Characterizations of nondecreasing semilattice operations on chains

AAA96

Jimmy Devillet
in collaboration with Bruno Teheux

University of Luxembourg

Motivation

Let X be a nonempty set

Definition

$F: X^{2} \rightarrow X$ is said to be

- idempotent if

$$
F(x, x)=x \quad x \in X
$$

- quasitrivial if

$$
F(x, y) \in\{x, y\} \quad x, y \in X
$$

- \leq-preserving for some total order \leq on X if

$$
F(x, y) \leq F\left(x^{\prime}, y^{\prime}\right) \quad \text { whenever } \quad x \leq x^{\prime} \text { and } y \leq y^{\prime}
$$

Motivation

Fact. F is associative, quasitrivial, and commutative iff there exists a total order \leq on X such that $F=V$.

Example. On $X=\{1,2,3,4\}$, consider \leq and $\leq '$

Motivation

$V^{\prime}(1,2)=2$ and $V^{\prime}(1,3)=1 \quad \Rightarrow \quad V^{\prime}$ is not \leq-preserving What are the \leq^{\prime} for which \vee^{\prime} are \leq-preserving?

Single-peakedness

Definition. (Black, 1948) \leq^{\prime} is said to be single-peaked for \leq if for all $a, b, c \in X$,

$$
a \leq b \leq c \Longrightarrow b \leq^{\prime} a \vee^{\prime} c \in\{a, c\}
$$

\leq^{\prime} is not single-peaked for \leq

Single-peakedness

Definition. (Black, 1948) \leq^{\prime} is said to be single-peaked for \leq if for all $a, b, c \in X$,

$$
a \leq b \leq c \Longrightarrow b \leq^{\prime} a \vee^{\prime} c \in\{a, c\}
$$

\leq^{\prime} is single-peaked for \leq and \vee^{\prime} is \leq-preserving

Single-peakedness

Definition. (Black, 1948) \leq^{\prime} is said to be single-peaked for \leq if for all $a, b, c \in X$,

$$
a \leq b \leq c \Longrightarrow b \leq^{\prime} a \vee^{\prime} c \in\{a, c\}
$$

F is associative, quasitrivial, and commutative iff $F=\mathrm{V}$

Theorem (Devillet et al., 2017)

For any $F: X^{2} \rightarrow X$, the following are equivalent.
(i) F is associative, quasitrivial, commutative, and \leq-preserving
(ii) $F=V^{\prime}$ for some \leq^{\prime} that is single-peaked for \leq

How can we generalize this result by relaxing quasitriviality into idempotency?

Towards a generalization

$$
\begin{aligned}
& \quad \leq \text { will denote a total order on } X \\
& \preceq \text { will denote a join-semilattice order on } X
\end{aligned}
$$

F is associative, idempotent, and commutative iff there exists \preceq such that $F=\curlyvee$.

Example. On $X=\{1,2,3,4\}$, consider \leq and \preceq

Towards a generalization

$\curlyvee(1,4)=4$ and $\curlyvee(3,4)=3 \quad \Rightarrow \quad \curlyvee$ is not \leq-preserving
What are the \preceq for which \curlyvee are \leq-preserving?

Cl-property

Definition. We say that \preceq has the convex-ideal property (Cl-property for short) for \leq if for all $a, b, c \in X$,

$$
a \leq b \leq c \quad \Longrightarrow \quad b \preceq a \curlyvee c
$$

Proposition

The following are equivalent.
(i) \preceq has the Cl -property for \leq
(ii) Every ideal of (X, \preceq) is a convex subset of (X, \leq)

CI-property

Definition. We say that \preceq has the Cl-property for \leq if for all $a, b, c \in X$,

$$
a \leq b \leq c \quad \Longrightarrow \quad b \preceq a \curlyvee c
$$

\preceq does not have the CI-property for \leq

CI-property

Definition. We say that \preceq has the Cl-property for \leq if for all $a, b, c \in X$,

$$
a \leq b \leq c \quad \Longrightarrow \quad b \preceq a \curlyvee c
$$

\preceq has the Cl-property for \leq

Cl-property

$\curlyvee(1,2)=3$ and $\curlyvee(2,2)=2 \quad \Longrightarrow \quad \curlyvee$ is not $\leq-$ preserving

Internality

Definition. $F: X^{2} \rightarrow X$ is said to be internal if $x \leq F(x, y) \leq y$ for every $x, y \in X$ with $x \leq y$

Definition. We say that \preceq is internal for \leq if for all $a, b, c \in X$,

$$
a<b<c \quad \Longrightarrow \quad(a \neq b \curlyvee c \quad \text { and } \quad c \neq a \curlyvee b)
$$

Proposition

The following are equivalent.
(i) \preceq is internal for \leq
(ii) The join operation \curlyvee of \preceq is internal

Internality

Definition. We say that \preceq is internal for \leq if for all $a, b, c \in X$,

$$
a<b<c \quad \Longrightarrow \quad(a \neq b \curlyvee c \quad \text { and } \quad c \neq a \curlyvee b)
$$

\preceq has the Cl-property but is not internal for \leq

Internality

Definition. We say that \preceq is internal for \leq if for all $a, b, c \in X$,

$$
a<b<c \quad \Longrightarrow \quad(a \neq b \curlyvee c \quad \text { and } \quad c \neq a \curlyvee b)
$$

\preceq has the Cl-property and is internal for \leq
Also, \curlyvee is \leq-preserving

Nondecreasingness

Definition. We say that \preceq is nondecreasing for \leq if

- Cl-property for \leq
- internal for \leq.
F is associative, idempotent, and commutative iff $F=\Upsilon$

Theorem

For any $F: X^{2} \rightarrow X$, the following are equivalent.
(i) F is associative, idempotent, commutative, and \leq-preserving
(ii) $F=\curlyvee$ for some \preceq that is nondecreasing for \leq

Finite case

Assume that $X=\{1, \ldots, n\}$, is endowed with the usual total order

$$
1<\ldots<n
$$

Proposition

The number of nondecreasing join-semilattice orders on X is the $n^{\text {th }}$ Catalan number.

Finite case

By a binary tree we mean an unordered rooted tree in which every vertex has at most two children.

Proposition

The following are equivalent.
(i) \preceq is nondecreasing for \leq
(ii) The Hasse diagram of (X, \preceq) is a binary tree satisfying $(*)$

Finite case

Proposition

The following are equivalent.
(i) \preceq is nondecreasing for \leq
(ii) The Hasse diagram of (X, \preceq) is a binary tree satisfying (*)
(*):

Selected references

D. Black.

On the rationale of group decision-making.
J Polit Economy, 56(1):23-34, 1948
D. Black.

The theory of committees and elections.
Kluwer Academic Publishers, Dordrecht, 1987.

J. Devillet, G. Kiss and J.-M. Marichal.

Characterizations of quasitrivial symmetric nondecreasing associative operations. arXiv:1705.00719.

J. Devillet and B. Teheux.

Associative, idempotent, symmetric, and nondecreasing operations on chains. arXiv:1805.11936.

N. Kimura.

The structure of idempotent semigroups. I. Pacific J. Math., 8:257-275, 1958.

D. McLean.

Idempotent semigroups.
Amer. Math. Monthly, 61:110-113, 1954.

