
Derivations and differential operators on rings
and fields

Gergely Kiss

Joint work with Miklós Laczkovich,

University of Luxembourg



Basic definition

Let R = (R,+, ·) be a (commutative) ring.

• R has characteristic 0, if n · x 6= 0 for every x ∈ R \ {0} and
for every positive integer n.

• R has characteristic n ∈ N if n is the smallest positive integer
such that n · x = 0 for some x ∈ R \ {0}.

A commutative ring R (with unit element 1 6= 0) is an integral
domain if x , y ∈ R \ {0} implies xy 6= 0 (no zero-divisors other
than 0).
In this talk we assume that R is an integral domain.



Additive function and derivation

A function f : R → R is called

• an additive function if

f (x + y) = f (x) + f (y) ∀x , y ∈ R.

• a derivation if f is additive and satisfies the Leibniz rule, i.e

f (xy) = xf (y) + yf (x) ∀x , y ∈ R.



Higher order derivations

Higher order derivation by Unger and Reich [3]:
The identically zero map is the only derivation of order 0.
An additive function f : R → R is a derivation of order at most n
(n ∈ N) if there exists B : R × R → R such that B is a derivation
of order n − 1 in each of its variables and

f (xy)− xf (y)− f (x)y = B(x , y).

Let Dn(= Dn(R)) denote the set of derivations of order at most n
defined on R.

Claim
A function d : R → R is a derivation if and only if d ∈ D1.

We say that D is a derivation of order n if D ∈ Dn \ Dn−1.



Differential operators

We say that the map D : R → R is a differential operator of
degree at most n if D is the linear combination (with coefficients
from R) of maps of the form

d1 ◦ · · · ◦ dk ,

where d1, . . . , dk : R → R are derivations and 0 ≤ k ≤ n.
Note: If k = 0, then we interpret d1 ◦ · · · ◦ dk as the identity
function on R.
Let On(= On(R)) denote the set of differential operators of order
at most n defined on R.
We say that D is a differential operator of order n if
D ∈ On \ On−1.



Differential operators on fields

Let K = Q(t1, . . . , tk), where t1, . . . , tk are algebraically
independent over Q.
Then K is a field of all rational function of t1, . . . , tk with rational
coefficients.

Claim

• The function ∂
∂ti

: K → K is a derivation (on K) for every
i = 1, . . . , k.

• Every derivation d : K → K can be written as

d =
k∑

i=1

ci
∂

∂ti
,

for some ci ∈ K.



Differential operators on fields II.

Let L be a field containing algebraically independent elements
t1, . . . , tn. A function f : L→ L of the following form

f =
∑

i1+...+ik≤n

ci1,...,ik ·
∂ i1+···+ik

∂t i11 · · · ∂t
ik
k

(1)

where the coefficients ci1,...,ik belong to L, is a differential operator
of degree at most n on the field L.
The converse is also true if K = Q(t1, . . . , tk):

Proposition

D : K → K is a differential operator of degree at most n if and
only if D is of the form (1).



Connection I.

Now we go back to the case when R is an integral domain.

Claim
Let d1, . . . , dn ∈ D1(R). Then d1 ◦ · · · ◦ dn ∈ Dn(R).

Clearly, this holds for every linear combination of compositions of
length at most n. Thus

Claim
If D ∈ On such that D(1) = 0, then D ∈ Dn.

We denote by O0
n the set of differential operators D of degree at

most n satisfying D(1) = 0.



Questions

In the sequel we investigate two basic questions.

Question
Is there any converse of the previous claim?

Let d1, . . . , dn ∈ D1(R).

Question
How can we guarantee that d1 ◦ · · · ◦ dn is a derivation of order
exactly n?



Discrete topology

Let X and Y be nonempty sets. Then Y X denotes the set of all
maps f : X → Y .
We endow the space Y with the discrete topology, and Y X with
the product topology. The closure of a set A ⊆ Y X w. r. t. the
product topology is denoted by clA.
A function f : X → Y belongs to clA if and only if, for every finite
set F ⊆ X there is a function g ∈ A such that f (x) = g(x) for
every x ∈ F .



Results I.

Theorem
Let R be an integral domain of characteristic zero and let n be a
positive integer. Then for every D : R → R, the following are
equivalent.

1. D ∈ Dn(R),

2. D ∈ clO0
n(R).

Corollary

Let R be an integral domain of characteristic zero and let n be a
positive integer. Then for every D : R → R, the following are
equivalent.

1. D ∈ Dn(R) \ Dn−1(R),

2. D ∈ clO0
n(R) \ clO0

n−1(R).



Easy part (2⇒ 1)

Lemma
For every ring R and for every nonnegative integer n, the set Dn is
closed in RR .

Lemma
For every ring R we have clO0

n ⊆ Dn.



Generalized polynomial

Let G be an Abelian semigroup, and let H be an Abelian group.

• Difference operator ∆g (g ∈ G ):

∆g f (x) = f (x + g)− f (x)

for every f : G → H and x ∈ G .

• A function f : G → H is a generalized polynomial, if there is a
k such that

∆g1 . . .∆gk+1
f = 0 (2)

for every g1, . . . , gk+1 ∈ G .

• The degree of the generalized polynomial f : the smallest k
such that (2) holds for for every g1, . . . , gk+1 ∈ G . We denote
it by deg f .



Extended theorem

Let j : R → R denote the identity function on R.

Theorem
Let R be an integral domain of characteristic zero and K its field
of fractions and let n be a positive integer. Then for every
D : R → R, the following are equivalent

1. D ∈ Dn(R),

2. D ∈ clO0
n(R).

3. D is additive on R, D(1) = 0, and D/j , as a map from the
semigroup R∗ to K, is a generalized polynomial of degree at
most n.



1⇒ 3 and 3⇒ 2

Lemma
Let R be a subring of C, let K ⊆ C be its field of fractions, and
suppose that the transcendence degree of K over Q is finite. Let
the map D : R → R be additive. If D/j , as a map from the
semigroup R∗ to C is a generalized polynomial of degree at most
n, then D ∈ On.

Lemma
Let R be an integral domain and K be its field of fractions. If
D ∈ Dn, then p = D/j , as a map from the semigroup R∗ to K is a
generalized polynomial of degree at most n.

Easy inductive argument: Using p(xy)− p(x)− p(y) = B(x , y)/xy
for every x , y ∈ K ∗, we have

∆yp(x) = p(y) +
1

y
· B(x , y)

x
. (3)



3⇒ 1

Lemma
Let R be an integral domain, and let K be its field of fractions. If
d1, . . . , dn are nonzero derivations on R and D = d1 ◦ . . . ◦ dn, then
D/j , as a map from the semigroup R∗ to K, is a generalized
polynomial of degree at most n.
If R is of characteristic zero, then degD/j = n.

Corollary

Let R be an integral domain, and let K be its field of fractions. If
D ∈ clO0

n(R), then D/j , as a map from the semigroup R∗ to K, is
a generalized polynomial of degree at most n.



On fields of finite transcendence degree

Theorem
Let K be field of fractions with finite transcendence degree and let
n be a positive integer. Then for every D : R → R, the following
are equivalent:

1. D ∈ Dn(R) \ Dn−1(R),

2. D ∈ clO0
n(R) \ clO0

n−1(R).

3. D is additive on K, D(1) = 0, and D/j : K ∗ → K is a
generalized polynomial of degree n.

4. D is additive on K, D(1) = 0, and D/j : K ∗ → K is a
polynomial of degree n.



An example

The previous Theorem and Corollary do not necessarily hold
without assuming that R is of characteristic zero.
Let F2 denote the field having two elements, and let R = F2[x ] be
the ring of polynomials with coefficients from F2. We put

D

(
n∑

i=0

ai · x i
)

=
n∑

i=2

i(i − 1)

2
· ai · x i−2

for every n ≥ 0 and a0, . . . , an ∈ F2. Then

• D ∈ D2(R).

• D(x) = 0 and D(x2) = 1, thus D ∈ D2 \ D1.



An example (cont.)

Recall R = F2[x ]. Let d1 and d2 be arbitrary derivations on R.
Then d1 ◦ d2 is also a derivation, i.e,

(d1 ◦ d2)(xk) = k · xk−1 · d1(d2(x)), (∀k ∈ N ∪ {0}) (4)

Indeed, for k ≥ 2

d1(d2(xk)) = d1(k · xk−1 · d2(x))

= k(k − 1) · xk−2 · d1(x) · d2(x) + k · xk−1 · d1(d2(x)).

Let a = d1(d2(x)) ∈ R, then d1(d2(p)) = a · ∂p∂x for every p ∈ R.
This implies that O0

2 = O0
1, and thus O0

2 ( D2.



Nonzero Characteristic

Theorem
Let R be an integral domain of characteristic zero, and let n be a
positive integer. If d1, . . . , dn are nonzero derivations on R, then
d1 ◦ . . . ◦ dn ∈ Dn \ Dn−1.

In previous example we show d(p) = ∂p
∂x (p ∈ F2[x ]) is derivation

and d ◦ · · · ◦ d is also.

Theorem (B. Ebanks ’18)

Let m and n be a positive integers. Let R be an integral domain of
characteristic m and d1, . . . , dn be nonzero derivations on R. Then
d1 ◦ . . . ◦ dn ∈ Dn \ Dn−1 if and only if n! < m.



Analogue of the main result

Theorem
Let n be a positive integer, m be a prime. Let R be an integral
domain of characteristic m and K its field of fractions. Then for
every D : R → R, the following are equivalent if and only if n! < m

1. D ∈ Dn(R),

2. D ∈ clO0
n(R).

3. D is additive on R, D(1) = 0, and D/j , as a map from the
semigroup R∗ to K, is a generalized polynomial of degree at
most n.



R is not a integral domain

None of the previous results holds if the ring is not an integral
domain. Not even for rings of characteristic zero.
Let R = Q[x ]×Q[x ], and for every (p, q) ∈ R we put
d1(p, q) = (∂p∂x , 0),

d2(p, q) = (0, ∂q∂x ).
Then d1 and d2 are nonzero derivations on R, but d1 ◦ d2 = 0.



Thank you for your kind
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