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ABSTRACT. For all number fields the failure of maximality for the Kummer extensions is
bounded in a very strong sense. We give a direct proof (without relying on the Bashmakov-
Ribet method) of the fact that if G is a finitely generated and torsion-free multiplicative sub-
group of a number field K having rank r, then the ratio between nr and the Kummer degree
[K(ζn,

n
√
G) : K(ζn)] is bounded independently of n. We then apply this result to generalise

to higher rank a theorem of Ziegler from 2006 about the multiplicative order of the reductions
of algebraic integers (the multiplicative order must be in a given arithmetic progression, and an
additional Frobenius condition may be considered).

1. INTRODUCTION

1.1. Kummer theory. Consider a number field K and a finitely generated subgroup G of the
multiplicative group K×. We denote by K(ζn) the n-th cyclotomic extension of K and by
K(ζn,

n
√
G) the n-th Kummer extension of K related to G i.e. the smallest extension of K that

contains all algebraic numbers whose n-th power lies in G. We prove the following general
result:

Theorem 1. Let G be a finitely generated and torsion-free subgroup of K× of strictly positive
rank r. There is an integer C > 1 (depending only on K and G) such that for all integers
n > 1 the ratio nr

[K(ζn,
n√G):K(ζn)]

is an integer dividing C.

The Kummer extension K(ζn,
n
√
G)/K(ζn) has degree at most nr, so Theorem 1 shows that

the failure of maximality for this extension is bounded in a very strong sense. In particular, for
all but finitely many prime numbers ` and for every integer e > 1 we have

[K(ζ`e ,
`e
√
G) : K(ζ`e)] = `e .

As a consequence of Theorem 1 we obtain a similar result for tori:

Corollary 2. Let T be a torus over a number fieldK, and let α be aK-point of T that (over the
splitting field) can be identified to a tuple of algebraic numbers which multiplicatively generate
a torsion-free group of strictly positive rank r. There is an integer C > 1 (depending only on
K, T and α) such that for all integers n,m > 1 the ratio nr

[Knm,n:Knm] is an integer dividing
C, where Knm is the nm-torsion field of the torus and Knm,n is the n-th Kummer extension of
Knm related to α.
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Theorem 1 is proven in Section 3: our proof relies on results by the first author and Debry [4]
(combined with Theorem 11, proven in Section 2) and on Schinzel’s theorem on abelian radical
extensions (Theorem 15). Notice that Theorem 1 also holds more generally (under appropriate
assumptions on G) for products of abelian varieties and tori: this was stated by Bertrand in
[3, Theorem 1]. A proof for abelian varieties was given by Hindry in [5, Lemme 14] and by
Bertrand in [2, Theorème 5.2], see also a result by Banaszak, Gajda and Krason [1, proof of
Lemma 2.13]. The proof for tori, although probably not to be found in the literature, should
work by the same method used for abelian varieties, which is known as the Bashmakov-Ribet
method [12]: this is stated (for split tori) at the end of [7, Section 4 of Chapter 5]. Notice that,
in the special case that G has rank 1, Theorem 1 has an explicit constant depending only on
K and on divisibility properties of G, see [16, Lemma 3] by Ziegler. In the general case, we
similarly find that the constant of Theorem 1 depends only on K, on divisibility properties of
G, and on the rank of G.

1.2. Multiplicative order of the reductions of algebraic numbers. Consider a number field
K and a finitely generated subgroup G of the multiplicative group K×. We tacitly exclude
the finitely many primes p of K such that the reduction of G is not a well-defined subgroup
of the multiplicative group k×p (where kp is the residue field at p). We write ordp(G) for the
size of G modulo p and investigate whether this multiplicative order lies in a given arithmetic
progression. Note that this kind of questions are related to Artin’s Conjecture on primitive
roots, see the survey [9] by Moree.

We make use of the following standard notation: µ is the Möbius function; ζn is a primitive
n-th root of unity; (X,Y ) is the greatest common divisor of X and Y , while [X,Y ] is the
least common multiple; if S is a set of primes of K, then S(x) is the number of elements
of S having norm at most x. For a number field extension K ′/K, and integers n,m > 1
with n dividing m, we denote by K ′m := K ′(ζm) the m-th cyclotomic extension of K ′, and
by K ′m,n := K ′(ζm,

n
√
G) the n-th Kummer extension of G over K ′m. The following results

are conditional under (GRH), by which we mean the extended Riemann hypothesis for the
Dedekind zeta-function of a number field, which allows us to use the effective Chebotarev
theorem [16, Theorem 2].

Theorem 3. Let K be a number field, and let G be a finitely generated and torsion-free sub-
group of K× of strictly positive rank. Fix an integer d > 2, fix an integer a, and consider the
following set of primes of K:

P := {p : ordp(G) ≡ a mod d} .

Assuming (GRH), for every x > 1 we have

P(x) = x

log(x)

∑
n,t>1

µ(n)c(n, t)

[K[d,n]t,nt : K]
+O

(
x

log3/2(x)

)
,

where c(n, t) ∈ {0, 1}, and where c(n, t) = 1 if and only if the following three conditions
hold:

(1 + at, d) = 1 and (d, n) | a
and the element of Gal(Q(ζdt)/Q) which maps ζdt to ζ1+atdt is the identity on Q(ζdt) ∩Knt,nt.
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We refine this result by introducing a condition on the Frobenius conjugacy class with respect
to a fixed finite Galois extension of the base field:

Theorem 4. Let K be a number field, and let G be a finitely generated and torsion-free sub-
group of K× of strictly positive rank. Let F/K be a finite Galois extension, and let C be a
conjugacy-stable subset of Gal(F/K). Fix an integer d > 2, fix an integer a. Considering
only the primes p of K that do not ramify in F , define

P := {p : ordp(G) ≡ a mod d , FrobF/K(p) ⊆ C} .

Assuming (GRH), for every x > 1 we have

(1) P(x) = x

log(x)

∑
n,t>1

µ(n)c(n, t)

[F[d,n]t,nt : K]
+O

(
x

log3/2(x)

)
,

where

c(n, t) :=
∣∣{σ ∈ Gal(F[d,n]t,nt/K) : σ|F ∈ C, σ|Knt,nt = id, σ(ζdt) = ζ1+atdt

}∣∣ 6 |C|
and in particular c(n, t) is non-zero only if (1 + at, d) = 1 and (d, n) | a hold.

The above theorems imply that the set P admits a natural density, which is given by the double
sum (notice that, since we may reduce to the case of rank 1, by [16, Lemmas 6 and 7] we have
absolute convergence for the double sum, so the order of summation does not matter). If G
is of rank 1, Theorem 4 is [16, Theorem 1] by Ziegler: the proof given in Section 5 follows
closely the one by Ziegler, and relies on Theorem 1 (in the equivalent form of Theorem 13) and
Theorem 23. Notice that there are also unconditional results by the first author [11] prescribing
the `-adic valuation of ordp(G) for finitely many prime numbers `, and requiring the Frobenius
condition.

2. STRONGLY INDEPENDENT ELEMENTS

With the usual notation: K is a number field, K× is the multiplicative group, OK is the ring
of integers, O×K is the group of units of OK , and µK is the group of roots of unity in K.

2.1. Notions of independence.

Definition 5. If ` is a prime number, we call a ∈ K× strongly `–indivisible if there is no root
of unity ζ ∈ µK (whose order we may suppose to be a power of `) such that aζ ∈ (K×)`. We
call a1, . . . , ar ∈ K× strongly `–independent if ax11 · · · axrr is strongly `–indivisible whenever
x1, . . . , xr are integers not all divisible by `.

Strongly `–independent elements are each strongly `–indivisible, and for a single element the
two notions coincide. If ζ` /∈ K, then strongly `–indivisible just means not being an `-th power.

Lemma 6. If finitely many vectors with integer coefficients are linearly independent over Z,
then for all but finitely many prime numbers ` they are linearly independent over Z/`nZ for
every n > 1 (i.e. if we reduce the vectors modulo `n, then a linear combination with coefficients
in Z/`nZ can be zero only if all coefficients are zero).
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Proof. Let M be the matrix with integral entries associated to the considered finitely many
vectors. If a minor d of M is non-zero, then d is invertible modulo ` for all but finitely many
prime numbers `, and it is also invertible modulo `n for every n > 1. �

Lemma 7. LetK be a number field, and letG be a finitely generated and torsion-free subgroup
of K× of strictly positive rank. If there is a Z-basis of G whose elements are strongly `-
independent for all but finitely many prime numbers `, then any Z-basis has this property.

Proof. Let {bj}16j6r be a Z-basis of G, and let ` be a prime number such that the elements bj
are strongly `-independent. If {ai}16i6r is another Z-basis of G, we can write

ai =

r∏
j=1

b
eij
j

for some integers eij such that the vectors vi := (eij) are linearly independent over Z. Up to
discarding finitely many `, we may assume that the vectors vi are linearly independent over
Z/`Z (cf. Lemma 6), and also that ζ` /∈ K. Suppose that for some integers xi the product

a :=
r∏
i=1

axii =
r∏
j=1

b
∑r
i=1 xieij

j

is an `-th power inK. Since the elements bj are strongly `-independent, we know that ` divides∑r
i=1 xieij for all j. Thus ` divides xi for all i because the vectors vi are linearly independent

over Z/`Z. �

From [4, page 7] we may deduce (less directly) the following stronger assertion: if there exists
a basis of G consisting of strongly `-independent elements and ζ` /∈ K, then any basis of G
consists of strongly `-independent elements.

2.2. Divisibility results.

Lemma 8. LetG be a finitely generated subgroup ofK× satisfyingG∩O×K = {1} and having
strictly positive rank. Then for all but finitely many prime numbers ` the following holds: if
g ∈ G is an `n-th power in K times a unit, then g is an `n-th power in G, for every n > 1.

Proof. Fix a Z-basis {g1, . . . , gr} of G, and let {pj}16j6k be the finite set of prime ideals
appearing in the factorisation of some principal fractional ideal (gi), i = 1, . . . , r. Thus we
can write

(gi) =
k∏
j=1

p
eij
j

for some integers eij . The vectors vi := (eij) for 1 6 i 6 r are linearly independent over Z.
Indeed, if for some integers zi we have

∑r
i=1 zivi = 0, we deduce that( r∏

i=1

gzii

)
=

k∏
j=1

p
∑r
i=1 zieij

j = (1)
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and hence zi = 0 for every i (because G contains no units apart from 1). Let g ∈ G: writing
g =

∏r
i=1 g

xi
i for some integers xi, we have

(g) =
k∏
j=1

p
∑r
i=1 xieij

j .

So, if g is an `n-th power in K times a unit, then `n divides
∑r

i=1 xieij for every j. For all but
finitely many ` the vectors vi are linearly independent over Z/`nZ by Lemma 6 and we deduce
that `n divides xi for every i. Thus g is an `n-th power in G. �

Lemma 9. Let H be a subgroup of O×K . Then for all but finitely many prime numbers ` and
for every n > 1 the following holds: if h ∈ H is an `n-th power in K, then h is an `n-th power
in H (in other words, we have H ∩K`n ⊆ H`n).

Proof. By Dirichlet’s Unit Theorem we can write O×K = µK × 〈b1, . . . , bk〉 where {bi}16i6k
is a fundamental system of units. By Lemma 10 we may suppose that H is contained in the
free group F := 〈b1, . . . , bk〉. The group H has then a Z-basis {hi}16i6r where r 6 k, and
each hi can be uniquely written as

(2) hi =

k∏
j=1

b
eij
j

for some integers eij . If h ∈ H is an `n-th power in K then, being a unit, it is an `n-th power
in O×K . Since h ∈ F , there is also an `n-th root of h inside F , so we can write

(3) h =
k∏
j=1

b
`nxj
j

for some integers xj . Recalling (2), we also have

(4) h =
r∏
i=1

hyii =
k∏
j=1

b
∑r
i=1 eijyi

j

for some integers yi. Comparing (3) and (4), we deduce that `n divides
∑r

i=1 eijyi for every
j. The vectors vi := (eij) for 1 6 i 6 r are linearly independent over Z and hence by Lemma
6 they are also linearly independent over Z/`nZ for all but finitely many prime numbers `: in
this case `n divides yi for every i and hence h is an `n-th power in H . �

Lemma 10. Let H be a subgroup of O×K , and let H̃ ⊆ H be a subgroup of finite index. For
all integers n > 1 coprime to this index, the property H̃ ∩ Kn ⊆ H̃n implies the property
H ∩Kn ⊆ Hn.

Proof. Suppose that H̃ ∩ Kn ⊆ H̃n holds, and call m := [H : H̃]. If α ∈ H ∩ Kn, then
αm ∈ H̃ ∩ Kn. So we know that αm ∈ H̃n and hence there is β ∈ H such that αm = βn.
Since n and m are coprime, there are integers x, y with nx + my = 1. Thus we can write
α = (αxβy)n, which yields α ∈ Hn. �
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2.3. Basis with strongly `-independent elements.

Theorem 11. Let K be a number field, and let G be a finitely generated and torsion-free
subgroup of K× of strictly positive rank. Then there is a Z-basis of G whose elements are
strongly `-independent for all but finitely many prime numbers `.

Proof. WritingH := G∩O×K , the quotient G/H is clearly finitely generated, and it is torsion-
free (because if the power of an element is a unit, then the element itself is a unit). ThusG/H is
free, and there is a finitely generated and torsion-free subgroup F ofG such that F∩O×K = {1}
and G = F ×H . Take a Z-basis of G consisting of a Z-basis {gi}16i6r of F and of a Z-basis
{uj}16j6r′ of H . Let g ∈ G, and express it with respect to the given basis:

(5) g =
r∏
i=1

gxii ·
r′∏
j=1

u
yj
j .

If g is an `-th power in K (where ` is a prime number), then f :=
∏
gxii ∈ F is an `-th power

in K times a unit hence by Lemma 8 (for all but finitely many `) it is an `-th power in F . We
deduce that h :=

∏
u
yj
j ∈ H is an `-th power in K hence by Lemma 9 (for all but finitely

many `) it is an `-th power in H . Up to discarding finitely many `, we have found that all
exponents in (5) are divisible by `, and we may suppose ζ` /∈ K. So the elements of the given
basis of G are strongly `-independent. �

In fact any Z-basis of G consists of elements that are strongly `-independent for almost all `:

Theorem 12. Let K be a number field. If α1, . . . , αr ∈ K generate a torsion-free subgroup of
K× of rank r, then they are strongly `-independent for all but finitely many prime numbers `.

Proof. It suffices to combine Theorem 11 and Lemma 7. �

3. ON THE MAXIMALITY OF KUMMER EXTENSIONS

Fix a finitely generated and torsion-free subgroupG ofK× of strictly positive rank. If x, y > 1
are integers such that y | x, then as usual Kx is the x-th cyclotomic extension of K, and we
denote byKx,y := Kx(

y
√
G) the y-th Kummer extension ofG overKx. The aim of this section

is proving the following result (which for m = 1 gives Theorem 1):

Theorem 13. LetG be a finitely generated and torsion-free subgroup ofK× of strictly positive
rank r. There is an integer C > 1 (depending only on K and G) such that for all integers
n,m > 1 the ratio nr

[Knm,n:Knm] divides C.

Lemma 14. Let G be a finitely generated and torsion-free subgroup of K× of strictly positive
rank r. If ` is a prime number, then there is some integer A` > 1 which is a power of `
(depending only on K and G) such that for every integer n > 1 the ratio `nr

[K`n,`n :K`n ]
is an

integer dividing A`. Moreover, A` equals 1 for all but finitely many `.

Proof. We know that A` exists for every ` because by [4, Section 3.3] we have the eventual
maximal growth in n of the `n-th Kummer extension over K`n . For all but finitely many `, by
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Theorem 11 there is a Z-basis of G consisting of strongly `-independent elements and hence
by [4, Section 3.3] (for ` 6= 2) we can take A` = 1. �

Theorem 15 (Schinzel [13, Thm. 2], with an alternative proof in [8, 15]). Let K be a number
field, and let a ∈ K×. If N > 1 is an integer, then the extension KN ( N

√
a)/K is abelian if and

only if aT = bN holds for some b ∈ K× and for some divisor T of N satisfying K = KT .

Corollary 16. Let K be a number field, let ` be a prime number, and call τ the largest integer
satisfying K = K`τ . Fix an integer n > 1.

(i) Let a ∈ K×. If the extension K`n( `
n√
a)/K is abelian, then its relative degree over

K`n divides `τ .
(ii) Let G be a finitely generated and torsion-free subgroup of K× of strictly positive rank

r. An abelian subextension of K`n,`n/K that contains K`n has a relative degree over
K`n which divides `τr.

Proof. We may clearly suppose that n > τ . The first assertion is immediate by the special
case of prime powers in Theorem 15. Now consider the second assertion. By Kummer theory
the Galois group of the given abelian extension over K`n is the product of at most r cyclic
`-groups. If the assertion is false, then there is a cyclic quotient of degree `τ+1 and hence there
is a cyclic extension of K`n of degree `τ+1 which is abelian over K. By Kummer theory this
is of the form K`n( `

n√
a) for some a ∈ K×, contradicting (i). �

Lemma 17. Let G be a finitely generated and torsion-free subgroup of K× of strictly positive
rank. If ` is a prime number, then there is some integerB` > 1 which is a power of ` (depending
only on K and G) such that for every integer n,m > 1 we have

[K`n,`n : K`n ]

[K`nm,`n : K`nm]
| B` .

We can take B` = `τr, where τ is the largest integer satisfying K = K`τ (even though this
is not necessarily optimal). In particular, we may take B` = 1 for all but finitely many ` (for
example, if ζ` /∈ K).

Proof. The intersection of the fields K`n,`n and K`nm is an abelian extension of K (it is con-
tained in a cyclotomic extension) so by Corollary 16 (ii) its degree over K`n divides `τr (and
τ = 0 if ζ` /∈ K). �

Proof of Theorem 13. It suffices to prove that for every prime number ` there is an integer
C` > 1 that equals 1 for almost all `, and that satisfies

(6)
`er

[K`eh,`e : K`eh]
| C`

for all integers e, h > 1 with h coprime to `. Indeed, since Kummer extensions related to
powers of distinct primes have coprime degrees, we may take C :=

∏
`C`. Notice that we

may suppose that h and ` are coprime because if m = h`e
′

and E = e + e′ for some integer



8 ANTONELLA PERUCCA AND PIETRO SGOBBA

e′ > 0, then we have `Eh = `em and (since a bound for the failure of maximality for the
`E-Kummer extension is also a bound for the `e-Kummer extension) the following holds:

`Er

[K`Eh,`E : K`Eh]
| C` ⇒ `er

[K`em,`e : K`em]
| C` .

By Lemmas 14 and 17 we may set C` := A` · B`, where the integers A` and B` equal 1 for
almost all `, are independent of e, h > 1 (where h is coprime to `), and satisfy

`er

[K`e,`e : K`e ]
| A` and

[K`e,`e : K`e ]

[K`eh,`e : K`eh]
| B` .

�

Remark 18. Theorem 1 is a special case of Theorem 13, and the two results are in fact equi-
valent. Indeed, by Theorem 1 the ratio between (nm)r and [Knm,nm : Knm] divides C, and
the degree of the m-th Kummer extension Knm,nm/Knm,n clearly divides mr. We deduce that
the ratio between nr and [Knm,n : Knm] divides C.

Proof of Corollary 2. Up to multiplying C by a finite positive integer, we may replace K by
the splitting field and then apply Theorem 13. �

Remark 19. In Theorem 13 (and hence also in Corollary 2) we could remove the assumption
“torsion-free”. Indeed, if G = 〈ζt〉 × G′ where t > 1 and where G′ is a finitely gener-
ated and torsion-free subgroup of K× of strictly positive rank, then we have Kmn(

n
√
G) =

K[m,t]n(
n
√
G′) and hence

[Kmn(
n
√
G) : Kmn] = [K[m,t]n(

n
√
G′) : K[m,t]n] · [K[m,t]n : Kmn] .

The degree of the Kummer extension for G′ is evaluated in Theorem 13. The degree of the
cyclotomic extension is at most t (for example it is 1 if n is coprime to t).

Remark 20. To compute a constant C for Theorem 13, recall from its proof that we may take
C =

∏
`A` · B`, where A` is as in Lemma 14, and where B` is as in Lemma 17 (with the

further restriction that m is coprime to `). Notice that if A` and B` as above are optimal,
then C is also optimal. Choose a Z-basis of G: for all but finitely many prime numbers `, the
elements of the basis are strongly `-independent and hence (for ` 6= 2) we have A` = 1 by [4,
Theorem 18]; for the remaining finitely many ` we can apply the results of [4] to evaluate the
Kummer degrees and determine the optimal A`. If ζ` /∈ K, then B` = 1. For the remaining
finitely many `, by Lemma 17 we may take B` = `τr (this may not be the optimal value for B`
though).

Example 21. We follow the strategy outlined in the previous remark. Consider the subgroup
G of Q× with Z-basis {3, 5}. These elements are clearly strongly `-independent for every
prime number ` and hence A` = 1 for ` 6= 2. By results on the Gaussian integers they are also
strongly 2-independent over Q(ζ4) and henceA2 = 1. For ` 6= 2 we haveB` = 1, and we may
take B2 = 4. Since we have Q(ζ60,

√
G) = Q(ζ60), the value C = 4 is optimal. This example

can be generalised as follows: if G is generated by r distinct odd prime numbers, then C = 2r

is optimal (A` = 1 for all `, B` = 1 for all ` 6= 2, and B2 = 2r). If we replace one of the
generators by 2, then again C = 2r is optimal. Now A2 = 2 is optimal (we have to take into
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account that
√
2 ∈ Q(ζ8)). Moreover, we may takeB2 = 2r. The ratio in Lemma 17 for n = 1

already attains the maximal value 2r with n = 1 and with m = 4
∏
p p, where the product runs

over the odd prime generators of G. However, one of the factors 2 is due to A2 and hence we
may take C = 2r.

4. ESTIMATES FOR THE RELATIVE DISCRIMINANT

The aim of this section is proving Theorem 23, which is an estimate for the discriminant of a
cyclotomic/Kummer extension of a given number field: we first recall some basic facts from
[10]. Let L/K be a finite extension of number fields, and denote byNL/K the relative norm for
fractional ideals of L, which is multiplicative. If a ∈ OL, then we define the relative different
δL/K(a) of a to be f ′(a) (where f is the minimal polynomial of a over K) if L = K(a),
and zero otherwise. We see the relative different DL/K of L/K as the ideal of OL generated
by δL/K(a) for a ∈ OL. The relative discriminant dL/K of L/K is the ideal of OK which
is generated by the discriminants d(β1, . . . , βn) of all bases β1, . . . , βn of L/K which are
contained in OL. It is the norm of the relative different, namely dL/K = NL/K(DL/K). We
call dK the absolute discriminant of K. For a tower of number fields K ′′ ⊃ K ′ ⊃ K we have
the chain relation of the norm NK′′/K = NK′/K◦NK′′/K′ . We also have the chain relation of
relative differents

(7) DK′′/K = DK′′/K′DK′/K
and hence the following relation of relative discriminants

(8) dK′′/K = NK′/K(dK′′/K′) · d
[K′′:K′]
K′/K .

Lemma 22. LetL be a finite extension of a number fieldK. IfL1 andL2 are two subextensions
of L with compositum L, then we have:

(i) for the relative differents, the containment DL2/KOL ⊆ DL/L1
;

(ii) for the relative discriminants, the divisibility relation

dL/K | d
[L:L1]
L1/K

· d[L:L2]
L2/K

.

(iii) If L1, . . . , Ln are subextensions of L with compositum L, then we have for the relative
discriminants the divisibility relation

dL/K |
n∏
i=1

d
[L:Li]
Li/K

.

Proof. To prove the first assertion, fix a ∈ OL2 such that L2 = K(a), and write δL2/K(a) =
f ′(a) where f is the minimal polynomial of a over K. Since a ∈ OL, its minimal polynomial
g over L1 divides f . By the Gauss Lemma we have f = gh for some monic polynomial h with
coefficients in OL1 . Thus f ′(a) = g′(a)h(a) is an element of DL/L1

because h(a) ∈ OL and
because L = L1(a) implies g′(a) = δL/L1

(a).

The third assertion easily follows (by induction) from the second. To prove the latter, by (7)
and (i) we have

DL/K = DL/L1
DL1/K | DL1/KDL2/KOL ,
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and by definition we know NL/K(DL/K) = dL/K . Since the norm is multiplicative, by a
straightforward computation we obtain

NL/K(DL1/KDL2/KOL) = d
[L:L1]
L1/K

· d[L:L2]
L2/K

.

�

We will make use of the formula

(9)
∏

16i,j6n
i 6=j

(ζin − ζjn) = (−1)n−1nn ,

which can be shown by an easy computation considering the derivative of the polynomial
Xn − 1 =

∏n
j=1(X − ζ

j
n) and evaluating it at ζin for each 1 6 i 6 n.

Theorem 23 (cf. [16, Lemma 5]). Let K be a number field, and let G be a finitely generated
and torsion-free subgroup of K× of strictly positive rank r. For all integers m,n > 1 we have

log
∣∣dKnm,n∣∣

nrϕ(nm)
6 [K : Q]((r + 1) log(n) + log(m)) +O(1) .

In particular, for every integer t > 1 we have

log
∣∣dKt,t∣∣

trϕ(t)
6 [K : Q](r + 1) log(t) +O(1) .

Choose a Z-basis γ1, . . . , γr of G and, for 1 6 i 6 r, write γi = αi/βi with αi, βi ∈ OK
(non-zero and not both roots of unity). Then the constant implied by the O-term can be taken
to be

log |dK |+ 2
r∑
i=1

log
∣∣NK/Q(αiβi)

∣∣ .
Proof. Write Li for the extension of K generated by some fixed root n

√
γi. Since Knm,n is the

compositum of Knm and the fields Li, by Lemma 22 (iii) we have

(10) dKnm,n/K | (dKnm/K)
nr ·

∏
i

(dLi/K)
nr−1ϕ(nm) .

We know dKnm/K | dQ(ζnm)/QOK because {ζinm} for 0 6 i < ϕ(nm) is a Z-basis of the ring
of integers of Q(ζnm), while {ζinm} for 0 6 i < [Knm : K] is a basis ofKnm/K consisting of
algebraic integers. We deduce the following estimate (which is not optimal, but it is sufficient
for the purpose of the proof):

(11) dKnm/K | (nm)ϕ(nm)OK .

Let αi, βi ∈ OK be as in the statement and notice that the elements βi( n
√
γi)

j = n

√
αjiβ

n−j
i ,

with 0 6 j < [Li : K], form a basis of Li/K which is contained in OLi . Therefore the
discriminant of this basis (which is an element of the relative discriminant dLi/K) divides

β2ni ·
∏

16j<k6n

( n
√
γiζ

j
n − n
√
γiζ

k
n)

2 = αn−1i βn+1
i ·

∏
16j<k6n

(ζjn − ζkn)2 | (αiβi)2n · nn ,
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where the latter divisibility follows by (9). We thus have

(12) dLi/K | (αiβi)
2nnnOK

(which is not an optimal estimate, but again it is sufficient for the purpose of the proof).

Combining (10) with (11) and (12) we obtain

dKnm,n/K |

(
(nm)n

rϕ(nm) ·
r∏
i=1

(
(αiβi)

2nnn
)nr−1ϕ(nm)

)
OK .

Setting A :=
∏
i αiβi, we have

(13) dKnm,n/K |
(
(nm)n

rϕ(nm) ·A2nrϕ(nm) · nrnrϕ(nm)
)
OK .

If I is an ideal of Z, then write |I| for its non-negative generator. By (8) we have

(14)
∣∣dKnm,n∣∣ = ∣∣NK/Q(dKnm,n/K)

∣∣ |dK |[Knm,n:K]

and hence applying (13) we can estimate log
∣∣dKnm,n∣∣ from above with the sum of the following

four terms:

log
∣∣NK/Q((nm)n

rϕ(nm)OK)
∣∣ = nrϕ(nm) · [K : Q] · log(nm)

log
∣∣NK/Q(A

2nrϕ(nm)OK)
∣∣ = nrϕ(nm) · 2

∑r
i=1 log

∣∣NK/Q(αiβi)
∣∣

log
∣∣NK/Q(n

rnrϕ(nm)OK)
∣∣ = nrϕ(nm) · [K : Q] · r log(n)

log |dK |[Knm,n:K] 6 nrϕ(nm) · log |dK | .

We then have

log
∣∣dKnm,n∣∣

nrϕ(nm)
6 [K : Q] (log(nm) + r log(n)) + log |dK |+ 2

r∑
i=1

log
∣∣NK/Q(αiβi)

∣∣ .
�

5. GENERALIZATION OF ZIEGLER’S PROOF

The aim of this section is proving Theorem 4: we refer to Theorem 4 for the notation, and
to [16, proof of Theorem 1] for the parts of the proof that do not require modifications with
respect to the case of rank 1 (a full proof can be found in [14, Chapter 4]). Recall that we
assume (GRH).

Step 1: We tacitly exclude the primes of K that ramify in F , and those whose ramification
index or inertial degree over Q is not 1: the excluded primes count as O (

√
x/ log x) by [16,

Lemma 1]. We also tacitly exclude the finitely many primes p of K such that the reduction of
G modulo p is not a well-defined subgroup of the multiplicative group k×p . We write ordp(G)

for the size of G modulo p, and indp(G) for its index in k×p . Since G modulo p is cyclic, as in
[16, Lemma 2] (where we may ignore the primes that ramify in Kt,t by [6, Lemma C.1.7]) we
have for every integer t > 1:

(15) t| indp(G) ⇐⇒ p splits completely in Kt,t .
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Step 2: Since ordp(G) indp(G) = N p − 1, we may turn the condition on the order into a
condition on the index. Indeed, we may write

(16) P(x) =
∞∑
t=1

Vt(x) +O

( √
x

log x

)
,

where (recalling that we only consider primes of K whose ramification index and inertial
degree over Q are 1, and that are unramified in F )

Vt :=
{
p : indp(G) = t, N p ≡ at+ 1 mod dt, FrobF/K(p) ⊆ C

}
because if t := indp(G), then the condition ordp(G) ≡ a mod d becomes N p− 1 ≡ at mod
dt. We may easily combine the condition on the norm and the Frobenius condition, and write

(17) Vt =
{
p : indp(G) = t, FrobF (ζdt)/K(p) ⊆ Ct

}
,

where Ct consists of those σ ∈ Gal(F (ζdt)/K) such that σ|F ∈ C and σ(ζdt) = ζ1+atdt .

Step 3: If F ′/K is any finite Galois extension, and if we fix a conjugacy-stable subset C ′ of its
Galois group, then we define the set

(18) Rt :=
{
p : indp(G) = t, FrobF ′/K(p) ⊆ C ′

}
.

Proposition 24 (cf. [16, Proposition 1]). If t 6 x1/3 is a positive integer, then we have

Rt(x) = Li(x)

∞∑
n=1

µ(n)c′(n, t)

[F ′nt,nt : K]
+O

(
x

log2(x)

)
+O

(
x log(log(x))

ϕ(t) log2(x)

)
,

where c′(n, t) :=
∣∣{σ ∈ Gal(F ′nt,nt/K) : σ|F ′ ∈ C ′, σ|Knt,nt = id

}∣∣ 6 |C ′|.
Proof of Proposition 24. The condition indp(G) = t is equivalent to

t| indp(G) and qt - indp(G) for every prime number q .

We apply (15) and the inclusion exclusion principle to obtain

Rt(x) =
∞∑
n=1

µ(n)
∣∣{p : N p 6 x, FrobKnt,nt/K(p) = {id}, FrobF ′/K(p) ⊆ C

′}∣∣+O( √
x

log(x)

)
.

Consider the following auxiliary sets

M(t, ξ) :=
{
p : t| indp(G), tq - indp(G)∀q 6 ξ prime, FrobF ′/K(p) ⊆ C ′

}
M(t, ξ, η) :=

{
p : tq| indp(G) for some ξ 6 q 6 η prime, FrobF ′/K(p) ⊆ C ′

}
and define ξ1 := 1

6 log(x), ξ2 :=
√
x

log2(x)
and ξ3 :=

√
x log(x). It is not difficult to check that

M(t, ξ1)(x)−M(t, ξ1, x− 1)(x) 6M(t, x− 1)(x) 6M(t, ξ1)(x) .

Since we may restrict to indp(G) 6 x− 1, then we have

Rt(x) =M(t, x− 1)(x) +O

( √
x

log(x)

)
=M(t, ξ1)(x) +O

(
M(t, ξ1, x− 1)(x)

)
+O

( √
x

log(x)

)
.

(19)
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As in [16, Lemma 12], we may estimate the main term of (19) as

M(t, ξ1)(x) = Li(x)

∞∑
n=1

µ(n)c′(n, t)

[F ′nt,nt : K]
+O

(
x

log2(x)

)
because we can apply Theorem 23 in place of [16, Lemma 5] (to rewrite the error term of the
Chebotarev Density Theorem), and by Theorem 13 there is a constant B such that (to estimate
the rewritten error term) we have

c′(n, t)ϕ(nt)(nt)r

[F ′nt,nt : K]
6 B

and hence (this is for the last estimate of Ziegler’s proof)

c′(n, t)

[F ′nt,nt : K]
6

B

ϕ(nt)(nt)r
= O

( 1

nϕ(n)

)
.

We may also estimate the O-term of (19) as

O (M(t, ξ1, x− 1)(x)) = O

(
x

log2(x)

)
+O

(
x log(log x)

ϕ(t) log2(x)

)
by considering the inequality

M(t, ξ1, x− 1)(x) 6M(t, ξ1, ξ2)(x) +M(t, ξ2, ξ3)(x) +M(t, ξ3, x− 1)(x)

and by straight-forwardly generalising [16, Lemmas 9, 10, and 11] as follows: we use Theor-
ems 13 and 23 in place of [16, Lemmas 3 and 5]; for [16, Lemma 9] it suffices to work with
some fixed α ∈ G \ {1} because we have

M(t, ξ3, x− 1)(x) 6
∣∣∣{p : N p 6 x, α(N p−1)/tq ≡ 1 mod p, for some ξ3 6 q 6 x− 1

}∣∣∣ .
�

Step 4: As in [16, Proposition 3] (since the generalisation of [16, Lemma 13] is straight-
forward) we can prove that

(20) P(x) =
∑

t6
√
log x

(1+at,d)=1

Vt(x) +O

(
x

log3/2(x)

)
.

As in [16, Proposition 2] we can prove by (17) and Proposition 24 that, if t 6 x1/3, then

(21) Vt(x) = Li(x)
∞∑
n=1

(d,n)|a

µ(n)c(n, t)

[F[d,n]t,nt : K]
+O

(
x

log2(x)

)
+O

(
x log(log(x))

ϕ(t) log2(x)

)
.

Notice that we may replace Li(x) by x/ log(x) in (21) because (this follows from the case of
rank 1) we have

∞∑
n=1

(d,n)|a

µ(n)c(n, t)

[F[d,n]t,nt : K]
= O

( ∞∑
n=1

1

[F[d,n]t,nt : K]

)
= O (1) .



14 ANTONELLA PERUCCA AND PIETRO SGOBBA

Step 5: As in the proof of [16, Theorem 1], we then find the formula for P(x) by combining
(20) and (21). To write down the main term of (1), notice that by Theorem 13 we have

∞∑
t=1

(1+at,d)=1

∞∑
n=1

(d,n)|a

µ(n)c(n, t)

[F[d,n]t,nt : K]
−

∑
t6
√
log x

(1+at,d)=1

∞∑
n=1

(d,n)|a

µ(n)c(n, t)

[F[d,n]t,nt : K]
=

O

 ∑
t>
√
log x

n>1

1

[F[d,n]t,nt : F ]

 = O

 ∑
t>
√
log x

n>1

1

nϕ(n)tϕ(t)

 =

O

 ∑
t>
√
log x

1

tϕ(t)

 = O

(
1√

log(x)

)
where in the last line we applied [16, Lemma 7].

Step 6: The inequality c(n, t) 6 |C| holds because we know the restriction of the automorph-
isms to K[d,n]t,nt. If c(n, t) is non-zero, then we have (1 + at, d) = 1 because the order of
ζ1+atdt must be dt, while the condition (d, n) | a is evident by comparing the restrictions of σ
to Knt and Kdt. We additionally remark that in Theorem 4 the constant implied by the O-term
depends neither on C nor on a (this can be verified by going through the proof).

Corollary 25. Let K,G,a,d be as in Theorem 4. Fix integers z,m with m > 2. Assuming
(GRH), the number of primes p of K with N p 6 x satisfying

N p ≡ z mod m and ordp(G) ≡ a mod d

is given by

(22)
x

log(x)

∑
n,t>1

µ(n)c(n, t)

[K[nt,dt,m],nt : K]
+O

(
x

log3/2(x)

)
,

where c(n, t) ∈ {0, 1}, and where c(n, t) = 1 if and only if the following conditions hold:

(z,m) = (1 + at, dt) = 1 and (d, n) | a and 1 + at ≡ z mod (m, dt)

and the element of Gal(Q(ζ[m,dt])/Q) such that ζm 7→ ζzm and ζdt 7→ ζ1+atdt is the identity on
Q(ζ[m,dt]) ∩Knt,nt.

Proof. This generalisation of [16, Corollary 2] can easily be shown by setting F = Km in
Theorem 4, and by taking C to be the set of those automorphisms in Gal(F/K) that map ζm
to ζzm (notice that |C| 6 1). �
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