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Summary

There is a global increase in the incidence of non-communicable diseases associated with

unhealthy food intakes. Conditions such as diabetes, heart disease, high blood pressure, and

strokes represent a high societal impact and an economic burden for health-care systems

around the world. To understand these diseases, one needs to account the several factors

that influence how the human body processes food, some of which are determined by the

genome and patterns of gene expression that translate to the ability - or lack of - to degrade

and absorb certain nutrients. Other factors, like the gut microbiota, are more volatile because

its composition is highly moldable by diet and lifestyle.

Multi-omics technologies can support the comprehensive collection of dietary intake

data and monitoring of the health status of individuals. Also, a correct analysis of this data

could lead to new insights about the complex processes involved in the digestion of dietary

components and their involvement in the prevention or the appearance of health problems,

but its integration and interpretation is still problematic.

Thus, in this thesis, we propose the utilization of Constraint-Based Reconstruction and

Analysis (COBRA) methods as a framework for the integration of this complex data. To

achieve this goal, we have created a knowledge-base, the Virtual Metabolic Human (VMH),

that combines information from large-scale models of metabolism from the human organism

and typical gut microbes, with food composition information, and a disease compendium.

VMH’s unique combination of resources leverages the exploration of metabolic pathways

from different organisms, the inclusion of dietary information into in-silico experiments

through its own diet designer tool, visualization and analysis of experimental and simulation

data, and exploring disease mechanisms and potential treatment strategies.

VMH is a step forward in providing the necessary tools to investigate the mechanisms

behind the influence of diet in health and disease. Tools such as the diet designer can be

XVII
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used as a basis for diet optimization by predicting combinations of foods that can contribute

to specific metabolic outcomes, which has the potential to be integrated and translated into

treatment development and dietary recommendations in the foreseeable future.
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Chapter 1

Introduction

Abstract
Non-communicable diseases (NCDs) have a high societal impact and represent significant
costs for the healthcare systems around the world. These diseases result from a combination
of factors but are closely related to unhealthy lifestyle and nutrition. Understanding the mech-
anisms behind the effect of nutritional patterns in health is not trivial and there are limitations
associated with dietary assessment tools and studies of nutrition that further complicate this
task. For this purpose, novel technologies, such as metabolomic or metagenomic sequencing
are being used in an attempt at better characterizing the effect of different diets, foods, and
nutrients. Due to the high complexity of these data, more and more, a systems biology
approach becomes necessary for the study of nutrition. Constraint-Based Reconstruction and
Analysis (COBRA) uses Genome-Scale Metabolic Models (GEMs) to study the metabolism
of human and microbial species. We propose that GEMs and the COBRA approach as a suit-
able framework to integrate the complex data generated in nutrition studies and provide the
simulation tools that will allow formulating hypothesis to explain the mechanisms behind the
effect of different dietary patterns in health. Achieving this will pave the way for personalized
dietary recommendations.

3



4 CHAPTER 1. INTRODUCTION

1.1 Nutrition

Societies are facing an increase in non-communicable diseases (NCDs), also known as chronic

diseases. These conditions are known to be a result of a combination of genetic, physiological

and environmental factors. They are often associated with older populations but affect people

in all age groups. The main risk factors associated with NCDs are very closely related to

lifestyle, consisting of unhealthy diets, physical inactivity, exposure to tobacco smoke or

the harmful use of alcohol [87]. Diet-associated diseases and risk factors are widespread

across the population worldwide. According to the Global Nutrition Report of 2017, more

than half of the European population is overweight [71]. The statistics of different european

countries reveal a trend of high incidence of risk factors for diet-related non-communicable

diseases, such as raised blood pressure, blood glucose, and blood cholesterol (Figure 1.1).

Particularly in Luxembourg, the ORISCAV-LUX study (2007-2008) reported that 85% of

the population displayed one or more risk factors for cardiovascular disease: notably 35%

of the population has hypertension, 70% increased lipid levels in blood, and 54% of the

population is overweight (BMI above 25) with 31% of these considered to be obese [6].

These numbers demonstrate the high societal impact and an associated increase in costs for

the health care system resulting from unhealthy lifestyle and nutrition. For these reasons,

there is great interest in promoting the understanding of how health is influenced by different

diet compositions and how the complex systems involved in food digestion interact with

each other. Nutrition is a subject that undoubtedly attracts a lot of attention from the general

public when comparedwith other fields of science. It is common to come across contradictory

information and passionate discussions about the efficacy of specific diets. Often, nutritional

studies receive broad media coverage in the form of misleading headlines and very little detail

on the used methodologies and their limitations. In fact, it is extremely difficult to derive

knowledge from results obtained from nutritional studies due to the involvement of a great

many confounding factors. To understand these limitations we will start by covering the main

features of dietary assessment tools and types of nutrition studies.
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2 billion adults are
overweight or obese

Worldwide

Metabolic risk factors for diet-related
non-communicable diseases (%)

Men Women

25

9

35

21

8

38

Prevalence of adult overweight
and obesity (%), 2014

Women

Men

36

38

10

14

Overweight (BMI ≥ 25) Obesity (BMI ≥ 30)

Europe
63% men overweight (21% obese)
52% women overweight (23% obese)

Metabolic risk factors for diet-related
non-communicable diseases (%)

Raised Blood Pressure (%), 2015 Raised Blood Glucose (%), 2014

Raised Blood Cholesterol (%), 2008

Luxembourg

Men

28

7

70

Women

16

4

64

France

Men

28

7

64

Women

16

4

60

Belgium

Men

22

6

65

Women

13

3

60

Figure 1.1: Incidence of obesity and risk factors for NCDsworldwide and in Europe. Adapted
from the Global Nutrition Report 2017 [71].

1.1.1 Dietary assessment tools

Acquiring reliable and accurate information on food intake from free-living individuals is a

known limitation of nutrition studies. Nutrition studies often require that volunteers remember

what they have eaten over certain periods of time. Some studies go to the extent of collecting

information on dietary habits for periods of years [198]. But how reliable and accurate is

this information? Typically, the three most common dietary assessment tools used are: (i)

food records (or journals/diaries), (ii) 24-hour recall, and the most popular of these, (iii) food

frequency questionnaires (FFQ) [308, 309].

Food journals/records are a collection of all food and beverages consumed over a period of

time, typically in the range of a few days. Food records tend to bemore accurate if participants

weigh food portions. The amounts consumed can be recorded using a scale, household
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measures, or with the aid of pictures [38]. This assessment tool carries a high respondent

burden and misreporting issues tend to occur when periods of consecutive recording go

beyond 4 days [101].

A 24-hour recall, as the name indicates, involves remembering and recording all foods

consumed during a whole day. This tool has a low respondent burden and is suitable for large-

scale studies. The recall can be conducted by an interviewer [41, 44] or be self-administered

[12, 11, 321]. 24h recalls have some limitations regarding the accuracy of portion size

estimation and misreports. Additionally, they are single observations and do not portray

the typical diet of the respondent. For this reason, it is necessary to collect several data

points. To address some of these limitations automated self-administered instruments were

developed, such as the ASA24 [297] developed at the National Cancer Institute [298, 295].

These systems collect food composition data from established databases and in some cases

use food photographs to help users indicate portion size [295]. In this fashion, the collection

of high-quality dietary data in large-scale is more effective [321, 167].

An FFQ is a collection of the relative frequency of consumption of a list of foods or

food groups. Many FFQs also integrate portion size information. They are suitable for

large-scale surveys with a low respondent burden and are designed to capture the overall

dietary habits of the respondents. For this reason, the food list of the FFQ must be carefully

designed according to the target population. These lists can have different lengths, and

research suggests that longer lists perform better [209]. At the same time, it is not clear if

portion size questions in FFQs are useful [209]. Food intake frequency has a bigger impact

than the size of serving in the intake variance of most foods [121, 84] but some studies

report slight increases in performance by having portion size information [61, 34]. Similarly

to other retrospective assessment tools, FFQs are susceptible to misreports, estimation of

portion sizes and possible over-representation of healthy foods. In fact, validation studies

of FFQs using recovery biomarkers have shown that they significantly underestimate energy

[123, 296, 248, 267, 218] and protein intake [33, 245, 227, 246, 32] of respondents. Due

to this large measurement error, the NCI Dietary Assessment Primer suggests that other

assessment tools should be prioritized [38] and that FFQs might be more useful if used in

combination with other tools [43, 119, 165].

As previously stated, some of the limitations of dietary assessment tools are being ad-



1.1. NUTRITION 7

dressed with the use of technology. Electronic dietary assessment tools can ease the respon-

dent burden and increase adherence [88]. More importantly, the ubiquitous nature of mobile

technologies provides the means to assist dietary assessment or the creation of novel meth-

ods that can address the pitfalls of the classical approaches. Electronic dietary assessment

methods have been used for several years but more recently, tools to address the portion size

estimation and respondent burden problems using image recognition technology have started

emerging [268]. This ongoing effort uses novel technologies such as deep learning to develop

such applications [207].

Dietary assessment tools allow collection of data that can be used to capture dietary habits

of study participants. These tools have, as shown, some limitations that make the task of

deriving knowledge from study results more difficult. Additionally, when interpreting results

from nutrition studies, one also has to consider the study design and associated benefits and

shortcomings. We will discuss this in the next section.

1.1.2 Observational Studies and Randomized Controlled Trials

The search for optimal diets is an ongoing effort in society and the research community.

Most nutrition studies that try to address how specific foods or dietary regimes are affecting

health are observational. These studies are by definition subject to many confounding factors

and this led to several producing contradictory results and controversy [91, 292, 197]. Data

from observational studies, in particular from prospective cohorts, is critical for research in

the nutritional field but it has limitations that should be considered. Measurement errors

are a common issue with limitations innately associated with the already discussed dietary

assessment tools. Another known issue relates to the fact that study participants show a

tendency for under-reporting their energy intake [266, 20, 33]. This tendency also seems to

correlate with social desirability and social approval traits (e.g. BMI)[271, 122, 126, 125,

127]. Additionally, this issue is also more closely associated with foods that are perceived as

bad nutritional choices, such as sugary foods and alcohol [181]. Perceived physical activity,

on the other hand, shows the opposite trend with a tendency for over-reporting [3].

Isolating the effects of specific nutrients is a challenge as nutrients can be highly cor-

related as they are often present in the same types of food. Food nutrient composition is
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heterogeneous and depends on the type and cost of the product (organic/local farm products

versus industrialized). Furthermore, food databases often lack complete information about

nutrient content. Substitution effects might also occur: when testing for a specific nutrient

the volunteers will change this diet. This change can cause unforeseen effects, confusing

the obtained results. Another important point to bear in mind is the individual response

variation to dietary exposure, depending on factors that might not be taken into account, such

as lifestyle. Cardiorespiratory fitness is often not assessed and replaced with questionnaire-

based physical activity assessment which often provides imprecise estimations [3, 277]. The

composition of the gut-microbiota of each individual has a role in health and disease [55] and

is often disregarded in nutrition studies. Some of these problems, however, are not limited to

observational studies.

RandomizedControlledTrials (RCTs) are considered themost reliable studies for evidence-

based medicine with some researchers advocating for their wider use in nutrition [35, 146].

These trials reduce the probability bias by randomly allocating treatments or dietary inter-

ventions. RCTs have, in some cases contradicted observational studies. A meta-analysis

of several observational studies showed that B-vitamin could potentially decrease coronary

heart disease risk [143]. However, 8 large RCTs failed to demonstrate this association [54].

RCTs have also failed to demonstrate that higher consumption of antioxidant vitamins reduces

CHD risk [252, 343] as previous observational studies had proposed [192, 291].

RCTs are also not free of limitations [124] or failures. The vitamin supplement efficacy is

still an ongoing discussion [213]. A double-blind randomized controlled trial involving preg-

nant woman showed that choline supplementation did not boost fetal brain supplementation

[48], but it is estimated that 44% of women have increased dietary choline requirements due

to genetic variants [346]. TheWomen’s Health Initiative calcium and vitamin D controversial

results showed that calcium and vitamin D supplementation did not have a positive effect

on the risk of bone fractures [148]. However, this result seems to have been caused by an

erroneous estimation of calcium intake by members of the control group [213].

RCTs minimize some of the effects of confounding factors when compared with observa-

tional studies. This does not mean, however, that observational data is not useful. There are

situations where performing a RCT is simply not possible. Additionally, there are cases where

data from both studies are concordant. One of these cases was shown for the relation between
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the Mediterranean diet and reduced cardiovascular risk. Results from the PREDIMED study

[78] were aligned with previous observational data [66, 273, 287].

While classical drug studies use placebo groups that allow the verification of a significant

andmeasurable effect of the tested drug, such is impossible for nutrition studies. The effects of

nutrition interventions are, by design, more subtle and nutrients cannot be completely removed

from the diet of the participants. Additionally, there are various confounding factors and

limitations in the dietary assessment of habitual diet of free-living populations. Biomarkers

of nutrient intake can support this effort objectively assessing dietary consumption, avoiding

the bias and errors of self-reporting. The rise of multiple omics technologies is an opportunity

to objectively quantify the effects of nutritional patterns in the organism.

1.2 Foodomics

In previous sections, we discussed the subjective nature of self-reported dietary assessment

methods and how that poses challenges in the interpretation of results obtained from nutrition

studies. In addition, other factors increase the difficulty of result interpretation in nutrition.

Nutrient-nutrient interactions caused by the ingestion of different combinations of foods can

influence nutrient absorption. Food-composition databases are also prone to imprecision due

to the natural variation of nutrient content in the same food item. For instance, selenium

amounts in cereals and grains is determined by the amount of selenium in the cultivated soil

[211], which implies that location and distribution plays a role in the validity of data [254].

Another good example is Vitamin E, coming from different fat and oils [247, 200], that is

affected by the processing procedure, shelf life, and whether antioxidants were added to the

product, restoring oxidized vitamin E [310, 281, 297].

Biomarkers of food intake have the potential to address some of these limitations by

assessing intake and exposure to foods more accurately and on different time-scales (short,

medium, and long-term [247]). To avoid the effect of confounding factors such as lifestyle

and genetic variability a more "complete picture" is necessary. Omics technologies can play

an important part in this as they are used to collectively quantify and characterize pools of

biological molecules. In this section, we will discuss several of these technologies and how

they are being used for the study of nutrition.
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1.2.1 Nutritional Genomics

The study of the complexity, diversity, and influence of genomes started with the discovery

of the DNA structure but the origin of genomic technologies can be traced back to the 1970’s

with the development of DNA cloning [96]. Since then, genomic technologies went through

incredible developments. In the early 2000s, the establishment of the first reference human

genome promoted the development of high-throughput sequencing platforms which caused

an abrupt decrease in cost for sequencing [107]. These high-throughput technologies, known

as Next-Generation Sequencing (NGS), are today important research and clinical tools.

Thanks to these technological developments, the field of Nutritional Genomics arose

to study gene-nutrient interactions, with the potential for the development of personalized

nutrition approaches based on the genetic make-up of each individual [155]. Despite this,

research and applications are sensitive to the complexity of food and variable mechanisms

that cause diseases [158, 157]. Other questions arise, how will gene expression change in

response to different exposures or interactions with nutrients? Will these changes affect the

health of an individual? Nutritional genomics covers not only the analysis of the genome but

also the epigenetic and transcriptomic modifications and interactions caused by the intake of

food [242, 263].

There are known conditions caused by single gene defects and associated nutrient inter-

actions. For instance, Phenylketonuria (PKU), an inborn error of metabolism, is caused by

a PAH faulty gene that codes for an enzyme that degrades the amino acid phenylalanine. If

left untreated the disease can cause intellectual disability [67]. Despite not being curable,

the disease is treatable thanks to a combination of a specific diet low in phenylalanine and

medication. Another example is the genetic variant of the lactase gene that causes lactose

intolerance. The main treatment consists of cutting out foods with lactose but alternatives

exist, such as enzyme supplementation.

Not all gene-diet interactions involve a single gene. Gene-diet interactions exist for the

FTO and MC4R genes, consistently associated with obesity risk and with type-2 diabetes. In

a case-control study, it was suggested that the association of specific polymorphisms of these

genes with type 2 diabetes depends on the dietary pattern. Adherence to a Mediterranean

diet counteracts this genetic predisposition [233]. The same diet was also found to counteract



1.2. FOODOMICS 11

the predisposition for cardiovascular disease caused by a polymorphism in the TCF7L2 gene

[60].

Several genetic variants were identified for their association with diabetes and obesity

[205]. Some of these variants are closely related to obesogenic dietary exposure [156, 154,

159]. Genome-wide association studies (GWAS) have helped improve the understanding

of these diseases pathophysiology but fail to explain why, for instance why Asians tend to

develop diabetes at a younger age with a lower prevalence of obesity when compared to

European populations [340]. Other GWAS have identified gene variants associated with

diseases related to energy metabolism and aging. These associations usually are indicatives

of small increments in risk suggesting that there are other mechanisms playing a role, such

as epigenetic changes. Epigenome-wide association studies (EWAS) have reported that

epigenetic changes caused by diet and other factors complement genetic predispositions and

contribute to the development of metabolic and other types of disorders [208, 323, 105, 240].

In the effort to understand the association between genetic variation and diseases it is also

worth mentioning the work by the NIHRoadmap Epigenomics Consortium that has generated

the largest collection of reference human epigenomes for the study of the molecular basis

of human disease [178]. In this front, there are currently efforts in managing inflammatory

disease and general health through dietary factors [40, 147, 166, 69, 188, 120, 79, 319]. The

search for these nutritional targets and promotion of healthy aging will also encompass the

determination of optimal doses and exposurewindows during different phases of development

[320].

Despite all the good examples previously discussed, there is still a lack of clear associations

between specific genes and dietary intake or nutrient-related diseases. In fact, a recent

meta-analysis of commercially available nutrigenomic tests failed to find any statistically

significant association [241]. It seems that the genetic predisposition by itself fails to explain

the effect of dietary patterns on health. As nutrition research moves to the identification of the

physiological role ofminor dietary components andmonitoring of dietary interventions [265],

more systematic broad ranged techniques become relevant. Such is the case of proteomics

and metabolomics technologies.
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1.2.2 Proteomics

Nutritional proteins and peptides can have beneficial or adverse effects. Proteins are the only

source of essential amino acids and nitrogen for humans and can be obtained from animal and

plant sources [265]. Food allergies are generally caused by proteins and affect around 250

million people worldwide [327]. The continuing increase in the occurrence of these allergies

without an apparent reason is a theme of increased interest in nutritional research [52]. The

World Health Organization and the International Union of Immunological Societies created

a resource for the systematic nomenclature of allergens [133] in November of 2017 listed

882 allergens with 310 food allergens. While food legislation demands detailed allergen

content in food, detection and quantification remain challenging due to the high complexity

of food composition and food matrices. Emerging mass spectrometry methods might be able

to address some of these shortcomings [169]. This research might increase food safety but

also possibly support the discovery of the mechanisms underlying these allergies, still poorly

understood.

Proteomic analyses are commonly used to study bioactive peptides, specific fragments of a

protein that can potentially influence health [168]. Various studies sought to identify bioactive

protein and peptides in milk from human and other mammalian sources [272, 285, 201, 13].

These studies identified various functions for these proteins such as beneficial effects on host

immune response [80, 238], antimicrobial and anti-amnestic activities, antioxidant effects

among others [26]. Attempts to mechanistically identify endogenously produced peptides in

human milk were also pursued. More than 700 naturally occurring peptides were found to

derive from 30 human milk proteins [112].

Another focus of nutriproteomics is in studying these bioactive proteins and peptides in

plant sources. These proteins are a valuable replacement for animal protein and have a smaller

ecological impact. Typically, plant-based protein sources include soy, wheat, and legumes.

The nutritional value of these has been thoroughly analyzed in terms of their bioactive protein

and peptide content [180]. In the case of wheat, these analyses are important as bread quality

depends on the protein content of the seeds [98]. Soybean, traditionally used in Asia, offers

the complete set of essential amino acids and proteomic analysis support some of the health

claims made in their favor [92, 180]. Characterization of protein content in peas, for instance,
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was also studied to evaluate plasticity of protein composition [37].

The increasing volume of information generated by proteomic studies specifically on the

bioactive proteins and peptides content, their characteristics, and how they can affect health

can promote the design of strategies to tailor nutritional interventions or the development of

products that promote beneficial physiological effects.

1.2.3 Metabolomics

Analogous to other omics, metabolomics is the field that aims at characterizing the full set of

small molecules (metabolites) that are the substrates and products of metabolism [306, 219].

In the human, metabolites can be produced by the body, by colonizing microorganisms

[318, 113], but also from exogenous sources such as drugs, diet, and other exposures such

as toxins from the pollutants [150] (Figure 1.2). These small molecules are involved in key

cellular functions such as energy production and storage, apoptosis, and signal transduction

[186]. They are also indirectly involved in other processes such as regulating epigenetic

mechanisms [290, 160, 316] or modifying protein activity [328, 216].

Metabolomics technologies allow researchers to measure hundreds of metabolites simul-

taneously, mainly through the use of mass-spectrometry, an analytical tool that measures

mass-to-charge ratio of ionized chemical species to determine their identity. The typical

approaches consist in measuring metabolites in a targeted or untargeted manner. Targeted

metabolomics, as the name indicates, is used to target metabolites and metabolic pathways of

interest and thus, requires a priori knowledge. When compared with untargeted approaches,

these methods offer more sensitivity and selectivity. However, untargeted approaches, espe-

cially liquid chromatography/mass spectrometry (LC/MS) the most common method used

in metabolomics studies, measures thousands of signals offering a more global overview of

metabolism[239]. Despite this, hundreds of unknown signals that might correspond to un-

known metabolites are found in metabolomics datasets [344]. The challenges of translating

these signals into metabolite identities and analysis of complex metabolomics datasets are

being addressed with the development of numerous analytical tools and databases to store

metabolite identity information. Methods for the analysis of these type of data are available

for researchers in tools such as MetaboAnalyst [338, 339], XCMS Online [139], Bayesil
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[253], Workflow4Metabolomics [102], MetFrag [334], and MyCompoundID [140]. To com-

plement these methods, several databases of metabolite identifiers are available, notably,

HMDB [333, 331, 330], METLIN [286], MassBank [137], and GMD [172, 142].

This capacity tomeasure and analyze thismany chemicals led to several projects to identify

the metabolome of human [333, 331, 330], plants [18], and microbes [318]. Initially, the

promise of metabolomics was to address the discovery of biomarkers correlated with various

diseases but researchers started finding that the metabolome shows noticeable differences

that are related with gender, age, health status, genetics, and most importantly, diet [136,

284, 175, 129]. In this context, different studies also characterized responses to the intake of

whole foods or food constituents [289, 191, 312].

Endogenous metabolites

Food metabolites

Xenobiotics

Human metabolome

Microbiota-origin
metabolites

Human-origin
metabolites

Diet
Drug metabolites Environmental

exposures

Figure 1.2: Overview of the different origin of metabolites that compose the human
metabolome.

As such, metabolomics in nutrition has the potential to address some of the limitations

of current dietary assessment tools if objective biomarkers of food intake are characterized.

Traditionally, biomarkers of food intake were identified/measured in epidemiological studies

from samples such as serum, red blood cells, and urine. These biomarkers can be used

to assess specific food or food group intake. A systematic review of intervention studies

has identified carotenoids and vitamin C as biomarkers for fruit and vegetable intake [19],

urinary and phenolic acids can serve as biomarkers for polyphenol-rich food intake [206]
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such as spices and dried herbs, darkly coloured berries, cocoa products, seeds, nuts and

some vegetables such as olives and globe artichoke heads [244] but also tea and wine [132].

Alkylresorcinol concentrations seem to correlate with whole-grain food intake [10, 257],

plasma concentrations of daidzein and genistein (isoflavones) can assess the intake of soy

[322] and fatty acids are related with the intake of meat, dairy products, and fish [7, 215, 15].

Dietary biomarkers are also susceptible to other influences besides diet. In this context,

the Food Biomarkers Alliance (FoodBall) project was created, spanning 11 countries. This

project aims at the development of clear strategies for food intake biomarker discovery and

validation [foo]. Dietary biomarkers have typically short half-lives, and are most suitable

for identification of frequently consumed foods or food groups. While classical approaches

remain relevant, omics technologies, in particular, metabolomics, give a more global snap-

shot of the biological phenotype and thus, enable the analysis of combinations of dietary

components and diet-induced metabolic changes [103]. Taken together these technologies

carry the potential for the development of personalized nutrition approaches [228].

1.3 The Gut Microbiota

Symbiosis is an essential aspect of nature. In fact, mitochondria and organelles in human

cells are remnants of prokaryotes and are essential to life [179]. Symbiotic interactions with

microbial communities are present throughout nature and the human bodies alike. In particu-

lar, the human gut microbiota is composed of thousands of different microbial species [348].

In human adults, 60% of the bacteria belong to the Bacteroidetes and Firmicutes phyla [17].

Common found genera of bacteria are Bacteroides, Bifidobacterium, Lactobacillus, Clostrid-

ium, Escherichia, Ruminococcus, and Streptococcus. While the community composition is

highly variable between individuals their metabolic capabilities are well conserved [58].

Several studies have reported that imbalances in gut microbial populations can be asso-

ciated with diseases such as obesity [347], type 2 diabetes [249], and inflammatory bowel

disease (IBD) [90]. For this reason, there is an increased interest in understanding how the

dysbiosis of these microbial communities contributes to the mechanism of disease and how

strategies can be devised to avoid or treat these imbalances andmaintain health. These studies

investigate correlations between composition and a disease state and in line with this, treat-
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ments for gut-associated diseases are designed to revert the composition of a dysbiotic gut

microbiota community to mimic one of a healthy individual. These treatments are typically

ingestion of probiotics [99], changes in diet to include prebiotics [42], and the most radical

form of gut microbiota modulation, fecal microbiota transplantation [258].

The composition of the gut microbiota is highly influenced by age, genetics, and diet

[104]. These microbial communities indeed play an important role in nutrition. They digest

dietary fibers [74] providing fermentation products such as short-chain fatty acids (SFCAs).

These can be used by the host as energy precursors [75] and benefit the immune system [95].

Furthermore, these microbes also supply the host with essential amino acids and vitamins

[274]. It has been shown that long-term dietary patterns modulate the composition of the gut

microbiota [336, 214, 74, 185, 324] but in a study that tested animal-based and plant-based

diets, significant changes in the composition of the microbiome occur in a matter of days [64].

Additionally, the composition of the gut microbiota can be used as a basis for the prediction

of blood-sugar level responses and therefore, be used for dietary recommendation [345]. In

a later study, a similar predictive method was applied for the blood-glucose level in response

to the consumption of different types of bread [173].

Metagenomics techniques are the most common tools to study the composition of the gut

microbiome. Analysis of stool samples to derive the microbiome composition are usually

achieved by identifying the 16S ribosomal RNA gene content or whole genome shotgun

sequencing. Knowing the composition of individual microbiomes allows the association of

specific compositions with conditions or dietary patterns. However, the high complexity and

inter-individual variability of the gut microbiota composition makes it extremely difficult to

understand the underlying mechanisms and specific pathways involved in the observations.

Computational methods can support the exploration of these mechanisms and support the

generation of models and hypothesis to be tested in subsequent experiments. In the case of

nutrition, if these computational tools are able to integrate data from the microbiome and

previously discussed omics, then they can provide a unique opportunity for personalized

dietary intervention. In this work, we propose constraint-based reconstruction and analysis

(COBRA) as the framework to achieve that.



1.4. CONSTRAINT BASED RECONSTRUCTION AND ANALYSIS 17

1.4 Constraint Based Reconstruction and Analysis

Constraint-based reconstruction and analysis (COBRA) is an approach that typically uses

genome-scale metabolic reconstructions (GENREs) to study metabolic pathways, specific

organisms, or metabolic interactions [225, 237]. GENREs represent the full portfolio of

metabolic reactions known to be present in a given organism or cell. The starting point of

these reconstructions is an annotated list of genes that code for metabolic enzymes [304].

This process can be performed automatically in a time-efficient manner thanks to different

available tools and databases [152, 45, 131]. These automatically generated reconstructions

are typically referred as "drafts" and usually go through a process of manual curation that

addresses issues related with reaction stoichiometric and directionality consistency [85], gene

mis-annotations [109], and integration of data derived from experiments [304]. This manual-

curation is often very time-consuming and to address this issue several tools and algorithms

have been created. Recently in our group, we have also published the largest collection

of reconstructions for gut microbes by semi-automatically curating reconstructions [195].

The methods used to generate the AGORA collection are a step forward in the creation of a

framework that greatly increases the speed and quality ofmetabolic reconstruction generation.

Network reconstruction
Genomics, physiology and 

biochemistry

Context-specific reconstructions
Transcriptomics, proteom-

ics and metabolomics

Application of constraints 
and simulations

E.g. diet and thermodynamic 
information 

Visualization and
analysis

E.g. interaction profiles, 
flux distribution visualization 

Figure 1.3: The COBRA approach: GENREs are build from the genome annotation and
manual curation. Metabolic models are derived by integrating data from different sources.
Simulations capture the predicted behavior of the cell/organism under specific conditions.

Metabolic modeling

Metabolic reconstructions can be converted to mathematical representations in the form of a

matrix: the stoichiometric matrix (S-matrix). In this matrix, rows represent metabolites and
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columns reactions. Each cell, or entry, of the matrix, will contain a value that indicates the

stoichiometric coefficient of the metabolite in the reaction. These reconstructions can then be

formalized as metabolic models and be used to simulate physiological states. This is achieved

by applying condition specific constraints that can specify the medium conditions (e.g. for

bacterial growth experiments) or constraining the flux of specific internal reactions according

to experimental data. The most commonly used method, Flux Balance Analysis (FBA)

[234], specifies an objective function, typically biomass production or ATP maintenance,

which produces a "biased" flux vector that represents one of many flux distributions that

satisfy the objective and constraints. This set of possible solutions, or solution space, can

be investigated using flux variability analysis (FVA) [110] that for each reaction, gives the

minimum and maximum flux value in the solution space. Sampling this solution space allows

gathering information on the distribution of alternative solutions [116, 269].

These methods are available for the scientific community through software packages

such as the CobraToolbox [130] and have been used for modeling human and gut micro-

biota metabolism. Importantly, the COBRA approach enables the integration of data from

previously described omics technologies [16, 36, 144], or to use these data to generate

context-specific reconstructions [184] (Figure 1.3). Taken together GENREs and COBRA

methods have been used to address numerous biomedical questions, including the phenotypic

consequences of dietary regimes [262, 280] and enzyme deficiencies [260, 279, 305, 236].

1.5 Scope and aim of the thesis

This thesis describes the development of a knowledge base that aims at integrating different

types of information into the COBRA framework and pave the way for its usage as a tool

for nutritional recommendations (Figure 1.4). For this purpose, the project was divided into

two main objectives: the development of a knowledge-base that integrates human and gut

microbiome metabolism and then, the inclusion of information on nutrition and diseases.

This thesis describes my work in building the Virtual Metabolic Human (VMH).

It will begin with an overall description of the developed knowledge-base and it’s content.

After that, using the developed database and its tools, several examples of analysis of the

data are shown. A technical description of the database and its application programming
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Figure 1.4: The integration of metabolic reconstructions of human and gut microbial
metabolism with nutritional information and disease will allow combining such information
with multi-omics data. This combination of resources can become a tool for personalized
nutrition.

interface (API), as a manual of usage, will also be provided. To conclude, I make a reflection

on the challenges and tribulations that the development of a project such as the VMH can

bring to researchers in the fields of computational biology and bioinformatics. I discuss

my journey in the development and implementation of this project and how adopting agile

software development tools and approaches can benefit researchers. I have the hope that

these can be more commonly adopted by research teams in the near future.

Below are short descriptions of each chapter and the detailed contributions of the different

collaborators involved.
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Chapter 2: The Virtual Metabolic Human database: integrating hu-
man and gut microbiome metabolism with nutrition and disease

Chapter 2 describes the Virtual Metabolic Human (VMH), a database that combines

information on genome-scale reconstructions of human and microbial metabolism. The

content of the database is described along with several examples of the user interface and it

can be used.

Contributions

Alberto Noronha (AN) and Ines Thiele (IT) designed the study. AN, Yohan Jarosz (YJ)

and Reinhard Schneider (RS) developed the necessary infrastructure for the project. Jennifer

Modamio led the update on ReconMap. AN, IT, Laurent Heirendt, German Preciat, Beatrice

Pierson, Hulda S. Harulsdottir, Almut Heinken, Stefania Magnusdottir, Eugen Bauer, and

Ronan M. T. Fleming contributed with content to the database. AN developed the database,

web-interface, and web API. AN and IT wrote the manuscript. All authors reviewed and

approved the text.

Chapter 3: Design and applications of the Virtual Metabolic Human
database

Chapter 3 describes the database structure of the VMH database and the development

of the web application programming interface that allows third-party access to the database

content. Examples of the usage of the API are given. Finally, applications taking advantage

of the connectivity of the different resources and tools that compose VMH are shown.

Contributions

IT and AN designed and planned this work. AN, YJ, and RS created the necessary

infrastructure. AN developed the database and web API. AN and IT wrote the text.

Chapter 4: Visualization of Metabolic networks and Disease maps
Chapter 4 describes the development ofReconMap, an interactivemapof humanmetabolism

and Leigh Map an interactive gene-to-phenotype approach to the diagnosis of Leigh Syn-
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drome. This chapter is a combination of the reprints of the ReconMap paper published in

Bioinformatics in February 2017 [223] and the Leigh Map paper, published in the journal

Annals of Neurology, in January 2017 [250].

Contributions

For the development of ReconMap, IT and Ronan M. T. Fleming (RMTF) were involved

in the conception and design of the project. AN, Anna Dröfn Daníelsdóttir, Freyr Jóhannsson,

Soffía Jónsdóttir, Sindri Jarlsson, Jón Pétur Gunnarsson, and Sigurður Brynjólfsson manually

designed the map. AN, RS and Piotr Gawron supported the integration of ReconMap into

the MINERVA framework. All authors read and approved the manuscript.

For the Leigh Map text Shamima Rahman (SR) and IT were involved in the conception

and design of the study. Joyeeta Rahman (JR) and AN acquired the data and created the

network. SR, IT, JR, and AN drafted the manuscript and the figures.

Chapter 5: Challenges and tribulations in the development of a bio-
logical database

Chapter 3 provides an overview of some of the main decisions that need to be made in

the development of a biological database. It intends to be a starting guide for researchers

involved in similar projects.

Contributions

IT and AN planned, wrote, and reviewed this chapter.

Chapter 6: Concluding remarks
Chapter 6 contains the conclusions of this thesis and the author’s personal outlook on the

future directions of the use metabolic modeling in the field of nutrition.

Contributions

The text was fully written by AN.
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Chapter 2

The Virtual Metabolic Human database:

integrating human and gut microbiome

metabolism with nutrition and disease

Completely or partially as in: Alberto Noronha, Jennifer Modamio, Yohan Jarosz, Laurent

Heirendt, German Preciat Gonzàlez, Beatrice Pierson, Hulda S. Harulsdottir, Almut Heinken,

Stefania Magnusdottir, Eugen Bauer, Reinhard Schneider, Ronan M. T. Fleming, Ines Thiele.

The Virtual Metabolic Human database: integrating human and gut microbiome metabolism

with nutrition and disease. Manuscript in preparation.

Abstract
Nutrition plays a key role inmetabolic homeostasis and an unbalanced diet is associatedwith a
variety of conditions, such as diabetes and cardiovascular diseases. Metabolism is influenced
by genetic and environmental factors and an integrated analysis of data originating from
different fields, such as physiology, genetics, and gut microflora is necessary to foster a better
understanding of its mechanisms. Genome-scale metabolic models provide a framework
for this integration, but a knowledge-base for this purpose is necessary. We have created
the Virtual Metabolic Human (VMH), a resource that integrates human and gut-microbe
metabolic reconstructions with nutritional and disease information. This integration and the
different tools provided by this resource offer a unique environment for the study of the effect
of diet on the metabolic system. VMH aims at guiding research in the field of nutrition and
support the knowledge gain that could impact the way healthcare and disease prevention is
perceived.

23
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2.1 Introduction

Lifestyle parameters, such as diet, are recognized as major modulators of human health

and have an important contribution to onset, progression, and severity of various diseases,

including cancer, metabolic diseases, and neurodegenerative diseases. To understand these

diseases, one needs to account the various factors that influence how the humanbodyprocesses

food. Some of these factors are determined by the genome and patterns of expression of

particular genes that translate to the ability - or lack of - to degrade and absorb certain

nutrients. Other factors are the composition of the gut microbiota, the diet, and the lifestyle.

While multi-omics technologies can support the comprehensive collection of dietary intake

data and monitoring of the health status of individuals, the high complexity of these data

poses challenges in its integration and interpretation. This integration could indeed lead to

insights about the complex processes involved in the digestion of dietary components and

how these can contribute or prevent the appearance of the aforementioned conditions.

Databases are a compelling way of storing, connecting, and making available a multitude

of information derived from primary literature, experimental data, genome annotations,

beyond others. Metabolism-related databases include, but are not limited to the following. For

instance, theKyoto Encyclopedia of Genes andGenomes (KEGG) is an extensive biochemical

database covering almost 4000 organisms [152, 153]. BioCyc [45, 161] is a multi-scale

knowledge resource containing a collection of 7667 pathway/genome databases. The Human

Metabolome Database (HMDB) is the most comprehensive collection of human metabolite

data [333, 331, 330], which is also connected to FooDB, a comprehensive resource of

nutritional information with 28,000 food components and food additives, and Drugbank,

which contains detailed information on FDA approved and experimental drugs [332]. The

Human Protein Atlas contains protein expression and RNA-seq data for numerous human

tissues and cell lines [315]. The BiGG knowledge-base [164] is a resource for centralized

storing of genome-scale metabolic reconstructions, providing search functionalities, pathway

visualization via Escher [163], and a comprehensive application programming interface.

However, despite the wealth of biochemical databases, there is no database that explicitly

connects human metabolism with genetics, (gut) microbial metabolism, nutrition, and dis-

eases. One reason for this may be the use of non-standardized nomenclature that complicate
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their integration. Moreover, manual curation of database content is time-consuming and

requires expert domain knowledge. Genome-scale metabolic reconstructions represent the

full repertoire of known metabolism occurring in a given organism and describe the under-

lying network of genes, proteins, and biochemical reactions. High-quality reconstructions

go through an intensive curation process that follows established protocols to ensure a high

quality and coverage of available information about the organism [304]. Thus, metabolic re-

constructions represent valuable knowledge bases summarizing current metabolic knowledge

about organisms.These reconstructions enable the integration of data originating from dif-

ferent “-omics” technologies [16, 36, 144]. Moreover, several algorithms exist that use these

“-omics” data to generate context-specific reconstructions [232]. This so-called constraint-

basedmodeling approach (COBRA) is completed by a plethora ofmethods that use condition-

specific models derived from these reconstructions to simulate the phenotypic behavior of

the cell or organism under different conditions [234, 237].

Here, we describe the Virtual Metabolic Human database (VMH, http://vmh.life), which

has at its core the manually curated human metabolic reconstruction, Recon 3D, which

has been developed by the systems biology community over the past decade [39, 73, 300,

305]. Recon 3D describes the underlying network of genes, proteins, and biochemical

reactions present in at least one human cell, as encoded by 17% of the protein-coding part

of the human genome. Using Recon 3D as a docking station, we could connect manually-

curated genome-scale metabolic reconstructions for more than 770 human gut microbes

thanks to an overlappingmetabolite and reaction nomenclature [195]. We then linked over 200

Mendelian metabolic diseases [260] to the genes present in Recon 3D as well as the molecular

composition of more than 8000 food items from the USDA National Nutrient Database for

Standard Reference [317]. Moreover, all VMH entries are connected to external databases,

makingVMHa unique reference database for humanmetabolism. A comprehensive, Google-

like map of the human metabolism, ReconMap [223] and a Leigh-disease specific map [250]

are hosted on VMH permitting the visualization of simulation results. VMH is composed

of three layers, a MySQL relational database (for information storage), a representational

state transfer application-programming interface (API), and a user-friendly web interface for

browsing, querying, and downloading theVMHdatabase content. Users can provide feedback

through the different platforms of the website, which will be curated and integrated into the
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knowledge base. Taken together, VMH represents a novel, comprehensive, multi-faceted

overview of human metabolism.

2.2 The Virtual Metabolic Human

The VMH consists of four resources: “Human Metabolism”, “Gut Microbiome”, “Disease”,

and “Nutrition”. These are interlinked based on shared nomenclature and database entries

for metabolites, reactions, or genes (Figure 2.1).
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Figure 2.1: Overview of the Virtual Metabolic Human. The database is composed of 4
resources: "Human Metabolism", "Gut Microbiome", "Disease", and "Nutrition". The 4
resources are connected with each other through entities sharing nomenclature.

Overall, the VMH contains 18,107 unique reactions, 5,222 unique metabolites, 3,288

human genes, and 486,471 microbial genes as well as 255 diseases, 773 microbes, and 8,790
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food items. The underlying database architecture allows for easy navigation between the

four resources. For instance, one can connect the reaction and metabolite content between

the “Human” and the “Gut microbiome” resources to identify common or specific metabolic

modules across organisms as well as their complex interactions. The "Disease" resource is

connected with the "Human" resource by disease-affected genes as well as biomarker infor-

mation in the form of metabolites [260]. Finally, the “Nutrition” resource is connected with

the "Human" and "Gut microbiome" resources by mapping food nutrients to 100 metabolites

(Figure 2.1). Each resource is “one-click-away” and all search results and database content

are downloadable. Each entity of the database (e.g., metabolite, reaction, and gene) has a

detail page where additional information is provided, connections with other entities of the

database, and links to external resources. In the following, we briefly describe the content of

each resource and detail pages.

2.3 Human metabolism

The VMH hosts the most recent version of human metabolic network reconstruction, named

Recon 3D [39], which accounts for 13,543 metabolic reactions distributed across 126 sub-

systems, 4,140 unique metabolites, and 3,695 genes. The content of Recon3D has been

assembled through extensive literature review over the past 10 years, and is continuously

updated by us and others. Each reaction, metabolite, and gene contains its own detailed page,

with additional information of supporting evidence in the literature, as well as their relations

with other entities of the database. Great emphasis has been put into collecting a compre-

hensive set of database dependent and independent identifiers, allowing the identification of

each entry and its cross-reference to other, external resources, such as KEGG and HMDB.

The visualization of metabolic pathways is an essential tool to understand the biolog-

ical processes. We have generated a substantially updated metabolic map of ReconMap,

which visualizes the extended and refined content captured Recon3D. , as well as a generic,

constrained model of Recon3D, can be downloaded in different formats, e.g., in the sys-

tems biology markup language (.smbl) or in the proprietary Matlab (.mat) format, from the

download page and the API.
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2.4 Gut microbime

This resource contains the AGORA collection of 773 semi-automatically curated strain-

specific metabolic reconstructions, belonging to 205 genera and 605 species [195]. All

microbial reconstructionswere based on literature-derived experimental data and comparative

genomics. A typical reconstruction contains an average of 771 (±262) genes, 1198 (±241)

reactions, and 933 (±139) metabolites. We provide detailed information for each strain and

reconstruction along with known fermentation products and carbon sources.

2.5 Nutrition

This resource contains themolecular composition information for 8,790 food items distributed

in 25 food groups, which was obtained from the USDA National Nutrient Database for

Standard Reference [317]. Of the 150 nutritional constituents, 100 could be mapped onto

the metabolites present in the VMH (Supplementary Table A.1). Within this resource, we

provide 11 diets, which were defined based on real-life examples and literature. For instance,

an "EU diet" was designed based on information from an Austrian Survey, on which about

100 people from different ages [77]. The composition of each meal (e.g., eggs and bread

for breakfast) is given in the appropriate portion sizes. The molecular composition can be

downloaded in g per person (70kg) per day or as flux rate (in millimole per person per

day), which can be directly integrated with, e.g., the human metabolic model in the COBRA

toolbox.

The 11 pre-designed diets available in VMHwere designed with the support of a nutrition

professional to follow the caloric content based on the average recommended daily intake

(around 2500 calories for a male person). The diets consist of a one-daymeal plan and include

information about energy content, fatty acids, amino acids, carbohydrates, dietary fibers,

vitamins, minerals, and trace elements. The information for the nutritional composition or

the foods and dishes has been provided by the “Österreichische Nährwerttabelle” (Gatternig,

Maierhofer et al). The calculation of the fluxes is made by converting the nutrient amount

present in the foodstuff portions from grams to millimole per human per day. For each

metabolite, its molecular masses were calculated. After a conversion of units, we determine
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the amount of thatmetabolite in the portion of food, using the database nutritional information:

metaboliteamount =
databasevalue × portion

100
(2.1)

After this we convert this value to a flux using the following formula:

f lux =
metaboliteamount
metabolitemass

× 1000 (2.2)

Diet designer

The available diets are a good starting point but they limit the freedomwith which researchers

can test changes to a diet. Manually calculating the fluxes is a laborious task and for that

reason, we have created the "Diet Designer" tool. This tool allows users to design their own

diets. The interface is divided into two lists: "Available foods" and "Selected foods". Users

can search and select any food from the available 8,790 foods and add them to the list of

selected by specifying a portion size. While the user designs the diet overall information is

updated on a panel on top of the selected list of foods with information on total calories, lipids,

proteins, and carbohydrates, and weight. When finished, the user can see and download the

corresponding molecular composition as well as flux values (Figure 2.2).

2.6 Disease

Our resource includes 254 inherited metabolic diseases (IMDs), which are rare genetic

disorders leading to a defective or abnormal enzyme function [260]. A total of 288 unique

genes and 1872 unique reactions are associated with these IMDs. We compiled clinical

presentation, genotype-phenotype relationships, and the affected organ systems associated

with these IMDs from multiple literature and database resource.

The VMH also hosts the LeighMap [250], which represents a computational gene-to-

phenotype diagnosis support tool for mitochondrial disorders. The Leigh Map comprises

87 genes and 234 phenotypes, expressed in Human Phenotypic Ontology (HPO) terms

[170], providing sufficient phenotypic and genetic variation to test the network’s diagnostic

capability. The Leigh Map can be queried to generate a list of candidate genes and aims to
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Figure 2.2: Overview of the Diet Designer. The interface is split into two panels. The list of
available foods (1) and the list of selected foods. Users can select a food from this list and
specify a portion in grams. When the list is finished users can download the flux values to be
integrated into their simulations.

support clinicians by providing faster and more accurate diagnoses for patients. This will

facilitate taking appropriate measures for further treatments and demonstrates the efficacy of

computational support tools for mitochondrial disease.

2.7 Detail Pages

VMH contains detailed information for each entity in the database, including internal con-

nections and internal resources. Through the user interface, a user can easily search the

different resources and navigate the various levels of detail, e.g. from disease information to

low-level metabolite biomarker information and chemical structure. In this section, we will

provide details on each of these detail pages.

2.7.1 Metabolite detail page

Each metabolite in VMH is represented by an abbreviation that uniquely identifies a spe-

cific molecule involved in, at least, one metabolic reaction present in the database. Each

metabolite also contains a name that better identifies that specific molecule, and description

and synonyms extracted from HMDB when available. The formula displayed in VMH is



2.7. DETAIL PAGES 31

often different from other databases, and this is due to the fact that metabolites in VMH can

represent the acid/base form of the neutral molecule. Therefore, there is always a charge

value associated with it. Inchi string and Smiles are also available for most of the metabolites

in VMH thanks to the work of Preciat et al. [106] in which mol files were generated for

all Recon3D metabolites, and users can visualize (and interact with) the structure of these

metabolites. The mol files are also available for download on the detail page of a metabolite.

There is an extensive list of external links displayed for each metabolite when that

information is available. There are cases where some of these were not identified but

we hope that the feedback functionality of VMH will support a community effort in the

completion of these missing values. Available external databases are KEGG [152, 153],

PubChem [162, 325], Chebi [118], HMDB [333, 331, 330], Foodb, ChemSpider [243],

BioCyc [45, 161], DrugBank [332], and Wikipedia. A biochemical and disease maps section

is also available where we map these molecules to visualization tools. This feature currently

displays identifiers for ReconMap and PD-Map [93] when available, but we envision an

expansion as new maps become available.

Thermodynamic information is displayed, when available [222]. For the metabolites,

Standard Gibbs energy information is presented for different compartments. The informa-

tion about the presence of the metabolites in human biofluids was extracted from HMDB,

literature sources [50, 135, 145, 278] and the Netherlands Metabolomics Centre (NMC -

http://www.metabolomicscentre.nl/). Information can be qualitative (presence) or quantita-

tive if a range of values is specified. The sources of the information are specified in each

row of values. Biomarker information when available connects the metabolite with diseases.

In addition, each metabolite has the information about the number of human and microbial

reactions where it is involved, as well as if it used as a carbon source or is a fermentation

product to any of the microbes available in the "Gut Microbiota" resource.

A detailed view of the metabolite detailed page can be seen in Figure 2.3.

2.7.2 Reaction detail page

A reaction in VMH is represented by its abbreviation and a more detailed description, which

is usually the name of the associated enzyme and on occasions, the cellular location where the
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Figure 2.3: Overview of the metabolite detail page. The interface contains additional
detailed information of the metabolite, including a visualization of the chemical structure. In
addition, this page includes connections to external resources, and to related internal entities
(e.g. reactions in which the metabolite is present).

reaction occurs. This is a particularity of GENREs, where reactions occurring in different

cellular compartments will be represented by different reaction entities. In consequence,

metabolites in the reaction formulas are represented by the metabolite abbreviation and a let-

ter between squared brackets, identifying the compartment. This is necessary, for instance, to

represent the transport reaction with the identifier D_3AIBt (D-3-Amino-Isobutyrate Trans-

port transport from the cytosol to the extracellular environment):

D_3AIBt : 3aib_D[c] → 3aib_D[e] (2.3)

Associated with each reaction subsystem information, notes added by curators, a confi-

dence score [304], and literature sources is displayed on the reaction detail page. The reaction

is also graphically displayed in an atom mapped fashion, and its structure available. KEGG

[152, 153], ReconMap [223], and COG [302] identifiers along with the Enzyme Commission

number are displayed under “External Links”. Standard reaction Gibbs energy is displayed

when available. Finally, from the detail page, a user can also navigate to associated genes,

microbes, and diseases.

An example detail page for the reaction Hexokinase 1 is shown in Figure 2.4.
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Figure 2.4: Overview of the reaction detail page. The interface contains additional detailed
information of the reaction, including a visualization of the atom mapped chemical structure.
In addition, this page includes connections to external resources, and to related internal
entities (e.g. metabolites present in the reaction).

2.7.3 Gene detail page

Human gene detail page

The gene number used in VMH to identify human genes is a combination of Entrez Gene

identifier and the transcript number. This explains why the number of genes that are displayed

in the web interface is higher than the number of "unique" genes indicated in this manuscript.

Each detail page contains additional information for each gene, external links to several

resources, such as Ensembl [62], HGNC [108], ChEMBL [30], Uniprot [59], Entrez Gene

[194], OMIM [9, 115], Human Protein Atlas [315], UCSC [314], WikiGene [134], and Gene

Ontology [57]. Furthermore, connections with diseases and associated reactions are included

in a similar fashion as with the other database entities.

2.7.4 Microbe gene detail page

The microbe gene detail page is considerably simpler than the human gene. Each gene is

uniquely associatedwith onemicrobe and the detail page displays the sequence and associated

reactions.
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2.7.5 Microbe detail page

The microbe detail contains information about phylogeny (e.g. kingdom, order, phy-

lum).External resources connect to SEED [72], IMG [199], NCBI [329], and KBASE [14].

In addition, each microbe has associated a set of numerical characteristics extracted from

their reconstructions with a visualization of the S-matrix (Figure 2.5). Internal connections

display the reaction, metabolite, and gene content. Regarding the curation process, a list of

fermentation products and carbon sources and detailed pathway curation status information is

also available. Finally, in eachmicrobe page, it is also possible to download the correspondent

reconstruction in different formats, as well as the genome in FASTA format.

Figure 2.5: Overview of the microbe detail page. The interface contains additional detailed
information about the microbe, including numerical characteristics. In addition, this page
includes connections to external resources, and the content of microbe metabolic reconstruc-
tion.

2.8 Discussion

The VMH captures in a unique manner information for human and gut microbial metabolism

and links it to hundreds of diseases and to nutritional data. As such, the VMH addresses

an increasing need to enable the fast analysis and interpretation of complex data arising

from large-scale biomedical studies. For instance, an increasing number of studies link

the microbial composition to diet and disease [53, 345]. However, the generation of novel

hypothesis about functional implications of observed correlations, e.g., between microbial
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abundances in certain disease states, is slowed by the lack of facilitating, online databases.

In particular, the “Diet Designer” tool permits, in conjunction with computational modeling,

to test in silico causative hypotheses that could then be experimentally tested. The use of

synthetic microbial communities is of great value for hypotheses testing and the VMH can

facilitate the design of defined microbial communities with specified metabolic capabilities.

The VMH provides an environment by making diverse data along the diet-gut-health access

available to the biomedical community.

The visualization of complex “omics” data is crucial for their interpretation. Such data

can be overlaid with ReconMap [223] as well as of the Parkinson’s disease map [93]. As

the metabolic elements in these maps are connected to the VMH, the omics data can be

put into the larger context of human metabolism. Importantly, the disease map concept is

now extended to other important diseases, which can be directly linked to the content of

the VMH, rendering it a unique hub for human metabolism in health and disease. Linking

the “Disease resource” as well as the maps to clinical phenotypes, expressed in Human

Phenotypic Ontology (HPO) terms [170], would allow for the investigation of genotype-

phenotype relationships from molecular-level omics data within one knowledge base. An

integral part of systems biology is computational modeling, with COBRA modeling gaining

increasing attention by a broad scientific community. At the foundation of the VMH lie

genome-scale metabolic reconstructions. Thus, VMH serves directly the growing COBRA

community and their needs by providing a user-friendly interface to the reconstructions’

content, providing the reconstructions in multiple standard formats (e.g., SBML [141]) for

download, allowing the access of the entire knowledge base via the API, and enabling

the formulation of various in silico personalized diets via the “Diet designer”, which can

then directly be integrated with the human or microbial metabolic reconstructions using the

COBRA toolbox [130]. Simulation results based on these diets or based on the integration

of “omics” data, e.g., metabolomics [16] or transcriptomics [232], can then be visualized

and interpreted in the context of the human metabolic map, ReconMap, or a disease-specific

map. We are closely working with the COBRA community to further expand the value of

the VMH for biomedical applications based on computational modeling.

VMH integrates a considerable part of the components influencingmetabolic homeostasis

but there is still a long road ahead. As it is, VMH has little coverage of regulation and epi-
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genetics, which are of high importance to completely understand how, for instance, the same

diet can differently affect individuals of the same genetic background. There are approaches

that combine gene expression and metabolism in the COBRA framework [226, 303], but

these models are still scarce and the computational power required to study them is very

demanding. The modeling of xenobiotics can be combined with the COBRA methodology

by integrating PBPK modeling and adding a time dimension to these simulations. These

efforts are still at an initial stage, but more studies combining these techniques are becoming

available [111]. For this purpose, physiological data could also be stored in VMH, such

as blood flow rate, glomerular filtration rate, cardiac output, hematocrit values, and oxygen

uptake for the reference man and woman [231] as well for specific populations, such as infants

[22, 294], pregnant women [2, 341], and elderly people [307]. Such “Physiological resource”

would expand the value of the VMH for the quantitative pharmacology community, which

could link predicted pharmacodynamics properties of drugs to the metabolism of specific

populations The effect of drug treatment varies significantly among individuals, and genetic

differences alone are insufficient to explain the observed inter-individual differences in drug

response [217]. Human gut microbes metabolize many drugs [114, 202]; however, their

contribution to an individual’s drug response and safety is poorly understood. Diet does not

only modulate the microbiota composition and biochemical functions but also alters drug

bioavailability [270]. Hence, a valuable expansion of the VMH would be to add a “Drug

resource”, which would allow investigating FDA approved drugs in the context of the human

metabolic reconstruction, as well as of the microbial reconstructions. The corresponding

data have been collected for Recon 2 [261] as well as off-target and side effects have been

investigated using the humanmetabolic reconstruction [47]. It would be of great value to con-

nect such resource with the numerous online resources that capture i) drug information, such

as DrugBank DB [332], ii) gene-drug interaction data [256], iii) adverse reactions: SIDER

database [176], VigiAccess [275], and EudraVigilance [5]; and iv) drug-disease information:

DIDB [of Washington]. Moreover, the drug entries could be linked to clinical trials [229, 4].

The inclusion of these data and connections to external knowledge bases would permit the

users to exploit the increasing knowledge on the human gut microbiota as well as microbiota-

and diet-related interpersonal variability for drug development and clinical trial design.

The integrative nature of VMH, and in particular the addition of nutritional information
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in the context of metabolic modeling offers a new perspective in the field and is a first step

towards establishing a methodology that will potentiate the understanding of the mechanisms

of metabolic homeostasis, and how its disruption can lead to the occurrence of diseases. We

hope that the inclusion of these missing factors, such as lifestyle, into the metabolic modeling

framework will be facilitated by VMH.
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Chapter 3

Design and applications of the Virtual

Metabolic Human database

Abstract
Biological databases are important tools in the life sciences and biomedical fields. These
are typically accessible through a web-interface and, in some cases, through Application
Programming Interfaces (APIs). These APIs, if accessible through the web, allow access of
third-party applications to the database content without the constraints of a web browser. In
this chapter, we describe the structure of the Virtual Metabolic Human database and its web
API. Additionally, we showcase how this tool can be used to perform analysis combining
the different resources available. A detailed description of the functionalities of the Virtual
Metabolic Human’s API is available at vmh.uni.lu/api/docs.

39

vmh.uni.lu/api/docs


40 CHAPTER 3. DESIGN AND APPLICATIONS

3.1 Introduction

As data in the life sciences and biomedical fields become increasingly complex, biological

databases gain relevance as they promote knowledge organization and dissemination. Bi-

ological databases are typically accessible through web-interfaces. These interfaces have,

over the years, become increasingly sophisticated but they are bound to the perspective of

the development team that has to predict what kind of usage visitors desire. Additionally,

data analysis and visualization is bound to a web-browser and integration with other tools

is often limited. Programmatic access to databases, on the other hand, enables third-party

applications or user-made scripts to access the content in a more unrestricted fashion. This

can be achieved with the use of web services commonly known as Application Programming

Interfaces (APIs).

An API is the means by which third-party applications can write code that interfaces

with other code. A web service is an API that works across the internet (or a network)

using HTTP or other protocols. By implementing these web services biological databases

give toolboxes (e.g. CobraToolbox) or generic statistics software (e.g. R, Matlab) direct

access to the database content without the bounds of a previously defined interface, granting

a higher degree of freedom for data analysis and visualization. Several biological databases

implement these type of interfaces, such as ChEBI [118], Enrichr [177], or BIGG [164].

In this chapter, we introduce the architecture and web API of VMH. In an API information

is accessed through a series of URL endpoints with parameters that support filtering, search,

and pagination of results. All URL patterns and additional parameters are available at vmh.

uni.lu/_api/docs where end-users can live test the different functionalities available. To

finalize, we highlight how these resources can be combined by showcasing several applications

of VMH that include studying the complex interaction profiles of different gut microbes,

mechanisms of drug detoxification, and potential disease treatment.

3.2 Methods

The VMH database, presented in Chapter 2 can be described as a system of 3 layers. On

its foundation, we find a MySQL relational database for information storage. Management

vmh.uni.lu/_api/docs
vmh.uni.lu/_api/docs
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and access to this database are accomplished using a Python framework called Django [89].

Django is a web-framework that allows the development of fast and secure web applications

by providing an abstraction layer for structuring and manipulating the data of its applications

in the form of "Models". These "Models" are sources of information and typically map

to a single database table, each attribute mapping a database field. Building a set of these

"Models" in Django will automatically create the corresponding database tables.

To access the database content, VMH presents a Representational state transfer (REST),

or RESTful, web service. A RESTful web service allows submitting requests to access and

manipulate data using a predefined set of operations and retrieve data in several formats such

as XML, HTML, or JSON [83]. To develop this webs ervice, the Django Rest Framework

[51] provides powerful and flexible tools combined with the advantages of Django previously

described. This REST API allows other software to interact with VMH.

The top layer is the front-end reachable via a web-browser at http://vmh.life. The

interface was developed in Sencha ExtJS 5.1 [46], a JavaScript application framework that is

used to build interactive cross-platformweb applications. This framework includes pre-tested

and integrated components sparing developers the effort of building a web-interface from

scratch. This 3-layer architecture and a simplified database schema are displayed in Figure

3.1.

3.2.1 Database structure

In Figure 3.1 the Database layer is represented by a simplified conceptual schema (detailed

database schema in Supplementary Figure A.1) highlighting the main data structures stored

in VMH. At the core of the database are genome-scale metabolic reconstructions (GENREs).

In a GENRE, the main structure that represents the metabolic network is the Stoichiometric

Matrix (S-matrix). In this matrix, each row corresponds to a metabolite and a column to a

metabolic or transport reaction.

Metabolites

The metabolite "Model" was defined as shown in Figure 3.2. This "Model" has two unique

identifiers: an internal one, automatically generated for internal reference in the database,

http://vmh.life
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Figure 3.1: Overview of the Virtual Metabolic Human. The resource is divided in two
interfaces and its database containing 4 resources. Users can interact with the database
using the two available interfaces: (i) a user-friendly web-interface and (ii) an application
programming interface that allows the programmatic access to the information contained in
the database. At the core of the database is the representation of reconstructions as sets of
reactions. The database connects 4 resources through shared nomenclature: (i) the Human
metabolism and Gut microbiota resources share metabolites and reactions, (ii) the nutrients
in the Nutrition resource are mapped to metabolites that can be shared by the human and gut
microbes, and (iii) the diseases in the Disease resource include mutated genes and metabolite
biomarkers present in the Human resource.
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and an abbreviation which is used in the GENRE. The fields fullName, description, and

synonyms describe each metabolite in more detail. Additionally, this "Model" contains a

charged formula and an associated charge. In VMH the formulas can represent the acid/base

form of the neutral molecule, hence the charge can yield a different formula when compared

to other databases. Several links to external resources are also stored but for simplicity, they

were omitted from Figure 3.2.

Reactions

An enzyme can catalyze the same reaction in different locations and with different co-factors.

In VMH these are considered different entities. For instance, hexokinase can have 3 different

cofactors (ATP, UDP, GDP), each form represented by separately. The Reaction "Model"

was created as seen in Figure 3.2. This "Model", similarly to the metabolite, possesses two

unique identifiers and additional information in the form of a description, formula, notes, and

reversibility. In addition, it can contain references, a confidence score, and a mass and charge

balance status associated with the reconstruction and curation process [304].

S-Matrix

Following the Entity-relationship model principles [49], the relationship between the previ-

ously defined Metabolite and Reaction "Models" is of cardinality many-to-many (A reaction

can havemanymetabolites and a metabolite can be present inmany reactions). In a relational

database system such as the VMH database, these relationships are typically implemented

using associative tables.

In a GENRE, this relationship is defined by the S-matrix. Each cell of the S-matrix

contains the stoichiometric value of a given metabolite in a reaction. In this representation,

metabolites with negative values are the reactants and positive values the products of bio-

chemical transformations present in the GENRE. Ametabolite can occur in different reactions

and each instance of a metabolite in different cellular locations will have a corresponding

row. Each of these cellular locations, or compartments, is represented by a letter code (e.g.

’x’ for peroxisome) and associated with the metabolite identifier (e.g h2o[x]).
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class Metabolite(models.Model):
met_id = models.AutoField(primary_key=True,

db_column="met_id")↪→

abbreviation = models.CharField(max_length=250,
db_index=True)↪→

fullName = models.TextField(null=True)
description = models.TextField(null=True)
synonyms = models.TextField(null=True)
chargedFormula = models.CharField(max_length=250)
charge = models.IntegerField()
avgmolweight = models.FloatField(null=True)
monoisotopicweight = models.FloatField(null=True)

class Reaction(models.Model):
rxn_id = models.AutoField(primary_key=True,

db_column="rxn_id", max_length=50)↪→

abbreviation = models.CharField(max_length=250,
db_index=True)↪→

description = models.TextField(null=True)
formula = models.TextField(null=True)
reversible = models.IntegerField()
mcs = models.IntegerField(null=True)
notes = models.TextField(null=True)
ref = models.TextField(null=True)
massbalance = models.IntegerField()

class Smatrix(models.Model):
id = models.AutoField(primary_key=True, db_column="id")
rxn = models.ForeignKey(Reaction, related_name="smatrix",

db_column='rxn_id')↪→

met = models.ForeignKey(Metabolite, related_name="smatrix",
db_column='met_id')↪→

value = models.FloatField()
comp = models.CharField(max_length=5)

Figure 3.2: Metabolite, Reaction, and Smatrix models in Django.

To define this relationship a "Model" called "Smatrix" was created (Figure 3.2). Each

row of the "Smatrix" table represents one cell of the S-matrix. To retrieve all metabolites

involved in a reaction, one needs to retrieve all rows with a specific reaction identifier and all

rows with the same metabolite value will result in all reactions that metabolite takes part.
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Genes

There are two types of genes in the VMH database: human and microbe. Both types

are associated with reconstructions through associative models (ReconToGene and Recon-

ToMicrobeGene). In VMH, genes can be specific to a reconstruction and therefore, the

gene-protein-rules (GPRs) as well. For this reason, genes are not associated with the Reac-

tion "Model" directly but rather with the entity that connects the Reaction and Reconstruction

"Models".

Reconstructions

In VMH, a GENRE is represented by a list of reactions. The reconstruction "Model" is

summarized in Figure 3.3. The connection of a reaction with a reconstruction is not merely

associative and needs to contain specific information such as, a gene-protein-rule, dependent

on the organism. The reaction nomenclature is shared across reconstructions but the genes

and reaction bounds are treated individually. This association between a reaction and a

reconstruction is represented by a model called Recon as shown in Figure 3.3 (not to confuse

with the global reconstruction of human metabolism Recon).

In order to accommodate different types reconstructions, the fields organism and organism

type were added. However, there is additional information about each organism that might

be of interest. At the same time, this information can vary significantly depending on the

organism type, becoming desirable to store it in a resource-specific table. While for human

metabolism it is convenient to store information for specific reconstructions that are subsets

of Recon, such as the organ reconstructions, for the Gut Microbiota resource, species-specific

information might be useful. For that purpose, we have created two "Models": Organ and

Microbe eachmapping to their own tables (Figure 3.3). Each of these contains a reconstruction

in a one-to-one association to guarantee that each reconstruction is associated with a single

organism.
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class Recon(models.Model):
id = models.AutoField(primary_key=True)
reconstruction = models.ForeignKey(Reconstruction)
rxn = models.ForeignKey(Reaction)
lb = models.FloatField()
ub = models.FloatField()
cs = models.IntegerField(null=True)
gpr = models.TextField(null=True)
subsystem = models.TextField(null=True)
ref = models.TextField(null=True)

class Reconstruction(models.Model):
model_id = models.AutoField(primary_key=True)
name = models.CharField(max_length=100, db_index=True)
organism = models.CharField(max_length=250)
organismtype = models.CharField(max_length=100, null=True)
author = models.CharField(max_length=150, null=True)
version = models.CharField(max_length=25, null=True)

class Microbe(models.Model):
id = models.AutoField(primary_key=True)
reconstruction = models.OneToOneField(Reconstruction)
organism = models.CharField(max_length=250, null=True)
kingdom = models.CharField(max_length=250, null=True)
phylum = models.CharField(max_length=250, null=True)
mclass = models.CharField(max_length=250, null=True)
order = models.CharField(max_length=250, null=True)
family = models.CharField(max_length=250, null=True)
genus = models.CharField(max_length=250, null=True)
mtype = models.CharField(max_length=250, null=True)
species = models.CharField(max_length=250, null=True)

class Organ(models.Model):
id = models.AutoField(primary_key=True)
reconstruction = models.OneToOneField(Reconstruction)
organ_abbreviation = models.CharField(max_length=150)
name = models.CharField(max_length=150)
descname = models.CharField(max_length=250)
description = models.TextField(null=True)

Figure 3.3: Recon, Reconstruction, Microbe, and Organ "Models" in Django.
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Nutrition

The Nutrition resource in the database is composed of a dataset of food items extracted from

the USDA Nutrient Database for Standard Reference [317]. Food information is represented

by the Food model which translates into the database Food table. Each food item contains

information fields that include the data source from where the nutritional data was collected

to accommodate future inclusions of additional food composition databases. The nutritional

data is stored using the Nutrient "Model" (Figure 3.4), that stores nutrient definitions and

mapping to Metabolite entities. This connection is what enables the calculation of fluxes

from diets. The amounts of nutrient per Food are, however, stored in a different "Model"

called NutritionData which solves the many-to-many relationship cardinality between the

Nutrient and Food "Models".

Disease

The Disease resource of the VMH stores data about more than 200 diseases. This data is

stored via the Disease "Model" and corresponding table. The "Model" contains fields that

store information such as the mode of inheritance, prevalence and typical phenotypes. In

addition, there are 3 connections to other models. The mutated genes connect the Gene

"Model". This information is curated [260] and only genes existing in VMH are stored (this

means that it is possible that the disease affects more genes than indicated). The reactions

associated with these genes through the GPRs are then stored in the rxns field. Finally, known

biomarkers existing in Recon were also mapped and stored in the metabolites field. through

the Biomarker "Model". A detailed description of the Disease and Biomarker "Models" is

available in Figure 3.4
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class Nutrient(models.Model):
id = models.AutoField(primary_key=True)
nut_no = models.CharField(max_length=10, unique=True)
unit = models.CharField(max_length=10)
tag_name = models.CharField(max_length=50, null=True)
description = models.CharField(max_length=100)
common_name = models.CharField(max_length=100)
category = models.CharField(max_length=100, null=True)
subcategory = models.CharField(max_length=100, null=True)
mets = models.ForgeignKey(Metabolite)

class Disease(models.Model):
id = models.AutoField(primary_key=True)
abbreviation = models.CharField(null=True, max_length=45)
name = models.CharField(max_length=250)
dtype = models.CharField(max_length=150, null=True)
subtype = models.CharField(max_length=150, null=True)
inheritance = models.CharField(max_length=150, null=True)
omim = models.CharField(max_length=50, null=True)
phenotype = models.TextField(null=True)
prevalence = models.TextField(null=True)
organ = models.CharField(max_length=250, null=True)
references = models.TextField(null=True)
ghr = models.CharField(max_length=250, null=True)
orphanet = models.CharField(max_length=250, null=True)
genes = models.ManyToManyField(Gene)
rxns = models.ManyToManyField(Reaction)
metabolites = models.ManyToManyField(Metabolite,

through="Biomarker")↪→

class Biomarker(models.Model):
metabolite = models.ForeignKey(Metabolite)
disease = models.ForeignKey(Disease)
name = models.CharField(null=True, max_length=250)
value = models.CharField(max_length=25)
normalConcentration = models.CharField(null=True)
rangeConcentration = models.CharField(null=True)
reference = models.TextField(null=True)
ramedis = models.TextField(null=True)

Figure 3.4: Disease and Biomarker models in Django.
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3.2.2 RESTful API

The VMH API can be reached at http://vmh.uni.lu/_api. This page displays some

of the available resources that can be used to retrieve data. Each of these is reachable

through an Uniform Resource Identifier (URI) which provides data in different formats, such

as HTML, JSON or text format (CSV). As an example, the URI ’metabolites’ returns the

list of metabolites in the database. For each of these identifiers, additional filters can be

applied which allow to further refine the search. In the first snippet of code snippet of

code in Figure 3.5 a filter to the metabolite abbreviation field is used, so the response will

only retrieve the metabolite with the abbreviation value of h2o. The additional parameter,

format, specifies that the response should be in JavaScript Object Notation (JSON) format.

Alternatively, it is possible to use an interface from a programming language to interact

with the web API. In this Chapter, we provide examples using Python and the Core API

(http://www.coreapi.org/) Python implementation, a format-independent Document

Object Model that allows interaction with web APIs in a robust and meaningful way. It

allows the integration into applications and avoiding the need of constructing specific HTML

requests and decoding the server responses.

curl -X GET http://vmh-internal.uni.lux/_api/metabolites/ c
?abbreviation=h2o&format=json↪→

import coreapi

# Initialize a client & load the schema document
client = coreapi.Client()
schema = client.get("http://vmh.uni.lu/_api/docs")

# Interact with the API endpoint
action = ["metabolites", "list"]
params = {"abbreviation": "h2o"}
result = client.action(schema, action, params=params)

Figure 3.5: Two examples of how to fetch a specific metabolite from the VMHWeb API. The
first using the CURL command from a shell environment, while the second uses the Python
package Core API.

The detailed description of all available calls and parameters are available at http:

http://vmh.uni.lu/_api
http://www.coreapi.org/
http://vmh.uni.lu/_api/docs
http://vmh.uni.lu/_api/docs
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//vmh.uni.lu/_api/docs. In this interface, users can directly interact with the API. In

the next sections, we will demonstrate how the API can be used to perform complex queries

to the various resources available in VMH.

Reconstruction information

Exchange reactions represent the ability of an organism or cell to interact with the exter-

nal environment. In VMH, the abbreviations of the exchange reactions follow the same

naming pattern. The code to retrieve the list of exchange reactions present in any microbe

reconstruction is given in Figure 3.6.

In the first snippet of Figure 3.6, two parameters are used: the organismtype which,

if specified, filters the resulting content to specific types of organisms from 3 available:

"Human" (for the general reconstruction), "Human organ", or "Microbe"; the second filter

was applied to the abbreviation using the keyword icontains to search for abbreviations that

contain the specific pattern ’EX_’ in a case-insensitive way.

# list of reactions
action = ["reactions", "list"]
# Two parameters: is in a microbe and abbreviation contains 'EX_'
params = {"organismtype":"microbe",

"abbreviation__icontains":"EX_"}↪→

results = client.action(schema, action, params=params)

>>> results.get("count")
>>> 393

# list of reactions
action = ["microbes", "list"]
params = {"phylum":"Bacteroidetes"}
results = client.action(schema, action, params=params)

>>> results["count"]
>>> 112

Figure 3.6: VMH API interactions. The first snippet retrieves all exchange reactions in
microbes. The second snippet of code retrieves all microbes of the Bacteroidetes phylum

http://vmh.uni.lu/_api/docs
http://vmh.uni.lu/_api/docs
http://vmh.uni.lu/_api/docs
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Analyzing exchange reactions allows understanding if an organism or cell has the poten-

tial to consume or produce given compounds. This is interesting, for instance, for microbial

organisms. In this context, VMH also contains a curated list of carbon sources and fermenta-

tion products from different experiments. This can be a useful screening tool for the design

of synthetic microbiota communities as we will show later.

For microbial species, it is also possible to filter according to phylogenetic information

using the microbe end-point of the API, which allows filtering microbes by many different

parameters, such as phylum, class, or kingdom as shown in the last snippet of code of Figure

3.6.

For pathway-associated information, users can take advantage of the subsystem informa-

tion in the Recon model described before. For this, one needs to then be able to fetch all

reactions present in a specific reconstruction. Using the code from the second snippet of

Figure 3.6 will retrieve 112 Bacteroidetes and in each of them, the reconstruction name is

available. With this value, it is possible to retrieve all associations between reactions and

that reconstruction through the ’rxntomodel’ endpoint as shown in Figure 3.7. Each of these

associations contains the subsystem information which is a group of reactions involved in

a specific pathway. This allows comparing reconstruction content in regards to pathway

content.

Nutrition information

The nutrition resource in the VMH database is composed of three main resources: the

food composition database, a set of pre-designed diets, and the diet designer tool. With

the diet designer, users can create specific diets and download flux values to be integrated

into metabolic simulations in tools such as the CobraToolbox [130]. This feat can also be

achieved through the API making it possible to integrate this feature into other software tools.

To calculate fluxes from nutritional information, several API calls are necessary:

• foods: retrieves the list of foods

• nutrients: retrieves the list of nutrients

• nutritiondata: retrieves the amount per 100 grams of a nutrient in a specific foods
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# previous result
print "Organism: " + results.get("results")[0].get("organism))
one_reconstruction =

results.get("results")[0].get("reconstruction"]])↪→

# with reconstruction value get all reactions
action = ["rxntomodel", "list"]
params =

{"model":results.get("results")[0].get("reconstruction")}↪→

recon_results = client.action(schema, action, params=params)
print "Total reactions in reconstruction "+

results.get("results")[0].get("reconstruction") + ": " +
str(recon_results.get("count"))

↪→

↪→

>>> 'Bacteroides caccae ATCC 43185'
>>> 'Total reactions in reconstruction

Bacteroides_caccae_ATCC_43185: 1225'↪→

Figure 3.7: API interaction that retrieves all reactions in the reconstruction of Bacteroides
caccae ATCC 43185.

• mmass: contains the molecular mass value of metabolites and associated exchange

reaction

To generate a flux value for a selected food item and a portion in grams, it is necessary

to get the nutritional data for each nutrient present in that food. Nutrients in VMH can have

associated metabolites and with the respective molecular mass, it is possible to convert the

portion weight in grams to milimol. This value is then associated with an exchange reaction.

The corresponding example code for such a task is shown in Figure 3.8.
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foodName = "Apples, raw, with skin"
portion = 200
fluxes = dict()
action = ["foods", "list"]
params = {"name": "Apples, raw, with skin"}
result = client.action(schema, action, params=params)
food_code = result.get('results')[0].get('food_id')

# With the food_code get all nutritional data on food
action = ["nutritiondata", "list"]
params = {"food": food_code}
foodNutData = client.action(schema, action, params=params)

# For each nutrient calculate the fluxes if they have metabolites
associated↪→

for nutrientData in foodNutData.get('results'):
nutrient = nutrientData.get('nutrient')
amountInFood = nutrientData.get('nutr_value')
for met in nutrient.get('mets'):

# get molecular mass for that nutrient
action = ["mmass", "list"]
params = {"metabolite": met}
mass = client.action(schema, action,

params=params).get('results')[0]↪→

exchangeReaction = mass.get('reaction')
massValue = mass.get('molecularmass')
unitfactor = 1
if nutrient.get('unit') == 'mg':

unitfactor = 1000
elif nutrient.get('unit') == 'microg':

unitfactor = 1000000

amountInGrams = ((amountInFood / unitfactor) /
100) * portion↪→

flux = (amountInGrams / massValue) * 1000;
fluxes[exchangeReaction] = flux

Figure 3.8: API interaction that converts the nutritional information of a food item into flux
values.

3.2.3 Pagination

All query results from theVMHAPI are paginated. This ensures that operations run smoothly

and avoid high connection load. Each response from the server contains 50 results per page
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but the total amount of results is displayed with URIs for the next and previous page. It is

possible to modify the page size of the response, but we advise users to moderate the use of

high page number definitions for a smooth experience and adapt the scripts to accommodate

for multiple page requests. Iterating over response pages can be done by checking if a next

page exists or by calculating the total number of pages by dividing the count parameter by

the page size. The code previously presented in Figure 3.7 retrieves all 112 Bacteroidetes.

Results of this call are, therefore, divided into 3 different pages. To access each of them,

users need to add the parameter page to the API call as shown in Figure 3.9.

# list of reactions
action = ["microbes", "list"]
params = {"phylum":"Bacteroidetes"}

# page counter
page = 1
results = client.action(schema, action, params=params)
print "Page " + str(page) + " has " +

str(len(results.get("results"))) + " entries."↪→

while results.get("next"):
page = page + 1
params = {"phylum":"Bacteroidetes", "page":page}
results = client.action(schema, action, params = params)
print "Page " + str(page) + " has " +

str(len(results.get("results"))) + " entries."↪→

>>> Page 1 has 50 entries.
>>> Page 2 has 50 entries.
>>> Page 3 has 12 entries.

Figure 3.9: API interaction that retrieves all microbes of the Bacteroidetes phylum and iterates
through all result pages.

3.3 Results

VMH grants users a unique view of the metabolism of the gut microbiota and the host. In

this section we will showcase some of the applications enabled by the tools described in the

last two chapters.
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3.3.1 Exploring the complex interactions between microbes, nutrition,

and host metabolism

Microbial metabolic interactions represent driving forces for the microbial community com-

position as well as emergent metabolic properties, e.g., short chain fatty acids production,

which serve as energy source for the human body and play an important immunomodulat-

ing role [259]. Using VMH, we can systematically query for shared metabolite exchanges

between human, microbes, and the nutrition resource. The portfolio of exchange reactions,

which define metabolites that an organism can exchange with its environment, gives us an

organism-specific “interaction profile” and comparing these profiles provides a better un-

derstanding of the roles that specific organisms can play in complex systems, such as the

human gut. All 773 gut microbes share a common set of 16 exchange reactions, whereas each

microbe has an average of 129 +/- 26 exchange reactions. When comparing the presence of

exchange reactions across these 773 gut microbes, using tSNE for visualization of the high

dimensionality data [193], we find a clear separation of the 112 representatives belonging to

the phyla Bacteroidetes (Figure 3.10-A), indicating that these microbes share a unique set of

exchange reactions, which is distinct from the other phyla.

In contrast, the other phyla overlap in their exchange reactions and thus in their interaction

potential. For instance, the 356 Firmicutes representatives are broadly distributed, overlap

with Actinobacteria, but are well separated from the Bacteroidetes. We then compared the

complete metabolic repertoire, i.e., all metabolites and reactions, of the Bacteroidetes and

Firmicutes representatives. As expected, most of the repertoire is shared between the phyla

(Figure 3.10-B). Of the 194metabolitesFirmicutes does not share withBacteroidetes, 38 have

corresponding exchange reactions, while 51 of the 64 unique metabolites of Bacteroidetes

can be exchanged. In VMH, it is possible to retrieve information about the pathways these

specific metabolites are involved in, through the “Subsystem” attribute of the reactions

involving those metabolites. Firmicutes specific metabolites are involved in 15 subsystems,

which are mainly associated with the metabolism of amino acids, while Bacteroidetes display

a unique ability to degrade plant polysaccharides and proteoglycans, components of cell walls.

Additionally, Bacteroidetes are also the phyla that, in general, overlap the least with the 100

metabolites defined in the nutrition resource, indicating that it might be more dependent on
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the availability of a smaller number of dietary compounds than the rest of the compared

phyla (Figure 3.10-C). At the same time, it also highlights that plant polysaccharide and

proteoglycan content in foodstuff is currently not reported in nutritional databases, such

as the USDA, on which we are basing our nutrition database. It is noteworthy that more

recent efforts focusing on metabolomically and comprehensively characterizing foodstuff,

such as FooDB. Overall, we find that the gut microbes overlap in average with 42 +/- 5 of

the 100 defined food components, and these overlapping metabolites belong mostly to the

subsystems (excluding transports) Fatty acid oxidation, Cholesterol metabolism, and Fatty

acid synthesis (Figure 3.10-C). For the overlapwith theHuman resource, we find an average of

90 +/- 16 interactions predominately in the Nucleotide interconversion, Glycerophospholipid

metabolism, and Methionine and cysteine metabolism (Figure 3.10-D).The gut microbiota is

characterized by functional redundancy, i.e., the same functions can be performed bymultiple

bacteria that may be either closely or distantly related [212]. This redundancy also extends

to diet-metabolizing genes in multiple species across phyla. Hence, a microbiota-wide

systematic approach to exploiting and characterizing the capabilities of the gut microbiota to

modulate dietary and host metabolism is enabled with the VMH.

3.3.2 Designing synthetic microbial communities with VMH

Syntheticmicrobial communities are commonly used to test biomedically-relevant hypotheses

and to gain novel insight into microbial ecology. Various gut microbial communities have

been developed, capturing key properties of more complex communities [29, 70]. VMH

can be used to design synthetic gut microbial communities with, e.g., a particular glycan-

degradation profile. Recently, Desai et al. [70] have demonstrated that four of 13 species that

they included into a synthetic gut microbiota composed for their capability could grow on

mucus-O-glycans. The exchange profiles of the corresponding four microbial reconstructions

were in agreement with the experimental data for almost all glycans (Figure 3.11-A). Only the

metabolic reconstruction of Barnesiella intestinihominis is missing exchange reactions, and

metabolic degradation reactions, for mucus O-glycans but contains an exchange reaction for

cellobiose while no growth in vivo was found. This comparison highlights the importance

of the manual, literature-based curation effort that had been undertaken for our microbial
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Figure 3.10: Using the gut microbiome resource of VMH to compare and analyze the
capabilities of different gut bacteria. A - tSNE of the interaction profile of the microbes in
VMH. Only exchange reactions were considered, as these represent potential interactions;
B - Reaction and metabolite content comparison of the two most abundant phyla in VMH:
Bacteroidetes and Firmicutes; C - Comparison of interactions between phyla and the Human
resource (Recon 3D) and the Nutrition resource.
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reconstructions but also how new experimental data can further refine them. We identified

14 further gut microbes, mostly belonging to Bacteroides and Bifidobacterium, with an

overlapping mucus-O-glycans utilization profile as the four microbes (Figure 3.11-B). From

the VMH, we can retrieve an extended glycan and polysaccharide utilization profile, which

could be used to broaden the carbon source utilization capabilities of the synthetic microbiota.

This example illustrates that VMH enables researchers to analyze the in silico potential of

different microbes and supports experiment design, taking advantage of the collection of

literature curated “Fermentation Products” and “Carbon Sources” available.
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Figure 3.11: A -Comparison betweenAGORAmodels and experimental results; the existence
of exchange reaction (ability to uptake a given compound)was compared against single carbon
source growth experiments (Desai et al., 2016). Full concordance was found, except with
Barnesiella intestinihominis. B – Other microbes in VMH displaying the ability to uptake
Mucus O-Glycans, showcasing how the resource can be used for designing experiments of
synthetic microbiotas.

3.3.3 Drug detoxification and retoxification

Xenobiotic metabolism often involves the process of glucuronidation of drugs, which is an

important mechanism for drug detoxification and subsequent elimination through bile or

urine [264]. UDP-glucuronic acid (VMH ID: udpglcur), formed in the liver, is an essential

intermediate in this process (Figure 3.12-A). It has been shown, in rats, that its availability
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can be rate limiting for the elimination of exogenous and endogenous toxins [138]. Within

VMH, 18 genes encode for enzymes carrying out the liver glucuronidation of 37 endo- and

exogenous metabolites, including 18 drugs [261]. To identify potential dietary intervention

strategies to alleviate UDP-glucuronic acid limitation, we useVMH to investigate the different

metabolic routes by which UDP-glucuronic acid is synthesized and identify how UDP-

glucuronic acid availability may be increased, e.g., through targeted dietary supplementation.

UDP-glucuronic acid is synthesized from UDP-glucose (VMH: udpg) by the reaction of the

UDPglucose 6-dehydrogenase (VMH ID: UDPGD), which in turn is synthesized by the UTP-

glucose-1-phosphate uridylyltransferase (VMH reaction: GALU) from glucose-1-phosphate

(VMH ID: g1p) and UDP-glucose (Figure 3.12-A). The next step is to investigate all sources

of glucose-1-phosphate in VMH, which leads us, with the assistance of ReconMap (Figure

3.12-B), to the pathways “Gluconeogenesis” and “Glycogenolysis”. At least in rats, it has

been shown that UDP-glucuronic acid for glucuronidation is predominantly derived from

glycogen [21]. Accordingly, a high dosage of acetaminophen can deplete the liver glycogen

storage [138]. The importance of the Gluconeogenesis for glycogen storage is highlighted

by the fact that 2 out of 14 Mendelian glycogen storage diseases, listed in VMH, are due to

defects in enzymes along this pathway. Additionally, liver glycogen storage can be effectively

replenished by carbohydrates, such as glucose and fructose, after exercise [56]. Interestingly,

it has been found that maltodextrin (MD) drinks containing galactose or fructose were double

as effective then MD drinks rich in glucose to restore on postexercise liver glycogen synthesis

[68]. However, maltodextrin has a higher glycemic index than sugar and it can impair intestinal

anti-bacterial responses and defensemechanisms [221], e.g., by increasing the survivability of

Salmonella [220]. Since the absorption of fructose is facilitatedwhen ingested in combination

with glucose [311], we searched VMH for foodstuffs that are high in fructose and glucose

(Table 1). Naturally occurring foodstuffs include honey, medjool dates, and raisins (Table

1-A). The content of galactose is considerably lower in most food items but honey and Greek

yogurt are among the best choices (Table 1-B). Thus, it it is possible to use naturally occurring

foodstuffs to replenish glycogen stores by providing the necessary glycogen precursors for

the gluconeogenesis. Once glucuronidated, drug derivates are excreted either via urine or

the enterohepatic route. In the latter case, the glucuronidated drug, such as the cancer drug

irinotecan, can be retoxified through the action of microbial beta- glucuronidase [293, 301].
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We can investigate how many gut microbes could use the product of the beta-glucuronidases

catalyzed reaction glucoronate (VMH ID: glcur) as a carbon source. For 35 out of the 733

gut microbes, glucoronate has been reported to be a carbon source (Vos et al., 2010), most of

which belong to Proteobacteria (16 species), Bacteroidetes (14 species), and Actinobacteria

(3 species). Additionally, 114 microbes encode for genes to transport glucoronate in and

out of the cell via proton symport (VMH ID: GLCURt2r) in their metabolic reconstructions.

A total of 256 microbes encode for the glucuronate isomerase converting glucoronate into

Fructuronate (VMH ID: fruur). Thus, there are potentially 256 of the 773 gut microbial

strains that could use glucoronate as a carbon source. However, a preliminary analysis of

the 773 gut microbial genomes suggests that only 13 of those genomes encode for the beta-

glucuronidase. These examples demonstrate how VMH can provide a novel, multi-faceted

view to human drug metabolism, and its nutritional and microbial aspects.

A - Fructose-rich foods Values in g per 100g

Food Manufactor Fructose Glucose
Total

Sugar

Sweetener, syrup, agave 55.6 12.43 68.03

Agave, dried (Southwest) 42.83 3.48 68.03

Honey 40.94 35.75 82.12

Dates, medjool 31.95 33.68 66.47

Raisins, seedless 29.68 27.75 59.19

Cranberries, dried, sweetened 26.96 29.69 72.56

Figs, dried, uncooked 22.93 24.79 47.92

Figs, dried, uncooked 22.93 24.79 47.92

Lemonade-flavor drink, powder 22.73 2.26 97.15

Jujube, Chinese, fresh, dried 20.62 18.28 0

Lemonade, frozen concentrate,

pink
20.06 18.57 46.46

Dates, deglet noor 19.56 19.87 63.35
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Lemonade, frozen concentrate,

white
17.99 16.3 44.46

Agave, cooked (Southwest) 17.57 1.58 20.87

Sauce, barbecue, SWEET

BABY RAY’S, original

Sweet baby

Ray’s, Inc.
17.52 20.85 38.37

Beverages, Lemonade, powder 17.5 2.75 94.7

Formulated bar, POWER BAR,

chocolate
15.96 11.94 30.07

McDONALD’S, Sweet ’N Sour

Sauce

McDonald’s

Corporation
15.63 18.76 35.79

McDONALD’S, Barbeque

Sauce

McDonald’s

Corporation
15.44 18.27 34.31

Sauce, barbecue, KRAFT,

original

Kraft Foods,

Inc.
14.58 16.65 32.26

Sauce, barbecue 14.17 16.39 33.24

B - Galactose-rich foods Values in g per 100g

Food Manufactor Galactose Glucose
Total

Sugar

Formulated bar, SLIM-FAST

OPTIMA meal bar, milk

chocolate peanut

Slim-Fast

Foods

Company

5.62 1.24 25

Honey 3.1 35.75 82.12

Dulce de Leche 1.03 1.7 49.74

Celery, cooked, boiled, drained,

without salt
0.85 0.71 2.37

Celery, cooked, boiled, drained,

with salt
0.85 0.71 2.37

Beets, canned, regular pack,

solids and liquids
0.8 0.28 6.53
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Yogurt, Greek, nonfat, vanilla,

CHOBANI
Chobani 0.68 0.3 7.61

Yogurt, Greek, vanilla, nonfat 0.6 0.32 9.54

Yogurt, Greek, vanilla, lowfat 0.6 0.32 9.54

Cherries, sweet, raw 0.59 6.59 12.82

Yogurt, Greek, nonfat,

strawberry, DANNON OIKOS
Danone 0.56 0.25 11.63

Yogurt, Greek, nonfat,

strawberry, CHOBANI
Chobani 0.55 0.77 10.86

Yogurt, Greek, strawberry,

nonfat
0.55 0.65 11.27

Yogurt, Greek, strawberry,

DANNON OIKOS
Danone 0.54 0.3 11

Yogurt, Greek, nonfat, vanilla,

DANNON OIKOS
Danone 0.54 0.27 11.4

Yogurt, Greek, strawberry,

lowfat
0.53 0.54 11.23

Celery, raw 0.48 0.4 1.34

T.G.I. FRIDAY’S, fried

mozzarella

T.G.I

Friday’s
0.4 0.5 1.45

Spices, onion powder 0.36 0.73 6.63

Corn, sweet, white, canned,

whole kernel, drained solids
0.36 0.83 2.42

Table 3.1: Foodstuff inVMHwith the highest concentration of fructose and galactose. Source
of food nutritional information: US Department of Agriculture, Agricultural Research Ser-
vice, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference,
Release 28. Version Current: September 2015.
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Figure 3.12: Using VMH to investigate mechanisms of disease and drug metabolism. A
- UDP-glucuronic acid (VMH metabolite: udpglcur), formed in the liver, is an essential
intermediate in the glucuronidation of drugs. UDPglucose 6-dehydrogenase (VMH reaction:
UDPGD) converts UDP-glucose (VMH metabolite: udpg) to UDP-glucoronic acid, and
UTP-glucose-1-phosphate uridylyltransferase (VMH reaction: GALU) converts glucose-1-
phosphate (g1p) to UPD-glucose. B - Sources of g1p found in ReconMap; it was shown in rats
that glycogenolysis is the source of UDP-glucoronic acid in the process of glucoronidation
(Bánhegyi et al., 1988) C - Mechanism of Orotic Aciduria: mutation in UMPS affects
reactions that transform orotic acid into uridine monophosphate. Mechanisms found in
VMH point to known treatment with the use of uridine and cytidine; D - Phenylketonuria
mechanism: mutation of PAH causes incapability of degrading phenylalanine. Some gut
microbes show the capability to degrade phenylalanine or use it as carbon source. A treatment
strategy might involve gut microbiome community engineering.

3.3.4 Probiotic approaches to rare disease treatment

Orotic Aciduria (OMIM 258900) is an autosomal recessive disorder caused by a mutation in

the uridine monophosphate synthetase gene (EntrezGene ID: 7372). In VMH, this gene as-

sociated with two reactions (VMH ID: ORPT and OMPDC) that transform orotic acid (VMH

ID: orot) into uridine monophosphate (VMH ID: ump; Figure 3.12-C), consistent with the

two enzymatic activities encoded by this gene [224]. The gene deficiency leads to pyrimidine
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starvation that can be efficiently treated with uridine or cytidine (Figure 3.12-C). However, the

supplemented uridine competes for intestinal absorption with dietary pyrimidines, or purines

[282, 337]. VMH accounts for the corresponding facilitated transport reactions associated

with the SLC29A1 (EntrezGene ID: 2030) and SLC29A2 (EntrezGene ID: 3177) as well as

the sodium-dependent transport reaction enabled by SLC28A3 (EntrezGene ID: 64078). We

have previously predicted that the human commensal gut microbe B. thetaiotamicron could

also supplement the host with uridine [128]. Using VMH, we can readily identify further

415 gut microbes that could potentially supplement the human host with uridine as they en-

code for the 5’-Nucleotidase (VMH ID: NTD2, E.C. 3.1.3.5) as well as a uridine transporter

(VMH ID: URIt2r). Of those microbes, 18 have been classified as probiotics in VMH and

include 15 Bifidobacterium strains, two Clostridium butyricum strains, and a Lactobacillus

reuteri strain. These probiotics are commonly found in yogurts, fermented food products, and

probiotic formulations. While we could not find evidence for probiotic use in orotic aciduria,

recent guidelines for management of methylmalonic and propionic acidemia included the use

of probiotics [27]. Furthermore, researchers have demonstrated that the benefit of engineered

L. reuteri strains in a murine phenylketonuria (PKU) model [76].

PKU is caused by a mutation in the gene PAH (EntrezGene ID: 5053) leading an inability

to degrade phenylalanine (Figure 3.12-D). The life-long treatment consists of a diet low

in phenylalanine. An alternative strategy could be to engineer the gut microbiota such

that it consumes the excess of dietary phenylalanine. One option is the aforementioned

engineering of probiotics, where the researchers introduced the phenylalanine ammonia-

lyase to L. reuteri. This enzyme is ubiquitous in higher plants but rare in microbes, and VMH

does not account for the corresponding reaction (although that does not necessarily mean that

none of the 773 microbial genomes encode for this gene). However, an alternative pathway

(VMH IDs: PHETA1, PLACOR, PLACD) converting phenylalanine to trans-cinnamic acid

exists in six Clostridium strains, including four Clostridium difficile strains. Another option

is to “replace” the mutated PAH gene with a microbial counterpart. In VMH, there are

26 microbes encoding for the microbial version of the genes, including two commensal

Bacillus cereus strains and one probiotic strain (Lactobacillus reuteri SD2112). While B.

cereus is known to be a causative agent in a minority of foodborne illnesses [174], the L.

reuteri strain has been added to yogurt formulation, with the aim to improve oral hygiene
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[210]. Additionally, the literature-derived carbon source table in VMH lists additional

three commensal microbes that use phenylalanine as a carbon source: Clostridium barletti,

Anaerobaculum hydrogeniformans, and Gordonibacter pamelaeae. The latter two have been

recently patented to be used as probiotics for the inhibition of clostridial caused inflammation

[31]. Taken together, VMH can be used to identify candidate microbes that could be used in

addition or as a replacement for current dietary intervention strategies used in the treatment

of certain inborn errors of metabolism.

3.4 Discussion

In this Chapter, we have described some aspects of the technical implementation of the VMH

database. The architecture can be represented as a 3-layer infrastructure, with the database at

its base. Building a database using Django allowed the conception of data "Models" that are

inter-connected easing the accessing of data across resources. This connectivity is reflected

in the interface where different levels of knowledge are accessible via each of the entity’s

detail page.

In addition, VMH provides access to an API which opens a unique window to the

database content, allowing integration with other software. To demonstrate the potential of

this tool, we have shown how it can be used to perform different analysis on the various

resources available. In this context, we have shown how the generated tools can be used

to perform complex analysis combining the available resources. VMH enables exploration

of the different levels of interactions between microbes and host, providing an additional

connection with the nutrition resource. We have additionally shown, that the gut microbiota

resource can be used as a support tool in the design of synthetic microbial communities,

an important research tool used to mimic the behavior of complex communities [29, 70].

Complex biochemical mechanisms, such as drug detoxification and retoxification can also be

investigated with VMH with the advantage that potential microbial interactions with drugs

can also be screened, an area of research that will increasingly attract more attention in

the future. Finally, an example of how to use VMH to investigate potential treatments for

diseases, including beneficial microbial community composition design strategies (with the

inclusion of probiotics) was shown.
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Taken together, the assembly of knowledge and tools in VMH gives researchers a uniquely

integrated environment that allows performing complex analysis of metabolism. As VMH

expands we believe that it will become increasingly important for multiple research commu-

nities.



Chapter 4

Visualization of Metabolic networks and

Disease maps

Abstract
Visualization tools in research, provide support in knowledge search and interpretation of
research data. Network visualization, in particular, is a typical approach used by Systems
Biology researchers to try to understand how different biological processes are connected and
the mechanisms behind those interactions. In the case of the human metabolic network, no
intuitivemap exists that is aesthetically pleasing and that enables integration of omics data and
simulation results. In this Chapter, we introduce ReconMap 2.0, a visualization of the human
metabolic network consistent with the content of Recon 2, the generic human metabolic
reconstruction of metabolism. In addition, we explore a different visualization mechanism
that is becoming increasingly popular: disease maps. We have created a prototype for a gene-
to-phenotype map of mitochondrial disorders, using Leigh Syndrome, the most common
phenotype of mitochondrial disease. These two resources are integrated into the Virtual
Metabolic Human database available at http://vmh.life.

67

http://vmh.life
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4.1 Introduction

Analyzing and deriving knowledge from biological networks is a challenging task for re-

searchers. Visualization tools can provide much needed support especially if they allow the

visualization of simulation and experimental data in a given context. Different tools exist

for the visualization of biological networks such as CellDesigner [94], Cytoscape [276], Es-

cher [163], MetDraw [149], MINERVA [100]. In general, these tools support the automatic

generation of layouts, but for large-scale networks the results of these algorithms are often

not aesthetically pleasing, hindering the analysis. The human metabolic network is such

an example for which there was no intuitive visualization. For this purpose, we have cre-

ated ReconMap, a comprehensive, manually curated map of human metabolism integrated

into MINERVA, which uses the Google Maps Application Programming Interface (API) for

highly responsive interactive navigation within a platform that facilitates queries and custom

data visualization. ReconMap can be accessed via http://vmh.uni.lu, with network export in

a Systems Biology Graphical Notation compliant format released under a Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License. A Constraint-Based

Reconstruction and Analysis (COBRA) Toolbox extension to interact with ReconMap is

available via https://github.com/opencobra/cobratoolbox.

Another type of visualization approach that has gained relevance in recent years is dis-

ease maps (e.g. PD Map [93]). The main idea behind these maps is to provide a visual

representation of all molecular components and pathways involved in a disease pathogenesis

and progression. Mapping Mitochondrial disorders would be of interest as these are severe

diseases with high clinical, biochemical, and phenotypic diversity, and no curative therapies.

Additionally, diagnosis is extremely challenging due to the involvement of two genomes,

varying ages of onset, and genetic diversity. Among the various mitochondrial disorders,

Leigh Syndrome, a progressive neurodegenerative disorder, is the most common phenotype.

Patients typically suffer from spongiform lesions in the basal ganglia and/or brainstem. Leigh

syndrome is genetically heterogeneous and its diagnosis is very complex. For these reasons

we have initiated the effort of mapping Mitochondrial disorders with Leigh Syndrome by

addressing the diagnosis challenge with the creation of a gene-to-phenotype Leigh Syndrome

map.

https://github.com/opencobra/cobratoolbox
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4.2 ReconMap: An interactive visualisation of humanmetabolism

Completely or partially as in: Alberto Noronha, Anna Dröfn Daníelsdóttir, Piotr Gawron,

Freyr Jóhannsson, Soffía Jónsdóttir, Sindri Jarlsson, Jón Pétur Gunnarsson, Sigurður Bryn-

jólfsson, Reinhard Schneider, Ines Thiele, and Ronan M. T. Fleming. ReconMap: An

interactive visualisation of human metabolism.Bioinformatics, 2017.

A genome-scale metabolic reconstruction represents the full portfolio of metabolic and

transport reactions that can occur in a given organism. A mathematical model can be derived

from such a reconstruction, allowing one to simulate an organism’s phenotypic behavior

under a particular condition [237]. Recon 2 [305] is a very comprehensive knowledge-base

of human metabolism and has been applied for numerous biomedical studies, including the

mapping and analysis of omics datasets [305]. However, despite numerous visualization

efforts using automated layouts [149], there is no genome-scale and biochemically intuitive

humanmetabolicmap available for visualization of omic data in its network context. Here, we

release ReconMap, a comprehensive, manually curated map of human metabolism presented

utilizing the Google Maps Application Programming Interface (API) for highly responsive

interactive navigation within a platform that facilitates queries and custom data visualization.

4.2.1 Features

ReconMap content was derived from Recon 2.04, obtained from the Virtual Metabolic

Human database (VMH, http://vmh.uni.lu). Reactions (hyperedges) were manually laid

out using the biochemical network editor CellDesigner [94]. Each metabolite (node) was

designated by its abbreviation and a letter corresponding to the compartment, in which the

reaction occurs (e.g., ’[c]’ for cytosol). Metabolites present in a high number of reactions,

e.g., common cofactors, were replicated across the map to minimize hyperedge crossover.

ReconMap is presented using Molecular Interaction NEtwoRk visualization (MINERVA

[100]), a standalone web service built on the Google Maps API, that enables low latency

web display and interactive navigation of large-scale molecular interaction networks. Each

metabolite and reaction in ReconMap links to the corresponding curated content provided

by the VMH database. Moreover, MINERVA functionality connects ReconMap to external

http://vmh.uni.lu
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databases, such as the CHEMBL database [30].

A B

C

Figure 4.1: Web interface of ReconMap with search functionality. Information retrieved for
on a specific molecule are shown, along with external links; B - overlay of a flux distribution,
using differential thickness and color of the edges; C - Feedback interface that allows users
to provide suggestions and corrections to entities of the ReconMap and Recon2.

Overlay of simulation results and multi-omics datasets

Recon-derived simulation results can be visualized on ReconMap using a new extension to

the COBRA Toolbox [130]. By submitting an account request through the "ADMIN" area of

ReconMap, the user can perform a simulation, e.g., Flux Balance Analysis, using the COBRA

toolbox function optimizeCBmodel, then call the function buildFluxDistLayout to write the

input file for a context-specific ReconMap Overlay. This permits the user to translate each

flux value into a custom thickness and color within a simple tab-delimited file to highlight

certain reactions. Similarly, registered users can display omic data on ReconMap via the

"Overlay" menu, by uploading a tab-delimited file assigning a different color and thickness

to each node and reaction.

Community-driven refinement of ReconMap & Recon

All users may post suggestions for refinement and expansion that are linked to a specific

metabolite or reaction in specific locations of themap (right click then select "Add comment").

Each suggestion is forwarded to VMH curators for consideration when planning further

curation effort. As such, ReconMap enables the community-driven refinement of human

metabolic reconstruction and visualization.
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Connecting ReconMap and PDMap

The Parkinson’s disease map (PDMap [93], http://pdmap.uni.lu) displays molecular inter-

actions known to be involved in the pathogenesis of Parkinson’s disease. A total of 168

metabolites connect ReconMap and PDMap via standard identifiers. These connections are

available in the metabolites description as well as in their detail pages in the VMH website.

This feature is particularly interesting when mapping omics datasets on both maps, thereby

allowing the simultaneous investigation of metabolic and non-metabolic pathways relevant

for Parkinson’s and other neurodegenerative diseases.

Implementation and usage example

ReconMap was drawn using CellDesigner and is displayed using the MINERVA platform,

built on the Google Map API, using human reconstruction content from the VMH database

http://vmh.uni.lu. Matlab scripts for analysis of COBRA Toolbox simulation results us-

ing ReconMap are freely available in the COBRA Toolbox https://opencobra.github.

io/cobratoolbox. This combination of tools is aimed at allowing the user to visualize

what cannot be appreciated at first with model simulation outputs.

In order to access remotely to ReconMap, the user has to be registered by requesting

access at the VMH map page (http://vmh.uni.lu/#reconmap). Using these credentials,

the user can then configure the MATLAB ’minerva’ structure to access ReconMap as shown

in Figure 4.2. After this step, the user needs to initialize the CobraToolbox and load a

metabolic model (in this case Recon 2.04).

load('minerva.mat')
minerva.model = 'ReconMap-2.01';
minerva.login = 'user_name';
minerva.password = 'user_password';

Figure 4.2: Setup of ReconMap credentials in the CobraToolbox

1. Overlay a flux distribution

As an example of a layout, we would like to visualize the fluxes when maximizing ATP

production through complex V (ATP synthase) in the Electron Transport Chain. To do so, we

http://vmh.uni.lu
https://opencobra.github.io/cobratoolbox
https://opencobra.github.io/cobratoolbox
http://vmh.uni.lu/#reconmap
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use Flux Balance Analysis (FBA) and set as the objective function the reaction responsible

for this process (’ATPS4m’). To do this two CT functions are necessary:

• ChangeObjective: function, changes the objective function of a constraint-based model

• optimizeCbModel: function solves a flux balance analysis problem.

initCobraToolbox;
changeCobraSolver('glpk', 'LP');
model = readCbModel('Recon2.v04.mat')
% Rename the model.
model_atp_production = model
model_atp_production = changeObjective(model_atp_production,

'ATPS4m');↪→

solution_atp_prod_max_regularised =
optimizeCbModel(model_atp_production, 'max',1e-6);↪→

solution_atp_prod_max_sparse =
optimizeCbModel(model_atp_production, 'max','zero');↪→

Figure 4.3: Setting up FBA simulations for ATP production through complex V (ATP
Synthase) with Recon 2.04.

The buildFluxDistLayout function creates a layout that is automatically sent to the Re-

conMap website. After this, results can be visualized at http://vmh.uni.lu/#reconmap

by selecting the "Overlays" section as displayed in Figure 4.4.

2. Overlay a subsystem

There is also the possibility of highlighting specific subsystems by using the function

generateSubsytemsLayout. A subsystem is a group of metabolic reactions involved in the

same metabolic pathway, such as glycolysis, oxidative phosphorylation, or citric acid cycle.

For instance, to highlight the TCA cycle in ReconMap and obtain the resulting overlay as in

Figure 4.5, users can execute commands as illustrated in Figure 4.5.

Alternatively, the user can generate a layout of all common subsystems between the model

and ReconMap using the function generateSubsystemLayouts.

http://vmh.uni.lu/#reconmap
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serverResponse = buildFluxDistLayout(minerva, model,
solution_atp_production_max_regularised,
'atp_prod_max_regularised3');

↪→

↪→

serverResponse = buildFluxDistLayout(minerva, model,
solution_atp_production_max_sparse, 'atp_prod_max_sparse4');↪→

Figure 4.4: Remote overlay submission to ReconMap. Web interface of ReconMap shows
resulting overvays.

4.3 Leigh map: A novel computational diagnostic resource

for mitochondrial disease

Completely or partially as in: Rahman J., Noronha A„ Thiele I., Rahman S. Leigh map: A

novel computational diagnostic resource for mitochondrial disease.Annals of Neurology,

2017.

Mitochondrial disorders are among the most severe metabolic disorders wherein patients

suffer from multisystemic phenotypes, often resulting in early death [187]. Clinical, bio-

chemical, and genetic heterogeneity among individuals, together with poor understanding of

gene-to-phenotype relationships, pose significant diagnostic and therapeutic challenges for

clinicians. In light of recent advances in next generation sequencing technologies, whole ex-
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generateSubsytemsLayout(minerva, model, 'Citric acid cycle',
'#6617B5');↪→

Figure 4.5: Code for generating subsystems overlays and web interface of ReconMap dis-
playing a subsystem overlay.

ome sequencing (WES) is emerging as the new global standard for the diagnosis ofmonogenic

disorders, including mitochondrial diseases [335]. However, owing to genetic heterogeneity

of mitochondrial disorders and ongoing discovery of novel disease genes, WES data may not

provide clinicians with enough certainty for a definitive diagnosis.

With these challenges in mind, we present the Leigh Map, a novel computational gene-

to-phenotype network to be used as a diagnostic resource for mitochondrial disease, using

Leigh syndrome (Mendelian Inheritance inMan 256000), the most genetically heterogeneous

and most frequent phenotype of pediatric mitochondrial disease [182, 251], as a prototype.

Leigh syndrome is a progressive neurodegenerative disorder defined neuropathologically by

spongiform basal ganglia and brainstem lesions [251, 183]. Clinical manifestations include

psychomotor retardation, with regression, and progressive neurological abnormalities related

to basal ganglia and/or brainstem dysfunction, often resulting in death within 2 years of initial

presentation [251, 288]. However, many patients may also present with multisystemic (eg,

cardiac, hepatic, renal, or hematological) phenotypes. To date, there are 89 genes known to
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cause Leigh syndrome, the majority of which are difficult to definitively differentiate from

each other, either biochemically or clinically. We hypothesized that these multisystemic

features may help to distinguish different genetic subtypes of Leigh syndrome.

The Leigh Map (freely available at vmh.uni.lu/#leighmap), was built on the Molec-

ular Interaction NEtwoRks VisuAlization (MINERVA) platform [100] previously used to

construct networks of Parkinson disease and human metabolism [93, 223, 305]. The network

comprises 89 genes and 236 phenotypes, expressed in Human Phenotypic Ontology (HPO)

terms [171, 170], providing sufficient phenotypic and genetic variation to test the network’s

diagnostic capability. The Leigh Map aims to enhance the interpretation of WES data to aid

clinicians in providing faster and more accurate diagnoses for patients so that appropriate

measures can be taken for optimal management. The phenotypic components of the Leigh

Map can be queried to generate a list of candidate genes. In addition, the genetic components

of the Leigh Map may also be queried to browse a list of all reported phenotypes associated

with a particular gene defect. We propose that this functionality can be used to enhance

clinical surveillance of patients with an established genetic diagnosis. Blinded validation

of test cases containing clinical and biochemical, but not genetic, data demonstrated that 2

independent testers were able to predict the correct causative gene using this method in 80%

of cases. The success of the Leigh Map demonstrates the efficacy of computational networks

as diagnostic aids for mitochondrial disease (Figure 4.6).

4.3.1 Creation of the Leigh Map

Systematic Literature Review

The genetic and phenotypic information gathered in this study came from an initial knowl-

edgebase of >900 publications, collected from PubMed (latest search November 2016) and

the senior author’s personal archive. To facilitate data collection from this large breadth

of literature associated with Leigh syndrome, we performed systematic literature mining

with QDA Miner Lite (v1.4.2; Provalis Research, Montreal, Quebec, Canada) to generate

a list of genes reported to cause Leigh syndrome or Leigh-like syndromes, and their corre-

sponding phenotypes. Phenotypic information was standardized by manually entering each

reported phenotype into Phenomizer (compbio.charite.de/phenomizer), [171, 170] a free on-

vmh.uni.lu/#leighmap
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Figure 4.6: Conceptualization of the Leigh Map. The Leigh Map is a novel computational
resource that effectively integrates a large amount of phenotypic and genetic data from the
literature and synthesizes it into a comprehensive resource that has the potential to improve
diagnostic outcomes andmore vigilant clinical surveillance for patients with Leigh syndrome.
WES = whole exome sequencing.

line resource, which catalogues thousands of standardized human phenotypes, to obtain the

appropriate HPO term and number. In addition to obtaining individual Leigh syndrome

genes and phenotypes, we collected information on additional parameters that will give users

further insight for an informed diagnosis. Such parameters include modes of inheritance,

magnetic resonance imaging findings, and patient demographic information. These data

were then organized into an Excel file. Although we aimed to rely solely on text mining

to obtain these data, some publications required manual clarification, owing to formatting

errors on QDA Miner, which were especially prevalent in publications with large tables. In

total, we consulted >500 publications to create the Leigh Map. A simplified version of the

gene-to-phenotype knowledgebase is provided in Tables 1 and 2.
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Mitochondrial

Dysfunction
Genes (mode of inheritance) Example Phenotypes

OXPHOS subunits

Complex I

NDUFA1 (XL); NDUFA2, NDUFA9,

NDUFA10, NDUFA12, NDUFS1, NDUFS2,

NDUFS3, NDUFS4, NDUFS7, NDUFS8,

NDUFV1, NDUFV2 (AR); MT-ND1,

MT-ND2, MT-ND3, MT-ND4, MT-ND5,

MT-MD6 (maternal)

DDwR, FTT,

hypertrichosis, HCM, LA,

LD, liver failure, myopathy,

OA, PN, renal tubulopathy,

SNHL, SZ

Complex II SDHA (AR)

DDwR, FTT, HCM, LA,

OA, paraganglioma,

pheochromocytoma, SZ

Complex III UQCRQ (AR)
Ataxia, dementia, DD,

dystonia, myopathy

Complex IV
COX8A, NDUFA4 (AR); MT-CO3

(maternal)

Ataxia, DD, DR, diabetes

mellitus, LA, LD,

microcephaly, PN, SNHL,

SZ

Complex V MT-ATP6 (maternal)
DDwR, FTT, HCM, LA,

LD, myopathy, OA, SZ

OXPHOS assembly

Complex I

assembly

NDUFAF2, NDUFAF4, NDUFAF5,

NDUFAF6, C17ORF89, FOXRED1,

NUBPL(AR)

Anemia, DDwR, FTT,

HCM, LA, liver failure,

myopathy, OA, SNHL, SZ

Complex II

assembly
SDHAF1 (AR)

DDwR, LA, LD, liver

failure, myopathy

Complex III

assembly
BCS1L, TTC19 (AR)

DDwR, FTT, LD, LA, liver

failure, renal tubulopathy,

SNHL, SZ
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Complex IV

assembly

SURF1, SCO2, COX10, COX15, PET100

(AR)

DDwR, FTT,

hypertrichosis, HCM, LA,

LD, myopathy, OA, renal

tubulopathy, SNHL, SZ

Cofactor biosynthesis and metabolism

CoQ10biosynthesis
COQ9, PDSS2 (AR)

DDwR, FTT, HCM,

hypotonia, myopathy,

nephrotic syndrome, renal

tubulopathy, SZ

Lipoic acid

biosynthesis
LIAS, LIPT1 (AR)

DDwR, dystonia, FTT,

hypertension, LA, LD, OA,

SZ

Thiamine

metabolism
SLC19A3, TPK1 (AR)

DDwR, dystonia,

microcephaly,

hypoglycemia, LD, OA, SZ

Biotinidase BTD (AR)
Ataxia, DR, hypotonia,

LA, spastic tetraplegia

Other metabolic dysfunction

Pyruvate

dehydrogenase

complex

PDHA1 (XL); PDHX, PDHB, DLAT, DLD

(AR)

DD, FTT, LA, LD,

microcephaly, myopathy,

OA, PN, SZ

Amino acid

metabolism
HIBCH, ECHS1 (AR)

Abnormal plasma

acylcarnitines, DDwR,

FTT, LA, LD,

microcephaly, myopathy,

OA, SZ
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AR = autosomal recessive; DD = developmental delay; DDwR = developmental

delay with regression; DR = developmental regression; FTT = failure to thrive;

HCM = hypertrophic cardiomyopathy; LA = lactic acidosis; LD = leukodystrophy;

OA = optic atrophy; OXPHOS = oxidative phosphorylation; PN = peripheral

neuropathy; SNHL = sensorineural hearing loss; SZ = seizures; XL = X-linked.

Table 4.1: Leigh Syndrome Disease Genes and Phenotypes Associated with Metabolism

Mitochondrial

Dysfunction
Genes (mode of inheritance) Example Phenotypes

Mitochondrial

DNA

maintenance

POLG, SUCLA2, SUCLG1, FBXL4 (AR)

DDwR, FTT, HCM, LA,

LD, methylmalonic

aciduria, myopathy, OA,

renal tubulopathy, SZ

Mitochondrial

translation

GFM1, GFM2, TSFM, TRMU, MTFMT,

GTPBP3, TACO1, C12ORF65, LRPPRC,

EARS2, FARS2, IARS2, NARS2 (AR);

MT-TI, MT-TK, MT-TL1, MT-TL2, MT-TV,

MT-TW (maternal)

Anemia, DDwR, FTT,

hypoglycemia, HCM, LA,

LD, OA, renal tubulopathy,

SZ

Mitochondrial

dynamics
SLC25A46 (AR), DNM1L (AD)

Ataxia, DDwR, FTT,

hypotonia, microcephaly,

LA, SZ

Mitochondrial

import
SLC25A19 (AR)

DD, FTT, hypotonia,

microcephaly, PN, SZ

Membrane

phospholipids
SERAC1 (AR)

3-Methylglutaconic

aciduria, DDwR, FTT, LA,

liver failure, OA, SNHL,

SZ

Mitochondrial

sulfur

dioxygenase

ETHE1 (AR)

DDwR, ethylmalonic

aciduria, LA, renal

tubulopathy, SZ
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Oligomeric AAA

+ ATPase
CLPB (AR)

DDwR, FTT, HCM, LD,

OA, SZ

Apoptosis AIFM1 (AR)
DDwR, HCM,

hypoglycemia, SNHL, SZ

RNA import PNPT1 (AR)
DR, dystonia, muscle

weakness, SNHL, SZ

RNA-specific

adenosine

deaminase

ADAR (AR)
DDwR, microcephaly, SZ,

skin hyperpigmentation

Nuclear

translocation

pathway

RANBP2 (AR)
Ataxia, cognitive

impairment, myopathy, SZ

Nuclear pore

complex protein
NUP62 (AR) FTT, DR, OA, SZ

Manganese

transporter
SLC39A8 (AR) DD, FTT, LA, SNHL, SZ

AD = autosomal dominant; AR = autosomal recessive; ATPase = adenosine

triphosphatase; DD = developmental delay; DDwR = developmental delay with regression;

DR = developmental regression; FTT = failure to thrive; HCM = hypertrophic

cardiomyopathy; LA = lactic acidosis; LD = leukodystrophy; OA = optic atrophy; PN =

peripheral neuropathy; SNHL = sensorineural hearing loss; SZ = seizures.

Table 4.2: Leigh Syndrome Disease Genes and Phenotypes Associated with Other Mito-
chondrial Functions

4.3.2 Structure and Functionality of Leigh Map

The Leigh Map was manually assembled using CellDesigner (v4.4) [94] by incorporating

phenotypic, genetic, and demographic data collected through literature mining. The map

layout loosely follows mitochondrial structure. The outermost compartment represents the

cytosol, where it is possible to find the nucleus and the mitochondrion. Three nuclear genes,

nuclear envelope protein NUP62, nuclear export protein RANBP2, and adenosine deaminase



4.3. LEIGH MAP 81

ADAR, have been included in our network as genes causing a clinical and radiological phe-

notype closely resembling Leigh syndrome [23, 283, 190]. The mitochondrion is visualized

in its double membrane structure, and mitochondrial genes are grouped according to func-

tion and can be found in their submitochondrial location (eg, outer membrane, matrix). To

represent gene-to-phenotype associations, a submap was created for each gene, displaying all

phenotypes associated with any given gene defect. Also incorporated at this stage are links

to external databases (eg, Uniprot [59] and HGNC [108]) and modes of inheritance. This

approach enables a modular overview of the map, avoiding overwhelming the user with the

“hairball” effect caused by the high connectivity of the network. All submaps were integrated

in the MINERVA framework [100], which makes use of the Google Maps application pro-

gramming interface, enables content query, and allows a low-latency interactive navigation of

the network and its submodules simply by clicking a specific gene and opening the embedded

submap window available on the interface.

Navigation through the network is similar to that of Google Maps, wherein the user

can reveal increasingly specific components of information by zooming in on the different

compartments (Fig 2, Supplementary Figs 1–4). Additional data (patient demographics,

modes of inheritance, external annotations, etc) can be accessed by clicking an element of

the map. The corresponding data will be displayed in the left panel. The search functionality

enables the query of multiple genes and phenotypes. The query results are displayed in

the information panel and are also highlighted on the map. When searching for multiple

phenotypes, all genes associated with each phenotype will be listed. Opening the submap for

any given gene will display 1 or more of the highlighted phenotype elements, providing an

immediate visual interpretation of the search results.

The Leigh Map provides data about 89 genes reported to cause Leigh syndrome and

Leigh-like syndromes, the highest number of Leigh syndrome genes that has been collated to

date, as well as 236 associated phenotypes. The network consists of >1,700 interactions, all

of which can be manually queried by the user. To facilitate access, causative Leigh syndrome

genes are segregated according to gene function and arranged on a simplified schematic

of the mitochondrion. Genes with similar functions are grouped together in subcategories.

Examples of gene categories that can be found on the Leigh Map include genes involved

in oxidative phosphorylation (eg, NDUFA1, SDHA) and genes that maintain mitochondrial
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Figure 4.7: Schematic layout of the LeighMap. The LeighMap is a novel gene-to-phenotype
network that can be used as a diagnostic resource for Leigh syndrome. The layout and
navigation of the Leigh Map are similar to those of Google Maps, wherein the user zooms
in on components to reveal further layers of information. (A) The outermost part of the
Leigh Map is a simplified diagram of the cell. (B, C) Clicking on a compartment (eg, the
mitochondrion) reveals categories of genes associatedwith Leigh syndrome (B), and zooming
in on subcompartments within the mitochondrion reveals individual genes (C). (D) Detailed
information about a specific gene defect can be accessed by clicking on a gene (SURF1
in this example), which will display a left-hand panel that provides additional information
and external annotations. (E) Each gene contains a "submodel" that can be accessed by
clicking. Gene submodels display all phenotypes associated with the gene of interest (a total
of 96 phenotypes in the case of SURF1 deficiency). Live screenshots of the Leigh Map are
provided in Supplementary Figure 4.6.

DNA (eg, POLG, SUCLA2; see Fig 2). Expression of Leigh syndrome phenotypes in

HPO terms serves to normalize the network, thereby eliminating discrepancies in clinical

jargon for phenotypes for which >1 synonym exists. “Leukodystrophy,” for example, can
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be described alternatively as “leukoencephalopathy” or “white matter changes.” The use

of different nomenclature varies among clinicians and in different geographical regions;

therefore, the use of a single HPO term (leukodystrophy; HP: 0002415) simplifies the Leigh

Map and encourages its widespread utilization (Figure 4.8).

Figure 4.8: Querying the Leigh Map. (A–C) All phenotypic and genetic components of the
Leigh Map can be queried using the search function in the left-hand panel. The user can
query a particular gene by typing the name of the gene or any known alias into the search box.
The results of the search will be displayed in the left-hand panel, and the matching gene(s)
will become marked on the network (A). Phenotypes can be queried in the same way. The
results of a phenotype search will display all genes associated with the queried phenotype
(B). Multiple phenotypes can be queried simultaneously by separating phenotypes with a
semicolon. The results of a multiple phenotype search will be displayed in different tabbed
panels through which the user can navigate (C). (D) Clicking on the gene’s submodel in any
multiple phenotype search will display all highlighted phenotypes from the query.

4.3.3 The Efficacy of the Leigh Map as a Diagnostic Resource

Blinded validation by 2 nonclinical investigators using a series of anonymized test cases

revealed that the Leigh Map was able to identify the correct gene for 16 of 20 cases. The first

and second authors, who both lack formal clinical expertise, acted as independent blinded



84 CHAPTER 4. METABOLIC NETWORKS AND DISEASE MAPS

testers of the network. The anonymized test cases were obtained from the senior author’s

clinical practice, a national mitochondrial disease clinic where patients with Leigh syndrome

who have diverse clinical presentations and genetic causes are diagnosed and managed. The

criteria for these test cases were patients who had a definitive genetic diagnosis of Leigh

syndrome, confirmed by Sanger sequencing or WES. Testers were provided with clinical

vignettes and biochemical data, without genetic information. All corresponding phenotypes

identified from each test case were entered into the query box of the Leigh Map, each

separated by a semicolon. The search tool then generated a list of candidate genes for each

phenotype in individual panels, which were then manually browsed to establish a list of

candidate genes (see Fig 3). We define "candidate genes" as those that include >50% of the

queried phenotypes. Due to the immense number of phenotypes on the network, every test

case generated a list of potentially causative genes. For 10 cases, the Leigh Map was able

to identify the correct gene as the "top hit," that is, the gene corresponding to the highest

number of matched phenotypes. The network also predicted the correct gene for an additional

6 cases, in which they were not the top hit. In the remaining 4 test cases, the LeighMap failed

to produce the correct gene as one of the generated candidate genes. In all cases, the Leigh

Map produced a shortlist of no more than 8 candidate genes, effectively eliminating 90% of

the genes in the network. Multiple advanced search is not yet possible on this platform, so

some manual deduction is required for the use of the Leigh Map at this time.

4.3.4 Future Prospects

Due to its high success rate in predicting causative genes by nonclinical testers, we conclude

that the Leigh Map is an efficacious diagnostic resource that, in combination with WES data

and metabolic testing, can be used by clinicians to provide patients with accurate diagnoses

or to direct further biochemical investigation. Increased certainty of the genetic causes of

mitochondrial disease has significant implications, because it could potentially attenuate the

need for invasive diagnostic procedures, namely muscle biopsy with an attendant general

anesthetic, which could pose risk to pediatric patients. It is important to iterate that we do

not propose that the Leigh Map act as a substitute for WES data or other relevant functional

studies, but rather as a supplement to these techniques.
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The computational nature of the Leigh Map allows for the addition of novel disease genes

or phenotypes with relative ease; thereby, clinicians have access to a database of all current

causative genes, which can enhance the interpretation of WES data. Ideally, we will update

both the phenotypic and genetic components of the LeighMap concurrently with the literature

and also develop a facility wherein experts can submit additional genetic or phenotypic

information. This is especially beneficial within the context of mitochondrial diseases,

because novel genes are constantly being identified. For Leigh syndrome specifically, one-

third of the causative genes were identified within the past 5 years.[3]

Currently, the most significant limitation of the Leigh Map is the lack of a multiple

advanced search facility. Although the absence of this feature does not detract from the

network’s accuracy, it does reduce its ease of use. Future work aims to implement this feature

into the network. Furthermore, the efficacy of the Leigh Map is affected by the breadth of

literature available for individual genes. SURF1, one of the earliest mitochondrial disease

genes to be identified and the most common nuclear genetic cause of Leigh syndrome, is the

subject of numerous publications [326]. Thus, SURF1 is associated with > 90 phenotypes in

the Leigh Map, the largest number for any single gene. In contrast, the recently characterized

complex I assembly gene C17ORF89 [86] only features in a small section of a larger pub-

lication and accordingly is associated with only 2 phenotypes on the Leigh Map, although

patients who harbor this mutation may display other phenotypes.

Expanding the current gene-to-phenotype binary of the Leigh Map is a future prospect

that can further improve its usefulness as a diagnostic resource. Although there are no current

curative therapies for mitochondrial disease, there are numerous compounds that are aimed

at symptomatic management, including anticonvulsant drugs used to manage epilepsy and

cofactor and vitamin supplements, such as coenzyme Q10, thiamine, and biotin, used to treat

corresponding deficiencies. The addition of drug targets (a current feature of the MINERVA

platform) to the Leigh Map could potentially provide insight into the effectiveness of various

agents in treating mitochondrial disease in specific genetic contexts. For example, patients

with SLC19A3 mutations respond dramatically to biotin and thiamine therapy [81], whereas

those with HIBCH mutations may benefit from N-acetyl cysteine [82]. cDNA and protein

mutations and annotations regarding animal models are also useful potential supplements

to the Leigh Map. Leigh syndrome is a defined disorder [183] wherein certain phenotypes
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appear almost ubiquitously, including hypotonia (91% of patients), developmental delay

(82%), lactic acidosis (78%), and failure to thrive (61%). The failure to deduce the correct

candidate genes for a minority of our test cases was due to the predominant presence of these

common Leigh syndrome phenotypes and a lack of discriminating phenotypes. We found

more success in "diagnosing" cases that presented with less frequently observed phenotypes

such as cardiomyopathy (59%), optic atrophy (47%), or renal tubulopathy (15%). Therefore,

the addition of these extra elements can be helpful in narrowing down a large list of candidate

genes, thereby increasing the predictive power of the Leigh Map. An alternative approach to

increase diagnostic power for common phenotypes is to incorporate a scoring system, which is

a common element in other bioinformatics resources such as BLAST [8]. In the context of our

network, we propose "common" phenotypes be scored lower than less frequently observed

phenotypes. The addition of a scoring system would complement the more sophisticated

advanced search feature that we aim to implement in the future.

4.4 Conclusions

In this Chapter, we have shown two applications of network visualization for different contexts

that can be used by researchers through the VMH.

ReconMap allows for efficient visualization of manually curated human metabolic reac-

tions and metabolites from the VMH database, with numerous connections to complimentary

online resources. ReconMap is a generic visualization of human metabolism and serves as a

template for the generation of cell-, tissue-, and organ-specific maps. Moreover, omics data

and flux distributions resulting from simulations can be visualized in ReconMap in a network

context via an extension to The COBRA Toolbox. ReconMap can be readily connected to

disease-specific maps, such as the Parkinson’s disease map, thereby enabling investigations

beyond metabolic pathways. Future directions include multiscale visualization, conserved

moiety tracing [117], drug target search, and increased synergy with simulation tools.

On another front, the progressive improvements in sequencing technologies and increased

global cooperation have allowed for the generation of copious amounts of genetic and clin-

ical information pertaining to mitochondrial disease. The Leigh Map effectively integrates

these clinical and scientific data into an efficacious diagnostic resource for a genetically het-
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erogeneous disorder, the success of which provides the basis for the construction of larger

computational networks for a wider scope of mitochondrial and metabolic diseases.

In the future, we expect that multi-layer maps will become a reality. Information repre-

sented in maps and networks following different approaches as those shown in this chapter,

will start overlapping. Integrating detailed information on metabolic pathways, combined

with gene-to-phenotype relationships, will enable researchers to interactively visualize, for

instance, pathways affected by specific mutations and how clinical phenotypes translate into

metabolic states.
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Chapter 5

Challenges and tribulations in the

development of a biological database

Abstract
Biological databases are important tools that allow organizing and sharing the increasing
amounts of data generated by new technologies and research projects. As the need for
additional biological databases arises, researchers will face various design and technical
challenges. Small teams and budget limitations are often a factor contributing to the difficul-
ties of execution of such projects. For this reason, we believe that the research community
will benefit from a starting guide aimed at researchers planning to develop a biological
database. This work highlights some of the decisions that need to be taken and issues that
need addressing when creating a biological database accessible through a web page. These
instructions are not a complete guide for database development but they are a result of our
experience in the development of the Virtual Metabolic Human database.

89
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5.1 Introduction

The progress in technologies used in life sciences and biomedical fields led to an increase

in the amounts and complexity of data generated. In response to this, biological databases

became important tools to organize and share data collected from scientific experiments,

omics technologies, literature, and different analyses. Over the years biological databases

have increased in numbers and popularity. The NAR online Molecular Biology Database

Collection keeps a list of active databases and publishes a yearly database issue [97]. It has

been recognized that a biological database does not live only of its data and that an intuitive

web interface is an essential component [24]. Web application programming interfaces (web

APIs) have become ubiquitous and are also gaining relevance for biological databases. These

APIs allow access to database content in amore efficient way and enable programmatic access

of third-party applications allowing analysis that go beyond the ones provided by pre-defined

web interfaces.

The development of a biological database is, therefore, an effort that involves analyzing,

combining, and structuring biological data but carries several technical challenges due to the

need of combining different technologies and coding in different programming languages.

To make matters worse, it is fairly common that research groups do not have dedicated

teams for software/database development and maintenance, which further accentuates this

problem. While for software libraries there are a considerable number of articles aimed at

computational biologists and bioinformaticians, that cover topics such as best practices and

workflows [342, 189, 63], such resource for the development of biological databases is, to

the best of our knowledge, still lacking.

In this Chapter, we will discuss strategies that can be taken in the development of a bio-

logical database. We will focus on examples from the development of the Virtual Metabolic

Human (VMH) and possible future improvements. We will cover some definitions about

databases, web interface programming, and Web APIs. Software and database development

are ever changing, and therefore the advice presented and choice of technologies is not set

in stone. We do hope that they can still provide a clear picture of the typical problems and

strategies to address them in projects of this scope.
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5.2 Choosing the database system

The selection of the database system should be the first task on a developers’ head. There

are several types of databases available and as expected, they fit different roles. For instance,

there are databases that use memory instead of disk to store information. They are extremely

efficient but also extremely expensive.

Typically, a biological database has well-defined content and write/delete operations

occur at specific points in time (minor or major updates). In addition, user interaction is

often restricted to reading information. For this reason, a general purpose database will be

adequate in most scenarios (e.g. MySQL, PostgreSQL, Oracle). For the development of

VMH, we have selected MySQL for its simplicity and efficiency.

5.2.1 Database management systems (DBMS)

The main tasks that the developer(s) of a biological database is assigned are typically updat-

ing/creating content, and database maintenance. These tasks can be performed using specific

commands, normally in a variation of the SQL standard, or through user interfaces provided

by most DBMS.

For VMH, the database management is made using Django, a Python-based server-side

web framework. One of the most attractive features of Django is that it provides the tools

to create and manage database content for different database systems (MySQL, PostgreSQL,

and Oracle). Django greatly facilitates database maintenance due to its migrations system.

Migrations keep track of changes in the database without the need to implement any SQL-like

code. These migrations allow version-control of the database structure in a streamlined and

simplified way.

5.3 Database content and access

One important aspect to include in a biological database is connections with other resources.

Aggregating information from other sources is a good idea if due credit is given and no

licensing terms are breached. Support for standards is encouraged as this will enable other

users and databases to access and use your data more easily. The MIRIAM registry [151]
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provides location-independent identifiers for data used in the biomedical domain and most

known biological databases have been registered there.

Biological databases are normally accessible through a web-interface. In addition, we

recommend that the content is made available for download as flat files and that programmatic

access is enabled by a web service.

5.3.1 Web interface

Choosing a language and a framework to develop a web page can be a daunting task. There

are literally dozens of choices to pick from. In the context of this work, the main concern

should be choosing a framework without a steep learning curve, with good documentation,

and importantly, a large community of developers. Web resources such as StackOverflow

(https://stackoverflow.com/), the largest online community for developers, can be a

good reference point for the size of the community using a specific framework. Highly active

communities mean that most of the problems that developers will encounter were probably

solved by another person at some point in time. These resources allow saving great amounts

of time by avoiding replication of effort. Finally, when choosing a framework it might be

necessary to consider the associated licensing costs. JavaScript frameworks, in particular, are

increasingly popular, such as Bootstrap, Angular, ReactJS, or ExtJS. These frameworks, one

way or another, simplify the development of web pages by providing pre-defined modules

and components that work across browsers and systems.

5.3.2 Programmatic access

Programmatic access to database content can be enabled through a web application program-

ming interface (web API). These type of interfaces are extremely useful as they allow other

applications or user-made scripts to access the database content. There are, as similar to web

interfaces, several frameworks to choose from. In our perspective, the same considerations

discussed before should be taken. In the case of VMH, we have decided to use the Django

Rest Framework package as this enabled combining the database management with the web

API development.

In a web API information is accessed through a series of URL endpoints. These URL

https://stackoverflow.com/
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endpoints should also support searching, filtering, and pagination. All theseURLpatterns and

additional parameters need to be well documented (e.g. vmh.uni.lu/_api/docs). When a

web API becomes available for broad use it will possibly be adopted by other applications and

databases. This needs to be taken into consideration when updating/changing functionality.

For this reason, web APIs development frameworks also support versioning.

5.3.3 Domain name, DNS, and hosting

Let us assume that a database and website are ready to go live. At this point three things

should be taken into consideration: the domain, the Domain Name Servers (DNS)/System to

use, and where to host the website.

The domain is the name of your website (for instance vmh.uni.lu) with which users

will visit the website. For this name to work, it needs to be registered with an accredited

registrar so it becomes an alias to the IP of your server, uniquely identifying the server. For

this redirection to work (translation of the website address into an IP) a nameserver or DNS

needs to be set (Figure 5.1). DNS are like internet phone books, where IPs replace telephone

numbers.

Setting up the domain name and DNS is a very complex task, and that is one of the reasons

why universities and research institutes usually have dedicated teams that handle these. In

the case that this is not possible, there are plenty of registrars (domain name vendors) that

combine both services for reasonable prices. It is worth mentioning that it is possible to

register several domain names for one web page. For VMH, we have acquired additional

domain names (e.g. http://vmh.life) that redirect to the default one. When all is done, a

server needs to be set up with the actual content of the web page and the database. Nowadays,

it is becoming more common to use virtual machines as servers. This is especially handy

for a development/production environment, where a website can be tested in a more realistic

scenario.

5.4 Agile Implementation

In 2001, a group of influential software developers published the Agile for Software Manifesto

[28]. This manifesto advocated for a shift in software development to emphasize rapid

vmh.uni.lu/_api/docs
vmh.uni.lu
http://vmh.life
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InternetWeb site
visitors

Registrar

DNS

Hosting server

Figure 5.1: Web site access with the domain name depends on 3 services. Domain name
registar, DNS name resolving to a physical IP, and the host server.

delivery and response. These methods became particularly attractive for ICT start-ups.

These companies are usually composed of small teams and require continuous development

on their products based on user feedback. This has also led to the popularization of concepts

such as the Lean Startup and Lean Software Development [255, 203] and Scrum [299].

On that same note, a research group can greatly benefit from adopting similar strategies.

The development team of a biological database project is often small (or individual) and the

interdisciplinary nature of such projects makes it close to impossible to accurately predict

the exact needs of the end users. For these reasons, we advocate for an agile development

approach focusing on fast release iterations with feedback mechanisms put in place that will

allow collecting information on bugs, the incorrectness of information, and suggestions for

additional features and their rapid implementation.

Experimentalists need to follow strict protocols for their research to be reproducible and for

this reason, we find most researchers to be perfectionists. With agile software development,

ideally, one tests and implements changes in a fastmannerwithoutmuch concern on delivering
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Development VM Production VM

Internal access
Testing and debugging
Internal feeback and issue 
reporting

Public access
Public feedback mechanism

Local version
Initial testing

Deployment to both VMs

Figure 5.2: Proposed development and productions environments. A development virtual
machine hosting an internal version of the website to be tested by the research group or
institute. A production virtual machine hosting the public version with a general feedback
mechanism.

a finalized product. This means that a compromise between these two somehow opposing

views needs to be found. In the development of VMH, we have not released changes to the

public environment often. We did, however, started testing the database and website with

potential users at a very early stage. To achieve this we set up a development/production

environment as shown in Figure 5.2. The development environment is a server running on

a VM that hosts an internal version of the database and website available to our research

institute through an internal domain name. To collect internal user feedback, we have used

our institute’s GitLab instance. GitHub and Gitlab are collaborative software development

platforms that are based on Git, a version control software.

Each project on GitHub or GitLab has an Issues section, where users can report bugs or

suggest new features. Another interesting feature is that it is possible to organize the issues in

a similar fashion to a Scrum Task Board (Figure 5.3). In this board tasks/issues are organized

in three categories: To-Do, Doing, and Closed. This allows the team to better organize and

plan their development while keeping users informed on the progress of the development
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cycle. For the public version of VMH, we have added a Feedback button to the main page

where users can send their suggestions and feedback. Additionally, for ReconMap, we use

the MINERVA framework feedback mechanisms that allow users to specify locations in the

map and leave comments or report errors.

Figure 5.3: Gitlab issue board.

5.5 Discussion

Databases are important tools in the life sciences and biomedicine fields. As new technologies

arise and additional data is generated new data resources will become necessary. Developing

and maintaining a database is often challenging for research groups due to small teams, lack

of proper infrastructure, or the wide range of different skills necessary.

In this Chapter, we have highlighted some of the main technologies and tasks that need to

be covered when developing such a project. We have, in some cases, adopted said strategies

in the development of the Virtual Metabolic Human database. As such, this Chapter is

not intended to be viewed as a rule book but rather a guide that can be a starting point

for researchers involved in the development a biological database. We believe that the

development strategy of such projects is very dependent on the context. For this reason, we

advocate the adoption of agile strategies in the development of software for research purposes.

We believe these techniques can bring great benefits and better results in the future.



Chapter 6

Concluding remarks

The increase in the incidence of non-communicable disease (NCDs) is one of the main

challenges society and research face nowadays. These diseases are very closely associated

with lifestyle, and in particular, with diet. Due to the influence of many factors on the

interaction between the human body and ingested nutrients, understanding the mechanisms

behind the effect of specific dietary patterns in health is an extremely complex task. Dietary

assessment tools and studies of nutrition have inherent limitations that are being addressed

with Systems Biology approaches and omics technologies.

The usage of omics technologies can rapidly and comprehensively measure health-related

markers. As discussed in Chapter 1 metabolomics technologies can be used to measure

small metabolites and nutrients available in biological fluids (e.g., blood and urine). These

technologies have been used for dietary assessment and nutritional recommendation [228].

On another hand, the gut microbiome is also closely associated with dietary patterns [336]

and general well being [55]. The composition of these communities can be determined using

sequencing technologies (e.g., 16S-RNA, shotgun sequencing) and changes in composition

influence how the host processes certain food components. This was shown, for instance, for

blood sugar level responses to different foods [345]. Together, these technologies can support

the collection of dietary intake data and monitoring of the health status of individuals. More

needs to be done, however, to promote the understanding of themechanisms behind individual

responses. Being able to do so, and predict the impact of dietary patterns based on biological

fluid measurements, will pave the way for a truly personalized dietary recommendation

approach.

97
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Constraint-based reconstruction and analysis (COBRA) uses genome-scale metabolic

reconstructions (GENREs), the collection of all known metabolic reactions to occur in an

organism, as a basis for the creation ofmetabolicmodels that can be used predict themetabolic

responses to specific conditions. These models have been used for various applications and

can serve as a docking station for data from different sources (e.g. metabolomics). Applying

this approach to nutrition presents a unique window to the mechanistic effects of specific

dietary components. Together with maps of metabolism and disease, they represent an

innovative approach to studying the effect of nutrition on health. The work of this thesis

describes the development of a resource that takes the first step in that direction.

Chapters 2 and 3 describe a knowledge base that connects genome-scale metabolic re-

constructions of human [39] and a collection of typical gut microbes [195] with nutrition

and disease. In addition, we exemplify how connecting the different resources allowed a

unique view of metabolism using the different tools made available with VMH. One such

example is the Diet designer, which allows the integration of nutritional data from food into

in silico simulations to predict the impact of different dietary compositions. In Chapter 4 we

have described the creation of ReconMap and LeighMap, visualization tools that can support

researchers. Finally, Chapter 5 discusses some of the challenges and decisions necessary

to be taken to perform a project such as described in this thesis, while trying to provide

general guidelines that can be of support for researchers involved in similar efforts. Taken

together, the work of this thesis demonstrates how COBRA and VMH can be relevant tools

and resources in the study of human nutrition and health.

6.1 A knowledge base integrating metabolism, nutrition,

and disease information

Metabolism is influenced by genetic and environmental factors. For its study, an integrated

analysis of data originating from different fields is necessary. Genome-scale metabolic

models provide a framework for this integration and for this reason, we have created the

Virtual Metabolic Human (VMH). VMH is a resource that integrates human and gut-microbe

metabolic reconstructions with nutritional and disease information. VMH hosts the most
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recent version of the human metabolic network reconstruction, Recon 3D, and an high-

quality collection of typical human-gutmicrobial reconstructions ofmetabolism, theAGORA

collection. Each entity of the database has a detailed pagewith external links that connect with

other sources. A collection of diseases is also available and their connections with the human

metabolic network. Finally, the Nutrition resource is composed by nutritional information

for more than 8000 food items extracted from the USDA food composition database, a set

of in silico diets, and a Diet designer tool that enables the creation of user-defined in silico

diets.

6.1.1 Biological database development

With the increasing amount of biological databases and analysis tools, interchangeability of

data and interaction between applications becomes a central concern. For this purpose, the

developers of a biological database should ensure the connection of their database content

with other resources and provide tools that allow other researchers to use the knowledge they

have compiled. In Chapter 3 we describe the 3-layer architecture of VMH. The core of VMH

is its database, which structure is based on the underlying metabolic network as represented

in genome-scale reconstructions of metabolism. We have also shown how the resources in

VMH are connected based on this structure and how this structure connects with external

resources.

The 2 remaining layers are the access points to VMH: it’s web interface and the API. The

API allows programmatic access to the database, which means that other applications and

databases can access these different resources in a customizable way and without the need

to download the full database. Based on this combination of tools, we exemplify how VMH

can be used to perform complex analysis such as how to explore the complex interactions

between microbes, nutrition, and host metabolism. Synthetic microbial communities are

developed to mimic the behavior of more complex communities [29, 70] and VMH can be

used to screen potential compositions to be used in experiments. We have furthermore, used

VMH to study the mechanism of drug detoxification and retoxification, and finally, showed

how the disease resource, when combined with the other elements of VMH, can be used as a

tool to hypothesize treatment strategies.
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Taken together, the tools available with VMH aim at accelerating research and promote

interchangeability of knowledge in the field. In that perspective, in Chapter 5 we complement

this work with a general guide to biological database development based on the experience

acquired during this project.

6.2 Metabolic and disease maps

In this day and age analysis of biological data requires managing large data-sets and advanced

statistical analysis. For this reason, visualization of data becomes attractive as it can simplify

this analysis by giving a visual context to the data. For this reason, biochemical pathway

visualization is of great interest, but due to the complexity of the human metabolic network,

no intuitive map with the capabilities of overlaying simulation and experimental data was

available. In Chapter 4, we introduce ReconMap, a comprehensive, manually curated map

of human metabolism [223]. ReconMap was integrated into MINERVA [100], a tool built

on the Google Maps API, that enables interactive overlaying of experimental and simulation

data. An extension to the CobraToolbox that allows remote interaction with ReconMap.

Disease maps are gaining relevance in the biomedicine field as they provide visualization

of disease mechanisms. Mitochondrial disorders are severe and diverse metabolic diseases

for which diagnosis is challenging. We have initiated the effort of mapping Mitochondrial

disorders with Leigh Syndrome [250] by developing a gene-to-phenotype map.

The further development of such maps and tools holds potential for combining visualiza-

tion approaches. It would be of interest to integrate the network visualization of simulation

and experimental data with clinical and mechanistic disease information. For instance, asso-

ciating specific phenotypes from a disease map with flux visualizations from the metabolic

network, to correlate clinical features with metabolic states through the integration of exper-

imental data.

6.3 Challenges and the way forward

Studying the effect of specific dietary pattern in health, especially long-term, is a very difficult

task. As described in Chapter 1, there are inherent limitations to nutrition assessment tools
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and studies. Current efforts in the identification of dietary intake biomarkers are using

omics technology, and gut microbiome research is growing rapidly. In my point of view, an

approach that manages to integrate these two approaches can promote the understanding of

the underlying mechanisms of the effects of diet in health.

While VMH captures, in a unique manner, information for human and gut microbial

metabolism and links it to hundreds of diseases and nutritional data, the COBRA approach

offers methods and tools to perform analysis and simulations to further study these metabolic

reconstructions. The combination and further improvement of these two can offer the means

to address some of the limitations of nutrition research.

There are studies that characterized dietary patterns using metabomolics [136, 235], and

several changes in the composition of the gut microbiota are associated with dietary patterns

[65, 53, 313]. It would be interesting to use VMH and the COBRA approach to simultane-

ously integrate these complex data. In doing so, one could investigate what changes in the

metabolome are caused by diet itself or how they correlate with the specific gut microbiota

composition through the creation of community models [196]. An additional layer of com-

plexity can be added by using VMH’s resources to design in silico diets and predict how

the system will respond to different dietary compositions. Being able to characterize these

responses, the next step is to predict the effect of specific diets based on biofluid data mea-

surements of an individual, paving the way for a truly personalized dietary recommendation

mechanism.

Another promising application would be to understand if this approach could be applied to

disease treatment. The metabolism of several drugs is included in VMH and Recon3D [39].

A combination of physiologically based pharmacokinetic (PBPK) and COBRA modeling

predicted the positive impact on the efficacy of a drug for Parkinson’s Disease treatment if

administered with a serine-rich diet [111] and more recently, the usage of the gut microbe

models of VMH was used to predict potential treatment strategies for Crohn’s Disease [25].

VMH needs to accompany this progression and include additional information that is relevant

for these purposes, such as the “Physiological resource” and "Drug resource" discussed in

Chapter 2.

For metabolic modeling applications to be further translated to practice, additional

validation of this approach must be pursued. Data obtained from nutrition studies using
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metabolomics technologies and/or gut microbiome sequencing, such as diet efficacy tests, or

nutritional biomarker studies can be used for this purpose. Replicating observations computa-

tionally can give mechanistic insights into the studies’ results and will foster an improvement

of the available models and tools. In addition, in vitro modeling technologies that mimic the

gut environment are becoming more advanced [204]. These could be a means of validating

these approaches by testing the effect of different diets or nutrients and support the creation

of strategies for gut microbiota modulation through diet. These validations could then lead to

further in vivo experiments or clinical trials and an eventual translation of metabolic modeling

to healthcare applications.
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Appendix A

Supplementary Material

A.1 Mapping of nutritional data with VMH metabolites
Nutrient information from theUSDANationalNutrientDatabase for StandardReference [317]
was mapped to VMH metabolites. Table A.1 shows all nutrient definitions present in the
nutritional composition database and, when that was possible, the corresponding metabolite
abbreviation. Additionally, we have categorized each nutrient for display purposes in the
detail pages of VMH.

Tag name Nutrient
description

Metabolites
VMH Category Subcategory

PROCNT Protein Proteins Total protein

FAT Total lipid
(fat) Lipids Total lipids

CHOCDF
Carbohy-
drate, by
difference

Carbohy-
drates

Total
carbohydrate

ASH Ash
Minerals and

trace
elements

Ash

EN-
ERC_KCAL Energy Energy

content
Energy in

kcal

STARCH Starch
strch1,
strch2,

starch1200

Carbohy-
drates Carbohydrate

SUCS Sucrose sucr Carbohy-
drates Disaccharide

GLUS Glucose
(dextrose) glc_D Carbohy-

drates
Monosaccha-

ride

FRUS Fructose fru Carbohy-
drates

Monosaccha-
ride

LACS Lactose lcts Carbohy-
drates Disaccharide

131
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MALS Maltose malt Carbohy-
drates Disaccharide

ALC Alcohol,
ethyl etoh Other Alcohol

WATER Water h2o Other Water
Adjusted
Protein Proteins

CAFFN Caffeine Other Total caffeine
THEBRN Theobromine Other

ENERC_KJ Energy Energy
content Energy in kj

SUGAR Sugars, total Carbohy-
drates Total sugar

GALS Galactose gal Carbohy-
drates

Monosaccha-
ride

FIBTG Fiber, total
dietary

Dietary
Fibers

Total dietary
fibers

CA Calcium, Ca ca2
Minerals and

trace
elements

Mineral

FE Iron, Fe fe2, fe3
Minerals and

trace
elements

Trace
element

MG Magnesium,
Mg mg2

Minerals and
trace

elements
Mineral

P Phosphorus,
P pi

Minerals and
trace

elements
Mineral

K Potassium, K k
Minerals and

trace
elements

Mineral

NA Sodium, Na na1
Minerals and

trace
elements

Mineral

ZN Zinc, Zn zn2
Minerals and

trace
elements

Mineral

CU Copper, Cu cu2
Minerals and

trace
elements

Trace
element

FLD Fluoride, F
Minerals and

trace
elements

Trace
element
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MN Manganese,
Mn mn2

Minerals and
trace

elements
Mineral

SE Selenium, Se sel
Minerals and

trace
elements

Mineral

VITA_IU Vitamin A,
IU Vitamins

RETOL Retinol retinol Vitamins Fat soluble
vitamin

VITA_RAE Vitamin A,
RAE Vitamins

CARTB Carotene,
beta caro Vitamins Fat soluble

vitamin

CARTA Carotene,
alpha Vitamins Fat soluble

vitamin

TOCPHA
Vitamin E
(alpha-

tocopherol)
avite1 Vitamins

VITD Vitamin D Vitamins

ERGCAL
Vitamin D2
(ergocalcif-

erol)
vitd2 Vitamins Fat soluble

vitamin

CHOCAL
Vitamin D3
(cholecalcif-

erol)
vitd3 Vitamins

VITD Vitamin D
(D2 + D3) Vitamins

CRYPX
Cryptoxan-

thin,
beta

Vitamins

LYCPN Lycopene Vitamins

LUT+ZEA Lutein +
zeaxanthin Vitamins

TOCPHB Tocopherol,
beta bvite Vitamins Fat soluble

vitamin

TOCPHG Tocopherol,
gamma yvite Vitamins Fat soluble

vitamin

TOCPHD Tocopherol,
delta Vitamins Fat soluble

vitamin

TOCTRA Tocotrienol,
alpha avite2 Vitamins Fat soluble

vitamin

TOCTRB Tocotrienol,
beta Vitamins Fat soluble

vitamin
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TOCTRG Tocotrienol,
gamma Vitamins Fat soluble

vitamin

TOCTRD Tocotrienol,
delta Vitamins Fat soluble

vitamin

VITC
Vitamin C,
total ascorbic

acid
ascb_L Vitamins Water soluble

vitamin

THIA Thiamin thm Vitamins Water soluble
vitamin

RIBF Riboflavin ribflv Vitamins Water soluble
vitamin

NIA Niacin nac, ncam Vitamins Water soluble
vitamin

PANTAC Pantothenic
acid pnto_R Vitamins Water soluble

vitamin

VITB6A Vitamin B-6 pydam, pydx,
pydxn Vitamins Water soluble

vitamin

FOL Folate, total fol, 10fthf,
5mthf, thf Vitamins Water soluble

vitamin

VITB12 Vitamin B-12 adocbl Vitamins Water soluble
vitamin

CHOLN Choline, total chol Vitamins Water soluble
vitamin

MK4 Menaquinone-
4

Vitamins Fat soluble
vitamin

VITK1D Dihydrophyl-
loquinone Vitamins Fat soluble

vitamin

VITK1
Vitamin K
(phylloqui-

none)
phyQ Vitamins Fat soluble

vitamin

FOLAC Folic acid fol Vitamins Water soluble
vitamin

FOLFD Folate, food Vitamins Water soluble
vitamin

FOLDFE Folate, DFE Vitamins Water soluble
vitamin

BETN Betaine glyb Proteins Amino acid
TRP_G Tryptophan trp_L Proteins Amino acid
THR_G Threonine thr_L Proteins Amino acid
ILE_G Isoleucine ile_L Proteins Amino acid
LEU_G Leucine leu_L Proteins Amino acid
LYS_G Lysine lys_L Proteins Amino acid
MET_G Methionine met_L Proteins Amino acid
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CYS_G Cystine cys_L Proteins Amino acid

PHE_G Phenylala-
nine phe_L Proteins Amino acid

TYR_G Tyrosine tyr_L Proteins Amino acid
VAL_G Valine val_L Proteins Amino acid
ARG_G Arginine arg_L Proteins Amino acid
HISTN_G Histidine his_L Proteins Amino acid
ALA_G Alanine ala_L Proteins Amino acid
ASP_G Aspartic acid asp_L Proteins Amino acid

GLU_G Glutamic
acid glu_L Proteins Amino acid

GLY_G Glycine gly Proteins Amino acid
PRO_G Proline pro_D, pro_L Proteins Amino acid
SER_G Serine ser_L Proteins Amino acid

HYP Hydroxypro-
line 4hpro_LT Proteins Amino acid

Vitamin E,
added Vitamins Fat soluble

vitamin
Vitamin

B-12, added Vitamins Water soluble
vitamin

CHOLE Cholesterol chsterol Lipids Cholesterol

FATRN Fatty acids,
total trans Lipids Fatty acids,

total trans

FASAT
Fatty acids,

total
saturated

Lipids
Total

saturated
fatty acids

F4D0 4:0 but Lipids Fatty acid
F6D0 6:0 caproic Lipids Fatty acid
F8D0 8:0 octa Lipids Fatty acid
F10D0 10:0 dca Lipids Fatty acid
F12D0 12:0 ddca Lipids Fatty acid
F14D0 14:0 ttdca Lipids Fatty acid
F16D0 16:0 hdca Lipids Fatty acid
F18D0 18:0 ocdca Lipids Fatty acid
F20D0 20:0 arach Lipids Fatty acid

F18D1 18:1 undiffer-
entiated ocdcea Lipids Fatty acid

F18D2 18:2 undiffer-
entiated lnlc Lipids Fatty acid

F18D3 18:3 undiffer-
entiated lnlc Lipids Fatty acid

F20D4 20:4 undiffer-
entiated arachd Lipids Fatty acid
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F22D6 22:6 n-3
(DHA)

crvnc,
CE0328 Lipids Fatty acid

F22D0 22:0 docosac Lipids Fatty acid
F14D1 14:1 ttdcea Lipids Fatty acid

F16D1 16:1 undiffer-
entiated hdcea Lipids Fatty acid

F18D4 18:4 strdnc Lipids Fatty acid
F20D1 20:1 CE2510 Lipids Fatty acid

F20D5 20:5 n-3
(EPA) tmndnc Lipids Fatty acid

F22D1 22:1 undiffer-
entiated doco13ac Lipids Fatty acid

F22D5 22:5 n-3
(DPA) clpnd Lipids Fatty acid

PHYSTR Phytosterols Lipids Total
phytosterols

STID7 Stigmasterol Lipids Phytosterol
CAMD5 Campesterol Lipids Phytosterol

SITSTR Beta-
sitosterol Lipids Phytosterol

FAMS

Fatty acids,
total

monounsatu-
rated

Lipids

Total
monounsatu-
rated fatty

acids

FAPU
Fatty acids,
total polyun-
saturated

Lipids
Total polyun-
saturated
fatty acids

F15D0 15:0 ptdca Lipids Fatty acid
F17D0 17:0 hpdca Lipids Fatty acid
F24D0 24:0 lgnc Lipids Fatty acid
F16D1T 16:1 t Lipids Fatty acid
F18D1T 18:1 t Lipids Fatty acid
F22D1T 22:1 t Lipids Fatty acid

18:2 t not
further
defined

Lipids Fatty acid

18:2 i Lipids Fatty acid
F18D2TT 18:2 t,t Lipids Fatty acid
F18D2CLA 18:2 CLAs Lipids Fatty acid
F24D1C 24:1 c nrvnc Lipids Fatty acid

F20D2CN6 20:2 n-6 c,c eidi1114ac Lipids Fatty acid
F16D1C 16:1 c Lipids Fatty acid
F18D1C 18:1 c Lipids Fatty acid

F18D2CN6 18:2 n-6 c,c Lipids Fatty acid
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F22D1C 22:1 c Lipids Fatty acid
F18D3CN6 18:3 n-6 c,c,c lnlncg Lipids Fatty acid

F17D1 17:1 M00003,
M01238 Lipids Fatty acid

F20D3 20:3 undiffer-
entiated dlnlcg Lipids Fatty acid

FATRNM
Fatty acids,
total trans-
monoenoic

Lipids
Total trans-
monoenoic
fatty acids

FATRNP
Fatty acids,
total trans-
polyenoic

Lipids
Total trans-
polyenoic
fatty acids

F13D0 13:0 M03051 Lipids Fatty acid
F15D1 15:1 Lipids Fatty acid

F18D3CN3 18:3 n-3 c,c,c
(ALA) lnlnca Lipids Fatty acid

F20D3N3 20:3 n-3 Lipids Fatty acid
F20D3N6 20:3 n-6 Lipids Fatty acid
F20D4N6 20:4 n-6 Lipids Fatty acid

18:3i Lipids Fatty acid
F21D5 21:5 Lipids Fatty acid
F22D4 22:4 Lipids Fatty acid

F18D1TN7 18:1-11 t
(18:1t n-7) Lipids Fatty acid

Table A.1: Mapping of nutritional information from the USDA National Nutrient Database
for Standard Reference, Release 28 with metabolites from VMH.

A.2 VMH detailed schema
At the core of VMH is a MySQL relational database. This database contains 59 tables
and takes around 1 GB of disk space. Figure A.1 shows a detailed schema of the database
containing 44 of the 59 tables. The excluded tables are related with user administration,
website definitions, and database migrations, a form of version control provided by the
Django framework which allows tracking changes to the database structure without the need
to write SQL code. This schema was generated using the software MySQL Workbench 6.0
Community edition, available at https://www.mysql.com/products/workbench/.

A.3 Leigh Map interface
The Leigh Map is integrated in the MINERVA framework and accessible at http://vmh.
uni.lu/#leighmap. Figure A.2 shows the interface of the Leigh Map. In Figure A.2-A the
conceptual overview of the mitochondria is visible. By zooming in additional detail will be
revealed. Users can search for genes and pehnotypes in the left panel, as shown in Figure

https://www.mysql.com/products/workbench/
http://vmh.uni.lu/#leighmap
http://vmh.uni.lu/#leighmap
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Figure A.1: Detailed schema of the VMH database

A.2-B. Each gene has an associated submap that shows every phenotype association with a
marker on the searched ones Figure A.2-C.



A.3. LEIGH MAP INTERFACE 139

A

B

C

Figure A.2: Interface of the Leigh Map. A - conceptual overview of the mitochondria. B -
search functionality. C - gene-submap displaying associated phenotypes.
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