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Abstract

Modern network intrusion detection systems rely on machine learning tech-

niques to detect tra�c anomalies and thus intruders. However, the ability to

learn the network behaviour in real-time comes at a cost: malicious software

can interfere with the learning process, and teach the intrusion detection sys-

tem to accept dangerous tra�c. This paper presents an intrusion detection

system (IDS) that is able to detect common network attacks including but not

limited to, denial-of-service, bot nets, intrusions, and network scans. With the

help of the proposed example IDS, we show to what extent the training attack

(and more sophisticated variants of it) has an impact on machine-learning based

detection schemes, and how it can be detected.

Keywords: training attack, intrusion detection system, anomaly detection,

network security, machine learning

1. Introduction

Intrusion detection is a quite old research topic (the �rst papers being pub-

lished in the 1980's [1] [2]), yet it still constitutes an actively researched domain

of computer security, especially in the �eld of cyber-physical systems such as

Supervisory Control and Data Acquisition (SCADA) systems or Advanced Me-

tering Infrastructures (AMI) [3]. Over the past few years, the increasing interest

in machine learning techniques led to the development of more sophisticated,
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so-called anomaly detection systems, which learn the `typical' behaviour of a

monitored network or system. That way, they are able to spot deviations from

the normal behaviour and thus, to a certain extent, detect previously unseen

attacks.

Given the fact that a lot of di�erent IDS strategies have been proposed over

the years [4] [5], it is important to choose the one that really suits the needs. For

instance, anomaly detection systems typically require the monitored network to

be su�ciently static and predictable. While this is not necessarily the case

for arbitrary computer networks. cyber-physical systems usually do meet this

requirement, so a lot of research [3] has been conducted over the past few years

in developing and improving on intrusion detection techniques for cyber-physical

systems [6].

In addition, an automated learning system commonly requires a supervised

initial training phase, during which it is faced with (manually labelled) benign

and malicious data so that it learns the di�erence between these two data sets.

Naturally, for optimal results, the learning process should be carried out directly

in the target network, and not in a lab. Nevertheless, many researchers use

recorded data sets (such as the KDD'99 [7] data set) to evaluate the performance

of their anomaly detection algorithm. Unfortunately, the latter data sets are too

generic to be actually used to train and deploy an intrusion detection system in

a real network. This common practise can be explained by the fact that the used

protocols are often proprietary or unknown, and that the network infrastructure

is too complex, undocumented, or not available as a testing environment.

Moreover, an ideal intrusion detection system would spot undesirable content

without requiring a training phase, since it can then be directly deployed in

any production environment that is not known beforehand. In the machine-

learning domain, some schemes already exist which autonomously tell `normal'

data apart from outliers, and which are thus suitable for intrusion detection [8].

For our purposes, clustering-based schemes seem to be the most promising ones,

since they are unsupervised, relatively light-weight from a computation point of

view (which is important if one wishes to build a real-time intrusion detection
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system), and allow multiple behaviours to be modelled at the same time (in

contrast to Bayesian statistics, which merely splits the data into `normal' and

`abnormal'). Moreover, they yield comprehensible results, in contrast to e.g.

neural networks, where it is not so clear why they gave a certain output.

For machine-learning based intrusion detection techniques, a lot of research

has been made over the years, that increased their performance, their relia-

bility, and their scope. However, attacks are also becoming more and more

sophisticated. The most developed of them are referred to as advanced persis-

tent threats (APT): they cover all kind of hacking or spying activities that are

particularly stealthy and persistent [9]. Given the fact that most networks and

computer systems rely on anti-virus agents and intrusion detection systems, a

lot of money and e�ort is put now into evading these security mechanisms [9].

Automated learning systems (and especially those that continuously adapt to

live data) are particularly a�ected by this fact, because their learning process

can often be manipulated in such a way to make them progressively used to

malicious data. This process is referred to as the training attack.

It is virtually impossible to design an intrusion detection system that de-

fends against all modes of operation of APTs (and this is especially true when

they are targeted, and thus human-operated). Therefore, in order to better un-

derstand how stealthy and long-term attacks act on a computer network, this

paper focuses on a concrete example of an evasion technique that may be used

by an advanced persistent threat, namely the training attack. To the best of

our knowledge, very little research has been done to date, that analyses the

robustness of intrusion detection systems against such evasion techniques.

The rest of this paper is organised as follows. Section 2 describes related

work. In the following Sections 3 and 4 the threat model and the detection

strategies are discussed, respectively. In particular, our proposed IDS is outlined

in Section 4.3. The importance of the right parameter values is addressed in

Section 5, and their choice is evaluated in Section 6. The paper concludes with

Section 7.
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2. Related work

Several other authors have adopted the approach of applying clustering tech-

niques to a data stream collected from network (meta) data. A related area of

research is the realm of stream clustering algorithms, which are able to cluster

stream data (such as network meta data) on-the-�y. A comprehensive state-of-

the-art has been recently composed by Ghesmoune et al. [10], and is out of the

scope for this paper. It is, however, not obvious how the resulting clusters can

be interpreted in terms of intrusions or anomalies, and the related research area

is also comparatively young.

For example, Tomlin et al. [11] propose an IDS based on k-means and fuzzy

cognitive maps (FCM) that is applied to security events of a power system.

They manage to improve on the detection accuracy of existing clustering-based

IDS, but they still require a training data set for initial learning.

Hendry et al. [12] do not design an intrusion detection system per se, but

they introduce an algorithm that uses data clustering to create attack signatures

from recorded data. Unfortunately the algorithm needs to pre-process the data

so that it cannot be used for on-line detection.

Similarly, Leung et al. [13] develop a density-based clustering algorithm

(called fpMAFIA), but it also requires a supervised learning session.

In contrast, Zhong et al. [14] use an on-line variant of the k-means algorithm

to group meta data of WLAN tra�c into k clusters, for a �xed k. Any data

point that is too far away from the center of the largest cluster, is considered an

anomaly. While this approach is completely unsupervised, it has comparatively

low detection rates of 65− 82%.

A similar approach is adopted by Alseiari et al. [15], who use a simpli�ed k-

means variant (�mini-batch k-means�) to split smart meter readings into clusters;

if a cluster is smaller than a given �xed value, it is considered anomalous. Most

interestingly, they also account for the clusters' evolution by applying a sliding

time window to the data. The authors claim to get slightly better detection

rates, but also admit that the reported results are sometimes unreliable (100%
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false positive rate) and that more research is needed to tackle the issue.

An emerging research topic deals with the problem of training attacks that

try to fool the intrusion detection systems by progressively manipulating the

data they monitor. Wagner and Soto [16] were the �rst to raise awareness

about the issue; Barreno et al. [17] explored the topic in more detail for intrusion

detection systems.

Some authors focused on the related mimicry attack, which consists in evad-

ing the IDS, but not manipulating it permanently. Among them, Stevanovic et

al. [18] disseminate on real-world occurrences of mimicry attacks for the case of

anti-DDoS systems. The solution they propose consists in applying two inde-

pendent anomaly detection systems: one classical for DDoS detection, and one

which particularly focuses on mimicry attacks.

Yen et al. [19] describe an IDS which detects certain `stealthy' malware by

monitoring the similarity in behaviour of the hosts in a network. The authors

claim that using these techniques, they are able to tell genuine tra�c apart

from mimicked one. The IDS has certain limitations though; for one, it can

only detect spreading malware, but not targeted attacks. Secondly, it partly

requires plain-text communication (for payload inspection).

3. Attack scenarios

There is no such thing as perfect security; intrusion detection systems cannot

detect all kinds of attacks, and will always make mistakes. Therefore it is

important to state precisely which attacks shall be detected by the IDS, and

which ones are not actively considered. The purpose of this section is to describe

the threat model that is targeted by our intrusion detection system.

First of all, our IDS is meant to be deployed in parallel to signature-based

detection engines (such as o�-the-shelf anti-virus solutions), and will focus on

network attacks, only. Due to the expected mass of data, and due to the increas-

ing use of encryption in network streams, our IDS does not intend to inspect

the payload. Instead, it will examine the meta data obtained by modelling the
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`behaviour' of the network �ows.

3.1. Network attacks and induced anomalies

Many network attacks induce a change in the characteristics of a network

stream, that otherwise would not (or only under rare circumstances) occur.

The most prominent example is the distributed denial-of-service (DDoS) attack,

which consists in increasing the number of connections to a host, the amount

of data sent to a host, the frequency of connecting to a host, or possibly all of

them. Note how all of these can be measured independently of the used protocol

or of encryption.

Brute forcing is somewhat related, although its goal consists in gaining ele-

vated access rights, rather than bringing down a host. It operates similarly to

DDoS attacks, but in a less aggressive way (that is to say, with lower data rates

and less connections).

Another good example of abnormal behaviour is network scans. Whereas

they do not constitute an attack on their own, they still allow an attacker to

make out possible targets and collect information about open ports. In order to

launch such a scan, one unavoidably has to make a lot of out-going connections,

which are not usually seen on the network.

A fourth category covers all kinds of intrusion and routing attacks. They

primarily consist in deviating network streams to third parties (`men in the

middle'), who sni� or manipulate the tra�c. An IDS could detect such in-

truders by keeping track of the connectivity graph, listing all pairs of machines

that are known to communicate with each other. In cyber-physical systems,

many processes are regular and repetitive, so watching the timely behaviour of

connections might also reveal intruders.

Finally, a less frequent, yet important threat is computer worms. They

spread over the network by exploiting vulnerabilities of the host machines. De-

tecting them is not trivial at all, since the attack pattern depends a lot on the

actual exploit; in fact, a single network packet might even su�ce, but it will go

completely unnoticed in the sheer mass of tra�c in busy networks. However,
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Figure 1: Illustration of a typical denial-of-service attack. Note the abrupt `jumps' for the

measured data rate. This example is based on the data sets recorded by Garcia et al. [20].

sometimes worms use outdated or unused protocols, the mere presence of which

is already suspicious � in that case, a somewhat reliable detection is possible.

All of these threats have good chances to be discovered if one monitors

the network �ows between every two hosts, and watches out for deviations or

sudden changes in their behaviour. That behaviour is characterised exactly by

the meta data mentioned above. Following the research of Berthier et al. [21],

good candidates for being monitored include:

� the number of bytes transmitted over a certain time period (e.g. 10 sec-

onds);

� the average packet size;

� the number of concurrent connections;

� the pause since the last packet.

The �rst two are somewhat related and allow the IDS to detect abuse of a

network service; the third one is speci�cally meant to detect distributed attacks;

the last one will aid in �nding injected (irregular) packets.
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Figure 2: Illustration of the training attack over time, for the case of the data rate. An

attacker proceeds by progressively injecting more and more packets until he eventually reaches

the desired critical threshold.

3.2. Training attack

Once an intrusion system is in place and learns the typical behaviour of the

network, attackers can (and will) try to evade it. Among the evasion techniques

is (what we call) the training attack, that is closely related to mimicry and IDS

evasion attacks ([16, 17]). In contrast to the latter, it does not only consist in

hiding from the IDS, but also manipulates the IDS permanently. It does so by

injecting packets that progressively increase any of the monitored quantities,

until the target objective has been reached. That way, any future malicious

tra�c is also considered as normal. See Figure 2 for an illustration.

The attack has been thoroughly discussed by Barreno et al. [17], who suggest

slowing down the learning process. Although this approach makes a training

attack exponentially harder, it will also render the IDS inert. This paper in-

troduces another strategy that does not su�er from this drawback; it is based

on the idea to also consider the long-term evolution of the monitored quantities

(see Section 4).

3.3. Stealthy training attack

The training attack consists in slowly shifting the network behaviour towards

a malicious state. While these progressive and slow changes are barely noticeable

in a short term, they become suddenly visible when looked at on a large time

scale. However, in order to cover up the training attack even in this scenario,
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Figure 3: Illustration of the stealthy training attack over time. Instead of only increasing the

tra�c load, an attacker creates enough `normal' data in-between, which outweighs (and thus

hides) the malicious tra�c.

an intruder can hide the malicious tra�c by accompanying it with additional,

but normal data. So instead of shifting the behaviour towards a bad state,

he increases the spectrum of behaviours to additionally include the bad state.

Figure 3 illustrates this.

4. Intrusion detection techniques

Several techniques have been proposed for detecting network attacks. Sec-

tion 2 gives an overview of the state-of-the-art intrusion detection schemes.

4.1. Threshold and metric based

Among them, the most simple strategy is to �x a threshold for the monitored

quantities in advance. It is to be noted that this approach is not based on

machine-learning, and thus requires a human to de�ne the threshold(s) for each

and every �ow in the network. Moreover, such a system is completely inert to

changes in the network behaviour, so the thresholds need to be continuously

reviewed. This, however, makes the IDS also insensitive to the training attack.

Instead of �xing the thresholds in advance, one could also learn them with

the aid of statistical quantities like average and variance. This solution is not as

simple as it seems, because it is not so clear what the precise threshold should

be. If one assumes that the network load follows a probabilistic distribution,

then one can compute the probability that a monitored quantity is according to

the probabilistic law, and conversely, if it deviates too much. For instance, for a

normally distributed quantity N (µ, σ2), 99.7% of all samples lie within µ± 3σ.
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Figure 4: Illustration of typical data rates for HTTP tra�c (thin black line). Note how the

µ+ 3 · σ threshold value (thick red line) is not a good descriptor of `normal' tra�c and thus a

bad candidate for detecting outliers in the tra�c. This is due to the fact that HTTP tra�c

is not even closely normally distributed.

Threshold-based approaches su�er from several drawbacks. For one, they do

not behave well with inhomogeneous tra�c. Indeed, the data rate of a network

�ow is typically characterised by (at least) two states: an idling state where no

communication is made (so data rate 0), and an active state (with data rate

δ). Computing the statistical properties of these two states, one ends up with

an average data rate of something in-between, which does not yield the desired

threshold at all. Experiments suggest that the situation gets worse if more than

two states are involved: Figure 4 depicts the outcome of such an experiment

with real-world HTTP tra�c (taken from [22]).

Other machine-learning approaches (including support vector machines and

regression methods) that reduce the data to a single metric value su�er from

the same issue, for the same reasons.

Second, like any criterion that involves the standard deviation σ of statistical

data, the strategy adopted here will encounter stability problems if the tra�c

approaches constant behaviour (in which case the standard deviation σ is close

to zero). One can circumvent the issue by assuming a minimal value σ, but then

one has to fall back upon a hard coded parameter again.

10



Third, this approach is vulnerable to the training attack: even when an

attacker uses the linearly increasing sequence of data points δt := a · t (for any

constant a > 0), a threshold-based IDS will not detect the attack. The proof

requires some tedious calculations and is therefore omitted, but one can readily

deduce from the de�nitions

µ(t) =

t∑
i=t−T

δi σ2(t) =
1

T
·

t∑
i=t−T

(δi − µ)2

that indeed δt+1 < µ(t) + 3 · σ(t) for all t, so the IDS does not raise an alert

at any time. Here, T denotes the number of elements covered by the mean and

variance; its value does not have an in�uence on the statement.

4.2. Stream-clustering based

In contrast to many other machine learning techniques, stream clustering

algorithms support inhomogeneous tra�c quite well, since they particularly aim

at learning the di�erent behavioural classes: from a sequence of data points, they

group similar (or close) ones together into a cluster.

Researchers have already put a lot of e�ort into designing stream clustering

algorithms [23] that categorise data streams in real-time. The algorithm that

�ts the needs of our set-up best is D-Stream [24], since it is parameter-less and

supports arbitrarily-shaped clusters. It proceeds by dividing the state space into

a grid, and continuously computes the density of encountered data points per

grid cell. A cell is called dense if it contains a certain number of data points;

clusters are then de�ned to be the connected components of dense cells. Figure 5

shows an example of such a grid; further details can be found in the original

paper by Chen et al. [24].

The clusters account for the several encountered classes of behaviour, whereas

outliers (data points which do not match any cluster) account for statistical ab-

normalities. It is important to observe that it is not the objective of the IDS to

detect the outliers, but changes in the behaviour of the network streams (which

manifest themselves by changes in the clusters).
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Figure 5: Example of a two-dimensional state space divided into a grid, at a particular time

t. Bullets denote data points; dense cells are hatched. In this example, there exist 4 clusters

at time t.

Udommanetanakit et al. [25] have extensively deliberated the possible op-

erations on the set of clusters and their implications. In short, there exist

�ve operations (appearance, disappearance, evolution, splitting, and merging of

clusters). Of those, an appearing cluster signals previously unseen behaviour,

which indicates an attack or intrusion. Stream clustering algorithms are typ-

ically able to detect new clusters in real-time, and are thus good candidates

for detecting the network attacks discussed in Section 3.1. Regarding the evo-

lution of clusters, the issue is trickier. Although such algorithms account for

changes in the input data, they cannot tell small �uctuations (e.g. due to sta-

tistical abnormalities) from long-term evolutions of a cluster (e.g. caused by the

training attack). So, raising an alert whenever a cluster evolves either yields

too many false positives, or forces one to introduce a threshold value (which in

turn, requires expert knowledge).

In our work, we improve on existing stream clustering techniques to also

detect the training attack, without requiring any additional parameters to be

set.
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Figure 6: Work-�ow of the intrusion detection system.

4.3. Proposed IDS

The proposed network intrusion detection system (NIDS) operates passively

on the whole tra�c of a network. It processes each �ow between any two hosts

in the networks independently, extracts the relevant features (see Section 3.1)

and applies clustering techniques to the latter. In this context, a �ow comprises

all network packets from all data streams sent from the �rst peer to the second

one at a speci�c TCP/UDP port; for instance, the 〈10.0.0.1, 10.0.0.2, 80〉 �ow

consists of the whole HTTP tra�c between 10.0.0.1 and 10.0.0.2 (not just one

single HTTP connection).

Figure 6 shows the work �ow of the IDS. An alert is raised whenever a new

cluster is created.

The used data clustering algorithm is based on D-Stream [24]. It proceeds

by dividing the state space into a grid and keeps track of the density of recorded

data points for each obtained cell. The density includes an exponential decaying

over time, which enables the system to adapt to changes in the network. The

density dC(t) of a cell C at time t is de�ned by

dC(t) =
∑

p: data point in C

λt−tp

where tp is the time when a data point p was recorded. 0 < λ < 1 is called the

decay parameter and controls how fast the IDS forgets old data. Following the
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de�nition in [24], Section 3.2, a cell C is called dense at time t if

dC(t) ≥ Cm
N(1− λ)

,

where N is the total number of cells in the grid, and Cm is a �xed constant.

The authors claim that Cm = 3 is a good choice; however, experiments (see

Section 6) and calculations (see Section 5.3) reveal that Cm := 10−5 serves our

purposes much better. The huge di�erence can be explained by the fact that

they implicitly assume uniform background noise, whereas our data is locally

distributed with almost no noise. Finally, a cluster is a maximal connected

component of neighbouring dense cells.

The clustering algorithm consists of an on-line phase (during which the den-

sities are continuously updated) and an o�-line phase (during which the clusters

are updated). In particular, alerts are raised only during the o�-line phase, since

this is the only moment when new clusters may appear or evolve. The latter

phase is triggered at intervals of time Γ. In the following, Γ is referred to as the

clustering interval.

4.4. Detecting the training attack

Deployed as-is, the proposed IDS is still vulnerable to the training attack.

This is mainly due to the fact that it can only detect sudden changes at a certain

time scale (controlled by the λ and Γ parameters).

However, if several clones of the IDS are launched in parallel, with di�er-

ent λ and Γ parameters respectively, then each instance can detect changes at

a di�erent scale. When observed at short time periods, the subtle change in

behaviour caused by the training attack may be hard to detect. However, for

a di�erent instance that updates its clusters less often, the otherwise slow evo-

lution appears as a deletion together with a creation of a cluster, and is thus

detected � see Figure 7.

4.5. Detecting the stealthy training attack

The classic training attack consists in moving clusters; in contrast, the

stealthy version does not touch a cluster, but extends (enlarges) it in such a
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Figure 7: The several steps of the training attack and how they appear at di�erent time scales.

way that it also includes data points associated to malicious behaviour. Since

no new cluster is created, no alert will be raised, either � regardless of the time

granularity.

However, what does change is the size (number of covered cells) of the clus-

ters. Monitoring those sizes will allow the IDS to detect the stealthy training

attack, as well. One could now de�ne a threshold size which a cluster should

not exceed, but there is a more elegant way. In fact, the same discussion as the

one on intrusion detection techniques above also applies here. So the preferred

solution is to apply yet another instance of our proposed IDS, but this time on

the output (that is, the size of the generated clusters) of the actual IDS. That

way, one truly obtains a `dual' IDS.

5. Choice of parameters

5.1. Decay parameter

The decay parameter 0 < λ < 1 in�uences the learning capabilities of the

IDS. The higher its value, the longer a data point will be `present' in the grid

cell. Recall that the weight of a data point within its cell decays exponentially

with time (t 7→ λt−t0). If λ = 0, learning will be completely disabled. Setting

λ = 1 will give every data point ever recorded the same weight, so the IDS will

always take the whole history into account when computing the clusters, and

never forget anything.

The exact choice of the parameter depends on the environment where the IDS

is deployed. In an ideal world, where the infrastructure and behaviours remain
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constant, one would indeed set λ := 1. Real-world set-ups are di�erent; devices

may join or leave the network, software updates may add new functionality

yielding a change in behaviour of the network streams, and so forth.

In order to determine a good value for λ, one needs to take into account

the estimated period T between (expected) signi�cant changes in the network.

Data older than T should rightfully be `forgotten' by the IDS. For cyber-physical

systems, this can be as large as three months. For home networks, several days

would be a more reasonable value. Proposition 1 provides a maximal value for

λ given T , which will be picked in the implementation of the IDS for optimal

results.

In the following, we deem that if a data point has ≤ 1% of the total weight

available, it is barely noticeable.

Proposition 1. Let T > 0. Let N be the number of grid cells. Suppose the

data points are recorded in regular time intervals. If λ ≤ 10−2/T , then all data

points older than T make up, in total, ≤ 1% of the whole weight available in the

grid.

Proof. Denote the length of the regular time intervals by f . The cumulative

weight of all data points ever recorded is

∞∑
i=0

λi·f =
1

1− λ
.

Similarly, the cumulative weight of all data points older than T is

∞∑
i=T/f

λi·f = λT ·
∞∑
i=0

λi·f =
λT

1− λ
.

By assumption, λT ≤ 1
100 , which concludes the proof.

5.2. Clustering interval

The clustering interval parameter controls how often the data is clustered

and scanned for intrusions. If the interval is chosen too long, short-term attacks

go entirely unnoticed, since their footprint fades out before the clustering takes

place. If it is too short, the engine is unable to detect long-term evolutions.
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The strategy is thus two-fold. On the one hand, one needs to choose the

longest possible interval Γ so that all short-term attacks can still be noticed. On

the other hand, additional instances of the IDS (running with larger clustering

intervals, see Section 5.4) will make sure that long-term evolutions will not be

missed, either. Proposition 2 gives a hint on how to choose Γ for our purposes.

Proposition 2. Let Γ > 0 and 0 < p < 1. Let N be the number of grid cells.

Suppose the data points are recorded in regular time intervals. Assume λ = 1−ε

for some ε� 1.

If Γ = N
p , then any data point younger than Γ makes up at least a p part of the

weight gained by a cell on average during time Γ.

Proof. Denote the length of the regular time intervals by f . Then n := Γ
f data

points have been recorded after time Γ. Their cumulative weight is then

n−1∑
i=0

λi·f =
1− λf ·n

1− λ
=

1− λΓ

1− λ
=

1− exp (Γ lnλ)

1− λ
.

If λ ≈ 1 then lnλ ≈ 0 and thus exp (Γ lnλ) ≈ 1 + Γ lnλ. Further ln(λ) =

ln(1− ε) ≈ −ε. Using this, one gets

1− exp (Γ lnλ)

1− λ
≈ −Γ · lnλ

1− λ
≈ Γ · ε

ε
= Γ.

Thus, the average weight gained by a cell is ≈ Γ
N = 1

p . The proportion of the

weight of any data point younger than Γ with respect to the average is at least

λΓ

1/p
≈ 1

1/p
= p.

Proposition 2 reveals that if the clustering interval Γ = 600s is chosen and the

state space is divided into N = 50 cells, then all data points recorded between

two o�-line clustering processes will make out Γ
N ≈ 8% of the average weight

gain of a cell. That is, each of those data points still has a considerable impact

on the weight of the cell.

Our experiments also con�rm that Γ = 600s = 10min is a good choice, see

Section 6.
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5.3. Density parameter

A cell C is de�ned to be dense if dC(t) ≥ Cm

N(1−λ) . According to [24], a good

choice is Cm := 3, but this leads to no cell ever being marked as dense in our

set-up. This can be explained by the fact that they have much more data points

spread over the whole state space, whereas we deal with locally condensed data.

Proposition 3 suggests better values for Cm.

Proposition 3. Let Γ > 0 and Cm > 0. Let N be the number of grid cells.

Suppose the data points are recorded in regular time intervals. If Cm ≤ 1− λΓ,

then any cell that received at least the average weight during time Γ, is dense.

Proof. Denote the length of the regular time intervals by f . Then n := Γ
f data

points have been recorded after time Γ. Their cumulative weight is

n−1∑
i=0

λi·f =
1− λf ·n

1− λ
=

1− λΓ

1− λ
,

so the average weight of a cell is 1−λΓ

N ·(1−λ) . If a cell C received at least the average

weight, then

dC(Γ) ≥ 1− λΓ

N · (1− λ)
≥ Cm
N · (1− λ)

,

so by de�nition, C is dense.

For instance, if λ = 0.011/1d and Γ = 10min, then Cm := 0.03 would be a

good choice. If λ = 0.011/30d and Γ = 10min, then opt for Cm := 0.001.

5.4. Detecting the training attack

To the clustering-based IDS, the classic training attack as described in Sec-

tion 3.2 appears initially as an enlargement of the cluster, followed by a splitting

into two clusters (see Figure 8). Note that these are two legitimate steps, so the

IDS will not raise any alert.

However, if the o�-line clustering between those two steps were omitted,

the single resulting step would be correctly identi�ed as malicious, since a new

cluster is created. The strategy is thus to apply an additional, independent
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+Γ +Γ+2Γ

Figure 8: The two (legitimate) steps that the training attack consists of. Dense cells are

hatched. If the intermediate clustering is omitted, the situation will look as if a new cluster

is created, and an alert will be raised.

clone of the IDS with clustering interval 2 ·Γ. Similarly, the argumentation can

be applied recursively on the second IDS to require a third one with clustering

interval 4 ·Γ, and so forth. Eventually they will cover a time span 2n ·Γ which is

so long that an attacker will not bother trying; for instance, if Γ equals 1 month,

and 50 years should be covered by the IDS, then one requires log2

(
50y
1m

)
≈ 9

instances.

The �nal intrusion detection system thus consists of (for instance) 9 inde-

pendent instances, each invoked with a di�erent value for Γ. An alert by any

of these clones then results in an alert by the �nal IDS. Since the clones are

independent, they can be run on di�erent CPUs or even on multiple devices �

no synchronisation is necessary. However, in order to avoid that multiple clones

are triggered by the same attack, one can account for only one alert within a

given time interval.

6. Evaluation

We ran several di�erent simulations on various data sets, including [22],

[26], and our own recordings. For all experiments that follow, the state space

(describing the data rate) is divided into a logarithmic scale of N = 50 values

ranging from 100 B/s to 109 B/s.

6.1. Detecting network attacks

The objective of the �rst set of experiments is to verify if the proposed IDS

is actually able to detect classic network attacks (such as denial-of-service). As
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argued in Section 5.1, using a decay parameter of λ := 0.01−10 days guarantees

that any data encountered will be forgotten after roughly ten days. For the

clustering interval, we choose Γ = 10min.

Figure 9 depicts the simulation results on the data set [22], which contains 24

hours of network tra�c produced by personal computers. As can be read o� from

the �gure, the tra�c is relatively low most of the time, and sporadically features

small peaks (e.g. (1)�(4) and (8) in Figure 9). However, most importantly, the

data sets also contains peaks (see (5), (6) and (7) in Figure 9) that may be

worth being investigated. The objective of the intrusion detection system is to

be able to detect this kind of change in behaviour.

Launching our IDS on the data set, we notice that at �rst, several clusters

were created at the very beginning (which acts as a learning phase, so the alerts

were expected). The �rst major peak ((5) in Figure 9) is correctly identi�ed as

new behaviour, and so is the second one (6). The third peak (7) is classi�ed to

be in the same cluster than the previous one, so no alert is raised. Any later

tra�c matches the expectations of the IDS and does not lead to the creation of

new clusters.

If the decay parameter is too low, clustering information will be forgotten

too fast. Setting λ := 0.01−1 day will cause the IDS to forget data after roughly

one day, which is also what is observed in the 24-hour simulation depicted in

Figure 10. In fact, this experiment proves the soundness of the discussion on λ

conducted in Section 5.1.

6.2. Detecting the training attack

We were unaware of any data set that has recorded a training attack, and

thus had to create one on our own. For this purpose, the `4SIC Geek Lounge'

data set [27] describing 18 hours of real SCADA tra�c has been extended (by

looping it) to a one-year period so as to obtain a good basis of `regular' data.

Figure 11 shows the content of the data set. Note that the two types of behaviour

clearly prove the applicability of our intrusion detection approach.

The IDS with parameters λ = 0.01−1/7days and Γ = 10min successfully

20



(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(1)(2)
(3)
(4) (5)

(6)

(7)

(8)

0.5

1

1.5
·106

time

data rate (B/s)

Figure 9: Successful detection of unusually high out-going tra�c for one of the hosts in the

[22] data set. The triangles denote the times when new clusters were created (thus alerts

raised). Below the �gure, the clusters are explicitly drawn for the snapshots (1) to (8): boxes

represent the cells in the one-dimensional state space; black boxes denote dense cells.
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Figure 10: A small decay parameter (λ = 0.01−1 day) makes the IDS forget data too fast.

The triangles denote the times when new clusters were created (thus alerts raised); note the

additional �nal clustering at the very right of the �gure which occurs after approximately a

day.

learns the behaviour of the tra�c, raising no alerts. Experiments show that

λ = 0.01−1/1day is too low (it yields false positives) and λ = 0.01−1/30days turns

out to be too long in the following discussion (the training attack does get

detected, but only after almost one year).

In parallel, we crafted arti�cial data packets with a slowly increasing packet

size and frequency, and merged the obtained packets with the real data set.

The resulting data set contains the recording of an arti�cial, yet theoretically

feasible training attack. The caused increase in the data rate roughly follows

an exponential law (t 7→ 1.1t).

Following the discussion in Section 5.4, several IDS instances are launched

on that data set, each of which has a clustering interval twice as large as the

previous one. In this use-case, it results in 16 instances ranging from Γ1 = 10min

to Γ16 = 228d. As expected, the �rst few instances are unable to detect the

training attack. However, the long-term clones (Γ14,Γ15,Γ16) successfully raise

an alert after some initial learning phase � see Figure 12 for an illustration.

Two similar experiments have been conducted using a linearly increasing
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Figure 11: The `4SICS Geek Lounge' data set recorded on real SCADA equipment for 18

hours, starting at 5:52 p.m. One can clearly distinguish the night as a period of low activity

(7:42 p.m. to 8:30 a.m.).

data rate, and an initially increasing but eventually stagnating data rate. In

all cases, the longer-term instances were able to detect the attack, while the

shorter-term ones were not.

6.3. Detecting the stealthy training attack

A much more sophisticated version of the training attack consists in contin-

uously injecting the complete spectrum between normal and malicious tra�c.

To do so, an attacker repetitively increases the data rate until a given threshold,

drops back to normal, and slowly increases again (see Figure 13). As predicted

in Section 3.3, simulations show that our IDS never creates a new cluster, but

increases the size of existing ones, instead; by consequence, no alert is raised

and the attack remains undetected.

As a counter-measure, we proposed to include the maximum cluster size in

the set of monitored quantities (in parallel with the data rate). In contrast to

previous simulations, where the maximum cluster size remained more or less

constant (it deviated by at most ±3), it increased by a decent amount in this

case. Indeed, applying the same detection techniques on the maximum cluster
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With Γ14 = 57d:
With Γ15 = 114d:
With Γ16 = 228d:
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Figure 12: The training attack combined with the [27] data set. The triangles denote the times

when new clusters were created (thus alerts raised) for the instances with Γ = 57d, 114d, 228d,

respectively.

size (thus, on the output of the actual IDS) yields the desired results � see

Figure 13.

7. Conclusion

This paper deliberates modern anomaly-based intrusion detection techniques

that learn the behaviour of network streams. It is to be noted that the former can

only reliably recognise attacks which induce a considerable change in behaviour

of the network. Traditional signature scanners perform much better when it

comes to detecting speci�c malware, and should be applied in parallel. While

state-of-the-art intrusion detection systems classify individual data packets as

good or malicious, the IDS proposed in this paper rather focuses on grouping

similar data packets and decides upon each cluster if it is normal or not. The

advantage of this approach is a more stable behaviour with respect to statistical

noise, since single outliers do not immediately yield a (false) alert. In addition,

the decision of the algorithm can be retraced more intuitively than for other

machine-learning based approaches.
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Figure 13: The stealthy training attack combined with the [27] data set. The right graph

depicts the data rate as induced by the attack, while the left graph depicts the evolution of

the cluster size. Although no alert is raised for the behaviour of the data rate, the dual IDS

does identify the increase of the cluster size (alerts marked with red triangles).
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This paper gives evidence that live learning systems can be tricked by in-

terfering with the learning process, and presents the so-called training attack

that makes such a system eventually accept malicious behaviour. We propose

a detection scheme that is, to a certain extent, resistant to this kind of attacks.

It consists in considering the input at multiple time resolutions, which consider-

ably hardens long-term changes in the behaviour. In order to provider a better

understanding of the consequences of a fooled IDS, we presented a stealthier

variant of said attack and discussed how to counter it. However, our research

only scratched the surface of possible tricking techniques, and there are probably

further opportunities for attackers to evade the IDS.

The solidity of our approach is validated, on the one hand, by a mathe-

matically sound choice of parameters, and on the other hand, by simulations

conducted on real network tra�c from various sources.
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