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Abstract

In this research note we introduce St-Nicolas graphs, i.e. circulant
digraphs showing exactly n maximal independent sets, isomorph under
the digraph’s automorphisms group. This class of digraphs represent a
generalisation of Andrásfai graphs with interesting links to finite group
theory.
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1 Automorphism of digraphs

1.1 Graphs and digraphs

We consider a digraph (directed graph) G to consist of a set V (G) of nodes and
a set A(G) ⊆ V (G) × V (G) of arcs. The order n(G) = |V (G)| of a digraph G

is given by the number of its nodes. We shall only consider digraphs of finite
order. The size s(G) of the digraph G is given by the cardinality of its arc set,
i.e. s(G) = |A(G)|. The fill rate (arc density) of G is defined as the ratio of
s(G) over n(G)2.

The out-degree, i.e. the number of arcs leaving a node x is denoted d−(x).
Similarly, the in-degree, i.e. the number of arcs entering a node x is denoted
d+(x). A k-regular digraph G is such that d−(x) = d+(x) = k for all x ∈ V (G).

The complement G of a digraph G consists of the same set V (G) of nodes as
G and the complement arc set A(G) = {(x, y) ∈ V (G)×V (G) | (x, y) 6∈ A(G)}.

We call graph, a digraph G which shows symmetric arcs, i.e. G is such
that ∀x, y ∈ V (G) we have (x, y) ∈ A(G) ⇒ (y, x) ∈ A(G). In the loopless
(irreflexive) case, i.e. (x, x) 6∈ A(G), ∀x ∈ V (G), both symmetric arcs between
two nodes of G are called edges and we may replace the set A(G) of oriented arcs
with the set E(G) = {{x, y} : (xy) ∈ A(G)} of unoriented edges to obtain the
general concept of simple graph. In order to avoid the representational necessity
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f to work with irreflexive relations, we shall always consider simple graphs to be

symmetric and loopless digraphs in the sequel.

1.2 Unlabelled digraphs and automorphisms

Two digraphs G and H are said to be equal if they have the same node set
and the same arc set. In this study, we are not directly interested in a pre-
cisely labelled node set, only the isomorph disposition of the arcs between the
unlabelled nodes is of interest for us.

Figure 1: The unlabelled complete digraph on three nodes

Two digraphs G and H are called isomorph, denoted G ∼= H , if there is a
bijection, say Φ, from V (G) to V (H) such that (x, y) ∈ A(G) if and only if
(Φ(x), Φ(y)) ∈ A(H). We say that Φ is an (digraph) isomorphism from G to
H . The abstract class of all isomorph digraphs of a given digraph H is called
the unlabelled digraph H . We denote Kn the unlabelled complete graph of
order n where A(G) = V (G) × V (G). In figure 1 we show K3, the unlabelled
complete graph defined on three nodes’s. The unlabelled graph G of order n

where A(G) = ∅ is called the empty graph (of order n) and denoted On.
An isomorphism of a digraph G to itself is called an (digraph) automorphism.

An automorphism of a digraph is therefore a permutation of its nodes’s that
maps arcs to arcs and non arcs to non arcs. The set of all automorphisms of
a digraph G form a group, denoted Aut(G), where the identity permutation
is denoted e. Aut(G) is a subgroup of Sym(V (G)), the set of all permutation
of the nodes’s of G. As every permutation of V (Kn) is an automorphism of
Kn, we may notice that Aut(Kn) = Sym(n), the permutation group of the
list of integers [0, 1, . . . , n− 1]. A digraph which admits only the trivial identity
permutation e will be called an asymmetric digraph. In general, for a digraph G,
1 6 |Aut(G)| 6 |Sym(V (G))|. A digraph admitting a non-trivial automorphism
group will be called a symmetric digraph1.

1Please notice that, contrary to the common usage in directed graph theory, we will call

graph a digraph admitting only symmetric arcs and reserve the qualification symmetric for

2
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Figure 2: The automorphisms of the 9-circuit and the 9-cycle

In the sequel we are mainly interested in highly regular and symmetric di-
graphs such as the 1-regular circular digraph called n-circuit. The rotational
permutations of the n-circuit give an automorphism group of order n as shown
in figure 2. In the corresponding symmetric case we speak of the 1-regular n-
cycle, denoted Cn. Its automorphism group’s order is 2×n. A lateral reflection
along a central symmetry line through the n-cycle, replacing 1 with n−1, 2 with
n − 2, . . . , ⌊n

2 ⌋ with n − ⌊n
2 ⌋, multiplies by two the rotational automorphisms

(see figure 2) observed in the single directed case.
Digraphs supporting such circular automorphisms, all belong to the impor-

tant class of circulant digraphs that we shall introduce in the next section.

2 The circulant digraphs

2.1 Introducing circulant digraphs

A circulant digraph of order n consists of a set of n nodes’s enumerated 0, 1, 2 . . . , n−
1 and denoted [n], and a connection set C = {r, s, . . .}, with r, s, . . . ∈ Zn, indi-
cating a corresponding set of circulant connected nodes’s (i, i+r mod n), (i, i+s

mod n), . . ., for each node i in [n]. For short we note Circ([n], C).
The 1-regular n-circuit mentioned beforehand corresponds to the circulant

graph Circ([n], {1}) and Cn
∼= Circ([n], {1,−1}). The empty graph On corre-

sponds to Circ([n], ∅) and, similarly, Circ([n], [n]) ∼= Kn.
Figure 3 shows for instance the circulant digraph Circ([8], {1, 4, 7}). which

is obviously a 3-regular graph with d+(i) = d−(i) = 3 for all i ∈ [n].
In general, all circulant digraphs are necessarily k-regular, where k equals

the dimension of the connection set C.
The circulant digraph Circ([8], {1, 4, 7}) is furthermore a simple graph due

to the symmetric distribution of its connection set C. In the circular embedding
of nodes’s, node 1 + 1 mod 8 = 2 is symmetrically opposed to node 1 + 7 mod

stating the presence of a non trivial automorphism group of the digraph.

3
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Figure 3: The circulant graph Circ([8], {1, 4, 7})

8 = 0, and similarly, node 1 + 4 mod 8 = 5 is symmetrically opposed to node
5 + 4 mod 8 = 1.

Circulant digraphs naturally correspond to a particular class of Cayley di-
graphs.

2.2 Cayley digraphs

Let Γ be a finite Abelian group of order |Γ| where we denote + the group
operation with neutral element 0. Γ+ will denote the positive elements of Γ. A
subset C ⊆ Γ is called a difference set for Γ.

Given the pair (Γ, C), we define a Cayley digraph G, denoted Cay(Γ, C), as
follows. Let V (G) = Γ+ and ∀x, y ∈ Γ+ we observe an arc (x, y) ∈ A(G) as
soon as (y − x) ∈ C.

The order of a Cayley digraph Cay(Γ, C) is given by the dimension of Γ+.
In case the difference set C verifies the condition that (x−y) ∈ C if (y−x) ∈ C,
we get a Cayley graph.

We may notice that Cay(Γ, Γ) gives a complete graph Kn of order n = |Γ+|.
The correspondence with circulant digraphs becomes evident when associ-

ating Γ with Zn. A given connection set C ⊆ Zn then consists of a set of
distinguished positive and negative differences observed between elements of
Z+

n .
Our example circulant digraph Circ([8], {1, 4, 7}), for instance, is isomorph

to Cay(Z8, {1,−1, 4,−4}). We connect any two numbers x, y ∈ Z
+
8 as soon as

their difference (x − y) takes one of the four values in {1,−1, 4,−4}. Indeed,
the circulant connections {1, 7} correspond to all differences of values 1 and
−1 between the eight nodes’s in [8]. Similarly, the circulant connection [4]
correspond to the midpoint 4 in the even number of cyclic group elements in
Z8 and therefore collects all differences of values 4 and −4 between the eight
nodes’s in [8].

4



sm
a

w
o
rk

in
g

p
a
p
e
r

rb
-w

p
-0

6
-0

4
-v

0
1

h
t
t
p
:
/
/
s
m
a
.
u
n
i
.
l
u
/
s
m
a
/
p
u
b
/
r
b
-
w
p
-
0
6
-
0
4
-
v
0
1
.
p
d
f This finite Abelian group embedding of circulant digraphs via the Cayley

digraph correspondence will help us formulate and demonstrate essential prop-
erties of circulant digraphs later on.

2.3 Andrásfai graphs

In the sequel we shall distinguish a special class of Cayley graphs, namely the
Andrásfai graphs. For any k > 1, let And(k), the Andrásfai graph of order k,
denote the Cayley graph Cay(Z3k−1, C) with C containing all elements of Z3k−1

congruent to 1 modulo 3. And(1) corresponds to K2, and And(2) corresponds
to the 5-cycle C5. Indeed, using the above introduced correspondence with

0

1

2

3 4

5

6

7

Figure 4: The Andrásfai graph of order 3

circulant digraphs, it easy to notice that And(1) corresponds to Circ([2], {1})
and And(2) to Circ([5], {1, 4}). The perspicacious reader may have further-
more noticed that our example Circ([8], {1, 4, 7}) is nothing else than And(3),
also called the (four level) Möbius ladder shown in figure 4. We have high-
lighted here a lateral reflection plane which illustrates the four transpositions:
(7, 6)(8, 5)(1, 4), (2, 3) that make up the central reflection symmetry besides the
normal circular rotation. It becomes evident here that Aut(And(3)) is of order
16, i.e. 8 circular rotations times two lateral reflections.

Indeed, all Andrásfai graphs of order k support an automorphism group of
order 2 × (3k − 1) similar to the dihedral group.

We shall revisit the Andrásfai graphs later on. Let us conclude this section
with presenting a special composition operator for circulant digraphs.

2.4 Lower closed composition of circulant digraphs

Let G and H denote two circulant digraphs Circ([n], CG) and Circ([n], CH)
of same order n. We denote G ⊗ H , called lower closed composition of G

and H , the circulant digraph Circ([n], CT ) resulting from the union and the

5



sm
a

w
o
rk

in
g

p
a
p
e
r

rb
-w

p
-0

6
-0

4
-v

0
1

h
t
t
p
:
/
/
s
m
a
.
u
n
i
.
l
u
/
s
m
a
/
p
u
b
/
r
b
-
w
p
-
0
6
-
0
4
-
v
0
1
.
p
d
f standard composition of both the graphs G and H with connection set CT =

CG ∪ CH ∪ (CG ◦ CH), where CG ◦ CH represents the transitive closure of all
circulant connections in G and H .
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Circ([8],[1]) Circ([8],[2]) Circ([8],[1,2,3])

Figure 5: The lower closed composition illustrated

Figure 5 shows Circ([8], [1, 2, 3]), the lower closed composition of Circ([8], [1])
and Circ([8], [2]).

We shall mainly be concerned with the repeated compositions of the n-cycle
Cn with itself, which we denote with the help of a standard exponential notation
as Cp

n = Cp−1
n ⊗ Cn, where p > 1. By convention, C0

n denotes the empty graph
On.

With this exponential notation we may rewrite for instance the circulant
digraph Circ([8], [1,−1, 2,−2, 3,−3]) as C3

8 .
It is easy to verify that all Cp

n with p > ⌊n
2 ⌋ are isomorph to Kn. Indeed,

all the differences (⌊n
2 ⌋ + r mod n) equal the differences −(⌊n

2 ⌋ − r mod n) for
r > 1 in the corresponding Cayley graph defined on Zn.

A first result will relate now the lower closed composed circulant graphs with
the previously introduced Andrásfai graphs.

Proposition 1

The Andrásfai graph And(k) for k > 1 are isomorph to the complement digraph

of C
⌈ 3k−1

3
⌉−1

3k−1 .

We proceed by induction. For k = 1, ⌈ 3k−1
3 ⌉ = 1, so that proposition 1 is

true. Let us now suppose that the proposition is true for k > 1. To see that, in
this case, proposition 1 is true for k +1, we may rely on the fact that Andrásfai
graphs are all constructive, i.e. the subset of nodes’s enumerated [3k − 1] in
And(k + 1) induce the Andrásfai graph And(k) (see (1)). When adding nodes’s
{3k, 3k + 1, 3k + 2} with the respective new difference 3k − 1 to C3k−1 we get
C3(k+1)−1.

Complete digraphs and Andrásfai graphs share a same interesting property.
Both graphs admit a unique unlabelled maximal independent set associated
with an orbit of isomorphĥic labelled instances of cardinality equal to the order
of the graph. Such graphs will be discussed in the next section.

6
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f 3 St-Nicolas graphs

3.1 Choices and induced subgraphs

A subdigraph H of G consists of a subset V (H) ⊆ V (G) of nodes and a subset
A(H) ⊆ A(G) of arcs from G. A subgraph H is called induced if A(H) contains
all arcs from A(G) such that x, y ∈ V (H).

A choice Y in a digraph G is a non empty subset of nodes of V (G). A choice
inducing an empty subgraph is called an independent (or stable) choice. The
choice inducing a subgraph which is complete is called a clique.

A choice Y verifying a property P is called minimal (resp. maximal) for
property P is no proper subset (resp. superset) of Y verifies the same property
P

3.2 Maximal independent sets and cliques

Let G be any digraph. For a node x ∈ V (G), we denote N(x) = {y ∈
V (G)|{x, y} ∈ E(G) its neighbourhood in G. The (open) neighbourhood N(Y )
of a choice Y consists of the union of the (open) neighbourhoods of its members.

A maximal independent set (MIS) in G is a choice in G such that Y ∩N(Y ) =
∅ and Y ∪ N(Y ) = V (G).

A maximal clique in G is a MIS in the complement graph G

0

1

2

3 4

5

6

7

Figure 6: The choice {2, 5, 7} gives a MIS in And(3)

In Kn, each singleton {x} gives a MIS, and the complete graph Kn is evi-
dently itself its maximal clique. Conversely, in Kn = On, the maximal indepen-
dent set is Kn and each singleton is a maximal clique. In figure 6 we show for
instance a maximal independent set in And(3).

7
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f 3.3 Unlabelled maximal independent sets and cliques

Let G be a given digraph with a non trivial automorphism group Aut(G). The
image of a node x ∈ V (G) under an automorphism g ∈ Aut(G) will be denoted
xg. If H is an induced subgraph of G, then Hg will denote a digraph with node
set V (Hg) = {xg : x ∈ V (H)} and arc set A(Hg) = {(xg, yg) : (x, y) ∈ A(H).

From the fact that g is an automorphism of G, it follows immediately, first,
that Hg is isomorph to H , and secondly, that Hg is also a subgraph of G. In
such a way an isomorph copy of a given maximal independent set or clique in
G remains a maximal independent set and clique of G.

The orbit of isomorph maximal independent sets or cliques in a digraph G

following the automorphism group Aut(G) is called an unlabelled MIS, respec-
tively an unlabelled clique of G.

For instance Kn admits a single (unlabelled) node as unlabelled MIS, and
On admits a single unlabelled node as unlabelled maximal clique. Each time
the given digraph supports a single MIS orbit (resp. maximal clique orbit) of
dimension n.

3

1 2

4

Figure 7: The four unlabelled MIS of C12

Not all symmetric digraphs admits a single MIS or maximal clique orbit. In
figure 7 we show for instance the four MIS orbits of the 12-cycle.

However, Andrásfai graphs And(k) are in this sense similar to Kn, as they
admit surprisingly a single MIS orbit of dimension equal to the order 3k − 1 of
And(k). This property of Andrásfai graphs may be verified by noticing that they
are precisely characterised by the fact each node’s neighbourhood corresponds
bijectively each to precisely one of the 3k − 1 isomorph MIS. Indeed, as the

8
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f connection sets C of Andrásfai graphs only contain numbers congruent to 1

mod 3, all differences between the elements of C are congruent to 0 mod 3
and thus may never be connected. Furthermore, one may verify that adding
any available further element to the actual neighbourhood of a given node will
necessarily violate (see (1)) the independence property.

We shall call St-Nicolas graphs, the digraphs G admitting a singe MIS-orbit
of size n(G). Similarly, we call St-Nicolas a MIS-orbit of size n(G).

From the neighbourhood preservation property of the graph isomorphism
definition, it immediately follows that a digraph G and its complement G neces-
sarily share the same automorphism group Aut(G) = Aut(G). The complement
of St-Nicolas graphs G of order n(G) will therefore admit a single maximal
k-clique orbit of same dimension n(G) as the MIS-orbit, i.e. the order of n(G).

The last part, concerned with the general study of MIS-orbits of circulant
digraphs in general, will allow us to precisely delimit the class of St-Nicolas
graphs.

3.4 The MIS-symmetry signature of circulant graphs

From figure 7, we may notice that the cycle C12 has four MIS-orbits. The first
orbit contains two isomorph MIS of cardinality 6, the second orbit contains 3
MIS of cardinality 4, the third and fourth orbit contain each 12 MIS of cardi-
nality 5.

Figure 8: An irregular MIS from C20

The cycle C20 shows 14 kernel orbits: two orbits of respectively 40 isomorph
MIS of cardinality 8. One of these MISs is shown in figure 8. We may notice
that, contrary to the St-Nicolas graphs, this MIS shows an irregular pattern as
it doesn’t organise its nodes’s along any central reflection axis. Therefore we
obtain in fact 40 different isomorph copies following from the actual order 40 of
the automorphism group of C20.

C20 shows furthermore 9 St-Nicolas orbits with MIS of cardinalities between
7 and 9; a single MIS orbit of size 10 (cardinality 8), of size 5 (cardinality 8),
and, of size 2 (cardinality 10). This last orbit contains in fact the two trivial

9
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f MIS you may get by choosing every second node on the circular embedding of

C20.
It is worthwhile noticing that the different orbit sizes observed for C12 and

C20 respectively, reveal the presence of a variable number of central symmetry
axes which may divide the order 2n of the underlying automorphism group of
the n-cycles (see figure 7). In order to capture this symmetry characteristic in a
synthetic way, we will denote kSs (with s ≥ 0 and k ≥ 1), k MIS orbits based on
s central symmetry axes. With this notation, a St-Nicolas digraph is qualified
as S1.

digraph MIS-orbit characterisation

Ck for k = 3, 5, 7 S1 (St-Nicolas)
C11 2S1 (2 St-Nicolas)
C13 4S1 (4 St-Nicolas)
C17 S0 + 5S1

C19 2S0 + 7S1

C23 8S0 + 12S1

Table 1: MIS-orbit characterisation for n-cycles of prime order

In table 1 we show the symmetry characteristics of the MIS-orbits of n-
cycles of prime order n. We see that only asymmetric and St-Nicolas MISs may
appear.

digraph MIS-orbit characterisation

C9 S1 + S3

Circ([9], {1,−1, 3,−3}) S1 (St-Nicolas)
C10 S1 + S2 + S5

Circ([10], {1,−1, 2,−2, 5,−5}) S1 (St-Nicolas)
C12 2S1 + S4 + S6

Circ([12], {1,−1, 4,−4, 6,−6}) S1 (St-Nicolas)
C20 2S0 + 9S1 + S2 + S4 + S10

Circ([20], {1,−1, 2,−2, 4,−4, 10,−10}) 3S1 (St-Nicolas)

Table 2: MIS-orbit characterisation for non prime cycles and regular circulant graphs

Table 2 shows furthermore the MIS-orbit characterisations for non prime
n-cycles. It is worthwhile noticing that there appears a clear link between
the MIS-orbit characterisations of the n-cycles and the corresponding circulant
graphs giving a St-Nicolas graph.

Conjecture 1

1. All cycles Cn of prime order n ≥ 3 admit unlabelled kernels only of class

pS0 + qS1, with p ≥ 0 and q ≥ 1;

10
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2. The circulant graph Circ([n], {r, s, . . .}) corresponding to a cycle Cn sup-

porting a positive number of kernel orbits with r, s, . . . symmetry axes,

admit unlabelled kernels only of class pS0 + qS1, with p ≥ 0 and q ≥ 1.

We will close this study with the partial characterisation of St-Nicolas graphs.

Theorem 1

A digraph G of order n is a St-Nicolas graph if G is isomorph to the complement

of the lower closed composition Cp
n, with 0 6 p 6 (⌈n

3 ⌉ − 1), of the n-cycle.

Theorem 1 readily follows from the observation that the progressive lower
closed p-composition of the n-cycles produces n circulant maximal cliques of
increasing order p which may each be bijectively related with a particular node.
For p = 0, we obtain indeed the empty clique whose complement is Kn, i.e.
a St-Nicolas graph. Similarly, from property 1 we know that the complement
of the maximal lower-closed p-composition of an n-cycle, with n = 3k − 1 and
p = (⌈n

3 ⌉ − 1)), is isomorph to And(k), i.e. again a St-Nicolas graph. In
between, it is possible to show that the connection set of the corresponding
circulant graph, presents a regular disposition along a unique central symmetry
axis defined by the finite group Zn structure along 0 and ⌊n

2 ⌋. Raising p to a
value higher than (⌈n

3 ⌉−1) will always produce, following the transitive closure
of the lower closed composition, maximal cliques of higher order than p. The
complements of these dense digraphs get quickly very sparse and consequently
admit a much larger number of MIS than a St-Nicolas graph.

4 Conclusion

Open question: Are the complement of lower-closed p-compositions for 0 6

p 6 (⌈n
3 ⌉ − 1) of the n-cycle the only possible St-Nicolas graphs? To answer

eventually the question, it will be necessary to investigate more deeply the
algebraic properties of circulant digraphs and particularly of St-Nicolas graphs.

Knowing more about St-Nicolas graphs will also give hints for eventually
proving both sentences of conjecture 1.
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