Associative and Quasitrivial Operations on Finite Sets
 Characterizations and Enumeration

Jean-Luc Marichal

University of Luxembourg
Luxembourg
in collaboraton with Miguel Couceiro and Jimmy Devillet

Part I: Single-peaked orderings

Single-peaked orderings

Motivating example (Romero, 1978)
Suppose you are asked to order the following six objects in decreasing preference:

$$
\begin{array}{ll}
a_{1}: & 0 \text { sandwich } \\
a_{2}: & 1 \text { sandwich } \\
a_{3}: & 2 \text { sandwiches } \\
a_{4}: & 3 \text { sandwiches } \\
a_{5}: & 4 \text { sandwiches } \\
a_{6}: & \text { more than } 4 \text { sandwiches }
\end{array}
$$

We write $a_{i} \prec a_{j}$ if a_{i} is preferred to a_{j}

Single-peaked orderings

a_{1}	0 sandwich
a_{2}	1 sandwich
a_{3}	2 sandwiches
a_{4}	3 sandwiches
a_{5}	4 sandwiches
	more than 4 sandwiches

- after a good lunch: $a_{1} \prec a_{2} \prec a_{3} \prec a_{4} \prec a_{5} \prec a_{6}$
- if you are starving: $a_{6} \prec a_{5} \prec a_{4} \prec a_{3} \prec a_{2} \prec a_{1}$
- a possible intermediate situation: $a_{4} \prec a_{3} \prec a_{5} \prec a_{2} \prec a_{1} \prec a_{6}$
- a quite unlikely preference: $a_{6} \prec a_{5} \prec a_{2} \prec a_{1} \prec a_{3} \prec a_{4}$

Single-peaked orderings

Let us represent graphically the latter two preferences with respect to the reference ordering $a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<a_{6}$

$$
a_{4} \prec a_{3} \prec a_{5} \prec a_{2} \prec a_{1} \prec a_{6} \quad \quad a_{6} \prec a_{5} \prec a_{2} \prec a_{1} \prec a_{3} \prec a_{4}
$$

Single-peaked orderings

Single-peakedness

$$
a_{i}<a_{j}<a_{k} \quad \Longrightarrow \quad a_{j} \prec a_{i} \quad \text { or } \quad a_{j} \prec a_{k}
$$

Forbidden patterns

Single-peaked orderings

Definition (Black, 1948)

Let \leq and \preceq be total orderings on $X_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$.
Then \preceq is said to be single-peaked for \leq if for any $a_{i}, a_{j}, a_{k} \in X_{n}$ such that $a_{i}<a_{j}<a_{k}$ we have $a_{j} \prec a_{i}$ or $a_{j} \prec a_{k}$.

Let us assume that $X_{n}=\left\{a_{1}, \ldots, a_{n}\right\}$ is endowed with the ordering $a_{1}<\cdots<a_{n}$

For $n=4$

$$
\begin{array}{ll}
a_{1} \prec a_{2} \prec a_{3} \prec a_{4} & a_{4} \prec a_{3} \prec a_{2} \prec a_{1} \\
a_{2} \prec a_{1} \prec a_{3} \prec a_{4} & a_{3} \prec a_{2} \prec a_{1} \prec a_{4} \\
a_{2} \prec a_{3} \prec a_{1} \prec a_{4} & a_{3} \prec a_{2} \prec a_{4} \prec a_{1} \\
a_{2} \prec a_{3} \prec a_{4} \prec a_{1} & a_{3} \prec a_{4} \prec a_{2} \prec a_{1}
\end{array}
$$

There are 2^{n-1} total orderings \preceq on X_{n} that are single-peaked for \leq

Single-peaked orderings

Recall that a weak ordering (or total preordering) on X_{n} is a binary relation \precsim on X_{n} that is total and transitive.

Defining a weak ordering on X_{n} amounts to defining an ordered partition of X_{n}

$$
C_{1} \prec \cdots \prec C_{k}
$$

where C_{1}, \ldots, C_{k} are the equivalence classes defined by \sim
For $n=3$, we have 13 weak orderings

$$
\begin{array}{ll}
a_{1} \prec a_{2} \prec a_{3} & a_{1} \sim a_{2} \prec a_{3} \\
a_{1} \prec a_{3} \prec a_{2} & a_{1} \prec a_{2} \sim a_{3} \sim a_{2} \sim a_{3} \\
a_{2} \prec a_{1} \prec a_{3} & a_{2} \prec a_{1} \sim a_{3} \\
a_{2} \prec a_{3} \prec a_{1} & a_{3} \prec a_{1} \sim a_{2} \\
a_{3} \prec a_{1} \prec a_{2} & a_{1} \sim a_{3} \prec a_{2} \\
a_{3} \prec a_{2} \prec a_{1} & a_{2} \sim a_{3} \prec a_{1}
\end{array}
$$

Single-peaked orderings

Definition

Let \leq be a total ordering on X_{n} and let \precsim be a weak ordering on X_{n}. We say that \precsim is weakly single-peaked for \leq if for any $a_{i}, a_{j}, a_{k} \in X_{n}$ such that $a_{i}<a_{j}<a_{k}$ we have $a_{j} \prec a_{i}$ or $a_{j} \prec a_{k}$ or $a_{i} \sim a_{j} \sim a_{k}$.

Let us assume that X_{n} is endowed with the ordering $a_{1}<\cdots<a_{n}$
For $n=3$

$$
\begin{array}{ll}
a_{1} \prec a_{2} \prec a_{3} & a_{1} \sim a_{2} \prec a_{3}
\end{array} \quad a_{1} \sim a_{2} \sim a_{3}
$$

Single-peaked orderings

Examples

$$
a_{3} \sim a_{4} \prec a_{2} \prec a_{1} \sim a_{5} \prec a_{6}
$$

$$
a_{3} \sim a_{4} \prec a_{2} \sim a_{1} \prec a_{5} \prec a_{6}
$$

Forbidden patterns

Part II: Associative and quasitrivial operations

Connectedness and Contour plots

Let $F: X_{n}^{2} \rightarrow X_{n}$ be an operation on $X_{n}=\{1, \ldots, n\}$

Definition

- The points (u, v) and (x, y) of X_{n}^{2} are said to be F-connected if

$$
F(u, v)=F(x, y)
$$

- The point (x, y) of X_{n}^{2} is said to be F-isolated if it is not F-connected to another point

Connectedness and Contour plots

Examples

Connectedness and Contour plots

Definition

For any $x \in X_{n}$, the F-degree of x, denoted $\operatorname{deg}_{F}(x)$, is the number of points $(u, v) \neq(x, x)$ such that $F(u, v)=F(x, x)$

Remark. The point (x, x) is F-isolated iff $\operatorname{deg}_{F}(x)=0$

Connectedness and Contour plots

Examples

Quasitriviality

Definition

$F: X_{n}^{2} \rightarrow X_{n}$ is said to be

- quasitrivial (or conservative) if

$$
F(x, y) \in\{x, y\} \quad\left(x, y \in X_{n}\right)
$$

- idempotent if

$$
F(x, x)=x \quad\left(x \in X_{n}\right)
$$

Fact. If F is quasitrivial, then it is idempotent
Fact. If F is idempotent and if (x, y) is F-isolated, then $x=y$

$$
F(x, y)=F(F(x, y), F(x, y))
$$

Quasitriviality

Let $\Delta_{X_{n}}=\left\{(x, x) \mid x \in X_{n}\right\}$

Fact

$F: X_{n}^{2} \rightarrow X_{n}$ is quasitrivial iff

- it is idempotent
- every point $(x, y) \notin \Delta_{X_{n}}$ is F-connected to either (x, x) or (y, y)

Corollary. If F is quasitrivial, then it has at most one F-isolated point

Neutral and annihilator elements

Definition

- $e \in X_{n}$ is said to be a neutral element of $F: X_{n}^{2} \rightarrow X_{n}$ if

$$
F(x, e)=F(e, x)=x, \quad x \in X_{n}
$$

- $a \in X_{n}$ is said to be an annihilator element of $F: X_{n}^{2} \rightarrow X_{n}$ if

$$
F(x, a)=F(a, x)=a, \quad x \in X_{n}
$$

Neutral and annihilator elements

Proposition

Assume that $F: X_{n}^{2} \rightarrow X_{n}$ is quasitrivial.

- $e \in X_{n}$ is a neutral element of F iff $\operatorname{deg}_{F}(e)=0$
- $a \in X_{n}$ is an annihilator element of F iff $\operatorname{deg}_{F}(a)=2 n-2$.

Associative, quasitrivial, and commutative operations

Theorem

Let $F: X_{n}^{2} \rightarrow X_{n}$. The following assertions are equivalent.
(i) F is associative, quasitrivial, and commutative
(ii) $F=\max _{\preceq}$ for some total ordering \preceq on X_{n}

The total ordering \preceq is uniquely determined as follows:

$$
x \preceq y \quad \Longleftrightarrow \quad \operatorname{deg}_{F}(x) \leq \operatorname{deg}_{F}(y)
$$

Fact. There are exactly n ! such operations

Associative, quasitrivial, and commutative operations

Theorem

Let $F: X_{n}^{2} \rightarrow X_{n}$. The following assertions are equivalent.
(i) F is associative, quasitrivial, and commutative
(ii) $F=\max _{\preceq}$ for some total ordering \preceq on X_{n}
(iii) F is quasitrivial and $\left\{\operatorname{deg}_{F}(x) \mid x \in X_{n}\right\}=\{0,2,4, \ldots, 2 n-2\}$

Associative, quasitrivial, and commutative operations

Definition.

$F: X_{n}^{2} \rightarrow X_{n}$ is said to be \leq-preserving for some total ordering \leq on X_{n} if for any $x, y, x^{\prime}, y^{\prime} \in X_{n}$ such that $x \leq x^{\prime}$ and $y \leq y^{\prime}$, we have $F(x, y) \leq F\left(x^{\prime}, y^{\prime}\right)$

Theorem

Let $F: X_{n}^{2} \rightarrow X_{n}$. The following assertions are equivalent.
(i) F is associative, quasitrivial, and commutative
(ii) $F=\max _{\preceq}$ for some total ordering \preceq on X_{n}
(iii) F is quasitrivial and $\left\{\operatorname{deg}_{F}(x) \mid x \in X_{n}\right\}=\{0,2,4, \ldots, 2 n-2\}$
(iv) F is quasitrivial, commutative, and \leq-preserving for some total ordering \leq on X_{n}

Associative, quasitrivial, and commutative operations

Definition.

A uninorm on X_{n} is an operation $F: X_{n}^{2} \rightarrow X_{n}$ that

- has a neutral element $e \in X_{n}$ and is
- associative
- commutative
- \leq-preserving for some total ordering \leq on X_{n}

Associative, quasitrivial, and commutative operations

Theorem

Let $F: X_{n}^{2} \rightarrow X_{n}$. The following assertions are equivalent.
(i) F is associative, quasitrivial, and commutative
(ii) $F=\max _{\preceq}$ for some total ordering \preceq on X_{n}
(iii) F is quasitrivial and $\left\{\operatorname{deg}_{F}(x) \mid x \in X_{n}\right\}=\{0,2,4, \ldots, 2 n-2\}$
(iv) F is quasitrivial, commutative, and \leq-preserving for some total ordering
\leq on X_{n}
(v) F is an idempotent uninorm on X_{n} for some total ordering \leq on X_{n}

Associative, quasitrivial, and commutative operations

Assume that $X_{n}=\{1, \ldots, n\}$ is endowed with the usual total ordering \leq_{n} defined by $1<_{n} \cdots<_{n} n$

Theorem

Let $F: X_{n}^{2} \rightarrow X_{n}$. The following assertions are equivalent.
(i) F is quasitrivial, commutative, and \leq_{n}-preserving (\Rightarrow associative)
(ii) $F=\max _{\preceq}$ for some total ordering \preceq on X_{n} that is single-peaked for \leq_{n}

Associative, quasitrivial, and commutative operations

Remark.

- There are n ! operations $F: X_{n}^{2} \rightarrow X_{n}$ that are associative, quasitrivial, and commutative.
- There are 2^{n-1} of them that are \leq_{n}-preserving

Associative and quasitrivial operations

Examples of noncommutative operations

Associative and quasitrivial operations

Definition.

The projection operations $\pi_{1}: X_{n}^{2} \rightarrow X_{n}$ and $\pi_{2}: X_{n}^{2} \rightarrow X_{n}$ are respectively defined by

$$
\begin{array}{rlrl}
\pi_{1}(x, y) & =x, & & x, y \in X_{n} \\
\pi_{2}(x, y) & =y, & x, y \in X_{n}
\end{array}
$$

Associative and quasitrivial operations

Assume that $X_{n}=\{1, \ldots, n\}$ is endowed with a weak ordering \precsim
Ordinal sum of projections

$$
\operatorname{osp}_{\precsim}: X_{n}^{2} \rightarrow X_{n}
$$

Permuting the elements related to a box does not change the graph of F

Associative and quasitrivial operations

Theorem (Länger 1980)

Let $F: X_{n}^{2} \rightarrow X_{n}$. The following assertions are equivalent.
(i) F is associative and quasitrivial
(ii) $F=\operatorname{osp}_{\precsim}$ for some weak ordering \precsim on X_{n}

The weak ordering \precsim is uniquely determined as follows:

$$
x \precsim y \quad \Longleftrightarrow \quad \operatorname{deg}_{F}(x) \leq \operatorname{deg}_{F}(y)
$$

Associative and quasitrivial operations

Examples

Associative and quasitrivial operations

How to check whether a quasitrivial operation $F: X_{n}^{2} \rightarrow X_{n}$ is associative?

1. Order the elements of X_{n} according to the weak ordering \precsim defined by

$$
x \precsim y \quad \Longleftrightarrow \quad \operatorname{deg}_{F}(x) \leq \operatorname{deg}_{F}(y)
$$

2. Check whether the resulting operation is one of the corresponding ordinal sums

Associative and quasitrivial operations

Which ones are $\leq-$ preserving?

Associative and quasitrivial operations

Assume that $X_{n}=\{1, \ldots, n\}$ is endowed with the usual total ordering \leq_{n} defined by $1<_{n} \cdots<_{n} n$

Theorem

Let $F: X_{n}^{2} \rightarrow X_{n}$. The following assertions are equivalent.
(i) F is associative, quasitrivial, and \leq_{n}-preserving
(ii) $F=\operatorname{osp}_{\precsim}$ for some weak ordering \precsim on X_{n} that is weakly single-peaked for \leq_{n}

Associative and quasitrivial operations

Associative and quasitrivial operations

Final remarks

1. We have introduced and identified a number of integer sequences in http://oeis.org

- Number of associative and quasitrivial operations: A292932
- Number of associative, quasitrivial, and \leq_{n}-preserving operations: A293005
- Number of weak orderings on X_{n} that are weakly single-peaked for \leq_{n} : A048739
- ...

2. Most of our characterization results still hold on arbitrary sets X (not necessarily finite)

Some references

B
N. L. Ackerman.

A characterization of quasitrivial n-semigroups.
To appear in Algebra Universalis.
S. Berg and T. Perlinger.

Single-peaked compatible preference profiles: some combinatorial results.
Social Choice and Welfare 27(1):89-102, 2006.
D. Black.

On the rationale of group decision-making.
J Polit Economy, 56(1):23-34, 1948
(R. M. Couceiro, J. Devillet, and J.-L. Marichal.

Quasitrivial semigroups: characterizations and enumerations.
Semigroup Forum, in press. arXiv:1709.09162

H. Länger.

The free algebra in the variety generated by quasi-trivial semigroups.
Semigroup forum, 20:151-156, 1980.

N. J. A. Sloane (editor).

The On-Line Encyclopedia of Integer Sequences.
http://oeis.org/

