On bisymmetric and quasitrivial operations 56th ISFE

Jimmy Devillet

University of Luxembourg

Connectedness and Contour Plots

Let X be a nonempty set and let $F: X^2 \to X$

Definition

• The points $(x, y), (u, v) \in X^2$ are *F*-connected if

$$F(x,y) = F(u,v)$$

The point (x, y) ∈ X² is *F-isolated* if it is not *F*-connected to another point in X²

Connectedness and Contour Plots

For any integer $n \ge 1$, let $X_n = \{1, ..., n\}$ endowed with \le

Example. $F(x, y) = \max\{x, y\}$ on (X_4, \leq)

Bisymmetry and quasitriviality

Definition

- $F: X^2 \to X$ is said to be
 - bisymmetric if

$$F(F(x,y),F(u,v)) = F(F(x,u),F(y,v)) \qquad x,y,u,v \in X$$

• quasitrivial if

$$F(x,y) \in \{x,y\}$$
 $x,y \in X$

Lemma (Kepka, 1981)

If F is bisymmetric and quasitrivial then it is associative

Weak orderings

Recall that a binary relation R on X is said to be

- total if $\forall x, y$: xRy or yRx
- *transitive* if $\forall x, y, z$: *xRy* and *yRz* implies *xRz*

A weak ordering on X is a binary relation \preceq on X that is total and transitive.

- ullet symmetric part: \sim
- asymmetric part: \prec

Recall that \sim is an equivalence relation on X and that \prec induces a linear ordering on the quotient set X/\sim

Motivation

Theorem (Länger, 1980)

 ${\it F}$ is associative and quasitrivial iff there exists a weak ordering \precsim on ${\it X}$ such that

$$F|_{A\times B} = \begin{cases} \max_{\preceq} |_{A\times B}, & \text{if } A \neq B, \\ \pi_1|_{A\times B} \text{ or } \pi_2|_{A\times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim$$

If $X = X_n = \{1, \ldots, n\}$, then

$$x \precsim y \quad \Longleftrightarrow \quad |F^{-1}(\{x\})| \leq |F^{-1}(\{y\})|$$

Motivation

$$F|_{A\times B} = \begin{cases} \max_{\preceq} |_{A\times B}, & \text{if } A \neq B, \\ \pi_1|_{A\times B} \text{ or } \pi_2|_{A\times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim$$

$$x \precsim y \quad \Longleftrightarrow \quad |F^{-1}(\{x\})| \leq |F^{-1}(\{y\})|$$

Motivation

 $F(F(2,3),F(1,2)) = 3 \neq 1 = F(F(2,1),F(3,2))$ $\implies F \text{ is not bisymmetric}$

Quasilinearity

Let \precsim be a weak ordering on X

Definition

 \precsim is *quasilinear* if there exist no pairwise distinct $a,b,c\in X$ such that $a\prec b\sim c$

Example. On $X = \{1, 2, 3, 4\}$, consider the \preceq

 $2\sim 3 \prec 1 \prec 4$

Quasilinearity

$$F|_{A\times B} = \begin{cases} \max_{\preceq} |_{A\times B}, & \text{if } A \neq B, \\ \pi_1|_{A\times B} \text{ or } \pi_2|_{A\times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim$$

 \precsim is not quasilinear and F is not bisymmetric

Quasilinearity

$$x \precsim y \quad \Longleftrightarrow \quad |F^{-1}(\{x\})| \le |F^{-1}(\{y\})|$$

 \precsim is quasilinear and F is bisymmetric

A characterization

$$F|_{A \times B} = \begin{cases} \max_{\preceq} |_{A \times B}, & \text{if } A \neq B, \\ \pi_1|_{A \times B} \text{ or } \pi_2|_{A \times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim \quad (*)$$

Theorem

For any $F: X^2 \to X$, the following are equivalent.

(i) F is bisymmetric and quasitrivial

(ii) F is of the form (*) for some quasilinear \preceq

A characterization

We denote the set of minimal elements of X for \preceq by min $\preceq X$

 $\min_{\preceq} X \qquad X \setminus \min_{\preceq} X$

Bisymmetric and quasitrivial operations

The nondecreasing case

Let \leq be a linear ordering on X

Definition. $F: X^2 \to X$ is *nondecreasing for* \leq if $F(x, y) \leq F(x', y')$ whenever $x \leq x'$ and $y \leq y'$

The nondecreasing case

$$F|_{A\times B} = \begin{cases} \max_{\prec} |_{A\times B}, & \text{if } A \neq B, \\ \pi_1|_{A\times B} \text{ or } \pi_2|_{A\times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim$$

Weakly single-peaked weak orderings

Definition (Couceiro et al., 2018) \preceq is said to be *weakly single-peaked for* \leq if for any $a, b, c \in X$,

$$a < b < c \implies b \prec a \text{ or } b \prec c \text{ or } a \sim b \sim c$$

Example. The weak ordering \precsim on

$$X_4 = \{1 < 2 < 3 < 4\}$$

defined by

$$2 \prec 1 \sim 3 \prec 4$$

is weakly single-peaked for \leq

Weakly single-peaked weak orderings

$$x \precsim y \quad \Longleftrightarrow \quad |F^{-1}(\{x\})| \leq |F^{-1}(\{y\})|$$

Associative quasitrivial and nondecreasing operations

$$F|_{A\times B} = \begin{cases} \max_{\preceq} |_{A\times B}, & \text{if } A \neq B, \\ \pi_1|_{A\times B} \text{ or } \pi_2|_{A\times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim \quad (*)$$

Theorem (Couceiro et al., 2018)

For any F: X² → X, the following are equivalent.
(i) F is associative, quasitrivial, and nondecreasing
(ii) F is of the form (*) for some that is weakly single-peaked for ≤

Bisymmetric quasitrivial and nondecreasing operations

$$F|_{A\times B} = \begin{cases} \max_{\preceq} |_{A\times B}, & \text{if } A \neq B, \\ \pi_1|_{A\times B} \text{ or } \pi_2|_{A\times B}, & \text{if } A = B, \end{cases} \quad \forall A, B \in X/\sim \quad (*)$$

Theorem

For any $F: X^2 \to X$, the following are equivalent.

(i) F is bisymmetric, quasitrivial, and nondecreasing

(ii) F is of the form (*) for some \precsim that is quasilinear and weakly single-peaked for \leq

Final remarks

In arXiv: 1712.07856

- Characterizations of the class of bisymmetric and quasitrivial operations as well as the subclass of those operations that are nondecreasing
- New integer sequences (http://www.oeis.org)
 - Number of bisymmetric and quasitrivial operations: A296943
 - Number of bisymmetric, quasitrivial, and nondecreasing operations: A296953
 - . . .

Selected references

N. L. Ackerman.

A characterization of quasitrivial *n*-semigroups. To appear in *Algebra Universalis*.

M. Couceiro, J. Devillet, and J.-L. Marichal. Quasitrivial semigroups: characterizations and enumerations. *Semigroup forum*, In press. arXiv:1709.09162.

J. Devillet.

Bisymmetric and quasitrivial operations: characterizations and enumerations. arXiv: 1712.07856.

Z. Fitzsimmons.

Single-peaked consistency for weak orders is easy.

In Proc. of the 15th Conf. on Theoretical Aspects of Rationality and Knowledge (TARK 2015), pages 127–140, June 2015. arXiv:1406.4829.

T. Kepka.

Quasitrivial groupoids and balanced identities. Acta Univ. Carolin. - Math. Phys., 22(2):49-64, 1981.

H. Länger.

The free algebra in the variety generated by quasi-trivial semigroups. *Semigroup forum*, 20:151–156, 1980.