On bisymmetric and quasitrivial operations 56th ISFE

Jimmy Devillet

University of Luxembourg

Connectedness and Contour Plots

Let X be a nonempty set and let $F: X^{2} \rightarrow X$

Definition

- The points $(x, y),(u, v) \in X^{2}$ are F-connected if

$$
F(x, y)=F(u, v)
$$

- The point $(x, y) \in X^{2}$ is F-isolated if it is not F-connected to another point in X^{2}

Connectedness and Contour Plots

For any integer $n \geq 1$, let $X_{n}=\{1, \ldots, n\}$ endowed with \leq
Example. $F(x, y)=\max \{x, y\}$ on $\left(X_{4}, \leq\right)$

Bisymmetry and quasitriviality

Definition

$F: X^{2} \rightarrow X$ is said to be

- bisymmetric if

$$
F(F(x, y), F(u, v))=F(F(x, u), F(y, v)) \quad x, y, u, v \in X
$$

- quasitrivial if

$$
F(x, y) \in\{x, y\} \quad x, y \in X
$$

Lemma (Kepka, 1981)

If F is bisymmetric and quasitrivial then it is associative

Weak orderings

Recall that a binary relation R on X is said to be

- total if $\forall x, y: x R y$ or $y R x$
- transitive if $\forall x, y, z: x R y$ and $y R z$ implies $x R z$

A weak ordering on X is a binary relation \precsim on X that is total and transitive.

- symmetric part: ~
- asymmetric part: \prec

Recall that \sim is an equivalence relation on X and that \prec induces a linear ordering on the quotient set X / \sim

Motivation

Theorem (Länger, 1980)

F is associative and quasitrivial iff there exists a weak ordering \precsim on X such that

$$
\left.F\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{\precsim}\right|_{A \times B}, & \text { if } A \neq B, \\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim\right.
$$

If $X=X_{n}=\{1, \ldots, n\}$, then

$$
x \precsim y \quad \Longleftrightarrow \quad\left|F^{-1}(\{x\})\right| \leq\left|F^{-1}(\{y\})\right|
$$

Motivation

$$
\left.F\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{\precsim}\right|_{A \times B}, & \text { if } A \neq B, \\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim\right.
$$

$$
x \precsim y \quad \Longleftrightarrow \quad\left|F^{-1}(\{x\})\right| \leq\left|F^{-1}(\{y\})\right|
$$

Motivation

Quasilinearity

$$
\text { Let } \precsim \text { be a weak ordering on } X
$$

Definition

\precsim is quasilinear if there exist no pairwise distinct $a, b, c \in X$ such that $a \prec b \sim c$

Example. On $X=\{1,2,3,4\}$, consider the \precsim

$$
2 \sim 3 \prec 1 \prec 4
$$

Quasilinearity

$$
\left.F\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{\precsim}\right|_{A \times B}, & \text { if } A \neq B, \\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim\right.
$$

$1<2<3$
\precsim is not quasilinear and F is not bisymmetric

Quasilinearity

$$
x \precsim y \quad \Longleftrightarrow \quad\left|F^{-1}(\{x\})\right| \leq\left|F^{-1}(\{y\})\right|
$$

\precsim is quasilinear and F is bisymmetric

A characterization

$$
\left.F\right|_{A \times B}= \begin{cases}\left.\max _{\precsim}\right|_{A \times B}, & \text { if } A \neq B, \quad \forall A, B \in X / \sim \quad(*) \\ \left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,\end{cases}
$$

Theorem

For any $F: X^{2} \rightarrow X$, the following are equivalent.
(i) F is bisymmetric and quasitrivial
(ii) F is of the form $(*)$ for some quasilinear \precsim

A characterization

We denote the set of minimal elements of X for \precsim by $\min _{\precsim} X$

Bisymmetric and quasitrivial operations

The nondecreasing case

$$
\text { Let } \leq \text { be a linear ordering on } X
$$

Definition. $F: X^{2} \rightarrow X$ is nondecreasing for \leq if

$$
F(x, y) \leq F\left(x^{\prime}, y^{\prime}\right) \quad \text { whenever } \quad x \leq x^{\prime} \text { and } y \leq y^{\prime}
$$

The nondecreasing case

$$
\left.F\right|_{A \times B}= \begin{cases}\left.\max _{\precsim}\right|_{A \times B}, & \text { if } A \neq B, \quad \forall A, B \in X / \sim \\ \left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,\end{cases}
$$

$$
1<2<3
$$

Weakly single-peaked weak orderings

Definition (Couceiro et al., 2018)
\precsim is said to be weakly single-peaked for \leq if for any $a, b, c \in X$,

$$
a<b<c \quad \Longrightarrow \quad b \prec a \quad \text { or } \quad b \prec c \quad \text { or } \quad a \sim b \sim c
$$

Example. The weak ordering \precsim on

$$
X_{4}=\{1<2<3<4\}
$$

defined by

$$
2 \prec 1 \sim 3 \prec 4
$$

is weakly single-peaked for \leq

Weakly single-peaked weak orderings

$$
x \precsim y \quad \Longleftrightarrow \quad\left|F^{-1}(\{x\})\right| \leq\left|F^{-1}(\{y\})\right|
$$

Associative quasitrivial and nondecreasing operations

$$
\left.F\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{\precsim}\right|_{A \times B}, & \text { if } A \neq B, \tag{*}\\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim\right.
$$

Theorem (Couceiro et al., 2018)

For any $F: X^{2} \rightarrow X$, the following are equivalent.
(i) F is associative, quasitrivial, and nondecreasing
(ii) F is of the form $(*)$ for some \precsim that is weakly single-peaked for \leq

Bisymmetric quasitrivial and nondecreasing operations

$$
\left.F\right|_{A \times B}=\left\{\begin{array}{ll}
\left.\max _{\precsim}\right|_{A \times B}, & \text { if } A \neq B, \tag{*}\\
\left.\pi_{1}\right|_{A \times B} \text { or }\left.\pi_{2}\right|_{A \times B}, & \text { if } A=B,
\end{array} \quad \forall A, B \in X / \sim\right.
$$

Theorem

For any $F: X^{2} \rightarrow X$, the following are equivalent.
(i) F is bisymmetric, quasitrivial, and nondecreasing
(ii) F is of the form $(*)$ for some \precsim that is quasilinear and weakly single-peaked for \leq

Final remarks

In arXiv: 1712.07856
(1) Characterizations of the class of bisymmetric and quasitrivial operations as well as the subclass of those operations that are nondecreasing
(2) New integer sequences (http://www.oeis.org)

- Number of bisymmetric and quasitrivial operations: A296943
- Number of bisymmetric, quasitrivial, and nondecreasing operations: A296953
- . . .

Selected references

击 N. L. Ackerman.
A characterization of quasitrivial n-semigroups.
To appear in Algebra Universalis.

M. Couceiro, J. Devillet, and J.-L. Marichal.

Quasitrivial semigroups: characterizations and enumerations.
Semigroup forum, In press. arXiv:1709.09162.
J. Devillet.

Bisymmetric and quasitrivial operations: characterizations and enumerations.
arXiv: 1712.07856.
Z. Fitzsimmons.

Single-peaked consistency for weak orders is easy.
In Proc. of the 15th Conf. on Theoretical Aspects of Rationality and Knowledge (TARK 2015), pages 127-140, June 2015. arXiv:1406.4829.

T. Kepka.

Quasitrivial groupoids and balanced identities.
Acta Univ. Carolin. - Math. Phys., 22(2):49-64, 1981.
H. Länger.

The free algebra in the variety generated by quasi-trivial semigroups.
Semigroup forum, 20:151-156, 1980.

