2 system (this is the case
of the input entity ‘role values’ which is used in ‘Bypass
Authorization Schema’ only for systems with URLs including
role parameters). The three false negatives are caused by a
concept (i.e., invitation request) which corresponds
to three distinct input entities for the system under test
(i.e., email, username and message). Overcoming false
positives and negatives has shown to be simple since we did
not modify the generated test code, but simply removed and
added entries from and to the JSON input file. Precision and

recall are particularly high, 0.97 and 0.91 respectively, which
will favor the adoption of the technique in industrial settings.

RQ2

We inspected the source code of the generated test cases to
spot the presence of errors affecting the control instructions,
assignments, method calls and parameters. We also counted
the number of test cases successfully executed without runtime
errors due to programming mistakes. To execute the test cases,
we have filled out the MCP input files with the help of
EDLAH2 engineers.

The test cases generated by MCP do not contain any
programming error and, furthermore, were all successfully
executed against the EDLAH2 system. The generated test
cases, one for each misuse case, are not trivial, and include a
total of 791 lines of code (101 max for a single test, 55 min),



172 method calls (23 max, 10 min), 44 assignments (5 max,
3 min), 260 method arguments (42 max, 12 min). A subset of
128 method invocations concern the test drive API methods,
while the rest corresponds to general Python utility methods.
The generated test cases have been delivered to our industrial
partners and are used to test the EDLAH2 system.
RQ3

We compared the test cases automatically generated by
MCP with the test cases manually derived by EDLAH2
engineers for the same set of misuse case specifications, and
with respect to effectiveness, soundness, and costs.

A security test case is effective if it is capable of discovering
vulnerabilities that affect the system and it is sound if it does
not report false alarms. The test cases generated by MCP
identified all the nine vulnerabilities detected with manual
testing, which shows that MCP test cases are as effective as
manual test cases. Note that all these vulnerabilities result
from real errors committed by engineers during software
development. The test cases generated by MCP did not lead
to the identification of any false alarm, thus showing that the
approach is sound.

We discuss costs by comparing the effort required to per-
form vulnerability testing using MCP with the effort required
by manual testing. To manually implement executable test
cases, engineers must read and understand the security spec-
ifications of the system, an activity that requires substantial
effort. Also, the implemented test cases might be error-prone
and difficult to maintain. In the case of MCP, engineers do not
need to implement or maintain executable test cases, but they
require a test driver API and security specifications in NL.
Our previous research results have shown that experienced
engineers find that writing security specifications according
to a structured format is helpful to support communication
among stakeholders [26], which motivates the adoption of
the RMCM methodology. In the presence of RMCM spec-
ifications, the generation of vulnerability test cases can be
fully automated by MCP. To give additional evidence of the
benefits of MCP, we count the lines of code of nine test
cases developed by EDLAH2 engineers based on nine misuse
case specifications, which is 1523. Considering that EDLAH2
requirements include more than 60 misuse cases, the manual
implementation of all the required test cases would become
expensive because of the effort required to write hundreds
of lines of code after carefully reading several requirements
specifications. This further motivates the adoption of MCP.

A test driver is also required by the manually written test
cases, including functional test cases. Since a project-specific
test driver API is necessary for both functional and security
testing, its development costs do not directly result from the
adoption of MCP. In addition, we provide the MCP prototype
with a general test driver API that can be used with different
Web projects, thus further reducing API development costs.

In both MCP and manual testing, engineers need to identify
the input values to be used during testing (e.g., URLs). In
general, the number of input values required for MCP and
manual test cases derived from the same set of misuse cases

is similar since they both cover the same scenarios. For each of
the 12 MCP test cases generated in our experiment, engineers
provided, on average, 15 distinct input values (excluding
dictionary values) in the JSON input files and 11 configuration
parameters required by the test driver API methods.

Threats to validity. The main threat to the validity regards
generalizability, since results are linked to the case study
system considered and the selected misuse case specifications.
To deal with this threat, we considered a complex case study
system which is a representative of modern user-oriented
services for both its architecture and the technologies adopted.
Also, we considered misuse cases that enabled the detection
of vulnerabilities caused by real mistakes, committed by
experienced software engineers during software development,
and thus representative.

X. CONCLUSION

In this paper, we presented MCP, an approach that auto-
matically generates vulnerability test cases, that is test cases
simulating attacks and aimed at uncovering security vulnera-
bilities. MCP focuses on contexts where security requirements
are written in Natural Language (NL), which is a common case
since NL facilitates communication among stakeholder as in
our industrial case study.

MCP requires as input a set of misuse case specifications
and a test driver API and automatically generates a set of
executable test cases that simulate the activities described in
the misuse case specifications. MCP is a natural language
programming solution that automatically translates each step
in the misuse case specifications into executable instructions.
The identification of the instructions to execute relies on
NLP techniques. These techniques enable the identification of
concepts that match the elements of the test driver API to be
used in the test cases. For example, the actor performing an
activity usually corresponds to an instance of an API class
that exposes a method matching the verb in the sentence. The
matching between concepts in NL requirements and the API
is enabled by string similarity and an ontology which is used
to model the test driver API and the generated test case. MCP
assumes a consistent use of terminology between misuse case
specifications and test driver API, which is generally true for
modern test-driven development approaches. Future work will
include the handling of synonyms (e.g., [42]).

Empirical results with an industrial case study system in the
healthcare domain include the automated identification of real
vulnerabilities in the developed system, an indication of the
effectiveness of MCP. Also, MCP reduces the effort required
for performing security vulnerability testing since it automates
the generation of executable test cases which are not trivial to
manually implement.
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