Derivations and differential operators on rings and fields

Gergely Kiss

Joint work with Miklós Laczkovich,

University of Luxembourg

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Basic definition

Let $R = (R, +, \cdot)$ be a (commutative) ring.

- *R* has characteristic 0, if *n* · *x* ≠ 0 for every *x* ∈ *R* \ {0} and for every positive integer *n*.
- R has characteristic n ∈ N if n is the smallest positive integer such that n · x = 0 for some x ∈ R \ {0}.

A commutative ring R (with unit element $1 \neq 0$) is an integral domain if $x, y \in R \setminus \{0\}$ implies $xy \neq 0$ (no zero-divisors other than 0).

In this talk we assume that R is an integral domain.

Additive function and derivation

- A function $f: R \rightarrow R$ is called
 - an additive function if

$$f(x+y) = f(x) + f(y) \quad \forall x, y \in R.$$

• a derivation if f is additive and satisfies the Leibniz rule, i.e

$$f(xy) = xf(y) + yf(x) \quad \forall x, y \in R$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Higher order derivations

Higher order derivation by Unger and Reich [3]: The identically zero map is the only derivation of order 0. An additive function $f: R \to R$ is a derivation of order at most n $(n \in \mathbb{N})$ if there exists $B: R \times R \to R$ such that B is a derivation of order n-1 in each of its variables and

$$f(xy) - xf(y) - f(x)y = B(x, y).$$

Let $\mathcal{D}_n(=\mathcal{D}_n(R))$ denote the set of derivations of order at most n defined on R.

Claim

A function $d : R \to R$ is a derivation if and only if $d \in \mathcal{D}_1$. We say that D is a derivation of order n if $D \in \mathcal{D}_n \setminus \mathcal{D}_{n-1}$.

Differential operators

We say that the map $D: R \rightarrow R$ is a differential operator of degree at most n if D is the linear combination (with coefficients from R) of maps of the form

 $d_1 \circ \cdots \circ d_k$,

where $d_1, \ldots, d_k : R \to R$ are derivations and $0 \le k \le n$. Note: If k = 0, then we interpret $d_1 \circ \cdots \circ d_k$ as the identity function on R.

Let $\mathcal{O}_n(=\mathcal{O}_n(R))$ denote the set of differential operators of order at most *n* defined on *R*.

We say that *D* is a differential operator of order *n* if $D \in \mathcal{O}_n \setminus \mathcal{O}_{n-1}$.

Differential operators on fields

Let $K = \mathbb{Q}(t_1, \ldots, t_k)$, where t_1, \ldots, t_k are algebraically independent over \mathbb{Q} . Then K is a field of all rational function of t_1, \ldots, t_k with rational coefficients.

Claim

- The function $\frac{\partial}{\partial t_i}: K \to K$ is a derivation (on K) for every $i = 1, \dots, k$.
- Every derivation $d: K \rightarrow K$ can be written as

$$d=\sum_{i=1}^k c_i \frac{\partial}{\partial t_i},$$

for some $c_i \in K$.

Differential operators on fields II.

Let *L* be a field containing algebraically independent elements t_1, \ldots, t_n . A function $f : L \to L$ of the following form

$$f = \sum_{i_1 + \dots + i_k \le n} c_{i_1, \dots, i_k} \cdot \frac{\partial^{i_1 + \dots + i_k}}{\partial t_1^{i_1} \cdots \partial t_k^{i_k}}$$
(1)

where the coefficients $c_{i_1,...,i_k}$ belong to L, is a *differential operator* of degree at most n on the field L. The converse is also true if $K = \mathbb{Q}(t_1, ..., t_k)$:

Proposition

 $D: K \rightarrow K$ is a differential operator of degree at most n if and only if D is of the form (1).

Connection I.

Now we go back to the case when R is an integral domain.

Claim

Let
$$d_1, \ldots, d_n \in \mathcal{D}_1(R)$$
. Then $d_1 \circ \cdots \circ d_n \in \mathcal{D}_n(R)$.

Clearly, this holds for every linear combination of compositions of length at most n. Thus

Claim

If $D \in \mathcal{O}_n$ such that D(1) = 0, then $D \in \mathcal{D}_n$.

We denote by \mathcal{O}_n^0 the set of differential operators D of degree at most n satisfying D(1) = 0.

Questions

In the sequel we investigate two basic questions.

Question

Is there any converse of the previous claim?

```
Let d_1, \ldots, d_n \in D_1(R).
```

Question

How can we guarantee that $d_1 \circ \cdots \circ d_n$ is a derivation of order exactly n?

Discrete topology

Let X and Y be nonempty sets. Then Y^X denotes the set of all maps $f: X \to Y$.

We endow the space Y with the discrete topology, and Y^X with the product topology. The closure of a set $\mathcal{A} \subseteq Y^X$ w. r. t. the product topology is denoted by $cl\mathcal{A}$.

A function $f: X \to Y$ belongs to $cl\mathcal{A}$ if and only if, for every finite set $F \subseteq X$ there is a function $g \in \mathcal{A}$ such that f(x) = g(x) for every $x \in F$.

Results I.

Theorem

Let R be an integral domain of characteristic zero and let n be a positive integer. Then for every $D \colon R \to R$, the following are equivalent.

- 1. $D \in \mathcal{D}_n(R)$,
- 2. $D \in \operatorname{cl}\mathcal{O}_n^0(R)$.

Corollary

Let R be an integral domain of characteristic zero and let n be a positive integer. Then for every $D \colon R \to R$, the following are equivalent.

- 1. $D \in \mathcal{D}_n(R) \setminus \mathcal{D}_{n-1}(R)$,
- 2. $D \in \operatorname{cl}\mathcal{O}_n^0(R) \setminus \operatorname{cl}\mathcal{O}_{n-1}^0(R)$.

Easy part $(2 \Rightarrow 1)$

Lemma

For every ring R and for every nonnegative integer n, the set \mathcal{D}_n is closed in \mathbb{R}^R .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lemma

For every ring R we have $cl\mathcal{O}_n^0 \subseteq \mathcal{D}_n$.

Generalized polynomial

Let G be an Abelian semigroup, and let H be an Abelian group.

• Difference operator Δ_g ($g \in G$):

$$\Delta_g f(x) = f(x+g) - f(x)$$

for every $f: G \to H$ and $x \in G$.

• A function $f : G \rightarrow H$ is a generalized polynomial, if there is a k such that

$$\Delta_{g_1} \dots \Delta_{g_{k+1}} f = 0 \tag{2}$$

for every $g_1, \ldots, g_{k+1} \in G$.

 The degree of the generalized polynomial f: the smallest k such that (2) holds for for every g₁,..., g_{k+1} ∈ G. We denote it by deg f.

Extended theorem

Let $j : R \to R$ denote the identity function on R.

Theorem

Let R be an integral domain of characteristic zero and K its field of fractions and let n be a positive integer. Then for every D: $R \rightarrow R$, the following are equivalent

- 1. $D \in \mathcal{D}_n(R)$,
- 2. $D \in \mathrm{cl}\mathcal{O}_n^0(R)$.
- 3. D is additive on R, D(1) = 0, and D/j, as a map from the semigroup R^* to K, is a generalized polynomial of degree at most n.

$1 \Rightarrow 3 \text{ and } 3 \Rightarrow 2$

Lemma

Let R be a subring of \mathbb{C} , let $K \subseteq \mathbb{C}$ be its field of fractions, and suppose that the transcendence degree of K over \mathbb{Q} is finite. Let the map $D : R \to R$ be additive. If D/j, as a map from the semigroup R^* to \mathbb{C} is a generalized polynomial of degree at most n, then $D \in \mathcal{O}_n$.

Lemma

Let R be an integral domain and K be its field of fractions. If $D \in \mathcal{D}_n$, then p = D/j, as a map from the semigroup R^* to K is a generalized polynomial of degree at most n.

Easy inductive argument: Using p(xy) - p(x) - p(y) = B(x, y)/xy for every $x, y \in K^*$, we have

$$\Delta_{y}p(x) = p(y) + \frac{1}{y} \cdot \frac{B(x, y)}{x}.$$
(3)

$3 \Rightarrow 1$

Lemma

Let R be an integral domain, and let K be its field of fractions. If d_1, \ldots, d_n are nonzero derivations on R and $D = d_1 \circ \ldots \circ d_n$, then D/j, as a map from the semigroup R^* to K, is a generalized polynomial of degree at most n. If R is of characteristic zero, then deg D/j = n.

Corollary

Let R be an integral domain, and let K be its field of fractions. If $D \in cl\mathcal{O}_n^0(R)$, then D/j, as a map from the semigroup R^* to K, is a generalized polynomial of degree at most n.

On fields of finite transcendence degree

Theorem

Let K be field of fractions with finite transcendence degree and let n be a positive integer. Then for every $D: R \rightarrow R$, the following are equivalent:

- 1. $D \in \mathcal{D}_n(R) \setminus \mathcal{D}_{n-1}(R)$,
- 2. $D \in \operatorname{cl}\mathcal{O}_n^0(R) \setminus \operatorname{cl}\mathcal{O}_{n-1}^0(R)$.
- 3. D is additive on K, D(1) = 0, and $D/j : K^* \to K$ is a generalized polynomial of degree n.
- 4. D is additive on K, D(1) = 0, and $D/j : K^* \to K$ is a polynomial of degree n.

An example

The previous Theorem and Corollary do not necessarily hold without assuming that R is of characteristic zero. Let F_2 denote the field having two elements, and let $R = F_2[x]$ be the ring of polynomials with coefficients from F_2 . We put

$$D\left(\sum_{i=0}^{n} a_i \cdot x^i\right) = \sum_{i=2}^{n} \frac{i(i-1)}{2} \cdot a_i \cdot x^{i-2}$$

for every $n \ge 0$ and $a_0, \ldots, a_n \in F_2$. Then

- $D \in \mathcal{D}_2(R)$.
- D(x) = 0 and $D(x^2) = 1$, thus $D \in \mathcal{D}_2 \setminus \mathcal{D}_1$.

An example (cont.)

Recall $R = F_2[x]$. Let d_1 and d_2 be arbitrary derivations on R. Then $d_1 \circ d_2$ is also a derivation, i.e,

$$(d_1 \circ d_2)(x^k) = k \cdot x^{k-1} \cdot d_1(d_2(x)), \qquad (\forall k \in \mathbb{N} \cup \{0\}) \qquad (4)$$

Indeed, for $k \ge 2$

$$d_1(d_2(x^k)) = d_1(k \cdot x^{k-1} \cdot d_2(x))$$

= $k(k-1) \cdot x^{k-2} \cdot d_1(x) \cdot d_2(x) + k \cdot x^{k-1} \cdot d_1(d_2(x)).$

Let $a = d_1(d_2(x)) \in R$, then $d_1(d_2(p)) = a \cdot \frac{\partial p}{\partial x}$ for every $p \in R$. This implies that $\mathcal{O}_2^0 = \mathcal{O}_1^0$, and thus $\mathcal{O}_2^0 \subsetneq \mathcal{D}_2$.

Nonzero Characteristic

Theorem

Let R be an integral domain of characteristic zero, and let n be a positive integer. If d_1, \ldots, d_n are nonzero derivations on R, then $d_1 \circ \ldots \circ d_n \in \mathcal{D}_n \setminus \mathcal{D}_{n-1}$.

In previous example we show $d(p) = \frac{\partial p}{\partial x}$ $(p \in F_2[x])$ is derivation and $d \circ \cdots \circ d$ is also.

Theorem (B. Ebanks '18)

Let *m* and *n* be a positive integers. Let *R* be an integral domain of characteristic *m* and d_1, \ldots, d_n be nonzero derivations on *R*. Then $d_1 \circ \ldots \circ d_n \in \mathcal{D}_n \setminus \mathcal{D}_{n-1}$ if and only if n! < m.

Analogue of the main result

Theorem

Let n be a positive integer, m be a prime. Let R be an integral domain of characteristic m and K its field of fractions. Then for every D: $R \rightarrow R$, the following are equivalent if and only if n! < m

- 1. $D \in \mathcal{D}_n(R)$,
- 2. $D \in \mathrm{cl}\mathcal{O}_n^0(R)$.
- 3. D is additive on R, D(1) = 0, and D/j, as a map from the semigroup R^* to K, is a generalized polynomial of degree at most n.

R is not a integral domain

None of the previous results holds if the ring is not an integral domain. Not even for rings of characteristic zero. Let $R = \mathbb{Q}[x] \times \mathbb{Q}[x]$, and for every $(p, q) \in R$ we put $d_1(p, q) = (\frac{\partial p}{\partial x}, 0)$, $d_2(p, q) = (0, \frac{\partial q}{\partial x})$. Then d_1 and d_2 are nonzero derivations on R, but $d_1 \circ d_2 = 0$.

Thank you for your kind attention.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- B.Ebanks. Derivations and Leibniz differences on rings, Aequationes Mathematicae, submitted.
- G. Kiss and M. Laczkovich. *Derivations and differential operators*, Annales Univ. Sci. Budapest, accepted.
- J. Unger and L. Reich. Derivationen höherer Ordnung als L ösungen von Funktionalgleichungen, volume 336 of Grazer Mathematische Berichte [Graz Mathematical Reports]. Karl-Franzens-Universität Graz, Graz, 1998.