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Abstract. To be effective, ransomware has to implement strong encryp-
tion, and strong encryption in turn requires a good source of random
numbers. Without access to true randomness, ransomware relies on the
pseudo random number generators that modern Operating Systems make
available to applications. With this insight, we propose a strategy to miti-
gate ransomware attacks that considers pseudo random number generator
functions as critical resources, controls accesses on their APIs and stops
unauthorized applications that call them. Our strategy, tested against
524 active real-world ransomware samples, stops 94% of them, including
WannaCry, Locky, CryptoLocker and CryptoWall. Remarkably, it also
nullifies NotPetya, the latest offspring of the family which so far has
eluded all defenses.

Keywords: ransomware, cryptographic malware, randomness, mitigation.

1 Introduction

Ransomware is a malware, a malicious software that blocks access to victim’s data.
In contrast to traditional malware, whose break-down is permanent, ransomware’s
damage is reversible: access to files can be restored on the payment of a ransom,
usually a few hundreds US dollars in virtual coins.

Despite being relatively new, this cyber-crime is spreading fast and it is
believed to become soon a worldwide pandemic. According to [24], a US Govern-
ment’s white paper dated June 2016, on average more than 4,000 ransomware
attacks occurred daily in the USA. This is 300-percent increase from the previous
year and such important increment is probably due to the cyber-crime’s solid
business model: with a small investment there is a considerable pecuniary gain
which, thanks to the virtual currency technology, can be collected reliably and in
a way that is not traceable by the authorities.

The cost of ransomware attacks on individuals, enterprises, and societies is
huge. It has exceeded $5 billion US dollars in 2017, and estimated to raise to
$11.5 billion by 2019 [8]. Attacks like the one perpetrated by WannaCry —which
infected 300 thousands computers of, among others, hospital, manufacturing,
banks, and telecommunication companies in about 150 countries— suggests that
such predictions are not an exaggeration.
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Ransomware applications come in different flavours, but Cryptographic ran-
somware, the family studied in this paper, encrypts a victim’s files using strong
cryptography [5]. In this approach, decrypting without the key is infeasible, so the
only hope of recovering the files, in the absence of backups, is to pay the ransom.

In the absence of an effective cure for the threat, official recommendations
suggest prevention. The US Government, for instance, suggests “to have appro-
priate backups, so [. . . ] to restore the data from a known clean backup” and in
addition “to verify the integrity of those backups and test the restoration process
to ensure it is working” [24]. Keeping backups however is a solution that does not
scale if the threat becomes world-wide: it is an expensive practice that not all
companies implement whereas private users are likely not to follow the practice
at all. Not surprisingly, a survey on the practice [11] reports that only 42% of
ransomware victims could fully restore their data.

Security experts have looked into the problem. For example the EUROPOL’s
European Cybercrime Centre and the Dutch Politie together with Kaspersky Lab
and McAfee have founded an initiative called “No More Ransom” 1 whose goal
is, we quote, “to disrupt cybercriminal businesses with ransomware connections”
and “to help victims of ransomware retrieve their encrypted data without having
to pay the criminals”. But, in case of infection, the initiative warns that “there
is little you can do unless you have a backup or a security software in place”.
Other professionals are offering applications that are capable of some protection,
but these anti-ransomware systems leverage from existing antivirus/antimalware
strategies rather than re-thinking afresh how to solve the problem. At the time
of writing (May 2018), no silver bullet exists to convincingly contain the threat.

Security researchers have also worked to slow down the threat (see §8),
The have approached the problem from a cryptographic perspective, proposing
strategies that enable decrypting the files. Since decrypting without the key
is computationally hard, those works look for smart ways to place in escrow
the encryption keys, and use them later to attempt decrypting the files. Let
us call approaches of this nature i.e., that attempt to recover the files after
damage is done, “ex post”, and as “ex ante” approaches that attempt to prevent
a ransomware from encrypting files in the first place.

Our contribution We approach the problem from a cryptographic perspective.
Our solution, UShallNotPass, has an ex ante nature. It would be the first
cryptographic ex-ante defense against ransomware that we know about.

Its strategy relies on two fundamental observations. First, the keys-for-money
exchange on which ransomware based the success of their business works only
if the victim has no other ways to recover the files but paying for the release
of the key. To achieve this goal, a ransomware must properly implement strong
cryptography, which means:

– robust encryption, that is, well-established encryption algorithms;
– strong encryption keys, that is, long and randomly generated strings.

1 https://www.nomoreransom.org/

https://www.nomoreransom.org/
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Second, if these are the tools that ransomware necessarily need, one can try to
prevent any unauthorized use of them. Nothing can be done to prevent ransomware
from using robust encryption: these algorithms are public and ransomware can
implement them directly. Thus, we have to focus on denying access to a source
of strong encryption keys.

In §2 we observe that current ransomware gets random numbers from a small
set of functions, called Cryptographically Secure Pseudo Random Number Gener-
ator (CSPRNG), that modern Operating Systems (OSes) offer to applications. In
§3, we explain the UShallNotPass’s essential idea, which is to guard access to
those functions, let only the authorized applications (e.g., certified or white-listed)
use the resources, and stop all the others. In §4, we discuss how to implement
the access control mechanism and its enforcement strategy, while in §5, we de-
scribe all the technical details of our implementation, discussing how we hook
the calls to CSPRNG functions and terminate the caller. In §6, we benchmark
our solution for robustness and performance. We ran our solution against 524
active ransomware samples obtained from a pool of 2263 real-world malware
samples. We stopped 94% of samples in the test set, which includes, among many
others, WannaCry, TeslaCrypt, Locky, CryptoLocker, and CryptoWall. Reverse
engineering the remaining 6% samples shows that the samples do actually call
CSPRNG; so, with a better implementation we should be able to stop them
too. Notably, we stop also Bad Rabbit and NotPetya, which came out after we
designed our solution. Because of this, UShallNotPass may then have the
potentiality to be effective against zero-day threats.

In §7 we discuss the limitation of our approach. Although having found one
common strategy that is capable to block all the hundreds of instances of real
ransomware in our possession is in our opinion a considerable finding, we point
out that we have not yet proved that we can stop only all current ransomware
(i.e., no false positive). This investigation requires a different experimental set up
than the one taken in this work and is actually our on-going research. We argue
that it should not be hard to upper bound the number of false positives to a
reasonable quantity. In §9 we conclude the work: we critically compare what we
think are the novel aspects of our solution against the state of the art, given in
§8, and we try to imagine how future ransomware could overcome our solution.

1.1 Requirements

The requirements that inspired and, a posteriori, characterize the security quality
UShallNotPass (we use here the terminology as suggested by the RFC 2119 [4]).

(R1) it MUST stop all currently known ransomware;
(R2) it SHOULD be able stop zero-day ransomware;
(R3) it MUST NOT log cryptographic keys and thus:

– it should not introduce the risk of single point of failure that smarter
ransomware can try to break;
– it should not endanger the level security of benign applications (e.g., TLS
session keys);
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(R4) it SHOULD be easily integrated in existing anti-virus software, OSes, and
access control tools;

(R5) it MAY be implemented directly in an OS’s kernel or in hardware.

2 On Ransomware and Randomness

We answer a fundamental question: why does ransomware need random numbers
and from which sources they must necessarily obtain it? The answer will help
understand the rationale of UShallNotPass’s modus operandi.

As any other software virus, a ransomware, say R, runs in the victim’s
computer. On that machine, R finds the files, F , that it will attempt to encrypt.
As we saw in §1, to work properly R needs two tools: a robust encryption algorithm
and a means to create strong key, k. With those tools, R has all it needs to
encrypt F . The encrypted files will replace F irreversibly and irremediably until
the ransom is paid, triggering the release of the decryption key. The diagram
in Figure 1 shows this simple work-flow in picture with some detail that we are
going to discuss.

First let us see how R typically acquires the tools it needs. Strong encryption
algorithms are publicly available. Current ransomware just makes use of those
robust encryption algorithms, either by statically linking third party networking
and cryptographic libraries, for example the NaCl or the OpenSSL or by accessing
them via the host platform’s native Application Programming Interfaces (APIs).

However, to obtain strong keys, R has to access secure randomness sources.
R has a few alternatives for doing so, but only one is secure. In fact:

(1) R can have a strong k hard-coded, precisely in a section of its binary code,
but this solution leaves k exposed. R can probed and have k extracted from it
e.g., by Binary Analysis.

(2) R can download a strong k from the Internet. Occasionally ransomware
samples employ this technique and download encryption keys from their command
and conquer (C&C) servers, but also this option exposes the key. It can be
eavesdropped e.g., by Intrusion Prevention System (IPS). Note that although
ransomware will likely use secure communication (i.e., an encrypted channel),
the problem of establishing the session key remains, looping the argument (e.g.,
if the key is hard-coded R, there is a way to reverse engineering it, etc).

The remaining alternative is to let R generate its own k. But for k to be
strong, k must be randomly chosen from a data set with sufficient entropy to make
brute-force attacks infeasible and be kept safe. Where, in a computer, R can find
that randomness it requires to build strong keys? True randomness is generally
unavailable and thus ransomware must resort to those few deterministic processes
that return numbers which exhibit statistical randomness. These processes are
known as random number generator (RNG) functions. R can implement them.
But, being deterministic algorithm, RNG are always at risk to be error-prone. If
they produce predictable outputs the cryptographic operations build on them
cannot be considered secure [9] because with a predictable “randomness” all hybrid
encryption schemes would be vulnerable to plain-text recovery [3]. History proves
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that this concern is legitimate. To give a few examples, in the Debian–OpenSSL
incident, random number generator was seeded with an insufficient entropy which
resulted generation of easily guessable keys for SSH and SSL/TLS protocols [1].
Moreover, DUAL EC random number generator of Juniper Networks found
to be vulnerable, allowing an adversary to decrypt the VPN traffic [2]. These
incidents shows that extreme care should be taken when dealing with randomness.
Non-cryptographic random number sources have weaknesses [22], and they should
be avoided in cryptography.

The safest way (i.e., the way to avoid that risk of being error-prone in
generating pseudo random numbers) is to use well tested and robust functions
called Cryptographically Secure Pseudo Random Number Generator (CSPRNG).

In the OSes of the Microsoft (MS) Windows family, CSPRNG functions are
available through dedicated APIs (analogous solutions do exist in other OS
families, although the name of the functions will change). User mode applications
call cryptographic APIs to get secure random values of desired length. Historically,
Windows platform has provided the following APIs:
– CryptGenRandom: Appeared first in Windows 95 via MS Cryptographic API
(MS CAPI), now deprecated.

– RtlGenRandom: Beginning with Windows XP, available under the name
SystemFunction036.

– BCryptGenRandom: Starting with Windows Vista, provided by Cryptography
API Next Generation (CNG).

Legacy applications call the function CryptGenRandom to obtain a random value
or, as modern applications do, call BCryptGenRandom. When developers do not
need a context, they can also directly call RtlGenRandom to generate pseudo-
random numbers. Moreover, CryptGenRandom internally calls into RtlGenRandom.
While the implementation of RtlGenRandom is not open-sourced, a relevant
documentation [12] states that various entropy sources are mixed, including:
(i) The current process ID; (ii) The current thread ID; (iii) The ticks since boot;
(iv) The current time; (v) Various high-precision performance counters; (vi) An
MD4 hash of the user’s environment block, which includes username, computer
name, and search path; (vii) High-precision internal CPU counters, such as
RDTSC, RDMSR, RDPMC; (viii) Other low-level system information2.

To be sure the key used is strong, current ransomware takes advantage of the
CSPRNG functions that the host OS provides.

Note that, for the same reason, those functions are also used in: (i) Initialization
Vectors (IVs): used by both stream and block ciphers (ii) Salts: used in Key
Derivation Functions (KDFs) (iii) Paddings: block ciphers (in ECB or CBC modes
of operation) and public key encryption algorithms.

3 UShallNotPass’ Rationale

From these consideration it should be clear why the idea of this paper of guarding
access (i.e., of intercepting incoming calls) to (the APIs of) CSPRNG functions
2 For the complete list, please see Chapter 8 of [12].
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Fig. 1. Generic Ransomware Functionality.

works: any strong ransomware must call those functions sooner or later. All
524 samples we have analyzed call these reliable functions of the OS. Future
ransomware might find ways to create keys without calling any CSPRNG function,
but that is the topic for future research.

Keys generated by alternative methods may not be so strong and files en-
crypted with them could be decrypted by ex-post defenses like “NoMoreRansom”:
we plan to test this hypothesis in future work (see §9).

Thus it should be clear that CSPRNG functions are security-critical resources,
and hence only authorized processes should have access to them. This means that
deciding which processes should be authorized is critical, but is not within the
scope of this paper and it will be addressed in future work. Generically speaking,
we suggest that authorized applications are those which have been whitelisted
or certified. The process of authorizing an application can be as simple as let
the user (or the system administrator) decide about whether s/he trust the
application (e.g., as done by [20]), or it can result from an agreement protocol
between the operating system kernel’s owners (e.g., Microsoft, Apple) and the
developers of cryptographic applications, as happens for apps that available in
the Apple Store. Whatever the strategy, similarly to what happens in Europe
about applications that process personal data, application developers have to gain
their authorization/certification. Ransomware, developed for the illegal software
market, should therefore be excluded. The third and last consideration is that
we suggest that unauthorized requesters of CSPRNG functions are terminated.

Thus UShallNotPass prevents ransomware damaging files in the system
and no recovery is necessary. In §6 we will see how this strategy is essential for
stopping Not Petya.

Assumptions. UShallNotPass targets ransomware families that follow secure
development strategies and utilize strong cryptography. We will deal only with
the strongest amongst current ransomware, that is, we ignore insecurely designed
and badly implemented ransomware families, for instance those which call rand
to generate keys or those which encrypt files with home-brew algorithms. For
these ransomware we already have solutions able to mitigate their effects.
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Currently, UShallNotPass runs as a software component of the host OS
and relies on the security of the host. Therefore we assume that the OS on which
our system runs is up-to-date. In particular, we require that ransomware does
not exploit any zero-day vulnerabilities to escalate privilege. It should be noted
that this requirement is inherent to every defense software runs on any OS. Fur-
thermore, an outstanding feature of our strategy is its being obfuscation agnostic,
i.e., UShallNotPass targets all ransomware samples from non-obfuscated to
highly-obfuscated ones.

4 UShallNotPass’s Design.

We now describe the inner mechanism of our technique in more detail.

4.1 High Level Description.

Essentially, UShallNotPass is an access control mechanism over the CSPRNG
of the host system: it intercepts requests to the CSPRNG and queries the ID
of the caller. Once the ID is determined, UShallNotPass reaches a decision
according to a system policy. If the caller process is authorized, it obtains the
pseudo-random number. Otherwise, UShallNotPass takes action according to
the system policy. In our implementation, the caller is terminated.

Intercepting Requests to CSPRNG. As we argued in §2, ransomware re-
quires to use CSPRNG of the host system. In the current architecture of modern
OSes, there are limited number of resources which provide cryptographically
secure pseudo-random numbers. It is feasible to intercept the calls made to
CSPRNG functions of the host system and redirect the control to the decision
making component of UShallNotPass.

System Policy & Managing Access Control. When a request is made to
access the CSPRNG of the system, to reach a decision to grant or deny access
UShallNotPass follows a system policy, a set of rules, for instance, determined
by the system administrator. The system policy can be specified in various ways,
depending on the needs and the nature of the host system. Our current design
implements it as a whitelist, i.e., list of applications allowed to access CSPRNG
which a system administrator determines immediately after UShallNotPass
is installed. It can be more complex thought, such as determined by the OS
companies in agreement with developpers of cryptographic applications and based
on accrediations, granted after established security checks.

Further security measures can be necessary. Here we mention two in particular:

– Digital signatures: Code signing is a technique to verify the integrity of
the executable and the origin of the source. Digitally signed software has
therefore higher trust score when evaluated by anti-malware products and
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OSes. For example, Microsoft uses Authenticode [18] verify the signature of
the executables and kernel drivers. Following the same approach, we design
UShallNotPass so that it can be configured to allow applications with
digital signatures to access to CSPRNG of the host system.

– Human interaction: It may be desired to have a minimal whitelist, and extend
it when necessary. So that when an application requests a cryptographically
secure pseudo-random number for the first time, it is put on hold and the
decision will be made on that time. A similar measure has been described
in [20], but it involves the user. Considering this choice unsafe, UShallNot-
Pass instead interacts exclusively with the administrator. UShallNotPass’s
system policy can be set to force to ask the exclusive permission of the system
administrator when an application calls CSPRNG for the first time.

Once the whitelist is created, UShallNotPass will start intercepting the
access requests to CSPRNG of the host system. For each request, identity of the
owner will be determined and UShallNotPass will decide whether to grant
access. If the result is positive, the process is allowed to obtain the pseudo-random
number. Otherwise, the request is blocked and the process is terminated.

Needless to say, it is therefore of uttermost important to secure the system
policy itself from unauthorized modifications (e.g., stored in a directory accessible
only with administrator privileges).

5 Implementation

We implemented a prototype of UShallNotPass which targets Windows 7 OS.
On Windows 7, user-mode processes invoke CryptGenRandom to get cryptograph-
ically secure pseudo-random numbers. Therefore, our implementation intercepts
each invocation of CryptGenRandom API and determines the identity of caller
process. To this end, UShallNotPass consists of two components:

– Interceptor (INT) which intercepts calls made to CryptGenRandom API, col-
lects and transmits the identity of the caller process to controller, and takes
the appropriate action that controller commands.

– Controller (CTR) which gets information from the Interceptor and returns
grant/deny commands according to the system policy.

5.1 Intercepting Calls to CSPRNG

There are various ways of intercepting calls on Windows platform, including
patching System Service Dispatch Table (SSDT), modifying Import Address
Table (IAT) and injecting a Dynamic Link Library (DLL) to target process.
We followed the DLL injection technique and used Detours library of Microsoft
Research for this purpose. The Interceptor of UShallNotPass is hence a DLL
module which is loaded into target process on the system. For ease of prototyping,
we load the Interceptor into processes using AppInit DLLs technique [17]. Once
loaded, it hooks CryptGenRandom function, that is, whenever CryptGenRandom
is called by a process, program flow is routed to the Interceptor.
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5.2 Decision of Authorization

The Interceptor calls GetModuleFileName to obtain the full path to the module
of the caller process, which can point to a DLL or an executable. The file path
information is passed to the Controller, whose response is forwarded to the
Interceptor. Controller computes the SHA256 digest of the binary file of the
module and checks whether it is in the whitelist.

If the result is positive, a GRANT command is returned to Interceptor, or
a DENY command otherwise. Once the decision is received from Controller,
Interceptor executes it. If the decision was to grant access to secure random API,
Interceptor calls CryptGenRandom with the intercepted parameters and returns
the result and control to the caller process. If the decision of Controller was to
deny the request, then Interceptor calls ExitProcess, which causes the caller
process to end3.

5.3 Maintaining the Whitelist

Whitelist is implemented as a file which contains the list of SHA256 digests of
the binary executables. The integrity of the whitelist is protected by a keyed-
hash value, appended to the end of the list. As another security precaution, the
whitelist is located in a directory which only administrators has write permission.

The Controller component of UShallNotPass has a graphical user interface
(GUI) which provides the basic functionality to the user, such as adding an entry
to the whitelist or removing one from it. Controller also logs relevant information
about the call events to CryptGenRandom API, including time, SHA256 digest of
the caller and the action taken.

6 Experimental Results

We tested our UShallNotPass with the aim to verify whether it complied with
the requirements we stated in §1. Compliance with R3 does not need to be tested.
It follows from the design: UShallNotPass does not store cryptographic keys
(R3). Instead we test compliance with R1 and R2 indirectly by answering the
following questions about UShallNotPass:

– Q1 Does it stop ransomware before they encrypt any files?
– Q2 Can it protect against zero-day ransomware?

Furthermore we are interested in knowing what is UShallNotPass’s per-
formance in time and space resources. A defense system that is not practical to
deploy is considered useless.

– Q3 What is overhead cost in resources of UShallNotPass?

3 Calling ExitProcess can as well cause process to crash, which, eventually ends it.
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The answer this third question gives evidence for compliance to R4 and R5:
if UShallNotPass proves be efficient, it can be easily integrated with existing
anti-virus software as an additional run-time control (R4). Its simplicity also
suggests that controlling the access to critical functions can be implemented at
least at level of OS kernel (R5).

Instead, we have not yet thought about the possibility to implement this
mechanism at lower level, such as in hardware.

6.1 Experimental Setup

We conducted a series of experiments to test the robustness of UShallNotPass
against cryptographic ransomware. We obtained real world cryptographic ran-
somware samples from well known sources including VirusTotal4 and ViruSign5.
In order to collect executables, we performed a search on these sources with the
keywords ransom, crypt and lock which generally appear in the tags determined
by submitters and antivirus vendors. Furthermore, we populated our collection
by downloading samples from the links provided by Malc0de6.

Our initial test set had 2263 malware samples which is labeled by anti-virus
engines as ransomware.

Collecting a malware sample is one thing, determining its type is another.
A malware sample tagged “ransomware” may not necessarily be an active cryp-
tographic ransomware. Therefore, we needed to check the obtained malware
samples one by one and select the active cryptographic ransomware in order
to build a valid sample set. For this aim, we utilized Cuckoo Sandbox7 open
source automated malware analysis system. We created a virtual machine (VM)
in KVM8 and performed a clean install of Windows 7 OS. Next, we created a
user environment on the VM and performed actions which reflects the existence
of a real user, e.g., we installed various popular applications such as third party
web browsers (and select plug-ins), office and document software, utilities etc.
Moreover, we placed a number of files on the VM that typical ransomware families
targets, such as office documents, images and source codes. When possible, we
also removed traces of the virtualization, e.g., changed default device names of
VM, tuning RDTSC, etc. Finally, we took the snapshot of the VM and finalized
the configuration of Cuckoo for managing the VM.

After the test environment was set, we submitted the malware samples to
Cuckoo which executed them one-by-one, on the clean snapshot of the VM.
Although majority of ransomware samples attack the system immediately after
infection, i.e., encrypts the victim’s files, we allowed them to run 20 minutes
unless the detection occurs earlier. After each analysis, we inspected if any
alteration/deletion of the decoy files observed on the test machine. We call a

4 VirusTotal, https://www.virustotal.com
5 ViruSign, https://www.virusign.com
6 Malc0de, http://malc0de.com
7 Cuckoo Sandbox, https://cuckoosandbox.org
8 Kernel-based Virtual Machine, https://www.linux-kvm.org/page/Main_Page

https://www.virustotal.com
https://www.virusign.com
http://malc0de.com
https://cuckoosandbox.org
https://www.linux-kvm.org/page/Main_Page
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malware sample as an active ransomware if any of the decoy files has a new
SHA256 hash after the analysis is completed. If Cuckoo does not detect any
activity or hashes of decoy files are same until the timeout happens, we exclude
the sample from our list of active ransomware.

To compare our results to the previous research, and to reason on the tech-
niques used by malware authors, we identified the family of each ransomware
sample. For this purpose, we employed AVclass [21], an automatic malware
labeling tool which performs plurality vote on the labels assigned by AV engines.

We excluded the vast majority of the samples from our test set as they did
not show up any malicious activity during the analysis. There are several reasons
behind this outcome. Firstly, it is a well known fact that malware authors try to
avoid being analyzed and thus malware samples behaves benign if they detect
that they are run in a virtual environment. Ransomware authors also follow this
strategy. Another reason of inactivity is that malware design may involve a C&C
server which may be down for some reason. Finally, ransomware may require
certain conditions met before start attacking, e.g., regional settings, wait for a
specific date.

To sum up, we built a test set which contains 524 active samples from 31
cryptographic ransomware families to test against UShallNotPass.

6.2 Robustness

In this section, we will analyze the outcome of the experiments to find the answer
of Q1 and Q2.

To begin with, UShallNotPass stopped ransomware samples from all
families in our data set, which includes famous and powerful ransomware families
The details are reported in Table 1, where we also report for each family the
average number of bytes per calls and the numbers of call, figures that support
our argument that employing cryptographically secure pseudo-random numbers
is a common property of all the ransomware.

Table 1 shows that UShallNotPass successfully stopped 94% of crypto-
graphic ransomware in our test set, including WannaCry, Locky and TeslaCrypt
and remarkably the unmitigated NotPetya. The remaining 6% of missed elements
looks like be false negative but we have evidence that this is not the case: quite
likely we missed them because our implementation of the Interceptor is not per-
fect. In fact, a dynamic analysis we performed on each representative for all the
missed family (i.e., Cryptolocker, Filecryptor, SageCrypt and Yakes) has revealed
that the ransomware actually invoke CryptGenRandom. Thus, in principle, they
should have been stopped. The only conclusion we can draw is therefore that our
implementation missed to intercept those call for some not obviously apparent
technical reason. We looked into that and in §7 we discuss technical detail about
how to improve Interceptor’s capacity of intercepting.

That said, we need to comment that UShallNotPass was implemented
before the Bad Rabbit and NotPetya ransomware families emerged. Therefore,
until proven otherwise, we have at least one evidence that supports R2 that
UShallNotPass can be effective on zero-day ransomware.
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Table 1. Measurements of CSPRNG usage. Next to Family, recalling the ransomware’s
family name, column Sample reports the number of elements in the family and the
number of samples that UShallNotPass stopped. CGR Usage column shows the need
of using CSPRNG among ransomware and contains two subcolumns: Bytes, the average
number of bytes that a sample of ransomware obtains from calling CryptGenRandom,
and #Calls, the number of calls to the function.

Family Samples (%) CGR Usage

Bytes # Calls

Androm 7/7 (100%) 4125257 178
Bad Rabbit 1/1 (100%) 52 2
Cayu 1/1 (100%) 4216212 20261
Cerber 149/149 (100%) 22393 2786
Crilock 1/1 (100%) 3456637 15
Critroni 1/1 (100%) 4755304 392
Crowti 3/3 (100%) 5231466 14
Crypmod 1/1 (100%) 2167813 20118
Crypshed 1/1 (100%) 5137296 13
Cryptesla 8/8 (100%) 5125627 14
Cryptolocker 8/17 (47%) 2805603 10
Cryptowall 1/1 (100%) 2242370 10
Dynamer 2/2 (100%) 3954293 20118
Enestaller 3/3 (100%) 2127036 82
Enestedel 5/5 (100%) 3871449 61
Filecryptor 3/4 (75%) 64 1
Genkryptik 3/3 (100%) 2506214 11
Kovter 1/1 (100%) 160 3
Locky 55/55 (100%) 5672894 23940
NotPetya 1/1 (100%) 92 2
Ransomlock 1/1 (100%) 2312373 12
Razy 2/2 (100%) 3955 2851
SageCrypt 4/7 (57%) 3417095 9
Scatter 6/6 (100%) 5626959 560
Shade 2/2 (100%) 2900347 12613
Teslacrypt 82/82 (100%) 4351264 14
Torrentlocker 1/1 (100%) 2642555 388
Troldesh 2/2 (100%) 3500127 11
WannaCry 2/ 2 (100%) 5615288 162
Yakes 23/39 (59%) 2450372 9
Zerber 115/115 (100%) 5542697 70

Total: 495/524 (94%)

Case Study: NotPetya. We find it remarkable that UShallNotPass was
effective against NotPetya, a particular debilitating ransomware that in 2017 was
used for a global cyberattack against Ukraine, Germany, Russia, Italy, France and
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Poland9. NotPetya is a ransomware which encrypts victim’s disk at boot time
(NotPetya has other malware characteristics such as the propagation, exploitation
and network behaviors, but those are out of the scope of this paper.) Upon
execution, NotPetya generates random numbers to use in the encryption, modifies
the Master Boot Record (MBR) of the system disk which allows it to load its own
kernel in the next reboot. Next, it restarts the system and shows a fake chkdsk
screen to the user. Meanwhile, the malicious kernel encrypts the Master File
Table (MFT) section of the disk which renders the data on that disk unusable.
Since NotPetya loads its own kernel, the solutions proposed by [7, 13, 14] is
bypassed and therefore cannot protect the victim. Moreover, [15] logs the random
numbers that NotPetya uses to derive the encryption keys. Nonetheless, the key
vault becomes inaccessible as well as other data after the reboot as the MFT is
encrypted. On the other hand, UShallNotPass stops NotPetya once it calls
CryptGenRandom and terminates it before any cryptographic damage occurs.

6.3 Performance

We measured the overhead of UShallNotPass on computing and storage
resources to answerQ3. Our assessment focuses two points: (i) API level overhead,
i.e., the extra time to access secure randomness, (ii) application level overhead,
namely, the latency perceived by the users. We conducted the assessments on a
Windows 7 OS running on a VM with 2 CPU cores clocked at 2.7 GHz.

Benchmarks in API Level We measured the time cost of invoking the
CryptGenRandom API on the clean machine. For this aim, we wrote a benchmark
program that invokes CryptGenRandom to generate 128 bits of random number,
repetitively for 100 00010 times and outputs the total time spent for this action.
We observed that it took 0.12 seconds to complete this task. Then we run the
benchmark program on the system that UShallNotPass runs. This time it
took 15.59 seconds to complete the same task. The results states that UShall-
NotPass introduces an overhead with a factor of 125. According to our analysis,
the main reason behind this impact is the significantly slow communication
between Interceptor and Controller components of UShallNotPass. We also
observed that, if the overhead of communication is discarded, the performance
impact happens to be a factor of 5.52. We remark that the observations made
on an unoptimized prototype of UShallNotPass. More efficient techniques
of IPC and dynamic decision making for access control would result in better
performance figures.

Our measurements on API level overhead and detailed results are illustrated
in Table 2. It should be also noted that as the length of the pseudo-random
number increases, the cost ratio of access control gets lower.

9 https://en.wikipedia.org/wiki/Petya_(malware)
10 We have chosen to set the limit of trials to 100 000 as with the current implementation

of Inter-Process Communication (IPC), our setup becomes instable beyond this limit.

https://en.wikipedia.org/wiki/Petya_(malware)
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Table 2. Performance impact of UShallNotPass on 100 000 iterative calls to
CryptGenRandom.

Measurement Mode Random Number Length (bits)

128 256 1024 2048

UShallNotPass Off (seconds) 0.12 0.15 0.20 0.27
UShallNotPass On (seconds) 15.59 15.80 15.84 16.91
Time spent in IPC (seconds) 14.90 15.05 15.05 16.00
IPC Discarded (seconds) 0.69 0.75 0.79 0.91

Total Overhead (factor) 125.42 105.68 77.69 61.77

IPC Discarded Overhead (factor) 5.52 5.00 3.89 3.32

Impact in Application Level Another important performance criterion is the
slowdown in functionality of the software due to UShallNotPass. On our test
system, we installed latests versions of select applications which are common
in home and office users. Next, we whitelisted and run the applications while
UShallNotPass is active. We inspected whether any slowdown occurred during
the use of each application and logged the CSPRNG consumption, if any. The test
set contains the following applications: 7zip, Acrobat Reader, Chrome, Dropbox,
Firefox, Foxit Reader, Google Drive, Internet Explorer, LibreOffice, Microsoft
Office, Putty, PyCharm, Skype, Slack, Spotify, Teamviewer, Telegram Desktop,
TeXstudio, Visual Studio, VLC, WinRar and WinZip. Among those that called
CryptGenRandom, we present our observations on the following five:

– Acrobat Reader. We created a new digital signature and signed a PDF
document. During this period, Acrobat Reader called CryptGenRandom 13
times and obtained 64 bytes of random value in total.

– Chrome. We observed Chrome’s CSPRNG usage by connecting a website
over HTTPS. For this purpose, we connected https://www.iacr.org/. Once
the TLS connection is established, we stopped monitoring. We recorded 2
calls to CryptGenRandom and 32 bytes of usage in total.

– Dropbox. After creating a new account, we put 5 files with various sizes,
20 MB in total. During the synchronization of these files, Dropbox invoked
CryptGenRandom 61 times, obtaining 16 bytes of data in each.

– Skype.We monitored Skype when making a video call for 60 seconds. During
this period, Skype performed 13 calls to CryptGenRandom and obtained 16
bytes in each call.

– Teamviewer. Among the tested applications, Teamviewer was the clear
winner in pseudo-random number consumption. In our test, we connected to
a remote computer and keep the connection open for 60 seconds. We observed
128 calls to CryptGenRandom which yield 2596 bytes in total.

We did not notice any slowdown or loss in the functionality of any applications
nor a program instability.

https://www.iacr.org/
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7 Discussion: Limitations and Improvements

History suggests that malware mitigation is a never ending race: a new defense
system is responded with new attacks. We are no exception; cyber-criminals will
develop new techniques to bypass UShallNotPass. In this section, we first
discuss how they could achieve this goal due to the limitations of our approach.
Next, we review the issues may arise during the use of UShallNotPass.

7.1 Alternative Randomness Sources

The results of our experiments suggests that cryptographic ransomware can be
efficiently mitigated by preventing access to CSPRNG APIs of the host system.
Ransomware authors will try to find alternatives sources for randomness. We
anticipate that the first place to look for would be the files of victims. Generating
encryption keys from files is known as convergent encryption [10] and already a
common practice in cloud computing. That being said, the feasibility and security
of maintaining a ransomware campaign (from point of cybercriminals) based on
this approach needs to be studied.

Alternatively, ransomware authors may try to fetch cryptographically secure
random numbers (or encryption keys) from C&C servers instead of requesting
access to CSPRNG API. As we discussed in §2 ransomware cannot establish a
secure channel with the remote server in this scenario. Such a ransomware may
still communicate with a randomness source on the Internet, over an unsecure
channel. In this case, however, the random numbers would be exposed to the risk
of being obtained by IPSes. This would make it diffucult for a ransomware to be
successfull in the long term. Having said that, more feasible defense strategies
should be developed for home users who will likely not be in the possession of
advanced network devices like an IPS.

Lastly, ransomware may statically link a random number generator and use
a seed gathered from user space. However, this approach would require higher
implementation effort and be error-prone. Again, feasibility and security of this
risky approach should be studied.

We leave these challenges as open problems for future works.

7.2 Implementation Related Issues

DLL Injection Method. AppInit DLLs mechanism loads the DLL modules
specified by the AppInit_DLLs value in the Windows Registry. For ease of
development, we utilized AppInit DLLs technique to load Interceptor component
of UShallNotPass into target processes. However, AppInit DLLs are loaded
by using the LoadLibrary function during the DLL_PROCESS_ATTACH phase of
User32.dll. Therefore, executables that do not link with User32.dll do not
load the AppInit DLLs [17]. Concordantly, UShallNotPass cannot intercept
and control any calls made from these executables. During the experiments, we
encountered 29 ransomware samples that do not link to User32.dll. However,
dynamic analysis of these samples shows that they all indeed call CryptGenRandom
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function. This finding suggests that more powerful hooking techniques would
yield protection against these sample. We highlight that this limitation only
concerns our current prototype, i.e., it is not inherent to the approach, and leaves
room for improving the implementation of UShallNotPass as a future work.
Whitelisting Built-in Applications. Modern OSes are installed with compo-
nents including administrative tools and system utilities. Depending on the nature
of the tasks, certain built-in applications may utilize the CSPRNG APIs. To
keep the OS stable and secure, and maintain its functionality, these applications
should be whitelisted before UShallNotPass launched. To determine which
built-in Windows applications call CSPRNG APIs, we performed a clean install of
Windows 7 32-bit on a VM, monitored the calls to CSPRNG APIs and identified
the caller processes. During this experiment, we executed typical maintenance
operations on the clean system, such as defragging hard disks, managing backups,
installing drivers and updating the OS.

We detected invocation of CSPRNG API by Explorer (explorer.exe) and
Control Panel (control.exe) which are two of the most frequently used Win-
dows applications. Moreover, Windows Update (wuauclt.exe) and Windows
Update Setup (WuSetupV.exe) are the only signed applications that consumed
secure randomness. Therefore, if UShallNotPass is configured to allow the
signed applications to access CSPRNG APIs, these two applications do not need
to be whitelisted. Furthermore, Local Security Authority Process (lsass.exe)
was the only application which calls BCryptGenRandom, while others called
CryptGenRandom. The complete list of applications11 that called CSPRNG APIs
during the experiment is given in Table 3.

Table 3. Windows applications that calls CSPRNG APIs. Most of the applications
listed below are located at %WINDIR%\System32.

Executable Name File Description Digitally Signed

explorer.exe Windows Explorer 7

lsass.exe Local Security Authority Process 7

SearchIndexer.exe Microsoft Windows Search Indexer 7

svchost.exe Host Process for Windows Services 7

dllhost.exe COM Surrogate 7

wmiprvse.exe WMI Provider Host 7

SearchFilterHost.exe Microsoft Windows Search Filter Host 7

SearchProtocolHost.exe Microsoft Windows Search Protocol Host 7

control.exe Windows Control Panel 7

TrustedInstaller.exe Windows Modules Installer 7

VSSVC.exe Microsoft Volume Shadow Copy Service 7

WMIADAP.EXE WMI Reverse Performance Adapter Maintenance Utility 7

wuauclt.exe Windows Update 3

WuSetupV.exe Windows Update Setup 3

mmc.exe Microsoft Management Console 7

MpCmdRun.exe Microsoft Malware Protection Command Line Utility 7

dfrgui.exe Microsoft Disk Defragmenter 7

11 The list of applications may vary on different versions of Windows OS.



No Random, No Ransom 17

Handling Sofware Updates. OS software or installed applications may be
updated for various reasons, including patching security vulnerabilities, fixing bugs
and adding new functionalities. The update process may also involve replacing
the existing executables with newer ones and thus altering their hash values.
Therefore, if an OS component or an application which has access rights to
CSPRNG API is updated, Whitelist of UShallNotPass must also be updated
accordingly to prevent false positives. More precisely, the old hash value should
be removed from the Whitelist and the new hash value should be added.
Abuse of Digital Signatures. While Code Signing aims to help verifying
the software origin, cyber criminals frequently used stolen certificates to sign
malware in order to penetrate this defense [6, 23]. Furthermore, there is an
incidence i.e., a ransomware sample with a valid digital signature [25], which
proves that ransomware authors also have this capability. Such a clandestine
ransomware sample may evade access control feature promised by our system.
Namely, if UShallNotPass is configured to allow digitally signed applications
to access CSPRNG of the host system, and the ransomware binary has a valid
signature (e.g., the stolen certificate is not revoked yet or Certificate Revocation
List (CRL) is not up to date), then the victim’s files would be encrypted. Note
that utilization of digital signatures is optional and meant to improve practicality
and applicability of our system. System administrators should decide enabling
this feature according to their systems’ needs and capabilities. When ultimate
security is desired, this option should be left as disabled so that even digitally
signed ransomware would not cause harm on data.
User Interaction. As we discussed above, software applications on host system
may be updated or replaced with another one. To prevent interruption in the
work flow, UShallNotPass may be configured to ask user permission in case
previously unseen process requests access to CSPRNG of the host system. This
brings the risk of infection, as the user is involved in the decision making, and may
not concentrate well each time. We remark that user interaction is an optional
feature of UShallNotPass and is an example of security/usability trade off. If
disabled, it would not pose any risk against security.

7.3 Improvements

Our prototype currently hooks into only CryptGenRandom API, as our initial
findings suggested us that it is widely used by ransomware. To evade detec-
tion, ransomware may restrict itself to utilize other CSPRNG APIs such as
RtlGenRandom and BCryptGenRandom. However, adding new hooks is only an
implementation effort, that we plan to undertake in a future work.

8 Anti-ransomware: a critical review

In §1 we distinguished anti-ransomware defenses according to their ex-ante or
ex-post nature. We also separated non-cryptographic from non cryptographic
approach. In addition, there are two main defense strategies which seem driving
the most famous works: behavioural analysis and key escrow.
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Table 4. Comparison of Ransomware Defense Systems

Feature UNVEIL CryptoDrop ShieldFS PayBreak Redemption UShallNotPass

Mode of Operation Proactive Proactive Proactive Key-escrow Proactive Access Control
Obfuscation Resilience 3 3 3 7 3 3

Disk I/O Agnostic 7 7 7 3 7 3

Stops NotPetya 7 7 7 7 7 3

Behavioral analysis. Solutions in this sub-category monitor an application’s
activity in real-time, searching for indicators (e.g., a process’ interactions with its
environment, file system activity, network connections and modifications on OS
components) that may justify counter-actions such as blocking the application’s
execution. Approaches differ because of what is observed, how the observation
process is designed and executed. Thus, Unveil [13] by Kharraz et al. generates
an artificial user environment and monitors the potential ransomware there for
desktop locks, file access patterns and I/O data entropy. The software decides
whether certain activities hide an ransomware by comparing the monitored fea-
tures with those of benign applications of reference and by applying a similarity
threshold of obtained from a precision-recall analysis. Differently, CryptoDrop
by Scaife et al. [20] operates in the real environment and observes file type
changes and measures file modifications. Malicious changes to file are detected by
similarity-preserving hash functions and measuring Shannon Entropy. Continella
et al. developed ShieldFS [7] that monitors low-level file system activities and
collects the following features: folder listing, file read/write/rename, file type and
write entropy. A ransomware is recognized by comparing these characteristic
activity patterns with that of benign applications. ShieldFS also monitors cryp-
tographic primitives through searching the memory space of a suspicious process
for a precomputed key schedule to increase detection speed. Lastly, Kharraz and
Kirda developed Redemption [14] which monitors the same indicators as above,
but redirects write calls to sparse files. By this way, malicious changes reverted
more efficiently than previous defenses.

Works in this category are not cryptographic according to our definition and
can have either ex ante or ex post nature. Which one depends on whether their
monitoring happens in a safe virtual environment (so having the possibility to
stop the real damage from happening) on in the real system (competing with the
ransomware while it has started encrypting).

Key Escrow. Systems adopting this strategy also run in real-time and in the real
system so they have an ex-post nature. They create the conditions to easy the
decryption of the infected files mainly by holding in escrow the encryption keys
that the system generates on request. These are many, but in case some requests
come from ransomware the keys to decrypt files should be among them. This
proactive “protection” is applied only after a ransomware has finished its work.

To the best of our knowledge, the approach of using key-backup to combat
ransomware is first proposed by Palisse et al. in [19] and independently by Lee et
al. in [16]. Later, Kolodenker et al. presented the first proof-of-concept of this
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technique with the PayBreak [15] system. It intercepts calls made to APIs
of cryptographic libraries, extracting the parameters in those calls and storing
them in a secure key vault. To detect statically linked third-party cryptographic
libraries in order to extract encryption keys, the system use fuzzy function
signatures. In the case of infection, the system tries to decrypt the encrypted
files using the stored keys and parameters. Since this defense strategy does not
involve any file system trace analysis to construct and evaluate the behavior of a
process, PayBreak achieves superior performance than the real-time protection
systems in the previous category.

Limitations of current defenses To begin with, none of the previous defenses stops
NotPetya ransomware. NotPetya performs a disk encryption after the system is
booted into its own malicious kernel, thereby bypassing on-line protections.

Besides, solutions that rely on a virtual environment, like Unveil, miss ran-
somware that recognize the presence of artificial system. Such smart ransomware
become malicious only when put in real systems while remaining innocuous
and bypassing controls otherwise. Anti-ransomware with an ex-post nature, like
CryptoDrop, may recognize and stop the ransomware when it is too late. In
their experiments over 5100 files, CryptoDrop’s authors report that ransomware
could encrypt up to 29 files. The median of this statistics reported as 10. Like
other behavioural analysis based solutions, ShieldFS comes with an overhead
that has been estimated to exceed 40% while being 26% in average. PayBreak,
also ex post, needs to correctly recognize the cryptographic functions employed
by the ransomware to log the encryption keys and the parameters. While this
is feasible for built-in cryptographic functions on the host system, ransomware
that utilizes third-party libraries can bypass detection through obfuscation. In
addition, there are some issues with the logging of crypto APIs. PayBreak logs
every key, including private keys of TLS and SSH connections. Both protocols
offers forward secrecy which is build upon employing ephemeral keys. All schemes
which counts on application level security (Layer 7 of OSI Model) may become
vulnerable in this case. PayBreak is designed in such a way that all keys are
stored in one place. This may bring the risk of single point of failure as well as a
new target for cyber-criminals. Table 4 compares UShallNotPass against the
related works herein commented.

9 Conclusion and Future Work

Cryptographic ransomware applications encrypt files and offer to decrypt them
after the payment of a ransom. They are getting better and stronger but need
randomness to implement strong encryption. So, a strategy to block them is
to control access to randomness sources. We propose UShallNotPass, a sys-
tem that implements this strategy and terminates unauthorized requests to
Cryptographically Secure Pseudo Random Number Generator (CSPRNG)’s APIs
provided by the host Operating System. On testing, UShallNotPass stopped
495 active real-world samples of cryptographic ransomware (out of 524, so missing
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only 6%) from 31 different families. UShallNotPass has minimal overhead on
system performance which makes it practical to be used in real-world applications.

There is of course room to extend our approach: to improve the intercept
capabilities (for example to confirm our conjecture as to why our implementation
missed 6%); improve the performance of our decision making method; studying
and preventing other ways that ransomware could generate encryption keys,
circumventing calls to CSPRNG, evading our controls; build a practical and
automatic white-listing strategy with low false positive rates (an issue that we
have only partially assessed in this paper, since it requires a different experimental
set up, and we leave this work for the future).

The approach described here has been shown to be highly effective against
the current generation of ransomware, but doubtless, (having read this paper),
the authors of ransomware will devise new strategies to evade our approach. The
race between ransomware and anti-ransomware will continue.
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