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Abstract

We study various aspects of the geometry of globally hyperbolic anti-de Sitter 3-
manifolds.

For manifolds with convex space-like boundaries, homeomorphic to the product of
a closed, connected and oriented surface of genus at least two with an interval, we
prove that every couple of metrics with curvature less than —1 on the surface can be
realised on the two boundary components.

For globally hyperbolic maximal compact (GHMC) anti-de Sitter manifolds, we study
various geometric quantities, such as the volume, the Hausdorff dimension of the limit
set, the width of the convex core and the Hélder exponent of the manifold, in terms
of the parameters that describe the deformation space of GHMC anti-de Sitter struc-
tures.

Moreover, we prove existence and uniqueness of a foliation by constant mean cur-
vature surfaces of the domain of dependence of any quasi-circle in the boundary at
infinity of anti-de Sitter space.
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Introduction

This thesis studies various aspects of anti-de Sitter geometry and its relation with
Teichmiiller theory. The strong link between the two subjects was first discovered
in 1990 by Geoffrey Mess, who described, in his pioneering work [Mes07]|, the
deformation space of (2 + 1)-space-times with compact space-like slices, and found
a new, and somehow simpler, proof of the celebrated Thurston’s Earthquake
Theorem, exploiting the geometry of globally hyperbolic anti-de Sitter manifolds.
Since then, this has become a very active area of research: namely, anti-de Sitter
geometry turned out to be a convenient setting where to study earthquakes between
hyperbolic surfaces (|BS12|), possibly with boundary (|BKS11|, |[Rosl7]) and
with conical singularities ([BS09]), quasi-conformal extensions of quasi-symmetric
homeomorphisms of the circle (|[BS16], [Sep17]) and polyhedra inscribed in quadrics
(IDMS14]). This thesis fits into this framework and tries to enrich the existing
literature about the description of the geometry of anti-de Sitter manifolds.

Three-dimensional anti-de Sitter space can be thought of as the analog of hy-
perbolic space in Lorentzian geometry. It can be defined as the set of time-like
vectors of R* endowed with a bilinear form of signature (2,2), and it is the local
model for Lorentzian manifolds with constant sectional curvature —1. In this thesis,
we are interested in a special class of manifolds, locally isometric to anti-de Sitter
space, called globally hyperbolic. Those are characterised by the existence of a space-
like surface S, named Cauchy surface, that intersects any causal curve in exactly
one point. This property puts strong restrictions on the topology of these manifolds,
being them necessarily diffeomorphic to a product S xR (|Ger70]); nonetheless their
geometry is very rich. Once he fixed the topological type of the surface S, Mess
studied the possible anti-de Sitter structures that can be defined on S x R, up to
diffeomorphisms isotopic to the identity, that are maximal in the sense of isometric
inclusions. If S is supposed to be closed, connected and oriented, of genus 7 > 2,
Mess parameterised the deformation space of globally hyperbolic maximal anti-de
Sitter structures on S x R by two copies of the Teichmiiller space of S. This result
can be interpreted as the analog of Bers’ double Uniformisation Theorem ([Ber74])
for hyperbolic quasi-Fuchsian three-manifolds. The similarity between hyperbolic
quasi-Fuchsian manifolds and globally hyperbolic maximal anti-de Sitter manifolds

X



X CHAPTER 0. INTRODUCTION

goes further. In both we can find a convex core, that is the smallest convex subset
onto which the manifold retracts, which has a very interesting geometry. If the man-
ifold is Fuchsian, namely the two parameters of Bers’ and Mess’ parameterisations
coincide, the convex core is a totally geodesic hyperbolic surface; otherwise it is a
three dimensional domain, homeomorphic to S x I, the two boundary components
being naturally endowed with hyperbolic structures and pleated along measured
laminations. Some aspects about the geometry of the convex core are still to be
understood. In particular, two main conjectures by Thurston and Mess remain open:

Conjecture. (Thurston) The space of quasi-Fuchsian three-manifolds can be
parameterised either by the induced metrics on the boundary of the convex core or
by the two geodesic measured laminations.

Conjecture. (Mess) The space of globally hyperbolic mazimal anti-de Sitter
structures on S X R can be parameterised either by the induced metrics on the
boundary of the convex core or by the two geodesic measured laminations.

In both setting it is known that every couple of hyperbolic metrics ([Lab92al,
[Dial3]) and every couple of filling measured laminations ([BO04|, [BS12]) can be
realised, but uniqueness is still unknown.

However, one can ask similar questions for other compact, convex domains
that contain the convex core. In fact, it is possible to talk about the induced metrics
on the two boundary components and the role of the measured geodesic laminations
is replaced in a natural sense by the third fundamental forms. In the hyperbolic
setting, this has been first studied by Labourie (|[Lab92a]) who proved that any
smooth metrics on S with curvature at least —1 can be realised on the boundary
of a compact, convex hyperbolic three-manifold, and later by Schlenker ([Sch06]),
who proved the uniquess part of this question and extended this result to the third
fundamental form, as well.

In Chapter [2] we address the existence part of this problem in the anti-de
Sitter setting. More precisely, we prove the following:

Theorem A. (|[Taml8|) Let g+ be two smooth metrics with curvature less
than —1 on a closed, connected, oriented surface S of genus T > 2. Then there exists
a compact, convez, globally hyperbolic anti-de Sitter manifold with conver boundary
M = S x I such that the metrics induced on the two boundary components are g+ .
A similar result holds also for the third fundamental forms.

The proof is based on a deformation argument. First, we observe that the
above theorem is equivalent to the existence of a compact domain K with convex
boundary, embedded in a globally hyperbolic maximal anti-de Sitter manifold
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M = S xR, with induced metrics g+ on the two boundary components. Then, using
Mess’ parameterisation, for every smooth metric g on S with curvature less than —1,
we construct a smooth map ¢, from the space of equivariant isometric embeddings
of (S,g) into anti-de Sitter space to Teich(S) x Teich(S), which associates to
an isometric embedding the holonomy representation of the globally hyperbolic
maximal anti-de Sitter manifold in which (S, g) is contained. Therefore, the proof
of Theorem A follows by showing that the images of ¢, and ¢4_ are never disjoint,
if g+ are any two smooth metrics with curvature less than —1. This is accomplished
by proving it directly for a specific couple of metrics g+, and by then verifying that
the intersection persists when deforming one of the two metrics.

The geometry of globally hyperbolic maximal anti-de Sitter manifolds can
also be understood using special foliations by space-like surfaces. In case of closed
Cauchy surfaces, this theory was developed by Barbot, Béguin and Zeghib, who
proved that every such manifold can be foliated uniquely by constant mean curvature
surfaces ([BBZ07]) and constant Gauss curvature surfaces ([BBZ11]). These results
have been recently generalised in different directions: when conical singularities of
angle less than 7 along time-like geodesics are allowed ([CS16], [QT17]), and when
there is no co-compact action of a surface group ([BS16],[Tam16]). Chapter |3|focuses
on the latter problem for constant mean curvature surfaces. If we identify the
universal cover of a globally hyperbolic maximal anti-de Sitter manifold M =2 § x R
with a domain of dependence in anti-de Sitter space, the foliation by constant mean
curvature surfaces is lifted to a foliation by discs of constant mean curvature of the
domain of dependence. These discs intersect the boundary at infinity of anti-de
Sitter space in a curve, called quasi-circle, that can be interpreted as the graph of
the quasi-symmetric homeomorphism of the circle that conjugates the two Fuchsian
representations in Mess’ parameterisation. It is thus natural to ask if a foliation by
constant mean curvature surfaces exists for more general domains of dependence,
whose closure intersect the boundary at infinity of anti-de Sitter space in a general
quasi-circle.

Theorem B. ([Taml6]) Let ¢ : S' — S' be a quasi-symmetric homeomo-
prhism of the circle and let cg be the corresponding quasi-circle in the boundary
at infinity of anti-de Sitter space. Then there exists a unique foliation by constant
mean curvature surfaces of the domain of dependence of cg.

The proof relies on an approximation argument. Namely, every quasi-circle
cp can be seen as a limit in the Hausdorff topology of quasi-circles ¢, that are graphs
of quasi-symmetric homeomorphisms that conjugate two Fuchsian representations.
We show that the sequence of constant mean curvature surfaces with boundary at
infinity ¢, converges to a constant mean curvature surface asymptotic to c4 and that
the surfaces obtained in this way provide the desired foliation. As an application,
we exploit techniques introduced by Krasnov and Schlenker (JKS07]) to construct a
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family of quasi-conformal extensions of ¢: a surface with constant mean curvature
H and boundary at infinity c4 provides a quasi-conformal extension ®p of ¢ with
the following property. The map ®z can be decomposed uniquely as @ = foo f; 1
where f1 and fo are harmonic maps of the hyperbolic plane with Hopf differential
Hopf(f1) = e**Hopf(f2), and 6 = — arctan(H) + Z.

In the second part of the thesis, we address the general question of describ-
ing the geometry of a globally hyperbolic maximal anti-de Sitter manifold with
compact Cauchy surface in terms of the two points in Teichmiiller space provided
by Mess’ parameterisation. The first interesting geometric quantity that we study
in Chapter [4]is the volume of the convex core. An analogous question for hyperbolic
quasi-Fuchsian manifolds was investigated by Brock (|Bro03|), who showed that
the volume of the convex core is roughly equivalent to the Weil-Petersson distance
between the two corresponding points in Bers’ parameterisation. It turns out that
a similar result does not hold in this Lorentzian setting, as we are able to construct
a sequence of globally hyperbolic maximal anti-de Sitter manifolds such that the
volume of their convex core diverges, but the Weil-Petersson distance between the
two Mess’ parameters remains bounded. However, we find a quantity that ap-
proximates the volume of the convex core up to multiplicative and additive constants:

Theorem C. (|[BSTI17|) Let My be the globally hyperbolic mazimal anti-de
Sitter manifold corresponding to (h,h') € Teich(S) x Teich(S) in Mess’ parameter-
isation. Then the volume of the convex core of My is coarsely equivalent to the
L'-energy between the hyperbolic surfaces (S,h) and (S, h').

The L'-energy between hyperbolic surfaces is defined as the infimum, over all
C' maps f isotopic to the identity, of the L'-norm of the differential of f. Very
few is known about this quantity: in contrast with the more studied L?-energy that
is realised by the L?-norm of the differential of the unique harmonic map isotopic
to the identity, we do not know, for instance, if the infimum is attained. As a
consequence of Theorem C, we shed some light about the behaviour of the L'-energy:

Corollary D. ([BST1T|) Let h,h' be two hyperbolic metrics on S and suppose that
h' is obtained from h by an earthquake along a measured geodesic lamination .
Then, the L*-energy between (S, h') and (S, h') is roughly equivalent to the length of \.

By Thurston’s Earthquake Theorem, we have two possible choices for A, de-
pending on whether we perfom a left or right earthquake. Our techniques show that
the lengths of these two laminations are comparable, being their difference bounded
by an explicit constant that depends only on the topology of the surface.

In Chapter [f], we turn our attention to other two interesting geometric quan-
tities associated to globally hyperbolic maximal anti-de Sitter manifolds: the
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Lorentzian Hausdorff dimension of the limit set and the Holder exponent. As
we discussed above, the limit set of a globally hyperbolic maximal anti-de Sitter
manifold M with compact Cauchy surface can be identified with the graph c, of a
quasi-symmetric homeomorphism ¢ of the circle. This is the Lorentzian analog of
the quasi-circle that appears as limit set of a quasi-Fuchsian group acting on the
three-dimensional hyperbolic space. However, while the Hausdorff dimension of the
limit set of a quasi-Fuchsian group varies between 1 and 2 (|[Sul84]) and is equal
to 1 if and only if the group is Fuchsian ([Bow79]), the Hausdorff dimension of cy4
is always 1. In particular, it does not distinguish if a representation is Fuchsian.
Glorieux and Monclair introduced a notion of Lorentzian Hausdorff dimension
that fits this issue (J[GM16]): roughly speaking, they replaced Euclidean balls with
Lorentzian ones in the classical definition of Hausdorff dimension, obtaining thus a
quantity that is always bounded by 1 and is equal to 1 if and only if the manifold
is Fuchsian. The Holder exponent of M is also related to the homeomorphism ¢: it
is the minimum between the best Holder exponent of ¢ and ¢~!. We provide an
explicit formula for this that depends only on the holonomy representation of M.

The main results of Chapter concern the asymptotic behaviour of these
quantities. More precisely, we use the parameterisation of the deformation space of
globally hyperbolic maximal anti-de Sitter structures on S x R by the cotangent
bundle to the Teichmiiller space of S (JKS07]) and study the asymptotic behaviour
along rays of quadratic differentials:

Theorem E. ([Taml7|) Let M; be the family of globally hyperbolic mazimal
anti-de Sitter manifolds associated to the ray (h,tq) € T*Teich(S). Then the
Lorentzian Hausdorff dimension of the limit set and the Hélder exponent of M; tend
to 0 when t goes to +o0.

In order to explain this result, let us first recall how the parameterisation by
T*Teich(S) works: to a point (h,q) € T*Teich(S) one associates the globally
hyperbolic maximal anti-de Sitter manifold M = S x R which has an embedded
maximal surface with induced metric conformal to h and with second fundamental
form determined by the real part of q. The existence of such a manifold is obtained
by solving a quasi-linear PDE. By studying carefully this differential equation, we
are able to provide estimates for the induced metric on the maximal surface along
rays of quadratic differentials, and prove that its volume entropy converges to 0
when t goes to +00. The proof of the first part of Theorem E then follows from the
fact that the Lorentzian Hausdorff dimension is bounded from above by the entropy
of the maximal surface.

On the other hand, the asymptotic behaviour of the Holder exponent is proved by
comparing the two parameterisations. Namely, harmonic maps between hyperbolic
surfaces provide a bridge between the two points of view and combining Wolf’s
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compactification of Teichmiiller space ([Wol89]) with our explicit formula for the
Holder exponent, we deduce the second part of Theorem E.

Outline of the thesis

The thesis is organised as follows. Chapter [1] introduces anti-de Sitter geometry
and reviews the main classical results in this field. In Chapter [2] we study globally
hyperbolic anti-de Sitter manifolds with convex space-like boundary and the problem
of finding a manifold with prescribed metric on the boundary. The material of this
chapter can be found in:

[Tam18] Tamburelli, A. "Prescribing metrics on the boundary of anti-de Sit-
ter 3-manifolds". International Mathematics Research Notices, Volume 2018, Issue
5, pp. 1281-1313, 2018.

In Chapter [3] we prove the existence and uniqueness of a foliation by con-
stant mean curvature surfaces of the domain of dependence of a quasi-circle in the
boundary at infinity of anti-de Sitter space. The content of this chapter has been
published in:

[Tam16] Tamburelli, A. "Constant mean curvature foliation of domains of de-
pendence in anti-de Sitter space". To appear in Transactions of the AMS.

Chapter [4] deals with the volume of globally hyperbolic maximal anti-de Sit-
ter manifolds: we compare the volume of the convex core and the volume of
the entire manifold and find coarse estimates in terms of the L' energy, the
Weil-Petersson distance and Thurston’s asymmetric distance between the two points
in Teichmiiller space given by Mess’ parameterisation. These results can be found in:

[BST17] Bonsante, F., Seppi, A., Tamburelli A. "On the volume of anti-de
Sitter maximal globally hyperbolic three-manifolds". Geometric and Functional
Analysis, Volume 27, Issue 5, pp. 1106-1160, 2017.

In Chapter we use the parameterisation of globally hyperbolic anti-de Sit-
ter structures by the cotangent of the Teichmiiller space to describe the behaviour
of the entropy of the maximal surface and the Lorentzian Hausdorff dimension of
the limit set along rays of quadratic differentials. The material covered here has
appeared in the preprint:

[Tam17] Tamburelli, A. "Entropy degeneration of globally hyperbolic maximal
compact anti-de Sitter structures". arXiv:1710.05827.



Chapter 1

Anti-de Sitter geometry

In this chapter we introduce the protagonist of the thesis, i.e the three-dimensional
anti-de Sitter space. The material covered here is classical, the main objective being
fixing the notation and recalling the well-established results in the field.

1.1 The Klein model

Let us denote with R?? the vector space R* endowed with the bilinear form of
signature (2,2):

(T,Y)2,2 = Toyo + T1Y1 — Tay2 — T3Y3 -
We define

AdSs3 = {$ S RQ’Q ’ <$,$>2’2 = —1} .

The restriction of the bilinear form (-,-)22 to the tangent space of 1@3 induces
a Lorentzian metric on AdS3 with constant sectional curvature —1. Given a point
p € AdS3 and a tangent vector v € T,AdS3, we will say that

e v is space-like, if (v,v)22 > 0;
e v is light-like, if (v,v)22 = 0;
e v is time-like, if (v,v)29 < 0.

Similarly, we say that a geodesic v in 1@3 is space-like (resp. light-like or time-
like) if 4 is space-like (resp. light-like or time-like). It is straightforward to verify
that geodesics are obtained by intersecting planes through the origin of R%? with
AdS 3. The causal type of the geodesic can be understood from the signature of the
restriction of the bilinear form (-,-)2 2 to the plane:

e if it has signature (1,1) we obtain a space-like geodesic;

1



2 CHAPTER 1. ANTI-DE SITTER GEOMETRY

e if it is degenerate and the intersection with %’3 is non-empty, we obtain a
light-like geodesic;

e if it has signature (0,2) we obtain a time-like geodesic.

Analogously, totally geodesic planes are obtained by intersecting AdS 3 with hyper-
planes of R>2. Given a totally geodesic plane P, we say that

e P is space-like if the induced metric on P is positive definite;
e P is light-like if the induced metric on P is degenerate;
e P is time-like if the induced metric on P is Lorentzian.

Again, the induced metric on P can be easily deduced by studying the signature of
the restriction of the bilinear form (-,-)2 2 on the hyperplane that defines P.

We endow AdS 3 with the orientation induced by the standard orientation of R/‘l.\ A
time-orientation is the choice of a never-vanishing time-like vector field X on AdSs.
The isometry group of orientation and time-orientation preserving isometries of AdSs
is the connected component of SO(2,2) containing the identity.

We define anti-de Sitter space AdS3 as the image of the projection of mg, into
RP3. More precisely, if we denote with 7 : R4\ {0} — RP3 the canonical projection,
anti-de Sitter space is

AdSs = t({x € R®*? | (x,2)29 < 0}) .

It can be easily verified that = : AdS 3 — AdS3 is a double cover, hence we can endow
AdSs with the unique Lorentzian structure that makes 7 a local isometry. This is
called the Klein model of anti-de Sitter space, in analogy with the more familiar
Klein model of hyperbolic geometry. It follows from the definition and the above
discussion that geodesics and totally geodesics planes are obtained by intersecting
AdS3 with projective lines and planes.

In order to better visualise anti-de Sitter space, it is convenient to consider the
intersection with an affine chart. Let Us = {[zq, 71,22, 23] € RP3 | 23 # 0}. The
map

©Y3 . U3 — RS
o] (2,22, 22)
r3 T3 T3
induces a homeomorphism between AdSs N Us and the open set Q = {(z,y,2) €
R3 | 22 + y? — 22 < 1}. It is clear from the construcion that in this affine chart,

geodesics and totally geodesics planes are the intersection between affine lines and
planes in R? with .
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time-like geodesic

light-like geodesic

space-like geodesic

Figure 1.1: Geodesics in AdSs.

It is natural to define the boundary at infinity of anti-de Sitter space as
Do AdSs = 1({x € R* | (z,2)92 = 0}).
It can be easily verified that 0., AdS3 coincides with the image of the Segre embedding
s: RP! x RP! — RP? |

hence the boundary at infinity of anti-de Sitter space is a double-ruled quadric home-
omorphic to a torus. We will talk about left and right ruling in order to distinguish
the two rulings. This homeomorphism can be also be described geometrically in the
following way. Fix a totally geodesic plane Py in AdSs. The boundary at infinity of
Py is a circle. Let £ € 05 AdS3. There exists a unique line of the left ruling I and
a unique line of the right ruling r¢ passing through . The identification between
Os0AdS3 and S x S induced by Py associates to ¢ the intersection points 7;(¢) and
7-(§) between l¢ and r¢ and the boundary at infinity of Fy. These two maps

7 0o AdSs — ST m, D AdSs — S1

are called left and right projections, respectively. In the affine chart Us the boundary
at infinity of AdSs coincides with the quadric of equation z? 4 y? — 2% = 1.

The action of orientation and time-orientation preserving isometries of AdSs extends
continuously to the boundary at infinity and it is projective on the two rulings, thus

giving an identification between SOy(2,2) and PSL(2,R) x PSL(2,R).
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Given a map ¢ : RP' — RP!, the identification between 0, AdSs; and RP' x RP!
described above allows us to represent the graph of ¢ as a curve ¢y on the boundary
at infinity of anti-de Sitter space. If ¢ is an orientation-preserving homeomorphism,
the curve ¢y turns out to be weakly space-like, i.e for every £ € cg4 the curve cy
is contained in the region bounded by the lines through £ in the left and right
ruling which is connected to & by space-like paths. Viceversa, every weakly space-
like curve I' C 0, AdS3 can be obtained as a graph of an orientation-preserving
homeomorphism of the circle.

Given a weakly space-like curve I' on the boundary at infinity of anti-de Sitter space,
we define two objects that will play a fudamental role in the theory of globally
hyperbolic manifolds outlined in Section [1.5

e the convex hull of T" is the smallest closed convex subset of AdSs with boundary
at infinity T' and it will be denoted with C(T');

e the domain of dependence D(I") of I is the set of points p € AdS3 C RP? such
that the plane p*, which is the projective dual of p, is disjoint from I". Domains
of dependence are always contained in an affine chart and admit only light-like
support planes.

1.2 Anti-de Sitter space as Lie group

Let gl(2,R) be the vector space of 2-by-2 matrices with real coefficients. The
quadratic form
q(A) = —det(A)

induces, by polarisation, a scalar product n on gl(2, R), which in the basis consisting
of elementary matrices can be represented by

0

N[

n(X,y)=Xx"*

o O O

O o O
o O O

T2

It follows easily that n has signature (2,2).

Let us now consider the submanifold SL(2,R) = {4 € gl(2,R) | ¢(4) = —1}. We
claim that SL(2,R) endowed with the restriction of 7 is a 3-dimensional Lorentzian
manifold. Since 7 is invariant by left- and right- multiplication by elements of
SL(2,R) (because ¢ is), it is sufficient to check this at Id € SL(2,R). Now

TiaSL(2,R) = sl(2,R) = {4 € gl(2,R) | trace(4) = 0} .

In the basis of sl(2,R) given by

5[(2,R):Span{<(1) _01> (g 8) ’(8 (1)>}
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the scalar product 7 is represented by the matrix

1 0 0
n|5[(2’R)(X,Y):Xt 00 1]Yy.
03 0

Hence (SL(2,R),n) is a Lorentzian manifold that we denote by AdSs. From the
above computation, it follows also that

1
n(X,Y) = itrace(XY)
for every X,Y € sl(2,R).

The group SL(2,R) x SL(2,R) acts on AdSs as
(A,B)-X := AXB™!

o~

by isometries. In particular, n induces a Lorentzian structure on PSL(2,R)
SL(2,R)/{£Id}, which we identify with anti-de Sitter space AdSs.

Remark 1.2.1. An explicit isometry between 1@3 as introduced in Section and
(SL(2,R),n) is given by the restriction of the map

]R4 —)A/d\Sg

To+T1 T3 +w2>

o, T1,T2,T3) >
( 0 3 ; 3) (.1}2—333 zo — T1

where (xg, 21, T2, 3) € R are coordinates with respect to a basis in which the bilinear
form of signature (2,2) is

(T, y)22 = —Toyo + T1Y1 + T2Y2 — T3Y3 .

If we see AdS3 C Pgl(2,R), we can define the boundary at infinity of AdSs as
O AdS3 = P({A € gl(2,R) \ {0} | ¢(A4) =0}) ,

namely the projectivisation of rank 1-matrices. This can then be identified with
RP! x RP! by
OooAdSs — RP! x RP*
[M] = ([T (M)], [Ker(M))]) .
It is easy to check that the action of PSL(2,R) x PSL(2,R) on AdSs extends to

the boundary at infinity and, in the above identification, coincides with the obvious
action of PSL(2,R) x PSL(2,R) on RP! x RP.

Geodesics of AdS3 are obtained by intersection of projective planes with AdSs.
Therefore, if z € AdS3 and & € AdS3 is a lift, then
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e a space-like geodesic at x with tangent vector v is lifted to

exp, (tv) = cosh(t)& + sinh(¢)? ;

e a time-like geodesic at x with tangent vector v is the projectivisation of

exp, (tv) = cos(t)Z + sin(t) ;

e a light-like geodesic at x with tangent vector v lifts to

exp, (tv) = & + to .

In particular, geodesics through [Id] € PSL(2,R) are 1-parameter subgroups.

1.3 Surfaces in anti-de Sitter manifolds

In this section we describe the theory of immersions of surfaces in anti-de Sitter
space, which is a straightforward adaptation of the classical theory for Euclidean
space.

Let us denote with V499 the Levi-Civita connection of the Lorentzian metric gaqs
of AdSs. Given a smooth immersion o : S — AdSs, the first fundamental form is
the pull-back of the induced metric

I(V,W) = gaas(do(V),do(W)) V,W eT(T5) .

We say that o(S) is space-like if the first fundamental form is a Riemannian metric.
From now on, we will always suppose that the immersion is space-like.

We denote with N the future-directed unit normal vector field on o(S). Since the
immersion is space-like, N is a time-like vector. The Levi-Civita connection V! of

the first fundamental form I of S is defined from the relation:
VAW = VILw + 11(V,W)N |

and [I(V,W) is called the second fundamental form of the immersion. The shape
operator B € End(T'S) of S is defined as

B(V) = -V{*¥N .

It turns out that B is I-self-adjoint and the second fundamental form is related to

the shape operator by
I(\V,w)=I1(B(V),W) .

In particular, B is diagonalisable and its eigenvalues are called principal curvatures.
The first fundamental form and the shape operator satisfy two equations:
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e the anti-de Sitter version of the Guass equation:
det(B) =—-1- K[ s

where we have denoted with K7 the Gaussian curvature of the first fundamental
form;

e the Codazzi equation ,
dV'B=0,

where dV' : Q1(T'S) — Q%(TS) is the operator defined by:

(d¥' B)(V,W) = VL(B(W)) — Vi, (B(V)) — B([V,W)) .

As for Euclidean space, the embedding data I and B of a simply connected surface
determines the immersion uniquely up to global isometries of AdSs:

Theorem 1.3.1 (Fundamental theorem of surfaces in anti-de Sitter space). Let S
be a simply connected surface. Given a Riemannian metric I and an I-self-adjoint
operator B : TS — TS, satisfying the Gauss-Codazzi equations

det(B) = —1 — K;
dV'B=0

there exists a smooth immersion o : S — AdSs such that the first fundamental
form is I and the shape operator is B. Moreover, o is uniquely determined up to
post-composition with an isometry of AdSs.

We can also define the third fundamental form of S as
IHI(V,W)=I1(B(V),B(W)) .

We notice that if S is strictly convex, i.e. the determinant of B is strictly positive at
every point, then the third fundamental form is a Riemannian metric. Notice that,
by the Gauss equation, this is equivalent to say that the curvature of the induced
metric is strictly smaller than —1.

The third fundamental form is linked to a duality between convex surfaces in anti-de
Sitter space. More precisely, the projective duality between points and planes in
RP? induces a duality between convex space-like surfaces in AdSs: given a convex
space-like surface, the dual surface S* is defined as the set of points which are dual
to the support planes of S. The relation between S and S* is summarised in the
following proposition:

Proposition 1.3.2 ([BBZI1]). Let S C AdS3 be a smooth space-like surface with
curvature k < —1. Then

o the dual surface S* is smooth and strictly convex;
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o the pull-back of the induced metric on S* through the duality map is the third

fundamental form of S;
e if K is constant, the dual surface S* has curvature K* = — -

1.4 The universal cover of anti-de Sitter space

As the careful reader might have noticed from the description of the Klein model in
Section [1.1] anti-de Sitter space in not simply-connected, being it diffeomorphic to
a solid torus. It is sometimes convenient to work in the Universal cover, especially
when dealing with space-like embeddings of surfaces into AdSs.

Let us denote with H? the hyperbolic plane. In this section we will always think of
H? as one connected component of the two-sheeted hyperboloid in Minkowksy space.
The map

F:H? x S' - AdS;
(20,21, 2, €) — (9 cos(h), z1, zo, 2o sin(0))

is a diffeomorphism, hence H? x S is isometric to anti-de Sitter space, if endowed
with the pull-back metric

(F*gAdsg)(mi@) = (gm2)z — 96‘(2)6192 :

We easily deduce that the Universal cover of anti-de Sitter space can be realised as
AdSs3 = H? x R endowed with the Lorentzian metric:

(9555) @) = (gm2)e — xpdt” .

We will denote

2
v=—|2
ot
and w
gradt: —Fa .

The Universal cover is particularly useful to study embedded space-like surfaces. In
fact, space-like surfaces in AdS3 are graphs of functions ([BS10, Proposition 3.2]|)

uw:H?> >R

Moreover, the space-like condition provides a uniform bound on the gradient of wu.
For instance, let us consider the function @ on H x R given by

w(z,t) = u(z) .
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The correspondent space-like surface is defined by the equation u(z) —t = 0. This
surface is space-like if and only if the normal vector at each point

v = —x’gradt — grad (@)
is time-like. We deduce the uniform bound

1
lgrad(u)|* < —
%
on the gradient of the function w. In particular, space-like surfaces are graphs of
Lipschitz functions.

1.5 GHMC anti-de Sitter three manifolds

A 3-dimensional anti-de Sitter space-time is a manifold NV locally isometric to AdSs
with a fixed orientation and time-orientation. This means that N is endowed with an
atlas of charts taking values on AdS3 so that the transition functions are restrictions
of elements in PSL(2,R) x PSL(2,R).

We are actually interested in a special class of anti-de Sitter manifolds.

Definition 1.5.1. An anti-de Sitter manifold N is Globally Hyperbolic Maximal
Compact (GHMC) if it satisfies the following conditions:

1. Global Hyperbolicity: N contains a space-like surface, called Cauchy-surface,
that intersects every inextensible causal curve in exactly one point;

2. Mazimality: if N’ is another globally hyperbolic AdS3 space-time and ¢ : N —
N is any isometric embedding sending a Cauchy surface into a Cauchy surface,
then ¢ is a global isometry;

3. Spacial Compactness: if the Cauchy surface is compact.

The first condition implies that N must be diffeomorphic to S x R ([Ger70]), where
S is homeomorphic to the Cauchy surface of N. We will always assume that S is a
closed, connected, oriented surface of genus 7 > 2. We will denote with GH(S) the
deformation space of GHMC anti-de Sitter structures on S x R. By the pioneering
work of Mess, the deformation theory of GHMC anti-de Sitter structures is strongly
related to Teichmiiller theory. This becomes evident from the following result:

Theorem 1.5.2 ([Mes07]). GH(S) is parameterised by Teich(S) x Teich(S).

The parameterisation goes as follows. First, recall that the Teichmiiller space of S' is
identified to a certain connected component in the space of representations of ()
into PSL(2,R), considered up to conjugation. In fact, this identification is obtained
by taking the conjugacy class of the holonomy represention of a hyperbolic metric
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on S, and the desired connected component is given by the subset of representations
with maximal Euler class, called Fuchsian ([Gol80]):

Teich(S) 2 {po : m1(S) — PSL(ZR) : e(po) = [X(S)[}/PSL(2,R) .
Mess proved that for every GHMC AdSs manifold M, the holonomy representation
p=(p1,pr):m(S) = PSL(2,R) x PSL(2,R)

satisfies e(p;) = e(pr) = |x(5)|, and therefore ([p], [pr]) defines a point in Teich(S) x
Teich(S). The representations p; and p, are called left holonomy and right holonomy.

Example 1.5.3. If h is a hyperbolic metric on S, then one can define the following
metric on M = S x (—7/2,7/2), where t is the “vertical” coordinate:

gn = —dt* + cos*(t)h . (1.1)

It turns out that gn has constant sectional curvature —1, that S x {0} is a totally
geodesic Cauchy surface, and that (M, gp) is mazximal globally hyperbolic. It can be
verified that, in this case, p; = p.. The mazximal globally hyperbolic manifolds for
which [p1] = [pr] € Teich(S) are called Fuchsian and correspond to the diagonal in

GH(S) = Teich(S) x Teich(S) .

Equwalently, they contain a totally geodesic spacelike surface isometric to
H2/po(71(S)), where po := py = pr.

Going back to Theorem [I.5.2] Mess explicitly constructed an inverse of the map
GH(S) — Teich(S) x Teich(.S) we have just defined. Given a couple (p;, pr) of Fuch-
sian representation, there exists a unique orientation-preserving homeomorphism
¢ : RP! — RP! such that

pop(y)=pr(y)od

for every v € m1(S). As explained in Section we can see the graph of ¢ as a curve
¢y on the boundary at infinity of anti-de Sitter space. It turns out that p(m(S5)) =
(pi(m1(9)), pr(m1(S))) acts properly discontiously on the domain of dependence of
cg and the quotient is a GHMC anti-de Sitter manifold, with holonomy p. We will
denote this manifold by

Mp, n,. = D(®)/(p1, pr)(m1(5))

where h; and h, are the hyperbolic metrics of S induced by H?/p;(71(S)) and
H2/p,(71(S)) respectively. We will often refer to h; and h, as the left and right
metric. It follows from Mess’ proof that the class of My, 5, in GH(S) only depends
on the isotopy classes of h; and h,..

The quotient of the convex hull of ¢y

C(Mpuyn,) == C(&)/(p1, pr)(m1(S))
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is called the convex core of My, p,., and it is the smallest compact, convex subset
homotopy equivalent to Mjy, .. The convex core has an interesting geometry: if
it is not a totally geodesic space-like surface, which happens only if h; = h,., its
boundary consists of two space-like surfaces homeomorphic to S, naturally endowed
with hyperbolic metrics and pleated along measured laminations.

Moreover, the left and right hyperbolic metrics corresponding to the left and right
representations can be constructed explicitly starting from space-like surfaces embed-
ded in My, p,,. Mess gave a description in a non-smooth setting using the upper and
lower boundary of the convex core of My, 5, as space-like surfaces. More precisely, if
m™* are the hyperbolic metrics on the upper and lower boundary of the convex core
and At are the measured geodesic laminations along which they are pleated, the left

and right metrics h; and h, are related to m* by an earthquake along A*:
+ - + -
=B (my) = EY (mo) b= BN (my) = BY (m_) .
Mess obtained in this way a new proof of Thurston’s Earthquake Theorem:

Theorem 1.5.4 (Earthquake theorem). Given two hyperbolic metrics h,h' on a
closed oriented surface S, there exists a unique pair of measured laminations A;, Ay
such that

EM(h)=h" and  EM(h)=h.

Later, this description was extended ([KS07]), thus obtaining explicit formulas for
the left and right metric, in terms of the induced metric I, the complex structure J
and the shape operator B of any strictly negatively curved smooth space-like surface
S embedded in Mjp, ,. The construction goes as follows. We fix a totally geodesic
space-like plane Py. Let S C AdSs be the universal cover of S. Let S’ ¢ U'AdS;
be its lift into the unit tangent bundle of AdSs and let p: S’ — S be the canonical
projection. For any point (z,v) € S’ , there exists a unique space-like plane P in
AdS3 orthogonal to v and containing . We define two natural maps Il ; and I
from Ou P to J5 Py, sending a point & € 0, P to the intersection between 0, Py and
the unique line of the left or right foliation of 9., AdS3 containing z. Since these maps
are projective, they extend to hyperbolic isometries II;,II,. : P — Py. Identifying P
with the tangent space of S at the point z, the pull-backs of the hyperbolic metric
on Py by II; and by II, define two hyperbolic metrics on S

h=I(E+JB) (E+JB)) and h, =I((E—JB)- (E—JB)).

The isotopy classes of the corresponding metrics on S do not depend on the choice
of the space-like surface S and their holonomies are precisely p; and p,, respectively
(IKS07, Lemma 3.6]).

By applying this construction to the unique maximal surface (i.e. with vanishing
mean curvature) S embedded in a GHMC AdS3 manifold, Krasnov and Schlenker
deduced a correspondence between maximal surfaces and minimal Lagrangian maps
between hyperbolic surfaces.
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Definition 1.5.5. An orientation-preserving diffeomorphism m : (S,h) — (S,h’)
1s minimal Lagrangian if it is area-preserving and its graph is a minimal surface in
(SxS,hah).

It is known [BS10, Proposition 1.3] that minimal Lagrangian diffeomorphisms are
characterized by having a decomposition m = (f’)o f~!, where f and f’ are harmonic
maps from a Riemann surface (S, X) with opposite Hopf differential.

It turns out that in this case II; , induce harmonic diffeomorphisms between (S, 1)
and (S, hy,), which have opposite Hopf differential. Hence we obtain a minimal
Lagrangian diffeomorphism between (S, h;) and (.5, h,) that factors through the con-
formal structure of the maximal surface. Moreover, all minimal Lagrangian diffeo-
morphisms from (S,h) to (S,h') are obtained in this way (see for instance [KS0T7]
and [BS10] for a generalisation).



Chapter 2

Prescribing metrics on the
boundary of anti-de Sitter
3-manifolds

In this chapter we prove that given two metrics g4 and g_ with curvature x < —1
on a closed, oriented surface S of genus 7 > 2, there exists an AdS3; manifold N
with smooth, space-like, strictly convex boundary such that the induced metrics on
the two connected components of N are equal to g1 and g_. Using the duality
between convex space-like surfaces in AdSs3, we obtain an equivalent result about
the prescription of the third fundamental form.

2.1 Definition of the problem and outline of the proofs

As it should be clear from Chapter 1, the 3-dimensional anti-de Sitter space AdSs is
the Lorentzian analogue of hyperbolic space, and globally hyperbolic maximal com-
pact AdSs manifolds share many similarities with hyperbolic quasi-Fuchsian man-
ifolds. As a consequence, it is possible to formulate many classical questions of
quasi-Fuchsian manifolds even in this Lorentzian setting. The question we address
here is the following. Let K be a compact, convex subset with two smooth, strictly
convex, space-like boundary components in a GHMC AdS5 manifold. By the Gauss
formula, the boundaries have curvature k < —1. We can ask if it is possible to realise
every couple of metrics, satisfying the condition on the curvature, on a surface S via
this construction. The analogous question has a positive answer in a hyperbolic set-
ting ([Lab92al), where even a uniqueness result holds ([Sch06]). In this chapter, we
will follow a construction inspired by the work of Labourie ([Lab92al), in order to
obtain a positive answer in the anti-de Sitter world. The main result of the chapter
is thus the following:

13
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Corollary 2.3.3. For every couple of metrics g+ and g— on S with curvature less
than —1, there exists a globally hyperbolic convex compact AdS3 manifold K = S x
[0, 1], whose induced metrics on the boundary are exactly g4 .

Using the duality between space-like surfaces in anti-de Sitter space, we obtain an
analogous result about the prescription of the third fundamental form:

Corollary 2.3.4. For every couple of metrics g+ and g— on S with curvature less
than —1, there exists a globally hyperbolic convex compact AdSs manifold K =2 S x
[0, 1], such that the third fundamental forms on the boundary components are g4+ and

g—.

We outline here the main steps of the proof for the convenience of the reader.

The first observation to be done is that Corollary is equivalent to proving
that there exists a GHMC AdSs; manifold M containing a future-convex space-like
surface isometric to (S, ¢g—) and a past-convex space-like surface isometric to (.S, g4 ).
Adapting the work of Labourie ([Lab92al) to this Lorentzian setting, we prove that
the space of isometric embeddings I(S, g+)* of (S, g+) into a GHMC AdS; manifold
as a future-convex (or past-convex) space-like surface is a manifold of dimension
67 —6. On the other hand, by the work of Mess ([Mes07]), the space of GHMC AdS3
structures is parameterised by two copies of Teichmiiller space, hence a manifold of
dimension 127 — 12. This allows us to translate our original question into a question
about the existence of an intersection between subsets in Teich(.S) x Teich(S). More
precisely, we will define in Section [2.3] two maps

¢y, + I(S, g+)* — Teich(S) x Teich(S)

sending an isometric embedding of (S, ¢g+) to the holonomy of the GHMC AdSs
manifold containing it. Corollary is then equivalent to the following:

Theorem 2.3.2. For every couple of metrics g+ and g— on S with curvature less
than —1, we have

of (I(S,90)" )Ny (I1(S,9-)7) #0 .

In order to prove this theorem we will use tools from topological intersection theory,
which we recall in Section [2.4] For instance, Theorem [2.3.2] is already known to
hold under particular hypothesis on the curvatures ([BMS15]), hence we only need
to check that the intersection persists when deforming one of the two metrics on the
boundary, as the space of smooth metrics with curvature less than —1 is connected
(see e.g. |LS00, Lemma 2.3]). More precisely, given any smooth paths of metrics gltjE
with curvature less than —1, we will define the manifolds

wE= ] I(S,g5)*
t€[0,1]
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and the maps
®F : W* — Teich(S) x Teich(S)

with the property that the restrictions of ®* to the two boundary components co-
incide with qﬁ;ti and qb;ti. We will then prove the following:
0 1

Proposition 5.1. The maps ®* are smooth.

Hence, we will have the necessary regularity to apply tools from intersection theory.
In particular, we can talk about transverse maps and under this condition we can
define the intersection number (mod 2) of the maps (;S;r and ¢, as the cardinality
(mod 2), if finite, of (¢, x ¢, )71(A), where

¢f, X by 1(S,94)T x I(S,g-)" — (Teich(S5))? x (Teich(S))?

and A is the diagonal in (Teich(S))? x (Teich(S))2. We will compute explicitly this
intersection number (see Section under particular hypothesis on the curvatures
of g+ and g_: the reason for this being that the transversality condition is in general
difficult to check when the metrics do not have constant curvature. It turns out that
in that case the intersection number is 1.

We then start to deform one of the two metrics and check that an intersection
persists. Here, one has to be careful that, since the maps are defined on non-compact
manifolds, the intersection does not escape to infinity. This is probably the main
technical part of the proof and requires results about the convergence of isometric
embeddings (Corollary [2.5.5), estimates in anti-de Sitter geometry (Lemma [2.5.12))
and results in Teichmiiller theory (Lemma . In particular, applying these
tools, we prove

Proposition 2.5.13. For every metric g~ and for every smooth path of metrics
{9 Yeo,1) on S with curvature less than —1, the set (®F x qﬁg_,)_l(A) is compact

This guarantees that when deforming one of the two metrics the variation of the
intersection locus is always contained in a compact set. The proof of Theorem [2.3.2]
then follows applying standard argument of topological intersection theory.

In Section 2.6, we study the map
ppo®t : WT — Teich(S) ,

where p; : Teich(S) x Teich(S) — Teich(S) is the projection onto the left factor.
The main result we obtain is the following:

Proposition 2.6.1. Let g be a metric on S with curvature less than —1 and let h
be a hyperbolic metric on S. Then there exists a GHMC AdSs manifold M with left
metric isotopic to h containing a past-convex space-like surface isometric to (S, g).

This is proved by showing that p; o QS; is proper of degree 1 (mod 2). Again, we
are able to compute explicitly the degree of the map when ¢ has constant curvature
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and the general statement then follows since for any couple of metrics g and ¢’ with
curvature less than —1, the maps p; o ¢4 and p; o ¢, are connected by a proper
cobordism.

2.2 Equivariant isometric embeddings

Let S be a connected, compact, oriented surface of genus 7 > 2 and let g be a
Riemannian metric on S with curvature x less than —1. An isometric equivariant
embedding of S into AdSs is given by a couple (f,p), where f : S — AdSs is an
isometric embedding of the universal Riemannian cover of S into AdSs and p is a
representation of the fundamental group of S into PSL(2,R) x PSL(2,R) such that

f(yz) =p(7)f(z) Vyem(S) Vzes.

The group PSL(2,R) x PSL(2,R) acts on a couple (f,p) by post-composition on
the embedding and by conjugation on the representation. We denote by I(.S,g)
the set of equivariant isometric embeddings of S into AdS3 modulo the action of

PSL(2,R) x PSL(2,R).

Also in an anti-de Sitter setting, an analogue of the Fundamental Theorem for sur-
faces in the Euclidean space holds:

Theorem 2.2.1. There exists an isometric embedding of (S, g) into an AdSs man-
ifold if and only if it is possible to define a g-self-adjoint operator b : TS — TS
satisfying

det(b) = —r —1 Gauss equation
dVb=0 Codazzi equation

Moreover, the operator b determines the isometric embedding uniquely, up to global
1sometries.

This theorem enables us to identify I(.S, g) with the space of solutions of the Gauss-
Codazzi equations, which can be studied using the classical techniques of elliptic
operators.

Lemma 2.2.2. The space 1(S, g) is a manifold of dimension 6T — 6.
Proof. We can mimic the proof of Lemma 3.1 in [Lab92a)]. Consider the sub-bundle

F9 C Sym(TS) over S of symmetric operators b : T'S — TS satisfying the Gauss
equation. We prove that the operator

dV :T°°(F9) - I°(A2TS @ TS)
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is elliptic of index 67 — 6, equal to the dimension of the kernel of its linearization.
Let Jy be the complex structure induced by g. For every b € I'*°(#9), the operator

Job
\/det(b)

defines a complex structure on .S. In particular we have an isomorphism

F:T>*(¥9) —a
o Job
det(d)

between smooth sections of the sub-bundle I'*°(#9) and the space 4 of complex
structures on S, with inverse

Flia—T(F9)
J = —V—k—1JoJ .

This allows us to identify the tangent space of F( F9) at b with the tangent space of
4 at J, which is the vector space of operators J : T'S — TS such that JJ + JJ = 0.
Under this identification the linearization of dV is given by

L(J) = —Jo(dV J) .

We deduce that L has the same symbol and the same index of the operator 9, sending
quadratic differentials to vector fields. Thus L is elliptic with index 67 — 6.

To conclude we need to show that its cokernel is empty, or, equivalently, that its
adjoint L* is injective. If we identify A2T'S @ T'S with T'S using the metric g, the
adjoint operator L* is given by (see Lemma 3.1 in [Lab92a] for the computation)

(L 6) () = —5 (Vo) + IV )

The kernel of L* consists of all the vector fields ) on S such that for every vector
field u

IV ==V 11500 -

We can interpret this equation in terms of intersection of pseudo-holomorphic curves:
the Levi-Civita connection V induces a decomposition of T'(7'S) into a vertical V
and a horizontal H sub-bundle. We endow V with the complex structure J, and
H with the complex structure —JgJJy. In this way, the manifold T'S is endowed
with an almost-complex structure and the graph of ¥ is a pseudo-holomorphic curve.
Since pseudo-holomorphic curves have positive intersections, if the graph of 1 did
not coincide with the graph of the null section, their intersection would be positive.
On the other hand, it is well-known that this intersection coincides with the Euler
characteristic of S, which is negative. Hence, we conclude that ¢ is identically zero
and that L* is injective. d
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Similarly, we obtain the following result:

Lemma 2.2.3. Let {gi}.c(0,1) be a differentiable curve of metrics with curvature less
than —1. The set
W= J (S 9)
t€(0,1]

is a manifold with boundary of dimension 61 — 5.

Proof. Again we can mimic the proof of Lemma 3.2 in [Lab92a]. Consider the sub-
bundle F C Sym(7T'S) over S x [0,1] of symmetric operators, whose fiber over a
point (z,t) consists of the operators b : T'S — T'S, satisfying the Gauss equation
with respect to the metric g;. The same reasoning as for the previous lemma shows
that

dV :T®(F) = T°(A*TS @ TS)

is Fredholm of index 67 — 5. Since W = (dV)~1(0), the result follows from the
implicit function theorem for Fredholm operators. O

Let N be a GHMC AdS3 manifold endowed with a time orientation, i.e. a nowhere
vanishing time-like vector field. Let S be a convex embedded surface in N. We say
that S is past-convex (resp. future-convex), if its past (resp. future) is geodesically
convex. We will use the convention to compute the shape operator of S using the
future-directed normal. With this choice if S is past-convex (resp. future-convex)
then it has strictly positive (resp. strictly negative) principal curvatures.

Definition 2.2.4. We will denote with 1(S,g)* and I(S,g)~ the spaces of equivari-
ant isometric embeddings of S as a past-convex and future-conver surface, respec-
tively.

2.3 Definition of the maps ¢+

The parameterisation of GHMC anti-de Sitter structure described in Section [L.5
enables us to formulate our original question about the prescription of the metrics
on the boundary of a compact AdSs manifold in terms of existence of an intersection
of particular subsets of Teich(S) x Teich(S).

Let K be a globally hyperbolic, convex, compact anti-de Sitter 3-manifold with
strictly convex boundary. By global hyperbolicity, K is diffeomorphic to S x [—1, 1],
where S is a Cauchy surface of K, which we suppose to be closed, connected and
oriented of genus 7 > 2. By definition of maximality, K can be embedded into
a unique GHMC AdSs manifold N. The boundary components ST and S~ of K
become two embedded space-like surfaces in IV, the former is past-convex and the
latter is future-convex. Moreover, by the Gauss equation, the metrics induced on
St and S~ have curvature less than —1. If we denote with g, and g_ the metrics
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induced on ST and S~ respectively, by lifting the embeddings o : (ST, g+) — N to
the Universal cover, we obtain an element of (.9, g4)" and an element of I(S,g_)".
Viceversa, if N is a GHMC AdS3 manifold, by cutting N along a past-convex space-
like surface and a future-convex space-like surface we obtain a convex, compact,
globally hyperbolic anti-de Sitter manifold with convex boundary. Thus, the question
of prescribing the metrics on the boundary components of a compact, convex, globally
hyperbolic anti-de Sitter manifold with strictly convex boundary is equivalent to the
question of finding a future-convex and a past-convex isometric embedding into the

same GHMC AdS3 manifold.
This suggests the following construction:

Definition 2.3.1. Let g be a metric on S with curvature k < —1. We define the
maps

¢y 1(S, g)* — Teich(S) x Teich(S)

b= (hi(g,0), hr(9,0)) := (9((E + Jb)-, (E + Jb)-), g((E — Jb)-, (E = Jb)-))

associating to every isometric embedding of (S, g) the left and right metric of the
GHMC AdS3 manifold containing it.

We recall that we use the convention to compute the shape operator using always the
future-oriented normal. In this way, the above formulas hold for both future-convex
and past-convex surfaces, without changing the orientation of the surface S.

We will prove (in Section the following fact, which is the main theorem of the
chapter:

Theorem 2.3.2. For every couple of metrics gy and g— on S with curvature less
than —1, we have

oF (1(S,90)" )Ny (I1(S,9-)7) #0 .

Therefore, there exists a GHMC AdSs; manifold containing a past-convex space-
like surface isometric to (S, g+ ) and a future-convex space-like surface isometric to
(S,9-). We deduce from this the answer to our original question:

Corollary 2.3.3. For every couple of metrics g+ and g— on S with curvature less
than —1, there exists a globally hyperbolic convex compact AdSs manifold K =2 S x
[0, 1], whose induced metrics on the boundary are exactly g .

If we apply the previous corollary to the dual surfaces, we obtain an analogous result
about the prescription of the third fundamental form:

Corollary 2.3.4. For every couple of metrics g+ and g— on S with curvature less
than —1, there exists a compact AdSs manifold K = S x [0,1], whose induced third
fundamental forms on the boundary are exactly g+ .
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2.4 Topological intersection theory

As outlined in Section [2.I] the main tool used in the proof of the main theorem
is the intersection theory of smooth maps between manifolds, which is developed
for example in |[GP74]. We recall here the basic constructions and the fundamental
results.

If not otherwise stated, all manifolds considered in this section are non-compact
without boundary.

Let X and Z be manifolds of dimension m and n, respectively and let A be a closed
submanifold of Z of codimension k. Suppose that m — k& > 0. We say that a smooth
map f : X — Z is transverse to A if for every z € Im(f)N A and for every z € f~1(2)
we have

Af (T, X)+T.A=T.Z .

Under this hypothesis, f~1(A) is a submanifold of X of codimension k.
When k& = m and f~1(A) consists of a finite number of points we define the inter-
section number between f and A as

S(f,4) =14 (mod2).

Remark 2.4.1. When A is a point p € Z, f is transverse to p if and only if p is a
reqular value for f. Moreover, if f is proper, f~1(p) consists of a finite number of
points and the above definition coincides with the classical definition of degree (mod
2) of a smooth and proper map.

We say that two smooth maps f: X — Z and ¢g: Y — Z are transverse if the map
fXg: XXY—>2ZxZ

is transverse to the diagonal A C Z x Z. Notice that if Im(f) N Im(g) = 0, then f
and g are transverse by definition.

Suppose now that 2dim X = 2dimY = dim Z. Moreover, suppose that the maps
f:X — Zand g:Y — Z are transverse and the preimage (f x g)~!(A) consists of
a finite number of points. We define the intersection number between f and g as

S(f,9) ==S(f x g,8) = |(f x 9)" ()] (mod 2) .
It follows by the definition that if S(f,g) # 0 then Im(f) N Im(g) # 0.

One important feature of the intersection number that we will use further is the
invariance under cobordism. We say that two maps fy: Xo = Z and f1: X1 — Z
are cobordant if there exists a manifold W and a smooth function F' : W — Z such
that OW = Xy U X7 and F|Xi = f;.

Proposition 2.4.2. Let W be a non-compact manifold with boundary OW = XoUXj.
Let H : W — Z be a smooth map and denote by h; the restriction of H to the
boundary component X; fori = 0,1. Let A C Z be a closed submanifold. Suppose
that
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(i) codimA = dim X;;
(i) H is transverse to A;
(iii) H='(A) is compact.
Then S(ho, A) = S(h1, A).

Proof. By hypothesis the pre-image H~!(A) is a compact, properly embedded 1-
manifold, i.e. it is a finite disjoint union of circles and arcs with ending points on
a boundary component of W. This implies that hy ' (A) and hy*(A) have the same
parity. O

In particular, we deduce the following result about the intersection number of two
maps:

Corollary 2.4.3. Let W be a non-compact manifold with boundary OW = XoU X7.
Let F : W — Z be a smooth map and denote by f; the restriction of F' to the boundary
component X; fori=0,1. Let g: Y — Z be a smooth map. Suppose that

(1) 2dim X; = 2dimY = dim Z;
(ii)) F and g are transverse;
(iii) (F x g)~Y(A) is compact.

Then (fo,9) = S(f1,9)-

Proof. Apply the previous proposition to the map H = F' xg: W xY — Z x Z and
to the submanifold A = A, the diagonal of Z x Z. O

The hypothesis of transversality in the previous propositions is not restrictive, as it
is always possible to perturb the maps involved on a neighbourhood of the set on
which transversality fails:

Theorem 2.4.4 (Theorem p.72 |[GP74|). Let h : W — Z be a smooth map between
manifolds, where only W has boundary. Let A be a closed submanifold of Z. Suppose
that h is transverse to A on a closed set C C W. Then there exists a smooth map

h:W = Z homotopic to h such that h is transverse to A and h agrees with h on a
neighbourhood of C.

Now the question arises whether the intersection number depends on the particular
perturbation of the map that we obtain when applying Theorem [2.4.4]

Proposition 2.4.5. Let h : X — Z be a smooth map between manifolds. Let A
be a submanifold of Z, whose codimension equals the dimension of X. Suppose that
h=Y(A) is compact. Let h and h' be perturbations of h, which are transverse to A
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and coincide with h outside the interior part of a compact set B containing h=1(A).
Then B B
S(h, A) = S(H, A) .

Proof. Let H : W = X x [0,1] — Y be an homotopy between h and h’ such that
for every x € (X \ B) x [0,1] we have H(x,t) = h(x) . Notice that H~1(A) is
compact. Up to applying Theorem to the closed set C' = (X \ B) x [0, 1]UOW,
we can suppose that H is transverse to A. By Proposition we have that

S(h, A) = (', A) as claimed. O

Moreover, in particular circumstances, we can actually obtain a 1 —1 correspondence
between the points of iy *(A) and hy ' (A). The following proposition will not be used
for the proof of the main result of the chapter, but it might be a useful tool to prove
the uniqueness part of the question addressed in this chapter, as explained in Remark
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Proposition 2.4.6. Under the same hypothesis as Proposition [2.4.3, suppose that
the cobordism (W, H) between hg and hy satisfies the following additional properties:

(i) W fibers over the interval [0, 1] with fiber X;;

(ii) the restriction hy of H at each fiber is tranverse to A .
Then |hg ' (A)] = [hy ' (A)]
Proof. Tt is sufficient to show that in H~!(A) there are no arcs with ending points in
the same boundary component. By contradiction, let v be an arc with ending point

in Xy. Define
to =sup{t € [0,1] | vy N X; # 0} .

A tangent vector ¥ at a point p € Xy, N~ is in the kernel of the map
dpH = T, )W — Ty(Z x Z) [ Ty(A)

where ¢ = H(p). The contradiction follows by noticing that on the one hand 5
is contained in the tangent space 7,X;, by construction but on the other hand
dphiy : Tp Xy, = Ty(Z x Z)/T,(A) is an isomorphism by transversality.

A similar reasoning works when + has ending points in X;. O

2.5 Some properties of the maps ¢*

This section contains the most technical part of the paper. We summarise here
briefly, for the convenience of the reader, what the main results of this section are.

For every metric g on S with curvature less than —1 we have defined in Section [2.3
the maps qﬁ;t which associate to every isometric embedding of (.5, g) into a GHMC
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AdS3 manifold M the class in Teichmiiller space of the left and right metrics of M. It
follows easily from Lemmathat for any couple of metrics g and ¢’ with curvature
less than —1 the maps @t and qﬁgc, are cobordant through a map ®*. In this section
we will define the maps ®* and will study some of its properties, which will enable
us to apply the topological intersection theory described in the previous section.
More precisely, the first step will consist of proving that all the maps involved are
smooth. This is the content of Proposition [2.5.1] and the proof will rely on the fact
that the holonomy representation of a hyperbolic metric depends smoothly on the
metric. Then we will deal with the properness of the maps ®* (Corollary that
will follow from a compacteness result of isometric embeddings (Corollary .
This will allow us also to have a control on the space where two maps ¢, and ¢,
intersect: when we deform one of the two metrics the intersection remains contained

in a compact set (Proposition [2.5.13]).

Recall that given a smooth path of metrics {gt}te[m] on S with curvature less than
—1, the set
wE = |J I*(S,9)
te[0,1]
is a manifold with boundary OW* = I(S,go)* U I(S,g1)* of dimension 67 — 5
(Lemma [2.2.3). We define the maps

dF : W* — Teich(S) x Teich(S)

be = (hi(ge, bt), he(gt,be)) = (ge((E + Jbe)-, (E + Jbt)-), gt ((E — Jbt)+, (E — Jbt)-))

associating to an equivariant isometric embedding (identified with its Codazzi op-

erator by) of (S,¢:) into AdS3 the class in Teichmiiller space of the left and right

metrics of the GHMC AdS3 manifold containing it. We remark that the restrictions
:t . . . . :l: :l: . .

of ®* to the boundary coincide with the maps ¢y and ¢g; defined in Section

We deal first with the regularity of the maps.
Proposition 2.5.1. The functions ®* : W* — Teich(S) x Teich(S) are smooth.

Proof. Let Mg be the set of hyperbolic metrics on S. We can factorise the map &+
as follows:

4+ o'E T . .
W= — Mg x Mg — Teich(S) x Teich(S)

where ®'* associates to an isometric embedding of (S, g;) (determined by an op-
erator b; satisfying the Gauss-Codazzi equation) the couple of hyperbolic metrics
(gt ((E4 Jiby), (E+ Jiby)-), gt ((E — Jiby)-, (B — Jiby)-)), and 7 is the projection to the
corresponding isotopy class, or, equivalently, the map which associates to a hyper-
bolic metric its holonomy representation. Since the maps ®'* are clearly smooth by
definition, we just need to prove that the holonomy representation depends smoothly
on the metric. Let h be a hyperbolic metric on S. Fix a point p € S and a uni-
tary frame {vi,v2} of the tangent space T,S. We consider the ball model for the



24 CHAPTER 2. PRESCRIPTION OF METRICS ON THE BOUNDARY

hyperbolic plane and we fix a unitary frame {wy,ws} of ToHZ2. We can realise every
element of the fundamental group of S as a closed path passing through p. Let
v be a path passing through p and let {U;}i—o., be a finite covering of v such
that every U; is homeomorphic to a ball. We know that there exists a unique map
fo : Uy = By C H? such that

folp) =0
dpfO(Uz‘) = w;
foguz =h .

Then, for every ¢ > 1 there exists a unique isometry f; : U; — B; C H? which
coincides with f;_1 on the intersection U;NU;_1. Let ¢ = f,(p) € H2. The holonomy
representation sends the homotopy class of the path v to the isometry I, : H? — H?
such that I,(¢) = 0. Moreover, its differential maps the frame {u; = df,(v;)} to
the frame w;. The isometry I, depends smoothly on ¢ and on the frame u;, which
depend smoothly on the metric because each f; does. O

The next step is about the properness of the maps ®*. This will involve the study of
sequences of isometric embeddings of a disc into a simply-connected spacetime, which
have been extensively and profitably analysed in [Sch96]. In particular, the author
proved that, under reasonable hypothesis, a sequence of isometric embeddings of a
disc into a simply-connected spacetime has only two possible behaviours: it converges
C*®°, up to subsequences, to an isometric embedding, or it is degenerate in a precise
sense:

Theorem 2.5.2 (Theorem 5.6 [Sch96]). Let fn: D — X be a sequence of uniformly
elliptic * immersions of a disc D in a simply connected Lorentzian spacetime (X, §).
Assume that the metrics f;g converge C™ towards a Riemannian metric oo ON
D and that there exists a point © € D such that the sequence of the 1-jets jlfn(x)
converges. If the sequence f,, does not converge in the C™ topology in a neighbourhood
of z, then there exists a mazimal geodesic v of (D, joo) and a geodesic arc T of (X, g)
such that the sequence (f”)lw converges towards an isometry foo : v — L.

We start with a straightforward application of the Maximum Principle, which we
recall here in the form useful for our purposes (see e.g. [BBZ11l, Proposition 4.6]).

Proposition 2.5.3 (Maximum Principle). Let X1 and Yo two future-convex space-
like surfaces embedded in a GHMC AdSs manifold M. If they intersect in a point
T and X4 is in the future of Yo then the product of the principal curvatures of Yo is
smaller than the product of the principal curvatures of X;.

Proposition 2.5.4. Let ¥ be a future-conver space-like surface embedded into a
GHMC AdSs manifold M. Suppose that the Gaussian curvature of 3 is bounded

We recall that a sequence of isometric immersions is said to be uniformly elliptic if the corre-
sponding shape operators have uniformly positive determinant.
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between —o0 < Kmin < Kmaz < —1. Denote with Spin and Spmaz the unique future-
convex space-like surfaces with constant curvature K, and Kpg: embedded in M.
Then ¥ is in the past of Spmaz and in the future of Spmin-

Proof. Consider the unique (|[BBZ11, Corollary 4.7]) x-time
T:1 (0_-C(M))— (—o0,—1),

i.e. the unique function defined on the past of the convex core of M such that the
level sets T~ 1(k) are future-convex space-like surfaces of constant curvature x. The
restriction of T to ¥ has a maximum %,,,; and a minimum %,,;,. Consider the level
sets Liin = T (tmin) and Liygz = T (tmaz). By construction ¥ is in the future
of Ly and they intersect in a point x, hence, by the Maximum Principle and the
Gauss equation, we obtain the following inequality for the Gaussian curvature of 3
at the point x:
tmin > K(l‘) > Kmin -

Similarly we obtain that ¢4 < K(y) < Kmaz, Where y is the point of intersection
between Ly, and Y. But this implies that X is in the past of the level set T*I(/ﬁmam)
and in the future of the level set T !(kmin), Which correspond respectively to the
surfaces Syqe and Sy, by uniqueness. O

Corollary 2.5.5. Let g, be a compact family of metrics in the C* topology with
curvatures k < —1 on a surface S. Let fn : (S,9n) — M, = (S X R, hy) be a
sequence of isometric embeddings of (S, gn) as future-convez space-like surfaces into
GHMC AdSs manifolds. If the sequence hy, converges to an AdS metric hoo in the
C®>-topology, then f, converges C*°, up to subsequences, to an isometric embedding
into Moo = (S X R, hoo).

Proof. Consider the equivariant isometric embeddings f,, : (S, Gn) — AdS3 obtained
by lifting f, to the universal cover. We denote with S, the images of the disc S
under the map fn and let h,, be the lift of the Lorentzian metrics h,, on AdSs. By
hypothesis f;:iln = g, admits a subsequence converging to §uo.

Fix a point z € S. Since the isometry group of AdS; acts transitively on points and
frames, we can suppose that f,(z) =y € AdSs and j' f,(z) = z for every n € N.
Moreover, the condition on the curvature of the metrics g, guarantees that the
sequence fn is uniformly elliptic.

Therefore, we are under the hypothesis of Theorem [2.5.2

The previous proposition allows us to determine precisely in which region of M,
each surface f,(S) lies. Since the family of metrics g, is compact, the curvatures
of the surfaces f,(S) in M, are uniformly bounded k™" < k, < K™% < —1 — 3¢
for some € > 0. By the previous proposition each surface f,(S) is in the past of
¥maZ and in the future of 7" where X" and Y™ are the unique future-convex
space-like surfaces of M,, with constant curvature ™" and k™%*. Let ¥, be the
unique future-convex space-like surface in M, with constant curvature —1 — 2e. We
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think of ¥ as a fixed surface embedded in S xR and we change the Lorentzian metric
of the ambient space. Since h,, converges to hso, the metrics induced on X, by h,
converge to the metric induced on X, by hs,. In particular, for n sufficiently large
the curvature of ¥, as surface embedded in M, = (S x R, h,) is bounded between
—1—3e and —1 — €. Therefore, 3. is convex in M, and by the previous proposition
3¢ is in the future of ¥7'** for every n sufficiently big. This implies that each surface
fn(S) is in the past of the surface X..

We can now conclude that the sequence f,, must converge to an isometric embedding.
Suppose by contradiction that the sequence fn is not convergent in the C'*° topology
in a neighbourhood of z, then there exists a maximal geodesic 4 of (S, jso) and a
geodesic segment I in AdS3 such that ( fn)la converges to an isometry foo : v — L.

This implies that T has infinite length. The projection of I must be contained in the
past of X, because each f,(S) is contained there for n sufficiently large. But the
past of X, is disjoint from the convex core of M, and this contradicts the following
lemma. O

Lemma 2.5.6. In a GHMC AdSs-manifold every complete space-like geodesic is
contained in the convex core.

Proof. Let v be a complete space-like geodesic in a GHMC AdS3 manifold M. By a
result of Mess (see Section , we can realise M as the quotient of the domain of
dependence D(¢) C AdSs of a curve ¢y on the boundary at infinity by the action of
the fundamental group of S. The lift 4 of v has ending points on the curve cy, hence
7 is contained in the convex hull of ¢y into AdS3 and its projection is contained in
the convex core of M. O

Remark 2.5.7. Clearly, the same result holds for equivariant isometric embeddings
of past-convex space-like surfaces, as it is sufficient to reverse the time-orientation.

Corollary 2.5.8. The functions ®* : W* — Teich(S) x Teich(S) are proper.

Proof. We prove the claim for the function @, the other case being analogous.
Let (hi(gt,,,bt,), hr(gt,,, b, ) € Teich(S) x Teich(S) be a convergent sequence in the
image of the map ®~. This means that the sequence of GHMC AdSs manifolds M,
parametrised by (hi(gt,,0bt,), hr(gt,,bt,)) is convergent. By definition of the map
®~, each M, contains an embedded future-convex, space-like surface isometric to
(S, 9t,), whose immersion f, into M, is represented by the Codazzi operator b;,.
By Corollary [2.5.5 the sequence of isometric immersions f, is convergent up to
subsequences, thus &~ is proper. O

This allows us to show that for every metric g_ and for every smooth path of met-
rics {g;" }efo,1) on S with curvature £ < —1 the intersection between Ot (WT) and
¢, (1(S,9-)7) is compact. This will follow combining some technical results about
the geometry of AdSs manifolds and length-spectrum comparisons.
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Definition 2.5.9. Let g be a metric with negative curvature on S. We define the
length function
ly:m(S) = R

which associates to every homotopy non-trivial loop on S, the length of its g-geodesic
representative.

We recall that when g is a hyperbolic metric, Thurston proved (see e.g. [FLP79])
that the length function can be extended uniquely to a function on the space of
measured geodesic laminations on S, which we still denote with /.

We will need the following technical results:

Lemma 2.5.10 (Lemma 9.6 [BMSI15]). Let N be a globally hyperbolic compact AdSs
manifold foliated by future-convex space-like surfaces. Then, the sequence of metrics
induced on each surface decreases when moving towards the past. In particular, if 31
and Yo are two future-conver space-like surfaces with X1 in the future of Yo, then
for every closed geodesic v in X1 we have

lg, (7)) < gy (7)

where v is the closed geodesic on Yo homotopic to v and g1 and go are the induced
metric on X1 and Yo, respectively.

Lemma 2.5.11. Let g, be a compact family of smooth metrics on S with curvature
less than —1. Let m,, be a family of hyperbolic metrics such that

g, (V) < Ui, (7)

for every v € w1 (S). Then my, lies in a compact subset of the Teichmiiller space of

S.

Proof. The idea is to use Thurston asymmetric metric on Teichmiiller space. To this
aim, we will deduce from the hypothesis a comparison between the length spectrum
of m,, and that of the hyperbolic metrics h,, in the conformal class of g,.

Let k < —1 be the infimum of the curvatures of the family g,. Since g, is a compact
family, K > —oo. Let g, = —%hn be the metrics of constant curvature x in the
conformal class of g,. We claim that

U (1) < V[l ()

for every v € m1(S). For instance, if we write g, = e%%ng,, the smooth function
up : S — R satisfies the differential equation

2@ = gy (2) + Ag, un(z) |

where kg, is the curvature of g,. Since rky, > K, Ay, u, is positive at the point of
maximum of u,, and £ < —1, we deduce that e?*» < 1, hence

g, () < L, (7)
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for every v € m1(5). It is then clear that

g, (v) = \}Eﬁhn (7)

for every v € m1(5) and the claim follows.
Moreover, by the inequality

U, (1) < V1l (7)Y v € m(S)

we deduce that h,, is contained in a compact set of Teichmiiller space: if that were
not the case, there would exists a curve v such that ¢, () 7% +o0, which is
impossible because g, is a compact family.

We can conclude now using Thurston asymmetric metric: given two hyperbolic met-
rics h and h’, Thurston asymmetric distance between h and A’ is defined as

th(7)
drp(h,h') = sup log ( .
! yem (S) Cnr ()

It is well-known ([Thu98]) that if i} is a divergent sequence than drp (K, h,) — +00,
where K is any compact set in Teichmiiller space. Now, by the length spectrum
comparison

U (V) < VK, (v) ¥ v €(S) |

we deduce that drp,(hy, my) < log(y/|k|) < +00, hence m,, must be contained in a
compact set. O

We will need also the following fact about the geometry of the convex core of a
GHMC AdS3 manifold.

Lemma 2.5.12 (Proposition 5 |[Dial3|). Let M be a GHMC AdS3 manifold. Denote
by m™ and m™ the hyperbolic metrics on the upper and lower boundary of the convex
core of M. Let Xt and A\~ be the measured geodesic laminations on the upper and
lower boundary of the convex core of M. For all € > 0, there exists some A > 0
such that, if m™ is contained in a compact set and £+ (A7) > A, then £, (A1) <
et (AT).

Proposition 2.5.13. For every metric g~ and for every smooth path of metrics
{9 Yepo,1) on S with curvature k < —1, the set (®T X qﬁg_,)*l(A) is compact.

Proof. We need to prove that every sequence of isometric embeddings (bz: by ) in
(®F x (;S;_)_I(A) admits a convergent subsequence. By definition, for every n € N,
there exists a GHMC AdS3 manifold M,, containing a past-convex surface isometric
to (S, g;" ) with shape operator b and a future-convex surface isometric to (S, g~)
with shape operator b,,. By Lemma and Lemma the metrics m;} and

m,, on the upper and lower boundary of the convex core of M,, are contained in a
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compact set of Teich(S) .

We are going to prove now that the sequences of left and right metrics of M,, are
contained in a compact set of Teichmiiller space, as well. Suppose by contradiction
that the sequence of left metric h;, of M, is not contained in a compact set. By
Mess parameterisation (see Section or [Mes07]), the left metrics are related to
the metrics m;” and to the measured geodesic laminations A} of the upper-boundary
of the convex core by an earthquake:

hi,, = Elﬁ (my) -

Since hy, is divergent, the sequence of measured laminations \; is divergent, as
well. In particular, this implies that me (A} goes to infinity. Therefore, by Lemma
2.5.12} for every € > 0 there exists ng such that the inequality £, - (A7) < €/, +(AT)

olds for n > ng. From this we deduce a contradiction, because we prove that the
inequality

Em;()\:{) < eﬁmi()\:{) V' n>ng

implies that the sequence m,, is divergent, which contradicts what we proved in
the previous paragraph. For instance, if m, were contained in a compact set of
Teichmiiller space, there would exist (using again Thurston’s asymmetric metric) a
constant C' > 1 such that

o (7)

<C Vn>ng.
(1) = =

By density this inequality must hold also for every measured geodesic lamination on
S. But we have seen that for every € > 0 we can find ng such that for every n > nyg
we have

thus obtaining a contradiction.

A similar argument proves that also the sequence of right metrics h,,, must be con-
tained in a compact set of Teich(S).

Since the sequences of left and right metrics of M,, converge, up to subsequence, we
can concretely realise the corresponding subsequence M, as (S xR, h;,) such that A,
converges in the C*°-topology to an anti-de Sitter metric ho and each M, contains
a future-convex space-like surface with embedding data (¢~, b, ) and a past-convex
space-like surface with embedding data (g; , bt) The proof is then completed ap-

plying Corollary [2.5.5] O
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2.6 Prescription of an isometric embedding and half
holonomy

This section is dedicated to the proof of the following result about the existence of
an AdSs manifold with prescribed left metric containing a convex space-like surface
with prescribed induced metric:

Proposition 2.6.1. Let g be a metric on S with curvature less than —1 and let h be
a hyperbolic metric on S. There exists a GHMC AdSs manifold M with left metric
isotopic to h containing a past-convex space-like surface isometric to (S, g).

If we denote with

p1 : Teich(S) x Teich(S) — Teich(S)
the projection onto the left factor, Propostition is equivalent to proving that
the map p; o qﬁ:{ : 1(S,g)T — Teich(S) is surjective. After showing that p; o qb:;
is proper (Corollary [2.6.4), this will follow from the fact that its degree (mod 2) is

non-zero.

In order to prove properness of the map p; qu;, we will need the following well-known
result about the behaviour of the length function while performing an earthquake.

Lemma 2.6.2 (Lemma 7.1 [BS09]). Given a geodesic lamination A € ML(S) and a
hyperbolic metric g € Teich(S), let ¢’ = EMg). Then for every closed geodesic ~y in
S the following estimate holds

Lo(7) + Ly (v) = A7) -

Proposition 2.6.3. For every path of metrics {gt}te[l),l] with curvature less than
—1, the projection py : @+ (W) — Teich(S) is proper.

Proof. Let hi(gt,,b,) be a convergent sequence of left metrics. We need to prove
that the corresponding sequence of right metrics h, (g, , by, ) is convergent, as well.
By hypothesis, (S, g,) is isometrically embedded as past-convex space-like surface
in each GHMC AdSs manifold M, parametrised by (hi(gt,,0bt,), hr(gt,,bt,)). By
Lemma and Lemma the metrics m; on the past-convex boundary
of the convex core of M, are contained in a compact set of Teich(S). Moreover,
by a result of Mess ([Mes07]), the left metrics hy(gt,, bt, ), the metrics m;l and the
measured laminations on the convex core A} are related by an earthquake

+
hi(gt,,b,) = ElA" (my}) .

Since hy(gy,,, b, ) is convergent, by Lemma the sequence of measured lamina-
tions A7 must be contained in a compact set. Therefore, by continuity of the right
earthquake

E, : Teich(S) x ML(S) — Teich(S)
(h\) = EMNR)



2.6. PRESCRIPTION OF AN ISOMETRIC EMBEDDING AND HALF HOLONOMY 31

the sequence
+
he(Gens br,) = B} (my))

n

is convergent, up to subsequences. O

In particular, considering a constant path of metrics, we obtain the following:
Corollary 2.6.4. The projection py : ¢} (1(S,g)") — Teich(S) is proper .

Proposition 2.6.5. For every metric g of curvature k < —1, the map
p1 o ¢;r : 1(S, g)T — Teich(S)
1s proper of degree 1 mod 2.

Proof. Consider a path of metrics (gt)ie[0,1] With curvature less than —1 connecting
g = go with a metric of constant curvature g;. By Corollary and Corollary
the maps py o ¢ : I(S, go)* — Teich(S) and py o ¢ : I(S,91)" — Teich(S)
are proper and cobordant, hence they have the same degree (mod 2). (This follows
from Remark Proposition and Proposition . Thus, we can suppose
that g has constant curvature x < —1.

We notice that there exists a unique element in I(S,g)" such that hi(g,b) = —kg:
a direct computation shows that b = v/—k — 1E works and uniqueness follows by
the theory of landslides developed in [BMS13|. We sketch here the argument and
we invite the interested reader to consult the aforementioned paper for more details.
Pick 6 € (0,7) such that kK = —m. The landslide
Ll : Teich(S) x Teich(S) — Teich(S)

(h,h*) — K

associates to a couple of hyperbolic metrics (h, h*), the left metric of a GHMC AdS3
manifold containing a space-like embedded surface with induced first fundamental
form I = cos?(#/2)h and third fundamental form ITI = sin?(f/2)h*. It has been
proved (|[BMS13, Theorem 1.14]) that for every (h,h') € Teich(S) x Teich(S), there
exists a unique h* such that Léw (h,h*) = h'. Moreover, the shape operator b of the
embedded surface can be recovered by the formula ([BMS13| Lemma 1.9])

b=tan(6/2)B

where B : T'S — T'S is the unique h-self-adjoint operator such that h* = h(B-, B-).
Therefore, if we choose h = h' = —kg, the uniqueness of the operator b follows by
the uniqueness of h* and B.

Hence, the degree (mod 2) of the map is 1, provided —kg is a regular value. Let
be Tl (S,9)" be a non-trivial tangent vector. We remark that, since elements
of I(S,g)" are g-self-adjoint, Codazzi tensor of determinant —1 — k, the tangent
space T, (S, g)" can be identified with the space of traceless, Codazzi, g-self-adjoint
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tensors. We are going to prove that the deformation induced on the left metric is
non-trivial, as well. Let b; be a path in I(S, g)* such that by = b = v/~ — 1E and
%bt =b at t = 0. The complex structures induced on S by the metrics h;(g, b) are

Ji = (E+ Jb) " J(E + Jby)

where J is the complex structure induced by ¢. Taking the derivative of this expres-
sion at t = 0 we get

Jj= %[E— VR =1

which is non-trivial in 7", Teich(S) because, as explained in Theorem 1.2 of [ET84],
the space of traceless and Codazzi operators in T);4 has trivial intersection with the
kernel of the differential of the projection 7 : 4 — Teich(S), which sends a complex
structure J to its isotopy class. O

In particular, for every smooth metric ¢ on S with curvature less than —1, the
map pj o qb; : I(S,g)t — Teich(S) is surjective (a proper, non-surjective map has
vanishing degree (mod 2)) and we deduce Proposition [2.6.1]

2.7 Proof of the main result

We have now all the ingredients to prove Theorem As outlined in the Intro-
duction, the first step consists of verifying that in one particular case, i.e. when we
1

choose the metrics g/, = —<-h and g = —%h, where h is any hyperbolic metric and

K* = _T-NH = k = —2, the maps d);/ and qﬁ;, have a unique transverse intersection.
+ —

It is a standard computation to verify that b = E and b~ = —F are Codazzi

operators corresponding to an isometric embedding of (S,¢/) as a past-convex

space-like surface and to an isometric embedding of (S,¢" ) as a future-convex

space-like surface respectively into the GHMC AdSs manifold M parametrised by

(h,h) € Teich(S) x Teich(S). This manifold M is unique due to the following:

Theorem 2.7.1 (Theorem 1.15 [BMS15|). Let hy and h’_ be hyperbolic metrics and
let k1 and k_ be real numbers less than —1. There exists a GHMC AdSs manifold
M which contains an embedded future-convexr space-like surface with induced metric
ﬁh_ and an embedded past-convex space-like surface with induced metric ﬁm.

Moreover, if Ky = — then M is unique.

K_
K_+1’

We notice that M is Fuchsian, i.e. it is parametrised by a couple of isotopic metrics
in Teichmiiller space. A priori, there might be other isometric embeddings of (S, ¢/,)
as a past-convex space-like surface and of (S, ¢'_) as a future-convex space-like surface
into M not equivalent to the ones found before. Actually, this is not the case due
to the following result about isometric embeddings of convex surfaces into Fuchsian
Lorentzian manifolds:
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Theorem 2.7.2 (Theorem 1.1 [LS00]). Let (S, g) be a Riemannian surface of genus
T > 2 with curvature strictly smaller than —1. Let zo € AdSs be a fized point.
There exists an equivariant isometric embedding (f, p) of (S, g) into AdS3 such that
p is a representation of the fundamental group of S into the group Isom(A;ng, xo) of
isometries of AdSs fizing xo. Such an embedding is unique modulo Isom(AEng,xo).

As a consequence, if we denote with A the diagonal of Teich(S)? x Teich(S)?, we
have proved that

(65, < 6,)7H(A) = (B,~F) € I(5,¢} )" x I(S,4)" .

We need to verify next that at this point the intersection
o7 (1(8,6.)") Ny, (1(5,9)7)

is transverse. Suppose by contradiction that the intersection is not transverse, then
there exists a non-trivial tangent vector b* € TgI(S, ¢/ )" and a non-trivial tangent
vector b~ € T_gI(S,¢" )~ such that

d¢;,+(b+) = do,, (b7) € TjyTeich(S) x Ty, Teich(S) .

We recall that elements of TgI(S,¢/ )" can be represented by traceless, ¢/, -self-

adjoint, Codazzi operators. With this in mind, let us compute explicitly dqﬁ;;, (b*)
. +

Let b, be a smooth path in (S, g, )* such that by = F and g bf =b" #0. The

complex structures induced on S by the left metrics h(b;) are

St = (E+JbH) T I(E + Jb)

where J is the complex structure of (S, ¢/, ). We compute now the derivative of this
expression at ¢ = 0. First notice that, since the operators b; are ¢/, -self-adjoint, J b:r
is traceless, hence the Hamilton-Cayley equation reduces to (Jb;)? + det(Jb; ) E =
(Jb)? + E = 0. We deduce that

(E+ Jb)(E — Jb) =2F .
Therefore, the variation of the complex structures induced by the left metrics is

. d d 1
Ji Jit ~(E — Jb})J(E + Jb))

! :%lt:O L %|t:02
1. 1 :
= 5(—Jb+)J(E +J)+5(E - J)J?bT
= —(E—J)b*

where, in the last passage we used the fact that, since b is traceless and symmetric,
the relation Jb™ = —b*.J holds.



34 CHAPTER 2. PRESCRIPTION OF METRICS ON THE BOUNDARY

With a similar procedure we compute the variation of the complex structures of the
right metrics and we obtain

Jt=(FE+NbteTra.

Noticing that jl+ and Jj are both traceless Codazzi operators, the image of bt under
the differential dd)} is simply
+

d¢g+,+ (bF) = (—(E — )bt (E + J)b") € T, Teich(S) x T, Teich(S)

because, as explained in Theorem 1.2 of [E'T84], the space of traceless and Codazzi
operators in 7’74 is in direct sum with the kernel of the differential of the projection
7 : 4 — Teich(S), which sends a complex structure J to its isotopy class and gives
an isomorphism between the space of traceless, Codazzi, self-adjoint tensors and
Ty, Teich(S).

With a similar reasoning we obtain that

dg_, (b7) = (=(E+ )b, (E = J)b~) € T Teich(S) x TyTeich(S) .

By imposing that d¢;§ (b)) = o, (b~) we obtain the linear system
+ —

(—E+ J)bt = —(E+ )b~
(E+ )bt = (E—J)b~

which has solutions if and only if T = b~ = 0. Therefore, the intersection is
transverse and we can finally state that

S(of, 0y ) =1.

Now we use the theory described in Section [2.4] to prove that an intersection persists
under a deformation of one metric that fixes the other. Let g, and g_ be two
arbitrary metrics on S with curvature less than —1. We will still denote with ¢/, and
with ¢’ the metrics introduced in the previous paragraph with self-dual constant
curvature and in the same conformal class. Consider two paths of metrics {gi}te[o,l]
and {g" };ep0,1) with curvature less than —1 such that @ =g+, 98 =7, 9% =9g-
and g1 = ¢". We will first prove that

g, (1(S,94) ") Ny (1(S,g2)7) #0.

Suppose by contradiction that this intersection is empty. Then the map ¢;+ X ¢;/

is trivially transverse to A. Consider the manifold

wt= ] 1(S,g/)"
t€[0,1]



2.7. PROOF OF THE MAIN RESULT 35

and the map
Ot x g, X =W xI(S,9")" = (Teich(S))! =Y

as defined in Section By assumption the restriction of &1 x gbgﬁ to the boundary is
transverse to A and by Proposition [2.5.13] the set D = (&7 x gi)gf )~1(A) is compact.

Let B be the interior of a compact set containing D and let C' = (X \ B) U90X. By
construction, ® x ¢, is transverse to A along the closed set C'. Applying Theorem
there exists a smooth map ¥ : X — Y which is transverse to A and which
coincides with &1 x qbg_, on C. In particular, the value on the boundary remains

unchanged and W~1(A) is still a compact set. By Proposition [2.4.3| the intersection
number of the maps

gb;; 2 I(S, ¢ )" — Teich(S) x Teich(S) and ¢/, : I(S,g4)" — Teich(S) x Teich(S)
with the map

¢, 1(5,9-)" — Teich(S) x Teich(S) ,
as defined in Section must be the same. This gives a contradiction, because

So we have proved that ¢ (1(S,g4+)%) N by (I(S,g")7) # 0, but we do not know

if the intersection is transverse. Repeating the above argument choosing the closed
set C' = (X \ B)UI(S,g)", we obtain that a perturbation ¢ of ¢ x ¢, Wwhich is

transverse to A and coincides with ¢;r+ X (bg_, outside the interior of a compact set

containing (¢, x ¢;L)’1(A) has intersection number (¢, A) = 1. By Proposition

2.4.5| every perturbation of the map qﬁ;jr X gb;, obtained in this way has intersection

number with A equal to 1.

This enables us to deform the metric g_ without losing the intersection, by repeating
a similar argument. Suppose by contradiction that

bg (1(S,g0) )Ny (1(S,9-)7) =10 .
Consider the manifold
W= |J 1(S,9,7)"
t€[0,1]

and the map
O x¢f X =W xI(S,g4)" = (Teich(5))' =Y .

By assumption the restriction of the map &~ x ¢;+ to the first boundary component
Xo = I(S,g+)t x I(S,g_)" is transverse to A and by Proposition [2.5.13] the pre-
image D = (&~ x ¢}, )71 (A) is a compact set. Let B be the interior of a compact set
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containing D and let C' = (X '\ B)U Xp. By construction, ®~ x ¢ is transverse to A
along the closed set C. Applying Theorem there exists a smooth map ¥ : X —
Y which is transverse to A and which coincides with &~ x (25;:_ on C. In particular,
the value on the boundary Xy remains unchanged and W~'(A) is still a compact
set. Moreover, the value of ¥ on the other boundary component is a perturbation
of ¢f x ¢, which is transverse to A and coincides with bg, X ¢, outside the

interior of a compact set containing (¢, x o )~Y(A). Hence, by Proposition [2.4.5

and by Proposition m the intersection number %(gb;jr, qbgi) must be equal to 1,
thus giving a contradiction.

Remark 2.7.3. It might be possible to prove the uniqueness of this intersection by
applying Proposition|2.4.60. To this aim, it would be necessary to show that for every
couple of metrics g4+ and g— with curvature strictly smaller than —1, the functions
¢a. 2 1(S,9+)" — Teich(S) x Teich(S) and ¢, : I1(S,g-)~ — Teich(S) x Teich(S)
are transverse.



Chapter 3

Constant mean curvature foliation
of domains of dependence

We prove that, given an acausal curve I' in the boundary at infinity of AdSs; which
is the graph of a quasi-symmetric homeomorphism ¢, there exists a unique folia-
tion of its domain of dependence D(I') by constant mean curvature surfaces with
bounded second fundamental form. Moreover, these surfaces provide a family of
quasi-conformal extensions of ¢.

3.1 Definition of the problem and outline of the proofs

Recently, after the work of Bonsante and Schlenker [BS10| and of Bonsante and
Seppi [BS16], Anti-de Sitter geometry has turned out to be a useful tool to construct
quasi-conformal extensions of quasi-symmetric homeomorphisms of the unit disc.
Indeed, the graph of a quasi-symmetric map ¢ : S' — S! describes a curve (called
quasi-circle) c4 on the boundary at infinity of the 3-dimensional anti-de Sitter space
AdSs. Bonsante and Schlenker proved that a smooth surface S (satisfying some tech-
nical conditions) with asymptotic boundary c4 defines a quasi-conformal extension
of ¢. Moreover, some remarkable properties of the quasi-conformal extension can
be deduced from the geometry of the surface itself: for example, when the surface
S is maximal (i.e. it has vanishing mean curvature) the quasi-conformal extension
induced by S is minimal Lagrangian ([BS10]); when S is a smooth convex k-surface,
the corresponding quasi-conformal extension is a landslide ([BS16]); when the sur-
face S is the past-convex boundary of the convex-hull of ¢4, the quasi-symmetric
homeomorphism ¢ is exactly the boundary map of the earthquake E?* : H? — H?,
where A is the pleating locus of S ([Mes07]).

In this chapter we study quasi-conformal extensions induced by constant mean cur-
vature surfaces (in brief H-surfaces). The first problem we address is the existence

37
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of an H-surface with a given quasi-circle I' as asymptotic boundary, thus general-
izing the work of Bonsante and Schlenker ([BS10]) for maximal surfaces. We will
prove that for each H € R, there exists an H-surface with asymptotic boundary I"
and bounded principal curvatures. Although the technical part of the proof is based
on the same apriori estimates as in [BS10], the starting point for the construction
of this H-surface is different, thus obtaining a somehow new proof also in the case
when H = 0. Namely, we construct this H-surface Sg as a limit of H-surfaces
(SH)n, with asymptotic boundary I'y,, with the property that I',, is the graph of a
quasi-symmetric homeomorphism conjugating two cocompact Fuchsian groups and
I';, converges to I' in the Hausdorff topology. The existence of this approximating
sequence (Sg )y, is a consequence of some results in [BBZ07| and [BS16].

Moreover, extending the results of [BBZ07|, we prove the following:

Theorem 3.3.1. Given a quasi-circle I' C 0xcAdS3, there exists a foliation by con-
stant mean curvature surfaces Sy for H € (—o00,4+00) of the domain of dependence

D(T).

In the second part of the chapter, we estimate the principal curvatures of a constant
mean curvature surface. Those results will then be used to prove the uniqueness of
the foliation (Theorem and to prove that each H-surface bounding a quasi-
circle induces a quasi-conformal extension of a quasi-symmetric homeomorphism

(Proposition [3.6.2)).

3.2 Quasi-symmetric and quasi-conformal maps

In this section we recall some well-known results about quasi-symmetric homeo-
morphisms of S'. The graph of a quasi-symmetric homeomorphism ¢ describes a
curve ¢4 on the boundary at infinity of AdS3 and, under some additional conditions,
smooth negatively curved surfaces bounding cg provide quasi-conformal extensions
of ¢ (|BS10], [KS07]). We recall here briefly this construction.

In Chapter 1 we have seen that it is possible to identify the boundary at infinity of
the 3-dimensional anti-de Sitter space with S' x S'. With this identification, we can
represent the graph of a homeomorphism ¢ : S' — S! as a curve on the boundary
at infinity of AdSs3, namely

co = {(z,6(2)) € 0o AdS; | 2 € S'} .

A homeomorphism ¢ : ST — 8! is quasi-symmetric if there exists a constant C' > 0
such that

Sgplloglcrw(@)l! <C,
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where the supremum is taken over all quadruple @ of points in S with cross ratio
cr(@Q) = —1, and we use the following definition of cross-ratio

(24 — 21)(23 — 22)
(22 — z1)(v3 — 24)

cr(zy, x2, T3, 24) =

Definition 3.2.1. An acausal curve I' C 0, AdS3 is a quasi-circle, if it is the graph
of a quasi-symmetric homeomorphism.

Remark 3.2.2. [t follows from the identification between the boundary at infinity of
AdS3 and S' x S that an acausal curve T is a quasi-circle if and only if ¢ = 7r7no7rl_1
1s quasi-symmetric. Moreover, I' is the graph of ¢.

An orientation-preserving homeomorphism f : D? — D? is quasi-conformal if f is
absolutely continuous on lines and there exists a constant k& < 1 such that

of
gl af| =*

A map with this property can also be called K-quasi-conformal, where

_ 1A gl

K =

€ [1, +00)

The relation between quasi-symmetric homeomorphisms of the circle and quasi-
conformal maps of the unit disc is provided by the following well-known theorem:

Theorem 3.2.3 ([AhI3S|). Every quasi-conformal map ® : D> — D? extends to a
quasi-symmetric homeomorphism of S*. Conversely, any quasi-symmetric homeo-
morphism ¢ : S — S1 admits a quasi-conformal extension to D?.

If we represent the graph of a quasi-symmetric homeomorphism ¢ as a curve ¢4 on the
boundary at infinity of AdSs, in [KS07] it is explained how to obtain quasiconformal
extensions of ¢ using smooth, negatively curved, space-like surfaces with boundary
at infinity c4. The construction goes as follows. We fix a totally geodesic space-like
plane Py. Let S be a space-like, negatively-curved surface embedded in AdSs. Let
S’ c U'AdSs5 be its lift into the unit tangent bundle of AdS3 and let p : S” — S be
the canonical projection. For any point (x,v) € S’ there exists a unique space-like
plane P in AdS3 orthogonal to v and containing . We define two natural maps Il ;
and Il from Os P to 05 F, sending a point & € O+ P to the intersection between
0so Py and the unique line of the left or right foliation of 0., AdSs containing x. Since
these maps are projective, they extend to hyperbolic isometries II;,II, : P — Fj.
We then define the map ® =11, o Hl_l. This map is always a local diffeomorphism
of H? when the surface is negatively curved, as the differentials of the maps II; and
II, are given by
dll; = F+JB dil, =F—JB .
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On the other hand, ® is not always a global diffeomorphism, but the following lemma
gives some sufficient conditions on the surface S which guarantee that ® is proper
(and hence a homeomorphism) and that its boundary value coincides with ¢:

Lemma 3.2.4 (Lemma 3.18 [KSQ0T7]). Let S be a space-like, negatively-curved sur-
face in AdSs whose boundary at infinity T' does not contain any light-like segment.
Suppose that there is no sequence of points x, on S such that the totally geodesic
planes P, tangent to S at x, converge to a light-like plane P whose past end-point
and future end-point are not in I'. Then for any sequence of points x,, € S converging
to x € I' we have that 11)(x,) — m(x) and IL,(zy,) = m(x).

Remark 3.2.5. As noticed in [KSO7], the hypothesis of Lemma are satisfied

i case of a smooth, convex, space-like surface bounding a quasi-circle.

3.3 Existence of a CMC foliation

This section is devoted to the proof of the following:

Theorem 3.3.1. Given a quasi-circle I' C 0,,AdS3, there exists a foliation by con-
stant mean curvature surfaces Sy for H € (—o00,400) of the domain of dependence

D(T).

As outlined in Section the main idea to construct a constant mean curvature
surface with a given quasi-circle as boundary at infinity is a process by approximation.
In fact, as a consequence of the work [BBZ07|, the existence (and uniqueness) of a
constant mean curvature foliation is known for a particular class of quasi-circles:

Theorem 3.3.2 (Theorem 1.1 [BBZ07]). Let ' be a quasi-circle which is the graph of
a quasi-symmetric homeomorphism that conjugates two cocompact Fuchsian groups.
Then there exists a unique foliation by equivariant H-surfaces of the domain of de-
pendence of I', where H varies in (—oo, +00).

Moreover, by a recent result in [BS16l, Lemma 7.2], every quasi-circle can be uniformly
approximated by a sequence of quasi-circles, which are the graphs of quasi-symmetric
homeomorphisms conjugating two cocompact Fuchsian groups.

Therefore, given a quasi-circle I', we will consider a sequence of quasi-circles I'y,,
which are the graphs of quasi-symmetric homeomorphisms conjugating two co-
compact Fuchsian groups, converging in the Hausdorff topology to I'. For each
H € (—00,+00), Theorem provides a sequence of H-surfaces (Sg ), with bound-
ary at infinity I',,. In this section we will prove that the sequence (Sg), converges
C on compact sets to an H-surface (Sp)oo with boundary at infinity I'. This will
give us the existence of a surface with given boundary at infinity and given constant
mean curvature H for every H € (—o0, 4+00). We will then prove that these surfaces
provide a foliation of the domain of dependence of T'.
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We first recall some definitions. In the Universal cover of AdSs, given a space-like
surface M, we recall that M is the graph of a function v : H> — R. We define the
gradient function with respect to the vector field T'= —xVt as

1
V1=xVul?

where v is the unit future-oriented normal vector field. The shape operator of M is
defined by

vy = —(v,T) =

B(X)=-Vxv
for every vector field X on M. The mean curvature of M is

- trac;(B) .

We can write explicitely a formula for the mean curvature of M, in terms of u and
T (see e.g. [Bar88]):

1
H = —(divp(xgrad u) + divyT) . (3.1)
2up

We will need the following a-priori estimate for the gradient function vy, which is
a consequence of the work of Bartnik [Bar88|. Given a point p € AdS3, we denote
with It (p) the set of points in the future of p, and similarly with I~ (p) the set of
points in the past of p. We will indicate with I (p) the set of points in the future of
p at distance at least e. We have the following;:

Lemma 3.3.3. Letp € AAdJSg and € > 0. Let K be a compact domain contained on
a region where the covering map m : AdSs — AdSs is injective. Let H € R be fized.
There exists a constant C = C(p, €, K) such that for every H-surface M that verifies

e OMNIT(p)=0;
e MNIt(p)CK,

we have that

sup vy < C .
MNIZ (p)

Proof. Consider the time function

€
7(z) = daas(z,p) — 3

where d445(x, p) is the Lorentzian distance between x and p. This function is smooth
on V. = KnI"(p). By assumption on M, the region M NV contains the set
{r >0} N M and M NI} (p) is contained in V. We can thus apply Theorem 3.1 in
[Bar88| and conclude that

sup vy < C
MnIZ (p)
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where the constant C' depends on the C? norms of ¢t and 7" and on the C° norm of
the Ricci tensor on the domain V' N {7 > 0} with respect to a reference Riemannian
metric. [

We will also need the following result that provides some barriers for constant mean
curvature surfaces in anti-de Sitter manifolds:

Proposition 3.3.4. Let ¥ be a space-like surface with constant mean curvature
H € R embedded in AdSs with boundary at infinity a quasi-circle A. Suppose that
Y the lift of a compact surface embedded in a GHMC anti-de Sitter manifold. Then
there exists k < —1 such that 3 is in the past of the past-convexr surface S and
in the future of the future-convex surface S, with constant Gauss curvature k and
asymptotic boundary A.

Proof. If H = 0, the statement holds, since a maximal surface is contained in the
convex hull of A. For the other values of H we choose k < —1 such that v—1 — k >
|H|. We claim that the past-convex space-like surface S, with constant curvature &,
whose existence is proved in [BS16], must be in the future of ¥. If not, the surfaces
and S;F would intersect transversely, but, since constant curvature surfaces provide
a foliation of D(A) \ C(A), there would exist a ' < k such that the surface S,
with constant Gauss curvature x’ is tangent to ¥ at a point z. By the Maximum
Principle, the mean curvature of S,/ at  must be smaller than the mean curvature
of ¥ at x, but this is impossible for our choice of x'.

With a similar reasoning we obtain that the future-convex space-like surface S, must
be in the past of X. ]

Let us fix H € R. We have now all the ingredients to prove the existence of an
H-surface with given asymptotic boundary. Let I' be a quasi-circle on AdS3 and
let T'), be a sequence of quasi-circles converging to I' in the Hausdorff topology that
are the graphs of quasi-symmetric homeomorphisms that conjugate two cocompact
Fuchsian groups. Let (Sg), be the H-surface with asymptotic boundary I, provided

by Theorem [3:3:2]

Theorem 3.3.5. The sequence of H-surfaces (Sg)yn converges C*° on compact sets
to an H-surface (SH)oo with boundary at infinity T.

Proof. We consider their lifts (5 11 )n to the Universal cover AdS 3. We denote with
(Sf)n the lifts of the two constant curvature surfaces provided by Proposition
In general, we will use the notation with a tilda to indicate the lift of an object to
the Universal cover. By Theorem 7.8 in [BSI6], the sequence (XF), converges to
constant curvature surfaces flf with boundary at infinity I'. We denote with K’ the
domain

K =I"(Hnrt(x;).
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For any point p € @/(\/I‘) NI~ (X7), we choose e(p) such that the family {I;ﬁ) (p)NK'}
is an open covering of K’. Since

Ky =17 ((55)) N TH((57)n)

converges to K’, there exists an ng such that for every n > ng the closed set

K=|J K,

n>ng

is contained in the open covering U{I:(ﬁ) (p)} constructed above.

Given a number R > 0 we denote with Bp the ball of radius R in H? centered at the
origin in the Poincaré model. The intersection (Br x R) N K is compact, so there is
a finite number of points p1, ..., P, such that

m
+ ~
(BrxR)NK c L (35) -
j=1
We notice that, since p; € D(T'), the intersection I'* (p;)ND(T') is compact. Moreover,
since the plane dual to p; is disjoint from I' for every j = 1,...,m, if we choose ng
big enough, the same is true for I';, for every n > ng, because I'j, converges to I' in

the Hausdorff topology. In this way we can ensure that the set K; = IT(p;) N K

is compact and contained on a region where the covering map 7 : AdS3 — AdSj is
injective. By Lemma there is a constant C; such that

sup vy < Cj
Mn[j(ﬁj ) (5)

for every constant mean curvature surface M satisfying
(i) oM NIt (p)=10 ;
(i) M NI*(p,) is contained in K;

Condition (i) is clearly satisfied for n > ng by definition of the set K. As for
Condition (ii), the boundary of (Sg), is disjoint from the future of p; for every
j=1,...m due to our choice of ng.
If we denote with v, the gradient function associated to the surface (S )p, it follows
that
sup vy, <max{C1,...,Cnp} (3.2)
(SH)nN(Br*R)

for every n > nj.

We deduce that for every R there is a constant C'(R) such that the gradient function
vy, is bounded by C'(R) for n sufficiently large.

Let u, : H2 — R such that (S 17 )n are the graph of the function u,. By comparing
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Equation with estimate , we see that the restriction of u, on Bp is the
solution of a uniformly elliptic quasi-linear PDE with bounded coefficients. Since
uy, and the gradient Vu,, are uniformly bounded on Bg (see Section , by elliptic
regularity the norms of u, in C*%(Bgr_1) are uniformly bounded. We can thus
extract a subsequence u,, which converges C? to some function u., on compact
sets. Since s is a C2-limit of solutions of Equation , it is still a solution and
its graph Sy has constant mean curvature H.

The boundary at infinity of Sy coincides with I' because it is the Hausdorff limit of
the curves I',,, which converge to I', by construction. O

Moreover, we can deduce that the principal curvatures of the surface (Sp)oo are
uniformly bounded, due to the following:

Lemma 3.3.6. Let S be an H-surface embedded in AdSs, which is the lift of a space-
like compact surface embedded into a GHMC AdSs manifold. Then the principal
curvatures p and ' of S are bounded by some constant depending only on H. More
precisely,

H<\N<VH?24+14+H and —VH24+14+H<M<H.

Proof. Let B be the shape operator of S. We consider By = B — HE, the traceless
part of B (here E is the identity operator). Since H is constant, the operator By
is Codazzi. Let e; and es be tangent vectors in a orthonormal frame of S that
diagonalises By. Since By is traceless, the eigenvalues are opposite, and we will
denote with A > 0 the eigenvalue of e;. Let w be 1-form connection of the Levi-
Civita connection V for the induced metric on S, defined by the relation

Vel = w(x)es .
The Codazzi equation for By can be read as follows,

Aw(er) = dA(e2)
Aw(eg) = —dA(eq) .

If we define 8 = log(\) we obtain
w(er) = dp(e2)
w(ez) = —dp(e1)
Moreover, if we denote with x the Gaussian curvature of S, we have
—K = dw(e1, e2) = e1(w(ez)) — ez2(wler)) —w([er, e2]) = A,

where A is the Laplacian that is positive at the points of local maximum. On the
other hand by the Gauss equation,

—K =det(B) +1=det(By+ HE) +1=det(By) + H> +1=—e?’ + H> + 1.
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Since the surface S is the lift of a compact surface, the function 8 has maximum at
a point xg. By the fact that AB(xg) > 0, we deduce that

A=e’ <VH2+1.

Since the eigenvalues of B are p = A+ H and ¢/ = —A\+ H, we obtain the claim. [

We have thus found for every value of H € R a constant mean curvature surface
S, with bounded principal curvatures, bounding a given quasi-circle I' at infinity.
We conclude this section by showing that these surfaces provide a foliation of the
domain of dependence D(T").

Proposition 3.3.7. Let {Su}ner be the family of H-surfaces provided by Theorem
with boundary at infinity I'. Then {Su}ger foliates the domain of dependence
D(T).

Proof. We first show that if Hy < Hy € Q, then Sy, and Sy, are disjoint and
SH, is in the past of Sp,. By construction Sy, and Sy, are C° limits of the
sequences (SH, )n and (S, )n of constant mean curvature surfaces with boundary at
infinity I';, which is a graph of a quasi-symmetric homeomorphism that conjugates
two cocompact Fuchsian groups. By Theorem [3.3.2] they are leaves of the constant
mean curvature foliation of D(T',) and, in particular, (Sg, ), is in the past of (S, )n
for every n. Hence, the same holds for Sy, and Sp,. This shows that they cannot
intersect transversely. Moreover, it is not possible that Sy, and Sp, are tangent at
one point, since the trace of the shape operator of Sy, is bigger than the trace of
the shape operator of S, and this would contradict the Maximum Principle (see
Lemma .

We now show that if we take two sequences of rational numbers Hj converging
increasingly to H € R and H} converging decreasingly to H € R, then S my and Spy
converge to the same limit Sy. We first notice that the limits

exist by a similar argument as in the proof of Theorem Moreover, S%; must be
in the past of S%,. Suppose by contradiction that S, and 57, are distinct. Let U be
an open set contained in the past of S7; and in the future of S%;. Since we know that
the domain of dependence of T, is foliated by constant mean curvature surfaces, for
n large enough there exists a surface S, with constant mean curvature h,, € Q and
boundary at infinity I';,. By the uniform convergence on compact sets, for n larger
than some ng, we must have h, < H} and h,, > Hj, for every k € N, which gives the
contradiction.

So far we have proved that the H-surfaces {Sy}ger provide a foliation of a subset
of D(I'). We need to prove that

U Su =) .

HeR
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Suppose by contradiction that there exists a point p € D(I") which does not lie in any
of the surfaces Sp. Since the domain of dependence of I'), converges to the domain
of dependence of I', there exists a sequence of points p, € D(I',) converging to p.
Since D(T';,) is foliated by constant mean curvature surfaces, there exists a sequence
H, € R such that p, € Sf» c D(T,,). We claim that the sequence H, is bounded.
We can assume that H, is positive for n big enough. Since p € D(T'), the boundary
at infinity of the dual plane p* is disjoint from I'. We choose a space-like plane P in
the future of p* with the following properties: the boundary at infinity of P is disjoint
from I and p € D(P) N D(T"). Since I',, converges to I' in the Hausdorff topology,
the asymptotic boundary of P is disjoint from I'), for n big enough. Moreover, the
surfaces SI/» converge to a nowhere time-like surface S, passing at p, because they
are graphs of uniformly Lipschitz functions (see Section . We notice that there
exists a surface Y g, with constant mean curvature Hy and boundary at infinity
0o P, such that X g, intersects Sy in a compact set and p € I~ (Xp,). This surface
Y H, is obtained by taking equidistant surfaces from the space-like plane Fy. Let
Fp : D(P) — R be the time function defined on the domain of dependence of P
such that each level set F~!(H) = X is a constant mean curvature surface with
asymptotic boundary 0. P. It follows by construction that Fj Y((—=o00, Hp)) N Ss is
compact. Since the sequence S2» converges uniformly on compact set to Sso, the
same is true for Fjp'((—o0, Ho)) N Skn, for n sufficiently big. We define

H, = inf Fp(z).

xeSﬁI”

By the previous remarks H, < Hj for every n sufficiently large, and it is assumed
at some point x, € S By construction, SH» is tangent to Y- at the point x,
and S is contained in the future of ¥ Ho- Therefore, by the Maximum Principle,
we deduce that

Hn < H; < HO

as claimed. Therefore, there exist two real numbers H+ and H~ such that S is
in the past of SX " and in the future of SH™ for every n. But the sequences S ’
and SZ™ converge, by Theorem to constant mean curvature surfaces Sg+ and
Sp— with boundary at infinity I'. But this implies that p is contained in the subset
of D(I") foliated by the surfaces Sy and this gives the contradiction. O

This completes the proof of Theorem [3.3.1

3.4 Study of the principal curvatures of an H-surface

The aim of this section is to give precise estimates for the principal curvatures of an
H-surface with bounded second fundamental form. These results will then be used
in Section in order to associate to each surface in the foliation of the domain
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of dependence of a quasi-circle a quasi-conformal extension of the corresponding
quasi-symmetric homeomorphism.

The main tool used to estimate the principal curvatures of an H-surface with bounded
second fundamental form is the following compactness result for sequences of H-
surfaces with bounded second fundamental form. This is a straightforward general-
ization of Lemma 5.1 in [BS10].

Lemma 3.4.1. Let C' > 0 be a fized constant. Choose a point xg € AdSs3 and a
future-oriented unit time-like vector ng € Ty, AdS3. There exists v > 0 as follows.
Let Py be the totally geodesic space-like plane orthogonal to ng at xg. Let Dg be the
disk of radius r centered at xg in Py. Let H € R be fized and let S, be a sequence of
H -surfaces containing xq and orthogonal to ng with second fundamental form bounded
by C. After extracting a sub-sequence, the restrictions of Sy to the cylinders above
Dqg converge C* to an H-surface with boundary contained in the cylinder over 0Dy.

Proof. For all n, the surface S, is the graph of a function f, over a totally geodesic
plane P,. The bound on the second form of S, along with the fact that S, is
orthogonal to ng indicates that for some r > 0, there exists € > 0 such that

1—c¢

IV fall <

on the disk of center xy and radius r.

Moreover, since the second fundamental form of S,, are uniformly bounded, also the
Hessian of f, are uniformly bounded by a constant depending on r.

Therefore, we can extract a sub-sequence, still denoted with f,,, which converges C'+!
to a function f,, on the disk of center xy and radius r. We notice that, since the
gradient of f, is uniformly bounded, the graph of f., is a space-like surface.

By definition, the fact that S, are H-surfaces translates to the fact that f;, is solution
of Equation (3.1)). Since fs is a C™!-limit of the sequence f,, it is itself a weak
solution of the same equation. By elliptic regularity, it follows that f. is C*° and
fn is actually converging to fo, in the C'™ sense. Therefore, the graph of fo, over
the disk of radius r is an H-surface, which is the C'* limit of the restriction of the
H-surfaces S, to the cylinder above the disk of radius 7. O

We will need also a stability result for sequences of quasi-circles in JsAdSs3. This
will be a consequence of the following compactness property of quasi-symmetric
homeomorphisms:

Proposition 3.4.2 ([BZ06|). Let ¢, : S* — S' be a family of uniformly quasi-
symmetric homeomorphisms of S*, i.e. there exists a constant M such that

supsgplloglcr(%(Q))H <M,
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where the supremum is taken over all possible quadruples Q of points in S with
cr(Q) = —1. Then there exists a subsequence ¢y, for which one of the following
holds:

e the homeomorphisms ¢y, converge uniformly to a quasi-symmetric homeomor-
phism ¢;

e the homeomorphisms ¢y, converge uniformly on the complement of any open
neighborhood of a point of S* to a constant map.

In terms of anti-de Sitter geometry, the above proposition can be translated as fol-
lows:

Proposition 3.4.3. Let '), be a sequence of uniformly quasi-circles, i.e. 'y, are
graphs of a family of unifomly quasi-symmetric homeomorphisms. Then, there exists
a subsequence I'y, which converges in the Hausdorff topology either to the boundary
of a light-like plane or to a quasi-circle I'.

Under particular assumptions, we can guarantee that the limit of a sequence of
quasicircle is never the boundary of a light-like plane:

Lemma 3.4.4. Let S be a space-like surface whose asymptotic boundary is a quasi-
circle T'. Suppose that there ezists € € (—m/2,7/2) such that the surface S, at time-
like distance € from S is convex. Fizx a point xo € AdS3 and a future-directed unit
vector ng € T,,AdS3. Let x,, be a sequence of points in S and let ¢, be a sequence
of isometries of AdSs such that ¢ (x,) = xo and the future-directed normal vector
to S at x,, is sent to ng. Then no subsequences of ¢, (I') converge to the boundary of
a light-like plane.

Proof. We can choose an affine chart such that z¢o = (0,0,0) € R and ng = (1,0,0).
Let z], € S, be the point corresponding to z;, under the normal flow. In particular
d(zp,x),) = € for every n. Since ¢, is an isometry, we deduce that ¢, (z],) = zf{ =
(arcsin(e), 0,0). Moreover, if we denote with P, the totally geodesic space-like plane
tangent to Se at x,/, by construction ¢, (P,) = Py, where Py is the totally geodesic
space-like plane through xj, orthogonal to ng. Notice that, since S is equidistant
from S, they have the same asymptotic boundary I and S is contained in the domain
of dependence of T’

Suppose by contradiction that there exists a subsequence, still denoted with ¢,,(T),
which converges to the boundary of a light-like plane. Let & € 0, AdS3 be the
self-intersection point of the boundary at infinity of this light-like plane. Since S
is convex, P, is a support plane, hence its boundary at infinity is disjoint from I'.
After applying the isometry ¢,,, this implies that Py is disjoint from ¢, (I") for every
n. We deduce that & lies in Py. But this implies that for n big enough, the point zf
is not contained in the domain of dependence of ¢, (I"), which is impossible because
each x], is contained in the domain of dependence of T' for every n. O]
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We have now all the tools to study the principal curvature of an H-surface with
bounded second fundamental form. In Section [3.3] we have seen that if we express
the principal curvatures of an H-surface as =\ + H, and we define p = log(\), then
w satisfies the differential equation

Ap=e*—H?*-1. (3.3)

The main result of this section is the following:

Proposition 3.4.5. Let S be an H-surface with bounded principal curvatures. If its
boundary at infinity is a quasi-circle then S is uniformly negatively curved.

We will first show that an H-surface bounding a quasi-circle cannot be flat. In
case H = 0, a flat maximal surface in AdSs; was described in [BS10] as a maximal
horosphere in AdSs3. It turns out that for general H, flat constant mean curvature
surfaces are equidistant surfaces from this maximal horosphere.

Let us first recall the construction of the maximal horosphere. Consider a space-like
line / in AdS3 and its dual line I+, which is obtained as the intersection of totally
geodesic planes dual to points of [. We recall that [ can also be described as the set
of points at distance 7/2 from [. The maximal horosphere Sy is defined as the set of
points at distance /4 from [. It can be easily checked that Sy is flat. Moreover, for
every point x € Sy, the surface Sy has an orientation-reversing and time-reversing
isometry obtained by reflection along a plane P tangent to a point x € Sy, followed
by a rotation of angle 7/2 around the time-like geodesic orthogonal to P at . This
shows that the principal curvatures of Sy must be opposite to each other, hence
Sp is a maximal surface. We then deduce by the Gauss formula that the principal
curvatures are necessarily +1 at every point. We notice that the boundary at infinity
of Sy consists of four light-like segments, hence Sy does not bound a quasi-circle.

We are now going to prove that flat H-surfaces can be obtained as surfaces at con-
stant distance from the maximal horosphere. We will need the following well-known
formulas for the variation of the induced metric and the shape operator in a foliation
by equidistant surfaces.

Proposition 3.4.6 (Lemma 1.14 [Sepl7|). Let S be a space-like surface in AdSs with
induced metric I and shape operator B. Let S, be the surface at time-like distance
p from S, obtained by following the normal flow. Then the induced metric on the
surface S, is given by

I, = I((cos(p)E + sin(p) B)-, (cos(p) E + sin(p) B).) .
Moreover, the shape operator of S, is given by

B, = (cos(p)E + sin(p) B) " (—sin(p)E + cos(p)B) .
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If we apply the previous proposition to the maximal horosphere Sy, we obtain that,
choosing a local orthogonal frame that diagonalises B, the induced metrics and the
shape operator of the surface at time-like distance p from Sy can be written as

. — sin(p)+cos(p)
cos(p) + sin(p) 0 ﬁ 0

I, = B, =

0 cos(p) — sin(p) 0 o)

We deduce that equidistance surfaces form Sy are smooth for p € (—m/4,7/4) and,
for every value of p in this interval, the surface S, is flat. Namely, by the Gauss
formula,

ks, = —1—det(B,) =—-1+1=0.

Moreover, since the shape operator B, has constant trace

—sin(p) + cos(p) | —sin(p) ~ cos(p)

trace(B,) = cos(p) + sin(p) cos(p) — sin(p)

= —2tan(2p)

we deduce that a flat surface with constant mean curvature H is the surface at time-
like distance p = arctan(—H) from the maximal horosphere. Notice that, since
these surfaces are at bounded distance from the maximal horosphere, they have the
same boundary at infinity, which, we recall, consists of four light-like segments.

The proof of Proposition [3:4.5] will then follow from the above description of flat
H-surfaces by applying the Maximum Principle "at infinity":

Proof of Proposition[3.4.5 Since S has bounded second fundamental form, its Gaus-
sian curvature is bounded. We will denote with kg, the upper bound of the Gaussian
curvature of S.

If Kgyup is attained, then the maximum principle applied to Equation implies
that Keyp < 0 and if Kgyp = 0, then the surface is flat. This latter case cannot hap-
pen, since by hypothesis S bounds a quasi-circle, hence, if the upper bound of the
Gaussian curvature is attained, the surface S is uniformly negatively curved.

We will know apply the Maximum Principle "at infinity" to get the same conclusion
when the upper bound is not attained. Consider a sequence of points z,, € S such
that the Gaussian curvature of S at x,, satisfies

Rsup — g < K(xn) < Rsup -

Let ¢, be a sequence of isometries of Ad.S3 which sends x,, to a fixed point xy and the
future-directed unit normal vector to S at x,, to a fixed vector ng € T,AdSs. Since
S has bounded second fundamental form, Lemma shows that ¢, (S) converges,
up to subsequences, to an H-surface Sy in a neighborhood of xy. By construction,
the curvature of Sy has a local maximum at z¢ equal to Keup, hence the maximum
principle applied again to Equation shows that ey, < 0.
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We are left to show that kg, # 0. For this we will need to use that the boundary at
infinity of S is a quasi-circle and the description of flat constant mean curvature sur-
faces. Suppose by contradiction that ke, = 0. Then the sequence ¢, (S) converges
in a neighborhood of x( to the flat H-surface S, described above. Moreover, Lemma
implies that ¢, (S) converges, up to subsequences, to Sy, uniformly on compact
set. In particular, the boundary at infinity of ¢,,(S) converges to the boundary at
infinity of S, which consists of four light-like segments. But this is not possible by

Proposition [3.4.3] O

Remark 3.4.7. Proposition |3.4.5 and the Gauss formula imply that the principal
curvatures of an H-surface with bounded second fundamental form and asymptotic
boundary a quasi-circle can be written as =\ + H, where X\ € [0,V H?* +1 — €| for
some € > 0.

We conclude this section with the following result about the existence of a convex
surface equidistant from a negatively curved H-surface. This is a crucial step, to-
gether with Lemma to prove the uniqueness of the constant mean curvature
foliation of the domain of dependence of a quasi-circle.

Proposition 3.4.8. Let S be a negatively curved H-surface with bounded second
fundamental form. Then there exists a convex surface equidistant from S.

Proof. We will do the proof for H > 0, the other case being analogous. Let us write
the principal curvatures of S as p = A+ H and ¢/ = —\ + H. By Remark
we know that A € [0,v1+ H? — ¢] for some € > 0. We can clearly suppose € < 1.
By Proposition we know that the principal curvatures of the surface S, at
time-like distance p from S can be expressed as

p — tan(p)
- = t —
Mo = 11 rtan(p) an(po — p)
/
, _ 1 —tan(p)
T ——— t —
:U’p 1+ ,Uf/ tan(p) a‘n<p1 :0)

where py = arctan(u) and p; = arctan(u'). We will denote

o = arctan (\V1+ H?+ H —¢) B =arctan(H) ~=arctan (H — 1+ H? +¢) .
By definition, we have

T T

0<5<p0<04<§ ’y<p1<5<§.
We deduce that for every p € (a—m/2, 0] the surface S, is smooth, since the principal
curvatures are non-degenerate. Moreover, for every p € (a — m/2,7), the surface S,
has positive principal curvatures. Here, we should be careful that « — 7/2 < ~, but
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this can easily be verified to be true under the assumption 0 < € < 1. Namely,
a —m/2 < v if and only if

arctan(H— 1+H2+e) >arctan(\/1+H2+H—e)—g

-1
= arctan
(H—I—\/1+H2—e)

and it is sufficient to verify that

-1
e+H—+1+H?> ,
H+V1+H? —¢

which is true, under the hypothesis that 0 < € < 1, since

“1<—-(1-€?<—-4+2\1+H2—-1=(e+H—\/1+H?)(H—e++1+H?).
O

3.5 Uniqueness of the CMC foliation

In Section we have proved the existence of a foliation by constant mean curvature
surfaces of the domain of dependence of a quasi-circle. In this section we prove the
uniqueness of such a foliation.

In order to prove the uniqueness of the foliation provided by Theorem the
main idea consists of proving that a constant mean curvature surface with bounded
second fundamental form and with boundary at infinity a quasi-circle must coincide
with a leaf of the foliation. The main tool we will use is the Maximum Principle
for constant mean curvature surfaces in Lorentzian manifold, which we are going to
recall.

Lemma 3.5.1 (Maximum Principle [BBZ07]). Let ¥ and X' be smooth space-like
surfaces in a time-oriented Lorentzian manifold M. Assume that ¥ and X' are tan-
gent at some point p, and assume that ¥ is contained in the future of X. Then, the
mean curvature of ¥/ at p is smaller or equal than the mean curvature of ¥ at p.

We have now all the instruments to prove the uniqueness of the foliation by constant
mean curvature surfaces of the domain of dependence of a quasi-circle.

Theorem 3.5.2. Let ' be a quasi-circle and let D(T') be its domain of dependence.
Then there exists a unique foliation of D(I') by constant mean curvature surfaces
with bounded second fundamental form.

Proof. The existence is provided by Theorem [3:3.1] In particular, we can define a
time function F' : D(I') — R with the property that the level sets F~1(H) are H-
surfaces for each H € R.
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To prove the uniqueness of this foliation, we are going to show that every other
surface S with constant mean curvature H, with bounded second fundamental form
and with asymptotic boundary I' must coincide with the level set F~!(H).
Consider the restriction of F' to S. Suppose that F' admits maximum h,q. at a
point x € S and minimum A, at a point y € S. Notice that hA;e, < +0o and
homin > —00, otherwise S would touch the domain of dependence. By construction,
the surfaces F~1(hpmaz) = Smaz and F~Y(hmin) = Smin are tangent to S at  and
1y, respectively. Moreover, Sy,q; is in the future of S and S,,;, is in the past of S.
Hence, by the Maximum Principle we obtain that

hmaz‘ S H S hmzn .

Therefore, hyin = hmaer = H and S coincides with a level set of the function F' as
claimed.

In the general case, F' does not admit maximum and minimum on S, but we can still
apply a similar reasoning "at infinity". We define

ht =sup F(z) and h~ = inf F(z).
zE€S TES

Fix a point zg in AdS3 and a future-directed unit normal vector ng at xg. Let z,, be a
sequence of points in S such that F(z,) tends to h™ for n — oo. Let ¢, be a sequence
of isometries of AdSs such that ¢, (x,) = z¢ and the surface ¢, (S) is orthogonal to
no at xg. By Lemma the sequence of surfaces S, = ¢,,(S) converges C* to an
H-surface S in a neighborhood of zy. Let I's, be the boundary at infinity of S.
Since .5, converges uniformly on compact sets to S, the curve I's, is the limit of
the sequence ¢, (I"). By Lemma and Proposition , the limit curve I'y; is a
quasi-circle, hence Theorem [3.3.1] provides a foliation of the domain of dependence of
' by constant mean curvature surfaces. Let Fiy, : D(I's) — R be the time function
such that its level sets are leaves of the foliation. By construction, the function Fi,
restricted to So, admits maximum at zg, so, by the Maximum Principle, h™ < H.
Repeating a similar procedure for h_, we obtain the inequalities

ht<H<h™

from which we deduce that ht = h~ = H and that S must coincide with the level
set F~1(H). O

3.6 Application

In this section we will use the theory described in Section in order to associate
to every constant mean curvature surface with asymptotic boundary the graph of a
quasi-symmetric homeomorphism ¢ and with bounded second fundamental form a
quasi-conformal extension of ¢.
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In Section [3.2] we have recalled that, given a negatively curved space-like surface
embedded in AdS3, we can construct two local diffeomorphisms II;, : § — HZ2.

Proposition 3.6.1. Let S be an H-surface with bounded second fundamental form.
Suppose that the boundary at infinity of S is a quasi-circle I'. Then the mappings
I, :S— H? are global diffeomorphisms and they extend the maps Mt I — St

Proof. We will do the proof for the map II;, the other case being analogous. By
Proposition there exists a convex surface S, equidistant from S. We remark
that S and Se has the same boundary at infinity. Let II; . be the map defined in
Section [3.2] associated to the surface S.. By Lemma[3.2.4]and Remark the map
IT; c is a global diffeomorphism and extends .

We claim now that, if we denote with n : § — S, the diffeomorphism induced by
the normal flow, we have II; = II; . o . This is sufficient to conclude the proof, as
the map 7 can be extended to the identity on the asymptotic boundaries. We now
prove the claim. Let p € S. Up to isometry we can suppose that, in the affine chart
Us = {x3 # 0}, we have p = (0,0,0) and the tangent plane to S at p is the space-like
plane P of equation x = 0. In addition, we can suppose that the totally-geodesic
space-like plane we fix in the definition of II; (see Section is exactly P. With this
assumption, we clearly have II;(p) = p. Moreover, n(p) = (¢,0,0) and the tangent
plane to S, at n(p) has equation z = €. On the other hand, since the left foliation is
parametrised by

(x, cos(0) —xsin(h), sin(0) + x cos(0)) = (z, V1 + 22 cos(f+a), V1 + x?sin(f+«)) ,

where tan o = x, we have that

I (e, tV/ 1+ €2cos(f),t\/1 + 2 sin(h)) = (0,tcos(f — B),tsin(6 — B)) ,

1
V1+ €2
where tan f = €. Therefore, II; ((n(p)) = II;(¢,0,0) = (0,0,0) = p = IL;(p), as
claimed. O

As a consequence the map & =11, o Hl_1 is a global diffeomorphism and extends the
quasi-symmetric map ¢, whose graph is the quasi-circle I'. We now use the estimates
on the principal curvatures proved in Section [3:4] to show that ® is quasi-conformal.

Proposition 3.6.2. Let S be an H-surface with bounded second fundamental form
whose boundary at infinity is the graph of a quasi-symmetric homeomorphism ¢.
Then the associated map ® is a quasi-conformal extension of ¢.

Proof. It is sufficient to prove that the map II; : S — H? is quasi-conformal from
the induced metric on S to the hyperbolic metric on H?. As seen in Section the
differential of I1; is £+ J B, where J is the complex structure on .S and B is its shape
operator. We thus need to bound the module of the complex dilatation of the map
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A= (E+JB)Y(E+ JB). In a suitable orthogonal frame for S, we can suppose that
B is diagonal, hence

1 AN—H
A+ H 1

9

E—I—JB—‘

where we wrote the principal curvatures of S as £\ + H with A € [0,v1+ H? — €.
Therefore,

Aot (H — \)? 2\
- 2\ A+ H)?+1
and its complex dilatation is
MNH +1)
1+ H?
Thus,
A2 1+ H? -\
ul? = -
1+ H? 1+ H?
as wanted. ]

It turns out that the quasi-conformal homeomorphism & is a landslide. We recall
that an area-preserving homeomorphism ® : H? — H? is a #-landslide if it can be
decomposed as

d=foof!

where f; : H?2 — H? are harmonic maps whose Hopf differentials satisfy
Hopf(f1) = eQieHopf(fg) :

Proposition 3.6.3. Let Sy C AdS3 be a space-like H-surface bounding a quasi-
circle at infinity. Then the map 11, o Hl_1 s a O-landslide, where

0 = —arctan(H) + g .

Proof. Since, by definition, ® = HTOHZ_I, it is sufficient to prove that II; , : (Sy, 1) —
H? are harmonic with
Hopf(IT;) = e*“Hopf(I,.) .

In order to prove that II,. is harmonic, it is sufficient to prove that if we write
HigHQ = I(v b) )

then the traceless part of b is Codazzi for I. By definition of the map II,, we know
that
g = I((E — JB)-, (E— JB)) = I(-,(E — JB)"(E — JB))

where (E — JB)* denotes the adjoint for the metric I. Since B is I-self-adjoint
and J is skew-symmetric for I, we deduce that (F — JB)* = (E + JB), thus b =
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(E+ JB)(E — JB). Let us now decompose the operator B as B = By + HE, where
By is traceless. Then

(E+JB)E —JB)=E+ BJ - JB+ B?
=FE+ ByJ +HJ—JBy— HJ + B3 + H*E + 2H By
=(1+H*)E+2(HE — J)By + B2
= (14X +H)E+2(HE - J)By
where, in the last passage, we have used the fact that BS = ME, ) being the
positive eigenvalue of By. We deduce that the traceless part by of b is given by
bp = 2(HE — J)By, which is Codazzi because H is constant, B is Codazzi and J is
integrable and compatible with the metric I (hence av'J = 0). Therefore, I(-,bg-)

is the real part of a holomorphic quadratic differential ®, and the metric II'gy2 can
be written as

Mg =1(-,b) = e + &, + D,

where e, : S — RT is the energy density of the map II,.. Since ®, is holomorphic for
the complex structure J, this shows that II, is harmonic with Hopf differential

Hopf(Il,) =®, =I(HE — J)By+ilJ(HE — J)By .
A similar computation for IT; shows that

Hopf(Il}) = &, =I(HE + J)By+ ilJ(HE + J)By .
By using conformal coordinates, we deduce that

Hopf(II;) _H+i 220

Hopf(Il,) H —i

with -
0 = —arctan(H) + 3

as claimed. O



Chapter 4

The volume of GHMC anti-de
Sitter 3-manifolds

In this chapter, we study the volume of globally hyperbolic maximal compact anti-de
Sitter manifolds, in relation to some geometric invariants depending only on the two
points h and A’ in the Teichmiiller space of S provided by Mess’ parameterisation.
The main result of the chapter is that the volume coarsely behaves like the minima of
the L'-energy of maps from (S, h) to (S, h’). As a corollary, we show that the volume
of GHMC AdS3 manifolds is bounded from above by the exponential of (any of the
two) Thurston’s Lipschitz asymmetric distances, up to some explicit constants, and
bounded from below by the exponential of the Weil-Petersson distance.

4.1 Definition of the problem and outline of the proofs

In the celebrated paper [Bro03|, Brock proved that the volume of the convex core
of a quasi-Fuchsian manifold M behaves coarsely like the Weil-Petersson distance
between the two components in Teich(S) x Teich(S) provided by Bers’ parameteri-
sation ([Ber60]). The main purpose of this chapter is to study the analogous question
for GHMC anti-de Sitter manifolds.

Our first result concerns the relation between the volume of the convex core
and Thurston’s distances on Teichmiiller space. Recall that Thurston’s distance
drn(h,h') is essentially the logarithm of the best Lipschitz constant of a diffeomor-
phism from (S, ) to (S,h’). This definition satisfies the properties of a distance on
Teich(S), except the symmetry. We prove the following:

Theorem 4.5.2. Let Mj, jy be a globally hyperbolic mazimal compact AdS3 manifold.

o7
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Then

7T2
Vol(€(Mw)) < = IX(S)] + wx(S)] exp(min{drn(h, h'), dru(l', 1)}) -

One may thus try to see if the volume of the convex core is coarsely equivalent
to the minimum of Thurston asymmetric distances. This turns out to be false in
general, as we can produce examples of manifolds My, p/ in which the minimum
min{dry,(hn, hy,), drn(hy,, he)} goes to infinity while Vol(C(Mjy,, jr ) stays bounded,
thus showing that there cannot be a bound from below on the volume using any of
Thurston’s asymmetric distances. However, in these examples both sequences h,, and
h!, diverge in Teichmiiller space. We prove that this condition is necessary for this to
happen. More precisely, we prove that if K is any compact subset of Teich(S), then
the volume of the convex core of a GHMC anti-de Sitter 3-manifold parameterised
by points in K x Teich(S) (or Teich(S) x K) is coarsely equivalent to the minimum
of Thurston asymmetric distances.

On the other hand, we obtain a coarse bound from below on the volume of the convex
core of My, jy by using the Weil-Petersson distance dwp (h, h').

Theorem 4.6.2. Let My, be a GHMC AdS3 manifold. Then there exist some
positive constants C' and C' such that

eXp(dep(h, h/)) - Cl < VOl(G(Mh,h/)) .

It follows easily from Theorem that there are examples in which dwp (hy, hl)
remains bounded, but Vol(C(Mj,, p, )) diverges, thus the volume of the convex core
of My, j» cannot be bounded from above by the Weil-Petersson distance between h
and h'.

We consider also a form of holomorphic 1-energy, which was already introduced
in [TV95]. Given two hyperbolic surfaces (S,h) and (S,h’), this is the functional
Ey(-,h,h') : Diffeog(S) — R defined by

Bo(f, h, ) = /S 107]dAn |

where ||0f]| is the norm of the (1,0)-part of the differential of f, computed with
respect to the metrics A and h'. In [TV95], Trapani and Valli proved that the
functional Ey(-, h,h’) admits a unique minimum, which coincides with the unique
minimal Lagrangian diffeomorphism m : (S, h) — (S, k) isotopic to the identity. Us-
ing the known construction (|[BS10], [KS0T7]) which associates a minimal Lagrangian
diffeomorphism from (S, h) to (S, h’), isotopic to the identity, to the unique maximal
surface in Mp, s, we obtain the following theorem which gives a precise description
of the coarse behaviour of the volume of the convex core in terms of the holomorphic
l-energy:
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Theorem 4.3.8. Let My, j,r a GHMC AdS3 manifold. Then

V2 w2 V2

V2 By, h, ) = w(S)] < VOU(C(Mi ) < T x()] + 7 Eolom, h )
where m : (S, h) — (S, 1) is the minimal Lagrangian map isotopic to the identity,
that is, the unique minimum of the 1-holomorphic energy functional Eg(-, h,h’).

A direct corollary involves the L'-energy, considered as the following functional:

Eh(fJuf/)==]£deHdAh.

Theorem 4.4.4. Let My, jy be a GHMC AdSs manifold. Then

7'('2
V2 ()] < Vol(©(Min)) < ()] + Y2 inf Eale b )

Lt By 1) —

4
A more combinatorial version of the relation between maximal surfaces and minimal
Lagrangian maps is the association, already discovered by Mess, of (left and right)
earthquake maps between the two pleated surfaces which form the boundary of the
convex core of My, . Roughly speaking, the role of the L'-energy between hyperbolic
surfaces is played by the length of the two measured geodesic laminations on (S, h)
which provide the earthquake maps of Thurston’s Earthquake Theorem.

If we denote by E* : Teich(S) — Teich(S) the transformation which associates to
h € Teich(S) the metric i’ = E*(h) obtained by a (left or right) earthquake along
A, we get the following inequalities involving the volume and the length of (both)
earthquake laminations:

Theorem 4.2.7. Given a GHMC AdSs manifold My, let X be the (left or right)
earthquake lamination such that E*(h) = h'. Then

7.[.2
T8) < Vol(€(Mi ) < 14 (8) + TIX(S)

A direct consequence is the fact that the length of the left and right earthquake
laminations is comparable, that is, their difference is bounded only in terms of the
topology of S:

Corollary 4.2.6. Given two hyperbolic metrics h and h' on S, if \; and X\, are the
measured laminations such that El)‘l(h) =h' and E}(h) = K, then

[0, (1) = £, (h)] < 27%|x(S)] -

Let us outline here, for the convenience of the reader, the main steps for the proof of
the above results. A first main difference between the quasi-Fuchsian and the anti-
de Sitter setting consists in the fact that the volume of the whole manifold Mj, p/ is
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finite. By considering the foliation by constant curvature surfaces ([BBZ07]) of the
complement of the convex core, we will show that the volume of the whole manifold
and the volume of the convex core are coarsely equivalent. More precisely we prove
the following:

Proposition 4.2.1. Given a GHMC AdSs manifold M, let M_ and M be the two
connected components of the complement of C(M). Then

7T2 7T2
Vol(M_) < ?’X(S)’ and  Vol(My) < 3‘X(S)‘ ;

with equality if and only M is Fuchsian.

Then, using a foliation by equidistant surfaces from the boundary of the convex core,
we prove the following formula (already mentioned in [BBD™12|) which connects the
volume of the convex core, the volume of the whole manifold and the length of the
left and right earthquake laminations,

Vol(M) + Vol(€(M)) = %(fm (h) + &5, (h) + 72 |x(S)] - (4.1)

As a consequence, we obtain that the difference between the length of the right
earthquake lamination A, and the length of the left earthquake lamination ); is
uniformly bounded, which seems to be a non-trivial result to obtain using only
techniques from hyperbolic geometry. Theorem [4.2.7 will then follow by combining

Equation (4.1)) with Proposition m

Another main consequence of Proposition [£.2.1] is the fact that the volume of the
convex core of Mj ps is coarsely equivalent to the volume of every submanifold in
which it is contained. Starting from the unique maximal surface embedded in My, 5/
(IBBZ07]), we construct a submanifold with smooth boundary €, which contains
the convex core and whose volume can be computed explicitly in terms of the function
(already introduced in [BMS15])

F : Teich(S) x Teich(S) — RT

(h,h') r—)/trace(b)dAh ,
S

where b : T'S — T'S is the Codazzi, h-self-adjoint operator such that A" = h(b-,b-)
associated to the minimal Lagrangian diffeomorphism from (S, k) to (S,h’). In par-
ticular, using explicit formulas that relate the embedding data of the maximal surface
in My, with the operator b, we can prove that

2

1
Vol(Qp, 1) = 7T?|X(S)] +1 / trace(b)dAp
S

which, combined again with Proposition implies that the volume of the convex
core is coarsely equivalent to the functional F' defined above. Moreover, it turns out
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that the integral of the trace of b coincides, up to a multiplicative constant, with the
holomorphic L'-energy

Eo(m, b, 1) = /S loflldAy

when m : (S, h) — (S, ') is the minimal Lagrangian diffeomorphism isotopic to the
identity. This will lead to Theorem and Corollary In addition, since the
trace of b is bounded from above by twice the Lipschitz constant of m, we will deduce

Theorem .52

As for the relation between the volume of the convex core of M} j» and the Weil-
Petersson distance between h and h’, the main technical tool consists in the following
estimate:

Theorem 4.6.3. There exists a universal constant a > 0 such that for every A €
ML(S) and for every h € Teich(S), we have

a
|gradfy(h)|wp > ™ Ox(h) .

(Sl
This will be obtained by a careful analysis of Riera’s formula [RieQ5] for the norm
of the Weil-Petersson gradient of the length function. With this in hand, the proof
of Theorem then goes as follows. By a result of Bers’, we can fix a pants
decomposition P for h such that the length of all curves «; in P are smaller than a
universal constant L > 0. If the metric A’ is obtained by performing a (left or right)
earthquake along a lamination A, then the length of the curves «; increases at most
by

lo;(P') < L+

where d(L) is a constant depending only on L. We can thus say that the point
h' € Teich(S) belongs to the set

Vin(S) = {h € Teich(S) | La,;(h) < m}

if we put m = L + ¢x(h)/d(L). As a consequence of Theorem the integral
curve of the vector field X = —gradl,, /||gradly, |[wp, where we denoted with A\p
the measured geodesic lamination consisting of the simple closed curves a;; with unit
weight, starting at A’ will intersect the set V7(S) in a finite time ¢y, which we are
able to express explicitely in terms of £)(h) and the constants L and d(L). Theorem
will then follow from the fact that the set V7(S) has bounded diameter for the
Weil-Petersson metric and from Theorem 2.7

4.2 Volume and length of earthquake laminations

In this section, we will discuss an explicit relation between the volume of a maximal
globally hyperbolic manifold (or the volume of its convex core) and the length of the
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(left and right) earthquake laminations. Before that, we will prove that the volume of
the complement of the convex hull is bounded by the volume of a Fuchsian manifold.
That is, the volume of M \ (M) is maximal in the Fuchsian case. Hence, from a
coarse point of view, the volume of the manifold M is essentially the same as the
volume of its convex core.

Let us first notice that, by the description of Fuchsian AdSs manifolds, given in Ex-
ample the volume of any Fuchsian GHMC AdS3 manifold Mpr homeomorphic
to S x R is:

Vol(Mp) = 72|x(S)] . (4.2)

4.2.1 Volume of the complement of the convex hull.

Given a globally hyperbolic maximal compact AdS3; manifold M, we will denote
M\CM)=M; UM,

where M, is the connected component adjacent to 0;C(M), and M_ the other
connected component. The following proposition estimates the volume of the com-
plement of the convex core.

Proposition 4.2.1. In the above setting, we have

2

VOIOL) < TS and Vol(M) < (S
with equality if and only M is Fuchsian.
It will then obviously follow that
Vol(M \ €(M)) < 7*[x(S)] , (4.3)

that is, the volume of Vol(M \ €(M)) is at most the volume of a Fuchsian manifold.

Proof. We will give the proof for M. By [BBZ11], there exists a function
F: My — [0,00)

such that S, = F~1(k) is the surface of constant curvature K = —1 — k. By the
Gauss equation in the AdSs setting, if B is the shape operator of S, then x = det B,
for every point z € S,.. Let ¢; be the flow of the vector field gradF/||gradF||?>. By
definition ¢¢(Sk) = Sk++ and following this flow, one obtains the following expression

for the volume of M :
dAreaS
1(M) — 4.4
vl = [ [ g e
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Let us now fix some x € (0,00). Let z(p) be the normal flow of Sy, which is well-
defined for a small p. We adopt the convention that the unit normal of Sy is pointing
towards the concave side of Si. Let Si(p) be the parallel surface of Sy, at distance
p, in the concave side. Using the formula for the shape operator of Sy (p), see [KSO7]
or [Sepl7, Lemma 1.14], we get:

B, = (cos(p)E + sin(p) B)~(— sin(p)E + cos(p)B)
where B, is the shape operator of Sy(p). Hence

det B, = sin? p + cos? pdet B — (sin p cos p)traceB

cos? p + sin? pdet B + (sin p cos p)traceB

With our convention, trace B < 0 since S is concave, and thus, using the inequality
(traceB)? > 4det B = 4k, we have

sin? p + cos? p k + 2sin p cos p\/k
cos? p + sin? pk — 2sin pcos py/r

det B, >

which implies that inf det B, > f(p), where

_ sin? p + cos? p k + 2sin pcos p\/k
"~ cos2 p+sin® pr — 2sin pcos py/k

Hence by an application of the maximum principle (compare for instance [BBZ11])
one has that Sy (p) lies entirely in the concave side of S (,y. In other words, F'(z(p)) >
f(p). Observe that the timelike vector fields z(p) and grad F'(z (o)) are collinear when
0 = 0. Hence for every € > 0, there exists pg > 0 such that for every ¢ < pg we have

(gradF'(z(0)), ¢(0)) < [lgradF'(z(0))[|(1 +€) ,

hence

F(x(p)) - F(x(0) = /0 (arad F(2(0)), (0))do < (1 +¢) /0 | lgrad F(x(0))l|de .
for p < pp. On the other hand

F(x(p)) — F(2(0)) = f(p) — & ,

and thus by differentiating at p = 0:

lgrad F(z(0))[|(1 + ¢) > -

o 0 =2Vs 1)

p=0
We can finally conclude the computation. From Equation (4.4)), we have
T (14¢)
Vol(My) < —_— dAreag_dk
0 < [ s Jo s

+too 9o K 2
—(40 [ I TSI+
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where we have used the Gauss-Bonnet formula, the fact that the Gaussian curvature
of Sy is —1 — &, and that

oo dx T

o Vr(l+z)? 2

Finally, let us observe that equality holds if and only if (traceB)? = 4 det B at every
point, which is the case in which all the surfaces S, are umbilical. This implies
that the boundary of the convex core is totally geodesic, and thus M is a Fuchsian
manifold. O

A direct consequence of Proposition using Equation (4.3)), is that the volume
of M and of the convex core of M are roughly comparable:

Corollary 4.2.2. Given a maximal globally hyperbolic manifold M,
Vol(€(M)) < Vol(M) < Vol(€(M)) + 72|x(S)]| .

4.2.2 Length of earthquake laminations

In this subsection we will prove a coarse relation between the volume of a maximal
globally hyperbolic manifold My, j» and the length of the earthquake laminations of
the (both left and right) earthquake maps from (S,h) to (S,h'), provided by the
Earthquake Theorem (Theorem [1.5.4).

Before stating the main results of this subsection, we finally need to recall the defi-
nition of length of a measured geodesic lamination. Let us denote by ML (S) the set
of measured laminations on S, up to isotopy. The set of weighted multicurves

(c,a) = ((c1,a1),...,(cnyan)) ,

where ¢; are essential simple closed curves on S and a; are positive weights, is dense
in ML(S). The well-posedness of the following definition then follows from [Bon86|.

Definition 4.2.3. Given a closed orientable surface S of genus g > 2, we denote
0 : ML(S) x Teich(S) — [0, 4+00)

the unique continuous function such that, for every weighted multicurve (c,a),

n
(((c,a),[h]) = ailengthy(c;) ,
i=0
where lengthy, (c) denotes the length of the h-geodesic representative in the isotopy
class of c. Then we define the length function associated to a measured lamination

A as the function
) : Teich(S) — [0, +00)

defined by €x([h]) = £(), [h)]).
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Similarly, we also recall the definition of topological intersection for measured
geodesic laminations:

Definition 4.2.4. Given a closed orientable surface S of genus g > 2, we denote
L ML(S) x ML(S) — [0, +00)

the unique continuous function such that, for every pair of simple closed curves A =
(c,w) and N = (d,w'),

AX) =w-w' - #(yNAy),

where v and 7' are geodesic representatives of ¢ and ¢ for any hyperbolic metric on

S.

The following is the first step towards a relation between the volume of a maxi-
mal globally hyperbolic manifold and the length of the left and right earthquake
laminations of the Earthquake Theorem (Theorem [1.5.4)).

Lemma 4.2.5. Given a GHMC AdS3 manifold M = My, let A and X, be the
measured laminations such that El’\l(h) =4 and E}M(h) = h'. Then

7T2
Vol(€(M)) + Vol(M) = 1, () + T x(5)] (45)

and ) )
Vol(€(M)) + Vol(M_) = 7x,(h) + %\X(S)\ . (4.6)

The proof follows from the arguments in [BB09) Section 8.2.3].

Corollary 4.2.6. Given two hyperbolic metrics h and h' on S, if \; and X\, are the
measured laminations such that E;‘l(h) =K and E}(h) = W, then

[0, (h) = £, (R)| < 27%|x(S)] -

Proof. From Equations (4.5)) and (4.6)), it follows that

ﬂ_2

1100 () — £, (1)] = [VOl(M,) — Vol(M_)| < max{Vol(M_), Vol(M )} < T x(5)]

where the last inequality is the content of Proposition [4.2.1 O

Theorem 4.2.7. Given a GHMC AdSs manifold My, j, let Ay and A, be the measured
laminations such that El’\l(h) =K and E}(h) = h'. Then

1 1
1) < Vol(©(Mig0)) < 40, () +

and analogously

1 1
Zg)w (h) S VOI(G(Mh’h/)) S ZEAT (h) +
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Proof. From Lemma [£.2.5] we have

7T2
VOI(©(M)) = 1 () + TS x(S)] ~ Vol(M_)

and thus the claim follows, using that

2
0 < Vol(M-) < - [x(S)]

by Proposition The other inequality holds analogously. O

4.3 Holomorphic energy

In this section we will discuss the relation between the volume of a maximal globally
hyperbolic anti-de Sitter manifold and several types of l-energy, that is, the holo-
morphic 1-energy obtained by integrating the norm ||0f|| of the (1,0)-part of the
differential of a diffeomorphism f between Riemannian surfaces, and the integral of
the 1-Schatten norm of the differential of f.

4.3.1 Volume of a convex set bounded by K-surfaces

As a consequence of Proposition [£.2.1] the volume of the convex core of a GHMC
AdS3 manifold My, 5,/ is coarsely equivalent to the volume of every domain of Mj, p/ in
which it is contained. Using this fact, we will be able to compare the volume of My, 5/
with the minima of certain functionals which depend on (h, k') € Teich(S) x Teich(S).

As explained in Subsection in My, p,s, there exists a unique embedded maximal
surface ¥o = ¥j, s (i.e with vanishing mean curvature) with principal curvatures in
(—1,1). By an application of the maximum principle, ¥y is contained in the convex
core of My, j,,. Moreover, using the formulas for the shape operator B, of equidistant
surfaces (see [KSO7] or [Sepl7, Lemma 1.14]), it is straightforward to verify that a
foliation by equidistant surfaces ¥, from ¥ is defined at least for p € [-7, 7] and the
surfaces ¥_r= and Xz are convex resp. concave, with constant Gaussian curvature

—2. Therefoie, the démain with boundary
Q= U I
rel-717]

contains the convex core and by definition

Vol(Qp 1) = /4 Area(X,)dp .

_
4
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By exploiting the analytic relation between maximal surfaces in AdSs-manifolds and
minimal Lagrangian diffeomorphisms between hyperbolic surfaces, we can express
explicitly this volume as a functional of h and A/

In fact (recalling Definition [1.5.5)), the minimal Lagrangian map m : (S, h) — (S, k')
can be characterised in the following way, see [Lab92b:

Lemma 4.3.1. Given two hyperbolic metrics h and h' on S, an orientation-
preserving diffeomorphism m : (S, h) — (S, h’) is minimal Lagrangian if and only if
there exists a bundle morphism b € I'(End(T'S)) such that

(1) m*h' = h(b-,b-)

(2) det(b) =1

(8) b is h-self-adjoint

(4) b satisfies the Codazzi equation d¥b = 0 for the Levi-Civita connection V of h.

Moreover, if we denote with Iy the induced metric on ¥y and with By its shape
operator, and we identify (3o, Iy) and (S, h) using the left projection, the following
relations hold (see [KS07, [BS10, BS16]):

I = %h((E ) (E4+b))  and  Bo=—(E+b) "Jh(E—b).  (49)

Here Jj is the complex structure on S compatible with the metric h. In particular,
it can be checked directly that the surface g is maximal precisely when conditions
(1) — (4) of Lemma hold, that is, when the associated map is minimal
Lagrangian.

Therefore, by using the above formulas and the fact that the metric on the
parallel surface ¥, at distance p from X is given by

I, = Io((cos(p)E + sin(p)Bo)-, (cos(p) E + sin(p) Bo)-) ,
the area form of (3,,1,) is
dAy, = det(cos(p) E + sin(p) Bo)dAs, = (cos®(p) + sin?(p)(det By))dAy, .
Moreover, from Equation (4.9)), we have

det(E —b) 2 — trace(b)
det(E +0b) 2+ trace(b)

1
dAZo = Z det(E + b)dAh and det By =
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Therefore we get:

Area(X,) = /Z (cos®(p) + sin?(p)(det By))dAsx,

:cosz(p)/ dAy, +sin2(p)/ det(By)dAs,
20 2O

_ cos®(p) sin(p)
= 1 /EO det(E + b)dAy, + /EO det(E — b)dAy,
2 in?
= COS4('O) /EO (2 + trace(b))dAy + > 4('0) /go (2 — trace(b))dAy,
= m|x(S)| + %(cosz(p) — sir12(,0))/E trace(b)dAy, ,

where in the last step we used the Gauss-Bonnet equation for the hyperbolic metric
h. Integrating for p € [—m/4,7/4] we have

2 1
Vol(Qp, 1) = %|X(S)| + 4/ trace(b)dAy, . (4.10)
3o

Recall that from [Lab92b], there exists a unique minimal Lagrangian map m :
(S,h) — (S, h') isotopic to the identity between any two hyperbolic surfaces (S, h)
and (S, k). Hence we can now prove:

Corollary 4.3.2. Let My be a GHMC AdS3 manifold. Let b : T'S — TS be the
unique h-self-adjoint Codazzi operator such that m*h’ = h(b-,b-), where m : (S, h) —
(S,h') is the minimal Lagrangian diffeomorphism. Then

/ trace(b)dAp — 7x(S)] < Vol(€(Mi ) < i / trace(b)dA, + 7;2]x(5)\ .
S

S

=

Proof. By the previous computation, we have

2 1
Vol(C(Mp, ) < Vol(Qp ) = 7T?|X(S)| +7 / trace(b)dAy, .
S

On the other hand, by an adaptation of the proof of Proposition [4.2.1] since the
boundary of €2,/ consists of the disjoint union of the two surfaces with constant
curvature —2 in M, 5/, for every € > 0, we have

1
1
Vol(Qp pr \ C(Mp, gy §21—|—e/ dAreag, dk
( h,h\ ( h,h)) ( ) 0 2\/E(H+1) s, S,
dr 2

1
2SI+ 0 [ S = ) (7 ) e,

and therefore

7T2
Vol \ €(r)) < (S (74 )
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Hence, using Equation (4.10)),

Vol(C(Mp 1)) = Vol(Q 1) — Vol(Qp, 1 \ C(Mp, 1))
2

> Vol(@) ~ ()] (7+ G ) = ] [ wrace(t)dhs — alx(S)]

as claimed. O

4.3.2 Holomorphic energy and Schatten energy

As a consequence of Corollary the coarse properties of the volume of a GHMC
AdS3 manifold depend only on the function

F : Teich(S) x Teich(S) — R

(h,h') H/trace(b)dAh ,
S

where b is the Codazzi tensor, satisfying the conditions (1) — (4) of Lemma [4.3.]]
above, for the minimal Lagrangian map m : (S,h) — (S,h’). The properties of
F' have already been introduced and studied in [BMSI5|. Here we point out the
relation with an L'-energy on Teichmiiller space.

Let us denote by CL(S) the space of C' maps f : (S,h) — (S,h’) homo-
topic to the identity. Equivalently, by identifying (S,h) with H?2/p(m1(S)) and
(S, ') with H2/p/(m1(S)) (where p,p' are the holonomy representations of mq(S)
into Isom(H?)), CL(S) coincides with the space of (p, p')-equivariant C* maps of
H? into itself.

Definition 4.3.3. Given two hyperbolic surfaces (S,h) and (S,h’), the 1-Schatten
energy is the functional Escp (-, hy 1) : CL(S) — RT

Esch(f,h, h/) = / trace(bf)dAh
S

where by is the unique h-self-adjoint operator such that f*h' = h(bs-,bs-).

Remark 4.3.4. At every point x € S, the tensor by at x coincides with the square
root of df*df, where df* is the h-adjoint operator of df. Hence trace(by) coincides
with the 1-Schatten norm of the operator df at x, and this justifies the definition of
Escn(f) as the 1-Schatten energy.

Remark 4.3.5. The 1-Schatten energy of a C' map f is related to the holomorphic
energy

Eo(f.hy ) = /S |0f[1dAs
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studied by Trapani and Valli in [TV95)]. (Here we are considering Of as a holomor-
phic 1-form with values in f*T'S and we denote with || - || the norm on T*S @ f*T'S
induced by the metrics h and h'). A computation in local coordinates, using Remark

shows that the eigenvalues of df *df are

1 — 1 _
o= (I0f1 = 10fI)* and  p2 = S(0F] + [0£11)* -
Therefore one obtains:
trace(by) = v2max{||0f||,|0f||} - (4.11)

In particular, when f is orientation-preserving (for instance if f is a minimal La-
grangian diffeomorphism), then ||0f|* — ||0f]|?> > 0 and therefore

trace(bs) = V2||0f]| .

In conclusion, this shows that

E@(fa h7 h,) < ?ESch(fv h7 h,) ) (412)

with equality when f is an orientation-preserving diffeomorphism.

Let us denote by Diffeog (.S, h, ") the space of orientation preserving diffeomorphisms
f:(S,h) — (S,h') isotopic to the identity. Trapani and Valli proved that the holo-
morphic 1-energy Fy(-, h, h') is minimized on Diffeoy(S, h, h’) by the unique minimal
Lagrangian map m : (S, h) — (S, h'):

Proposition 4.3.6 (Lemma 3.3 [TV95]). Given two hyperbolic metrics (S, h) and
(S,h'), the functional

Es(-, h,h') : Diffeojq (S, h, h') — R
admits a unique minimum attained by the minimal Lagrangian map m : (S,h) —
(S, 1) isotopic to the identity.

We will actually need the fact that the minimal Lagrangian map m : (S, h) — (S, 1)
also minimizes Fg.; on C’ild(S ), which is an improvement of Proposition m

Proposition 4.3.7. Given two hyperbolic metrics (S, h) and (S,h'), the functional
ESch(’a h, h/) : Clld(S) —R*

admits a minimum attained by the minimal Lagrangian map m : (S,h) — (S, 1)

isotopic to the identity.

The proof follows from the convexity of the functional Eg.p,, see [BMS17]. In fact, the
space Diffeoq(S, h, h') of diffeomorphisms isotopic to the identity is open in CgY(.S)
(i.e. the space of C'° self maps of S homotopic to the identity). Moreover, by Remark
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m Escn and Ejy coincide on Diffeoiq(S, h, h'), up to a factor. By Propositionm
m is a local minimum of Eg., on CY(S), and thus a global minimum on CY(S) by
convexity. By density of CSP(S) in C4(S), and the continuity of Eg.;, on C(9), it
follows that m is a global minimum of Egep (-, h, h') on CL(S), as well.

The above results enable us to conclude the following theorem:

Theorem 4.3.8. Let My, j be a GHMC AdS3 manifold. Then

1 1 72
ZESch(ma h,h') — w|x(S)| < Vol(€(Mpp)) < ZEsch(m, h,h') + 7\x(5)\ ,

where m : (S,h) — (S, 1) is the minimal Lagrangian map isotopic to the identity,
that is, the minimum of the 1-Schatten energy functional Escp (-, h,B') : CH(S) — R.

Proof. By Proposition the minimum of Eg.p(-, h, h') is achieved at the minimal
Lagrangian map m, and we have by definition

Esch(m,h, h/) = / trace(b)dAy, .
S

Hence the statement follows from Corollary O

4.4 L'-energy between hyperbolic surfaces

We conclude this section by showing that the volume is also coarsely comparable to
the L'-energy on Teichmiiller space. The L'-energy, or total variation, is defined as:

Definition 4.4.1. Given two hyperbolic surfaces (S, h) and (S,h'), the 1-energy, or
total variation, of f is the functional

Eq(-,h, 1) : CL(S) — RT
defined by
B o) = [ ldflass

For the proof of the inequality

1 V2
— inf  Ey(-,h, b)) — == S)| < Vol(C(My,
it Bl hot) = ()] < Vole(M)
of Theorem we will need the fact that

inf  Ey(-, h,h) < Oy(h) +2v27|x(S)] ,
el s) a( ) < i(h) m|x(S)|

so as to apply Theorem [£:2.7] This follows from the following lemma:
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Lemma 4.4.2. Given two hyperbolic surfaces (S, h) and (S, k'), let X be the measured
lamination such that E}Nh) = ' (or ENh) = h'). Then there exists a sequence
fn € CL(S) such that

im  Eq(fn, b, B') < £x(h) +2v2x|x(5)] .

n——+00o

Proof. We will give the proof for left earthquakes. Suppose first that A is a weighted
simple closed geodesic (v, w). Let Ue be the e-neighborhood of v on (S, k). Choose
coordinates (¢,7) on Uy, so that the geodesic v is parameterized by arclength by the
coordinate (t,0), for ¢ € [0, L], and the point (¢,7) is at signed distance r from the
point (t,0). Hence the metric on U, has the form dr? 4 cosh?(r)dt?>. Then define
fe(r,t) = (r,t 4+ ge(r)) on Uy, where g.(r) is a smooth increasing map such that
ge(—€) = 0 and g.(€) = w. By definition of earthquake map, we can then extend f.
to be an isometry on S\ U.. By a direct computation,

ldferpll = V2 + ge(r)?

hence

€

/U ||dfe||dAR = L/_e V2 + gL(r)? cosh(r)dr < L/ (\f2 + gL(r)) cosh(r)dr

—€

< \/§Area(U€) + L cosh(e)(g(e) — g(—¢)) -

Therefore, using that L(g(e) — g(—€)) = Lw = ¢\(h) and that f. is an isometry
outside of U,, we get

[ taraa, = [ el + | laras,
< cosh(e)ly(h) + V2Area(S \ U.) + V2Area(U,)
= cosh(e)ly(h) + V2Area(S) = cosh(e)lx(h) + 2v27|x(S)]| .

As we let € — 0, this concludes that
iy [ [[df11dAn < () + 2v2rlx(S)]
€ S

Let us now take an arbitrary measured geodesic lamination \. Let \,, be a sequence
of weighted multicurves converging to A, so that:

o |y, (h) —lx(h)] < 1/n.

e The metrics hy, = El’\" (k) and B’ = E}(h) are (1 + 1/n)-bi-Lipschitz.

In fact, the second step follows from the continuity of the earthquake map FEj :
ML(S) x Teich(S) — Teich(S). Let us now take f, : (S,h) — (S, h,) (constructed
as before) so that

/S Il < 3, (1) + 2V3rIx(S)] +
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Let gn : (S,hyn) — (S,h') be the (1 + 1/n)-bi-Lipschitz diffeomorphisms. Since
hy — B/, we can assume g, — id. Then for the map g, o f,, : (S,h) — (S,h’), we
have:

S

<£M ) 4 2v27|x(S)| + >
Ox(h +2x/§7r[x(S)]+Z>.

/SHd@nofn)HdAh < <1+
< <1+
<1+

Hence the constructed sequence g, o fy, : (
map ey and satisfies:

Sl 3= 31

n N——

,h) — (S, ') converges to the earthquake

lim /S 1d(gn o fu)lldA < Ex(h) + 2V2r[x(S)] |

n—-+4o0o

hence concluding the proof. O

We are now able to prove the main result connecting the volume of GHMC AdSs
manifolds with the minima of the L'-energy:

Theorem 4.4.3. Let My, j be a GHMC AdS3 manifold. Then

2 2
2t B+ (S

2
inf  FEy(-,h, h')—£w|x(S)| < Vol(C(Mp 1)) <
2 €CL(S)

1
4 rechi(s)
Proof. From Lemma and Theorem we have

inf  Ey(-,h,h') <

ifeCd(S) (Ux(h) + 227X (S)|) < Vol(C€(My, 1)) + ?W’X(S)\ :

|

hence the lower bound follows. On the other hand, using the fact that
ldfII* = 11of11” + o1
from Equation we have for every f € CL(S):
trace(by) = v2max{[|df|], [0} < V2||df|| -

Thus
Bsan(f ) = [ trace(v)an < V2 [ 117l
S S
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Hence the upper bound follows from Theorem [.3.8 and Proposition [£-3.7}

2 1
VOI(G(MhJL')) < ?|X(S)’ + ZES’ch(mv ha h/)
2
1
= —|x(S)|+= inf Egu(f h 1K
5 Ix(S)] 4f€101i11d(5) sen(f )

2 \/§
(S + X2 inf  Ey(f,h, R,
5 Ix(S)] 1 fEICIilld(S) a(f )

IN

thus concluding the proof. O

4.5 Thurston’s asymmetric distance

In this Section, we will apply Corollary to compare the volume of the convex
core of a GHMC AdSs-manifold and Thurston’s asymmetric distance on Teichmiiller
space.

4.5.1 The general upper bound

Thurston asymmetric distance on Teichmiiller space is deeply related to the
hyperbolic geometry of surfaces. We briefly recall here the main definitions for the
convenience of the reader.

Let h and h’ two hyperbolic metrics on S. Given a diffeomorphism isotopic
to the identity f : (S,h) — (S, ') we define the Lipschitz constant of f as

A (f (@), /1)

L(f) - z#y€eS dh(gj, y)

Definition 4.5.1. Thurston asymmetric distance between h,h' € Teich(S) is

drn(h,h') = inf log(L
(W) = inf log(L(f))

where the infimum is taken over all diffeomorphisms f : (S,h) — (S, k') isotopic to
the identity.

Thurston showed that the Lipschitz constant L(f) can also be computed by compar-
ing lengths of closed geodesics for the metrics h and h’. More precisely, in [Thu98]
he proved that

L(f) = sup icc((%) :

where ¢ varies over all simple closed curves ¢ in S.

(4.13)
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An application of Theorem [£.3.8] leads to the following comparison between the
volume of the convex core of a GHMC AdS3 manifold and Thurston asymmetric
distance.

Theorem 4.5.2. Let My, j be a GHMC AdS3 manifold. Then

7.‘_2
Vol(€(Mw)) < = IX(S)] + wx(S)] exp(min{drn(h, h'), dru(W', 1)}) -

Proof. We will first prove that

7.[.2
Vol(C(Mpw)) < = IX(9)] + 7 (S)] exp(drn(h, 1)) -

First of all, let us observe that the Lipschitz constant of a diffeomorphism f : (S, h) —
(S,h') can be expressed as:

df (V)|
() = sup 1O _ 0l
vers  |[vl|n zeS

Here, ||df:||oo is the spectral norm of dfy : (TS, he) — (T(z)S, h’f(x)). Now, from

Theorem for every diffeomorphism f : (S, h) — (S, 1) isotopic to the identity,

we have )

VoI(©(My) < TIX(S)| +  Bsen(f: 1)

Since the spectral norm of df is the maximum eigenvalue of \/df*df, the 1-Schatten
norm is bounded by twice the spectral norm, hence we get

Esen(f, b 1) = /Strace@f)dAh < 2su1§dexHoo/SdAh = 4m|x(9)[L(f) -
S

Hence we obtain:

7T2 71'2 ,
Vol(€(Ma ) < 5 [X(S)| + wlx(S)] i L(f) = T [x(S)] + wl(S) e )

For the main statement, observe that the involution

SL(2,R) — SL(2, R)
A AL

induces an orientation-reversing isometry of AdSs which swaps the left and right
metric in Mess’ parameterization (see Section [1.5). Therefore, the volumes of the
convex cores of My, and My, j, are equal. Hence it follows that

7-(2
Vol(€(Mp,pr)) < - [X(9)] + w[x ()] exp(drn(h', )

is also true. This concludes the proof. O



76 CHAPTER 4. THE VOLUME OF GHMC ANTI-DE SITTER 3-MANIFOLDS

4.5.2 A negative result

We are now showing that it is not possible to find a lower-bound for the volume of
the convex core in terms of the Thurston asymmetric distance between the left and
right metric.

Proposition 4.5.3. There is no continuous, proper function g : RT™ — R such that
g(min{dTh(h, h/), dTh(h/, h)}) S VO](G(Mh’h/)) .

for every couple of metrics h,h' € Teich(S).

Proof. Tt is sufficient to show that it is possible to find a sequence of GHMC AdS;
manifolds such that the volume of the convex core remains bounded but both
Thurston’s asymmetric distances between the left and right metric diverge.

Choose a simple closed curve i € P that disconnects the surface in such a way that
one connected component Sp is a surface of genus 1 with geodesic boundary equal
to pu. Fix a pant decomposition P containing the curve u. Let a C S1 be the curve
in the pant decomposition of S contained in the interior of S;. Fix a simple closed
curve (3 in Sp (see Figure which intersects « in exactly one point. Choose then
a hyperbolic metric h on S such that the geodesic representative of [ intersects «
orthogonally. For every n € N we define an element h,, € Teich(S) with the property
that all Fenchel-Nielsen coordinates of h,, coincide with those of h but the length
of the curve «, which we impose to be equal to 1/n. In particular, the h,-geodesic
representative of § intersects a orthogonally for every n.

Figure 4.1: Curves described in the proof of Proposition m

Consider the measured geodesic laminations A, consisting of the simple closed curve
a with weight n. We define a second sequence of hyperbolic metrics h!, as h, =
El)‘”(hn). Notice that these metrics are obtained from h,, by performing n? Dehn-
twists along . We are going to show that the volume of the convex core of the
GHMC AdS3 manifolds M, = My, p; remains bounded but the two Thurston’s
asymmetric distances between h,, and h/, go to infinity when n tends to 4oc.

By Equation in Theorem , the volume of the convex core of M, is coarsely
equivalent to the length of A\, which by definition is
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hence the volume remains bounded.
On the other hand, since the curve [ intersects « orthogonally, for every metric h,,

we claim that
cosh(W))

{3(hy,) = 4arcsinh ( simh()

To prove the claim, we cut the surface 51 along the curve «, thus obtaining a pair of
pants P’ with geodesic boundaries given by u and two copies of a. If we cut again
P’ into two right-angled exagons (see Figure , the length of the curve 8 can be
computed using standard hyperbolic trigonometry [Thu97]. Here we are also using
the fact that the length of the curve p does not depend on n.

M

A B

Figure 4.2: The lengths of the edges A,B and M satisfy sinh(A) sinh(B/2) = cosh(M/2).

Hence we obtain

£3(hn) < O [log(n)| + Cs (4.14)

for some constants Cy,Cs, when n is sufficiently big. Moreover, by a simple appli-
cation of the triangle inequality (see [BS09, Lemma 7.1], and recall Definition
for the intersection of measured geodesic laminations), we can deduce that

Eﬁ(h;m) + eﬁ(hn) > L()\Thﬁ) =n,

thus .

bolh) o ™

Eﬁ(hn) Eﬁ(hn)
when n tends to +oo by using Equation (4.14). Therefore, by definition
dry(hp, hl) — +oo .
To prove that also dry(hl,, hy,) is unbounded, it is sufficient to repeat the same ar-
gument for the curve ' = DZQ (B) obtained from B by performing n? Dehn-twists
along «. Namely, by construction, the curve 3’ intersects orthogonally the curve «
for the metric A}, thus the same estimate as in Equation holds for the length
of the curve 8 with respect to the metric hl,. O

4.5.3 Discussion of the optimality

In this subsection, we will construct some examples to show that the result of The-
orem [£.5.2] is optimal, in some sense. The first situation we consider is the case of
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a sequence of manifolds Mp, j,, for which one metric is fixed, and the other metric
diverges in Teich(S). In this case, the volume of Mj, j is in fact bounded also from
below by the exponential of Thurston’s asymmetric distance:

Proposition 4.5.4. Let Q be a compact set in Teich(S) and let My, be a GHMC
AdS3 manifold with h € Q. There exists a constant C = C () > 0 such that

C(Q) exp(drn(h, b)) — C(Q) < Vol(C(Mp )
for every h € Q and every h' € Teich(S).

Proof. Let I/ be any hyperbolic metric on S, let A be the measured lamination such
that A/ = El)‘(h), and let a be any simple closed curve on S. By a simple formula,
we have:

lo (W) < Llo(h) + (N Q) .

In fact, it is easy to check that this formula is true when A is a simple closed curve,
since the h'-geodesic representative of « is shorter than the piecewise-geodesic curve
obtained by glueing the image of the h-geodesic representative of a and subintervals
of the simple closed curve A according to the earthquake measure. The general case
follows by a continuity argument. Hence we have:

Lo (R) L\, )
o) S am

We claim that there exists a constant C' = C(2) > 0 such that, for every pair of
measured laminations p, A € ML(S),

Ly, A)
Lu(h)ex(R)

The proof will then follows directly from the claim, since we will then have

< D(Q) .

<14 D(Q)lx(h) < 1+ 4D(Q)Vol(C(M 1))

by Theorem for every simple closed curve «. Therefore (recall Equation
(4.13))),

Lo (H
C() expldrn(h. k1)) = C(2) = C(@)sup ) = C() < Vol(E(Mw)
where C(Q) = 1/4D().
To prove the claim, suppose by contradiction there exists no such constant D((2),
and therefore there exist a sequence h, € Q, and sequences pi,, A, € ML(S) such

that
(s An)

—— = 40 .
fun (hn)gAn (hn)
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Now, up to extracting subsequences, we can assume h, — ho € Q C Teich(S).
Moreover, by the compactness of the space of projective measured laminations on .S,
we can assume that there exist ay,b, > 0 such that a,u, = peo and by, — Ao,
for fieo, Aco 7 0. This leads to a contradiction, as

t(anfin, bnn) Ly An) LMooy Aoo)
= — < +00
Eanﬂn(hn)ébnAn (hn) E,U‘n (hn)&\n (hn) Zuoo (hOO)EAoo (hoo)
since the quantities ¢ and ¢ vary with continuity. O

Recall that the action of the mapping class group of .S on
Teich((S) := {h € Teich(S) | injrad(h) > €}

is co-compact, by [MumT7I]. As the volume Vol(C(Mp, /) is invariant under the
diagonal action of the mapping class group on Teich(S) x Teich(S), we deduce the
following stronger version of Proposition

Corollary 4.5.5. Given any € > 0, there exists a constant C' = C(¢€) such that
C(E) eXp(dTh(h, h/)) — C(E) < VOI(G(Mh’h/))

for every h € Teich.(S) and every h' € Teich(S), where Teich(S) is the e-thick part
of Teichmiiller space of S.

We will now discuss the optimality of the multiplicative constant in the upper
bound of Theorem More precisely, we will exhibit a sequence of exam-
ples, in a surface S; for any genus g, so that the volume grows actually like

[X(Sg)| exp(min{dry (h, k'), dru(h', h)}).

Proposition 4.5.6. There exist universal constants C,gg > 0 and there exist se-
quences of hyperbolic metrics hg, h’g in Teich(Sy), where Sy, is the closed orientable
surface of genus g, such that:

Vol(€(Mp, 1)) = Clx(Sg)| exp(drn(hy, hy))

for every g > go.

Proof. Fix a pant decomposition P, of Sy, which is composed of 3g—3 disjoint simple
closed curves a1, ...,a34—3. Consider a hyperbolic metric h, for which all the the
simple closed curves a, ..., a3s—3 have the same length, say u (independently of g).
Let us consider the hyperbolic metric A’ = El’\(h), where A is the multicurve
aq,...,03¢-3, where all the curves are endowed with the same weight w > 0. Now,
given any other simple closed curve «, we have (as in the proof of Proposition :

(!

~—

wL(P, a) '
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Now, observe that every time the curve a crosses a curve a; of P, a needs to exit
the pair of pants adjacent to «; through some boundary component of the same pair
of pants. Hence the length of « is at least the intersection number ¢(P, ) times the
distance between two boundary components. Since we chose hy so that all pairs of
pants in the decomposition have the same length u for all boundary components,
the distance between two boundary components can be computed, as in Proposition

A58 as ’ 1
> — 2arcsinh <2S”ﬂh(§f)) .

)
lo(h) > (P a)-r(u) .

cosh(
sinh(

a2

r(u) = 2arcsinh (

M

Thus we obtain

On the other hand, observe that £)(h) = w(3¢g — 3)u. Hence we get:

u(Pa) wo Ox(h)
) S TP - i T By Rur(u)

Since this inequality holds for every simple closed curve «, recalling Equation (4.13]),
we obtain:

2 1 8 1
Gur@) G M = Bure)) Sy

where in the last step we have used Theorem [£.2.7 In particular this shows that

exp(drn(hg, hy)) < 1+ Vol(€(Mp, 1)) »

Vol(€(Mp,,n, )
9 > Colx(S))| |

for some constant Cy > 0. Since £5(h) (and thus also the volume) is going to infinity,
it follows that

Vol(C(Mh, 1)) = Clx(Sg)| exp(drn(hy, hy))

for every constant C' < Cj, if g > gg. This concludes the claim. O

Remark 4.5.7. The proof of Proposition actually produces sequences hg,h’g
such that

Vol(G(th7h/g)) > Cx(Sy)| exp (max{dTh(hg, h;),dTh(h’g, hg)}) )

In fact, hy was chosen so that all pairs of pants in the pant decomposition P have
a certain shape, and h’g 1s obtained by earthquake along P. Hence for the metric
h;, the pairs of pants also have this shape as well (in other words, hg and h; only
differ by twist coordinates in the Fenchel-Nielsen coordinates provided by P). Hence,
switching left earthquakes with right earthquakes, the proof holds analogously for the
other Thurston’s distance.
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4.6 Weil-Petersson distance

In this section we study the relation between the volume of a GHMC AdSs manifold
and the Weil-Petersson distance between its left and right metric.

4.6.1 Weil-Petersson metric on Teichmiiller space

The Weil-Petersson metric is a Riemannian metric on Teichmiiller space, which
connects the hyperbolic and the complex geometry of surfaces.

Given a Riemann surface (S,X), let us denote by K the canonical line bun-
dle of S, that is the holomorphic cotangent bundle. It is known that the vector
space QD(X) = H%(S,K?) of holomorphic quadratic differentials on (.S, X)
has complex dimension 3g — 3 and can be identified with the cotangent space
Ty Teich(S). We recall briefly this identification for the convenience of the reader.

A Beltrami differential u is a smooth section of the vector bundle K ® K. In local
coordinates, we can write u = u(z )‘r. Beltrami differentials can be mterpreted as
(0,1)-forms with value in the tangent bundle of S and correspond to infinitesimal
deformations of the complex structure X. If we denote with BD(X) the vector
space of Beltrami differentials and with BDy,(X) the subspace corresponding to
trivial deformations of the complex structure X, we have an identification:

Tix)Teich(S) = BD(X)/BD;,(X) .

The duality pairing between a Beltrami differential 4 and a holomorphic quadratic
differential ¢

10.9) = [ u2)o(:)z ndz
where in local coordinates ® = ¢(z)dz?, induces the aforementioned isomorphism
QD(X) = [X]Telch(S)

Let h be the unique hyperbolic metric on S compatible with the complex structure
X. If we write in local coordinates h = o3(z)|dz|?, the Weil-Petersson metric on
Teich(S) arises from the real part of the Hermitian product on @ D(X), namely:

$(2)¥(2)
(2)

S g

<(I), \I’>Wp = 2) dz Ndz
0

via the above duality pairing.
The Weil-Petersson metric is geodesically convex ([Wol87]), it has negative
sectional curvature ([Wol86], [Tro86]) and the mapping class group acts by isome-

tries (JMWO02]). However, the Weil-Petersson metric is not complete ([Wol75]) and
its completion gives rise to the augmented Teichmiiller space Teich(.S), obtained
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by adding noded Riemann surfaces ([Mas76]). The Weil-Petersson distance from a
point X € Teich(S) to a noded Riemann surface Z with nodes along a collection of
curves aq, - - - , oy is estimated by (see [Wol08, Section 4] and [CP12, Theorem 2.1])

dwp(X,Z) < V2rl | (4.15)

where
l= éal(h‘) +eoet Eak(h)

is the sum of the lengths of the curves a; computed with respect to the unique
hyperbolic metric h compatible with the complex structure on X.

4.6.2 A negative result

The failure of completeness of the Weil-Petersson metric at limits of pinching se-
quences in Teichmiiller space implies that it is not possible to find an upper-bound
for the volume of a GHMC AdS3 manifold My, ;s in terms of the Weil-Petersson
distance dwp(h, '), as the following proposition shows.

Proposition 4.6.1. [t is not possible to find a continuous, increasing and unbounded
function f : RT — RT such that

Vol(Mi,) < f(dwp (b, 1)) -

Proof. Tt is sufficient to exibit a sequence of maximal globally hyperbolic AdS® man-
ifolds M,, = Mp,, p such that
lim Vol(M,,) =+ but dwp(hn,h,) < C VYneN

n—-+o0o

for some constant C' > 0.

An example can be constructed as follows. Fix a hyperbolic metric h € Teich(S)
and a pants decomposition P = {ay, - ags—3} of S. Consider a sequence of hyper-
bolic metrics h], obtained by letting the lengths of the curves «; go to 0 for every
j=1,...3g — 3. By construction, the sequence h/, leaves every compact subset in
Teich(S) and it is converging to the noded Riemann surface Z in the augmented
Teichmiiller space Teich(S) where all the curves of the pants decomposition P are
pinched. Therefore, by Equation (4.15)),

dWP(h’ h/n) < dWP(h’ Z) + dWP(h’In’ Z) <C )
where C' = 21/2rlp(h). On the other hand, the volume of the AdS® manifolds M,,

is diverging because

2

2
Vol(M,) = Vol(©,) = T [x(8)| + ;[ trace(bu)ah = T x(S)] + {F(h0)
S

and the functional F(h,-) : Teich(S) — R* is proper (JBMS15, Proposition 1.2]).
Notice that we can actually make the constant C' arbitrarily small by choosing the
metric h appropriately. O
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4.6.3 A lower bound on the volume

We can bound the volume of a GHMC AdS3 manifold in terms of the Weil-Petersson
distance between its left and right metric from below.

Theorem 4.6.2. Let My be a GHMC AdS3 manifold. Then there exist some
positive constants a,b,c > 0 such that

“p(hugﬂWMth—MX@N>—cSVdmu@W».

The proof relies on a precise estimate of the norm of the Weil-Petersson gradient of
the length function, whose proof is postponed to the next section.

Theorem 4.6.3. There exists a universal constant a > 0 such that for every A €
ML(S) and for every h € Teich(S), we have

a
llgradfx(h)||wp > x U\(h) . (4.16)

()]

We will also need the following result by Bers (|Ber74], see also [Busl0, Theorem
5.13,5.14]):

Theorem 4.6.4. Let S be a closed surface of genus g > 2. For every hyperbolic
metric h € Teich(S) there is a pants decomposition P such that £, (h) < Ly for every
a € P, where Ly = 6v/3m(g — 1) = 3v/3m|x(95)|.

We will refer to the constant L, as Bers’ constant. Given h € Teich(S) we can
find a pants decomposition P = {a1,...agg—3}, such that £, (h) < L, for every
j=1,...3g9g — 3. If we perturb the metric h using an earthquake, we can estimate
how the lengths of the curves «; change only in terms of the Bers’ constant and of
the length of the lamination.

Lemma 4.6.5. Let h,h' € Teich(S). Let X be the measured geodesic lamination such
that W = E}Nh). Fiz a pants decomposition P = {c, ... asg—3} such that {o;(h) < L
for every j =1,...3g — 3. Then there exists a constant d(L) > 0 depending only on
L such that

lo; (W) < L+
for every j=1,...3g — 3.

Proof. 1t is well known ([Ker83|) that the first variation of the length of a simple
closed curve « along an earthquake path is given by the integral over « of the cosines
of the angles formed by ~ with the lamination A. As a consequence,
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for every tg. Hence
|45 (R') = £y (R)] < u(A, ) -

Therefore for every j = 1,...3g — 3 we can give an upper-bound for the lengths of
the curves o;:

lo;(h') < Lo, (h) + t(aj, \) < L+ (o, A) . (4.17)

We only need to estimate the intersection between the curves «;; and the lamination
A in terms of the length of the lamination. We claim that

f)\(h) > d- L()\, Ozj)

for some constant d = d(L). To prove the claim, suppose first that A = (¢, w) consists
of a weighted simple closed geodesic. By the Collar Lemma, since £ (cj) < L, there
exist disjoint tubular neighborhoods T, 4(1) of the geodesics aj of width

1
d(L) = arcsinh | ———— | . 4.18
(L) (sinh (é)) ( )

The intersection of ¢ with T}, 41 is the disjoint union of #(cNay) geodesic arcs of
length at least d(L). We deduce that for every j = 1,---3g — 3 we have

39—3

lx(h) = wl.(h) > wd(L) Z #(cNoy) =d(L)e(N aj) . (4.19)
j=1

The general case of the claim follows by a standard approximation argument using
the well-known fact that weighted simple closed curves are dense in the space of
measured geodesic laminations. The proof then follows by combining Equation (4.17))

and Equation (4.19)). 0
Given a pants decomposition P = {o,...,a3,-3} and a real number L > 0, we
define

VL(P) = {h € Teich(S) | £o;(h) < L for every j=1,...,3g — 3}

Proposition 4.6.6 (Proposition 2.2 [Bro03|). For every pant decomposition, the set
VL(P) has bounded diameter for the Weil-Petersson metric. More precisely, for every
pant decomposition P of S,

dlamwp(VL(P)) S 2V 2L .

We can estimate the Weil-Petersson distance between points lying in different level

sets Vi (P).
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Proposition 4.6.7. Let hg € V,,(P), for some m > L. Then

where a is the constant provided by Theorem [{.6.3

Proof. Let us denote with ¢p : Teich(S) — R* the function

which computes the total length of the curves «; in the pants decomposition P.
In the above notation, P is considered as a measured lamination, composed of the
multicurve i, ..., azy 3, each with unit weight. By Theorem [£.6.3] we have

a
gradlpllwp > ——=-Lp,
leradtellwe = g

thus a
lgrad(log £p)|lwp > — =+ -
IX(5)]
Let X be the vector field on Teich(.S) defined by
grad(log ¢p)

" lerad(log £p)|wp

and let v be an integral curve of X such that v(0) = hg. By the previous estimates,
the function ¢(t) = (log £p)(~y(t)) satisfies the differential equation

a
¢'(t) = (grad(log £p),~'(t))wp = —|lgrad(log £p)[wp < — MOIE

We deduce that

at at

o(t) < ¢(0) — < log(m(3g —3)) — :
IX(9)l IX(5)]
and that the curve () intersects the set Vi (P) after a time
1o < XN, <m(3g—3)> 7

a L

which implies the claim. O

We have now all the ingredients to prove Theorem [£.6.2}



86 CHAPTER 4. THE VOLUME OF GHMC ANTI-DE SITTER 3-MANIFOLDS

Proof of Theorem[[.6.2. Let h be a hyperbolic metric on S and &' = E}(h). Fix a
pants decomposition P such that h € Vg (P), where L, is as in the statement of
Theorem [£.6.4] By Proposition [£.6.6] and Proposition [£.6.7 we have

dwp(h, h,) < dwp(h,, VLg (P)) + diamprLg (P)

< |X(S)|10g (m(3z_3))+2\/ﬁ

a
Ix(S)] ( m )
< ] +2./2rL, ,
=" s g

for some m € R such that A’ € V,,,(P). We can choose m such that
m < Lg+£y(h) .

Hence

2V/3md(Ly) exp (X(as)‘(dwp(h, B — 2, /27rLg)> —d(Lg)Ly < Ox(h) .

Now from Equation (4.18)),
exp(—0 —2v3m(g — 1)) < d(Lg) < exp(—2V3m(g — 1))

for some constant ¢, and thus (using again the definition of L)

2v/3md(Lg) exp (bézg)’dwp(h, ) — 2«/277Lg)> > exp (|X(GS)|de(h, B — b|X(S)|> :

for some constant b > 0. In conclusion, since d(Ly)Ly — 0 as g — oo, there is a
constant ¢ > 0 such that

a
exp | ———dwp(h,h') — b|X(S)|> —c<Uy(h) .
<|X(5)|
The main statement of Theorem then follows by applying Theorem up

to changing the constants b and c. O

4.7 Gradient of length function

This section is devoted to the proof of Theorem [4.6.3] which we recall here:
Theorem 4.7.1. There exists a universal constant a > 0 such that for every \ €
ML(S) and for every h € Teich(S), the following estimate holds:

a
Jevada(h)lwe = s ta(h) (4.20)

(5)]
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First, it suffices to prove the inequality when A is a simple closed curve (with
weight 1). In fact, the inequality is homogeneous with respect to multiplication
of A by some positive scalar. Hence if holds for a simple closed curve (¢, 1),
then it holds for every (¢, w), where w > 0 is any weight. In this case, the inequality
then holds also for every measured geodesic lamination, since weighted simple closed
curves are dense in ML(S), and both sides of the inequality vary with continuity.

Moreover, we notice that Theorem [4.6.3] clearly holds if we restrict to the thick part
of Teichmiiller space. Namely, the function

g : Teich(S) x (ML(S) \ {0}) — R

lgradéx (h)][yp
B(h)

is invariant under the action of the Mapping Class Group and under rescaling of the
measure of A\, hence if restricted to

Teiche, (S) x (ML(S) \ {0}) = {h € Teich(S) | injrad(h) > €p} x (ML(S) \ {0})
it admits a minimum, since Teich,,(S) projects to a compact set in the moduli space
M(S) = Teich(S)/MCG(S)

and the quotient (ML(S) \ {0})/R* is compact.

(hyA) —

This observation motivates the fact that main difficulty will thus arise when dealing
with hyperbolic metrics with small injectivity radius. Let us recall that it is possible
to choose a (small) constant €p, such that on any hyperbolic surface (S, h) of genus
g, there are at most 3g — 3 simple closed geodesics of length at most 5. We will fix
such ¢ later on. Notice that any ey < 2arcsinh(1) works. By the Collar Lemma, for
every simple closed geodesic « of length €, the tube

Ta,d = {fL‘ € (57 h) | dh(xva) < d} ) (421)
is an embedded cylinder for any d < d(e), where
1

d(E) := arcsinh (Slnh(g)> . (422)

Moreover, if ai, ..., ags—3 are pairwise disjoint, then 75, g(c;), - - + Tvsg_s,d(esg—s3) ATE

pairwise disjoint. Hence we obtain a thin-thick decomposition of any hyperbolic
surface (S, h), that is, we have

S = S;Lhin U S;LhiCk

where

S}tlhln = UTaiyd(ei) I (423)

where the union is over all simple closed geodesics «; of length ¢; < €, and

Sk = g\ gphm (4.24)

It then turns out that the injectivity radius at every point = € Sﬁhid‘ is at least €g/2.
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4.7.1 Riera’s formula

We are going to prove the inequality of Equation (4.16]) for a simple closed curve ¢
on (S,h). If we denote by 7 the h-geodesic representative of ¢, we will prove the
inequality first in the case

lengthy, (v N Sltlhin) < length, (v N S}tlhick) ’

and then in the opposite case, provided ¢j is small enough. In both cases, a key tool
will be the following theorem. This was proved by Riera in [Rie05] in a more general
setting; the statement below is specialized to the case of closed surfaces.

Theorem 4.7.2. Given a closed hyperbolic surface (S,h), let us fix a metric uni-
versal cover m : H? — (S, h), which thus identifies 1 (S) to a Fuchsian subgroup of
Isom(H?). Given a simple closed curve c in S, let C € 71(S) be an element freely
homotopic to c. Then

2 2 u(D) + 1
2 _Z z —
|lgradl.(h)||syp = 7Tﬁc(h) + - g (u(D)log (u(D) — 1) 2) , (4.25)
De(C)\r1(S)AC)
DAlid]

where for D € (C)\71(S)/(C) (not in the double coset of the identity) the function
u s defined as
u(D) = cosh(d(Axis(C), Axis(DCD™1)) . (4.26)

First of all, observe that the function v in Equation (4.26)) is well-defined, since if
D' = ADB for A, B € (C), then

Axis(D'CD'™") = Axis(ADCD A1) . (4.27)

Thus
d(Axis(C), Axis(DC D) = d(Axis(C), Axis(D'CD' ") |
since A stabilizes the axis of C.

Another equivalent way to express the summation in Equation (4.25)) is the following.
Let 7 be the h-geodesic representative of ¢ in S. Let G(H?) be the set of (unoriented)
geodesics of H? and let

A={(1,%) € §(H") x §(H") : 7(}1) = 7(%2) =7}/m(S) . (4.28)
where 71(S) acts diagonally on pairs (71, 72).
The set A is in bijection with (C)\71(5)/(C), by means of the function:

[D] — (Axis(C), Axis(DCD™1)) |
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which is well-defined since, if D’ = ADB for A, B € (C), then from Equation (4.27)),
(Axis(C), Axis(D'CD'™1)) = A - (Axis(C), Axis(DCD ™)) .

The map is easily seen to be surjective since for every pair of geodesics (51,72) pro-
jecting to 7, up to composing with an element in 71 (.S) one can find a representative
with 41 = Axis(C). Finally, it is injective since, supposing

(Axis(C), Axis(DCD ™)) = A - (Axis(C), Axis(D'CD'™Y)) |
this implies that A stabilizes Axis(C) (namely, A € (C)) and that
Axis(DCOD™!') = Axis(AD'CD'~'A™1) |

that is, D"'AD’ € Stab(Axis(C)) = (C) and therefore D = AD'B~! for some
B e (0).

Let us now observe that there is a well defined function
u:A—[1,+00)

such that u[y1,42] = coshd(71,72). Moreover the bijection between (C)\m1(S)/(C)
and A transforms w in u. In conclusion, the summation of Equation (4.25]) is equal
to:

laradtu (1) [yp = %éc(h) + % 3 <u(F) log (:‘g;i) _ 2) L (4.29)

FeA\A

where A € A denotes the class of (31,71).

4.7.2 Estimates in the thick part of the hyperbolic surface
Let us begin with the case in which length, (v N Sthi®) < lengthy, (v N SiRk). In this
case, the proof will use the following preliminary lemma:

Lemma 4.7.3. There exist ¢g > 0 small enough and ng > 0 large enough such that,
for every choice of:

e A hyperbolic metric h on a closed orientable surface S;
o A number 6 > 0;

o An embedded h-geodesic arc o of length at most gy, such that the §-neighborhood
of a is embedded;

o A simple closed curve ¢, whose h-geodesic representative v intersects a. at least
ng times;
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one has:

llgradte(h)|[fyp > CO(#(an7))?

for some constant C = C(ng) (independent of the genus of S).

Proof. Recall that « denotes the h-geodesic representative of ¢, let 7 : H? — (S, h)
be a fixed metric universal cover, and let us fix a lift & of the geodesic arc «, so that
7| is a homeomorphism onto a. We suppose that #(aN~y) > ng > 0, and we will
determine ng later on. Let us denote

Aa={[F1, %l € A:nNna#0,72Na#0}. (4.30)
Denote moreover F = N« and define a function
p: ExFE— Ag

such that ¢(p, q) = [3p, ¥4, Where 7, is the unique geodesic of H? such that 7 (5,) = ¢
and m(y,Na&) = p. Clearly ¢ is surjective and maps the diagonal in £ x E to AgNA.
We claim that, for [§,7'] € A:

sinh d[7,7'] < 2(sinh €g)exp (—g (#7354 - 1)> . (4.31)

~/

To prove the claim, suppose the cardinality of ¢~ ![§,7'] is n + 1. Therefore there
are n + 1 pairs (p;,q;) such that [3,,,7,] are all equivalent to (¥,4’) in A. This
means that there exists g; € m1(S) such that g;(3p,,94) = (3,7). It follows that,
for every ¢ # j, the arcs g;(&) and g;(&) are distinct. Indeed, if g;(&) = g;(&), then
gi 0 gj_1 would send & to itself and move at least one point of &, which is impossible
since « is embedded. Now, the arcs g;(&) intersect 4 in the n + 1 different points
9i(pi), which are at distance at least ¢ from one another since the d-neighborhood of
a is embedded. Let r and 7' be the feet of the common perpendicular of 4 and 4.
Then, at least one of the points g;(p;), is at distance at least nd/2 from r. Denote by
Po = i, (pi,) be such point, and let gy be the projection of py to 4’. The quadrilateral
with vertices in pg,r,7’, qo is a Lambert quadrilateral, that is, it has right angles at
r, 7', qo. See Figure Hence the following formula holds:

sinh d(po, ¥") = cosh d(po, r) sinh d(7,7') .

This concludes the claim, since d(pg,3’) < length(a) < € and d(pg,r) > nd/2, and
thus
sinh €

inh 5 A <
sinhd(3,7) < cosh(nd/2) ’

from which the claim follows.
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Vi

Figure 4.3: The Lambert quadrilateral in the proof of Lemma [£.7.3]

Now we can conclude the proof. By Theorem [£.7.2] we have:

2 o coshd[y1,%] +1
dle|livp > = hd 1 : -2
lgradéeliyp = - Z (COS (71, 2] log <coshd[ﬁ1,7y2] 1

[Y1.92]€Aa\A
2 hd[71, 2] + 1) 2
s (o)
m (1 AaleAs\ A sinh d[y1, Y]
2
>= > (2log2 - 2logsinhd[y1, V2] — 2)
T
[Y1,92]€A\A
>4 Z —log sinh e +§(#( 13,41 = 1) +log2 — 1
=T 0 2 2 VY
(1, 92]€A&\A
where in the last line we have used Equation (4.31]). Therefore, if we suppose that
€o is small enough so that C(e) := —log(sinh(ep)) — 1 + log 2>0, we get
26 1. -
lgradtelffye > — > (#(e7'F:AD) + Crleo) #(an) = 1)
[Y1,72]€A&\A
26 _
2 — #(EXE\y HA) + Ci(eo)(#(any) — 1)
26

= —(#(any))F#(@Ny) = 1) + Ci(e)(#any) = 1)

= Ztann? + (Gl - 2 ) #ans) - Cilen)

s
20
> oy -1,
provided #(aM~y) > 1. The last quantity is certainly larger than C -6 - (#(an~))?,
if #(aN~y) > ng, for some suitable choices of ng and C = C(ny). O
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We will now replace the constant €y which gives the thin-thick decomposition (see
Equations (4.23]) and (4.24])) by a smaller constant (if necessary), so that € is smaller
than the constant given by Lemma [£.7-3]

Proposition 4.7.4. Let ¢y < arcsinh(exp(log(2) — 1)) a constant inducing a thin-
thick decomposition of S. There exists a constant a = a(eg) (independent of the genus
of S) such that for every hyperbolic metric h on S and every simple closed curve c,
if the h-geodesic representative v of ¢ satisfies:

lengthh(,y N S}tlhin) < lengthh(y N S}tlhick) ,

then
a

IX(5)]

Proof. By an adaptation of the argument of [BSI2, Lemma A.1l|, there exists a
constant [y (independent on h) such that the subset

o . Bo }

7-{w€7|#mﬁmﬂﬁWﬂﬁkﬁﬁﬁdM Cy
has h-lenght at most £.(h)/2, where a’.(ey/4) is the h-geodesic arc orthogonal to
starting at zp, on the right with respect to a chosen orientation of v, of length ¢y/4.
The constant Sy only depends on the initial choice of €.
Now, in our hypothesis, since lengthy, (v N StiM) + lengthy, (v N SHHek) = ¢.(h), the
length of v N Sk is at least £.(h)/2. Therefore there exists some point = € (7
) N Sihick Since x is in the €o-thick part of (S, h), the arc o’ (€p/4) is embedded.
Moreover, the (ey/4)-neighborhood of ol (ey/4) is embedded, for otherwise there
would be a closed loop starting from x of length less than €y, which contradicts x
being in the €p-thick part. Recall that, since by construction z € (y\ 7) N Sihick,
#(al(eo/4)N7y) > (Bole(h))/|x(S)|. Hence, from Lemmal[d.7.3] there exist constants
no > 0 and K = K (ep,ng) > 0 such that

|gradlc(h)|wp > le(h) .

lradec(h) e > K (ol (/) 1) > Tk

whenever #(al(eg/4) Ny) > ng, which occurs under the hypothesis that

te(h) | (4.32)

lo(h) > 221y(S)] . (4.33)
Bo

On the other hand, we have the inequality ||gradl.(h)|wp > +/(2/7)l:(h) from
Equation (4.25)). Observe that if

MMS%MW7 (4.34)
then

(2/m)le(h) > 26 1, (h) .

o [x(S)[1/2
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Hence, putting together the cases (4.33) and (4.34)), there exists a constant a > 0
such that a

—ranle(h)

IX(9)]°

thus concluding the proof. d

lgradfe(h)|lwp >

4.7.3 Estimates in the thin part of the hyperbolic surface

We are left to consider the case when
lengthy, (7 N S > Jengthy, (v N SEhick) |

where « is the h-geodesic representative of c¢. For this purpose, suppose = enters into
a tube T}, 4(c), where « is a simple closed geodesic of length () = € < €.

Let us fix a metric universal cover 7 : H? — (S,h) and a lift & of a, that is, an
entire geodesic in H?. Let A € 71(S) be a primitive element which corresponds to
a hyperbolic isometry with axis & We will denote (in analogy with the notation of

(4.30), but with the difference that here & covers «):

Az ={(. %] :na #0752 na# 0},
which is a subset of the set of equivalence classes defined in Equation (4.28]).

Lemma 4.7.5. Let [’3/1,:)/2], [’%, ﬁé] € Ag. If [:)/1, ’72] = [ﬁ/i,%] and d(’?l Na, Y2 ﬂ&) >
lengthy, (), then there exists k € Z such that 7, = A¥(%1) and 74 = A¥(32).

Proof. Suppose that the equivalence classes of (%1,7%2) and (3],7%) coincide, and
there does not exist any k € Z such that 7, = A¥(§;) and 74 = A¥(%,). We will
then prove that d(71 N &, 52 N @) < lengthy, («). We first consider the case in which
d(71 N &, 2 N &) = lengthy, (a), which occurs if 7o = A(91) (or 42 = A~1(%1), which
will be completely analogous). This means that there exists D € 71(S) such that
D(¥}) = #; for i = 1,2, but D is not in the stabilizer of & Hence D(&) is a geodesic
of H?, different from &, which intersects both 4; and As.

We can also assume that D is such that 0 < d(1Na&,31ND(&)) < d(F2Né, 2N D(&)).
By this assumption, and the action by isometry of (A), it follows that A o D(&)
intersects 72 in a point which is closer to & than D(a) N 42. On the other hand,
A o D(&) either intersects 4 in a point which is further from & than D(&) N4 (by
the choice of D), or is disjoint from ;. In both cases, it follows that A o D(&) must
intersect D(&), which gives a contradiction since « is a simple closed geodesic. See
Figure

In the case d(71Né&, 2Né&) > lengthy, («r), we get a contradiction a fortiori, since every
translate D (&) which intersects 41 and 7o, must also intersect A(%;) (or A71(1)).
This gives a contradiction as in the previous paragraph. ]
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A

Figure 4.4: The contradiction in the proof of Lemma [£.7.5]

Let us fix a connected fundamental domain &g for the action of (A) on &, and let us
denote 41, . .., ¥, the lifts of v which intersect &, ordered according to an orientation
of &g, where n = (v, ¢). It follows from Lemma and Equation (4.29)) that

Jaradte(h) gp > 2+ Y Z( o 45w (GG ) —2)

1<z<]<n k=1

The next step thus consists of providing a uniform estimate on the multiple summa-
tion in the above inequality (4.35]).

Lemma 4.7.6. Let o be a simple closed geodesic on (S, h) of length € < €y and let
i and 7; be lifts of v which intersect the fundamental domain cg in &. Then there
exists a universal constant K > 0 such that

i(u(%,fl (7 ))log< gi’“évﬁ; f i) - 2) > Kmax{i,i]log(sin@ﬂz} :
(4.36)

where 0 is the angle formed by 4; and &, and
u(Fi, A*(3;)) = coshd(%;, A*(%5)) -
Proof. By a simple application of hyperbolic trigonometry, we have (see Figure :

sinh d(%;, A*(7;)) < sinhd(5;, A*(3;) N &)
= (sin ) sinh d(%; N &, A*(3;) N &)
< (sin @) sinh((k + 1)e) .
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Figure 4.5: The inequality sinh d(%;, A*(%;)) < (sin @) sinh((k + 1)¢).

Let us denote

F(z) = cosh(z) log (COSh(””) + 1) _9,

cosh(z) — 1
which is a positive, monotone decreasing function F' : (0,4+00) — (0,400). Hence
we have
+o00 ~ ki~ +o0 400
. - u(%, A"(%;)) +1 - ak(x
u(%:, A¥ (%)) log < - - —2) =) F(d(%,A%(%)) = ) _F(ge(ke))
2 < I8 4, AFGR) — 1 2 =2

k=1

where
¢o(y) := arcsinh(sin @ sinh(y)) .

To show that the sum in Equation (4.36]) is larger than K /e, we observe that ¢g(y) <
y and write:

1 —+00 —+00

400 +00
S F(6p(ke)) > / Foo(ee)de =~ [ Floody>> [ Flydy .
k=2

€ J2e € 2€q

This concludes the claim, by declaring

+oo
K, = / F(y)dy > 0.
2

€0
In light of the inequality we have just proved, to conclude the proof it suffices to
show that there exists 6y > 0 such that the sum in Equation is larger than
(K2/¢€)|log(sin8)|, for all 6 < 6y for some constant Ko > 0.
For this purpose, let us start again from

+o0

+0o0 400
> Ptk 2 [ Flontade 2 [ FGuw)iy

€0
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and observe that, by a direct analysis, there exists a constant C' > 0 such that
F(z) > C|log(sinh z)|

for x € (0,arcsinh(1)). Since ¢g(y) € (0, arcsinh(1)) for y € (0, arcsinh(1/sinf)), we
can continue the inequality by:

+oo
> Floahe) = < [
k=2 2

C arcsinh( ;) arcsinh(ﬁ)
> — / | log(sin 0)|dy — / log(sinh y)dy
€ 2€q 2¢q

C | log(sin 6)| arcsinh(ﬁ)
“(/ log(sin®)|dy — [ ydy ') |
€ 260 1

where we have used that log(z) < arcsinh(z), that log(sinhy) < y, and we put

arcsinh( ﬁ

)
| log(sin 6 sinh y)|dy

€0

v

1
C’ ::/2 | log(sinh y)|dy

€0

Now, if we fix some small § > 0, we have

| log(sin 6)|
/ |log(sin 0)|dy = (| log(sin )| — 2€)|log(sin A)| > (1 — )| log(sin §)|*
2

€0

if 0 is smaller than some 6y = 0y(€ep). On the other hand, since

lm 08@)
a—+o0 arcsinh(z)

one has |log(sin#)| > (1 — §)arcsinh(1/sin ), for 6 < Oy (up to replacing again 6)
and therefore

arcsinh(ﬁ) w 1 )
dy < dy = | log(sin6)|? .
/1 Yy y_/o ydy 2(1_5)2! og(sin )]

In conclusion, we have

+oo
> ok > < (((1-0) = gz ) Hortsin) = ') = 22 loglsino)P
k=2

for some constant Ky, provided 8 < 6y and e < ¢y. This concludes the proof. O

We are now ready to conclude the proof of the estimate of the Weil-Petersson gradient
of the length function, in the case in which most of the length of the geodesic v lies
in the thin part of (S, h):
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Proposition 4.7.7. There exists a constant a, depending only on the choice of a
sufficiently small €y inducing a thin-thick decomposition of S, such that for every
hyperbolic metric h on S and every simple closed curve c, if the h-geodesic represen-
tative 7y satisfies:

lengthy, (7 N SEMK) < lengthy, (y N SERn) |

then
a

[X(9)]

Proof. Choosing ¢y small enough, we have assured that there are at most 3g — 3
simple closed geodesics a1, ..., a3q—3 on (S, h) of length at most €y. Hence, the thin
part of (S, h) is composed by at most 3g — 3 tubes Tj,, 4(,), Where ¢; is the length of
«; and the tubes were defined in Equation (4.21)). Let o = vz, be one of such simple
closed geodesics, of length €, such that

|gradfe(h)|lwp > l.(h) .

lengthy, (v N SEhiny >

1
lengthy, (v N Ty q(e)) 2 3 le(h) -

g—3 6g — 6

We will denote T' = T, () for convenience. Observe that, for every connected
component n of ¥y N T, such that the angle formed by n and « is 8, we have

. lengthy, ()  sinhd(e) 1
smh( 2 ~ sinf  sinfsinh(§) (437)

by using the definition of d(e) from .

Let us choose the connected component n whose length is minimal — which corre-
sponds to choosing the connected component whose angle 6 of intersection with « is
maximal. Then it is easy to see that all the other connected components have length
less than lengthy, (1) + €, since they lift to geodesic segments in H? connecting two
points in the two boundary components of T'. See Figure

Hence we have

lengthy, (v N T}, q()) < t(a, c)(lengthy,(n) +€) . (4.38)

On the other hand, from Equation (4.37)), we have

2 sin f sinh(5)

and therefore

lengthy, (n) + e < C ‘log (siHGSinh (%))‘ +ep < C'(|loge| + |log(sinf)]) (4.39)

for some suitable constants C,C’, if € is at most some small constant .
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Figure 4.6: In the universal cover, the tube T is lifted to the set of points at bounded
distance from &. Using the fact that all components of v N7 are disjoint, one sees
that the length of every component of yNT is at most length, () + €, where 7 is the
shortest component.

Now, using Equation (4.35) and Lemma we obtain
K
|gradl.(h)|jyp > — max {1,]log(sin0)[*} ¢(c, c)?
€

K
=5 (14 | log(sin 0)|*)¢(av, ¢)?
€
> K'u(a,¢)*(|log e|* + | log(sin6)|?)

/

K
2 5t ¢)? (|loge| + |log(sin )])*

Therefore, comparing with (4.38) and (4.39)), we have obtained

K" 2
L A e e R

which concludes the proof. O

4.7.4 Conclusion of the proof and an application
The proof of Theorem [4.6.3] is now straightforward:

Proof of Theorem[{.6.3. By Propositions and we have (for a constant a

which replaces the constants involved there)

a icl in
|gradé.(h)|lwp > ) max{lengthy, (y N SN length,, (v N SE)Y
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and therefore
|gradle(h)|wp >

@) <

as claimed. ]

We conclude by observing that, using Theorem [£.6.3] one can give another proof
of Theorem [4.5.2] For this purpose, first observe that, by the density of simple
closed curves in the space of measured geodesic laminations, Thurston’s asymmetric
distance dry(h, h') = inf s log L(f) can also be computed by the following character-
ization of L(f) (compare with Equation (4.13)):

L(f)= sup bull?)

. 4.40
pene(s) fu(h) (4:40)

Now, given two metrics h and h' = El“ (h), for some measured geodesic lamination
A, by convexity of the length function along earthquake paths, we have:

d

() < 00 +

) 0, (BNR)) = £,(h) + (gradl,,, B} (h))we (4.41)
t=

where El)‘ defines a vector field on Teich(.S). Since it is known by a result of Wolpert
([Wol83|) that the symplectic gradient of the length function ¢y is the infinitesimal
earthquake along A, that is:

d

7| @)= wwp (E7 (h),#(t)) = (JE} (h),#(t))we ,

t=0

where J is the almost-complex structure of Teich(S), from Equation (4.41) we get:
Eu(h') > L, (h) + (gradl,(h), Jgradly(h))wp .

In particular, if we choose p as the measured geodesic lamination such that
gradl,,(h) = Jgradly(h),

Cu(R) [lgradt(h)llwelleradt,(W)llwe | o’

Cu(h) Cu(h) - xOP

by Theorem [£.6.3] Using Theorem and Equation (4.40)), this concludes the
alternative proof of the following:

Theorem 4.7.8. Let My, jy be a GHMC AdS3 manifold. Then

>1+ ex(h)

2 2
VOl(e(Mh’h/)) S %|X(S)| + ‘Xif?)‘ (edTh(h,h/) . 1) ‘
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Chapter 5

Entropy degeneration of GHMC
anti-de Sitter 3-manifolds

Using the parameterisation of the deformation space of GHMC anti-de Sitter struc-
tures on S X R by the cotangent bundle of the Teichmiiller space of S, we study how
some geometric quantities, such as the Lorentzian Hausdorff dimension of the limit
set, the width of the convex core and the Holder exponent, degenerate along rays of
quadratic differentials.

5.1 A parameterisation using maximal surfaces

In this chapter we use another parameterisation of the deformation space of GHMC
anti-de Sitter structures on S x R, introduced by Krasnov and Schlenker (JKS07]).
We recall here the main steps of their construction.

Let M be a GHMC anti-de Sitter 3-manifold. It is well-known ([BBZ07])
that M contains a unique embedded maximal surface ¥, i.e. with vanishing mean
curvature. By the Fundamental Theorem of surfaces embedded in anti-de Sitter
space, ¥ is uniquely determined by its induced metric I and its shape operator
B :TY — T, which are related to each other by the Gauss-Codazzi equations:

dV'B =0

K;=—1—det(B),
where we have denoted with K the curvature of the metric I. The first equation
implies that the second fundamental form I = I(B-,-) is the real part of a quadratic

differential ¢, which is holomorphic for the complex structure compatible with the
metric, in the following sense. For every couple of vector fields X and Y on X, we

101
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have
Re(q)(X,Y)=I1(BX,Y) .

In a local conformal coordinate z, we can write ¢ = f(z)dz?, for some holomorphic
function f, and I = e?%|dz|>. Thus, Re(q) is the bilinear form that in the frame
{0y, 0y} is represented by

_((Relf) ()
wew ="l Zxeh)

and the shape operator B can be recovered as B = I !'Re(q). Therefore, we can
define a map

U : GH(S) — T*Teich(S)
M — (h,q)

associating to a GHMC anti-de Sitter structure the unique hyperbolic metric in
the conformal class of I and the quadratic differential ¢, constructed from the
embedding data of the maximal surface 3 embedded in M.

In order to prove that ¥ is a homeomorphism, Krasnov and Schlenker found
an explicit inverse. They showed that, given a hyperbolic metric h and a quadratic
differential ¢ that is holomorphic for the complex structure compatible with A,
it is always possible to find a smooth map u : S — R such that I = e?*h and
B = I"'Re(q) are the induced metric and the shape operator of a maximal surface
embedded in a GHMC anti-de Sitter manifold. This is accomplished by noticing
that the Codazzi equation for B is trivially satisfied since ¢ is holomorphic, and
thus it is sufficient to find u so that the Gauss equation holds. Now,

det(B) = det(e ?*h 1 Re(q)) = e M det(h'Re(q)) = —e **||q|7

and
K= 6_2U(Kh — Ahu),

hence the Gauss equation translates into the quasi-linear PDE
Apu = e* — e 2 q||2 + K}, (5.1)

Proposition 5.1.1 (Lemma 3.6 [KSO0T|). There exists a unique smooth solution
u: S — R to Equation .

In Section [5.3] we will give precise estimates for the solution u in terms of the
quadratic differential ¢, and study its asymptotic along a ray q = tqg for a fixed
non-trivial holomorphic quadratic differential ¢q.
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5.1.1 Relation with Mess’ parameterisation

The theory of harmonic maps between hyperbolic surfaces provides a bridge between
the two parameterisations of GH(.S).

We recall that a diffeomorphism m : (S, h;) — (S, hy) is minimal Lagrangian if it is
area-preserving and its graph is a minimal surface in (S x S, h @ h'). These can also
be characterised by the fact that can be factorised as m = f' o f~!, where

Fi(S.h) = (k) and  f':(S,h) — (S, hy)

are harmonic with opposite Hopf differentials. We call h the center of the minimal
Lagrangian map.

Proposition 5.1.2 (|[BS10]). Let h, and h; be hyperbolic metrics on S with holonomy
pr and p;. The center of the minimal Lagrangian map m : (S, h;) — (S, h,) is
the conformal class of the induced metric on the mazimal surface ¥ contained in
the GHMC' anti-de Sitter manifold M with holonomy p = (p, pr). Moreover, the
second fundamental form of ¥ is (up to a constant multiple) the real part of the Hopf
differential of the harmonic map factorising m.

5.2 Holder exponent

In this section we introduce the Holder exponent of a GHMC anti-de Sitter manifold
and study its asymptotic behaviour along a ray of quadratic differentials.

Let M be a GHMC anti-de Sitter manifold. Its holonomy representation
p:m — PSL(2,R) x PSL(2,R) gives rise, by projecting into each factor, to two
discrete and faithful representations p; and p,. Let ¢ : RP* — RP!' be the unique
homeomorphism such that

pr(v)o¢=¢op(y) forevery v € mi(S).
It is well-known (|Thu98]) that ¢ is quasi-symmetric, and, in particular, has Holder
regularity.

Definition 5.2.1. The Holder exponent a(M) of M is the minimum between the
Hoélder exponents of ¢ and ¢p~'.

Remark 5.2.2. This definition takes into account that ¢ and ¢~ have in general
different Holder exponents. On the other hand, the manifolds with holonomies (py, py)
and (py, p1) are isometric, because the map

PSL(2,R) — PSL(2,R)
A AL
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induces an orientation-reversing isometry of AdSs which swaps the left and right
holonomies in Mess’ parameterisation. Hence, we expect a geometric interesting
quantity to be invariant under this transformation.

An explicit formula for the Holder exponent of ¢ is well-known:

Theorem 5.2.3 (Chapter 7 Proposition 14 [GH90|, Theorem 6.5 [BS11]). Let p, and
p1 be Fuchsian representations. The Hélder exponent of the unique homeomorphism
¢ : RP! — RP! such that

p(y)od=dop(y) for every v € m(S)

1S

. ()
0= s ut

where £,.(y) and £;(7y) denote the lengths of the geodesic representatives of v with
respect to the hyperbolic metrics with holonomy p, and p;, respectively.

Therefore, the Holder exponent of a GHMC anti-de Sitter manifold with holonomy
p = (p1, pr) is given by

(L) 40
olM) = inf {mw’erm}‘ (5:2)

Remark 5.2.4. Since the formula for a(M) is homogeneous and weighted simple
closed curves are dense in the space of measured foliations, the above formula is

equivalent to
: [ (1) fz(u)}
a(M)= inf min , .
(M) PEML(S) {Ez(u) (1)

We easily deduce a rigity property of the Holder exponent:

Proposition 5.2.5. The Holder exponent of a GHMC anti-de Sitter manifold is
equal to 1 if and only if M is Fuchsian

Proof. 1f M is Fuchsian ¢, () = £;(~y) for every v € m1(S), hence the Holder exponent
is equal to 1. On the other hand, if M is not Fuchsian, by a result of Thurston
(J[Thu9g]), there exists a curve v € m1(S) such that ¢;(y) > £,(vy), hence a(M) <
1. O

Before studying the asymptotics of the Holder exponent along rays of quadratic
differentials, we want to give a new interpretation of the Holder exponent that is
more related to anti-de Sitter geometry.

Let p = (pr, pi1) be the holonomy representation of a GHMC anti-de Sitter structure.
Let us suppose first that p; # p,. Since p; and p, are the holonomies of hyperbolic
structures on S, for every v € m1(S), the elements p;(y) and p,(v) are hyperbolic
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isometries of the hyperbolic plane. Therefore, there exist A, B € PSL(2,R) such
that

3 eli()/2 0 B ebr(7)/2 0
Api(y)A™! —( 0 621(7)/2) Bp(7)B 1‘( 0 efr(v)/2) :

We thus notice that the isometry of AdSs given by p(v) = (pi(7), pr(7)) leaves two
space-like geodesics invariant

wi e 0 -1 _ 0 €\ 1
o'ty =A4A (O e_t> B and o(t)=A (e_t 0> B~ .

An easy computation shows that the isometry p(7y) acts on o* by translation with
translation length
_ a() = & (y)l

BT () 5
and acts by translation on ¢ with translation length

b)) +4(0)

B(vy) = 5

We claim that only the geodesic ¢ is contained in the convex hull of the limit set
A,. Recall that the limit set can be constructed as the graph of the homeomorphism
¢ : RP! — RP! such that

pr(y)op=dop(y) forevery yem(S).

In particular, ¢ sends the attactive (resp. repulsive) fixed point of p;(y) into the
attractive (resp. repulsive) fixed point of p, (7). Therefore, we must have

#(A[1:0])=DB[1:0] and ¢(A[0:1])=DB[0:1].
Now, the geodesic oo has ending points
o(—o00) = (A[0: 1], B[0 : 1]) € RP! x RP!

and
o(4+00) = (A[1: 0], B[1:0]) € RP! x RP' |

whereas the geodesic o1 has ending points

0*(—00) = (A[0: 1], B[1:0]) € RP! x RP*
and

o*(400) = (A[1: 0], B[0: 1]) € RP! x RP!

hence only the ending points on o lie on the limit curve A,. As a consequnce, o is
contained in the convex hull of A, and its projection is a closed space-like geodesic
in the convex core of M. On the other hand, the geodesic o* does not even belong to



106 CHAPTER 5. ENTROPY DEGENERATION

the domain of dependence of A,. In fact, it it easy to check that the dual space-like
plane of any point of o* contains the geodesic o, thus its boundary at infinity is not
disjoint from the limit curve A,.

In the special case, when p, = p;, the point [Id] € AdS; is fixed and its
dual space-like plane Py is left invariant. By definition of the dual plane (see Section

L2,

Py ={A € PSL(2,R) | trace(4) = 0}

is the dual of [Id] € AdSs and it is easy to check that it is a copy of the hyper-
bolic plane. With this identification, p(vy) acts on Py as the hyperbolic isometry
pr(7) = pi(7y) does on H2.

We thus obtain another way of computing the Holder exponent of a GHMC
anti-de Sitter manifold:

Proposition 5.2.6. Let M be a GHMC anti-de Sitter manifold with holonomy p. Let
B(7y) and 5*(7) be the translation lengths of the isometries p(y) for every v € m1(S).
Then

(M o B —6"()

)= inf

vem () B(y) + B*(v)

Proof. This is a direct consequence of the explicit formulas for 3(vy) and *() and
Theorem [(.2.3 O

We can now describe the asymptotic behaviour of the Holder exponent:

Theorem 5.2.7. Let M; be the family of GHMC anti-de Sitter manifolds param-
eterised by the ray (h,tqy) € T*Teich(S) for a non-zero quadratic differential qq.
Then

lim a(M;)=0.

t——+o0

Proof. Let py = (pi¢, pr,t) be the holonomy representation of M;. Let h;; and h,.; be
the hyperbolic metrics on S with holonomy p;; and p,. ¢, respectively. By Proposition
we can suppose that the identity maps

id: (S,h) = (S, hiy)  id: (S, h) = (S, hry)
are harmonic with Hopf differentials tigy and —tiqg, respectively.
Associated to tigy are two measured foliations A\, and ); : in a natural conformal
coordinate z = x + iy outside the zeros of gy, we can express tiqy = dz2. The

foliations are then given by

A\ = (y = const,z*|dy|]) and )\, = (z = const, z*|dz|)
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Notice, in particular, that the support of the foliation is fixed for every ¢t > 0 and
only the measure changes, being it multiplied by ¢!/2. We can thus write

A =200 and A =12

where /\(j): are the measured foliations associated to igg. Moreover, multiplying a
quadratic differential by —1 interchanges the two foliations.
By Wolf’s compactification of Teichmiiller space (Section 4.2 [Wol89]), we know that

el,t(’y) _ +
t_g'_noo 2t1/2 - L(AO 7’7)

for every v € m1(S). By density, the same holds for every measured foliation on S.
Therefore, using Remark [5.2.4]

0< lim M) = lim inf min{fz,t(u) ér,t(u)}

t—+o0 t—+00 LEML(S) Cri(p) Lre(pe)
o GO GO0 2117
Tt £y (A])  toree 2612 44 (A])
A A)
TG

because every measured lamination has vanishing self-intersection and ¢(\y, )\(J)r) #£0
by construction. O

5.3 Entropy

In this section we study the asymptotic behaviour of the Lorentzian Hausdorff di-
mension of the limit curve A, associated to a GHMC anti-de Sitter manifold.

5.3.1 Lorentzian Hausdorff dimension

Let M be a GHMC anti-de Sitter manifold with holonomy representation p. In
Section [1.5| we saw that the limit set of the action of p(71(S)) is a simple closed
curve A, in the boundary at infinity of AdS3. Moreover, A, is the graph of a locally
Lipschitz function, thus its Hausdorff dimension is always 1. Recently, Glorieux
and Monclair defined a notion of Lorenztian Hausdorff dimension, that manages
to describe how far the representiation p is from being Fuchsian. This resembles
the usual definition of Hausdorff dimension, where instead of considering coverings
consisting of Euclidean balls, they used Lorentzian ones (J[GM16], Section 5.1]). They
also gave an equivalent definition in terms of entropy of a quasi-distance in AdSs.
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Definition 5.3.1. Let A, C 00AdS3 be the limit set of the holonomy of a GHMC
anti-de Sitter structure. The quasi-distance

dAdS : G(Ap) X G(Ap) — RZO

is defined as follows. Let x,y € C(A,) and let v, be the unique geodesic connecting
x andy. We put

length(vz,y) if Ya,y 5 space-like
0 otherwise

daas(z,y) == {

The function dgg4g is a quasi-distance in the following sense: it is symmetric, and
there exists a constant k, depending on the representation p such that

daas(z,2) < dags(x,y) + daqs(y, z) + k,
for every x,y,z € €(A,) (JGM16, Theorem 3.4]).

Definition 5.3.2. The entropy of the quasi-distance dqs is

. 1
E(daqs) = limsup — log(#{v € m1(S) | daas(p(v)xo,z0) < R}) ,
R—+00 R

where xo € C(A,) is a fized base point.

The link between the entropy of the pseudo-distance d 445 and the Lorentzian Haus-
dorff dimension is provided by the following result:

Theorem 5.3.3 (Thorem 1.1 [GMI6]). Let A, be the limit set of the holonomy
representation p of a GHMC anti-de Sitter structure. Then

LHdim(A,) = E(dags) -

In particular, E(daqs) does not depend on the choice of the based point xg.

5.3.2 Entropy of the maximal surface

Another natural quantity that can be associated to a GHMC anti-de Sitter structure
is the volume entropy of the Riemannian metric induced on the unique maximal
surface. We will use this in the next subsection to provide an upper-bound for the
Lorentzian Hausdorff dimension of the limit set.

Let g be a Riemannian metric or a flat metric with conical singularity on the
surface S. Let S be the universal cover of S. The volume entropy of g can be
defined as

1
E(g) = limsup — log(#{7y € m1(S) | dg(v - x0,20) < R}) € RT
R—+oc0 R
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where xg € S is an arbitrary base point.

We introduce the function E : T*Teich(S) — R that associates to a point
(h,q) € T*Teich(S) the volume entropy of the Riemannian metric I = e>“h, where
u is the solution to Equation . Namely, E(h,q) is the volume entropy of the
Riemannian metric induced on the unique maximal surface embedded in the GHMC
anti-de Sitter manifold corresponding to (h,q). By identifying T*Teich(S) with
GH(S) (see Section [.1), we will often denote this map as E(p), where p is the
holonomy representation of the corresponding GHMC anti-de Sitter structure.

Notice that, since in Equation only the A-norm of the quadratic differ-
ential ¢ appears, the function E is invariant under the natural S! action on
T*Teich(S) given by (h,q) + (h,e?q). In particular, a complete understanding
of this function is obtained by studing its behaviour along rays (h,tqg) for a fixed
unitary quadratic differential gg for ¢ > 0.

5.3.3 Estimates for the induced metric on the maximal surface

In this section we study the asymptotic behaviour of the induced metric I; on
the maximal surface ¥; along a ray tqy of quadratic differentials. We deduce also
estimates for the principal curvatures of 3;.

Let us start finding a lower bound for I;.
Proposition 5.3.4. Let u; be the solution to Equation for q =tqy. Then
1
wr > 3 Tos(tlaolln)
In particular, Iy > t|qo].

Proof. The main idea of the proof lies on the fact that 1 log(||tgo||?) is a solution to
Equation , outside the zeros of qy. To be precise, let s; : S — R be the function
such that

e*th = t|qo|

at every point. Then, outside the zeros of ¢, we have
1. = 1. 15 _
Apsy = Zh 19010g(||tqol?) = Zh 190[log(t*qodo) — log(h?)]
1
= _iAh log(h) = Kh

and
e**t —t%e” > qoll = tllqolln — tllqolln =0,
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hence s; is a solution of Equation outside the zeros of ¢y. We observe, moreover,
that at the zeros of qg, s; tends to —oo. Therefore, by the comparison principle
Ut > St.

Now, the strong maximum principle (|Jos07, Thereom 2.3.1]) implies that on any
domain where s; is continuous up to the boundary, we have either u; > s; or u; = s;.
Thus if u(p) = s¢(p) for some p € S (and clearly p cannot be a zero for gg in this
case), then u; and s; must agree in the complement of the zeros of g, but this is not
possible, since s; diverges to —oo near the zeros, whereas wu; is smooth everywhere
on S.

In particular, we deduce that I; = e?“th > e?th = t|q|. O

Corollary 5.3.5. Let A\ be the positive principal curvature of the maximal surface
X, then Ay < 1.

Proof. Recall that the shape operator of ¥; can be written as
By = I;7' 11 = e 2" h™'Re(tqo) .

Therefore, A7 = —det(B;) = e~ 14¢2||qo||? < 1, by the previous proposition. O

In order to find an upper bound for I;, we introduce a new metric on the surface S.
Let U be a neighbourhood of the zeros of gqg. We consider a smooth metric g on S
in the conformal class of k such that g = |go| in the complement of U and [[go|Z < 1
everywhere on S. This is possible because Hq0||§ = 1on S\ U and it vanishes at
the zeros of ¢y. Let w; be the logarithm of the density of I; with respect to g, i.e
wy : S — R satisfies
Mg =1, .

The function wy is the solution of Equation , where the background metric on
S is now g. We can give an upper-bound to the induced metric I; by estimating the
function wy.

Proposition 5.3.6. Let K be the minimum of the curvature of g and let Sy be the
positive root of the polynomial r(x) = 2% + Kx — t2. Then e?"t < S;.

Proof. By compactness of S, the function w; has maximum at some point p € S. By
the maximum principle, we have

0> Agw(p) = e?wnp) _ t2€_2wt(p)HQO(p)”3 + Ky(p)

= 6_2wt(p)(e4wt(p) + €2wt(p)Kg(p) _ tQHQO(p)Hg)
> 72w p) (Awep) 4 foe?wi(p) _ 42y = = 2wip)y (20 (P))

The biggest possible value in which this inequality is true is for e?*:(?) = §,. Since
p is a point of maximum of w; we deduce that et < S; everywhere on S. O
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Corollary 5.3.7. Along a ray tqg, the induced metric Iy on the mazimal surface
satisfies
I = t|qol(1 + o(1)) fort — 400

outside the zeros of qq.

Proof. Combining Proposition [5.3.4] and Proposition [5.3.6] we have
tlgol < I < Sig .

Now, we notice that % is the biggest positive root of the polynomial 7(z) = 22 +

%x — 1, hence

S,
?tﬁl when t — 400 .

Moreover, outside the zeros of qo, by definition g = |go|, thus
Iy S t—+
0] < = < —laol = laol
and the proof is complete. ]

We can actually be more precise about the way the induced metrics % converge to
the flat metric |qo|.

Proposition 5.3.8. Qutside the zeros of qo,

1
?t — |qo| when t— +oo

monotonically from above.

Proof. Recall that we can write I; = e2“th, where uy is the solution of Equation (5.1)
for ¢ = tqo. By Proposition we know that

1
w > 5 log(tlaoln)

It is thus sufficient to show that ¢; = u; — 3 log(t[|qo|[») > 0 is monotone decreasing
in ¢t. Outside the zeros of qg, the function ¢; satisfies the differential equation

1 _
Anpr = Ape = 5 A log(tlaolln) = €2 — ¢ aol[Fe >

= tllqolln(e*t qoll, " — tllaollne” ")

= tl|golln(e*** — e7%*) = 2t||qo||n sinh(2¢) -
Taking the derivative at t = ¢, we obtain

Appry = 2[lqolln sinh(2e4,) + 4tolqolln cosh(2¢1, )ty - (5.3)
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We would like to apply the maximum principle to Equation , but up to now
the function ¢y is defined only on the complement of the zeros of gy, and may be
unbounded. However, since e?“te=2%t = t||qo||n, taking the derivative in t = ty we
deduce that

2(|qollnto(tity — ¢1o) = llqolln

hence, outside the zeros of ¢y, we have

1

Sbtozuto_%a

which implies that ¢y, extends to a smooth function at the zeros of gy because 1y,
does and, moreover, they share the same points of maximum and minimum.

In particular, we can show that ¢, does not assume maximum at a point p which
is a zero of gp. Otherwise, this would be also a point of maximum for u;, and we

would have (cfr. Proposition [5.3.13)

0> Apigy (p) = 2620 Py (p) — 2to]|qo(p)[|Fe =210 P) + 26211y, (e 2400 P |go (p) |13
— 92Ut (p)uto <p)

which would imply that 4, < 0. On the other hand, we will prove in Proposition
that 4, > 0, everywhere on S, thus u;, would vanish identically. But then

—2ut0

0= Ahuto = —2t0H(]0H%L€

would give a contradiction.
Therefore, ¢y, takes maximum outside the zeros of gy, and we can apply the maxi-
mum principle to Equation (5.3). At a point p of maximum for ¢, we have

0 > Appiy(p) = 2llqo(p)n sinh(2i1, (p)) + 4tollgo(p) ln cosh(2¢, (p)) P, (p)
> 4to|lgo(p) [|r cosh(2¢4, (p))Pte (P) > 4tollqo(p)llnre (P)

which implies that ¢, < 0 everywhere on S, and ¢; is monotone decreasing in ¢ as

desired. O

Corollary 5.3.9. Let A\ be the positive principal curvature of the maximal surface
Y¢. Then Ay — 1 monotonically outside the zeros of qo, when t goes to +oo.

Proof. Recall that the shape operator of ¥; can be written as
By = I7' T = e h™'Re(tqo) -

Therefore, A} = — det(B;) = e *“#?||qo||? and this is monotonically increasing to 1
by the previous proposition. O
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5.3.4 Asymptotics of the Lorentzian Hausdorff dimension

We now compare the Lorenztian Hausdorff dimension of the limit set of a GHMC
anti-de Sitter manifold with the volume entropy of the unique maximal surface.

Lemma 5.3.10. Let p be the holonomy representation of a GHMC anti-de Sitter
manifold M with limit set A,. Then

LHdim(A,) < E(p) .

Proof. Let ¥ be the unique maximal surface embedded in M. We identify the uni-
versal cover of M with the domain of dependence D(A,) of the limit set. In this way,
Y is lifted to a minimal disc ¥ in AdS3; with asymptotic boundary A,, contained in
the convex hull €(A,). We fix a base point g € ¥. By definition,

B(p) = lim sup 1 log(#{y € m1(8) | di(p(n)r0,0) < RY) .
R—+00

where I is the induced metric on %, and by Theorem m

. . 1
LHdim(A,) = limsup — log(#{y € m1(S) | daas(p(y)xo,xz0) < R}).
R—+00 R

Therefore, it is sufficient to show that for every couple of points z,y € ¥, we have

dl(xay) < dAdS(':an) .

Since 3 is a Cauchy surface for M, the geodesic connecting x and y is space-like. We
can thus find a Lorentzian plane P C AdSs containing x and y. In an affine chart,
this is isometric to (R x (—m/2,7/2),dt> — cosh?(t)ds?), where t is the arc-length
parameter of the space-like geodesic between z and y. By intersecting P with ¥ we
obtain a curve v C ¥ with length

daas(z,y)
length(y) — / V1 = cosh(0)s/ (1)t < daas (. ) -
0

As a consequence, the distance between z and y in the induced metric of ¥ must be
smaller than daqs(z,y). d

Theorem 5.3.11. Let M, be the sequence of GHMC' anti-de Sitter manifolds param-
eterised by the ray (h,tqy) € T*Teich(S) for some non-zero holomorphic quadratic
differential qo. Let Ay be the limit sets of the corresponding holonomy representations.
Then

lim LHdim(A¢) =0

t—+00
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Proof. By Lemma [5.3.10] it is sufficient to show that the entropy of the maximal
surface tends to 0 when ¢ goes to +0o. Since the metrics I; = e*“th are bounded from
below by the flat metrics with conical singularities g; = t|qo| (Proposition , we
deduce that

E(pr) < E(gt) -
The proof is then completed by noticing that E(t|qo|) =t~ E(|qo|). O
In order to prove a rigidity result for the entropy of the maximal surface and the
Lorentzian Hausdorff dimension, we study the derivative of the entropy of the max-

imal surface along a ray. To this aim, we need the following useful formula for the
variation of the volume entropy along a path of smooth Riemannian metrics:

Theorem 5.3.12 ([KKWOI]). Let g; be a smooth path of negatively curved Rieman-
nian metrics on a closed manifold S. Then

d E(gto) d
£E(gt)\t:t0 =TT g agt(v,v)h:toduto

for a suitable measure py, defined on the unit tangent bundle T1S of S.
Proposition 5.3.13. The volume entropy of the mazximal surface of a GHMC' anti-
de Sitter manifold is strictly decreasing along a ray tqo for t > 0.

Proof. Along the ray tqo, Equation (5.1) can be re-written as

Apuy = e®™ — e_2utt2||qu;2l —1. (5.4)

Taking the derivative at tg we obtain
Apiiy, = 20y, — 2to[|qo||7e 2" 0 + 2tF i e 0| qoll7 - (5.5)
At a point p of minimum for 7, we have
0 < Ay (p) = 2iigy (p) (>0 4 "0 P31 go(p) ;) — 2tollgo(p)[[7e~>0 ")

which implies, since to > 0, that 4, (p) > 0. Hence, 1, > 0 everywhere on S.
Now, the induced metrics on the maximal surfaces are I; = e?“th, thus for every unit
tangent vector v € T1S

d .
alt(vﬂjht:to = 2ut0€2ut0h(’U”U) >0.
Since the induced metrics I; are negatively curved by the Gauss equation and Corol-
lary we can apply Theorem [5.3.12] and deduce that the volume entropy is
decreasing.

To prove that it is strictly decreasing, we notice that

d E(1 d
%E(It)h:to = _(2150)/ 7It(v7v)|t:t0d:uto =0
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if and only if 7, vanishes identically on S. In this case, Equation (5.5] reduces to
0 = 2to||go|[7e "0

which implies that tg = 0, because qg is not identically zero. O

Corollary 5.3.14. E(h,q) <1 for every (h,q) € T*Teich(S) and E(h,q) =1 if and
only if ¢ = 0.

Proof. If ¢ = 0, the function v = 0 is the unique solution to Equation . Hence,
the induced metric on the maximal surface is hyperbolic, and it is well-known that
the volume entropy of the hyperbolic metric is 1.

On the other hand, since the function E(h,tqp) is strictly decreasing for ¢ > 0, for
every non-zero quadratic differential ¢ we have E(h,q) < E(h,0) = 1. O

The rigidy result for the Lorentzian Hausdorff dimension then follows:

Theorem 5.3.15. Let M be a GHMC anti-de Sitter manifold and let A be its limit
set. Then
LHdim(A) =1

if and only if M is Fuchsian.

Proof. If M is Fuchsian, the holonomy representation p = (pg, po) preserves the
totally geodesic space-like plane Py, that is isometric to the hyperbolic plane. Fix
the base point zp on Py. Since for every v € m1(S), the isometry p(y) acts on the
plane Py like the hyperbolic isometry po(y) on H? (see Section , the entropy of
dagqs coincides with the entropy of the hyperbolic metric associated to pg, which is
equal to 1.

Viceversa, suppose that LHdim(A) = 1, then by Lemma the entropy of the
maximal surface embedded in M is at least 1. By Corollary [5.3.14] we deduce that
M 1is Fuchsian. O

5.4 Width of the convex core

Another geometric quantity associated to GHMC anti-de Sitter manifolds is the
width of the convex core. This has already been extensively studied in [Sepl7].
Combining the aformentioned work with our estimates in Section we can
describe its asymptotic behaviour.

We recall that the convex core of a GHMC anti-de Sitter manifold M is
homeomorphic to S x I, where I is an interval that can be reduced to a single point
if M is Fuchsian. The width of the convex core expresses how far M is from being
Fuchsian, as it measures the distance between the two boundary components of the
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convex core. More precisely, let A, be the limit set of the holonomy representation
p of M. The convex core can be realised as the quotient of the convex hull of A, in
AdSs by the action of p(m1(S)).

Definition 5.4.1. The width w(M) of the convex core of M is the supremum of the
length of a time-like geodesic contained in C(A,).

We can give an equivalent definition by introducting a time-like distance in Ad.Ss.
Given two points x,y € AdSs, we denote with v, , the unique geodesic connecting
the two points. We define

dt : Ang X Ang — RZO
as

di(, ) length(vz,y) if 7,y is time-like
T,Y) =
Y 0 otherwise

where the length of a time-like curve 7 : [0, 1] — AdS3 is

1
length(1) = [ v/~ Ti{@
0
Therefore, Definition [5.4.1] is equivalent to

w(M) = sup di(p,q)
peC(M)t
qeC(M)~
where C(M)T denotes the upper- and lower-boundary of the convex core. Notice, in
particular, that w(M) = 0, if and only if M is Fuchsian.

Seppi found an estimate for the width of the convex core in terms of the
principal curvatures of the maximal surface:

Theorem 5.4.2 (Theorem 1.B [Sepl7]). There exist universal constants C' > 0 and
0 € (0,1) such that if ¥ is a maximal surface in a GHMC anti-de Sitter manifold
with principal curvatures \ satisfying 6 < ||A|eo < 1, then

tan(w(M)) > (HTMOO) |

We consider now a family of GHMC anti-de Sitter manifolds M; parameterised by
the ray (h,tqp) € T*Teich(S) for a non-zero holomorphic quadratic differential ¢q.

Proposition 5.4.3. The width of the convexr core w(My) converges to w/2 when t
goes to +0o0.

Proof. By Theorem it is sufficient to show that the positive principal curvature
A+ of the maximal surface 3; embedded in M; converges to 1. This is exactly the

content of Corollary O



Chapter 6

Perspectives and future work

Our results still leave a number of questions unanswered. We list them here as a
conclusion of this thesis, hoping to work on them in the next future.

6.1 Prescription of metrics and measured laminations

In Chapter [2| we proved the following;:

Theorem For every couple of smooth metrics (g4, g—) with curvature less than
—1 on a closed, connected, oriented surface S, there exists a GHMC anti-de Sitter
manifold M, which contains a convex compact subset K =2 S x I, whose induced
metrics on the boundaries are g+ and g—.

It is natural to ask
Question 6.1.1. Is M uniquely determined by g+ and g— ¢
It would also be interesting to see if it is possible to remove the smoothness

assumption in Theorem [2.3.3]

These questions are related to Mess’ conjectures. Let M be a GHMC anti-de
Sitter manifold. Recall that the convex core of M is homeomorphic to S x I, where
I is an interval that can be reduced to a point if M is Fuchsian. The boundary
components are space-like surfaces endowed with hyperbolic metrics m4 and pleated
along (possibly empty) measured laminations Ay. Mess asked the following:

Question 6.1.2. Is GH(S) parameterised by the metrics (my,m_) € Teich(S) x
Teich(S)?

Question 6.1.3. Is GH(S) parameterised by the measured laminations (A4, \_) €
ML(S) x ML(S)?

117
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For both questions, it is known that every couple of metrics ([Dial3]) and every
couple of filling measured laminations ([BS12]) can be realised, but uniqueness is
still open.

6.2 Convexity of volume and energy

In Chapter [4] we studied the volume of the convex core of a GHMC anti-de Sitter
manifold as a function of the two parameters in Mess’ parameterisation. Recall our
main result:

Theorem Let My, be a GHMC AdSs manifold. Then

1 1 2
ZESCh(h, W) —7|x(S)| < Vol(C(Mp ) < ZEsch(’% n)+ %\X(S)\ :

The 1-Schatten energy functional between hyperbolic surfaces was introduced by
Trapani and Valli [TV95] and was later studied by Bonsante, Mondello and Schlenker
who proved the following:

Theorem 6.2.1 ([BMS1H]). The function Esep(-,h') : Teich(S) — R* is convex
with respect to the Weil-Petersson metric on the Teichmiiller space of S.

Combining it with Theorem [4.3.§] it is then natural to ask

Question 6.2.1. Is the volume of a GHMC anti-de Sitter manifold My, convex
with respect to the Weil-Petersson metric, as a function of h € Teich(S)?

It would also be interesting to understand if other types of energies share the same
convexity property. For instance, a more commonly used energy between hyperbolic
surfaces is the classical L?-energy

Ea(h, ) :ir;f/ ldf |2 dAy,
S

which is realised by the unique harmonic map between (S, h) and (S, k') isotopic to
the identity. It is known that E4(h,-) : T(S) — RT is convex with respect to the
Weil-Petersson metric (JTro96], [Yam99]). Unlike the holomorphic 1-energy, Eq4(-,-)
is not symmetric, hence one could ask the following:

Question 6.2.2. Is the function E4(-, ') : T(S) — Rt convexr with respect to the
Weil-Petersson metric on the Teichmiiller space of S?

In case of affermative answer, it would be worth studying possible generalisations on
the realm of higher Teichmiiller theory. For instance this result would lead to the
existence of a unique minimal surface in (H?)*.
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6.3 Special foliation of Lorentzian 3-manifolds

Motivated by the necessity of modelling the presence and physical interactions of
massive particles, different kinds of singularities in Lorentzian metrics have been
introduced in the literature ([BBS1I]). Recall that a GHMC manifold M is diffeo-
morphic to S x R. Fix a finite number of points {p1,...,p,} on S. We say that M
contains

e static particles, if the holonomy around a singular line is a rotation of angle
smaller than 7 fixing the singular line pointwise;

e interactive particles: if the holonomy around a singular line is a rotation of
angle bigger than 7 fixing the singular line pointwise;

e spin particles: if the holonomy around a singular line is an ellyptic transfor-
mation consisting of a rotation of angle smaller than 7 and a translation along
the singular line.

From the above description, it is evident that the presence of mass perturbes the
local geometry, but it is not clear if this has repercussions on the global geometry.
As a consequence of my joint work (which has not been included in this thesis) with
Qiyu Chen, together with some of her previous results, we obtained a description of
the global geometry for static particles:

Theorem 6.3.1 ([CS16|,|[CS17],|[CT17]). Let M be GHMC manifold with cone sin-
gularities of angle less than w along time-like geodesics. Suppose that M is locally
modelled on Minkowski, anti-de Sitter or de Sitter space. Then M admits a unique
foliation by constant Gauss curvature (in the complement of its convex core) and
constant mean curvature surfaces orthogonal to the singular lines.

Nevertheless, the picture is far from being complete.

Question 6.3.1. Is it possible to extend Theorem to cone singularities of angles
bigger than 7 along time-like geodesics?

This seems to be a straightforward generalisation of Theorem [6.3.1] but new technical
difficulties arise when trying to study this problem. For instance, if the conical
singularities are bigger than 7, the principal curvatures of a surface orthogonal to
the singular lines diverge at the points of intersection with the singular locus.

More in general, we can ask the following;:

Question 6.3.2. Are GHMC manifolds with constant sectional curvature and spin
particles foliated by constant mean curvature surfaces?

Question 6.3.3. Are GHMC manifolds with constant sectional curvature and spin
particles foliated by constant Gauss curvature surfaces (outside their convex core)?
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