# Derivations and differential operators on rings and fields 

Gergely Kiss

Joint work with Miklós Laczkovich,

University of Luxembourg

## Basic definition

Let $R=(R,+, \cdot)$ be a (commutative) ring.

- $R$ has characteristic 0 , if $n \cdot x \neq 0$ for every $x \in R \backslash\{0\}$ and for every positive integer $n$.
- $R$ has characteristic $n \in \mathbb{N}$ if $n$ is the smallest positive integer such that $n \cdot x=0$ for some $x \in R \backslash\{0\}$.
A commutative ring $R$ (with unit element $1 \neq 0$ ) is an integral domain if $x, y \in R \backslash\{0\}$ implies $x y \neq 0$ (no zero-divisors other than 0 ).
In this talk we assume that $R$ is an integral domain.


## Additive function and derivation

A function $f: R \rightarrow R$ is called

- an additive function if

$$
f(x+y)=f(x)+f(y) \quad \forall x, y \in R .
$$

- a derivation if $f$ is additive and satisfies the Leibniz rule, i.e

$$
f(x y)=x f(y)+y f(x) \quad \forall x, y \in R
$$

## Higher order derivations

Higher order derivation by Unger and Reich [3]:
The identically zero map is the only derivation of order 0 .
An additive function $f: R \rightarrow R$ is a derivation of order at most $n$ ( $n \in \mathbb{N}$ ) if there exists $B: R \times R \rightarrow R$ such that $B$ is a derivation of order $n-1$ in each of its variables and

$$
f(x y)-x f(y)-f(x) y=B(x, y)
$$

Let $\mathcal{D}_{n}\left(=\mathcal{D}_{n}(R)\right)$ denote the set of derivations of order at most $n$ defined on $R$.

Claim
A function $d: R \rightarrow R$ is a derivation if and only if $d \in \mathcal{D}_{1}$.
We say that $D$ is a derivation of order $n$ if $D \in \mathcal{D}_{n} \backslash \mathcal{D}_{n-1}$.

## Differential operators

We say that the map $D: R \rightarrow R$ is a differential operator of degree at most $n$ if $D$ is the linear combination (with coefficients from $R$ ) of maps of the form

$$
d_{1} \circ \cdots \circ d_{k}
$$

where $d_{1}, \ldots, d_{k}: R \rightarrow R$ are derivations and $0 \leq k \leq n$. Note: If $k=0$, then we interpret $d_{1} \circ \cdots \circ d_{k}$ as the identity function on $R$.
Let $\mathcal{O}_{n}\left(=\mathcal{O}_{n}(R)\right)$ denote the set of differential operators of order at most $n$ defined on $R$.
We say that $D$ is a differential operator of order $n$ if
$D \in \mathcal{O}_{n} \backslash \mathcal{O}_{n-1}$.

## Differential operators on fields

Let $K=\mathbb{Q}\left(t_{1}, \ldots, t_{k}\right)$, where $t_{1}, \ldots, t_{k}$ are algebraically independent over $\mathbb{Q}$.
Then $K$ is a field of all rational function of $t_{1}, \ldots, t_{k}$ with rational coefficients.

Claim

- The function $\frac{\partial}{\partial t_{i}}: K \rightarrow K$ is a derivation (on $K$ ) for every $i=1, \ldots, k$.
- Every derivation $d: K \rightarrow K$ can be written as

$$
d=\sum_{i=1}^{k} c_{i} \frac{\partial}{\partial t_{i}},
$$

for some $c_{i} \in K$.

## Differential operators on fields II.

Let $L$ be a field containing algebraically independent elements $t_{1}, \ldots, t_{n}$. A function $f: L \rightarrow L$ of the following form

$$
\begin{equation*}
f=\sum_{i_{1}+\ldots+i_{k} \leq n} c_{i_{1}, \ldots, i_{k}} \cdot \frac{\partial^{i_{1}+\cdots+i_{k}}}{\partial t_{1}^{i_{1}} \cdots \partial t_{k}^{i_{k}}} \tag{1}
\end{equation*}
$$

where the coefficients $c_{i_{1}, \ldots, i_{k}}$ belong to $L$, is a differential operator of degree at most $n$ on the field $L$.
The converse is also true if $K=\mathbb{Q}\left(t_{1}, \ldots, t_{k}\right)$ :
Proposition
$D: K \rightarrow K$ is a differential operator of degree at most $n$ if and only if $D$ is of the form (1).

## Connection I.

Now we go back to the case when $R$ is an integral domain.
Claim
Let $d_{1}, \ldots, d_{n} \in \mathcal{D}_{1}(R)$. Then $d_{1} \circ \cdots \circ d_{n} \in \mathcal{D}_{n}(R)$.
Clearly, this holds for every linear combination of compositions of length at most $n$. Thus

Claim
If $D \in \mathcal{O}_{n}$ such that $D(1)=0$, then $D \in \mathcal{D}_{n}$.
We denote by $\mathcal{O}_{n}^{0}$ the set of differential operators $D$ of degree at most $n$ satisfying $D(1)=0$.

## Questions

In the sequel we investigate two basic questions.
Question
Is there any converse of the previous claim?
Let $d_{1}, \ldots, d_{n} \in D_{1}(R)$.
Question
How can we guarantee that $d_{1} \circ \cdots \circ d_{n}$ is a derivation of order exactly $n$ ?

## Discrete topology

Let $X$ and $Y$ be nonempty sets. Then $Y^{X}$ denotes the set of all maps $f: X \rightarrow Y$.
We endow the space $Y$ with the discrete topology, and $Y^{X}$ with the product topology. The closure of a set $\mathcal{A} \subseteq Y^{X}$ w. r. t. the product topology is denoted by $\mathrm{cl} \mathcal{A}$.
A function $f: X \rightarrow Y$ belongs to $\operatorname{cl} \mathcal{A}$ if and only if, for every finite set $F \subseteq X$ there is a function $g \in \mathcal{A}$ such that $f(x)=g(x)$ for every $x \in F$.

## Results I.

## Theorem

Let $R$ be an integral domain of characteristic zero and let $n$ be a positive integer. Then for every $D: R \rightarrow R$, the following are equivalent.

1. $D \in \mathcal{D}_{n}(R)$,
2. $D \in \operatorname{clO}_{n}^{0}(R)$.

## Corollary

Let $R$ be an integral domain of characteristic zero and let $n$ be a positive integer. Then for every $D: R \rightarrow R$, the following are equivalent.

1. $D \in \mathcal{D}_{n}(R) \backslash \mathcal{D}_{n-1}(R)$,
2. $D \in \operatorname{clO} \mathcal{O}_{n}^{0}(R) \backslash \operatorname{clO}_{n-1}^{0}(R)$.

## Easy part $(2 \Rightarrow 1)$

## Lemma

For every ring $R$ and for every nonnegative integer $n$, the set $\mathcal{D}_{n}$ is closed in $R^{R}$.

Lemma
For every ring $R$ we have $\operatorname{clO}_{n}^{0} \subseteq \mathcal{D}_{n}$.

## Generalized polynomial

Let $G$ be an Abelian semigroup, and let $H$ be an Abelian group.

- Difference operator $\Delta_{g}(g \in G)$ :

$$
\Delta_{g} f(x)=f(x+g)-f(x)
$$

for every $f: G \rightarrow H$ and $x \in G$.

- A function $f: G \rightarrow H$ is a generalized polynomial, if there is a $k$ such that

$$
\begin{equation*}
\Delta_{g_{1}} \ldots \Delta_{g_{k+1}} f=0 \tag{2}
\end{equation*}
$$

for every $g_{1}, \ldots, g_{k+1} \in G$.

- The degree of the generalized polynomial $f$ : the smallest $k$ such that (2) holds for for every $g_{1}, \ldots, g_{k+1} \in G$. We denote it by $\operatorname{deg} f$.


## Extended theorem

Let $j: R \rightarrow R$ denote the identity function on $R$.
Theorem
Let $R$ be an integral domain of characteristic zero and $K$ its field of fractions and let $n$ be a positive integer. Then for every
$D: R \rightarrow R$, the following are equivalent

1. $D \in \mathcal{D}_{n}(R)$,
2. $D \in \operatorname{clO}_{n}^{0}(R)$.
3. $D$ is additive on $R, D(1)=0$, and $D / j$, as a map from the semigroup $R^{*}$ to $K$, is a generalized polynomial of degree at most $n$.

## $1 \Rightarrow 3$ and $3 \Rightarrow 2$

## Lemma

Let $R$ be a subring of $\mathbb{C}$, let $K \subseteq \mathbb{C}$ be its field of fractions, and suppose that the transcendence degree of $K$ over $\mathbb{Q}$ is finite. Let the map $D: R \rightarrow R$ be additive. If $D / j$, as a map from the semigroup $R^{*}$ to $\mathbb{C}$ is a generalized polynomial of degree at most $n$, then $D \in \mathcal{O}_{n}$.

## Lemma

Let $R$ be an integral domain and $K$ be its field of fractions. If $D \in \mathcal{D}_{n}$, then $p=D / j$, as a map from the semigroup $R^{*}$ to $K$ is a generalized polynomial of degree at most $n$.
Easy inductive argument: Using $p(x y)-p(x)-p(y)=B(x, y) / x y$ for every $x, y \in K^{*}$, we have

$$
\begin{equation*}
\Delta_{y} p(x)=p(y)+\frac{1}{y} \cdot \frac{B(x, y)}{x} \tag{3}
\end{equation*}
$$

## $3 \Rightarrow 1$

## Lemma

Let $R$ be an integral domain, and let $K$ be its field of fractions. If $d_{1}, \ldots, d_{n}$ are nonzero derivations on $R$ and $D=d_{1} \circ \ldots \circ d_{n}$, then $D / j$, as a map from the semigroup $R^{*}$ to $K$, is a generalized polynomial of degree at most n.
If $R$ is of characteristic zero, then $\operatorname{deg} D / j=n$.

## Corollary

Let $R$ be an integral domain, and let $K$ be its field of fractions. If $D \in \operatorname{clO} \mathcal{O}_{n}^{0}(R)$, then $D / j$, as a map from the semigroup $R^{*}$ to $K$, is a generalized polynomial of degree at most $n$.

## On fields of finite transcendence degree

## Theorem

Let $K$ be field of fractions with finite transcendence degree and let $n$ be a positive integer. Then for every $D: R \rightarrow R$, the following are equivalent:

1. $D \in \mathcal{D}_{n}(R) \backslash \mathcal{D}_{n-1}(R)$,
2. $D \in \operatorname{clO} \mathcal{O}_{n}^{0}(R) \backslash \operatorname{clO}_{n-1}^{0}(R)$.
3. $D$ is additive on $K, D(1)=0$, and $D / j: K^{*} \rightarrow K$ is a generalized polynomial of degree $n$.
4. $D$ is additive on $K, D(1)=0$, and $D / j: K^{*} \rightarrow K$ is a polynomial of degree $n$.

## An example

The previous Theorem and Corollary do not necessarily hold without assuming that $R$ is of characteristic zero. Let $F_{2}$ denote the field having two elements, and let $R=F_{2}[x]$ be the ring of polynomials with coefficients from $F_{2}$. We put

$$
D\left(\sum_{i=0}^{n} a_{i} \cdot x^{i}\right)=\sum_{i=2}^{n} \frac{i(i-1)}{2} \cdot a_{i} \cdot x^{i-2}
$$

for every $n \geq 0$ and $a_{0}, \ldots, a_{n} \in F_{2}$. Then

- $D \in \mathcal{D}_{2}(R)$.
- $D(x)=0$ and $D\left(x^{2}\right)=1$, thus $D \in \mathcal{D}_{2} \backslash \mathcal{D}_{1}$.


## An example (cont.)

Recall $R=F_{2}[x]$. Let $d_{1}$ and $d_{2}$ be arbitrary derivations on $R$. Then $d_{1} \circ d_{2}$ is also a derivation, i.e,

$$
\begin{equation*}
\left(d_{1} \circ d_{2}\right)\left(x^{k}\right)=k \cdot x^{k-1} \cdot d_{1}\left(d_{2}(x)\right), \quad(\forall k \in \mathbb{N} \cup\{0\}) \tag{4}
\end{equation*}
$$

Indeed, for $k \geq 2$

$$
\begin{aligned}
d_{1}\left(d_{2}\left(x^{k}\right)\right) & =d_{1}\left(k \cdot x^{k-1} \cdot d_{2}(x)\right) \\
& =k(k-1) \cdot x^{k-2} \cdot d_{1}(x) \cdot d_{2}(x)+k \cdot x^{k-1} \cdot d_{1}\left(d_{2}(x)\right) .
\end{aligned}
$$

Let $a=d_{1}\left(d_{2}(x)\right) \in R$, then $d_{1}\left(d_{2}(p)\right)=a \cdot \frac{\partial p}{\partial x}$ for every $p \in R$. This implies that $\mathcal{O}_{2}^{0}=\mathcal{O}_{1}^{0}$, and thus $\mathcal{O}_{2}^{0} \subsetneq \mathcal{D}_{2}$.

## Nonzero Characteristic

## Theorem

Let $R$ be an integral domain of characteristic zero, and let $n$ be a positive integer. If $d_{1}, \ldots, d_{n}$ are nonzero derivations on $R$, then $d_{1} \circ \ldots \circ d_{n} \in \mathcal{D}_{n} \backslash \mathcal{D}_{n-1}$.
In previous example we show $d(p)=\frac{\partial p}{\partial x} \quad\left(p \in F_{2}[x]\right)$ is derivation and $d \circ \cdots \circ d$ is also.

## Theorem (B. Ebanks '18)

Let $m$ and $n$ be a positive integers. Let $R$ be an integral domain of characteristic $m$ and $d_{1}, \ldots, d_{n}$ be nonzero derivations on $R$. Then $d_{1} \circ \ldots \circ d_{n} \in \mathcal{D}_{n} \backslash \mathcal{D}_{n-1}$ if and only if $n!<m$.

## Analogue of the main result

Theorem
Let $n$ be a positive integer, $m$ be a prime. Let $R$ be an integral domain of characteristic $m$ and $K$ its field of fractions. Then for every $D: R \rightarrow R$, the following are equivalent if and only if $n!<m$

1. $D \in \mathcal{D}_{n}(R)$,
2. $D \in \operatorname{clO}_{n}^{0}(R)$.
3. $D$ is additive on $R, D(1)=0$, and $D / j$, as a map from the semigroup $R^{*}$ to $K$, is a generalized polynomial of degree at most $n$.

## $R$ is not a integral domain

None of the previous results holds if the ring is not an integral domain. Not even for rings of characteristic zero. Let $R=\mathbb{Q}[x] \times \mathbb{Q}[x]$, and for every $(p, q) \in R$ we put $d_{1}(p, q)=\left(\frac{\partial p}{\partial x}, 0\right)$,
$d_{2}(p, q)=\left(0, \frac{\partial q}{\partial x}\right)$.
Then $d_{1}$ and $d_{2}$ are nonzero derivations on $R$, but $d_{1} \circ d_{2}=0$.

## Thank you for your kind attention.

B.Ebanks. Derivations and Leibniz differences on rings, Aequationes Mathematicae, submitted.G. Kiss and M. Laczkovich. Derivations and differential operators, Annales Univ. Sci. Budapest, accepted.
J. Unger and L. Reich. Derivationen höherer Ordnung als L ösungen von Funktionalgleichungen, volume 336 of Grazer Mathematische Berichte [Graz Mathematical Reports]. Karl-Franzens-Universität Graz, Graz, 1998.

