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Abstract

With increased interest in studying neurodegenerative diseases, data generated is grow-

ing exponentially. The sheer amount of patient data being collected gives rise to the

problem of how it can be stored, represented and classified. The representation of col-

lected data varies from one centre to other, based on several factors such as language,

region, standards adapted, study design. The results of this variation makes it difficult

to study different cohorts by combining or comparing them. Therefore, variables that

are collected in all these cohorts need to be standardised and harmonised for further

re-use and analysis.

Disease maps are another form of knowledge resources collecting existing

biological facts in a single resource. Disease mechanisms are represented visually in

the form of models or maps, capturing the knowledge extracted from the literature.

There are several modelling languages which serve this purpose. Disease maps capture

knowledge about disease related mechanisms at different molecular levels. Compar-

ison of different disease maps can support co-morbidity studies to identify common

disease mechanisms or drug targets. To this end, we developed a method to compare

disease maps. We then compared Parkinson’s and Alzheimer’s disease maps using this

approach.

However, there are several modelling formats available. Therefore, here arises

a need to harmonise and standardise the representation and make the different disease

modelling formats convertible and comparable. For the course of the project, we focus

on Open Biological Expression Language (OpenBEL) and Systems Biology Markup

Language (SBML) modelling languages. A semi-automated convertor from OpenBEL

format to SBML was developed to compare knowledge over heterogeneous systems his

was then used to convert an Alzheimer’s OpenBEL model to SBML format for better

visualization and hierarchical representation and to enable comparison against other

SBML models.

In conclusion, the work presented in the thesis, emphasises the importance of

standards in the representation and modelling of clinical and biological information to

vi



ensure interoperability between tools and models and facilitate data sharing, reusability

and reproducibility.
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Chapter 1

Introduction

A large number of clinical cohorts are set up to study diseases and their mech-

anisms. As of May 2018, Clinicaltrails.gov records 450 clinical studies planned or

currently recruiting subjects with Parkinson’s Disease. Another 100 have completed

recruitment and are still active. During a clinical study, researchers collect diverse data

over several visits, e.g.: clinical assessments, biomarker tests, imaging, genetic tests,

all in various formats. The study design, ontologies used and even the language of the

study may differ. As a support to clinical studies being setup to study diseases, disease

maps offer an approach to collect and integrate existing knowledge about the disease

mechanisms, providing context to the hypotheses about the disease. Disease maps inte-

grate multiple knowledge resources at different molecular levels and also enable visual

exploration.

Current disease classifications rely mainly on the phenotypes of the diseases,

especially in the case of neurodegenerative diseases like Parkinsons and Alzheimers.

This is primarily due to the inherent complexity of the biological systems and partly

because the aetiology of the disease is still unknown to us. Recently projects like AE-

TIONOMY (https://www.aetionomy.eu) and SYSCID (https://syscid.eu/) focus

on capitalising on the knowledge about the underlying mechanisms of the disease to

1
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2 Chapter 1. Introduction

better explain the pathology of the disease [Hofmann-Apitius et al., 2015a, Schultze and

Rosenstiel, 2018]. Integration of these heterogeneous resources requires a harmonised

format and standards. This also helps to link different tools and subsequent analysis.

Today, the data generated by research grows both in volume and variety. This

data is definitely valuable but mostly unstructured or partially structured. Making data

useful requires cleaning and organising, which is both expensive and time consuming

and adds to the cost at every step of data processing, from analysis to decision making.

Data collected from disparate sources require harmonization for them to provide a

single view, otherwise they will remain separate pieces.

Harmonisation transforms datasets such that different pieces fit together

both in terms of semantics and information. Thus, it improves the power of large

scale studies by facilitating integration of different analyses. Harmonising collected

data increases the quality of data and the precision of resulting analysis. Utilising

standards to harmonise data and knowledge bridges the gap between their representa-

tions and makes the data easily identifiable, sharable, useful and interoperable. Data

sharing is one of the key components of reproducible and efficient research, to maximize

the value of research. To promote good data stewardship, a community of international

stakeholders have developed a set of guidelines to make data Findable, Accessible, In-

teroperable and Reusable, and have been widely accepted by the scientific community,

and various institutions, projects and initiatives to share data and maximise its use

and reuse [Wilkinson et al., 2016].
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1.1 Trends in biomedical research and their impact

on bioinformatics

With the advent of high-throughput technologies, the rate at which data

is generated to support translational research and personalised medicine is growing.

These high-throughput technologies are used to investigate distinct aspects of the cellu-

lar processes at several levels such as genome, transcriptome, proteome and metabolome.

To understand complex biological systems, we need to study the effect of alterations

on the genome, transcriptome, proteome and metabolome simultaneously [Horgan and

Kenny, 2011]. Data integration has been reported to be an effective strategy to extract

meaningful biological data from heterogeneous data sets in several fields [Xie et al.,

2017, Huang et al., 2017]. It has been employed to identify candidate genes for further

investigation, thereby scaling down the translation of genome-wide data into smaller

list [Zhong and Sternberg, 2007]

The heterogeneity and inaccessibility across data sources are the major fac-

tors hindering formalized integration. Mandates on data sharing, considerations of

standardized data collection, and mechanisms to integrate heterogeneous data are nec-

essary to address these issues [Allen et al., 2016]. Today several efforts are in place

in the scientific community to enforce and promote the use of a uniform standard, on

data sharing [Wilkinson et al., 2016, McQuilton et al., 2016, Auffray et al., 2016, Wol-

stencroft et al., 2017].

1.2 Standards in biomedical research

Standards are an agreed or compliant term or form of representation. In

other words, standards are essentially a set of rules and definitions that specify how to

name or describe any entity or process. In a data-driven field like biomedicine, stan-
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dards play a major role. While some standards evolve over time, it is also essential to

develop them deliberately. Standards enable diverse research groups to communicate

and work in co-operative and collaborative environments, especially in healthcare do-

main, where different groups of people work towards a common goal. For instance, in a

healthcare environment, diverse groups such as patients, doctors, hospitals, biologists,

statisticians, bioinformaticians, patient organisations need to work together. This re-

quires coordination, communication and transfer of knowledge and data from one group

to another. In addition, medical knowledge is complex. Thus, encoding knowledge and

data using accepted standards and ontologies can reduce both ambiguity and technical

challenges for data exchange and interoperability arising due to the heterogeneity of the

data generated [Oemig and Snelick, 2016, Bodenreider, 2008, Smith and Brochhausen,

2010].

1.2.1 Need for standards

Most biomedical systems and resources are designed and developed indepen-

dently of each other. Therefore, they do not share a common format or structure.

This makes it time consuming and complex to determine the correspondences between

these heterogeneous sources. Challenges arising due to the heterogeneity in the design

of various databases have been previously reported in several biological research do-

mains such as genome wide studies and gene expression studies [Zhong and Sternberg,

2007]. The process is considered both time and computationally exhaustive since dif-

ferent databases use different identifiers, formats and access methods. Therefore, to

overcome such computational challenges researchers have preferred to obtain data from

least number of sources possible [Zhong and Sternberg, 2007].

Standards facilitate re-use of data by enabling easier data sharing and repro-

ducibility. In addition, standards also promotes interoperability across different data

formats and analysis tools. In an ideal biological research environment, standards form
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the base to all the higher layers of the infrastructure [Lapatas et al., 2015]. Therefore,

a strong foundation is necessary to build subsequent integration and analysis tools.

For data driven research goals, integration of results from different bioinformatic tools

or software are required. The first step is to find the specific service or tools which are

necessary to attain this goal. This may be one or more tools required in consecutive or

parallel steps. The results maybe generated through a web service or locally. However,

in several domains including biological research, it is a well accepted fact that these

tools and web services are not expected to be designed or represented using the same

schema or ontologies, since they are most likely developed for different purposes or tar-

get users [Ethier et al., 2018, Shvaiko, 2005]. Henceforth, both for finding the adequate

services and linking them, it will be necessary to establish the correspondences between

the interpretation of the inputs and generated results [Wilkinson et al., 2016, Ham-

mond et al., 2014]. Following standards in the design of the tools, representation and

naming of the inputs, process and outputs play an import role in this process. For

instance, if a service provides its result and description in an ontology and the next

required service or tool uses a different ontology for its input, matching both ontologies

and formats are essential for

a) ensuring what is delivered by the first service, matches what is required by the

second

b) verifying prerequisites of the second service or tool, and

c) creating a middle layer which acts as an interface to transform the output of the

first service such that it can be the input expected by the second service or tool.

Most scientific studies are build on previous findings. The scientific pro-

cess therefore depends heavily on the reproducibility and interoperability of results. In

2011, a team at Bayer Health Care in Germany investigated 67 in-house projects. They

reported that only about 25% of published preclinical studies could be validated for
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further investigation [Prinz et al., 2011]. Ioannidis et al., in 2009 reported the reanal-

ysis of 18 articles published in Nature Genetics on comparative analysis of microarray

experiments. Only two analyses could be reproduced in principle and six partially or

with some discrepancies. The main reason for failure, was reported as data unavail-

ability, incomplete data annotation or specification of data processing and analysis

[Ioannidis et al., 2009]. A lack of transparency and standards leads to loss in resource

and time to replicate these results [Baker, 2016, Begley and Ellis, 2012].

1.2.2 Standardisation efforts

Several initiatives coordinate and collaborate on the consolidation and cre-

ation of standards. They also play a major role to advocate the use of standards in

biological research at all levels. The Findability, Accessibility, Interoperability, and

Reusability (FAIR) principles for scientific data management and stewardship were es-

tablished to enhance the ability of machines to automatically find, access, exchange and

use data. FAIR stands for the four foundational principles Findability, Accessibility,

Interoperability, and Reusability [Wilkinson et al., 2016].

Clinical data interchange standards consortium (CDISC)

The Clinical Data Interchange Standards Consortium (CDISC) works on de-

veloping standards in clinical trials data and metadata (https://www.cdisc.org/). The

CDISC mission is ”to develop and support global, platform-independent data standards

that enable information system interoperability to improve medical research and related

areas of healthcare”. These standards facilitate the acquisition, submission, exchange,

and archiving of clinical trail data. For instance, the CDISC standard for acquisi-

tion, Clinical Data Acquisition Standards Harmonization (CDASH), aims to improve

interoperability in clinical research and drug development processes. The Study Data
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Tabulation Model (SDTM), provides a standard for organising and formatting data

to streamline processes in collection, management, analysis and reporting. Currently,

SDTM is one of the required standards for data submission to FDA (U.S.) and PMDA

(Japan).

MIRIAM and Identifiers.org

In order to ensure re-usability of biological models the computational biology

community proposed a set of guidelines, the Minimum Information Required in the An-

notation of Models (MIRIAM) [Le Novère et al., 2005]. These guidelines describe not

only the need to unambiguously and perennially identify components in the model, but

also required meta-information such as provenance and development. The MIRIAM

Registry (currently Identifiers.org), available at http://identifiers.org/registry provides

such a centralised, unique, perennial and location independent identifiers for use in the

biomedical domain. The registry is catalogue of data collections. Each data catalogue

is associated with a unique namespace and extensive metadata. This namespace then

allows the generation of Uniform Resource Identifiers (URIs) to uniquely identify any

record in the collection. To increase usability, Identifiers.org [Juty et al., 2012] pro-

vides a service which provides directly resolvable identifiers, in the form of Uniform

Resource Locators (URLs). The flexibility of the identification scheme and resolving

system allows its use in many different fields, where unambiguous and perennial iden-

tification of data entities is necessary. Many ontologies and databases currently use

these URIs, including Reactome [Croft et al., 2011], BioModels Database [Li et al.,

2010], OpenPHACTS [Williams et al., 2012] and Bio2RDF [Belleau et al., 2008].
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Computational Modelling in Biology Network (COMBINE)

The growing model sizes and their complexities make it necessary to stan-

dardise forms of representations [Waltemath and Wolkenhauer, 2016a]. Standardising

modelling formats is essential for largescale modelling, eases sharing results and per-

mits other researchers to use, re-use them [Hucka and Finney, 2005]. The Compu-

tational Modelling in Biology Network (COMBINE, http://co.mbine.org), guides the

development of standards for modelling in computational biology. COMBINE helps to

coordinate common activities and to establish a common infrastructure by fostering

communication between the various standardization efforts [Waltemath et al., 2015].

COMBINE supports both, mature standards and emerging efforts, in covering the cur-

rent needs in the interoperability landscape. The network identifies missing standards

and promotes further developments for the exchange of modelling and results [Hucka

et al., 2015]. The COMBINE, currently covers standards for CellML [Lloyd et al.,

2008], SBML [Hucka et al., 2003], SBOL [Galdzicki et al., 2014], BioPAX [Demir et al.,

2010], SEDML [Waltemath et al., 2011], NeuroML [Gleeson et al., 2010] and SBGN

[Novère et al., 2009]. In addition, projects such as FAIRDOM (http://fair-dom.org)

develop management guidelines and infrastructure for collaborative modelling. They

also offer curation, training, and run workshops and summer schools to promote these

standard settings within the systems biology community.

Disease Maps Community (DMC)

Disease maps are emerging concept, providing computationally readable yet

comprehensive knowledge-based resource of disease mechanisms. Disease maps visu-

ally represent hallmark pathways and biological processes associated with the disease

[Mizuno et al., 2012, Fujita et al., 2014, Kuperstein et al., 2015]. Disease maps bring

together domain experts from bioinformatics, molecular biology and clinical research.
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To ensure the interoperability of disease maps, it is essential to adopt relevant stan-

dards for knowledge encoding and annotation [Mazein et al., 2018]. Also, appropriate

tools are needed to support creation and use of the maps. The DMC (http://disease-

maps.org/) brings together developers and users of disease maps. The community

was formed to identify challenges by exchanging experiences from the different dis-

ease maps’ projects [Ostaszewski et al., 2018]. The community aims to establish best

practices for creation, maintenance and application of disease maps.

1.3 Disease maps as knowledge resources

Systems biology is a data driven domain, with rapid generation of data about

the individual components such as genes, proteins, chemicals, diseases, cell types and

organs [Greene and Troyanskaya, 2010]. To understand complex biological systems

and diseases, we need to bring into context available data to detect relations, pattern

and links between the individual components, allowing us to formulate and validate

scientific hypotheses [Kitano, 2002]. The existing knowledge is distributed over different

databases. Disease maps are one such method to integrate knowledge about the disease

mechanisms from literature and different databases into a single resource and to add

context to the knowledge, by organising it into a structured and organised network.

Disease maps integrate and annotate knowledge from different molecular mechanisms

and biological pathway relevant to the disease into a computer-readable format and

enable visual exploration.
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1.3.1 Complexities of diseases and their comorbidities

Figure 1.1: Complexity of diseases and their comorbidities
Source: Dr. Reinhard Schneider

Complex diseases like neurodegenerative diseases are affected by several fac-

tors. The Figure 1.1 illustrates the knowledge gap between the high-level medical

ontologies, describing the disease state, and biological models and ontologies, encod-

ing molecular processes, and their perturbation by genomic, environmental or lifestyle

factors. There is a missing link between the way we represent the biological knowl-

edge, diseases and their treatments. To bridge this link, disease maps integrate the

knowledge about disease mechanisms from literature in a single resource.
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1.3.2 Representing diseases as a map

Disease mechanisms can be modelled as a molecular interaction graph, i.e.

nodes that are connected by edges. Each component of the biological system and other

factors contributing to the disease pathology are represented as a node. Each node is

annotated by a unique identifier. Localisation of the interaction and nodes are repre-

sented as clusters or compartments providing the map a hierarchical organisation. The

relationship or interaction between these ”factors” are modelled as edges connecting

the node. Curating a disease-related pathway comprises of identifying and structur-

ing content, mining for information either manually or computationally, or both, and

building a knowledge base using appropriate software [Viswanathan et al., 2008].

Representation of molecular pathways requires a format for modelling that

is computable and allows for exchange, integration. Several such formats exist, varying

in representation depending on their purpose.

1.3.3 Common modelling formats

Most widely used pathway-related formats [Strömbäck et al., 2006], are XML-

based. We would like to focus on three important notations, namely Systems Biol-

ogy Markup Language (SBML) [Hucka et al., 2003], Biological Pathways eXchange

(BioPAX)[Demir et al., 2010] and Open Biological Expression Language (OpenBEL)

(http://openbel.org/).

BIOlogical PAthway eXchange language (BioPAX)

BioPAX (Biological Pathway Exchange) is a standard language to facilitate

exchange biological pathway data at the molecular and cellular level. It is defined

in Web Ontology Language (OWL) and represented in XML [Demir et al., 2010].

http://openbel.org/
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BioPAX has a large user base and is supported by many pathway databases such as

Reactome [Fabregat et al., 2018], Panther [Mi et al., 2017] and network visualisation

and analysis tools such as cytoscape [Shannon et al., 2003]. BioPAX was created

through a community process and continues to be an open and collaborative effort.

Systems Biology Markup Language(SBML)

SBML [Hucka et al., 2003] is a software-independent language used to build

models in the computational biology domain. SBML is used mainly for modelling, it

can also be used for pathways representations including metabolic pathways, gene regu-

lation, and cell signalling pathways [Caron et al., 2010]. As of May 2018, SBML is sup-

ported by over 280 software systems (http://sbml.org/SBML Software Guide). With

greater support and interaction between tools, and a common format like SBML, users

would be better able to spend more time on actual research rather than on complying

with data format issues. As of May 2018, the BioModels (https://www.ebi.ac.uk/biomodels-

main/) lists 8428 SBML models.

BioPAX and SBML are two of the most commonly used format in the systems

biology modelling domain and are supported by a wide base of user and developer

community to make them interoperable [Büchel et al., 2012, Rodriguez et al., 2016]

Open Biological Expression Language (OpenBEL)

There exists numerous modelling languages and formats for modelling bio-

logical knowledge as networks. However many require at least a basic understanding

of programming knowledge to use and are generally not adopted by biologists and

clinicians. In recent years, with the explosion of data and knowledge in the biomed-

ical domain, it is important to develop tools that can foster collaboration between

experts in different domains. One of the most important features of OpenBEL is that
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it is both human readable and computable. The subject and object are annotated by

namespaces, in this case MeSH Disease and Gene Ontology respectively. BEL focuses

on representing the causal and correlative relationship between entities. These entities

can be biological entities such as proteins, genes, RNA, etc or chemicals, complexes

or phenotypes. The relationships represent primarily cause-effect events between these

entities. BEL also captures the provenance of the relationships, at the statement level.

BEL statements are modelled as a semantic triple. The subject and object

are connected by the predicate which describes their relationship. In this example (List-

ing 1.1 and Figure 1.2), we can see that from the statement the subject Atherosclerosis

has a positive correlation with the object lipid oxidation.

SET Disease = "Atherosclerosis"

SET CardiovascularSystem = "Arteries"

SET TextLocation = "Review"

SET Evidence = "Oxidation and nitration of macromolecules , such as

proteins , DNA and lipids , are prominent

in atherosclerotic arteries."

SET Citation = {"PubMed","Trends in molecular medicine","12928037",

"","de Nigris F, Lerman A, Ignarro LJ, Williams -Ignarro S, Sica

V, Baker AH , Lerman LO , Geng YJ , Napoli C",""}

pathology(MESHD:Atherosclerosis) positiveCorrelation

biologicalProcess(GO:"lipid oxidation")

Listing 1.1: BEL Statement Example
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Figure 1.2: BEL Statement structure

Representation of BEL terms as functional expressions, helps to make the

language concise. The concept of abundance provides a systematic way to represent an

unknown quantity of biological material or activity and how its activity can increase or

decrease in the system. This allows a qualitative representation of biological knowledge.

OpenBEL is one of the popular modelling languages among biologists pri-

marily due to its simplicity and resemblance to natural language. It has been widely

accepted by the research community especially because of its simplicity and short learn-

ing curve. Although it is close to natural language it is still a computable model. As

a result, it has been adopted by various crowd sourcing challenges to build and gener-

ate networks collaboratively [Namasivayam et al., 2016]. Additionally, in recent years

several text mining and information extraction challenges and tasks have also adopted

OpenBEL [Fluck et al., 2015, Fluck et al., 2016] [Lai et al., 2016].
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SBML BEL BioPAX

Inventors Systems Biology Work-

bench

Selventa: OpenBEL BioPAX group

Focus Process description Entities and causal re-

lationship

More general represen-

tation, Focus on reac-

tion/interaction

Tools Validation, visualisa-

tion, conversion and

modelling e.g. CellDe-

signer, Cytoscape

(BiNoM plugin)

BEL Framework: con-

vertor to XML, Valida-

tion, Visualisation by

Cytoscape, PyBEL

Validation, visualisa-

tion, conversion and

modelling e.g. Protege,

ChiBE, BioLayout,

Cytoscape (BiNoM

plugin)

Interactors Species Subject/Object PhysEntity

Interactions Reactions Relationship Reaction

Role of Interactors Reactants, Products or

Modifiers

Subject, Object Pathway representing

set of interactions

Mathematical rela-

tions

Yes No No

Inheritance Yes No Yes

New entities Unknown type abundance Possible to make ap-

plication specific addi-

tions

Table 1.1: Features of SBML, OpenBEL, BioPAX

Table 1.1 gives a summary of the features of SBML, OpenBEL and BioPAX

(Source: [Strömbäck et al., 2007], http://sbml.org/, https://binom.curie.fr/,

http://openbel.org/,http://www.biopax.org/).

http://sbml.org/
https://binom.curie.fr/
http://openbel.org/
http://www.biopax.org/
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(a) Parkinson’s Disease Map (SBML compliant)

(b) Amyloid Precursor Protein normal physiology model (BEL)

Figure 1.3: Disease models in SBML and OpenBEL formats

Although BEL models, capture the context information, this information is

not utilised for its visualisation via Cytoscape (Figure 1.3b) [Shannon et al., 2003].

SBML, on the other hand can graphically represent cellular location and pathways

with the help of diagram editors like CellDesigner (Figure 1.3a) [Funahashi et al.,
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2003, Funahashi et al., 2008]. Visualising context or location information is essential

to the concept of disease maps for navigational capabilities similar to geographical

maps. Currently, the concept of disease maps is implemented in domains such as

cancer [Kuperstein et al., 2015], influenza [Matsuoka et al., 2013] and neurodegenerative

diseases [Fujita et al., 2014] [Mizuno et al., 2012].

So far all the publicly available maps are constructed using CellDesigner in

SBML and notations based on the process description of Systems Biology Graphical

Notation (SBGN) [Novère et al., 2009]. CellDesigner is a diagram editor for drawing

gene-regulatory and biochemical networks. Diagrams are drawn based on the process

diagram, with graphical notation system proposed by Kitano et. al. [Kitano et al.,

2005], and are stored in an SBML-compliant format. To support efficient navigation

and management of community driven curation of these maps platforms such as the

NaviCell [Kuperstein et al., 2013, Bonnet et al., 2015] and MINERVA [Gawron et al.,

2016] are available. NaviCell is a platform for exploring large maps of molecular inter-

actions built in CellDesigner. NaviCell features efficient navigation, semantic zooming

of the map for viewing different levels of details. Additionally, it also provides sup-

port for collecting curation feedbacks from the community. MINERVA [Gawron et al.,

2016] (Molecular Interaction NEtwoRks VisuAlization) platform is a web service sup-

porting curation, annotation and visualization of molecular interaction networks in

Systems Biology Graphical Notation (SBGN)-compliant format. MINERVA also sup-

ports automated content annotation and verification, thereby improving the quality of

the maps. Both these platforms use the Google Maps API for semantic zooming and

navigation of the maps.

All the elements (proteins, genes, RNA, chemicals, metabolites, etc,.) in a

map should ideally be annotated by publicly available databases such as UniProt [Ma-

grane and Consortium, 2011], HGNC [Gray et al., 2015], Ensembl [Yates et al., 2016],

Entrez Gene [Maglott et al., 2011], KEGG [Kanehisa et al., 2012], Reactome [Croft
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et al., 2011], Gene Ontology [Gene Ontology Consortium, 2000], ChEBI [Hastings et al.,

2013]. Annotation of the contents of a map facilitates the knowledge exploration by

providing additional information about the elements and their interactions.

1.3.4 Available data

While several such disease modelling formats are available, for the scope of

this project we focus on the SBML and BEL modelling formats. As an use case for

neurodegenerative diseases we use the Parkinson’s disease (PD) Map [Fujita et al.,

2014] (1.3a), Alzheimer’s disease map (AlzPathway) [Mizuno et al., 2012] and Amyloid

Precursor Protein (APP) BEL model [Kodamullil et al., 2015]).

The AlzPathway and PD Map are both built in CellDesigner and hosted

on MINERVA platform. All the reactions in these maps have evidences referenced by

PubMed identifiers using the MIRIAM uri.

The PD map integrates and visualises molecular interactions within a cellular

context with a focus on processes associated in PD pathology such as synaptic and

mitochondrial dysfunction, α-synuclein pathology, impaired protein degradation, and

neuroinflammation. It is also the first freely accessible and manually curated knowledge

repository of Parkinson’s Disease.

AlzPathway is the first comprehensive and manually curated map of intra,

inter and extra cellular signaling pathways of AD. It is also available as the web ser-

vice (online map) implemented on Payao [Matsuoka et al., 2010], a community-based,

collaborative web service platform for pathway model curation.

The APP model is built in BEL to systematically model causal and cor-

relative relationships between bio-entities. The model was built around knowledge

about physiological functions and pathological responses of amyloid precursor protein

(APP). BEL disease models were also used to perform comorbidity analysis between
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Alzheimer’s disease and Type 2 Diabetes Mellitus based on shared pathways and role

of drugs [Kodamullil et al., 2015, Karki et al., 2017].
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1.4 Scope and Aim

Imaging Data

Visualisation / 
support of hypothesis

Data Exploration & 
Hypothesis generation

Data
Capture

Public Studies

Extraction 
Transformation 
Loading (ETL)

Hypothesis validation in a prospective clinical study

Mechanism based 
taxonomy to classify subjects

Disease Maps as 
Knowledge resource

BEL

SBGN

Support hypothesis of 
mechanism based 

taxonomy

AETIONOMY

Figure 1.4: Overview of the project

The AETIONOMY project, integrates publicly available data and knowledge

with proprietary data across several scales such as clinical, omics, imaging to identify

candidate mechanisms and propose a mechanism based taxonomy for Alzheimer’s and

Parkinson’s disease, which will be validated in a prospective clinical study (Figure

1.4). As part of the PhD, I will focus on the data harmonisation and linking this

heterogeneous data. This includes the publicly available and clinical data from the

AETIONOMY project with associated transcriptomics data and support the hypothe-

ses generation. In addition to the clinical data, I will also focus on interoperability and

comparison of maps and their application.

The project described in this thesis was built on three main objectives. First,

the integration and harmonisation of heterogeneous publicly available and consortium

data to support hypothesis generation. Second, to implement comparison of two SBML
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maps to enable co-morbidty studies. Third, to implement a convertor from BEL model

to SBML models to take advantage of the hierarchical organisation of SBML maps.

Overall, the thesis will highlight the need to make data generation and sharing standard

and harmonised to facilitate integrative and data-driven research.

1.5 Thesis Overview

Several data and knowledge repositories are constructed to study disease

progression and mechanisms. Such datasets are available in public repositories or as

proprietary datasets. Since, the data collected are from different sources and in different

formats, the data is either unstructured or semi structured.

Chapter 2, describes how publicly available and consortium datasets were

integrated. An ETL (extraction, transformation and loading) pipeline is utilised to

harmonise and integrate into the translational medicine platform, in this case tranS-

MART. The chapter describes how using tranSMART enables to explore and analyse

integrated clinical and associated molecular (-omics) data and facilitates hypothesis

generation.

Contributions: Aishwarya Alex Namasivayam (AAN), curated and integrated all

the datasets, except the proprietary datasets (PPMI and ADNI), and public PD stud-

ies (inkind from eTRIKS). The AETIONOMY consortium provided all other project

datasets. AAN and Adriano Barbosa da Silva (ABS), supported the project with data

acquisition and management and analytical tools integration. Reinhard Schneider (RS)

supervised the project.

Chapter 3, describes the comparison of SBML maps using the PD Map and

AlzPathway. Similarities are discussed with several examples. Also discussed are the

challenges due to differences in annotations and advantages of a harmonisation.

Contributions: AAN, Piotr Gawron (PG), Marek Ostaszewski (MO) and Reinhard
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Schneider (RS) planned and designed the project. The comparison was implemented

by AAN and supported by the MINERVA platform (PG, MO). Stephan Gebel (SG)

contributed to interpreting the biological relevance of the detected similarities.

Chapter 4, describes the conversion of BEL model to SBML maps using

the APP BEL model as a use case. The methods and challenges are discussed. The

converted map was compared to the AlzPathway and PD map using the methods

discussed in Chapter 2.

Contributions: AAN and MO designed and planned the project. The convertor was

implemented by AAN and supported by MO to convert to the Cell Designer format

and hosted on the MINERVA platform.

Chapter 5, discusses the results and lessons learned. Chapter 6 sum-

marises the thesis and provides future directions.
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Integrating heterogeneous data

Biological systems are complex, with many levels of regulation and interac-

tion [Conesa and Mortazavi, 2014]. Large amounts of biological data are generated and

collected to investigate these individual levels, but a more comprehensive understand-

ing of the system requires the integration of these data, allowing analytical approaches

to describe relationships between the components [Gomez-Cabrero et al., 2014].

2.1 Integrative platforms

A large amount of omics data is generated by high-throughput technologies

from a broad spectrum of domains. These omics data need to be considered in the

context of the phenotype and diseases to achieve their full potential.

Translational platforms enable efficient data sharing and integration. More-

over, it increases the quantity of data available in a common format for research fa-

cilitating interoperability and comparability of the data. Efficient data integration

also requires that translational research platforms can utilise existing data collection

processes within the institutions. Platforms should provide reusable ETL pipelines to

23
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handle not only research data (e.g. text or spreadsheets) but also standard omics and

clinical data formats.

Currently several translational research platforms are available to integrate

clinical and omics data. [Canuel et al., 2015]. The cBio Cancer Genomics Portal (cBio-

Portal) [Gao et al., 2013], is an open-source platform facilitating the access to data sets

generated by large-scale cancer genomics projects, like International Cancer Genome

Consortium (http://icgc.org/) and The Cancer Genome Atlas (http://cancergenome.nih.gov/).

It integrates pseudonymised clinical data with genomics, transcriptomics and pro-

teomics [Cerami et al., 2012]. Integrative analysis approaches have utilised such plat-

forms in several cancer studies [Gao et al., 2013, Rance et al., 2016].

TranSMART [Szalma et al., 2010], is another translational research platform

the integrates powerful visualization and interoperability functionalities of Informatics

for Integrating Biology and the Bedside (i2b2) platform [Murphy et al., 2006]. tranS-

MART is a well-accepted platform in translational medicine research [Athey et al.,

2013, Schumacher et al., 2014, Bauer et al., 2016]. It facilitates integration of low-

dimensional clinical data and high-dimensional transcriptomics data.

2.2 Data acquisition

To address the challenge of ensuring smooth and efficient entry of datasets

into the AETIONOMY knowledgebase (http://aetionomy.scai.fhg.de/, https:

//aetionomy.uni.lu/transmart), the AETIONOMY consortium uses a study request

system (https://aetionomy.uni.lu/StudyRequest/). A user interested in bringing

a specific study into the knowledgebase starts by sending a request to the system,

which then follows several stages. First, the project office approves the inclusion of the

dataset, followed by the legal team’s review of legal and ethical principles concerning the

usage of the dataset. Once the dataset is reviewed for inclusion. The data acquisition

http://aetionomy.scai.fhg.de/
https://aetionomy.uni.lu/transmart
https://aetionomy.uni.lu/transmart
https://aetionomy.uni.lu/StudyRequest/
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and curation process is initiated. Finally, the dataset is loaded into the Data Cube

and then the study requester is informed of its availability.

2.3 Data harmonisation

Unstructured data predominantly contains free text and are difficult to anal-

yse, whereas structured data can be easily extracted for analysis and research because

the data elements are comparable. Data can be harmonised using a controlled vo-

cabulary such as CDISC, SNOMED-CT. Lack of harmonised naming conventions and

structured meta-information are the main reasons for the lack of semantic integration

in the life sciences. Data cleansing is often necessary to bring consistency to different

sets of data that have been merged from separate clinical sites or databases. Cleansing

data involves consolidating data within a database by identifying and correcting in-

consistent data and removing duplicates in order to achieve concise and accurate data

resource.

The data sources available to the consortium were systematically explored

and approved for inclusion to the knowledge base. The project data to be integrated

into the platform included CSV (comma-separated values), excel worksheets and addi-

tional non-standardized study data. The raw files retrieved from public databases and

received from data providers undergo a curation and harmonization phase. They were

first converted to a tab separated format. Each dataset, then undergoes a curation and

harmonisation process which involves several steps (Figure 2.1)
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Format conversion Cleansing and QC Transformation Standardisation

● Misspelling
● Out of range
● Type error
● Language

● Data format
● Derived data
● Impute missing data
● Data model

● Variable to ontology
● Value to ontology
● Convert to standard 

unit

Figure 2.1: Curation and harmonisation overview

Integration of omics and clinical research data is not straightforward specif-

ically because clinical research data collection is often non-standardised. Clinical re-

search and cohort data are difficult to handle, mainly due to their non standardised

parameters and varying representations over time and study centres. Careful data

cleaning and preparation are necessary prerequisites to any process involving integrated

biological data. Often the clinical data was not accompanied by a data dictionary and

therefore required constant follow up with the collaborators and additional manual

effort to map the variables and values to a standard ontology.

2.4 Extraction, Transformation and Loading (ETL)

The AETIONOMY project, uses tranSMART to integrate publicly available

omics datasets on Alzheimer’s and Parkinson’s disease from Gene Expression Omnibus

(GEO) and Array Express and consortium datasets [Hofmann-Apitius et al., 2015b].

tranSMART offers visually aided data exploration and drag and drop enabled cohort

selection.



2.4. Extraction, Transformation and Loading (ETL) 27

Integration of heterogeneous datasets require extraction, transformation, and

loading (ETL) processes to harmonise the representation. Data can be added to the

tranSMART database by mapping the variables to a data-scheme via standard tem-

plates or mapping files. The mapping files for the curated data files are then generated.

The mapping files are generated to follow the tranSMART standard files for the ETL

scripts. Additional data can be associated on the subject level data and linked via these

mapping files. For instance, for datasets which include expression data, additional files

for the platforms used for the experiment have to be generated. These platform map-

ping files enable the mapping of probe ids from the platform to its corresponding

GeneID and Gene Symbol.

The ETL process to load data in tranSMART ensures that all integrated

data makes use of unique identifiers and provides a uniform structure. In addition

to the benefits of integrating heterogeneous data it also enables easy sharing of data

in the future. This structured and standardised structure fosters data exchange in

the scientific community, which is also a pre-requisite for many translational medicine

projects and multi-subject expert teams [Maier et al., 2011].

In the example (Figure 2.2), the data collected were in different formats over

different files and languages, etc. Though valuable, they are disparate and provide

no structure. These have to be transformed for further analysis as a single dataset.

After data curation and harmonisation we load them in tranSMART. This then gives

a structure to the dataset, allowing it to be explored and shared easily.
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Figure 2.2: Unstructured or semi-structured to structured data

2.5 From unstructured to structured data

Structured data is data that can be easily stored, queried, exported, and

analysed by computational methods. Clinical research data is often unstructured or

semi-structured data like medical records, handwritten notes. Healthcare applications

require efficient ways to integrate and convert a variety of data including automat-

ing conversion from structured to unstructured data. To take advantage of the various

functionalities of tranSMART, the data sets have to go through extraction, harmoniza-

tion, curation, and quality checking. Data acquired from publicly available databases or

resources are usually structured or semi-structured. However, they may require trans-

formation to retrieve relevant information to be integrated into tranSMART. Next, a

set of standard format files need to be generated to map each subject to sample level
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data. In addition to harmonising the raw data, metadata is also annotated by relevant

ontologies.

Figure 2.3: Harmonised and structured datasets via tranSMART standard format files

Figures 2.3 and 2.4 show the how the ETL process controls the structure

of the variables loaded. These variables, are represented as a hierarchical parent-child

tree (Figure 2.3). This tree structure allows efficient data sets exploration and also the

selection of variables from the hierarchy to build customised patient cohorts by visual

exploration and for further analysis or export. Variables in the dataset, such as age,

gender, or measure of a blood marker could be used as filters to build a sub cohort.
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Raw File

Curated File

Clinical Mapping File

Loaded in tranSMART

Figure 2.4: Extraction Transformation and Loading of datasets

The mapping file generated to load the datasets into tranSMART also gen-

erate the i2b2 tree structure for the study. Therefore, the category for each variable

and the naming of the features are assigned at this stage. The mapping files are hence

responsible for structuring the different studies in the AETIONOMY knowledge base.

Each feature collected across studies should eventually be assigned to the same cate-

gory and leaf node for every study loaded. Features specific to a single study, however

will have a new leaf node, nevertheless the structure of the tree (in terms of category

and branching) can be harmonised to the extent possible.
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2.6 Results

Hypothesis generation / support

Figure 2.5: Linking heterogeneous data in tranSMART

Platforms like tranSMART helps to integrate disparate datasets to analyze

them for support of research hypotheses [Hofmann-Apitius et al., 2015b] (Figure2.5).

tranSMART serves as a collaboration platform by integrating data from heterogeneous

sources. It enables code free data exploration and interactive visual analytics, and thus

brings together researchers from different areas of expertise (biologists or clinicians and

bioinformaticians or statisticians) [Satagopam et al., 2016]. The data can also be easily

exported for further in depth analysis. This chapter demonstrates with two examples,

how the curated and loaded data on tranSMART enables hypothesis generation and

support.
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Figure 2.6: Curated studies loaded in AETIONOMY tranSMART instance

Figure 2.6, shows a number of Parkinson’s disease and Alzheimer’s disease

datasets were curated and loaded into the tranSMART system for the AETIONOMY

project, this includes publicly available studies from Gene Expression Omnibus (GEO)

and Array Express, proprietary datasets such as PPMI and ADNI and studies from

the consortium. The variables include clinical and neuropsychological assessments,

biospecimen analysis results, imaging and transcriptomics data. tranSMART enables
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to bring together these different sources in a common format for exploration, basic

analysis and sharing of data.

2.6.1 Use case 1: Alzheimer’s disease cytokine study

Alzheimer’s disease (AD) is the most prevalent cause of dementia and char-

acterized by cognitive deficits, neuronal death and, ultimately, severe brain atrophy.

At the molecular level, the hallmarks of AD are extracellular plaques of amyloid β

(Aβ) and intracellular tangles of tau protein. Neuroinflammation represents a further

characteristic feature of neurodegenerative diseases. To limit further Aβ accumulation,

the microglia and astroglia are reported to react to Aβ exposure by phagocytosis, and

also by prolonged release of inflammatory mediators creating a neurotoxic environ-

ment. Presuming Aβ aggregation precedes the onset of clinical symptoms by decades,

the innate immune activation may be an early and contributing progress in AD patho-

genesis.

The AD cytokine dataset was collected to determine cerebrospinal fluid

(CSF) levels of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), monocyte chemo-

tactic protein 1 (MCP-1 / CCL2), and macrophage migration inhibitory factor (MIF) as

biomarkers of neuroinflammation in mild cognitive impairment (MCI) and Alzheimer’s

disease (AD) and to evaluate their diagnostic utility [Brosseron et al., 2014]. The

dataset was curated and loaded in tranSMART and analysed using the visual analyti-

cal plugin smartR [Herzinger et al., 2017].
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Subset 2 : Alzheimer’s Disease
     Non Demented Controls

Subset 1 : Mild Cognitive Impairment

Figure 2.7: Overview of the AD Cytokine dataset loaded in tranSMART

The dataset includes 95 subjects, consisting of 44 subjects diagnosed with

Alzheimer’s Disease, 34 as Mild Cognitive Impaired (MCI) and 17 Non Demented

Controls.

First we compares the distribution of cytokine levels in controls against AD

subjects. Figure 2.8 shows the distribution of MCP-1 and MIF between the subsets.
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S2 Alzheimer’s Disease
S1 Non Demented Controls

Monocyte Chemoattractant Protein 1 
(MCP-1) pg/ml S2

Monocyte Chemoattractant Protein 1 
(MCP-1) pg/ml S1

Macrophage Inhibitory Factor 
(MIF) pg/ml S2

Macrophage Inhibitory Factor 
(MIF) pg/ml S1

Monocyte Chemoattractant Protein 1 
(MCP-1) 

Macrophage Inhibitory Factor 
(MIF)

Figure 2.8: Distribution of MCP-1 and MIF levels in AD subjects compared to controls

There were no elevated cytokine levels (MCP-1 and MIF ) in AD compared

to controls. Further we then tested for correlations between cognitive decline and

cytokine levels in AD. The MMSE, Wordlist Recall, Boston Naming Test, Semantic

Fluency and Trail making test were used to score the cognitive decline. Figure 2.9 the

cytokines MCP-1, MIF and IL6 had no significant correlations to cognitive function

in the AD group compared (MMSE shown in Figure 2.9).

MIF with MMSE MCP-1 with MMSE IL-6 with MMSE

Figure 2.9: Correlation of cognitive functions with cytokine levels in AD subjects

To investigate the difference in cytokine level of MCI subjects against both

control and AD. Two subsets were created, subset1 comprising of MCI subjects and
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subset2 comprising of AD and Non demented controls (Figure 2.7). Next we tested for

changes in TNFα levels between subsets 1 and 2 (Figure 2.10)

Figure 2.10: TNF-α was elevated in MCI compared to controls and AD subjects

TNF-α was elevated in MCI compared to controls and AD pValue=0.0202.

Finally we test for correlation between cognitive decline and these elevated levels of

TNFα in MCI subjects.
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TNFα - MMSE TNFα - Wordlist Recall

Figure 2.11: TNF-α in MCI subjects was reported to be negatively correlated with
cognitive scores

TNF-α was reported to be negatively correlated with MMSE with a p=0.03

and r=0.383 and for word list recall word-list recall (p = 0.05, r = -0.343) in MCI

(Figure 2.11). The analysis was performed by Pearson correlation. Levels of TNF-α

has negative correlation with the cognitive functions in MCI.

Common markers of neurodegeneration provided better discriminative power,

as demonstrated by Aβ42, Aβ42/p-tau-181, MMSE or semantic fluency. However, all

standard markers differentiated clinical controls and MCI from AD, but not controls

from MCI, which was in return only achieved by TNF-α. In summary, the data re-

ports elevation of CSF TNF-α levels in MCI accompanied by correlations of TNF-α,

MCP-1 and MIF to cognitive decline in this group of patients. Noteworthy, there

were no elevated cytokine levels and few correlations to cognitive function in the AD

group. Therefore, signaling of MCP-1, MIF and especially TNF-α might be involved
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in pathological inflammatory processes during MCI that impact negatively on cogni-

tion. However, the study may have been biased by a certain degree of inhomogeneity

in patient group size, age and gender. Yet, the collective reflected typical results for

standard AD protein markers from CSF analysis and neuropsychological tests, there-

fore providing a reliable source for comparisons. Furthermore, age or gender driven

effects on cytokine levels were ruled out by ANCOVA and pearson correlation. Assess-

ing neuroinflammation in MCI could therefore be of clinical importance in diagnostic

procedures. CSF cytokines may reflect processes of disease progression and indicate

an impact of innate immune activation on cognitive function in early disease stages. It

is therefore desirable to monitor neuroinflammation, which can be used with the same

routine as the established markers of other key pathological processes of MCI and AD.

Although, Amyloid β pathology is considered the primary hallmark of AD,

recent studies suggest that the disease has a multifactorial origin [Llorens-Maŕıtin et al.,

2014, Medina et al., 2017, Gong et al., 2018]. Currently, several reports support neu-

roinflammation as a significant contributor to the pathogenesis of Alzheimer’s Disease

[Hong et al., 2016]. As a result of brain damage (e.g., brain trauma, ischemia, Aβ

accumulation, etc,.) microglia and astrocytes acquire reactive phenotype losing their

physiological functions [Karve et al., 2016]. The persistent microglial activation stim-

ulated by Aβ via Toll Like Receptors (TLR) creates a vicious circle between microglia

activation, neuroinflammation, and Aβ accumulation. A crucial role on pathogene-

sis of AD is an absolute culprit for both amyloid plaque and other pathologic change

such as the neuronal damage. Moreover, after activation, these cells produce a wide

range of cytokines and proinflammatory mediators, leading to chronic inflammation

[Heppner et al., 2015]. Even if the initial intent of these modifications is reparative,

such long-lasting and uncontrolled activation causes further neurodegeneration (Figure

2.12) [Heneka et al., 2015].



2.6. Results 39

Figure 2.12: Role of inflammation in neurodegeneration [Heneka et al., 2015]

Physiological functions of microglia, including tissue surveillance and synap-

tic remodeling, are compromised when microglia sense pathological amyloid β accu-

mulations. Initially, the acute inflammatory response is thought to aid clearance and

restore tissue homoeostasis. Triggers and aggravators promote sustained exposure and

immune activation, which ultimately leads to chronic neuroinflammation. Perpetu-

ation of microglia activation, persistent exposure to proinflammatory cytokines, and

microglial process retraction cause functional and structural changes that result in

neuronal degeneration [Heneka et al., 2015, Brosseron et al., 2014].
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In a follow up study, the AETIONOMY collaborators investigated the utility

of inflammatory biomarkers in diagnostic procedures of AD. This was designed in three

steps: (1) to screen for proteins that are robustly detectable in cerebrospinal fluid;

(2) to explore associations between the analytically robust markers and pathological

features of AD; (3) to determine the discriminative power of these markers in the

clinical diagnosis of AD. 46 proteins were screened, out of which 14 met the criteria for

robust detectability. A subsequent analysis of these markers in a cohort of 399 patients

(non demented subjects, patients with mild cognitive impairment, and patients with

AD, supplemented by smaller cohorts of other diseases) was conducted. Although

a large number of significant associations between clinical cohorts or AD pathology

markers and inflammatory markers were observed, currently, none of the tested proteins

reached a discriminative power as the existing pathological markers for clinical practice.

Implementation of assays with higher sensitivity or investigation of signalling mediators

from alternative pathways could lead to discovery of candidates with higher potential

for use in clinical diagnostic procedures.

2.6.2 Use case 2: Expression data of substantia nigra from

postmortem human brain of PD patients

Figure 2.13: Heatmap generated from curated data (GSE7621) loaded in tranSMART

Here we use a GEO public study GSE7621 [Lesnick et al., 2007]. The study

used microarrays to detail the global program of gene expression underlying Parkin-

son’s disease. Substantia nigra tissue from postmortem brain of normal and Parkinson
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disease patients were used for RNA extraction and hybridization on Affymetrix mi-

croarrays: 9 replicates for the controls and 16 replicates for the Parkinson’s disease

patients were used. Both cohorts included males and females. The heatmap map

workflow was used to retrieve the differentially expressed genes between control and

diseased.

NR4A2 (Nurr1) activity
Dopaminergic transcriptionNormal Parkinson’s Disease

tranSMART

PD Map

Figure 2.14: Overlaying differentially expressed genes on the Parkinson’s disease map

Differential gene expression data comparing post mortem brain tissues from

male PD patients versus controls are overlayed on the PD map blue representing down-

regulated and red representing up-regulated genes (See Figure 2.14). Overlaying the

differentially expressed genes on the PD Map provides context about the pathways and

mechanisms these genes are involved in. These may suggest new targets for further in-

vestigation towards potential treatments. Overlaying the differentially expressed genes

on the PD Map show perturbations in:

• Dopamine secretion and recycling : down-regulation of SLC18A2, RIMS1, SLC6A3

• Dopaminergic transcription : down-regulation of RET, TH, ALDH1A1, DDC,
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SLC6A3, SLC18A2, FOXA2, EN1

• Dopamine metabolism : down-regulation of TH, DDC, ALDH1A1 and SLC6A3

• Post synaptic terminal processes : up-regulation of GRIA4, down-regulation of

SLC6A3, RGS4, ALDH1A1

• Autophagy: up-regulation of AMBRA1

• Calcium signaling and NEF2L2 Activity : up-regulation of CREBBP

• Neuroinflammation : up-regulation of PTGS2, SOCS3 and NCF4

TH, ALDH1A1, SLC6A3, SLC18A2, DDC, RET, EN1, FOXA2 are down-regulated, all

are involved in dopaminergic transcription. Down-regulated genes (SLC18A2, RIMS1,

SLC6A3) are involved in dopamine secretion and recycling. Down-regulated genes (TH,

DDC, ALDH1A1) are involved in dopamine metabolism.

2.7 Summary

A number of public and consortium studies relevant to Alzheimer’s and

Parkinson’s Disease was curated, structured and loaded into tranSMART. Refer Ap-

pendix A.1, for a complete list of studies and data types. This included transcriptomics,

clinical and imaging datasets. The process included several steps from data acquisition,

curation and harmonisation, structuring and loading. The harmonised and structured

data, can then be used for further analysis and sharing. We demonstrate with two

examples how integration of data from heterogeneous sources can support hyphothesis

generation. Translational research platforms like tranSMART provide visual and ex-

ploratory analysis facilitating the identification of patterns in data and the subsequent

hypothesis generation, hypothesis validation. However a major challenge in this pro-

cess is the heterogeneity in data representation and formats. The major effort spent
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in the whole process is to curate and map data to standard ontologies. This process

can be streamlined if data is exchanged in well accepted standards and with adequate

meta-data.



Chapter 3

Comparison of disease maps

There are many disease maps and pathways publicly available [Kuperstein

et al., 2015, Matsuoka et al., 2013, Fujita et al., 2014, Mizuno et al., 2012, Oda and Ki-

tano, 2006] and several others currently in development (http://disease-maps.org/

projects). In addition to serving as a single point to access the existing knowledge,

comparison of disease maps have a number of possible benefits. Comparison of two

disease maps shed light on the underlying mechanisms which are common or specific to

each disease. Several diseases may have common mechanisms that affect the pathology

and progression of each other and therefore is important to study the comorbidity of

diseases. Apart from this, comparison of a disease models against normal biological

state models can help understand the disease pathology and progression. Another po-

tential use case of comparing maps and pathways is to enrich the knowledge in disease

maps and understand how the pathway plays a role in the aetiology of diseases.

Pathguide [Bader et al., 2006] is a meta-database that provides an overview

of web-accessible biological pathway and network databases. These include databases

on metabolic pathways, signalling pathways, transcription factor targets, gene regula-

tory networks, genetic interactions, protein-compound interactions, and protein-protein

interactions. As of May 2018, Pathguide (http://pathguide.org) contains 702 biolog-

44

http://disease-maps.org/projects
http://disease-maps.org/projects
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ical pathway and molecular reaction related resources, this includes several organism

models in standards such as BioPAX, CellML, PSI-MI or SBML. Since many different

models in different formats exist, the ability to compare these models is important,

both to compare models of different systems and to compare different versions of the

same model. Comparison of maps highlights the similarities and differences in the

context of the diseases, how the identified elements relate to the interacting elements

and their role in the disease mechanism. This chapter describes the comparison of two

disease models and how such methods can add context to the comorbidity of diseases

and their pathology. We use the MINERVA platform to visualise the results using

its graphical layout and the PD Map Spring 2018 edition and AlzPathway April 2015

edition as use cases.

3.1 Overview of existing comparison methods

The comparison of systems biology models gained interest in recent years.

In 2017, Scott-Brown and Papachristodoulou presented a tool sbml-diff, that is able

to read synthetic biology models in SBML format and produce a range of diagrams

showing different levels of detail [Scott-Brown and Papachristodoulou, 2017]. Each of

these diagram type can then be used to visualize a single model or to visually compare

two or more models. However, in addition to their focus on mathematical models, the

web service could not handle large models like the AlzPathway and PD Map. Moreover,

species and reactions are compared based on their identifiers (ID) and two elements

are treated as the same only if both share the exact same set of MIRIAM identifiers.

BiVeS [Scharm et al., 2015], another tool for comparing SBML models can

track changes in a model over time. Although it produces outputs in a different formats,

the visualisation abilities are limited. The main focus of the BiVeS is to provide

version control for model repositories to accurately detect and describe differences
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between versions of model depending on the encoding, mathematical expressions and

the structure of the networks.

Another approach by Calderone et al., to compare Alzheimer and Parkin-

son’s disease networks, uses AlzPathway and PD Map [Calderone et al., 2016]. The

authors considered direct comparison of SBML models not feasible due to level of de-

tails and differences in entities and annotations. Nevertheless, they extracted the genes

and proteins from the two SBML models and complemented the lists with genes and

proteins from the KEGG database. The AD and PD lists were then used as seeds to

extract two subnetworks from Mentha [Calderone et al., 2013] a human interactome

database. In order to generate the networks, all the genes and proteins were translated

to UniProt identifiers, since the Mentha uses UniProt accession numbers. A graph-

communities-based similarity matrix method was implemented to cross-compare two

networks to highlight differences and similarities in terms of network topology and func-

tions. Entities that were detected as similar in both network and clustered according

to their Gene Ontology overlap form a community. Each Communities present in both

networks signify common biological processes and on the other hand the communities

unique to each network may signify characteristics of the specific pathology.

3.2 Methods for comparison

Although several methods attempt to compare disease maps or models, no

direct comparison of such models were previously reported especially to visualise the

comparison. Therefore, in order to compare two maps directly, an algorithm was

implemented that parses two models and identify similar reactions and entities with

respect to the context in terms of cellular localisation or mechanism. For each map

pair, lists of node and reaction identifiers detected in both maps, as well as a list of

reaction pair, describing their similarity are generated.
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The reaction and node lists can then be visualised on the corresponding map

using the MINERVA platform. The PD Map and AlzPathway hosted on the MINERVA

platform were used as use-cases. The comparison required mapping of annotation for

entities, this was complemented by the annotators in the MINERVA platform.

To compare two maps, we need to compare both reactions and their inter-

acting elements. In order to compare reactions, we take into account the neighbouring

participants of the reactions i.e. the reactant(s), product(s), and modifier(s). Addi-

tionally, to compare the elements we require measures to uniquely identify the elements

irrespective of how they may be named or represented. For this, we use MIRIAM iden-

tifiers, with which the elements are annotated. The algorithm parses the models, and

updates the annotation if required. For instance, if the models use different databases

to annotate elements, the annotator using the name or MIRIAM identifiers to extract

other annotation from corresponding databases.

Figure 3.1 summarises the process to identify similar elements. To match en-

tities, the MIRIAM annotations were used. The MIRIAM Registry and Identifiers.org

system are a set of services and resources that provide support for generating, inter-

preting and resolving MIRIAM URIs. The annotation will help to identify the same

elements even if they may be named differently. If the type of the element/node, e.g.:

protein, gene, RNA, etc. matches, then the annotations are checked for a match. Once

the annotation also match, the localization information i.e. the compartment the ele-

ment is in is matched. If the entity is a complex itself, or part of the complex is also

taken into account i.e. if the entity is annotated as the same complex or if it is part of

the same complex in both maps.
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Figure 3.1: Element Match Decision Diagram

The reactions are matched by checking for i) the reaction type ii) the entities

involved in the reaction. The reactions have more than one reactant and product.

Additionally, reactions may involve one or more modifiers as well. The matches for

reactions were categorised into the following categories:

1. All Products, Reactants, Modifiers, annotation and compartment match

2. All Products, Reactants, Modifiers match

3. All Products and Reactants match
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4. All Products and Reactants match and model1 has no Modifiers

5. All Products and Reactants from model1 match and at least 1 Modifier match

6. All Products and Reactants from model1 match and no modifiers match

All Reactants, Products and Modifiers Match

All Reactants and Products Match

Figure 3.2: Examples of reaction match

The reaction pair i.e. the corresponding reaction identifiers that matched

in both models, and the above categories are saved in a ReactionPair table. This

table provides additional information that can supplement a closer examination of

the relevance of the match in the disease mechanism context. Figure 3.2 shows two

example of reaction pairs. Each reaction involves at least one reactant and one product.

However, reactions may have more than two participating elements.

Another challenge in the comparison is the representation of complexes. Of-

ten in cases when the relevant scientific literature does not provide enough information

to annotate the complex itself, curators have to resort to create complexes which are
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not annotated by a unique identifier. Therefore complexes cannot be compared di-

rectly if they are not annotated. We need to approach the comparison of complexes at

a content level i.e. two unannotated complexes are identical if they have exactly the

same content.

(a) Example of an annotated complex

(b) Example of an unannotated complex

Figure 3.3: Representing complexes in disease maps

For instance in Figure 3.3a is annotated by the GO identifier GO:0031931.

TORC1 complex is a protein complex that contains at least TOR (target of rapamycin)

and Raptor (regulatory-associated protein of TOR), or orthologs of, in complex with

other signalling components. Whereas the DDB1:CUL4A complex in Figure 3.3b is

not annotated. This may be due to several reasons such as the relevant article did not

provide enough information about all the contents of the complex, or such a complex

could not be mapped to a unique entry in corresponding databases like Gene Ontology.
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3.3 Results

For each map pair that is compared, three result tables are generated. Two

lists for overlay on the map i) List of element identifiers in model1 which have a

counterpart that was matched in model2 ii) List of reaction identifiers in model1 which

have a counterpart that was matched in model2. The third table ReactionPair, lists

each pair of reaction, reaction identifiers from model1 and model2 and the match type

as discussed before. The result tables for AlzPathway and PD Map are also included

in the Appendix A.2.

3.3.1 Comparison of AlzPathway and PD map

The AlzPathway and PD Map were compared using this method. Because

PD map has a number of submaps, their contents were compared, one by one, with

the contents of AlzPathway. The supplementary ReactionPair table, makes it easier to

compare the reactions side by side on both maps, to give a context to the identified

reaction in both diseases.

MINERVA enables updating the model with additional annotations which

are used for comparison. Currently MINERVA supports HGNC and BioCompendium

to extract by name and Uniprot, Gene Ontology, Ensembl, Entrez Gene, and ChEBI for

update by MIRIAM identifiers [Gawron et al., 2016]. Different maps may use different

namespaces to annotate their entities with a unique identifier. The AlzPathway uses

Uniprot to annotate the proteins, genes and RNA. Whereas the PD Map uses HGNC

to annotate these species. Therefore, it requires a conversion between Uniprot and

HGNC. The annotator extracts the HGNC symbol and identifier from the correspond-

ing Uniprot identifier. Drugs and chemicals are annotated by ChEBI in the PD Map,

while AlzPathway uses PubChem. Since MINERVA does not currently support Pub-

Chem and this mapping has not been implemented, drugs and chemicals comparisons
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are not considered unless they are annotated by the same database in both models.

The following database identifiers are used to annotate the entities in the PD Map.

• Protein, Gene and RNA: HGNC, HGNC symbol, Uniprot, InterPro, Entrez Gene,

Ensmbl, GO

• Drugs, chemical, ion, simple molecule : ChEBI, Reactome

• Phenotype : GO, MeSH

• Complex : GO, Reactome, MeSH, InterPro

• Compartment: GO, MeSH

If one or more of the MIRIAM annotation of the elements match, the elements are

considered a match.

Map/submap Elements Reactions

AlzPathway 2464 979

PD map - main diagram 5444 2416

Ubiquitin-proteasome system 100 18

PRKN substrates 75 64

Fatty acid and ketone body metabolism 194 75

Iron metabolism 557 183

Table 3.1: Number of elements and reactions in the AlzPathway Map and PD Map
and submaps

Table 3.1, summarises the number of elements and reactions in each map.

To retrieve elements and reactions in AlzPathway Map that are present in the PD

Map, the models were updated using the MINERVA automatic annotators. Since the

AlzPathway and PD Map utilise different namespace to annotate the entities, updating
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the annotation was essential to identify similar entities which would otherwise not be

detected.

Figure 3.4: Increase in matched elements and reaction by updating model annotation

Figure 3.4, depicts the increase in identified elements and reactions when the

models annotations were updated by additional identifiers. Comparing models with-

out updating the annotation returns 48 elements, from 2464 elements in AlzPathway

(Table 3.1). No reactions were identified. Since the PD Map uses HGNC to anno-

tate the Protein, Gene and RNA, the HGNC annotator was used to fetch the Uniprot

identifiers (used by AlzPathway). This increased the number of elements identified

to 649. Although 31 Reactions were also identified, none of these reactions were a

perfect match, signifying that there were changes in number of reactants, products or

modifiers. This may be due to the fact that similar entities were still not detected due

to no namespaces or different database used for annotation. Using all the annotators

(HGNC, Uniprot, Entrez, Ensembl, GO, and bioCompendium) increased the number
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of entities identified to 762 and reactions to 40. Six of these reaction were a perfect

match. The low number of perfect matches could also be a result of different litera-

ture source used for curation, different scope (disease) of the maps or expertise of the

curator.

No. of species No. of reactions

PD neuroinflammation 310 209

AlzPathway 1312 979

PD Map-main 2606 2416

Table 3.2: Summary of model sizes

Figure 3.5: Time taken per comparison

To estimate the time taken for comparing smaller models, a smaller section of

the PD map was used, PD neuroinflammation (Table 3.2). The comparison of models

takes about 10-30 seconds depending on the size of the model (Figure 3.5).
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Highlights on PD Map, similarities from AlzPathway

PD Map Submap
Elements from

AlzPathway

Reactions from

AlzPathway

Perfect matches:

reaction

Possible

reaction pairs

PD map - main diagram 163 39 5 61

Iron metabolism 20 2 0 2

Ubiquitin-proteasome

system
3 0 0 0

Fatty acid and ketone

body metabolism
6 0 0 0

PRKN substrates 1 0 0 0

Table 3.3: Number of elements and reactions identified from AlzPathway in PD Map

Figure 3.6 shows the reactions and elements found in AlzPathway and high-

lighted on the PD Map. Table 3.3 shows the number of reactions and elements detected

in the PD Map submaps. The matches can be further investigated to understand the

mechanisms that may result in the comorbidity of these diseases.
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Highlights on AlzPathway, similarities from PD Map

PD Map Submaps
Elements from

Submap

Reactions from

Submap

Perfect matches:

reaction

Possible

reaction pairs

PD map - main diagram 181 31 5 57

Iron metabolism 21 2 0 2

Ubiquitin-proteasome

system
3 1 0 2

Fatty acid and ketone

body metabolism
9 0 0 0

PRKN substrates 1 0 0 0

Table 3.4: Number of elements and reactions identified from PD Map in AlzPathway
Map

Figure 3.7 shows the reactions and elements found in PD Map and high-

lighted on AlzPathway. Table 3.4 shows the number of reactions and elements detected

in the PD Map submaps. From Figure 3.7 and 3.6, we can see that in general the re-

actions identified on the AlzPathway Map are more centralised around a specific node,

whereas in the PD Map they are more distributed in terms of different processes they

are involved in.
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3.3.2 AKT1 Activity

The serine/threonine kinase (Akt), has been widely research for their in-

volvement in several cellular processes, including insulin metabolism and diseases like

PD, AD and cancer. The isoforms of Akt- Akt1, Akt2, and Akt3 are reported to be

involved regulation of the apoptopic machinery [Vivanco and Sawyers, 2002, Reddy,

2013, Greene et al., 2011]. In the developing nervous system AKT is reported to be

important mediator of growth factor-induced neuronal survival. Activation of AKT1

can suppress apoptosis and oxidative stress by inactivation and phosphorylation of pro-

apoptotic targets, including BAD and FOXO1 and FOXO3 [Zhang et al., 2011, Hers

et al., 2011].

One of the matches detected in AlzPathway and PD Map is shown in Figure

3.8. While in the PD Map (Figure 3.8b) AKT1 moderates the phosphorylation of BAD,

Phosphorylated AKTI1 inhibits the transition of BAD in AlzPathway. Other similar

reactions found in the PD Map are shown in Figure 3.9. In Figure 3.8a, PDK1, WNT

and WISP1 are shown mediating the phosphorylation of AKT1 in the AlzPathway.

Whereas in Figure 3.9a ROCK2, mTORC2 and PDPK1 mediate the phosphorylation

in PD. It is also interesting to note that PDK1 in AlzPathway is PDPK1 in PD Map,

but they were not detected as identical since the PDK1 in AlzPathway was annotated

as pyruvate dehydrogenase kinase 1(PDK1) instead of 3-phosphoinositide dependent

protein kinase 1 (PDPK1) Another downstream target of AKT1 is the TSC1, TSC2

complex which is reported to inhibit mTOR activity (seen also in Figure 3.10b) which in

turn regulates cell growth and protein degradation [Olney et al., 2017]. TSC1:TSC2 (in

PD Map) and TSC in AlzPathway are seen to be mediated by several entities including

AKT1 and MAPK1/3 in both AD and PD, but they were not identified since TSC was

not annotated in AlzPathway, additionally MAPK1/3 was annotated as MAPK3 in

AlzPathway. However, downstream reactions of TSC mediating RHEB were identified

in both AlzPathway and PD Map. To summarise, several of the downstream targets

of AKT1 are similar, but the modifiers of the phosphorylation are different.
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(a) AlzPathway Map: BAD modulation by AKT1

(b) PD Map: BAD modulation by AKT1

Figure 3.8: Perfect match in AKT1 activity in PD Map and AlzPathway Map
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(a) PD Map: Modulators of AKT1 Phospho-
rylation

(b) PD Map: Phosphorylated AKT1 me-
diating FOXO3

Figure 3.9: AKT1 activity in PD Map

(a) AlzPathway: Downstream targets of AKT1
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(b) PD Map: Downstream targets of AKT1

Figure 3.10: TSC1:TSC2 activity in AlzPathway and PD Map

3.3.3 TAU (MAPT) hyper-phosphorylation

Microtubule-associated protein tau (MAPT ), promotes microtubule assem-

bly and stability, is supposed to be involved in the establishment and maintenance of

neuronal polarity [Gendron, 2009]. Tau hyper-phosphorylation is one of the patholog-

ical hallmarks of Alzheimer’s Disease. MAPT is also a risk factor in PD [Noble et al.,

2013, Lei et al., 2010]

Although there were several reactions that were detected similar in PD and

AlzPathway, they all differed in the modifiers involved (Figure 3.11). The only com-

mon modifier between all three reaction identified in the PD Map and the reaction in

AlzPathway is GSK3. To summarise, although the Tau pathology plays a role in both

diseases, the post translational modifications may be induced by different factors.



3.3. Results 63

(a) PD Map: Tau Phosphorylation

(b) AlzPathway: Tau Phosphorylation

Figure 3.11: MAPT activity in AD and PD Map
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3.3.4 MAPK signalling

Mitogen-activated protein kinases (MAPK s) are serine-threonine kinases

that mediate intracellular signalling associated with cellular activities including cell

survival, death, proliferation, and differentiation. MAPK signalling is reported to be

involved in neuronal apoptosis in both AD and PD [Kim and Choi, 2010].

In PD, oxidative stress is a prominent cause of neuronal death. Studies have

shown that ROS production induced by the toxins results in the activation of microglial

cells, which subsequently attack neighbouring dopaminergic neurons. Amplified levels

of α-Synuclein activates the MAPK pathway, resulting in subsequent inflammatory

response [Fadaka et al., 2017]. This can also be observed in the PD Map in neuroin-

flammation, as seen in Figure 3.12)

In AD, Amyloid β aggregation triggers the activation of microglial macrophages,

which then produce reactive oxygen species (ROS) and pro-inflammatory cytokines

such as TNF-α and IL-1β. These cytokines then stimulate the MAPK signalling path-

way [Corrêa and Eales, 2012]. This was also observed in AlzPathway, as shown in

Figure 3.13a.

MAPK8 in the AlzPathway was incorrectly annotated by mitogen-activated

protein kinase 8 interacting protein 1 (MAPK8IP1) in addition to MAPK8. However,

the MAPK8 was detected as a match by updating the model annotations. The MAPK8

transition in both AlzPathway and PD Map are modified by MAP2K7 and MAP2K4.

While in the PD Map, the reaction has only two modifiers, the AlzPathway has sev-

eral other modifiers mediating the activation of MAPK8. Additionally, the reactions

highlighted in Figure 3.13b were all in Apoptosis in the PD Map and mediated by

activation of entities in neuroinflammation.

These observations support the current knowledge that MAPK signalling

pathway contribute to neuroinflammatory responses and neuronal death and functional

deficiencies in neurodegenerative diseases. Recently, many studies investigate possible

role of MAPK as an attractive therapeutic target against neuroinflammation in AD, PD
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and several chronic inflammatory diseases [Yarza et al., 2016, Fadaka et al., 2017, Lee

and Kim, 2017]. Moreover, in recent years efforts have been made towards targeting

the inhibition of MAPK pathways in AD and PD [Munoz and Ammit, 2010, Gehringer

et al., 2015, Leonoudakis et al., 2017, Shah et al., 2017]

Figure 3.12: PD Map: MAPK cascade triggered by ROS and α synuclein fibrils
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(a) MAPK cascade in AlzPathway highlighted in red are reactions found similar to PD Map

(b) PD Map: MAPK cascade in autophagy. Highlighted in red are reactions found similar
to MAPK cascade in AlzPatwhay Map.

Figure 3.13: MAPK8 signalling in AD and PD
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3.3.5 Endoplasmic Reticulum Stress

Endoplasmic reticulum is responsible for the synthesis and folding of trans-

membrane and secretory proteins. In neurodegenerative disorders like AD and PD pro-

gressive loss of neuronal functions leads to accumulation of damaged proteins, which

results in Endoplasmic Reticulum (ER) Stress. To restore homoeostasis by clearance

of misfolded proteins the unfolded protein response (UPR) pathway is activated. The

UPR signalling mechanism improves the efficiency of protein folding and clearance of

the abnormally folded proteins. However, under chronic ER stress, UPR fails to restore

homoeostasis and triggers apoptopic processes through alternate pathways to eliminate

permanently damaged cells [Mercado et al., 2016, Urra et al., 2013].

ER stress is modelled in both diseases maps. Several overlapping elements

were found including EIF2AK3 (PERK), ERN1 (IRE1), ATF6, EIF2A, XBP1, and

HSPA5. Moreover, one of the perfect matches in the comparison was involved in ER

stress mediated transcription/translation Figure 3.14. Activated EIF2AK3 (PERK)

mediates the activation of EIF2A in both AD and PD.

While ER stress in PD is mediated by SNCA fibril, in AD it is mediated

by mutated presenilin. Although presenilin 1 was incorrectly annotated as PSEN,

the algorithm could identify the entity as PSEN1. UPR is regulated by the three

master regulators, IRE1, PERK, and ATF6. All the three proteins were found in both

AlzPathway and PD Map. Further downstream, ERN1 (IRE1 activates XBP1 which

then induces ER-associated degradation (ERAD) [Cai et al., 2016], this can be seen in

the PD Map (not shown here).

The second regulator, PERK, on activation induces phosphorylation of EIF2A

causing translational arrest. Phosphorylated EIF2A activates ATF4 increasing the lev-

els of the transcription factor CHOP. CHOP then triggers the expression of several

pro-apoptotic proteins [Urra et al., 2013]. This can also be identified in the PD Map

(Figure 3.14b, and downstream reactions) and selective chaperone translation in Alz-

Pathway (Figure 3.14a)
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ATF6 traffics to Golgi apparatus where it is cleaved and fragment named

ATF6. ATF6 then translocates to the nucleus regulating the transcription of genes

involved in ER homeostasis [Urra et al., 2013]. This is modelled in the PD Map (re 4212

and downstream, not shown here) and ATF6 mediating selective chaperone translation

in AlzPathway (Figure 3.14a).

These similarities identified, reveal a complex scenario in which the ER stress

response can have distinct downstream effects in both diseases and when different

signalling components are manipulated. Moreover, as discussed earlier, the UPR can

have different effects depending on the stage of the disease, initially working towards

a pro-survival factor to restore homeostasis, but later triggering apoptosis to clear

irreversibly damaged proteins.

Although response to ER stress were similar in both AD and PD leading

to apoptosis in distinct regions of the brain, however the upstream triggers were dif-

ferent and alternate pathways leading to apoptosis exist in both diseases. Moreover,

alterations in the function of the ER also play a major role in the aetiology of diseases

like diabetes, cancer, heart diseases, inflammation and several other neurodegenerative

[Hetz and Saxena, 2017, Oslowski and Urano, 2011, Sano and Reed, 2013]. Together,

studies of inflammatory disease and neuronal injury also support that persistent ER

stress represents a more general mechanism of neurodegeneration that is triggered not

only by the accumulation of disease-related damaged proteins but also by the pro-

inflammatory environment that is observed in neurodegenerative diseases. Therefore,

further efforts are needed to define the components of the ER stress response that could

be specifically targeted for optimal disease interventions for distinct diseases.
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(a) AlzPathway: ER stress induced by mutated presenilin

(b) PD Map: ER stress mediated by α synuclein toxicity

Figure 3.14: ER stress signalling in AD and PD
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3.3.6 Inflammation

Inflammation is a natural response of the immune system to restore tissue

homoeostasis. Inflammation is triggered by stressful stimuli such as tissue damage

and infections. The inflammatory response kills pathogens, repairs injured tissue and

removes abnormal metabolite deposits. Neuroinflammation is reported in many neu-

rodegenerative diseases and in some of them not only considered to be a consequence

but also could trigger the pathology. Moreover, in many neurodegenerative diseases,

inflammation markers are being investigated as diagnostic measures [Andreasson et al.,

2016, Wang et al., 2015] (also discussed in section 2.6.1).

Three of the matched reaction were involved in neuroinflammation in both

AD and PD. Figure 3.15, shows the transport of TNF and IL1B from the astrocyte

in both AD and PD Maps. Also detected as similar was the transport of IL6 from

the microglia triggered by their inflammatory response (reaction 779 in AlzPathway,

reaction 5241 in PD Map (not shown here)).

In many cases, AlzPathway entities were identified only after updating the

annotations. For example, nuclear factor kappa B subunit 1 was annotated as NFKB

instead of NFKB1, although named as subunit1. Similarly IL6 in many instances were

annotated as IL6R and annotated by two Uniprot identifiers. Several other cytokines

including AP1, TNF, IL6, and IRF were also incorrectly annotated. No other reactions,

other than discussed above were identified as similar in the neuroinflammation pathway,

suggesting that the consequence of neuroinflammatory responses may be similar in both

disease but the trigger could be distinct.
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(a) AlzPathway: Transport of TNF and IL1B from astrocyte

(b) PD Map: Transport of TNF and IL1B from astrocyte

Figure 3.15: Inflammation triggering transport of TNF and IL1B from astrocyte
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3.3.7 Wnt signalling

Figure 3.16 shows common reactions detected in Wnt signalling in AlzPath-

way highlighted on PD Map. Wnt signalling regulates several aspects of development

including organogenesis, mid brain development especially in dopaminergic neurons and

stem cell proliferation [Berwick and Harvey, 2014]. In PD, Wnt and β catenin signalling

serves as the common final pathway for neuroprotection and self repair [Marchetti et al.,

2013].

On the other hand, a variant of Wnt signalling pathway co-receptor LRP6

is associated with late-onset of AD and presents low level of Wnt signalling activation.

Wnt signalling is a neuroprotective mechanism against Amyloid β toxicity. With the

increase in Aβ aggregates, levels of Dkk1 increases. Dkk1 is a negative regulator of

Wnt signalling, resulting in higher GSK-3β activity. GSK-3β activity is reported to

be involved in several hallmark signatures of AD like the hyperphosphorylation of

tau, increased memory impairment and increased production of Amyloid β [Inestrosa

and Varela-Nallar, 2014, De Ferrari et al., 2007]. Also as discussed section 3.3.3, we

identified GSK3 as the only common modifier between all reactions matches in context

to tau hyper-phosphorylation.

Similar to several other mechanisms discussed here, the reaction identified

as similar are mediated by different modifiers signifying the upstream triggers in both

disease are distinct.
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Figure 3.16: Reactions identified from AlzPathway highlighted in PD Map

3.3.8 Synaptic area

The synaptic area does not show much similarities. This is primarily due

to the fact that the common receptors are represented as complexes without single

proteins. Since the complex comparison is not robust, these entities could not be

compared. Additionally, several entities in the AlzPathway were annotated. For in-

stance, Calmodulin in the AlzPathway was annotated as ”PICALM ” (Uniprot identi-

fier:Q13492), which is Phosphatidylinositol-binding clathrin assembly protein instead

of ”CALM1 ”. Glutamate was annotated as ”glutamate(2-)” in the AlzPathway and

as ”L-glutamic acid” in the PD Map.
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3.4 Summary

Comparison of disease maps to detect similarities and differences was imple-

mented and demonstrated using PD map and AlzPathway. Although many elements

and reactions were found similar in many hallmark neurodegenerative pathways they

were potentially triggered by different upstream events and cause different down stream

effects.

In AKT1 activity, TSC complex mediating activation of RHEB was detected

as a similar downstream reactions of phosphorylated AKT1 in both AD and PD.

Although TSC was not annotated in AlzPathway, the RHEB activation by

TSC was identified as a match. GSK3 was identified as the only common modifier

for Tau hyperphosporylation in both AD and PD maps. Additionally, in AlzPathway

Dkk1 negatively regulates Wnt signalling resulting in higher GSK3 activity.

Although there were incorrect annotations for MAPK cascade elements in

AlzPathway, several reactions were identified as similar with the PD Map. In the PD

Map SNCA triggers the MAPK signalling pathway in the PD map, whereas Amyloid

β aggregates trigger the MAPK cascade.

Similarly, while ER stress response has several alternate paths leading to

apoptosis in both AlzPathway and PD map, it is mediated by SNCA in PD and mutated

PSEN1 in AlzPathway. Presenilin 1 was incorrectly annotated as PSEN in AlzPathway

instead of PSEN1.

NFKB1 was annotated by two Uniprot identifiers and IL6, TNF, etc., were

not annotated. However, the annotated based comparison could identify several reac-

tions involving these cytokines as similar in inflammatory responses in both AD and

PD.

Several entities in the AlzPathway were annotated by two Uniprot identifiers,

leading to ambiguity in the identity of the elements . The annotation-based compari-

son could overcome the issues of multiple annotation, missing annotations and different
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encodings (HGNC and Uniprot) of various proteins between PD and AD maps. How-

ever, incorrect annotation of entities, for instance, PICALM for Calmodulin, could not

be detected automatically. Such errors in the model generation will limit the inter-

operability of models. The results of comparison between AlzPathway and PD Map

emphasise the need for curation standards to ensure higher quality and interoperability

of disease maps.



Chapter 4

Comparison of different disease

models

As discussed earlier, all the published disease maps are built in CellDesigner.

However, such maps are only a part of the knowledge landscape. Other formats like

BioPAX and OpenBEL are also used to built disease models ( Section 1.3.3) While

SBML and BioPAX have several software packages and packages for visualisation and

analysis, the framework and environment supporting OpenBEL is much more limited.

For instance, while OpenBEL captures the context of the relationship, this information

is not used for visualisation in cytoscape. This limits the re-usability and interoper-

ability of OpenBEL models [Hoyt et al., 2017].

System Biology Format Converter (SBFC) provides a generic framework

to includes several converters translating between several formats including SBML,

BioPAX, and SBGN-ML [Rodriguez et al., 2016]. Knowledge assemblers, like INDRA,

provide support for import of many formats and PyBEL [Hoyt et al., 2017] enables

the import of OpenBEL documents into a common format in INDRA. However, there

exists no converter from OpenBEL to SBML. Therefore, a converter from OpenBEL

to CellDesigner format was implemented. The converter was used to generate a node

file and reaction file from an XBEL file. The converter is available at https://git-

76
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r3lab.uni.lu/aishwarya.alex/xBELtoCellD. The list of nodes and reactions can then be

used to generate an CellDesigner model. The generated CellDesigner model can then

be visualised using the MINERVA platform.

4.1 Interoperability between models

The previous chapter details the comparison between two CellDesigner maps.

The next step was to convert OpenBEL models to the CellDesigner format. As a use

case, we convert the APP OpenBEL model. The species and reactions in CellDesigner

and their corresponding representation in OpenBEL are represented in the Appendix

A.2. The namespaces listed in the table are limited to the ones used in the APP model.

Since both modelling language have different purposes the conversion is lossful.

Each OpenBEL statement records a biological fact and can be annotated

with references, typically a PubMed ID. Additionally, each statement can also be asso-

ciated with a set of annotation that describes the context in which the statement was

observed. This adds to the knowledge associated with the statement being captured.

The additional information about the encoded statement such as the tissue, species,

and cell line can then be used for hierarchical organisation of the map. However, these

annotations are optional.

SET Disease = "Atherosclerosis"

SET CardiovascularSystem = "Arteries"

SET TextLocation = "Review"

SET Evidence = "Oxidation and nitration of macromolecules , such

as proteins , DNA and lipids , are prominent

in atherosclerotic arteries."

SET Citation = {"PubMed","Trends in molecular medicine","

12928037","","de Nigris F, Lerman A, Ignarro LJ, Williams -

Ignarro S, Sica V, Baker AH , Lerman LO , Geng YJ , Napoli C",""

}
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pathology(MESHD:Atherosclerosis) positiveCorrelation

biologicalProcess(GO:"lipid oxidation")

Listing 4.1: BEL Statement Example

An example of a OpenBEL statement and associated annotation is shown in

Listing 4.1. The statement with the biological fact is provided as the evidence. The

statement is accompanied by the citation and additional information e.g. the disease

and tissue. These information provided is essential to annotate the entities and reac-

tions in the context in which they should be added to the model. The subject (pathol-

ogy(MESHD:Atherosclerosis)) and object (biologicalProcess(GO:”lipid oxidation”)) in

OpenBEL, are translated to reactants and products (or modifiers) in CellDesigner.

Relationships in OpenBEL are converted to reactions in CellDesigner.

To identify each element (subject or object) is annotated by a namespace.

While the OpenBEL Language Documentation [BEL v2.0 Language Documentation,https:

//github.com/OpenBEL/language, Date Accessed: 30 May 2018], recommends as best

practice the use of well defined domains, external vocabularies and public ontologies

to define entities, it must be noted that the users are free to define and use their own

vocabularies to refer to entities.

Legacy and custom namespaces

OpenBEL also provides a list of legacy namespaces for domains such as

chemical, protein families, etc. These are lists of accepted names for chemicals, protein

families, etc., and also allows entities with no namespace. The legacy namespaces cover

each of the OpenBEL function types. These namespaces are available through their

resource framework at http://resources.openbel.org/belframework/. However, this has

not been updated to reflect the changes in the underlying resources. Additionally,

most of these resources identify entries by name and not a unique identifier. Due to

the large number of terms across many namespaces, the main challenge was to extract

the namespace and corresponding identifiers to generate a MIRIAM uris.

https://github.com/OpenBEL/language
https://github.com/OpenBEL/language
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For entities that are not annotated or use the OpenBEL legacy namespace,

we use the MeSH dictionary and reflect-client [O’Donoghue et al., 2010] to query GO

and Ensembl to try to extract the identifiers. This approach was also used to extract

the entities which where annotated by namespace and name alone, to extract the

corresponding identifier. E.g.: abundance (amyloid betapeptides). Such terms were

looked up in GO, MeSH and Ensembl. If not retrieved, they were set to unknown

species in CellDesigner.

Missing Namespaces and Improper Names

OpenBEL facilitates the use of openly shared controlled vocabularies (names-

paces) to promote exchange and consistency of information. Finding an appropriate

namespace-identifier pair is often an essential part of the curation process. An impor-

tant point to be noted is the element ”abundance which can represent any entity which

does not fit any of defined species like protein, gene etc,. OpenBEL uses this element

to encode elements of unknown quantity like chemicals, metabolites, ion, and peptides.

An overview of the conversion process is given below. The algorithm takes as

input the OpenBEL model in .XBEL format. The OpenBEL framework provides tools

to convert the OpenBEL document into .XBEL, a parsable xml format. The converter

extracts the relationships and involved subject and object to return two list, a node

and a reaction list. The node list, contains the elements, their unique identifier as

miriam uris, and location information. The reaction list contains reactants, products

and modifiers (if any) and the corresponding citation from which the reaction was

extracted. The reaction lists refers to the elements involved by the identifier used in

the node list. The elements in the node list can be reactants, products or modifiers in

one or more reactions. Therefore, we create a list of nodes with unique identifiers which

is used to refer to the same element as a participant of multiple reactions. An extract

of the result tables generated during the conversion of the APP OpenBEL model are

attached in the Appendix.
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Algorithm 1: Converting XBEL to nodes and reactions

Data: OpenBEL model in .XBEL

Result:

nodes list (nodes with annotation and location information)

reactions list (reactions, with nodes referring to nodes list and annotation)

for Each statement in file do

Extract annotations : citation, cell, cell line, tissue, disease, etc., ;

for Each relationship in statement do

if valid relationship then

get subject ;

if object is nested then

modifier ← subject ;

modifying relationship ← relationship ;

repeat section for relationship in object ;

else

get object ;

end

if subject, object and modifier exists in nodes then

retrieve identifiers ;

else

create nodes for subject, object and modifiers ;

retrieve identifiers ;

end

add new relationship with subject, object and modifier to reaction ;

else

skip to next relationship ;

end

end

end
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While CellDesigner is a process focused representation, the information cap-

tured is detailed based on interaction between entities rather than directly on entities.

OpenBEL on the other has its focus in relationship between entities and has specifics

representation for such relationships which are missing in CellDesigner.

OpenBEL allows nested statements. They are translated as reactions with

modifiers in CellDesigner. Figure 4.1, the subject of reaction1 acts as a modifier to the

nested reaction in CellDesigner.

Subject1 Object2Subject2

Object2Subject2

Subject1

Object1

(Modifier)

Reaction1 Reaction2

Reaction1

Reaction2

BEL nested statement

 As hypergraph in CellDesigner

Figure 4.1: Nested statements in OpenBEL

However, this is only done for reactions which allow modifiers like state

transition and transport. For reaction types that do not permit modifiers, the reactions

are converted to two separate reactions:

1. modifier(subject1) -modifying relationship (reaction1)- reactant (subject2)

2. reactant(subject2) -relationship (reaction2)- product(object2)
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Currently the converter handles the OpenBEL predicates following the map-

ping shown in Table 4.1.

OpenBEL predicates CellDesigner reaction

increases UNKNOWN POSITIVE INFLUENCE

directlyIncreases POSITIVE INFLUENCE

directlyDecreases NEGATIVE INFLUENCE

decreases UNKNOWN NEGATIVE INFLUENCE

positiveCorrelation UNKNOWN REDUCED MODULATION

negativeCorrelation UNKNOWN REDUCED MODULATION

translocation STATE TRANSITION

MODIFIER increases UNKNOWN CATALYSIS

MODIFIER directlyIncreases CATALYSIS

MODIFIER directlyDecreases INHIBITION

MODIFIER decreases UNKNOWN INHIBITION

Table 4.1: OpenBEL predicates and corresponding representation in CellDesigner

As mentioned earlier, due to the differences in the language structure we

expect a loss of information upon conversion. Some of the predicates in OpenBEL

do not have a corresponding equivalent representation in CellDesigner, e.g. nega-

tiveCorrelation, positiveCorrelation, association, biomarkerFor, hasComponents, prog-

nosticBiomarkerFor, complexAbundance. These relationships are not represented in

CellDesigner since they do not directly describe a process, and add no mechanistic

value to the model. Such relationships in OpenBEL are ignored by the converter.

OpenBEL captures the context of the reaction using the ”SET” statements (See listing

4.1). The converter extracts this information to organise the model hierarchically into

compartments for better visualisation and context. The cell and cell line information

provides the context in which the reaction occurs and are represented as compartments

in CellDesigner.
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OpenBEL activity term GO annotation

catalyticActivity urn:miriam:obo.go:GO:0003824

chaperoneActivity urn:miriam:obo.go:GO:1903332

gtpBoundActivity urn:miriam:obo.go:GO:0008277

chaperoneActivity urn:miriam:obo.go:GO:1903332

kinaseActivity urn:miriam:obo.go:GO:0016301

peptidaseActivity urn:miriam:obo.go:GO:0008233

phosphataseActivity urn:miriam:obo.go:GO:0016791

ribosylationActivity urn:miriam:obo.go:GO:1990404

transcriptionalActivity urn:miriam:obo.go:GO:0006355

transportActivity urn:miriam:obo.go:GO:0005215

degradation urn:miriam:obo.go:GO:0009056

Table 4.2: OpenBEL activity terms and corresponding GO annotation

To specify distinct molecular activity of protein, complex, and RNA, Open-

BEL uses the ”activity” functions providing distinct terms that differentiate these

activity from the abundance.

For example, kinaseActivity(proteinAbundance(HGNC:AKT1)) directlyDecreases tran-

scriptionalActivity(proteinAbundance (HGNC:FOXO1)), indicates that the kinase ac-

tivity of AKT1 directly decreases the transcriptional activity of FOXO1. These func-

tions are annotated as GO terms (Table 4.2) and added as additional information to

the specific node (Protein, Gene, etc.) by the converter.
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4.2 Results

The APP OpenBEL model was converted in to an CellDesigner format using

the converter and visualised using the MINERVA platform. The conversion process

consists of several steps. First, the OpenBEL model in .XBEL format was parsed by

the converter and the entities and their annotations were extracted to generate a nodes

list. At this stage , the converter also extracts annotation for unannotated elements

and legacy namespaces. Next, the relationships in OpenBEL are translated to reaction

types in CellDesigner and a reaction list was generated referring to elements from the

node list and also the cellular location extracted from the OpenBEL model. The node

and reaction list were then converted to an SBML format. Finally, to provide a layout

to the model, the SBML was converted to CellDesigner format.

EVIDENCE: Recent studies have shown independently that presenilin-1 (PS1) null mutants and familial 
Alzheimer's disease (FAD)-linked mutants should both down-regulate signaling of the unfolded protein response 
(UPR)

proteinAbundance (HGNC: PSEN1)   decreases    biologicalProcess (response to unfolded protein)

SUBJECT: proteinAbundance (HGNC:PSEN1)
OBJECT: biologicalProcess (response to unfolded protein)
RELATIONSHIP: decreases

REACTANT :   s22          PROTEIN      PSEN1                                         urn:miriam:hgnc.symbol:PSEN1
PRODUCT   :   s3721    PHENOTYPE      response to unfolded protein    urn:miriam:obo.go:GO:0006986

REACTION : 
r4235 UNKNOWN_NEGATIVE_INFLUENCE s22 s3721      urn:miriam:pubmed:11551913

BEL

Nodes and Reaction

Figure 4.2: Example of a lossless statement conversion

Figure 4.2 shows an example of a statement that could be translated without

any loss of knowledge. Moreover, the object in the OpenBEL statement biologicalPro-

cess (response to unfolded protein) had no annotation associated with it. This term

was retrieved as a GO term. From a total of 7083 statements in the APP OpenBEL

model 4347 were partially or completely converted to the CellDesigner model. Table
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4.3 gives a summary of the relationships that were ignored or partially translated.

Relationship Count Partially converted

Association 1445 9

Decreases 17 17

Increases 86 86

directlyIncreases 1 1

biomarkerFor 19 0

causesNoChange 54 0

ComplexAbundance 1014 0

hasComponents 2 0

hasMember 1 0

hasMembers 54 0

isA 56 0

negativeCorrelation 1 1

rateLimitingStepOf 1 0

translocation 52 4

Table 4.3: OpenBEL statements lost in conversion

Some statement with the following relationships: decreases, increases, direct-

lyIncreases, translocation and negativeCorrelation were partially converted because

they were a nested statements with a modifying relationship that did not have any

equivalent. In such cases, only the nested statement was translated. In the case of

translocation, statements which were missing either a from or to location were also

ignored.
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Figure 4.3: A version of the APP OpenBEL model converted to CellDesigner visualised
using the MINERVA platform.

In Figure 4.3, each box represents the context (cellular location or mech-

anism) where the reactions occur. The top left box represents the synapse. The No

compartment box had no context (no tissue, cell type or compartment) associated with

it. This is an example of how a model built without required standardized notation

for context would be visualised. There is a very dense network, but offers very little

use in any knowledge exploration, or data interpretation.

The generated model that had proper context annotation was quite large and

therefore was split into five maps depending on the cell type of the reactions involved.

Table 4.4 shows components of each of the smaller maps.
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Celltype group Components

Blood Blood Cells, Blood Platelets, Lymphocytes, Erythrocytes, Leukocytes

Neurons
Neurons, primary neuron, Dopaminergic Neurons, Pyramidal Cells,

Motor Neurons, primary cortical neuron, Interneurons

Only tissue
Bone Marrow Cells, Beta cell, INS-1 cells, Myocytes, Smooth Muscle,

Endothelial Cells, Human Umbilical Vein Endothelial Cells, Fibroblasts, Neural Stem Cells

Glial cells Astrocytes, Microglia

Others (Model systems) Neuroblastoma cell, CHOAPPsw, N2a695 cell, 293, NT2N cells, PC-12

Table 4.4: Submaps components based on cell type

The only tissue map comprises of reaction and nodes which had no precise

inter cellular location information associated to them, but only tissue information.

Many statements tagged only with tissue information, were pertaining to literature

about cerebrovascular diseases, Diabetes Mellitus Type 2, etc., investigating cross-

talk with significant pathways of AD [Ubeda et al., 2004, Freude et al., 2009, Jung

et al., 2003]. These interactions may not be specific to AD, but are interesting for

co-morbidity studies. Additionally, several statements were extracted from literature

reporting results from model systems and cell lines, such reactions were included in the

model system map.
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APP BEL (Cystoscape)

APP SBML (MINERVA)

Blood

Brain

Neurons

Glia

Other cell lines

Only tissue

Figure 4.4: APP OpenBEL model converted to CellDesigner, visualised in MINERVA

Figure 4.4 highlights the difference in visualisation using contextual infor-

mation. The map provides an easily navigable, hierarchical and compartmentalised

structure as opposed to the dense ”hairball” of the OpenBEL model. Moreover, the

community support for SBML compatible software is much larger than the OpenBEL

community, providing better analytical and exploratory tools for the SBML network.

4.3 Comparison of APP map to PD map

The converted APP submodels were compared to the PD Map with methods

described in Chapter 3. Figure 4.5 shows the matches highlighted on the PD map.

Although all the submaps identified many elements in common with the PD Map only

one reaction was identified as similar; the transition of APP to Amyloid β 42. This

reaction was identified both in the APP blood and APP neuron maps.
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Figure 4.5: Elements and reaction from APP model on PD map

The identified elements were mainly concentrated around the neuroinflam-

mation, cell death and ER stress signalling neighbourhood on the PD Map. ROS

activity and the iron metabolism submap also detected matches in the PD Map. The

Alzpathway also detected similarities in these regions.

However, the absence of similar reactions is evident. This may be primarily

due to the fact that the distribution of reaction types in both the maps are consid-

erably different. Table 4.5, shows all the reaction types in the APP map and the

number of such reactions in the PD Map. It is evident that the APP model has larger

number of reaction of type modulation and influence, arising from the ”increases” or

”decreases” relationships in OpenBEL. The greater number of such interactions is be-

cause OpenBEL aims to capture causal and correlative relationships between entities.

Additionally, unlike the AlzPathway, the APP model is primarily focused around the

Amyloid β Pathology, therefore it is not surprising that there were not many reaction
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similarities with the PD Map.

Reaction type Count (APP Map) Count in PD Map Count in AlzPathway

NEGATIVE INFLUENCE 25 206 2

STATE TRANSITION 49 678 380

POSITIVE INFLUENCE 76 1060 9

UNKNOWN REDUCED MODULATION 525 13 1

UNKNOWN NEGATIVE INFLUENCE 1059 26 10

UNKNOWN POSITIVE INFLUENCE 2498 2 14

Table 4.5: Reactions in the APP Map

4.4 Comparison of APP map to AlzPathway

On comparing the APP maps with the AlzPatwhay, 308 elements were found

in common, out of which only 125 unique elements. The blood and brain submap had

the maximum number of matches. Figure 4.6 show the elements from APP maps

highlighted on AlzPathway.

The matched elements from APP are spread out on the Alzpathway, except

around the region of cholesterol metabolism. Interestingly, none of the elements of

type ”phenotype” were matched, although both APP and AlzPathway have a large

number of elements of type ”phenotype”. This could be due to the fact that phenotypes

elements were not annotated in AlzPathway. On the other hand, phenotypes like ”long-

term memory”, ”astrocyte activation”, ”neuroinflammation” ,”ER stress response”,

etc., were detected as matches between the PD Map and APP maps. Therefore, we

could expect an increase in the number of matches, if phenotypes were accounted for.
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Figure 4.6: Elements from APP model highlighted on AlzPathway

Figure 4.7 shows the results for a search for ”APP” on the AlzPathway, the

results include ”APP, APP (Abeta), APP (Abeta 40), APP (Abeta 40, APP (c99))”.

The distribution is similar to all matches detected from the APP maps, since the APP

map was built around the Amyloid Beta pathology.



92 Chapter 4. Comparison of different disease models

Figure 4.7: APP and Aβ highlighted on AlzPathway

Similar to the reactions detected in comparison to the PD Map, number of

reactions detected as matches was lower than expected based on the fact, that both

resources are models of Alzheimer’s disease pathology. Only 5 reactions, were detected

as similar in the AlzPathway. All five reactions were involving APP. As discussed

earlier, this was primarily due to the reaction type, the APP map has greater reactions

of unknown influence or modulation (Refer Table 4.5). Next, we identified the reactions

that have the same interacting elements i.e. reactants and products but not necessarily

the same reaction type. This approach detected 31 reactions. Figure 4.8 shows these

reactions highlighted on the AlzPathway.
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Figure 4.8: Reactions from APP model highlighted on AlzPathway

However, the majority of the reactions were still involved with APP, Abeta

peptides and BACE. Also detected was the activation of GSK3B and transport of

inflammation markers TNF-α, IL6, IL1B.

Figure 4.9, shows reactions found similar in APP and AlzPathway. BACE

(BACE1) is reported to cut APP to generate the N terminus of Aβ producing a C-

terminal fragment called C99 [Tanzi and Bertram, 2005]. BACE is also a known drug

target for the therapeutic inhibition of Aβ production in AD [Vassar et al., 2009].

In AD, GSK3β serves as a functional link between Amyloid β and Tau pathol-

ogy [Llorens-Maŕıtin et al., 2014](also discussed in section 3.3.3 and 3.3.7). This was

also detected as common in the comparison between APP and Alzpathway map. Shown
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in Figure 4.10, activated GSK3β, modulates the phosphorylation of MAPT, which fur-

ther downstream results in production of Neurofibrillary Tangles.

Although in recent decades, Amyloid β was considered the primary hallmark

of AD pathology, the present consensus is that the disease has a multifactorial origin

[Llorens-Maŕıtin et al., 2014, Medina et al., 2017, Gong et al., 2018]. Currently, several

reports support neuroinflammation as a significant contributor to several neurodegen-

erative pathogenesis including Alzheimer’s Disease [Hong et al., 2016] (also refer section

3.3.6).

GSK3β is also known to play regulatory role in the inflammatory response

[Sudduth et al., 2013, Llorens-Maŕıtin et al., 2014]. Reactions involving inflammatory

markers IL6, IL1B and TNFα were detected in the astrocyte and microglia in both

APP and AlzPathway (See Figures 4.11 and4.12, also discussed in section 3.3.6 )

Figure 4.9: BACE and APP activity in Alzheimer’s Disease
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Figure 4.10: GSK3β as a functional link between Amyloid β and Tau pathology

Figure 4.11: IL6, IL1B and TNFα transported to microglia
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Figure 4.12: IL6 and IL1B transported to astrocyte

4.5 Summary

The converter extracted the nodes and reactions from the OpenBEL model.

This was then converted to the CellDesigner format for layout. The converted model

were divided into five smaller maps based on cell type or tissue context. The converted

maps were then used to compare against the AlzPathway. Although many elements

were identified as similar between the maps, due to the differences in reaction types,

only five reactions were identified as similar. It was evident that identified reactions

were involved in the Amyloid β pathology. Next, we performed a comparison not

strict on the reaction type, but considering the reactants and products involved in

the reaction. 31 reactions were identified as similar. While several additional reaction

involving APP or Aβ were identified, similarities in inflammation and Tau pathology

were also identified. However, as discussed earlier both maps have several elements

as phenotypes, and several of them were not annotated in AlzPathway. Although

unannotated genes or proteins are handled by the comparison, the current version of

does not handle unannotated phenotypes. Overall, we demonstrate that annotations

and modelling standards are essential for interpretability of the models. Moreover,
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these standards can facilitate re-use and easier interoperability of different modelling

formats for further investigation.
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Discussion

Data heterogeneity is one of the biggest challenge in data integration . This

particularly dominant in data driven domains like systems biology and translational

medicine since many researchers with different areas of expertise work together. The

difficulties in data integration have only increased with the advent of high throughput

technologies. Moreover, interdisciplinary research brings together different experts such

as clinicians, biologists, bioinformaticians, and software developers together. Therefore,

it is particularly important for these diverse groups to use, share and exchange their

data and results. This is only possible if they speak the ”same language”.

Today, an increasing amount of data is available in databases that are main-

tained by different organizations for different purposes and therefore are often designed

independent of each other. The increase in amount of data does not necessarily signify

increase in the amount of knowledge. Data and resources are useful when they are

understandable and interpretable [Panahiazar et al., 2014, Wang et al., 2018]. Appli-

cations can then integrate, search and extract information from interpretable data to

support clinical decision making. Due to the volume and complexity of data available

today, traditional methods of analysing such a large amount of data are not feasible

[Raghupathi and Raghupathi, 2014].

With increasing power of computers resources we can now look for ”infor-

98
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mation” and ”relationships” that were not obvious. In 2013, healthcare expense of

the United States was estimated at 17.6 percent of GDP (nearly $600 billion) [Groves

et al., 2013]. Despite the significant funding spent on healthcare, the main challenge

of interoperability still remains [Kruse et al., 2016]. In 2011, dirty data was estimated

to cost the US healthcare industry over $300 billion every year and 60% of estimated

time spent on cleaning and organising data [Redman, 2016, Tibbetts, 2011]. Over the

last decades, the failure to organise and standardise the rapidly generated data makes

it an increasingly costly effort to make use of this data today [Attwood et al., 2009].

In order to use and reuse the data, it is storage and communication should be in a

structured and standardized format.

5.1 Integrating Heterogeneous Data

Research approaches today rely heavily on information available through

public databases. These datasets are often inconsistent, not standardized, or properly

annotated. Moreover, the quality of the data is also uncertain [Wolstencroft et al.,

2015, Comber et al., 2006]. Despite several normalisation efforts and initiatives, data

standardization still remains an open issue. There is a need to define standard formats

for every data type. Several domains already have such efforts which has been at least

partially successful (e.g. MIAME). However, the metadata, i.e. information describing

the provenance and structure of the data, design of experiment, is still neglected in

many cases and are not comprehensive enough to support large scale data integration

approaches [Bagewadi et al., 2015].

Chapter 2 details, the curation, harmonisation and integration of publicly

available studies from GEO and Array Express and datasets generated within the AE-

TIONOMY consortium. Data access, acquisition, curation and integration is tracked

through a study request system to address the challenge of ensuring smooth and effi-

cient entry of datasets into the AETIONOMY knowledgebase. Each dataset undergoes

a curation and harmonization process. The standard format files are generated for each

curated dataset. Following the ETL process, the datasets are loaded in tranSMART
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to enable further visual and exploratory analysis. Section 2.6, discuss how these har-

monised and integrated datasets support hypothesis generation in AD and PD. While

datasets from public repositories such as GEO and Array Express were standardised

to large extent, clinical data from collaborators was far more challenging.

When it comes to clinical data collection, data harmonisation and standard-

isation is not a trivial task [Hudson et al., 2018]. Standards harmonise meaning across

different studies and even sites within studies. This will enable individual elements to

be aggregated into a larger picture. Often data collection involves more than one per-

son and is carried out over a considerable period of time, without guidelines and agreed

upon standards, the process will vary from person to person and over time [Dickersin

and Mayo-Wilson, 2018, Leroux et al., 2017]. As discussed in Chapter 2, this variance

in data representation and sharing is the biggest challenge to the integration process.

Representations varying between study centre and often within the same centre. There-

fore, standards will ensure the uniformity and additionally facilitate the compatibility

between different systems. Collaborating with the CDISC, the Consortium for Preven-

tion of Alzheimer’s Disease (CPAD, https://c-path.org/programs/cpad/) mapped

the data from nine different organizations to create an openly available database con-

taining individual records of 6,500 Alzheimer patients from 24 clinical studies [Neville

et al., 2015].

Traditionally, clinical research studies relied on collecting data with case

report forms. These were subsequently entered into a database by a double data entry

to generate electronic records. This method is time-consuming and error-prone. Today,

electronic case report forms (eCRFs) and electronic data capture (EDC) solutions are

available to reduce the duration of data capture and increase accuracy. [Rorie et al.,

2017, Walther et al., 2011]

Creating and revising the EDC and accepted set of arguments along with the

different target groups is crucial to accommodate the requirements and potential use

cases of the data generated. Minimising free text fields for data input or provide free

text fields in addition to mandatory fields with select or multiple select variables will

accommodate the needs of both data collector and processor. For instance, although a

https://c-path.org/programs/cpad/
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data processor would prefer strict data representations to reduce ambiguity and errors

that can be caused due to uncontrolled data entry, a medical researcher or data collector

may find it difficult to restrict certain inputs to limited set of values. Therefore, it is

particularly important to consider the needs of both the data collector and processor.

Following standards in data collection and data representation at early stages

of the data collection will ensure harmonised data capture and reduce errors and ambi-

guity that may arise if there are no strict rules [Bellary et al., 2014, Cowie et al., 2017].

Therefore, it is necessary to bring together several groups of users when creating and

designing the study. Data integration should rely on bioinformaticians and software

engineers, but it also needs to be driven by the people involved directly or indirectly

with the data i.e. research communities, clinicians, informaticians and analysts.

5.2 Comparison and Conversion of Maps

Comparing of disease maps is a crucial element in biomedical research. Dis-

ease maps integrate current knowledge about disease mechanisms in a context of hier-

archical organisation representing the different layers of biological complexity. Disease

maps help to visually represent extensive knowledge about a disease integrated in a

single resource. The usefulness of disease maps, largely depend on their quality. As

discussed in Chapter 3, the results of comparison between AlzPathway and PD Map

emphasise the need for curation standards. For instance, several entities in the Alz-

Pathway were annotated by two Uniprot identifier, leading to ambiguity in the identity

of the elements. However, many elements were identified by extending the model anno-

tation to additional namespaces and detecting unannotated genes and proteins. This

improved interoperability between two maps and facilitated their comparison. Initia-

tives like COMBINE and FAIRDOM coordinate and promote the adoption of standards

and ontologies in disease modelling through the experience of the community [Wols-

tencroft et al., 2017, Waltemath and Wolkenhauer, 2016b, Stanford et al., 2015]. Such

initiatives
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Although there has been considerable efforts in ensuring model sharing and

reusability in disease maps using widely used languages like SBML and BioPAX, Open-

BEL still remains a challenge [Hoyt et al., 2017]. It is important for languages like BEL

to adopt and promote standards and ensure best practices in modelling particularly

because it has been adopted by communities for crowd sourcing challenges and com-

munity built maps. Moreover, from Chapter 4 we see that while BEL is very flexible

and allows to generate large networks, the quality and consistency of the network may

vary depending on the curator. Since, there are no strict rules for the adoption of

standards, over time the curator could potentially capture the same knowledge in dif-

ferent representations. This could also rise if more than one curator is involved in

adding knowledge to the model, since they bring different perspective of modelling the

disease. While OpenBEL suggests best practices to follow, it does not impose any

strict consistency checks to ensure them. Moreover, OpenBEL is a relatively new and

evolving language, hence it could be potentially useful to coordinate modelling and an-

notation standards in OpenBEL to ensure better model and data exchange and reuse

in the community.

While standards in modelling may differ with different formats, annotation

standards could be unified. However, development model annotation standards and ad-

vocating the benefits is not a trivial task. The absence of such annotation standards,

makes linking data and knowledge from different model and interoperability of models

a difficult task. Although it is understandable that making different modelling lan-

guages interoperable requires considerable effort, a unique format for representation of

annotation could facilitate the process. Such an approach could address the challenges

discussed in Chapter 4 arising due to differences in element annotation in OpenBEL

and CellDesigner. Currently, no such standard protocols for model annotation exists

in biological modelling community [Neal et al., 2018]. [Neal et al., 2018] propose an

interesting approach to address this issue by storing annotations in a separate file,

thereby the possibility to harmonise annotation standards across different formats.

Recent works, like the SemanticSBML [Liebermeister et al., 2009] allow merging two

SBML models. However, a computer software can only support, but not replace the

modeller in building biochemically meaningful models, because it cannot handle the
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assumptions and intentions on which all models are based.

Models may naturally differ in assumptions and intentions when built by

different researchers. Therefore comparison or merging them can be tedious process.

However, the standards both in modelling and annotation can reduce ambiguity and

bridge this gap. A major challenge in extracting information from publications is the

identification of entities within the article [Mons, 2005]. The usage of unique identifiers

and standards in the form of controlled vocabularies and ontologies is essential for a un-

ambiguously identifying and annotated entities. As a solution, journals and databases

should not only encourage but also mandate the use of complete, standardized and

structured data in their submissions.

Using integrative systems biology approaches, we can leverage the existing

knowledge and large-scale data to add to our limited understanding of unknown fac-

tors and disease mechanisms [Greene et al., 2011]. Hypotheses generated from these

approaches can support clinical decision making and targeted approaches in a cost-

effective manner [Castaneda et al., 2015, Auffray et al., 2016, Wang et al., 2018].

Although, integrative approaches are limited by the semantic disparity between com-

ponents standardising data and results will help us achieving this goal. However, it is

not straightforward, but it is not impossible. Several initiatives and consortia advo-

cating the FAIR principle is a step forward in this direction [Sansone et al., 2018].
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Summary and Outlook

6.1 Summary

In the last year alone, 88 new biomolecular-related databases were listed

in the latest Nucleic Acids Research database issue [Rigden and Fernández, 2018].

Researchers require tools to identify relevant information in the maze of biological

data. Several systems have been developed to address this need and help scientists

work with omics data, e.g. Gene Expression Omnibus, Array Express, etc,. However,

omics data have to be analysed together with clinical data to be useful for translational

research. We use tranSMART, a translational medicine platform to curated, harmonise

and integrate publicly available datasets and datasets from the AETIONOMY project.

These datasets were then used to support hypotheses generation, demonstrated with

examples.

Disease maps support hypothesis generation by providing context to the dis-

ease mechanism. The concept of shared mechanisms and underlying co-morbidity is

common in complex disease like Parkinson’s and Alzheimer’s. This can be investi-

gated by comparing disease maps. To this extent, comparison of CellDesigner maps

was implemented. The comparison takes into account the annotation, translation of

namespaces, and localisation of the entities and reactions. This was demonstrated us-

104
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ing AlzPathway and PD Map. The elements and reactions found in both maps were

highlighted on the PD Map, detecting similarities in both disease mechanisms, but

potentially triggered by different upstream events. Comparison of maps could there-

fore support identification of disease specific drug targets and support clinical decision

making.

Several disease modelling formats are available today. To enable comparison

of disease models, they should first be interoperable. In the scope of this project, we

implemented a converter from OpenBEL to CellDesigner. The converter takes into

account mapping of the representation and tries to extract unique identifiers for all

the entities and the context of the reaction. As a use case, the APP BEL model was

converted to the CellDesigner format. The converted APP map was then used to

compare against the PD Map and AlzPathway. Standardising semantic annotations

in models eliminates the bottlenecks and helps researchers to easily locate models,

automate and translate between modelling formats. This supports the integration of

biological knowledge encoded in different models and resources.

Overall, we demonstrate how harmonised and curated data makes heteroge-

neous datasets and formats interoperable, bridging the gap between data and knowl-

edge.

6.2 Outlook

Although we have successfully integrated several heterogeneous sources and

making them interoperable, the process could be further stream lined by reducing

manual efforts if the input data formats are harmonised. Furthermore, to maximize

data sharing, the use standards for data collection and modelling should be mandatory

for funding support. A prerequisite for data-driven analytics is a data sharing culture.

To address this issue, we require significant efforts in adopting standards at all stages

of healthcare data life cycle. This will significantly improve the quality of data and

the accuracy of analysis and prediction. CDISC being widely accepted by the several
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consortia and funding agencies is a big step forward to facilitate efficient data sharing

and interoperability in the clinical data domain.

In addition to comparison of maps, visualising the results are of great im-

portance. Additional scoring mechanism to the matches and intuitive visualisation

methods need to be developed for e.g. a colouring scheme, which signifies the confi-

dence on the match. Currently, we have been successful in highlighting the identified

similarities. In addition to highlighting the similarities, more intuitive would be to

superimpose both the compared maps and visualising both similarities and differences.

The conversion from OpenBEL to CellDesigner loses some information, but

this is expected due to the difference in the objectives of the languages. However, there

are many tasks that can improve this converter, but this largely depends on the different

models. For instance, in the APP model SNP were encoded as genes with the dbSNP

identifiers, the current version of the converter ignores these entities. This could be

converted as gene with the corresponding HGNC identifier and additional annotation of

the mutation. Expanding to additional namespaces, could improve entity recognition

for unannotated elements.

One of the challenges in front of the scientific community today is to change

how knowledge is organized and communicated. Several of the knowledge resources

overlap in content [Perez-Riverol et al., 2018, Masseroli et al., 2014, Williams et al.,

2012]. New resources are being created in parallel, whether they should be a novel

resource or could be integrate into an existing resource is debatable. Moreover, there is

no broad consensus about which resources should be used for an annotation in an ideal

scenario. Therefore, the same concept could potentially be represented in two different

scenarios might be annotated by different knowledge resources. This adds additional

efforts to the community to compare and compose models or integrate resources in an

automated fashion, as well as convert between standard formats. In an ideal case, the

content of the models should be annotated using the same set of reference terms and

qualifiers. However, the choice of knowledge resources for annotation may vary from

group to group. Therefore, it cannot be defined by strict rules. On the other hand,

making these specifications publicly available with along with the model will make the
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model much more interoperable and re-usable.

Data is an essential part of research today, therefore it is also necessary to

maintain standards for data annotation. With initiatives like the FAIR and COMBINE,

linking annotations in models and data sources is foreseeable in the future. In this era

of big data, data-driven analytics has the potential to transform the technologies used

by healthcare providers by gaining insight from clinical and public data repositories

and supporting decision making. The rapid, widespread implementation and use of big

data analytics in the healthcare industry is challenged by the volume and heterogeneity

of relevant data. Harmonised and standardised data and representation can accelerate

the development of such analytical tools to support clinical decision making.
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Partner Name of Cohort Subjects Biospecimen Type Comments

UL

ADNI ADNI1 1386 Completed Closed

ADNIMERGE 1779 Completed Public

FhG SCAI AD Public studies Demographic+Clinical+mRNA/miRNA Expression 43 Studies Completed Public

EMC Imaging ADNI 57 Completed

IDIBAPS

Screening CSF 17 Completed

Validation CSF 34 Completed

AD  Dementia Stage CSF 164 Completed

UKB  (AD)
AD  Inflammation Consecutive Preclinical AD 30 CSF

399
Completed

AD Cytokine CSF 95 Completed Closed

Total 
Received

Data access after 
AETIONOMY (+5 years): 
Public, closed, deleted, data 
access committee

Plasma
CSF

Demographic
Clinical
Neuropsychological

ADNIMERGE: Alzheimer's Disease 
Neuroimaging Initiative. R package 
version 0.0.1.

Plasma
CSF

Demographic
Clinical
Neuropsychological

4 GEO Studies
39 AE Studies

BIGR
Connectome
Freesurfer

BIGR
Connectome
Freesurfer

Control 9
AD Moderate Cognitive Decline 6
Prodormal AD 2

Demographic
Clinical
Neuropsychological
MRNA/miRNA Expression

Restricted (Data Access 
committee)

Control 20
AD Moderate Cognitive Decline 11
Prodormal AD 4

Demographic
Clinical
Neuropsychological
MRNA/miRNA Expression

Restricted (Data Access 
committee)

Control 68
AD Moderate Cognitive Decline 26
Preclinical AD 23
Prodormal AD 39
SNAPS 8

Demographic
Clinical
Neuropsychological

Restricted (Data Access 
committee)

Demographic
Clinical
Neuropsychological

Restricted (Data Access 
committee)

AD 44
MCI 34
Control 17

Demographic
Clinical
Neuropsychological
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Partner Name of Cohort Subjects Biospecimen Type Total Received Comments

UL

PPMI eTRIKS (in Kind) 813 Completed Closed Closed

PD Public studies eTRIKS (in Kind) 16 Studies Completed Public Public

FhG SCAI AD Public studies 43 Studies Completed Public Public

ICM

GenePark Blood 360 Completed Data Access Committee Closed

NGC/ PD Repository 5011 Completed Data Access Committee Closed

DIGPD 416 Completed Data Access Committee Closed

PD Transcriptomic data Fibroblasts 36

Completed.

Data Access Committee Closed

UKB (PD)

DNA (Blood)

1057

Completed.

Data Access Committee

Public

UCB

Kings College London Demographic Completed Data Access Committee Data Access Committee

D13B Tubingen plasma and CSF Proteomics and methylation studies

Completed Data Access Committee Data Access Committee

EFPIA PD Clinical Studies 14 STUDIES

Curation Data Access Committee

BI

BI001 76 IDS Aggregate Datasets
Completed Data Access Committee

BI002 7 IDS Aggregate Datasets
Completed Data Access Committee

BI003 6 IDS Aggregate Datasets Completed.
Data Access Committee

KI

AETIONOMY

ICEBERG

Data access during AETIONOMY: Public, 
closed, deleted, data access committee

Data access after AETIONOMY (+5 
years): Public, closed, deleted, data 
access committee

Demographic
Clinical
Neuropsychological

Demographic
Clinical
mRNA/miRNA Expression

4 GEO Studies
39 AE Studies

Demographic
Clinical
MRNA/miRNA Expression

IPD (156)
LRRK2 Relative (1)
Parkin Relative(4)
Parkinson Disease Asymptotic Carrier(1)
Genetic(27)
MSA (10)
PSP (11)
Healthy  controls  (150)

Demographic
Clinical
Neuropsychological

At Risk 1082
Control 578
Diseased 3331
Unknown 20

Demographic
Clinical
Neuropsychological

Consecutive  idiopathic PD
  

DNA
Plasma

Demographic
Clinical
Neuropsychological
Genetic Data Results

Control 10
LRRK2 12
Parkin 14

Demographic
mRNA/miRNA Expression

Epigenetics Data PD
(CpG data)

Control 521
PD 536

Demographic
Clinical
Neuropsychological

Control 161
Parkinson's Disease 40

DNA
CSF

CSF
Plasma

PD 100
Control 50

DNA
Plasma
CSF

PD 240
Genetics 65
Control 90
IRBD 70

PD 53
Control 10
iRBD 17
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A.2 AlzPathway overlayed on PD Map

Summary of performance with different annotators

Existing Annotations HGNC annotator All annotators

Elements

(Annotation)
48 649 762

Elements

(Annotation+Compartment)
25 430 528

Perfect Element

(Annotation+Compartment+Complex)
25 291 325

Reactions 0 31 40

Perfect Reaction

(Reactants+Products+Modifiers)
0 5 6

Table A.1: Summary of performance with different annotators

Elements from AlzPathway found in the PD Map

name lineWidth Color

ATG10 10 #FF0000

IL1B 10 #FF0000

SNCA 10 #FF0000

VPS35 10 #FF0000

BCL2 10 #FF0000

ATG13 10 #FF0000

BAX 10 #FF0000

PPARG 10 #FF0000

GSK3B 10 #FF0000

TXN 10 #FF0000
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XBP1 10 #FF0000

NFKB1 10 #FF0000

BAD 10 #FF0000

TLR2 10 #FF0000

multivesicular body 10 #FF0000

NGFR 10 #FF0000

PPP2CA 10 #FF0000

ULK1 10 #FF0000

FAS 10 #FF0000

P2RX7 10 #FF0000

CXCL1 10 #FF0000

CYCS 10 #FF0000

NFKBIA 10 #FF0000

glutathione disulfide 10 #FF0000

EIF4EBP1 10 #FF0000

CAMK2B 10 #FF0000

TNF 10 #FF0000

ATG12 10 #FF0000

CTNNB1 10 #FF0000

RELA 10 #FF0000

mitochondrion 10 #FF0000

HSPA5 10 #FF0000

CASP8 (p10) 10 #FF0000

CASP9 10 #FF0000

PRKAA2 10 #FF0000

CAT 10 #FF0000

ubiquitin 10 #FF0000
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NGF 10 #FF0000

MAPK8 10 #FF0000

PIP2 10 #FF0000

astrocyte 10 #FF0000

APC 10 #FF0000

TNFRSF1A 10 #FF0000

STXBP1 10 #FF0000

CCL2 10 #FF0000

TLR3 10 #FF0000

ATG3 10 #FF0000

FYN 10 #FF0000

peroxynitrite 10 #FF0000

RPS6KA1 10 #FF0000

BCL2L1 10 #FF0000

APAF1 10 #FF0000

AKT1 10 #FF0000

ATG16L1 10 #FF0000

AKT1S1 10 #FF0000

RAC1 10 #FF0000

CASP3 10 #FF0000

AGER 10 #FF0000

VPS26A 10 #FF0000

RYR3 10 #FF0000

FADD 10 #FF0000

ATG7 10 #FF0000

JUN 10 #FF0000

PDP1 10 #FF0000
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MAPK1 10 #FF0000

RHOA 10 #FF0000

EIF2AK3 10 #FF0000

GSR 10 #FF0000

PTGS2 10 #FF0000

WNT1 10 #FF0000

NEDD8 10 #FF0000

CD36 10 #FF0000

EIF2A 10 #FF0000

ERN1 10 #FF0000

early endosome 10 #FF0000

DLG4 10 #FF0000

CSNK1A1 10 #FF0000

CASP6 10 #FF0000

IKBKB 10 #FF0000

CASP8 (p18) 10 #FF0000

CDK5 10 #FF0000

GAPDH 10 #FF0000

TRAF2 10 #FF0000

Golgi 10 #FF0000

RHEB 10 #FF0000

late endosome 10 #FF0000

HSPD1 10 #FF0000

IGF1R 10 #FF0000

IRS1 10 #FF0000

IL4 10 #FF0000

BID 10 #FF0000
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BACE1 10 #FF0000

PPARA 10 #FF0000

NTRK2 10 #FF0000

HMGB1 10 #FF0000

MAPK12 10 #FF0000

trans-Golgi network 10 #FF0000

ER 10 #FF0000

BDNF 10 #FF0000

MAPT 10 #FF0000

IFNG 10 #FF0000

MAP2K7 10 #FF0000

MTOR 10 #FF0000

PGK1 10 #FF0000

APP 10 #FF0000

TRADD 10 #FF0000

KCNIP3 10 #FF0000

IL6 10 #FF0000

TP53 10 #FF0000

VPS29 10 #FF0000

BTRC 10 #FF0000

TH 10 #FF0000

WISP1 10 #FF0000

NLRP3 10 #FF0000

GTP 10 #FF0000

MAPK14 10 #FF0000

FOXO1 10 #FF0000

TLR4 10 #FF0000
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MMP3 10 #FF0000

advanced glycation end-products 10 #FF0000

LRP6 10 #FF0000

GNAQ 10 #FF0000

NTRK1 10 #FF0000

C3 10 #FF0000

SLC2A1 10 #FF0000

exosome 10 #FF0000

PTEN 10 #FF0000

CASP7 10 #FF0000

MAPK cascade 10 #FF0000

mitochondrial matrix 10 #FF0000

VCAM1 10 #FF0000

ATG5 10 #FF0000

CASP2 10 #FF0000

MAPK pathway 10 #FF0000

CASP8 10 #FF0000

MAP2K3 10 #FF0000

JAK2 10 #FF0000

PRKCI 10 #FF0000

CHRM1 10 #FF0000

LAG3 10 #FF0000

STK11 10 #FF0000

NTF3 10 #FF0000

MAPK13 10 #FF0000

MMP9 10 #FF0000

CD14 10 #FF0000
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PDK1 10 #FF0000

MAP2K4 10 #FF0000

CDC42 10 #FF0000

PSEN1 10 #FF0000

resting microglia 10 #FF0000

ATF6 10 #FF0000

NCOR2 10 #FF0000

CAPN2 10 #FF0000

LRP5 10 #FF0000

TREM2 10 #FF0000

SKP1 10 #FF0000

S100B 10 #FF0000

GABARAPL2 10 #FF0000

CASP1 10 #FF0000

ICAM1 10 #FF0000

blood vessel 10 #FF0000

MAPK3 10 #FF0000

MAP2K6 10 #FF0000

Table A.2: Submap PD 180412 2 alzpath 8APR Element

reactionIdentifier lineWidth Color

re629 7 #FF0000

re5103 7 #FF0000

re4885 7 #FF0000

re3346 7 #FF0000

re3352 7 #FF0000

re5314 7 #FF0000
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re5188 7 #FF0000

re5153 7 #FF0000

re4341 7 #FF0000

re5044 7 #FF0000

re5336 7 #FF0000

re5221 7 #FF0000

re2858 7 #FF0000

re624 7 #FF0000

re4330 7 #FF0000

re3344 7 #FF0000

re2869 7 #FF0000

re5241 7 #FF0000

re478 7 #FF0000

re5415 7 #FF0000

re919 7 #FF0000

re2850 7 #FF0000

re5305 7 #FF0000

re5077 7 #FF0000

re4343 7 #FF0000

re505 7 #FF0000

re5342 7 #FF0000

re2865 7 #FF0000

Table A.3: Snapshot of reaction matches in PD Map and Alzpathway



CELLDESIGNER BEL
Species Notation Namespaces BEL species Notation/Function Namespaces BEL Example

Protein HGNC Protein proteinAbundance, p HGNC, SPAC, MGI, RGD proteinAbundance(HGNC:AKT1)

Receptor HGNC Receptor proteinAbundance, p HGNC, SPAC, MGI, RGD

Ion Channel HGNC Ion Channel proteinAbundance, p HGNC, SPAC, MGI, RGD

Truncated Protein HGNC Peptides abundance, a no namespace a("Amyloid beta-Peptides")

Gene HGNC Gene geneAbundance, g
HGNC, SPAC, EGID, MGI, 
RGD geneAbundance(HGNC:AKT1)

RNA HGNC RNA rnaAbundance, r HGNC, SPAC, MGI, RGD rnaAbundance(HGNC:AKT1)

Anti Sense RNA HGNC RNA rnaAbundance, r HGNC, SPAC, MGI, RGD

miRNA HGNC miRNA microRNAAbundance, m HGNC, SPAC, MGI, RGD microRNAAbundance(HGNC:MIR21)

Phenotype GO:Biological Process Disease pathology, path MESHD
Bioprocesses biologicalProcess, bp GO, MESHPP

Ion CHEBI Ion abundance, a CHEBI, CHEBIID, SCHEM

Simple Molecule CHEBI Simple Molecule abundance, a CHEBI, CHEBIID, SCHEM

Unknown GO, CHEBI, Interpro Unknown abundance, a no namespace

Drug CHEBI, PubChem Drug abundance, a

CHEBI, CHEBIID, SCHEM, 
or custom namespaces like 
DrugBank

Hypothetical Protein Protein family: Interpro ProteinFamily proteinAbundance, p PFR, PFH, PFM

Complex GO: Cellular Component Complex complex()

Compartment
GO:Cellular components, 
MeSH

Cellular Component abundance, a
GOCCACC, GOCCTERM, 
MESHCL

Reaction Notation Additional notes BEL reaction Notation
BASIC

State Transition

Reaction+Translocation, 
Refer supplemenatry 
document 

Known Transition Omitted

Uknown Transition

Transport Translocation tloc

Transcription Transcription transcription(A)

Translation Translation translation(A)

Add reactant reactants()

Add product products()

A.3. Semantic Mapping: CellDesigner (SBGN)-BEL 119

A.3 Semantic Mapping: CellDesigner (SBGN)-BEL



Heterodimer association

Dissociation

Truncation peptidaseActivity() pep()
Reaction Notation Additional notes BEL reaction Notation
MODIFIERS

Catalysis Catalysis cat(example)

Inhibition directlyIncreses() =|

Physical Stimulation directlyIncreses() =>

Modulation increases() ->

Trigger directlyIncreses() =>

Unknown Catalysis extended by CellDesigner increases() ->

Uknown Inhibiton extended by CellDesigner decreases() -|
Reaction Notation Additional notes BEL reaction Notation
REDUCED

Positive Influence directlyIncreses() =>

Unknown positive influence increases() ->

Negative Influence directlyDecreases() =|

Unknown negative influence decreases() -|

Reduced Trigger increases() ->

Unknown Reduced Trigger increases() ->
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1. Introduction

The Alzheimer’s disease DREAM challenge (http://dx.
doi.org/10.7303/syn2290704) was designed to provide an un-
biased assessment of current capabilities for estimation of
cognition and prediction of cognitive decline using genetic
and imaging data from public data resources using a crowd-
sourced approach. The ability to predict rate of cognitive
decline—both before and after diagnosis—is essential to
effective trial design for the development of therapies for Alz-
heimer’s disease (AD) prevention and treatment. Major
collaborative efforts in the field are assessing the association
of genetic loci with ADdiagnosis and the application of struc-
tural imaging for development of early biomarkers of diag-
nosis, but the utility of these approaches to estimate
cognition or predict cognitive decline is not well established.
This project was designed under the advisement of a panel of
experts in the field to evaluate whether these questions could
be meaningfully addressed with current methods given exist-
ing public data sources. To ensure that these questions were
tested across a broad spectrum of the latest analytical
approaches, the study was designed as a crowdsourced,
community-based challenge in which participants were
invited to address one or more of the following three
questions [1]: The prediction of cognitive decline over time
based on genetic data [2]. The prediction of resilience to
cognitive decline in individuals with elevated amyloid burden
based on genetic data [3]. The estimation of cognitive state
based on structural magnetic resonance (MR) imaging data.

2. Results

2.1. Study design and data harmonization

To ensure that predictors were detecting true biological
variation rather than study-specific technical variation, this
project required inclusion of data frommultiple study sources.
Although genetic and imaging data have been generated
withinmany rich longitudinal cohorts across the field, the pro-
curement and harmonization of these data sets were a
nontrivial problem that required solutions to overcome polit-
ical, ethical, and technical barriers. For example, the genera-
tion of whole genome sequencing data across multiple AD
cohorts within theNIH-fundedAD sequencing project has re-
sulted in a powerful resource for genetic analysis in the field
but longitudinal information on cognitive traits is not readily
available in those data sets. Despite limitations on data acces-
sibility, multiple relevant data sources were identified and
used in this project including the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) [1], the Rush Alzheimer’s Disease
Center Religious Orders Study [2], Memory and Aging Proj-
ect (ROS/MAP) [3], and the European AddNeuroMed [4]
study, which is part of InnoMed, a precursor to the innovative
medicines initiative. Data selection and processing were per-
formed based on data availability across these three data sets.
As such, cognition was defined using mini mental state exam-
ination (MMSE) scores [5], genetic data were provided based

on imputation across array-based genotype data, and struc-
tural MR imaging data were reprocessed in each cohort using
a common processing pipeline. Genetic and imaging data
were supplemented with a limited set of covariates including
diagnosis, initial MMSE score, age at the initial examination,
years of education, gender, andAPOE haplotype. Participants
were providedwith data fromADNI to train algorithms over a
4-month period and to ensure that participation was not
limited by access to compute resources, they were offered
use of the IBM zEnterprise cloud to perform analyses. The
challenge generated significant interest with 527 individuals
from around theworld registered to participate. A leaderboard
displayed accuracy of submissions throughout the duration of
the challenge: 1157 submissions were made for question 1,
478 submissions for question 2, and 434 submissions for
question 3. Thirty-two teams submitted final results that
were scored based on prediction and/or estimation of blinded
outcomes within ROS/MAP for genetic predictions and
AddNeuroMed for imaging-based estimations (Fig. 1).

2.2. Genetic prediction of cognitive decline

The first challenge question assessed the ability of current
methods to predict change in cognitive examination perfor-
mance based on genetic data. High prediction accuracy
would signal the potential for noninvasive biomarkers of
cognition to have a major clinical impact on early AD diag-
nosis and prevention. Previous efforts to develop predictors
of change in cognitive function have not succeeded in
providing robust and replicable models [6–8]. Genetic
variation has been demonstrated to influence AD status:
rare genetic mutations at several loci are implicated in
familial forms of early-onset disease [9], whereas common
variation contributes 33% to variance in sporadic AD, and
22 loci have been implicated by large-scale genetic associa-
tion analyses [10,11]. However, with the exception of the
APOE ε4 haplotype, there has been little success in
transforming these genetic associations into meaningful
clinical predictions of cognitive decline. For this purpose,
participants were challenged to predict 2-year changes in
MMSE scores based on genotypes imputed from SNP array
data. Participants trained their algorithms with 767 ADNI
samples, and the algorithms’ predictions were evaluated on
a test set of 1175 ROS/MAP samples with blinded outcome
measures. The algorithm with the best predictive perfor-
mance at the midpoint of the challenge did not contain any
genetic features beyond APOE haplotype. As the goal of
this question was to assess genetic contribution to prediction
of cognitive decline, this top-ranked algorithm was openly
shared across teams as an interim baseline on which to incor-
porate additional genetic predictors (http://dx.doi.org/10.
7303/syn2838779). Eighteen teams submitted final predic-
tions. Most methods performed significantly better than a
permutation-based random model prediction (Fig. 2A). A
cluster of six methods performed significantly better than
the others (including the interim baseline model) but were
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statistically indistinguishable among themselves (Fig. 2D).
Of these, the prediction with the best overall score (team
GuanLab_umich from the University of Michigan) achieved
a Pearson correlation of 0.382 and a Spearman correlation of
0.433 (the overall score was a rank-based combination of
these two measures of performance; see online Supplement
and Supplementary Methods: http://dx.doi.org/10.7303/
syn3383106). However, no significant contribution of ge-
netics beyond APOE haplotype to predictive performance
was observed across any of the submissions. Given the small
sample size, no conclusions can be inferred from this analysis
regarding the existence of genetic loci associated with cogni-
tive decline. Rather, these observations suggest that predic-

tors of cognitive decline developed based on genetic data
will not be useful within the clinical setting.

2.3. Genetic prediction of cognitive resilience

The second question challenged participants to identify
genetic predictors that could distinguish individuals who
exhibit resilience to AD pathology as defined by minimal
change in cognitive function despite evidence of amyloid
deposition [12,13]. Identification of genetic signatures
predictive of cognitive resilience would aid in the
elucidation of mechanisms that may confer resilience,
providing a powerful tool to help advance AD prevention

Fig. 1. Challenge overview. The top schematic summarizes the three challenge questions on the left column, the training data in the middle, and the test data on

the right, including numbers of subjects. The symbols represent sources of data (demographic, ROS/MAP genetic, and ADNI or ANM brain images and shape

information). The bottom panel provides example brain image labels and shape information derived from the Mindboggle software (http://mindboggle.info)

provided to the participants for question 3. Anatomic labels for left cortical regions are shown on the left and just a couple of the cortical surface shape measures

are shown on the right (travel depth on top and mean curvature below), for both uninflated and inflated surfaces (top and bottom rows, respectively).
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Fig. 2. Performance evaluation results. (A), (B), and (C) report the P values (in negative log 10 scale) for intersection union tests investigating which teams per-

formed better than random for questions 1, 2, and 3, respectively. Explicitly, for question 1 (A), we tested the null hypothesis that at least one of the four correlation

coefficients (namely Pearson/clinical, Pearson/clinical1 genetics, Spearman/clinical, and Spearman/clinical1 genetics) is equal to zero, against the alternative

that all four correlation coefficients are larger than zero. Adopting a 0.05 significance level, 26 of the 32 submissions were statistically better than random, after

Bonferroni multiple testing correction for 32 tests (submissions crossing the black vertical line). For question 2 (B), we tested the null hypothesis that balanced

accuracy 5 0.5 or AUC 5 0.5, against the alternative that balanced accuracy . 0.5 and AUC . 0.5. In this case, no model performed significantly better than

random, and, therefore, no best performer was declared. For question 3 (C), we tested the null hypothesis that Pearson’s correlation (COR) or Lin’s concordance

correlation coefficient (CCC) are equal to zero, against the alternative that both COR and CCC are larger than zero. Adopting a 0.05 significance level, all 23

submissions were statistically better than random, after Bonferroni correction. For all three questions, the P values were computed from an empirical null distri-

bution based on 10,000 permutations. (D) and (E) report the bootstrapped assessment of ranks for questions 1 and 3, respectively. Samples were resampled with

replacement from the original data (true outcome and team’s predictions), and the ranks of the different teams were reassessed in each of 100,000 resamplings.

Submissions were sorted according to themedian of their bootstrapped average ranking distributions. The black horizontal line represents the posterior odds cutoff

from the Bayesian analysis. Teams above the black line are statistically tied to the top-ranked model, according to a posterior odds threshold of 3.
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strategies and treatment development. Eleven teams
submitted predictions of resilience based on a training set
derived from 176 ADNI subjects. Evaluations were made
using data derived from 257 individuals from the ROS/
MAP data. Despite using the largest such public data set
assembled to date, participants were unable to develop
algorithms with predictive performances significantly
better than random (see Fig. 2B, online Supplement and
Supplementary Methods in Synapse: http://dx.doi.org/10.
7303/syn3383106). Although it is likely that the study
was underpowered due to small sample size and trait het-
erogeneity, this result suggests that information about
cognitive resilience is not easily discoverable from SNP
analysis.

2.4. Structural imaging-based estimation of cognition

The third question challenged participants to estimate
cognitive state using structural brain image data (Fig. 1, lower
panel). Brain imaging has emerged as a powerful method for
monitoring neurodegeneration, and there is a great enthu-
siasm in the field tomake use of images for diagnosis and pre-
diction. There have been many attempts in the past to
correlate changes in brain shape with disease progression
and/or diagnosis, conventionally using measures of volume
for a given brain region [14,15]. More detailed shape
measures of image features including cortical thickness,
curvature, and depth have also been found to be relevant to
a variety of neurologic conditions [16]. Participants were
challenged to estimate MMSE scores based on structural
brain images, or shape information derived from these im-
ages. Participants trained algorithms using ADNI data
(N 5 628) and were evaluated using AddNeuromed data
(N 5 182) for which they were blind to outcome measures.
To engage as many participants as possible from both within
and beyond the neuroimaging community, the data were pro-
vided both as raw MR images and as tables containing shape
measures (volume, thickness, area, curvature, depth, and so
forth) for every labeled brain region. Thirteen teams submit-
ted estimates for final evaluation, and all teams performed
better than a random model (see online Supplement and Sup-
plementary Methods in Synapse: http://dx.doi.org/10.7303/
syn3383106). Three teams performed significantly better
than the others (teams GuanLab_umich from the University
of Michigan, ADDT from the Karolinska Institute and Pythia
from the University of Pennsylvania; Fig. 2C) but were statis-
tically indistinguishable from one another and tied for top
average rank (Fig. 2E). The algorithm that generated the
best absolute mean combined rank (Team GuanLab_umich)
achieved a concordance correlation coefficient of 0.569 and
Pearson’s correlation of 0.573 (the overall score was a
rank-based combination of these two measures of perfor-
mance). The most common features that contributed heavily
to the MMSE estimates across the algorithms were hippo-
campal volume and entorhinal thickness, corroborating prior
work [17–19]. The top three teams also found that inclusion

of shape measures of the entorhinal cortex (volume,
curvature, surface area, travel, and geodesic depth)
improved overall estimation. Other features that contributed
to predictions within the top three teams’ results included
volume of inferior lateral ventricle and amygdala (see
online Supplement and Supplementary Methods in
Synapse: http://dx.doi.org/10.7303/syn3383106). These
results validate an established relationship between
structural imaging data and cognition. However, the
correlative performance of these estimators was low
suggesting that their application in the clinical setting may
not be sufficient to inform patient care.

3. Discussion

The AD DREAM challenge provided a formalized
assessment of the ability to develop meaningful predictions
of cognitive performance from public genetic or imaging
data using contemporary state-of-the-art predictive algo-
rithms. Predictive performance across all three of the
questions was modest, and most methods performed roughly
equivalently. Given this uniform performance, we do not
expect that the presented results are a failure of current
modeling methods. A more likely explanation is that the
data used to address these questions were inadequate to sup-
port these tasks. We also note that most research teams that
participated in this challenge did not have expertise in the
field of AD. Although the few teams that did possess this
knowledge did not do better than the others, there remains
the possibility that performance would have been improved
by the inclusion of more domain experts.

3.1. Use of genetic information for cognitive prediction

The modest performance observed in the 3 questions
focused on genetic analysis demonstrated that contemporary
algorithms were not able to leverage genetic signal to make
useful predictions for cognition. These results support the
prevailing expectation that genetic variants of moderate to
high frequency will not support viable biomarker develop-
ment in AD [9–11]. Although heritability estimates and
linkage studies have demonstrated that there is a
considerable estimated genetic contribution to AD onset
and progression [11,20,21], evidence both within the AD
field and across other complex disease [22] traits has indi-
cated that this overall genetic contribution is the aggregated
compilation of a large number of loci with small—indepen-
dent or epistatic—effects. Historically, this type of signal is
difficult to capture in predictive models and unlikely to be
useful in a diagnostic setting [23]. Furthermore, cognition
is highly influenced by a host of nongenetic factors relating
to lifestyle choices and accumulated exposures that were
not represented across all these data sets and, in fact, are
not fully captured in most cohorts [24–27]. Nongenetic
contributions to cognitive performance may themselves
provide an important base for successful predictions.
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Within the context of genetic analysis, the absence of these
factors from models confounds the ability to detect real
genetic signal and impacts the ability to accurately model
state-specific genetic contributions. As such, future inquiry
into the use of genetic testing for prediction of cognitive per-
formance and AD risk assessment may be better served by
focusing on the contribution of rare genetic variation.
Recently discovered disease-associated rare variants have
larger effect sizes than common variants and confer 2- to 5-
fold greater risk or protection in carriers relative to the general
population [28–30]. Ongoing large-scale sequencing ana-
lyses will identify additional associated rare risk variants.
In sufficient numbers, the aggregate prevalence would sup-
port the development of a genetic diagnostic containing a li-
brary of rare variants.

3.2. Use of structural imaging data for cognitive
estimation

Although the inexpensive and noninvasive nature of ge-
netic testing make this approach amenable to population-
level disease screening, the resource-intensive nature of
image-based testing is better positioned for careful evalua-
tion of high-risk individuals. As such, these approaches are
needed to provide a higher confidence estimate of cognitive
performance. Although a variety of methods developed
within the context of this challenge were able to success-
fully estimate cognition, none of these methods were suffi-
ciently accurate to merit clinical consideration. These
observations support previous work in the field [17,19]
and highlight the imperfect relationship between brain
structure and function. Newer imaging modalities that
focus on brain function and/or pathology—such as FDG-
PET [31] or tau imaging [32]—may prove more successful
for assessing cognitive dysfunction.

3.3. Effective performance of meta-analysis across diverse
cohorts

A major consideration for any meta-analysis is the issue
of appropriate harmonization of data across disparate sour-
ces. Despite leveraging several of the most deeply pheno-
typed cohorts in the field, this challenge limited analysis to
those traits that were in common across cohorts. Although
this approach to data harmonization is standard practice
for meta-analyses [10], it greatly reduced the depth of the in-
formation available for modeling and influenced the selec-
tion of cognitive measures for use as prediction outcomes.
Because each cohort had performed a battery of study-
specific tests, this greatly limited the ability for finer grained
assessment across cognitive processes. A more sensible
approach for future analyses may be to focus effort on
more sophisticated methods to calibrate disparate cognitive
phenotypes across cohorts [33]. Another undesirable conse-
quence of the focus on traits measured in common was the
inability to incorporate into model development the full

spectrum of nongenetic and nonimaging factors that are
known to influence cognitive performance [24–27]. This
suggests the need for development of different approaches
for integrating heterogeneous data and/or assessing
replication across cohorts. Alternatively, smaller scale
analyses that prioritize phenotypic depth over sample size
may afford a more refined view of disease.

In summary, this challenge demonstrated that predictions
of cognitive performance developed from genetic or struc-
tural imaging data were modest across a diverse set of
contemporary modeling methods. Future efforts to identify
clinically relevant predictors of cognition will benefit from
a focus on alternative data sources and methods that work
to incorporate greater phenotypic complexity.
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RESEARCH IN CONTEXT

1. Systematic review: Extensive literature searches us-
ing PubMed establish this as the largest study to
date using demographic, clinical, imaging, and ge-
netic data to predict cognitive decline and the first
major instance of crowdsourcing analysis in AD.

2. Interpretation: Over 500 scientists worldwide in the
analytical portion of the challenge, demonstrating
the viability of crowdsourced approaches in AD
research. Unfortunately, we were unable to detect
meaningful predictors of either cognitive decline or
resilience through this effort.

3. Future directions: This experiment in crowdsourcing
AD analyses is an invaluable first-of-its-kind
contribution that provides a snapshot of both the
strengths and limitations in big data analytics in AD
research. The relative inaccessibility and heteroge-
neity across data sources severely limits formalized
integration. Mandates on data sharing, consider-
ations of standardized data collection, and mecha-
nisms to integrate heterogeneous data are necessary
to address these issues. We anticipate that this work
will initiate those discussions across the community.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a progressive 
chronic inflammatory lung disease characterized by persistent 
limited airflow caused by various environmental exposures 
such as cigarette smoke (CS), occupational hazards, and air 
pollution.1 Mechanisms underlying the disease include a com-
plex interplay of inflammation, proliferation, oxidative stress, 
tissue repair, and other processes driven by various immune, 
epithelial, and airway cell types.2,3 Understanding the 
molecular mechanisms associated with COPD is important for 
preventing disease onset, slowing down disease progression, 

and managing treatment. Biological network models offer 
a framework for understanding disease by describing the 
relationships between the molecular mechanisms involved 
in the regulation of a particular biological process. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Reactome 
are open access pathway databases widely used by the scien-
tific community.4–7 They describe signaling in various areas 
of biology and can be used to interpret large-scale molecular 
data through integration and overlay on pathways to assess 
pathway overrepresentation. In contrast to these general 
pathway databases, we have developed a set of networks within 
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defined boundaries relevant to COPD that are available to the 
public on the Bionet website at https://bionet.sbvimprover.
com, where they can not only be viewed and downloaded but 
can also be actively commented on and edited.8,9 These net-
works can also be used to interpret large-scale molecular data 
to a fine-grained degree, due to their construction in Biologi-
cal Expression Language (BEL), a human-readable comput-
able language with the ability to capture precise biological 
information and associated context (www.openbel.org). The 
networks were based on a set of previously published lung-rel-
evant healthy biological networks, which along with the most 
current network versions are available for download at http://
www.causalbionet.com/.10–14

To ensure a comprehensive and up-to-date set of bio-
logical network models that cover a wide range of biological 
signaling, crowdsourcing can be used to gather input from 
the scientific community. Crowdsourcing is a powerful tool 
to efficiently gather feedback from a wide audience that cov-
ers expertise in many biological areas. Crowdsourcing efforts 
in biology are useful in the collection of creative solutions to 
challenging problems in various fields of biology such as sig-
naling networks, protein folding, RNA design, and sequence 
alignment.15–18 Crowdsourcing has also been harnessed to 
accomplish a large amount of manual work in annotation 
projects including disease-related genes, interactome path-
ways, and PubMed abstracts.19–21 We have previously reported 
the creation of a set of biological networks describing COPD 
processes that were improved by the scientific community 
during the first Network Verification Challenge (NVC).8,9 In 
this study, we show that the networks were further improved 
during a second NVC (NVC2), in which the crowd added 
mechanistic details in the form of new nodes and edges.

We illustrate possible network applications for the 
crowd-improved set of networks using network scoring by 
TopoNPA, a method to infer mechanism and network per-
turbation based on transcriptomics data and known activators 
and inhibitors of gene expression reported in the literature.22 
Quantitative scoring of networks is enabled by BEL, an open 
platform technology, where cause and effect relationships 
from the literature are described and annotated using a pre-
cise language and collected in a knowledgebase. This knowl-
edgebase is used to predict upstream regulators of measured 
transcriptomics data.23 This backward reasoning approach 
differs from other gene set enrichment approaches using gene 
sets defined as KEGG pathways or Gene Ontology (GO) 
classes for example,24 which make the assumption that RNA 
expression is equivalent to protein activity. Another limitation 
of methods such as gene set enrichment analysis (GSEA)25 
is that they do not take direction into account for each gene 
within the gene set. TopoNPA scoring of networks allows for 
quantitative scoring of inferred mechanisms and networks 
based on signed fold changes in the dataset. Using TopoNPA 
on a set of networks enables quantitative comparison between 
different compounds, disease subtypes, or other perturbations 

of interest.22 We describe here one application for how the 
improved set of 46 computable BEL-encoded NVC network 
models can be used by the scientific community for toxicology 
and drug discovery applications.

Materials and Methods
Biological expression language. BEL is a triple-based 

language, where statements consist of two biological entities 
connected by a relationship (for causal statements: cause, rela-
tionship, and effect). The BEL framework, including a data-
base of BEL statements and other tools to be used with BEL, 
is an open-platform technology available for download at 
http://www.openbel.org/. BEL captures specific entities from 
chemicals to proteins to biological processes and relationship 
links that are directional, providing information on activation 
or inhibition. Statements within BEL are derived from the 
published literature and are compiled together to express the 
existing causal knowledge in a graph-based, computable format. 
These entities connected by relationships are represented 
as nodes and edges within a BEL graph network and are 
linked to metadata such as literature support, which contains 
PubMed ID, tissue, disease, cell type, and species. A BEL 
node consists of a function, namespace, and entity. The func-
tion gives information about the type of entity (eg, abundance 
and activity), and the namespace is a standardized ontology 
that defines the entity that each node represents (eg, MeSH, 
ChEBI, GO, and HGNC). See Supplementary File 1 for a 
list of BEL functions and namespaces. Just as the networks 
are continuously improved by the crowd, the BEL language 
evolves based on suggestions made by the OpenBEL commu-
nity. Namespaces in the NVC networks version 2.0 reported 
here were updated from v1.0 BEL Namespaces to the most 
recent version (v20150611), which includes additional and 
refined namespaces.

Network Building
Networks were constructed in a three-phase process, as 
described previously.8 Briefly, networks were built using 
data and literature during Phase 1, enhanced with lung- and 
COPD-relevant mechanisms (represented by nodes in the 
networks) by the crowd during Phase 2 on the Bionet web-
site (https://bionet.sbvimprover.com/), and discussed during a 
jamboree meeting during Phase 3 in which the best perform-
ers were invited based on their point totals from the online 
phase. Networks with high crowd activity or interest were 
selected for discussion during the jamboree. Phases 2 and 3 
were repeated in NVC2. Fifteen networks were discussed 
during the NVC1  jamboree (apoptosis, cell cycle, dendritic 
cell signaling, growth factor, hypoxic stress, macrophage 
signaling, neutrophil signaling, NFE2L2  signaling, nuclear 
receptors, oxidative stress, response to DNA damage, mecha-
nisms of cellular senescence, Th1  signaling, Th2  signaling 
[Th1–Th2 signaling were merged as a result of the jamboree], 
and xenobiotic metabolism response) and nine networks were 
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discussed during the NVC2  jamboree (calcium, epigenetics, 
macrophage signaling, necroptosis, neutrophil signaling, 
oxidative stress, senescence, Th1–Th2 signaling, and xenobi-
otic metabolism response). After the NVC2, it was decided 
to merge the four senescence-related models (mechanisms 
of cellular senescence, regulation of CDKN2A expression, 
regulation by tumor suppressors, and transcriptional regula-
tion of the SASP) into one model called senescence. In both 
NVC1 and NVC2, changes were implemented by the orga-
nizers and new versions were uploaded to the Bionet website. 
The latest versions edited after the NVC2  jamboree are the 
version 2.0 networks.

Network Statistics
Network statistics and metrics were calculated on the net-
works presented to the crowd at the start of the NVC (v1.1) 
and on the most recent networks containing the outcomes of 
NVC1 and NVC2 (v2.0). Basic network metrics such as num-
ber of nodes, edges, activation edges, inhibition edges, and 
the proportion of inhibition edges were calculated. In addition 
to these basic network characteristics, the following metrics 
were computed:

•	 Mean degree: the average of node degrees. This metric 
informs the overall topology of the network. A low aver-
age degree (,2) is typically observed in linear networks.

•	 Max degree: the maximum degree in the network, repre-
senting the size of the largest hub.

•	 Mean node betweenness (MNB) or betweenness cen-
trality: the number of shortest paths between pairs of 
other nodes that go through that node. Nodes with high 
betweenness centrality are considered as high traffick-
ing nodes. This metric characterizes the centrality of the 
nodes and hence the topology of the networks (for exam-
ple, bottlenecks for the paths in the network). A complete 
graph has a vanishing (=0) MNB.

•	 Largest clique size: the number of nodes in the largest 
complete undirected subgraph in a network. This num-
ber is expected to be low because complete subgraphs 
that are not triangles are not expected to be biologically 
meaningful.

•	 Mean path length (MPL): the average of the shortest 
path length between all pairs of nodes. This metric gives 
an indication of the density of the network. A low MPL 
characterizes networks for which the shortest path of 
causal statements, from one node to another, are made of 
few edges; for example, in a complete graph, this equals 1.  
It does not necessarily imply that the mean degree is 
high. A typical cascading signaling pathway with little 
feedback would be expected to have a high MPL.

•	 Frustration: the minimum number of edges that should 
be removed to make the network balanced. Balance in a 
signed graph is characterized by the property that every 
path between two nodes has the same sign (the sign of 

a path is the product of its edge signs). Equivalently,  
a graph is balanced if and only if every cycle is positive. 
A negative feedback loop contributes to the network 
frustration. For example, tightly regulated processes such 
as cell cycle or apoptosis are expected to have a high frus-
tration metric.

•	 # connected components: number of connected compo-
nents, that is, the number of disjoint (ie, not sharing any 
edge) subnetworks within the network.

For all of these network metrics, the differences 
between the pre-NVC networks (v1.1) and post-NVC2 
networks (v2.0) were calculated to understand crowd con-
tribution effects on the networks. For the Th1–Th2 signal-
ing and senescence networks, both of which were integrated 
from separate networks following jamboree discussions, 
the individual pre-NVC networks (v1.1) were combined for 
comparison with the already combined post-NVC2 net-
works (v2.0).

Datasets Analysis
The three datasets that were analyzed are shown in Table 1.

Network perturbation amplitude. The Network Pertur-
bation Amplitude (NPA) methodology aims at contextualiz-
ing high-dimensional transcriptomics data by combining gene 
expression (log2) fold-changes into fewer differential node 
values (one value for each node of the network), represent-
ing a biological entity (mechanism, chemical, biological pro-
cess).22,26,27 A node can be inferred as increased or decreased 
based on gene expression data, because there are signed rela-
tionships (increase or decrease) between the node and down-
stream mRNA abundance entities.23,27 The differential node 
values are determined by a fitting procedure that infers values 
that best satisfy the directionality of the causal relationships 
(positive or negative signs) contained in the network model, 
while being constrained by the experimental data (the gene 
log2-fold-changes, which are described as downstream effects 
of the network itself).

The differential values of the network are then used to cal-
culate a score for the network as a whole, called the TopoNPA 
score.22 For these network scores, a confidence interval 
accounting for the experimental variation and the associ-
ated P-value are computed. In addition, companion statistics 
are derived to inform the specificity of the TopoNPA score 
with respect to the biology described in the network model. 
These are depicted as *O and K* if their P-values are below 
the significance level (0.05). A network is considered to be sig-
nificantly impacted if all three values (the P-value for experi-
mental variation, *O, and K* statistics) are below 0.05.22

Leading nodes are the main contributors to the network 
score, making up 80% of the TopoNPA score. These nodes 
can be useful for interpreting the data to predict mecha-
nisms that might be driving the biological process that the 
network represents.22
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To increase the specificity and relevance of node scores 
and network scores, we consider only the nodes in the net-
work that are bounded by experimental evidence in the fol-
lowing sense: for any given node, at least one ancestor node (ie,  
a node from which a directed path to the node under consid-
eration exists) and at least one child node (ie, a node to which 
a directed path from the node under consideration exists) in 
the directed graph must have downstream RNA abundance 
nodes: their values can be directly inferred based on experi-
mental mRNA data. After removing the nodes that do not 
satisfy the above criteria, the largest connected component is 
kept (if the resulting network is not connected). Finally, the 
“causeNoChange” edges are disregarded for scoring. Selec-
tions of these simplified networks that have been scored using 
these criteria are shown in the results.

Results
Network resource comparison. We previously described 

novel aspects of the NVC networks compared with other net-
work resources.8,9 Herein, we select a particular network, cal-
cium signaling, to further illustrate the differences between 
the NVC networks constructed using BEL (https://bionet.
sbvimprover.com) and the pathways available in the KEGG 
(http://www.genome.jp/kegg/pathway.html) and Reactome 
Pathway Databases (http://www.reactome.org) (Fig. 1).

Network boundaries. The NVC Calcium Network (v2.0) 
is an example of a network with similar content and size as 
the KEGG Calcium Signaling pathway map (map04020) and 
Reactome Calmodulin pathway (R-HSA−111997.1). All three 
networks describe the increase of calcium as a result of inositol 
1,4,5-triphosphate activation (Fig.  1, box 1 highlighted in  
yellow) and the role of calcium in activating calmodulin kinase 
(CAMK) (Fig. 1, box 2 highlighted in yellow). However, the 
BEL network was constructed specifically to describe calcium 
signaling that leads to cell proliferation in the lung, while the 
KEGG and Reactome pathways describe calcium signaling in 
a more general manner that is tissue agnostic and can lead to 
proliferation as well as, for example, contraction, metabolism, 
apoptosis, and exocytosis in the KEGG pathway.

Network resource comparison. The NVC Calcium Net-
work (v2.0) contains 47 nodes (35 unique concepts when genes, 
proteins, and activity nodes are flattened together) and 52 edges, 
the KEGG pathway map contains 48 nodes/unique concepts 

and 60 edges, and the Reactome pathway contains 46 nodes 
(34 unique concepts) and 49 edges (Table 2). The NVC2 net-
work is supported by 38 unique literature references for specific 
edges, while there are 20 references for the KEGG pathway 
and 28 references for the Reactome pathways. There is no over-
lap in references between the three resources and the average 
date of publication for the NVC2 references is 2006, whereas 
the KEGG and Reactome average dates are 2002 and 2000, 
respectively. The NVC2 and Reactome references support a 
particular edge, whereas the KEGG references are not specific 
to a particular edge. The NVC2 network contains multiple node 
functions such as abundance, activities, and phosphorylations 
that have been specifically tested in the literature, while the 
KEGG pathway depicts a single layer of gene symbol nodes 
that could represent RNAs, proteins, modified proteins, or pro-
tein activities. Reactome contains nodes that reflect activities 
and phosphorylations that can be repeated throughout the dia-
gram to indicate location.

The cellular localization graphics in KEGG and Reactome 
give a second layer of information, with inositol 1,4,5-triphos-
phate (IP3  in KEGG, I(1,4,5)P3) in Reactome activating 
inositol 1,4,5-trisphosphate receptor (IP3R) depicted on the 
endoplasmic reticulum (ER) membrane, increasing calcium 
in the cytoplasm (Fig. 1, box 1 highlighted in yellow). From 
the KEGG and Reactome diagrams, IP3R/IP3 receptor can 
be inferred to be a calcium channel transporting calcium 
across the ER, although it is not explicitly stated. In BEL, 
this relationship is described explicitly in the NVC network 
as three different family members defined by the HUGO 
Gene Nomenclature Committee (HGNC) database (http://
www.genenames.org/) with transporter activities (tport): 
tport(p(HGNC:ITPR1)), tport(p(HGNC:ITPR2)), and 
tport(p(HGNC:ITPR3)) that activate the bp(GOBP:“store-
operated calcium entry”) node defined by the GO biologi-
cal process database.28 The nodes in the NVC network have 
more granularity than the Reactome and KEGG networks, 
specifying the type of activity and particular residues that 
are phosphorylated.

Along with the IP3 receptor, another process that is 
described by all three network resources is CAMK activa-
tion by calcium (Fig. 1, box 2 highlighted in yellow), although 
the NVC2 network describes CAMK2 while KEGG and 
Reactome pathways describe CAMK4 (only obvious for the 

Table 1. Dataset overview.

Data IDa Tissue Treatment Endpoint

GSE28464 Human fibroblasts Oncogenic Ras (H-RasV12) expression 4 days Model of senescence; autophagic markers

E-MTAB-3150 Mouse lung Reference cigarette (3R4F) smoke, prototype  
modified risk tobacco product (pMRTP),  
switch, cessation for 7 months

Lung function; Immune cell numbers and  
inflammatory markers in bronchoalveolar  
lavage fluid (BALF); lung macrophage counts;  
pulmonary morphometry

GSE52509 Mouse lung Reference cigarette (3R4F) smoke for 4,  
6 months

B and T-cell counts and histology in lung; immune 
markers in bronchoalveolar lavage (BAL) and lung

Notes: aThe GSE datasets are from the NCBI GEO database and the E-MTAB dataset is from the EMBL-EBI ArrayExpress database.
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Figure 1. Comparison of the NVC (A), KEGG (B), and Reactome (C) calcium/calmodulin signaling pathways. Shared portions highlighted in yellow with 
corresponding numbers.

KEGG pathway after clicking on the node within the online 
pathway). The final group of overlapping nodes between NVC 
and KEGG networks include stromal interaction molecular 1  
(STIM1) and calcium release-activated calcium channel 

protein 1 (ORAI1), describing store-operated calcium entry 
(Fig. 1, box 3 highlighted in yellow), a concept that the Reac-
tome network does not cover due to its focus on calmodulin 
signaling. Despite the differences in biological content, these 
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networks illustrate the similarities in causal, computational 
formats and differences in detail and visualization features 
in the NVC, KEGG, and Reactome networks. The edges 
in the NVC, KEGG, and Reactome networks are similar in 
that they can represent causal increase or decrease relation-
ships and can be downloaded for computational use. However, 
the NVC networks contain more layers of information, with 
direct causal, indirect causal, correlative, and other noncausal 
relationships (eg, member, biomarker, and component).

Network crowd verification. Participant feedback. Scien
tists had many options for engagement during the NVC, 
including commenting on networks, voting for or against 
the validity of evidence for specific edges, adding evidence 
to existing edges, or adding new edges (in order of easiest to 
most challenging according to a participant survey). The most 
impactful, but most challenging (and highest point value), 
action was to add new edges that represented missing biology 
in the networks. This action required participants to perform 
a sophisticated set of tasks beyond identifying relevant papers, 
namely, identify the correct network to include the paper and 
translate the biology to correct BEL statements in a format 
that contained direct, mechanistic biology relevant to the 
boundaries of the particular network. Most participants had 
expertise in identifying relevant papers that included biology 
that was missing in the network and overall, participants were 
able to easily learn BEL and construct correct statements that 
depicted the biology from the papers they identified. The most 
challenging task was assembling these statements into direct, 
mechanistic edges to integrate into the boundaries of a par-
ticular network. Participant feedback indicated that improved 
ways were desired to view networks, particularly to highlight 
areas of the networks that needed more development. Feed-
back also indicated that clearer network boundaries were 
necessary, highlighting the challenges that working with 
networks entails. With regard to participant engagement, 
feedback showed that participants were motivated by learning 
about biology in the networks, the BEL language, and about 
biological networks in general.

Network changes. The latest version of the NVC net-
works edited by the crowd during the NVC2 is available 
as version 2.0 at www.bionet.sbvimprover.com. These net-
works were changed in various ways throughout the two 
NVC challenges, as summarized in Figure  2. Networks 
before the NVC (v1.1) were compared with networks 

changed at the end of NVC2 (v2.0). Network statistics for 
each network version are available in Supplementary File 2. 
The largest amount of new biology in terms of new nodes 
that was added during NVC2 by the crowd and resulting 
from the jamboree was to the epigenetics, xenobiotic metab-
olism response, and calcium networks (Fig. 2). COPD- and 
lung-relevant contexts were added to the epigenetics and 
xenobiotic metabolism response networks, and cancer- 
and liver-related contexts, respectively, were removed. In 
the calcium network, growth factors and smoke-relevant 
mechanisms that lead to calcium signaling were added, as 
well as mechanisms of store-operated calcium entry.

Overall during the NVC1 and NVC2, the size of the 
networks (number of nodes and edges) grew, as seen in the 
four left columns of the heat map (Fig.  2). While the total 
number of edges increased, the proportion of negative edges 
also increased slightly, with a few exceptions such as Wnt and 
epigenetics signaling. This increase may reflect the addition of 
regulatory mechanisms to the networks.

Mean node betweenness (MNB) did not change substan-
tially, with noticeable exceptions for the cell cycle, autophagy, 
and Th1–Th2  signaling networks. For both cell cycle and 
autophagy, the number of nodes and edges stayed relatively 
constant. A difference in MNB may be indicative of a reor-
ganization of the network topology. These networks were all 
discussed during the jamborees where network topologies 
could more easily be changed than on a per user basis dur-
ing the open phase. For Th1–Th2 signaling, MNB went up 
tenfold from 15 to 152. This may be because these networks 
were originally two separate networks with linear (tree-like) 
structures that were then integrated after the jamboree.

The sizes of the largest cliques did not change, which 
suggests that the crowd did not add feedback loops. A clique 
of size 3 is a triangle that may be a simple positive or negative 
feedback of the form A→B→C→A (A→B→C-|A, respec-
tively). Most of the networks exhibit this property, while only 
eight networks have a clique of size 4 or more, the maximum 
being 5 (neutrophil signaling, after verification). A clique 
between four nodes implies that the set of nodes all regu-
late each other; for example, in the epithelial mucus hyper-
secretion network, the nodes A = cat(p(HGNC:ADAM17)), 
B = kin(p(HGNC:EGFR)), C = p(HGNC:MUC5AC), and 
D = bp(GOBP:mucus secretion)) are all related to each other 
as A→B,C,D; B→C,D; C→D.

The mean degree stayed stable while some maximum 
node degrees increased (ie, some nodes are stronger hubs). As a 
case in point, for the megakaryocyte differentiation network, 
the maximum degree went from 12 to 34. The MPL stayed 
stable for all networks, meaning that, on average, the shortest 
path between two nodes did not change (eg, no long hanging 
linear paths).

The frustration, representing the complexity of autoregu-
lation of a network, increased in half of the networks. After 
verification, only eight networks have a decreased frustration.

Table 2. Network resource comparison.

Attribute NVC KEGG Reactome

# Nodes 47 48 46

# Unique concepts 35 48 34

# Edges 52 60 49

# References 38 20 28

Average date of references 2006 2002 2000
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The number of connected components increased in the 
following networks (usually from one to two components): 
mTor, Mapk, Hox, growth factor, cell interaction, osmotic 
stress, NFE2L2  signaling, epithelial innate immune acti-
vation, wound healing, fibrosis, and ECM degradation. 

However, the ratio of the size of the second largest component 
to the size of the largest is less than 5% (except for cell inter-
action 12%, cytotoxic T-cell signaling 15%, and Hox 66%), 
meaning that, except for the Hox network, the largest com-
ponents comprise almost all the nodes. The extra components 
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added during network verification may be a starting point for 
further extending the biggest component. However, in the 
case of the Hox network, two components describing sepa-
rated processes are described in the context of this network. 
Besides the metrics discussed above, a scale-free property  
(ie, the degree distribution follows an exponential distribu-
tion) was tested. None of the networks (v1.1. and v2.0) exhibit 
a significant scale-free property (Supplementary File 2).

Network applications. Because the networks were con-
structed in BEL, they can be shared within the scientific 
community and used to understand data through overlay on 
to specific pathways of interest or implementing a more global 
process overview using computational inference approaches. 
We illustrate a few cases of how the networks could be used in 
toxicity assessment and drug discovery for network computa-
tion using the TopoNPA approach. This approach employs the 
two-layer network model to infer the activation or inhibition of 
model backbone nodes based on gene expression data.22 Using 
these inferences and the network model topology, TopoNPA 
computes the perturbation of the network as a whole. The 
approach differs from traditional pathway analyses, because 
it is quantitative and it uses backward reasoning instead 
of assuming that changes in gene expression directly imply 
changes in protein activity. The comparison of TopoNPA with 
other methods was described in detail by Martin et al.22

In vitro treatment effects on transcriptomics data are reflected 
in TopoNPA network scores. The NVC2 networks were scored on 
the in vitro dataset GSE28464 from the NCBI GEO database 
to illustrate that expected pathway activation can be inferred 
from transcriptomics data using network scoring.29 In this 
dataset, HRASV12 was expressed in fibroblasts, as a model for 
oncogene-induced senescence and cell cycle arrest. Consistent 
with the expectations, the senescence and cell cycle networks 
scored significantly in the HRASV12 dataset (Fig. 3). Within 
the senescence network, leading nodes that contribute to 80% 
of the senescence network score were predicted to be increased, 
including bp(GOBP:oncogene-induced cell senescence), repre-
senting oncogene-induced cell senescence, and p(HGNC:HRAS 
sub(G, 12, V)), representing HRASV12  mutation, ranking 
first and eighth in their contribution to the significant senes-
cence network score (Fig. 3A, boxed in yellow). Many nodes 
representing RAS, RAF, and MAPK mechanisms also scored 
highly and/or were high contributors to the network score as 
leading nodes. The relationship from angiotensin II activating 
CDKN1A protein is an example of an edge added to the senes-
cence network during the NVC process.

The cell cycle network also had a significant network 
score with cell cyclins and E2Fs inferred as decreased lead-
ing nodes (Fig.  3B, highlighted in yellow), while inhibitors 
of cyclins and E2Fs (CDKN1A and RB1) were inferred as 
increased leading nodes (Fig. 3B, highlighted in blue). NVC 
contributions include RRM1, MAD2L1, SIRT1, and TP53 
acetylation, which adds more detail to the role of THAP1 
and TP53  in regulating cell cycle. The nodes predicted in 

the senescence and cell cycle networks are consistent with an 
expected decrease in cell cycle due to HRASV12 signaling.

Quantification/comparison of toxicity in two related data-
sets using the network suite. Networks were used to evaluate 
and compare two recently published mouse lung datasets 
(E-MTAB-3150 and GSE52509), in order to quantify the 
effects of different exposures on biological processes at dif-
ferent time points.30 In the first study (E-MTAB-3150), mice 
were exposed to CS or aerosol from a prototype modified risk 
tobacco product (pMRTP). After two months, mice were 
switched from CS exposure to pMRTP or fresh air (cessa-
tion) for an additional five months and compared with mice 
subjected to CS for the whole duration (seven months). In the 
study reported in the GSE52509 dataset, mice were exposed 
to smoke for four or six months.31

Macrophage signaling is of particular interest in the first 
study (E-MTAB-3150). The NPA score for the macrophage 
signaling network significantly increased with smoke expo-
sure for all time points and decreased with switch and cessa-
tion (Fig. 4A). This trend matched the measured end points 
of macrophage count in bronchoalveolar lavage fluid (BALF) 
and pigmented macrophages in lung tissue (Fig. 4B).30 Lead-
ing nodes within the macrophage signaling network that con-
tributed most to the score are depicted by relative contribution 
to network scores in Figure 5. The Il1r1 protein and activity 
were top contributors to the network score for the first four 
months of smoke exposure, after which Irak4 and Myd88 
activity were top scoring contributors. These nodes also con-
tributed most to the five-month pMRTP, switch to pMRTP, 
and cessation scores. Irak4 and Myd88 act in the TLR path-
way that leads to macrophage activation induced by smoke for 
six months (Fig. 6, boxed in yellow). A number of new nodes 
were added during the NVC2 process, including detail around 
the TLR pathway and effects of macrophage activation. Two 
of these new nodes, prostaglandin E2 and nitric oxide, were 
leading nodes that contributed highly to the macrophage sig-
naling network score.

NPA scores can be calculated for the whole suite of net-
works and also allow to compare different datasets, as the rela-
tive signal compared with a control is used. Figure 7 shows that, 
as expected, most of the networks were predicted to be sig-
nificantly impacted with CS exposure in the E-MTAB-3150 
dataset, with an increasing impact over time. In contrast, 
most of the networks were predicted to be not impacted sig-
nificantly with pMRTP exposure. Upon cessation or switch to 
pMRTP from smoke exposure, the network scores decreased. 
Interestingly, this approach also proves powerful when applied 
to a dataset with fainter signal, as judged by the number of 
differentially expressed genes. Indeed, the number of differ-
entially expressed genes in GSE25209 is low (hundreds) com-
pared with those in the E-MTAB-3150 dataset (thousands) 
for smoke-exposed mice (Supplementary File 3). Despite the 
low signal, TopoNPA still detected a signal and predicted 
activation of key networks known to be involved in smoking, 
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was inferred and contributed to the significant Th17 signaling 
network score (Fig. 8, boxed in yellow). These network infer-
ences match measurements from the study, reporting a higher 
number of Th17 cells and IL17-positive cells in the six-month 
smoke-exposed lung tissue.31 Additionally, the study reported 
enrichment of innate and adaptive immune cell communica-
tion pathways by Ingenuity Pathway Analysis of transcrip-
tomics data, which matches the significant network scores in 
T-cell and other immune networks (Fig. 7).

Discussion
Network resources have different strengths. Many dif-

ferent network resources are available online, with different 
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Figure 3. Senescence (A) and cell cycle (B) networks scored with GSE28464 HRASV12 data from the NCBI GEO database. A selection from the 
TopoNPA-scored version is shown. Arrow edge indicates a positive relationship while ball and stick edge indicates a negative relationship (includes 
causal and correlative statements). Nodes are colored by their NPA score; yellow/orange indicates inferred increase and blue indicates inferred decrease 
in activity or abundance. Darker colors denote higher magnitude scores. Leading nodes contribute to 80% of the network score and are denoted by their 
shapes outlined in gray. Nodes added within this section of the network during the NVC are labeled in red. (A) Senescence network. Nodes boxed in yellow 
reflect experimental HRASV12 mutation, resulting in oncogene-induced senescence. (B) Cell cycle network. Predicted upregulated nodes (yellow) contain 
cell cycle inhibitors RB1, E2F4, and CDKN1A predicted increased. Predicted decreased nodes (blue) contain cell cyclins and E2Fs predicted decreased.

including the inflammatory, cell stress, cell proliferation, 
and tissue repair networks (Fig. 7). The networks that score 
significantly in GSE52509 were similar to those in the 
C57BL6-pMRTP-SW dataset, sharing 24 significant and 11 
nonsignificant networks out of the 46 total networks. Note 
that scores cannot be compared across datasets.

One of the networks that scored significantly for the 
impact of six-month smoke was the Th17  signaling net-
work. The network shows mechanisms that can contribute to 
Th17 signaling and were predicted to be increased or decreased. 
Il17 differential gene expression was not statistically signifi-
cant based on the microarray data; however, evidence of Il17a 
and Il17f activation from the overall transcriptomics signal 
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language formats, visualization, and download application 
capabilities.32,33 Out of these, we chose to compare two of the 
most widely used network resources, KEGG and Reactome, 
to the NVC networks focusing on the calcium signaling net-
work as a point of comparison. BEL networks enhanced in 
the NVC cover 46 different COPD-relevant processes. The 
KEGG pathway database is a well-known resource in the sci-
entific community that can be used to interpret data.4,5 Cre-
ated by a select team of biologists, KEGG contains hundreds 
of pathways covering a wide variety of processes including 
metabolism, cellular processes, diseases, and more. Reactome 
is an open-source, open-access collection of manually curated 
and peer-reviewed pathways and suite of data analysis tools 

to support pathway-based analysis.6,7 Similarly, the NVC 
networks are manually curated by a team of scientists and 
organized into discrete subject areas. However, unlike the 
KEGG and Reactome pathways, these network graphs are 
open to the crowd for editing and each of the edges that make 
up the network is supported by literature source(s) along with 
a quotation from the paper that supports the edge and experi-
mental context. The ability for the crowd to edit the networks 
facilitates a peer-review process, which ensures comprehensive 
and current networks.

The NVC networks have different edge and node types 
that describe the relationships between nodes in great detail 
to reflect exactly what was proven in the experiment the 
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Figure 4. Macrophage signaling network scores in the E-MTAB-3150 dataset and pigmented macrophage counts in the same study. (A) Macrophage 
signaling network score increased with time with smoke exposure and decreased with switch or cessation. pMRTP did not have significant macrophage 
signaling network scores at any time point. Green, blue, and red asterisks indicate significant O, K, and experimental P-values, respectively. (B) Pigmented 
macrophage in the alveolar lumen increased with smoke exposure over time and decreased with switch or cessation. pMRTP did not induce an increase in 
pigmented macrophages. 
Notes: *P , 0.05 compared with sham. #P , 0.05 compared with smoke exposure.
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Figure 7. Heat map of network scores comparing the impact of CS exposure, pMRTP, and cessation in the E-MTAB-3150 and GSE52509 datasets. Each 
treatment is compared to fresh air at the same time point. Scores are normalized to the maximum scores for each network. A network is considered 
impacted if, in addition to the significance of the score with respect to the experimental variation, the two companion statistics (O and K) derived to inform 
the specificity of the score with respect to the biology described in the network, are significant.  
Note: *O and K statistic P-values below 0.05 and NPA significantly nonzero.

annotated reference describes. Nodes defined by a namespace 
serve to standardize the language and multiple functions such 
as abundance, activity, modifications (ie, phosphorylation), 
biological process, and pathology to describe the biology in a 
fine-grained manner. Edges are defined by causal, correlative, 
and other numerous noncausal relationships and each causal/
correlative edge is based on a literature reference containing 

tissue, species, disease, and experimental metadata. Like the 
NVC networks, KEGG and Reactome describe biological 
processes in a causal manner, though they have less granu-
lar information about the nodes and edges and, for the case 
of KEGG, no specific literature reference was found for each 
relationship. Reactome has references by edge in the net-
work downloads but not in an easily viewable format on the 
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graph itself. References for the NVC calcium network were, 
on average, more recent than the KEGG and Reactome net-
works, implying that the NVC network contains more up-to-
date information, most likely because of the crowdsourcing 
effort. Among the 86 references used to support the calcium 
pathways across all three resources, all references were unique. 
This illustrates the range of literature and boundaries that were 
used to build the calcium pathways across the three network 
formats. The visualization of the KEGG and Reactome path-
ways allows the viewer to easily traverse the networks within 
a graphical representation that includes cellular localization 
of the nodes. KEGG and Reactome pathway diagrams have 
detailed cellular localization information that the BEL net-
works do not show graphically. However, this information can 
be described in the edge annotation or the node label.

Many analysis tools are available to use with the KEGG 
and Reactome pathways to interpret data. NVC networks also 
support analytics for mapping nodes in a dataset as well as 
taking into account the relationships between the nodes with 
the exact edge data. NVC networks can be downloaded in 
JSON graph format (JGF) and viewed and applied to data 
using Cytoscape or other JGF-compatible network visualiza-
tion software. Edge information can be used to filter and com-
pute on the networks.

Other network resources that are geared toward a 
community-driven approach include WikiPathways34 and 
the Cell Collective.35 These resources do not have a calcium 
pathway appropriate for comparison, but like KEGG and 

Reactome, they are limited by less granular information about 
the nodes and edges compared with NVC networks and, like 
KEGG, no specific literature reference is given for each rela-
tionship. However, they do benefit from the contribution of 
information from the scientific crowd, where WikiPathway 
users can edit and contribute to existing pathways and Cell 
Collective users can contribute information to the Knowledge 
Base, collaboratively build models and simulate and analyze 
them in real time. Like KEGG and Reactome, WikiPathways 
provides a graphical representation, containing cellular locali
zation information.

Each of these network resources offers advantages for 
viewing and interpreting biology. The NVC networks cover 
lung- and COPD-relevant processes in a very detailed and 
granular manner and are open to public feedback, and the data 
can be computed at the node and edge level. The KEGG and 
Reactome pathways cover a wide range of biology with many 
widely used node-centric analysis tools, the Cell Collective 
allows for quantitative computation of networks, and KEGG, 
Reactome, and WikiPathways provide a simplified represen-
tation for easy visualization.

NVC crowd excels at identifying and encoding lite­
rature. A review of the crowd changes and participant sur-
vey feedback after two iterations of the NVC allowed for an 
understanding of aspects that worked well and aspects that 
can be improved for subsequent challenges. One important 
finding was that the crowd was able to identify relevant lit-
erature that contained COPD mechanisms missing from the 
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networks. Keeping networks up-to-date with the constant 
stream of published literature is difficult for the small team 
of scientists who created the networks. Crowdsourcing this 
effort through the Bionet website allows for a diverse group 
of international scientists to share in this effort to collect rel-
evant literature and note missing areas in a network using each 
individual’s expertise and biological perspective. This process 
allows the community as a whole to benefit from up-to- 
date networks.

The main incentive for participants, according to a survey, 
was the learning process, and although educating the commu-
nity about BEL and network biology is an excellent outcome 
of the NVC, there were many challenges associated with this 
large, crowdsourced effort to edit the networks. These chal-
lenges included clearly defining and communicating rules and 
boundaries up front in a way that everyone can consistently 
follow, the follow-up effort required to edit the changes made 
to the networks to ensure consistency and adherence to the 
network framework rules, and the creation of accurate BEL 
statements capturing the biology stated in a publication.

An idea for future challenges is to separate knowledge 
creation from network construction. Adding new and relevant 
edges to a network was a heavily incentivized portion of the 
challenge and is an important mechanism for filling knowl-
edge gaps in the network and maintaining the networks with 
newer information from the literature. While the crowd par-
ticipants performed well at identifying relevant literature and 
representing key ideas in BEL, it was challenging for partici-
pants to select and add mechanistic, nonredundant paths that 
were well integrated with the rest of the network, especially 
for the larger networks. As seen from the network statistics, 
the crowd contributed to the number of nodes and edges but 
not necessarily to changing the topology of the network. Sep-
arating the curation and network building portions of the task 
could provide several advantages. For example, BEL evidences 
could be voted on by the crowd for accuracy and relevance and 
refined prior to incorporation into a network. It is difficult to 
edit evidences and statements once they are connected into a 
network, as all neighboring edges and all individual evidences 
supporting the same edge are affected. Moreover, evidences 
could be more readily shared across networks where applica-
ble, and evidences that are highly relevant, but not the most 
streamlined, direct connection within a given network, could 
be omitted from the network but retained for other applica-
tions. Making the challenge tasks more manageable and nar-
rowly defined in this manner could potentially attract more 
participants as well as increase the quality and value of the 
resulting networks and associated knowledge. Every year, as 
more biological experts participate in the challenge and more 
literature is published, the networks can be kept up-to-date 
with the current understanding of the biology contained in 
these networks.

Networks can be used in toxicity and drug discovery 
applications. In addition to application as a tool to understand 

signaling pathways regulating a disease process, biological 
networks can be used to predict active mechanisms driving 
measured biological changes based on a knowledgebase of 
known regulators of these measured changes. In this study, 
we use network scoring to infer upstream mechanisms known 
to regulate measured gene changes applied to three datasets. 
Networks that contain these mechanisms can then be scored 
to infer perturbation of biological processes represented by the 
networks in a quantitative manner. In the GSE28464 study, 
mutated HRASV12 was expressed in fibroblasts and acti-
vation of senescence and cell cycle was inferred by network 
scoring of the transcriptomics data. These results were consis-
tent with experimental expectations of HRASV12, inducing 
senescence and cell cycle arrest.36 This example illustrates the 
ability of the network scoring approach to infer known active 
mechanisms using transcriptomics data. Novel mechanisms 
predicted to be active from transcriptomics data as a result of a 
treatment could also be identified in biological networks using 
this approach.

A major advantage of this network-based transcrip-
tomics data scoring approach is the ability to quantitatively 
compare treatments and time points within a dataset within 
discrete biological processes. In the E-MTAB-3150 dataset, 
the effects of smoke, pMRTP, switch to pMRTP, and cessa-
tion were quantified on the biological process and mechanistic 
level through network and mechanism scores. Network scor-
ing indicated that smoke impacted lung biology captured by 
networks more than pMRTP, switch to pMRTP, or cessation 
and with a greater magnitude over time. pMRTP appeared 
to impact lung biology less than smoke, based on the lower 
pMRTP vs sham network scores and fewer networks scor-
ing significantly. Switching from smoke to pMRTP or ces-
sation showed a decrease in network perturbation compared 
with sham group over time. Additionally, scoring mechanisms 
within the network gives insights on which mechanisms are 
predicted to induce gene expression changes observed in the 
dataset. Il1 receptor signaling was predicted to impact mac-
rophage activation the most in early time points with smoke 
treatment, followed by an increased impact of Irak4 and 
Myd88 activity on macrophage activation in later time points 
(Fig. 5). Il1r1/MyD88 signaling has been shown to contrib-
ute to elastase-induced lung inflammation and emphysema,37 
and although there are no publications implicating Irak4  in 
emphysema or COPD, a recent conference poster reported 
MyD88/Irak4 promotion of lung fibrosis in a mouse model 
of COPD.38 This network approach can potentially high-
light novel mechanisms such as Irak4 that drive disease and 
increase our understanding of COPD progression. Findings 
such as these could lead to a list of potential biomarkers or 
novel targets that could then be confirmed in multiple datasets 
in the primary disease tissue and narrowed down by aspects 
of ease of targetability and low off-target effects to identify 
ideal targets. Additionally, the quantitative aspect to network 
scoring can be used in toxicity testing to rank the impact of 
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different treatments and study dosing and time effects for a 
particular perturbation.

Another advantage of the network approach is the 
ability to glean information from a dataset with a low tran-
scriptomics signal. Similar to the E-MTAB-3150 dataset, 
GSE52509 contained data from smoke-exposed mouse lungs 
for four and six months; however, this dataset had a much 
lower transcriptomics signal. This difference in signal could 
be attributed to a larger variation in the data, or potentially 
the lower dosage and duration per day of smoke exposure 
in GSE52509 compared with the E-MTAB-3150 dataset. 
In the E-MTAB-3150 study, mice were exposed to smoke 
2.4 times longer per day at 1.5 times higher concentration. 
Similar types of networks and leading nodes were inferred 
in both studies to be activated in processes relevant to CS 
exposure, and they matched experimental end points of pig-
mented macrophage and Th17 counts in E-MTAB-3150 and 
GSE52509 studies, respectively.

Although the networks focus on lung- and COPD-
relevant context and were scored on lung datasets, these net-
works can apply to other disesases and tissues. The networks 
include edges that are based on literature from lung-relevant 
cell types such as fibroblasts, smooth muscle, and immune 
cells; these cell types are not specific to lung but can apply to 
many other tissues and disease contexts. The networks to be 
scored should be evaluated based on the context of the data-
set. For the GSE28464 dataset, only the senescence and cell 
cycle networks were scored, while the immune networks were 
not scored since the experiment was performed in fibroblasts 
and not immune cells. Since many of the pathways that the 
networks describe such as canonical MAPK and NFKB sig-
naling are conserved across tissues, these networks provide an 
important resource that can be built on to include context-
specific mechanisms according to scientists’ needs.

Conclusion
The computable biological language BEL allows for encod-
ing of scientific literature with high granularity and is well 
suited for sharing mechanistic biology in a network context. 
The NVC takes advantage of the well-defined nature and ease 
of use of BEL to allow the scientific community to verify, 
enhance, and use these networks. These networks can then 
be used for toxicological and drug discovery applications. We 
illustrated one way to use these networks through quantitative 
network scoring based on transcriptomics data. Mechanisms 
were inferred from the data and could be quantitatively com-
pared within a dataset, leading to insights in disease-driving 
mechanisms and toxicity assessment.
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Abstract

Neurodegenerative diseases are chronic debilitating conditions, characterized by

progressive loss of neurons that represent a significant health care burden as the global eld-

erly population continues to grow. Over the past decade, high-throughput technologies

such as the Affymetrix GeneChip microarrays have provided new perspectives into the path-

omechanisms underlying neurodegeneration. Public transcriptomic data repositories,

namely Gene Expression Omnibus and curated ArrayExpress, enable researchers to con-

duct integrative meta-analysis; increasing the power to detect differentially regulated genes

in disease and explore patterns of gene dysregulation across biologically related studies.

The reliability of retrospective, large-scale integrative analyses depends on an appropriate

combination of related datasets, in turn requiring detailed meta-annotations capturing the

experimental setup. In most cases, we observe huge variation in compliance to defined

standards for submitted metadata in public databases. Much of the information to complete,

or refine meta-annotations are distributed in the associated publications. For example, tissue

preparation or comorbidity information is frequently described in an article’s supplementary
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tables. Several value-added databases have employed additional manual efforts to over-

come this limitation. However, none of these databases explicate annotations that distin-

guish human and animal models in neurodegeneration context. Therefore, adopting a more

specific disease focus, in combination with dedicated disease ontologies, will better em-

power the selection of comparable studies with refined annotations to address the research

question at hand. In this article, we describe the detailed development of NeuroTransDB, a

manually curated database containing metadata annotations for neurodegenerative studies.

The database contains more than 20 dimensions of metadata annotations within 31 mouse,

5 rat and 45 human studies, defined in collaboration with domain disease experts. We eluci-

date the step-by-step guidelines used to critically prioritize studies from public archives and

their metadata curation and discuss the key challenges encountered. Curated metadata for

Alzheimer’s disease gene expression studies are available for download.

Database URL: www.scai.fraunhofer.de/NeuroTransDB.html

Background

Considerable effort by the global research community has

been dedicated to addressing a limited understanding of the

pathogenic events underlying neurodegenerative disease

(NDD) (1, 2). The cumulative output of these efforts has es-

tablished an increased amount of deposited molecular data

and published knowledge. As life expectancy continues to

rise and treatment options for NDD remain limited, there is

an increasing urgency to translate this amassed molecular

data into biomarker tools for early diagnosis; to open the

possibility of disease altering and preventative therapy (3,

4). Furthermore, biomarkers aiding the decision-making

process for therapies targeting specific pathophysiological

mechanisms will help to address the high drug attrition rate

in the NDD pharmaceutical industry. Informatic efforts to

facilitate the integration and interrogation of the distributed

molecular data legacy for NDD can enable a systematic and

objective prioritization of molecular protagonists and there-

fore potential biomarkers in NDD (5–8).

In this direction, we have previously developed a seman-

tic framework, called NeuroRDF (9), for integration of

heterogeneous molecular data types, extracted from bio-

medical literature, transcriptomic repositories and bespoke

databases. NeuroRDF enables researchers to formulate

biological questions that relate to the interplay of different

facets of molecular biology as a formalized query. Even

today, the most abundant source of quantitative molecular

data remains transcriptomic data, which can support hy-

pothesis-free, elucidation of biological function (10). When

the same biological function is replicated in additional ex-

pression data sets, it increases the plausibility of the

derived hypothesis (11).

The inaccessibility of the brain is a significant barrier

to molecular analysis of NDD and this frequently limits

the availability of samples from post-mortem tissue (12,

13). This is evident when simply comparing the availabil-

ity of NDD studies to other disease domains, like cancer

(14), in public archives such as Gene Expression

Omnibus (GEO) (15) and ArrayExpress (16) (see

Supplementary Figure S1). For instance, GEO contains

157 NDD studies in contrast to 16,910 cancer studies.

Therefore, animal models are an important complement

to human-derived samples but are at best an incomplete re-

flection of the human conditions. Assessing the biological

complementarity of studies is important when considering

a meta-analysis. Such an assessment can be a cumbersome

process as searching in these public repositories is princi-

pally based on free text. Additionally, limited adoption of

controlled vocabularies, such as the Experimental Factor

Ontology (EFO) (17), to describe the metadata fields and

lack of compliance to defined standards (18) has contrib-

uted to the dilemma. This has resulted in metadata being

scattered as unstructured prose in public databases and as

additional annotations, widely distributed in originating

publications. Moreover, applying automated methods to

retrieve information from these databases could comprom-

ise on the accuracy. On the other hand, capturing missing

annotations through the manual curation can incur huge

costs of trained labour.

Capturing the associated metadata in a standardized

and precise fashion will empower integrative analysis by

helping to control sources of variability that do not relate

to the hypothesis under investigation (11, 19–21). Ober

et al. (22) have reported on differing gene-expression pat-

terns related to gender and suggest gender-specific gene

architectures that underlay pathological phenotypes. Li

et al. (23) observed distinct expression patterns, strongly

correlated with tissue pH of the studied subjects; these pat-

terns are not random but dependent on the cause of death:

brief or prolonged agonal states. Thus, studies enriched
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with metadata annotations provide the power to obtain

more precise differential estimates.

Related work

Numerous approaches have been proposed to tackle the

problem of identifying relevant gene-expression studies

and annotating metadata information resulting in several

databases, web servers and data exploration tools. These

(value added) databases differ from one another based on

their objectives, information content and mode of query.

AnnotCompute (24) is an information discovery plat-

form that allows effective querying and grouping of similar

experiments from ArrayExpress, based on conceptual dis-

similarity. The dissimilarity measure used, Jaccard dis-

tance, which is derived from the MAGE-TAB fields

submitted by the data owners. Another tool, Microarray

Retriever (MaRe) (25) enables simultaneous querying and

batch retrieval from both GEO and ArrayExpress for a

range of common attributes (e.g. authors, species)

(MAGE-TAB is a submission template, tab-delimited, for

loading functional genomics data into ArrayExpress.

https://www.ebi.ac.uk/fgpt/magetab/help/). GEOmetadb

(26) is a downloadable database of structured GEO meta-

data with programmatic querying libraries in both R and

MATLAB. However, all the above-mentioned resources

suffer from a common limitation: they rely completely on

the submitted data and do not provide solutions for miss-

ing metadata information.

Several value-added databases invest manual curation

effort to enrich metadata information for gene-expression

studies. Many Microbe Microarrays Database (M3D) (27)

contains manually curated metadata, retrieved from the

originating publications, for three microbial species, con-

ducted on Affymetrix platforms. Similarly, the Oncomine

database (28) contains extensive, standardized and curated

human cancer microarray data. A-MADMAN (19); an

open source web application, mediates batch retrieval and

reannotation of Affymetrix experiments contained in GEO

for integrative analyses. Microarray meta-analysis data-

base (M2DB) (11) contains curated single-channel human

Affymetrix experiments (from GEO, ArrayExpress and lit-

erature); categorized into five clinical characteristics, repre-

senting disease state and sample origin. However,

experiments with missing link to the published paper in

GEO and ArrayExpress were excluded. A substantial pau-

city of sample associated gender information in GEO and

ArrayExpress motivated Buckberry et al. (29) to develop a

R package, massiR (MicroArray Sample Sex Identifier) to

label the missing and mislabelled samples retrospectively

with gender information, based on data from Y chromo-

some probes. Apart from publicly available resources,

there are various commercial products that contain manu-

ally curated transcriptomic metadata: NextBio, Genevesti-

gator and InSilicoDB (30) (http://www.nextbio.com/b/

nextbioCorp.nb and https://genevestigator.com/gv/).

However, none of the above databases are optimized to

capture detailed metadata specific to neurodegenerative

disease. In addition, these databases fail to handle species-

specific annotations; especially treatments applied on ani-

mal models to partially explicate or treat human-related

NDD mechanisms, which may strongly contribute to in-

crease the predictive power of translating preclinical results

in NDD drug trials.

Here, we describe the detailed development of

NeuroTransDB, a manually curated database containing

metadata annotations for neurodegenerative studies and

an enabling resource for supporting integrative studies

across human, mouse and rat species. The participation of

our group, at Fraunhofer Institute SCAI, in projects funded

by the Neuroallianz Consortium (a part of the BioPharma

initiative of the German Ministry of Education and

Research) and the evident lack of a comprehensive NDD

specific metadata archive has motivated us to develop

Neurodegenerative Transcriptomic DataBase

(NeuroTransDB) (http://www.neuroallianz.de/en/mission.

html). This database now contains more than 20 dimen-

sions of metadata annotations for human studies, as well

as mouse and rat models, defined in agreement with dis-

ease experts. To demonstrate our approach, we chose to

highlight Alzheimer’s disease for this publication because it

depicts a wide spectrum of the possible annotations across

different types of metadata in neurodegeneration.

Additionally, we have applied the same approach to all

publicly available Parkinson’s and Epilepsy studies, which

shows that the overall approach is unspecific to the disease.

However, the curated data for these two diseases will be

released in the future under the terms of a Neuroallianz

agreement. The database is updated every six months using

highly trained curators. An interactive graphical user inter-

face to access this data is currently being developed as part

of the AETIONOMY IMI project (http://www.aetionomy.

eu).

Curation of gene-expression studies:
prerequisites, key issues and solutions

This section discusses the workflow we followed to re-

trieve relevant gene-expression datasets and to generate

detailed metadata annotations for each study (Figure 1).

First, we retrieved all functional genomics studies from

GEO and ArrayExpress that reference Alzheimer’s dis-

ease (AD) or a set of AD synonyms, along with the pro-

vided metadata (cf. Data Retrieval section). Each study
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was then prioritised (cf. Experiment Prioritization sec-

tion) based on the disease relevancy, experimental type

and sample source. Only studies in the top prioritization

category were subjected to rigorous, semiautomated

metadata curation (cf. Metadata Curation section).

Annotations are standardized by reference to controlled

vocabularies for each extracted metadata dimension (cf.

Normalization of Metadata Annotations section). The

curated Alzheimer’s data is stored in NeuroTransDB, but

in principle the proposed workflow can be applied with

little adaptation to any disease indication, especially

NDD.

Primary data resources

Together the GEO and ArrayExpress databases constitute

a wealth of gene expression studies and are commonly

reused for validating new hypotheses and identifying novel

signatures through meta-analysis by multi-data integration

(11). GEO is the largest public repository of functional

genomic data; maintained by the National Center for

Biotechnology Information (NCBI) in the USA.

ArrayExpress is the European counterpart of GEO and

consists of manually curated experimental information im-

ported from GEO, in addition to the data that are directly

submitted by the researchers. To support reuse of the de-

posited studies, each repository adheres to annotation

standards for submission of transcriptomic data:

‘Minimum Information about a Microarray Experiment’

(MIAME) and ‘Minimum Information about a high-

throughput nucleotide SEQuencing Experiment’

(MINSEQE) (http://fged.org/projects/miame/ and http://

www.fged.org/projects/minseqe/). GEO allows data sub-

mission in Excel, SOFT or MINiML format and

ArrayExpress as MAGE-TAB through Annotare webform

tool (http://www.ncbi.nlm.nih.gov/geo/info/submission.

html and http://www.ebi.ac.uk/arrayexpress/submit/over-

view.html).

Curation team

An obvious prerequisite for any curation process is to have

access to specially trained personnel, who understand the

key attributes required to adequately describe an expres-

sion experiment and are able to complete these attributes

by reference to appropriate resources (31). Such individ-

uals are known as biocurators. We assembled a team of

candidate biocurators who have adequate biological ex-

perience. Each biocurator underwent extensive training in

the fundamentals of curation, including the basics of gene

expression study design, outlined by experts, scientists and

disease experts. Clear curation guidelines (see Experiment

Prioritization and Metadata Curation section) and a

weekly meeting of the biocurators with one of the experts

ensured good quality, consistency, and uniformity in cur-

ation procedure. In addition, this provided an opportunity

to get feedback from the biocurators for improving and

updating the defined guidelines. To keep abreast and elim-

inate any bias, the curated data was regularly exchanged

between them for good interannotator agreement. The ex-

perts resolve any disagreement that may arise between the

curators.

Data retrieval

Putative AD studies were programmatically retrieved from

GEO and ArrayExpress by applying a recall-optimized

keyword search approach, cf. Figure 2. The keywords in-

clude a set of AD synonyms such as ‘Alzheimer’,

‘Alzheimer’s’ or ‘AD’ in combination with a species filter.

Since ArrayExpress imports and curates the majority of

GEO experiments, we firstly queried the former through

its REST service (http://www.ebi.ac.uk/arrayexpress/help/

programmatic_access.html). Conjointly, we further

queried GEO using the eSearch Entrez Programming

Utilities (E-utils) service to fetch additional identifiers

(IDs), which were not picked up by the previous query

(http://www.ncbi.nlm.nih.gov/geo/info/geo_paccess.html).

The final list of unified experiment IDs was downloaded

Data Retrieval

Experiment Priori�za�on

Manual meta-data cura�on

Normaliza�on

Priority 1

Priority 2

Storage in NeuroTransDB

Figure 1. Overall workflow for curation of gene expression studies

related to neurodegeneration from public archives. The first step in-

volves automated retrieval of gene expression studies (along with

metadata) from public archives such as GEO, and ArrayExpress. The

related studies were further assigned to one of the two prioritization

classes (priority 1 or priority 2), based on the specific experimental vari-

ables. Next, manual curation was applied to capture missing metadata

information on priority 1 studies. All the harvested metadata was nor-

malized using standard vocabularies. Both raw and normalized data are

stored in NeuroTransDB.
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(along with their metadata) and stored in

NeuroTransDB. Metadata information was captured

from Sample and Data Relationship Format (SDRF) file

of ArrayExpress and SOFT file of GEO (https://www.ebi.

ac.uk/fgpt/magetab/help/creating_a_sdrf.html and http://

www.ncbi.nlm.nih.gov/geo/info/soft.html). The above-

described steps are fully automated; enabling an auto-

matic update procedure we run every 6 months to obtain

new published studies.

Experiment prioritization

For integrative meta-analysis, combining studies that ad-

dress the same objectives could minimize biases from co-

hort selection (inclusion and exclusion criteria) and other

design effects. Anatomical and functional heterogeneity

arising from experimental sample source, imposes yet an-

other challenge for integrative analysis. Moreover, key-

word-based, recall optimized retrieval of experiments does

not guarantee its clinical relevancy to the queried indica-

tion or organism. Thus, we propose a straightforward bin-

ning approach to select potentially eligible studies for AD

as illustrated in Figure 3.

Firstly, we identified experiments relevant to AD indica-

tion, if not relevant we mark them as unrelated (referred as

AD3 in the database). Relevancy is defined on the basis of

the experiment’s characteristics: investigation on AD

mechanism, AD associated mechanism, AD genes or con-

tains samples that belong to direct or implicated effects of

or on AD. For example, GSE4757 is relevant to AD since it

investigates the role of neurofibrillary tangle formation in

Alzheimer patients between normal and affected neurons.

The retained AD-related experiment IDs were manually

classified by biocurators into one of the two-prioritization

categories (cf. Figure 3). To support this process, a set of

classification rules were devised that capture two import-

ant considerations: organism specificity and source of the

samples used in the study. Although curation with regards

to these considerations is of obvious importance, no previ-

ously published guidelines were available for reference. To

our knowledge, this is the first work where such a guide-

line has been explicitly detailed. A simplified description of

the classification rules adopted for AD disease prioritiza-

tion is provided below:

Priority 1

• Experiments that study AD pathophysiology in in vivo

systems

• Studies containing samples from:

– Human AD patients such as blood, brain tissue,

serum, etc.

– Animal model samples such as mouse brain tissue or

rat brain, e.g. C57BL/6 mice, Sprague–Dawley rat, etc.

– Animal models modified to study the role of an AD

gene (knock-out models), or AD mechanism (trans-

fected models), or diet/drug treatments (treated mod-

els), such as TgAPP23, APLP2-KO mice, etc.

• Experiments containing only healthy/normal samples

from human/mouse/rat that are a part of a bigger study

investigating AD

Priority 2

• Experiments that study AD pathophysiology in in vitro

systems

Keyword search for human, mouse, and rat:
“Alzheimer”,  “Alzheimer’s”, or “AD”

eSearch E-u�ls service

Parse XML file for experiment IDs

Storage in NeuroTransDB

REST Service

Parse XML file for experiment IDs

Fetch the SOFT file using experiment 
IDs and parse meta-data annota�ons

Fetch the SDRF file using experiment 
IDs and parse meta-data annota�ons

Figure 2. Automated data retrieval of Alzheimer’s Disease specific gene expression studies from ArrayExpress and GEO. Here, the dotted line

represents the sequence of query performed. Alzheimer’s disease specific experiment IDs were automatically retrieved from GEO and ArrayExpress,

using keywords, through eSearch and REST service respectively. Metadata information was extracted by automatically parsing sample information

files (SDRF and SOFT) of these experiment IDs.
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• Studies containing samples from derived or cultures

sources:

– Cell lines

– Pluripotent cells

– Stem cells

Incorrect organism or disease specificity

Although the experiment retrieval step was restricted to a

specific organism and disease conditions, we observed dif-

fering levels of specificity. For example, some mouse stud-

ies were retrieved when querying for human studies.

Similarly, we obtained experiments for related diseases

such as Parkinson’s disease, or diabetes, when querying for

AD. Therefore, during study prioritization it was import-

ant to confirm the species of origin and relevancy of the

study to AD. It’s also possible that keyword-based retrieval

may miss AD studies due to incorrect disease or organism

tagging. However, we did not perform an exhaustive

search for such falsely ignored studies, since it would re-

quire immense human effort.

Ambiguous species designation

In some studies, human cells such as embryonic stem cells

are injected into animal models and post-mortem samples

from these animal models are extracted for transcriptomic

analysis (e.g. GSE32658 experiment in GEO). Such a study

could arguably be classified as either human priority 2 or

mouse priority 1. After several discussions, we concluded

to prioritize such experiments based on the organism from

which the final sample was extracted. In this case,

although the mouse was grafted with human tissue, we pri-

oritized it to mouse priority 1.

Superseries redundancy

During prioritization, we retrieved several superseries ex-

periments from GEO. Manual inspection revealed that not

all the subseries IDs of these superseries experiments were

retrieved (see Data Retrieval section) (A SuperSeries is sim-

ply a wrapper to group of related Series (typically

described in a single publication). It facilitates access to the

entire dataset, and establishes a convenient reference

entry that can be quoted in the publication (definition

provided by the GEO team, as of 27 October 2014) and a

subseries is an experiment that is a part of superseries.).

With careful manual inspection, we included missing

subseries, further subjected to priorization. Conversely,

if the inclusion of superseries resulted in the duplication

of experiments, we removed the duplicates. Having assigned

priority categories to all retrieved AD studies, further meta-

data curation was focused on the priority 1 studies.

Metadata curation steps are described below.

Metadata curation

Precisely and comprehensively capturing the accessory in-

formation for a transcriptomic study as meta-annotations,

is an important precursor to identification of comparable

experiments that address the biological question at hand.

Unfortunately, the current, general, submission standards

do not cater to the needs of metadata annotations, specific

to a disease domain, during submission. In subsequent

Query downloaded experiment IDs 
from NeuroTransDB

Sample source

Alzheimer’s 
Disease 

relevancy?
Mark as unrelated

In vivo studies In vitro studies

Priority 1

Human pa�ents 

Animal models
Knock out/transfected/treated 
Animal models for AD patho-

physiology

Priority 2

Cell lines

Stem cells 

Pluripotent cells

Yes

No

Figure 3. Experiment prioritization for metadata curation in NeuroTransDB. All the downloaded Alzheimer’s Disease experiments were first checked

for their disease relevancy. Those experiments which were falsely retrieved, are marked as unrelated. The remaining experiments were classified

into one of two priority classes based on the experiment type: In vivo or In vitro studies. For priority 1, we considered direct/primary samples from

human or animal models such as brain tissue, blood, etc. Experiments that were conducted on derived sample sources such as cell lines, were put

into priority 2 class.
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sections, we discuss the metadata curation for NDD and

key issues faced during the process.

Metadata annotation fields

We assembled a list of metadata annotations determined to

be important for evaluating NDD studies in a process

involving consultation by NDD domain experts. All the

metadata fields were categorized as organism attributes

and sample annotations, based on their relevancy to organ-

ism or sample source. Table 1 provides detailed descrip-

tions of curated metadata fields including examples for

human, mouse and rat.

Several animal models and in vitro systems have been

defined that partially mimic the human diseased condi-

tions. Animal models provide experimentally tractable sys-

tems for interrogating NDD, however, not all animal

models faithfully mimic human pathophysiology. A dedi-

cated set of meta-annotation was defined for NDD animal

models to support assessments of inter-study comparability

and translatability to human disease, cf. Table 2 These

fields were defined with assistance from biologists and dis-

ease experts from industry.

Metadata curation workflow

To capture all the relevant meta-annotations, we designed

a semiautomated curation workflow, illustrated in

Figure 4. Firstly, we automatically retrieved all the avail-

able meta-annotations from GEO and ArrayExpress (cf.

Figure 2). Annotations were captured in an Excel template

as shown in Supplementary Figure S2 (A) and confirmed

by our trained curators to rectify any inaccuracies.

To capture incomplete and newly defined meta-annota-

tions, we followed a two-step approach. First, we check if

the required meta-annotation entries are directly available

in GEO, GEO2R or ArrayExpress (http://www.ncbi.nlm.

nih.gov/geo/geo2r/). Where the required information is

complete, we directly update NeuroTransDB, otherwise

we move to a second step to manually harvest information

for missing annotations. Missing information is retrieved

from the originating publications and associated

Supplementary files. When necessary, corresponding au-

thors were contacted to request missing entries. The list of

experiment IDs where we contacted the authors for further

information, along with reason of contact (priority 1 ex-

periments only) are provided in Supplementary Table S1.

In most cases, the corresponding author or one of the coau-

thors responded to our queries; whereas, in few other cases

the email addresses no longer remained valid. In the event

that the authors do not respond or we were unable to con-

tact them, information in primarily deposited database is

used as the final authorative source. Once all the relevant

data was captured, we updated the annotations in

NeuroTransDB. If needed, we updated our automated re-

trieval iteratively.

To demonstrate the metadata curation process, here we

relate our experience with study GSE36980 that includes a

total of 79 samples. Common MIAME annotations such as

gender, age and sample tissue were automatically captured

from ArrayExpress and GEO. The associated publication

contained further useful information on the enrolled

patients, namely: disease stage, post mortem interval be-

fore sample extraction and preservation, pathological

diagnosis and whether the patient suffered from

comorbidities such as diabetes. This information was

located in Supplementary File S2 of the associated publica-

tion (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4128

707/bin/supp_bht101_bht101supp_table2.xls). However,

lack of a common ID to enable mapping between the sam-

ple entries in GEO and the associated Supplementary File

S2 impeded curation. For example, sample GSM907797 in

GEO is annotated as being derived from a 95-year-old fe-

male patient. However, in their Supplementary file, there

are two entries that contain information for patients with

same age and gender. The ‘No.’ column, assumed to be pa-

tient ID, in the Supplementary file was not helpful for

mapping, since it was not mentioned in GEO. Thus, we

contacted the authors for the missing link. They provided

us an additional Excel sheet where the GEO sample ID

was mapped to the ‘No.’ column in the Supplementary file

(cf. Supplementary Figure S2 (B) and (C)). As a conse-

quence, we achieved a 28.5% increase in the missing meta-

data information (cf. Table 1 for total number of fields)

after contacting the authors.

Automated meta-annotation retrieval challenges

During automated retrieval of metadata fields, we

observed several alternate representations of information

for certain annotation types in the archives. For example,

age information can be provided in the Characteristics sec-

tion of GEO or ArrayExpress as ‘age: 57 years’ or ‘Stage

IV, male, 57 years’ and so on. We attempted to

prenormalize these diverse representations and automatic-

ally extract the correct information, however, due to the

heterogeneity in data representation, manual curation was

still required.

Although ArrayExpress and GEO provide program-

matic access to their meta-annotations, much essential in-

formation appears in fields meant for general categories.

For example, information about the sample source and

clinical disease presentation appear in the sample title

‘PBMC mRNA from Alzheimer’s disease patient 2’.

Adhering to the standard submission protocol for data
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Table 1. Detailed description of Neurodegenerative disease metadata fields outlined for human, mouse and rat

Annotation type Metadata fields Description of the annotation Relevancy for NDD Examples References

Organism

attributes

Age Age of the organism Main factor for predisposition to

disease

84 years, 9 months (32–35)

Gender Gender of the organism Possible disproportionate effect

arising from difference in anat-

omy and hormonal

composition

Male, female (36, 37)

Phenotype Clinical phenotypes of the or-

ganism from which the sam-

ple was extracted

Supports comparative analysis

for underlying pathomechan-

isms based on the observable/

measurable characteristics

Healthy control,

early incipient

(38)

Behavioural

Effect

Description of behavioural

changes occurring in organ-

ism due to treatment or other

effects

Impact of developed drug or

other environmental factors to

treat or reduce the disease/dis-

ease symptoms

Reduced agitation/

aggression

(39, 40)

Disease type The disease occurrence is due

to hereditary or effect of en-

vironmental factors

To distinguish the genetic vari-

ability and complexity be-

tween the two types during

analysis

Sporadic, familial (41)

Stage Disease stage of the organism

from which the sample was

extracted

Capability to distinguish severity

of the affected disease

Incipient, severe,

BRAAK II

(42)

Cause of

death

Reason for the organism’s

death

To determine if Alzheimer’s dis-

ease or its associated comor-

bidities are major contributors

to death rate

Respiratory disorder (43)

Comorbidity Existence of another disease

other than Alzheimer’s

To determine the impact of an-

other disease on Alzheimer’s

disease aetiology and

progression

Type 2 diabetes (44, 45)

Sample

annotations

Post mortem

duration

(PMD)

Duration from death till the

sample extraction from the

dead organism

To assess quality and reliability

of the sample obtained by

measuring RNA integrity that

is influenced by natural deg-

radation of the sample after

death

2.5 hours (46, 47)

pH pH value of the extracted post-

mortem sample

Indicator of agonal status and

RNA integrity

6 (48–50)

Functional

effect

Description of functional ef-

fects observed

Observed changes such as gene

expression, post-translation,

or pathway due to external

effects

Decreased expres-

sion of BDNF

gene, reduced Ab

toxicity

(51, 52)

Brain region Brain region of the extracted

sample

Provides information of patho-

genesis and disease progres-

sion, as AD does not affect all

the brain regions

simultaneously

Hippocampus (53, 54)

Cell and cell

parts

Type of cells or cell parts ex-

tracted from the sample for

analysis (if any)

To determine cell type specific

expression influencing patho-

genesis and regional

vulnerability

Synaptoneurosome,

neurons and

astrocyte

(55, 56)

Body Fluid Type of body fluid used for

analysis

Could serve as biomarkers for

early diagnosis and therapy

monitoring

CSF, blood (57–59)

The table provides a list of metadata fields, confirmed by disease experts, critical for NDD meta-analysis. The selected fields are classified as organism attributes

and sample annotations based on their relevancy to organism or sample source.
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entry, this information should appear in the

‘Characteristics column’ of ArrayExpress and GEO. Again

inconsistent adherence to annotation standards means that

manual inspection is needed to capture correct and com-

plete information from these archives.

Accessing linked publications

For annotation information that is not directly available

from the source repositories, we refer to the associated full

text publications. However, not all deposited studies link

to an associated publication in PubMed, contributing to a

Table 2. Detailed description of additional metadata fields, defined specifically for mouse and rat models

Annotation type Metadata fields Description of the

annotation

Relevancy for NDD Examples References

Organism

attributes

Physical injury Method used to cause brain

injury in animal models

Consideration for analysing

plaque formation in animal

models to mimic disease

symptoms in human

Traumatic brain injury,

ischemia reperfusion

injury

(60, 61)

Type of

treatment

Description of chemical,

drug, genetic or diet

treatment

Consideration for determining

the effect of treatment on

animal models either to

mimic or treat the disease/

symptoms

Long-term pioglitazone,

BDNF treated

(62, 63)

Dosage Detailed description of the

dosage associated with

“type of treatment”

description

Consideration of the right

quantity of the substance for

determining the effect on

animal models either to

mimic or treat the disease/

symptoms

Total polyphenol 6mg/

kg/day, received

drinking water with-

out ACE inhibitor

(64, 65)

Mouse/rat

strain name

Mouse model official or

author given name

To determine the effect of dif-

ferent manipulated animal

models in recapitulating key

AD features capable of

extrapolating to human

studies

C57BL/6-129 hybrid,

Sprague–Dawley rat

(66, 67)

Mouse/rat

weight

Weight of the animal model

during analysis

Establishing a causative link to

metabolic disruption

100–150 g (68)

These additional metadata fields are defined by disease experts as critical for translating mouse/rat model outcomes to human, in the field of neurodegenerative

diseases.

Go to GEO, AE or 
GEO2R page

Captured 
all 

relevant 
data?

Read associated 
publica�on

Update the curators 
excel sheet

Yes

Automa�cally extract the 
relevant  meta-data fields  and 

pre-fill the cura�on excel sheets

No

Data also 
available in 

prefilled 
columns?

No

Yes

Improve pre-filler method
if possible

NeuroTransDB

Figure 4. Semi-automated workflow for metadata curation. Automatically extracted metadata fields are rechecked by the curators. To capture the

missing fields, curators browse through GEO, ArrayExpress (AE) or GEO2R experiment’s description pages. For cases where the information is still

incomplete, associated fulltext publications and their associated supplementary material are read. All the extracted metadata annotations are stored

in NeuroTransDB. Intermediately, if feasible, automated extraction leverages on curator’s experience for improvement. This process is carried out

half yearly.
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significant loss of information while curating. We at-

tempted to overcome this by searching for an associated

article using the study title with search engines such as

SCAIView and/or Google (http://www.scaiview.com and

https://www.google.com). Supplementary Figure S3 shows

the percentage of articles that were retrieved with different

search strategies. We are aware that not all the experi-

ments in these databases are associated with published art-

icle (14%), but for 9% of the experiments (prioritized as 1)

we were able to link them to publications through a title

search. We strongly encourage study depositors to provide

PubMed annotation whenever available to allow enhanced

meta-annotation. Additionally, database owners should

find a more robust way to update their resources.

Duplication and inconsistent sample counts

We observed differences in sample counts for some experi-

ments between ArrayExpress and GEO, when downloaded

automatically. For example, GSE49160 contained 36 sam-

ples in GEO and 72 samples in ArrayExpress. Following

closer inspection at several similar experiments, we found

that ArrayExpress duplicates sample IDs to provide separ-

ate links to different raw file formats or large raw files split

into smaller ones (57%), processed raw files (17%), separ-

ate entry for each channel in double channel arrays (14%)

and replicates (12%) (cf. Supplementary Figure S4); more-

over, the duplicated samples mostly represented the same

annotation information. Since, we used sample IDs as a

unique entry in our database, the duplicated IDs were

replaced with the last entry from the archive, in

NeuroTransDB, as read by our algorithm; thus a risk of

loosing the raw file or other non-duplicated annotation

information.

Apart from duplication, occasionally some samples

were missing in one archive relative to the other. For ex-

ample, GSE47038 had some additional samples in

ArrayExpress, which were not present in GEO. When we

contacted the ArrayExpress team, they suggested that the

experiment entry could be out of sync, since each entry

from GEO is uploaded into ArrayExpress only once and is

not updated if GEO deletes some samples later. However,

they have now corrected the entry. This demonstrates a

need for periodic review of study records in each database.

Missing RAW filenames

Public transcriptomic archives provide a gateway for the

search and retrieval of studies for subsequent analysis out-

side of the platform. Therefore, one has to obtain the link

between a sample’s raw file name and corresponding

phenotype. However, this is not the case when applying

automated downloads. The majority of the raw file names

present in public archives contain syntactical errors such as

surrounded by brackets or separated by comma; moreover,

such entries could be normalized through a simple script.

In cases where no information about sample’s raw file

name is provided, manual intervention is required to link

sample’s raw file to its respective sample. This clearly indi-

cates the need for standardization of the database entries

for automation and to prevent loss of information.

Incorrect and incomplete metadata information

We also observed inconsistent meta-annotations between a

study deposited in an archive and the information in the linked

publication. In GEO for experiment GSE2880, the sample de-

scription page states that male Wistar rats have been used for

the study. However, when we looked into the associated full

text article, in the Methods section, the authors clearly men-

tion using female Wistar rats (69). We are still waiting for the

author’s reply to correct the gender information for this entry.

Another example is GSE18838, we observe that the ratio of

male to female patients provided in GEO (male/female: 19/9)

is different from that reported in the Supplementary file (male/

female: 18/10); additionally, Supplementary Table S2 provides

detailed challenges faced during mapping of age and gender

information to samples. When searched in ArrayExpress, this

experiment has been removed from the database, for un-

known reasons. In yet another example, GSE36980, the age

information for sample GSM907823 and GSM907823 vary

between GEO (84 and 81 years, respectively) and

ArrayExpress (74 and 86 years, respectively). From these

anecdotal experiences, it is evident that one has to spend

immense effort to obtain correct metadata information.

Database owners and the submitters have to take utmost care

to provide the correct data for reproducibility.

Information extraction from chained references

One further time consuming task included looking follow-

ing chains of references to previous publications for human

and animal model information such as mouse name, cross

breeding steps applied and human subject information. In

some cases, we had to tediously trace back 5–6 cross-

referred publications to obtain the original source of

information.

Normalization of metadata annotations

Meta-annotation involved the curation team extracting the

original text as provided in GEO/ArrayExpress or in the

published literature. We observed many different ways to

express information for each annotation field, with obvi-

ously ramifications for accurate and efficient querying of

NeuroTransDB. In an effort to standardize entries for dif-

ferent annotation fields specific controlled vocabularies

were adopted during curation.
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Age and gender normalization

We observed several different ways of representing age

such as ‘24 yrs’, ‘25 yo’ and ‘23 6 2 years old’. All age val-

ues were standardised by converting to simple decimal

numbers, e.g. 24.00 for 24 years. Similarly for gender, we

used a consistent representation of ‘M’ and ‘F’. As an ex-

ample, gender information for GSE33528 samples were re-

ported in the associated article (40) as ‘70% of the

participants were women’. Here, we annotated the infor-

mation as ‘70% female’. Although the annotations such as

ranges (e.g. ‘23 6 2 years old’), ratios (male/female: 19/9),

or percentages (70% female) (40) are study-level annota-

tions, they were provided as sample level annotations; as

they do not contribute to reasonable cohort selection we

did not normalize them.

Phenotype, brain region and stage normalization

Disease phenotype and stage information contributes to

specific details of clinical manifestations whereas the tissue

source (hereafter brain region) caters to the sample origin.

For all the curated phenotype mentions (human), we gener-

ated a binning scheme: diseased, control or treated. These

binned terms were further mapped to controlled vocabula-

ries provided by Alzheimer’s Disease Ontology (ADO)

(32). Other annotated terms that are not specific to AD

were mapped to the Human Disease Ontology (33),

Medical Subject Headings (MESH), Medicinal Dictionary

for Regulatory Activities (MEDDRA) and Systematized

Nomenclature of Medicine - Clinical Terms (SNOMED-

CT) (34) ontologies (http://bioportal.bioontology.org/

ontologies/MESH and http://bioportal.bioontology.org/

ontologies/MEDDRA). This caters the need to query sam-

ples at a more abstract level, for downstream analysis. In

total, for AD, we obtained 481 phenotype mentions as-

signed to at least one entry in the bins generated. Similarly,

all the stage mentions (117 terms) were mapped to ADO,

and ONTOAD (35). Mentions of brain region (41 unique

terms) were tagged to Brain Region and Cell Type

Terminology (BRCT) (http://bioportal.bioontology.org/

ontologies/BRCT?p¼summary). Please refer to

Supplementary File S2 for detailed mapping of human an-

notation terms to controlled vocabularies.

Normalization of animal models

Similar to human phenotype normalization, we have nor-

malized mouse and rat phenotype terms to EFO and

SNOMED-CT. Different treatment procedures have been

used to generate animal models that capture specific as-

pects of human diseases. At times, the incomplete nature of

the models could lead to inadequate or misinterpretation

of results. Thus, it is necessary to know the experimental

procedures used on these animal models. To enhance this

interpretation, we have binned all the captured animal

model information, during the metadata curation, to a

higher level of abstraction, further mapped to EFO, the

National Cancer Institute Thesaurus (36), and the

BioAssay Ontology (37). In addition, we mapped mouse

and rat names to EFO, Jackson Laboratory database iden-

tifiers, and Sage Bionetworks Synapse Ontology (http://jax-

mice.jax.org/query/f?p¼205:1:0 and http://bioportal.

bioontology.org/ontologies/SYN). This provides more

flexibility during querying of samples from specifically

treated animal models. Please refer to Supplementary Files

S3 and S4 for mapping of mouse and rat-related terms to

controlled vocabularies.

For some of the metadata terms, there were no con-

trolled vocabularies available, e.g. ‘Vehicle #1:non-

transgenic’ or ‘BDNF-treated’, describes that the mouse is

non-transgenic and a vehicle in the former case, while in

the second case it is specific gene treatment. Such terms

were mapped to either of the phenotype’s controlled vo-

cabulary. In case of human stage mentions, specific stages

such as Braak II or cognitive scores, such as CERAD,

MMSE, etc. could not be mapped to any staging controlled

vocabulary as most of the ontologies used higher level of

staging, namely Braak. Moreover, in most of the ontolo-

gies cognitive tests are not classified under staging, but ra-

ther as cognitive tests. This has prompted us to generate a

more detailed hierarchical representation of the above-

mentioned binning schemes, which will be published

separately as ontology, specifically for neurodegenerative

gene expression studies. However, for current version, we

stick to the already available controlled vocabularies, in

addition to our internal classification.

Curation results and discussion

Compliance to standards

Authors tend to provide minimum information as required

by the guidelines in archives; publishing major part of the

experimental metadata annotations in associated publica-

tion. To test, whether the authors adhere to the minimum

compliant standards, we performed an assessment of the

complaint scores provided by ArrayExpress, the highest

score being 5, for Alzheimer’s studies. Figure 5 shows the

trend in distribution of retrieved AD experiments (see Data

Retrieval section) in ArrayExpress, based on the published

MIAME and MINSEQE scores (for human, mouse and rat

experiments). We observe the trend of submission is con-

centrated around the score of 4, showing that the submit-

ted data are not fully MIAME or MINSEQE compliant;

leading to variable levels of information stored in these

archives.
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To conclude that not all the submitters’ abide 100% by

the compliant standards, we investigated if this trend is

same for all other disease domains; we chose one among the

most studied cancer disease, Lung Cancer, and generated

similar results to AD. Supplementary Figure S5 shows the

distribution of compliant standards across Lung Cancer

studies. From this observation, we show that the loss of in-

formation follow the same pattern across all submissions

(varying mostly around score of 4). As a result, automated

retrieval and meta-analysis is impeded, due to lack of infor-

mation availability. Details of the experiment IDs investi-

gated for AD and Lung Cancer, along with compliant scores

is provided in Supplementary File S1.

Retrieval and prioritization of indication specific

studies from GEO and ArrayExpress

Retrieval of experiment IDs using a keyword search (cf.

Data Retrieval section) also acquires false positive experi-

ments. Any non-disease specific experiment performed by

an author named ‘Alzheimer’ is also retrieved when search-

ing for AD specific experiments. For example, E-MTAB-

2584 aims to investigate neuronal gp130 regulation in

mechanonociception but was retrieved for AD since one of

its author’s name is Alzheimer. Moreover, we also ob-

tained experiments for related diseases such as Epilepsy, or

Breast Cancer, when querying for AD. For example,

GSE6771, and GSE6773 are Epilepsy studies; GSE33500

belongs to Nasu Hakola Disease; all these studies were

retrieved when queried for Alzheimer. Incorrect organism

specificity was also noticed during prioritization. For ex-

ample, GSE5281 was retrieved as rat study although it

belonged to human. Similarly, GSE2866 was retrieved as

mouse study but it belonged to zebra fish. Although incor-

rectly identified studies are not too high, this still indicates

the need to include organism and disease specificity filter

during prioritization. Additionally, we manually identified

a few experiments that were not retrieved using these key-

words, which were also included in the database.

Further on, just by applying these two filter criteria does

not assure that all retained experiments were specific to

AD. For example, there could be some experiments that

aim at a certain pathway that are also relevant in the area

of neurodegeneration, but the experiment submitted to the

repository does not deal with AD pathology. As a conse-

quence, additional disease relevancy conditions were

included before prioritization (cf. Experiment Prioritization

section). An overview of all the retrieved AD experiments,

categorized to one of the priority classes is shown in

Figure 6. In addition, a list of priority 1 experiments (for

human, mouse and rat) is provided in Supplementary file

S5. This figure indicates that nearly 20% of the retrieved

studies are in any case not related to AD. On the other

hand, to identify the remaining 80% of the experiments

(prioritized as 1 and 2) we need massive manual filtering by

trained personnel. Only if the archives take an initiative to

apply such a structured classification for all uploaded ex-

periments, individual time-cost can be reduced to a greater

extent.

Some experiments contain cell lines or other disease sam-

ples in addition to Alzheimer’s patient samples. Experiment

GSE26927 additionally contain samples from patients suffer-

ing from Parkinson’s disease, multiple sclerosis, etc. To be

able to query only AD related samples for integrative
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Figure 5. Distribution of MIAME and MINSEQE scores for all automatically retrieved Alzheimer’s Disease gene expression experiments in

ArrayExpress Database (for human, mouse and rat), as of December 2014. Percentage is calculated as (total number of AD experiments with a cer-

tain score)/(total number of AD experiments). ‘NA’ are the experiments which were not present in ArrayExpress. These scores reflect adherence to

compliance standards by the data submitters, needed for re-investigation and reproducibility. It is observed that large percentage of experiments fall

under score 4, shows that the required minimum information is still incomplete. The list of experiment IDs along with their associated scores, used

for generating this statistics are provided in Supplementary File S1.
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analysis, we additionally included priority information at

sample level. For example, we tagged Alzheimer’s disease

samples to AD1 whereas multiple sclerosis samples to MS1.

Please refer to the README.txt file for various priority no-

tations used.

Metadata curation

The underlying metadata information for any gene expres-

sion study has been underrepresented and thus is largely

under-utilized. To perform large-scale analysis, associated

annotations are of utmost importance. With the availabil-

ity of detailed annotation information, one is capable of se-

lecting studies that focus on a particular attribute, such as

stage or gender. Each priority class has a specific set of

fields for curation; some fields are organism dependent.

After prioritization of experiments (cf. Experiment

Prioritization section), we expect to have �100% coverage

of essential clinical and relational parameters during man-

ual metadata curation for priority 1 studies. For example,

age, gender, phenotype and stage are basic experimental

variables for human studies. Additionally, in case of ani-

mal models, mouse and rat strain names are important for

translational pipelines, as some strains are highly specific

models for human NDD while others not (38). Irrespective

of the organisms, samples mapped to their corresponding

raw file identifiers are vital for running large-scale analysis.

However, as shown in Figure 7, this does not hold true for

human studies. From Figure 7, it is evident that even after

performing thorough curation, we cannot achieve 100% in

capturing information for these five basic metadata fields,

a fact that is largely due to patient data privacy regula-

tions. Similar is the case with mouse and rat information,

see Supplementary Figure S6. Moreover, information

related to animal models are much more scare, obstructing

automated retrieval. Hence, manual curation accuracy is

highly dependent on information availability, as curators

cannot harvest information for annotation fields that are

not available. On the contrary, the level of detail also de-

pends on the type or aim of the experiment carried out.

The authors and database owners obviously need to focus

on the qualitative aspect of the experimental information,

especially the phenotype of the sample, to allow normal-

ized access for beginners, with standard prose, in order to

support a robust computational analysis across all studies

in ArrayExpress and GEO.

We selected five of the most common metadata fields

(common to any disease domain such as age, gender, pheno-

type, stage and raw filename) and carried out a trend analysis

of information availability versus time. Figure 8 (A) shows

the trend over time for the metadata information provided in

the archives versus the number of annotation fields that can

be harvested after manual curation for human AD priority 1

experiments. Although a bit obscure, we can observe that the

level of information submitted to the databases remains al-

most stable in the last decade (between 2 and 4 metadata

fields). Moreover, with manual curation support, we were

able to capture the majority of the remaining metadata from

associated publications, Figure 8 (B) shows the shift in the

mean value of the metadata availability. However, the trend

is recently declining since the authors submit relatively lesser

level of detailed information than in former times in the asso-

ciated publications.

The incompleteness of metadata annotations contrib-

uted to a substantial increase in curation workload through

an increased need for publication reading. This leads to a

steep increase of the cost of the trained personal for cur-

ation. Overall, for the prioritization and metadata curation

of AD gene expression studies, we spent about 1 year of

four biocurators effort (working 10 h/week). This does not
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include the expert’s effort, who constantly provided guid-

ance and monitored the curation work during the same

duration.

Accessing NeuroTransDB

Metadata annotations for priority 1 AD gene expression

studies for human, mouse and rat organisms, from GEO

and ArrayExpress, are stored as MySQL tables separately;

downloadable as dump files at Fraunhofer SCAI File

Transfer Protocol (FTP) website: http://www.scai.

fraunhofer.de/NeuroTransDB.html. Please refer to the

README.txt for details of how to install and use MySQL

dumps. Additionally, these tables are provided as Excel

files to allow users to use the curated information in their

preferred tools/interface. Currently, the data is in its non-
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normalized form. Normalized data, tagged with standard

ontologies (cf. Normalization of Metadata Annotations

section), will be made available through the

AETIONOMY Knowledge Base. Currently, we have pro-

vided human priority 1 studies normalized using our in-

ternal binning scheme. Half yearly updates are planned.

Our ultimate goal is to make NeuroTransDB a comprehen-

sive resource for researchers working on large-scale meta-

analysis in the field of neurodegenerative diseases.

Conclusion and future directions

NeuroTransDB fills the gap for large-scale meta-analysis

on publicly available gene-expression studies in the field of

neurodegeneration. It joins bits of missing metadata infor-

mation, scattered in public archives and associated publi-

cations, into a consistent, easily accessible and regularly

updated data resource. Additionally, in this paper, we have

systematically specified key issues encountered during se-

lection of relevant gene expression studies from public

archives, along with their associated metadata informa-

tion. We observed a huge lack of structured metadata in

these archives, hampering automated large-scale reusabil-

ity on a usable level of abstraction. We present here recom-

mendations, as guidelines, for prioritizing relevant studies

and a step-by-step protocol for metadata curation. The

challenges faced in the course of the development of these

guidelines have been pointed out, and the huge manual ef-

fort has been made explicit.

The work presented here has listed metadata fields, which

have been generated based on disease expert consultation.

They are highly important for choosing the right subsets of

expression studies to answer complex biological questions

underlying a diseased pathology. Some additional fields are

included for animal models studies to allow maximal use for

translational research. For all the manually curated fields, we

describe normalization strategies in an attempt to provide

standards for more robust automated querying and interoper-

ability. Our results show the amount of information that is

scattered in various resources, requiring extensive manual ef-

fort to capture the same. Additionally, we report that even

with comprehensive manual harvesting, we were not able to

capture 100% of information to fill for the basic annotation

fields. We demonstrate convincingly that data availability de-

pends largely on the meticulousness of the submitters.

Additionally, it also depends on the aim of the experiment

carried out. On an average, considering all the retrieved AD

experiments, the submitters provide about 60% of the most

basic metadata information. The outlined guidelines could be

of significant value to other researchers working on gene-ex-

pression studies. The described key issues we faced during

such a curation work could influence the data submission

and data storage architecture of public repositories.

Subsequently, we plan to extend the curation pipeline

to other NDD diseases namely, Huntington’s disease. A

more gene-expression specific ontology will be built based

on the curated annotations for selecting a subset of studies

for meta-analyses. Although, microarray studies are the

major contributors to the public repositories, RNA-Seq

data are rapidly growing. We comprehend that it will be

necessary for us to identify all the relevant RNA-Seq stud-

ies, since their large storage space has contributed to dis-

perse nature of the available raw data.

Supplementary Data

Supplementary data are available at Database Online.
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P., Vizcáıno, J. A., Wubbe, J. P. M., and Zanetti, G. (2016). Making sense of big

data in health research: Towards an EU action plan. Genome Medicine, 8(1).

[Bader et al., 2006] Bader, G. D., Cary, M. P., and Sander, C. (2006). Pathguide: a

pathway resource list. Nucleic acids research, 34(Database issue):504–6.

[Bagewadi et al., 2015] Bagewadi, S., Adhikari, S., Dhrangadhariya, A., Irin, A. K.,

Ebeling, C., Namasivayam, A. A., Page, M., Hofmann-Apitius, M., and Senger, P.

(2015). NeuroTransDB : highly curated and structured transcriptomic metadata for

neurodegenerative diseases. Database, 2015:bav099.

[Baker, 2016] Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature,

533(7604):452–454.



168 BIBLIOGRAPHY

[Bauer et al., 2016] Bauer, C. R., Knecht, C., Fretter, C., Baum, B., Jendrossek, S.,

Rühlemann, M., Heinsen, F.-A., Umbach, N., Grimbacher, B., Franke, A., Lieb, W.,
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Rodriguez, N., Le Novère, N., and Zell, A. (2012). Qualitative translation of relations

from BioPAX to SBML qual. Bioinformatics, 28(20):2648–2653.



BIBLIOGRAPHY 169

[Cai et al., 2016] Cai, Y., Arikkath, J., Yang, L., Guo, M. L., Periyasamy, P., and

Buch, S. (2016). Interplay of endoplasmic reticulum stress and autophagy in neu-

rodegenerative disorders.

[Calderone et al., 2013] Calderone, A., Castagnoli, L., and Cesareni, G. (2013). Men-

tha: A resource for browsing integrated protein-interaction networks.

[Calderone et al., 2016] Calderone, A., Formenti, M., Aprea, F., Papa, M., Alberghina,

L., Colangelo, A. M., and Bertolazzi, P. (2016). Comparing Alzheimers and Parkin-

sons diseases networks using graph communities structure. BMC Systems Biology,

10(1):25.

[Canuel et al., 2015] Canuel, V., Rance, B., Avillach, P., Degoulet, P., and Burgun,

A. (2015). Translational research platforms integrating clinical and omics data: A

review of publicly available solutions. Briefings in Bioinformatics, 16(2):280–290.

[Caron et al., 2010] Caron, E., Ghosh, S., Matsuoka, Y., Ashton-Beaucage, D., Ther-

rien, M., Lemieux, S., Perreault, C., Roux, P. P., and Kitano, H. (2010). A compre-

hensive map of the mTOR signaling network.

[Castaneda et al., 2015] Castaneda, C., Nalley, K., Mannion, C., Bhattacharyya, P.,

Blake, P., Pecora, A., Goy, A., and Suh, K. S. (2015). Clinical decision support

systems for improving diagnostic accuracy and achieving precision medicine. Journal

of Clinical Bioinformatics, 5(1):4.

[Cerami et al., 2012] Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O.,

Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E., Antipin, Y.,

Reva, B., Goldberg, A. P., Sander, C., and Schultz, N. (2012). The cBio Cancer

Genomics Portal: An open platform for exploring multidimensional cancer genomics

data. Cancer Discovery, 2(5):401–404.

[Comber et al., 2006] Comber, A. J., Fisher, P. F., Harvey, F., Gahegan, M., and

Wadsworth, R. (2006). Using metadata to link uncertainty and data quality assess-

ments. In Progress in Spatial Data Handling - 12th International Symposium on

Spatial Data Handling, SDH 2006, pages 279–292.



170 BIBLIOGRAPHY

[Conesa and Mortazavi, 2014] Conesa, A. and Mortazavi, A. (2014). The common

ground of genomics and systems biology.
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