Characterizations of nondecreasing semilattice operations on chains AAA96

Jimmy Devillet

in collaboration with Bruno Teheux

University of Luxembourg

Motivation

Let X be a nonempty set

Definition

- $F\colon X^2 \to X$ is said to be
 - *idempotent* if

$$F(x,x) = x \qquad x \in X$$

• quasitrivial if

$$F(x,y) \in \{x,y\}$$
 $x,y \in X$

• \leq -*preserving* for some total order \leq on X if

$$F(x,y) \leq F(x',y')$$
 whenever $x \leq x'$ and $y \leq y'$

Motivation

Fact. *F* is associative, quasitrivial, and commutative iff there exists a total order \leq on *X* such that *F* = \vee .

Example. On $X = \{1, 2, 3, 4\}$, consider \leq and \leq'

Motivation

 $\lor'(1,2) = 2 \text{ and } \lor'(1,3) = 1 \quad \Rightarrow \quad \lor' \text{ is not } \leq \text{-preserving}$ What are the \leq' for which \lor' are \leq -preserving?

Single-peakedness

Definition. (Black, 1948) \leq' is said to be *single-peaked for* \leq if for all $a, b, c \in X$,

$$\mathsf{a} \leq \mathsf{b} \leq \mathsf{c} \implies \mathsf{b} \leq' \mathsf{a} \lor' \mathsf{c} \in \{\mathsf{a}, \mathsf{c}\}$$

 \leq^\prime is not single-peaked for \leq

Single-peakedness

Definition. (Black, 1948) \leq' is said to be *single-peaked for* \leq if for all $a, b, c \in X$,

$$\mathsf{a} \leq \mathsf{b} \leq \mathsf{c} \implies \mathsf{b} \leq' \mathsf{a} \lor' \mathsf{c} \in \{\mathsf{a}, \mathsf{c}\}$$

 \leq' is single-peaked for \leq and \vee' is \leq -preserving

Single-peakedness

Definition. (Black, 1948) \leq' is said to be *single-peaked for* \leq if for all $a, b, c \in X$,

$$a \leq b \leq c \implies b \leq' a \lor' c \in \{a, c\}$$

F is associative, quasitrivial, and commutative iff $F = \vee$

Theorem (Devillet et al., 2017)

For any $F: X^2 \to X$, the following are equivalent.

(i) F is associative, quasitrivial, commutative, and ≤-preserving
(ii) F = ∨' for some ≤' that is single-peaked for ≤

How can we generalize this result by relaxing quasitriviality into idempotency?

Towards a generalization

 \leq will denote a total order on X

 \preceq will denote a join-semilattice order on X

F is associative, idempotent, and commutative iff there exists \leq such that $F = \gamma$.

Example. On $X = \{1, 2, 3, 4\}$, consider \leq and \leq

Towards a generalization

 $\Upsilon(1,4) = 4$ and $\Upsilon(3,4) = 3 \implies \Upsilon$ is not \leq -preserving

What are the \leq for which γ are \leq -preserving?

CI-property

Definition. We say that \leq has the *convex-ideal property* (*CI-property* for short) for \leq if for all $a, b, c \in X$,

$$a \leq b \leq c \implies b \leq a \land c$$

Proposition

The following are equivalent.

(i) \leq has the CI-property for \leq

(ii) Every ideal of (X, \preceq) is a convex subset of (X, \leq)

Cl-property

Definition. We say that \leq has the *CI-property for* \leq if for all $a, b, c \in X$,

 $a \leq b \leq c \implies b \preceq a \curlyvee c$

 \preceq does not have the CI-property for \leq

Cl-property

Definition. We say that \leq has the *CI-property for* \leq if for all $a, b, c \in X$,

 $a \leq b \leq c \implies b \preceq a \curlyvee c$

 \preceq has the CI-property for \leq

CI-property

 $\Upsilon(1,2)=3$ and $\Upsilon(2,2)=2 \implies \Upsilon$ is not \leq -preserving

Internality

Definition. $F: X^2 \to X$ is said to be *internal* if $x \le F(x, y) \le y$ for every $x, y \in X$ with $x \le y$

Definition. We say that \leq is *internal for* \leq if for all $a, b, c \in X$,

$$a < b < c \implies (a \neq b \lor c \text{ and } c \neq a \lor b)$$

Proposition

The following are equivalent.

```
(i) \leq is internal for \leq
```

```
(ii) The join operation \Upsilon of \preceq is internal
```

Internality

Definition. We say that \leq is *internal for* \leq if for all $a, b, c \in X$,

 $a < b < c \implies (a \neq b \lor c \text{ and } c \neq a \lor b)$

 \leq has the CI-property but is not internal for \leq

Internality

Definition. We say that \leq is *internal for* \leq if for all $a, b, c \in X$,

 $a < b < c \implies (a \neq b \lor c \text{ and } c \neq a \lor b)$

 \preceq has the CI-property and is internal for \leq Also, γ is \leq -preserving

Nondecreasingness

Definition. We say that \leq is *nondecreasing for* \leq if

- CI-property for \leq
- internal for \leq .

F is associative, idempotent, and commutative iff $F = \Upsilon$

Theorem

For any $F: X^2 \to X$, the following are equivalent.

(i) ${\it F}$ is associative, idempotent, commutative, and \leq -preserving

(ii) $F = \Upsilon$ for some \preceq that is nondecreasing for \leq

Finite case

Assume that $X = \{1, ..., n\}$, is endowed with the usual total order

 $1 < \ldots < n$

Proposition

The number of nondecreasing join-semilattice orders on X is the n^{th} Catalan number.

By a *binary tree* we mean an unordered rooted tree in which every vertex has at most two children.

Proposition

The following are equivalent.

- (i) \leq is nondecreasing for \leq
- (ii) The Hasse diagram of (X, \preceq) is a binary tree satisfying (*)

Finite case

Proposition

The following are equivalent.

- (i) \preceq is nondecreasing for \leq
- (ii) The Hasse diagram of (X, \preceq) is a binary tree satisfying (*)

(*):

Selected references

D. Black.

On the rationale of group decision-making. J Polit Economy, 56(1):23–34, 1948

D. Black.

The theory of committees and elections. Kluwer Academic Publishers, Dordrecht, 1987.

J. Devillet, G. Kiss and J.-M. Marichal.

Characterizations of quasitrivial symmetric nondecreasing associative operations. arXiv:1705.00719.

J. Devillet and B. Teheux.

Associative, idempotent, symmetric, and nondecreasing operations on chains. arXiv:1805.11936.

N. Kimura.

The structure of idempotent semigroups. I. Pacific J. Math., 8:257–275, 1958.

D. McLean.

Idempotent semigroups. Amer. Math. Monthly, 61:110-113, 1954.