On associative, idempotent, symmetric, and nondecreasing operations ISAS 2018

Jimmy Devillet

in collaboration with Bruno Teheux

University of Luxembourg

For any integer $n \ge 1$, let $X_n = \{1, ..., n\}$ endowed with \le

Definition

- $F: X_n^2 \to X_n$ is
 - idempotent if

$$F(x,x) = x$$

• nondecreasing for \leq if

 $F(x,y) \leq F(x',y')$ whenever $x \leq x'$ and $y \leq y'$

Definition

 $e \in X_n$ is a *neutral element of F* if

$$F(x,e) = F(e,x) = x \qquad x \in X_n$$

Definition

 $F: X_n^2 \to X_n$ is a *discrete uninorm* if it is associative, symmetric, nondecreasing, and has a neutral element.

Idempotent discrete uninorms have been investigated for a few decades by several authors.

In the previous talk, the following characterization was provided.

Definition. (Black, 1948)

 \leq' is said to be *single-peaked for* \leq if for all $a, b, c \in X_n$,

$$a \le b \le c \implies b \le' a \text{ or } b \le' c$$

Theorem (Couceiro et al., 2018)

For any $F: X_n^2 \to X_n$, the following are equivalent.

- (i) F is an idempotent discrete uninorm
- (ii) $F = \max_{\leq'}$ for some \leq' that is single-peaked for \leq

How can we generalize this result by removing the existence of a neutral element?

Towards a generalization

 \leq will denote a join-semilattice order on X_n

F is associative, idempotent, and symmetric iff there exists \leq such that $F = \gamma$.

Example. On $X_4 = \{1, 2, 3, 4\}$, consider \leq and \leq

Towards a generalization

 $\Upsilon(1,4)=4$ and $\Upsilon(3,4)=3$ \Rightarrow Υ is not nondecreasing

What are the \leq for which γ are nondecreasing?

Definition. We say that \leq has the *convex-ideal property* (*CI-property* for short) for \leq if for all $a, b, c \in X_n$,

$$a \leq b \leq c \implies b \leq a \land c$$

Proposition

The following are equivalent.

(i) \leq has the CI-property for \leq

(ii) Every ideal of (X_n, \preceq) is a convex subset of (X_n, \leq)

Definition. We say that \leq has the *CI*-property for \leq if for all $a, b, c \in X_n$,

 $a \leq b \leq c \implies b \leq a \curlyvee c$

 \preceq does not have the CI-property for \leq

Definition. We say that \leq has the *CI*-property for \leq if for all $a, b, c \in X_n$,

 $a \leq b \leq c \implies b \leq a \curlyvee c$

 \preceq has the CI-property for \leq

 $\Upsilon(1,2)=3$ and $\Upsilon(2,2)=2 \implies \Upsilon$ is not nondecreasing

Internality

Definition. $F: X_n^2 \to X_n$ is said to be *internal* if $x \le F(x, y) \le y$ for every $x, y \in X_n$ with $x \le y$

Definition. We say that \leq is *internal for* \leq if for all $a, b, c \in X_n$,

$$a < b < c \implies (a \neq b \lor c \text{ and } c \neq a \lor b)$$

Proposition

The following are equivalent.

```
(i) \leq is internal for \leq
```

(ii) The join operation Υ of \preceq is internal

A direct consequence

Corollary

For any $F: X_n^2 \to X_n$, the following are equivalent. (i) F is associative, internal, and symmetric (ii) $F = \Upsilon$ for some \preceq that is internal for \leq

Fact. If F is idempotent and nondecreasing then it is internal.

Internality

Definition. We say that \leq is *internal for* \leq if for all $a, b, c \in X_n$,

 $a < b < c \implies (a \neq b \lor c \text{ and } c \neq a \lor b)$

 \preceq has the CI-property but is not internal for \leq

Internality

Definition. We say that \leq is *internal for* \leq if for all $a, b, c \in X_n$,

$$a < b < c \implies (a \neq b \lor c \text{ and } c \neq a \lor b)$$

 \preceq has the CI-property and is internal for \leq Also, γ is nondecreasing

Nondecreasingness

Definition. We say that \leq is *nondecreasing for* \leq if

- CI-property for \leq
- internal for \leq .

 ${\it F}$ is associative, idempotent, and symmetric iff ${\it F}=\Upsilon$

Theorem

For any $F: X_n^2 \to X_n$, the following are equivalent.

(i) *F* is associative, idempotent, symmetric, and nondecreasing
(ii) *F* = Y for some *≺* that is nondecreasing for *<*

Proposition

The number of associative, idempotent, symmetric, and nondecreasing operations on X_n is the n^{th} Catalan number.

Final remarks

- Our characterization is still valid on arbitrary chains (not necessarily finite)
- In arXiv: 1805.11936, we provided an alternative characterization of the class of associative, idempotent, symmetric, and nondecreasing operations on X_n.

Selected references

D. Black.

On the rationale of group decision-making. J Polit Economy, 56(1):23–34, 1948

D. Black.

The theory of committees and elections. Kluwer Academic Publishers, Dordrecht, 1987.

M. Couceiro, J. Devillet and J.-L. Marichal.

Chracterizations of idempotent discrete uninorms, Fuzzy Sets and Syst., 334:60–72, 2018.

B. De Baets, J. Fodor, D. Ruiz-Aguilera, and J. Torrens.

Idempotent uninorms on finite ordinal scales. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems, 17(1):1–14, 2009.

J. Devillet and B. Teheux.

Associative, idempotent, symmetric, and nondecreasing operations on chains. arXiv:1805.11936.

G. Grätzer.

General Lattice Theory, Second edition. Birkhäuser, 2003