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 Abstract - The effective collaboration between humans and 

robots in complex and task rich environments like End of Life 

product disassembly depends on the ability of the robot to 

anticipate the workflow as well as the assistance the human co-

worker wants. Our approach towards such an intelligent system 

is the development of an informed software agent that controls 

the robot assistance behavior. We inform the agent with 

procedural and declarative knowledge about the disassembly 

domain through models of the product structure and actor/object 

models. The product structure is then transformed to a directed 

graph and used to build, share and define a goal-orientated 

coarse workflow. Depending on the tasks and wanted assistance, 

the system can generate adaptable and detailed workflows 

through searching in the situation space on the basis of 

predefined and task dependent actions. The created detailed 

workflow consists of a sequence of actions that are used to call, 

parameterize and execute robot programs for the fulfillment of 

the assistance. The aim of this research is to equip robot systems 

with higher cognitive skills to allow them to be autonomous in the 

performance of their assistance to improve the ergonomics of 

disassembly workstations. 

 
 

 Index Terms – Human-Robot Interaction, Human-Robot 

Collaboration, Robot Assistant, Cognitive Robotics, Disassembly 

Assistance. 

 

I.  INTRODUCTION 

 Disassembling is involved in many processes, for example 

remanufacturing, corrective maintenance, proper disposal and 

manufacturing. However, fully automated disassembly lines 

are, compared to product assembly lines, rare. One reason is 

that disassembling at the end of a product lifetime is much 

harder to automatize than assembling. In disassembly we have 

to cope with fouling, wear, damaged or only absent parts. 

Furthermore, we have to deal with product manipulations, 

such as individual extensions or improvised fixes, which are 

not obviously visible. It is the unpredictable condition of a 

product that prohibits further automation. Even if better sensor 

technology could identify inappropriate product conditions, it 

would be impossible, or highly expensive, to treat all 

possibilities in a fully automated manner. Other challenges are 

the small lot sizes or individualized products (lot size 1). 

Today’s fully automated processes are not flexible enough for 

the treatment of different products or variants. In corrective 

maintenance, it is a normal case to have an unsteady, 

unpredictable flow of different products.  Dismantling 

processes in corrective maintenance may also have different 

target stages, depending on what part has to be replaced. 

Furthermore, there is, especially in central waste recycling 

plants, a lack of information about the product structure. For 

example, types of materials in the product. These are reasons 

why disassembly workplaces stayed unautomated, thus 

resulting in a bad situation for the workforce, who remain 

exposed to health problems due to heavy workload. In 

addition, the economic fitness of disassembly processes is 

highly reduced by the substantial amount of manual labor in 

the destructive disassembly process. Consequently, important 

concepts for environmental protection, such as 

remanufacturing, cannot spread wider into industry. 

A solution for this problem would be intelligent robot-based 

assistants, which would be a compromise between automation 

and manual labor with great advantages in the disassembly 

domain. One advantage is that only humans have the cognitive 

abilities to identify and handle the aforementioned unexpected 

situations. Thus, humans are able to ensure the overall success 

of the process by contributing their awareness to adapting the 

process to a situation [1]. The robot instead can provide 

assistance with power and endurance over the complete 

disassembly process and thereby improve the ergonomics of 

the workplace. Therefore, multi-skilled robots may take over 

automatable tasks, such as unscrewing, or support the 

execution of tasks, e.g., handling of heavy parts. Especially 

over the 10 last years, with the development of lightweight 

and force-sensitive robots, new robot skills have extended the 

robots’ fields of application. Those new skills provide 

realizable “assistance opportunities” in disassembly 

procedures, and some of them could be integrated into one 

robotic system. However, once integrated, the problem arises 

of controlling the multi-skilled robot and its behavior to assist 

the user in a situation- and goal-oriented manner. Even 

providing the system with needed precise positions 

information is big issue [2]. Manually programming the whole 

process would not be meaningful [3], especially if we consider 

many different products. Only intelligent systems with higher 

autonomy could support and interact fluently with humans in 

such a dynamic environment [4, 5]. Therefore, the system 



needs to identify the disassembly process and the work 

contend by itself. Then, the robot must know how to assist the 

user in a certain task; it also needs necessary information and 

skills to perform this task. To meet these challenges, we take 

the approach of an informed software agent, the architecture 

of which we present and explain in Section 2. In Section 3, we 

explain the kind of information that is provided to the agent 

and in section 4 we clarify how we decompose the complex 

disassembly problem into individual subproblems. Coarse 

disassembly planning is used to identify the task sequence that 

strips down the assembly. In Section 5, we present our 

approach to assigning the work content of each task to the 

participants through a planning search in the possible situation 

space. Explained in Section 6 is how we execute the 

determined detailed plan by invoking and parametrizing robot 

programs to finally control the robot assistance behavior.  

 

II. THE AGENT-BASED ROBOT CONTROL ARCHITECTURE 

Today’s industrial robot controllers are not suitable for human 

-robot interaction in complex environments such as 

disassembly workstations [1]. In such environments, the 

objective and the boundary condition change from task to task 

and require some planning, higher skills, and knowledge to 

succeed efficiently. Our approach to empower industrial 

robots to this application field is to overlay the robot controller 

with an intelligent agent-based control system, which does 

high-level planning, defines and controls the robot behavior, 

e.g., the type of assistance, and guarantees the necessary 

information to the underlying robot controller. The developed 

software agent, which we present in this section, consists of 

different software modules (see Figure 1). In the agent’s 

“Knowledge Base” module, we store a symbolic 

representation of the product structure, which we call the 

product model. The model contains information about the 

parts and how the parts are connected with each other in the 

assembly. Therefore, we model different classes of parts and 

connections. We also model the actions that the actors (the 

user and the robot) provide to the overall system, to act in the 

environment or on the product structure. We explain all the 

stored information in further detail at the time of its use, 

following the systems information flow and processing. In the 

“Coarse Planning” module we create, depending on the 

disassembly objective and the product model, a coarse plan 

that consists of a sequence of disassembly steps. Each 

disassembly step consists of one or more tasks. A task defines 

an independent subproblem, which is the removal of a 

specified connection and the referenced parts. Moreover, we 

use the coarse planning to assign the means of production, 

such as tools, robot effectors, and carriage cases, to a task. 

This is done through the “Stock Manager” module. Depending 

on the connection type, different assistance behaviors of the 

robot are available and selectable in a task by the user. 

Furthermore, the user can rearrange the task order and 

manipulate parts’ condition states, for example, to mark a 

damaged part, over the human-machine-interface (HMI) 

module to adapt the process to the circumstances and his/her 

will. The coarse plan is then processed task by task by the 

“Detail Planning” module, in which we first create a discrete 

state space representation of the current and the target 

situations. A search through the possible state space, which 

considers the actions provided by the user and the robot, leads 

to a set of possible action sequences from which the fittest 

sequence is selected for execution. The selected action 

sequence is then performed, monitored and synchronized by 

the “Control” module through advising the user over the 

“HMI” module or invoking and parameterizing programs on 

the underlying robot controller. 

 

Fig. 1 The agent’s architecture and the information flow between the different 
software modules. 

Currently under construction is the “Perception” module. In 

the first place, it is foreseen to track the human hands to 

synchronize the process without action-executed confirmation-

button pressing.  We use the “Perception” module also to 

recognize and interpret gestures and voice commands to alter 

the robot behavior in the execution phase. The “Learn” 

module is considered in the agent architecture to adapt the 

assistance behavior to an individual user. A possible purpose 

of machine learning is to predict the user’s desire for an 

assistance behavior by comparing the current situation with 

similar situations from recorded older interactions. Also, the 

agent could improve the coarse planning, particularly the 

ordering of parallel executable tasks, by learning from 

manually adapted plans. Furthermore, recording and analyzing 

such disassembly processes could produce valuable data and 

lead to deeper insights into the disassembly process. Next, we 

explain the system in more detail, starting in the knowledge 

base and considering the product model.  

III. THE PRODUCT MODEL 

A technical product is an assembly of parts that are linked 

together through connections. The step-by-step removal of 

these connections is the process of disassembling. The 

sequence of removing the connections is not arbitrary but 

partially defined through the product structure. Finding this 

disassembly sequence is known as disassembly planning, 

which is the topic of Section 4. So to generate the disassembly 

sequence later, we first have to present the structure in an 

appropriate and machine readable manner. Disassembly 

planning is an ongoing research field which also gains interest, 

through the assembly-by-disassembly approach, from the 

well-studied area of assembly planning. The majority of 

reviewed publications in this area use undirected and directed 

graphs as well as hypergraphs to represent the product 



structure [6–14]. Other approaches are based on petri nets 

[15], description logic and object-oriented models [16], and 

more recent approaches are based on ontologies [17–21]. Most 

works focus on sequence generation and thus lack in providing 

metadata for the human-robot interaction. For our usage, we 

have decided to develop an easy-to-use, light but 

comprehensive model to represent the product structure. After 

careful consideration, we have chosen the object-orientated 

approach based on its advantages of information 

encapsulation, easy implementation, and extension. In 

addition, we can create other structures from the object-

orientated model. We now explain the two fundamental 

classes of which our product model is composed. 

A. Part Classes 

In contrast to the works in [6] and [9], we do not tie 

functional parts to connections; instead, we clearly separate 

parts and connections into our fundamental classes. To 

distinguish between different classes of parts that have 

different needs of information in the sense of disassembly, we 

use a flat taxonomy-like hierarchy of classes (see Figure 2). 

Each class inherited from the super class carries common and 

more specialized information in its attributes. A common 

attribute, for example, is the position and orientation of a part 

in reference to the main coordinate system of the assembly. 

More specialized information could be the thread length or the 

driver style of a screw class instance. An overview of the 

attributes we use in the super class is listed in the table of 

Figure 2. Whenever a component indicates some special needs 

of information in the disassembly process, we can create a 

new class or extend a similar one. Chiefly, this is necessary for 

fasteners or connection techniques, but it could also be used to 

model fluids or gases. While the removal processes of a joint 

can have parameters that depend on the attributes of a part, we 

uncouple this information from the process. For example, the 

thread length and the thread pitch of a screw define the 

number of twists until the screw is loose. In this sense, it is a 

great advantage to use variable process parameters and to 

uncouple part-dependent facts from processes. Furthermore, 

we implemented state descriptions and qualifiers for each part 

class to represent each class’s possible and current condition. 

This could be used to mark a part that it is damaged or 

missing. Beyond representing several parts, it is essential to 

model subassemblies. Mostly, it is not advisable to strip down 

a subassembly in another assembly. Typically, it is better to 

fractionalize subassemblies after their removal from the main 

assembly. So treating a subassembly as a special part class is 

beneficial in the manner that subassemblies gets completely 

removed from the main assembly and then further dismantled. 

Also considered is information for the further treatment of the 

parts. In a remanufacturing process, we could be interested in 

adding information to the parts about a test and a rework 

process a part has to pass to get back into production. For 

appropriate recycling, the material is an important attribute. 

  

 
Fig. 2 The inheritance hierarchy of part classes with details of common and 

individual attributes. 

This approach to equip the robot with the necessary 

information looks plausible, but it also means a substantial 

amount of knowledge engineering. Some of this information is 

already stored in today’s CAD systems in a form of standard 

part libraries and could be used as a source of information for 

the product data model. Some information needs to be 

consolidated and made available in a clearly structured 

manner that is readable for humans and machines. 

 

B. Connection Classes 

Similarly to the part classes, we build hierarchies with 

connection classes (see Figure 3). Some common attributes are 

also illustrated in the table of Figure 3. A connection defines 

what kind of liaison is between two or among more parts and 

could be of any type. From a face-to-face contact, a weld joint 

or a magnetic attraction, any kind of liaison can be designed 

and implemented. The real power of the different connection 

classes is that they describe a formal process. If we can 

describe a certain state and objects in such a process, then we 

have a situation. Knowing the situation gives the assistant the 

ability to link commands dynamically with context 

information. In Section 5, we describe a formal process 

definition that makes use of a state representation and a set of 

actions, which could be performed by the acting agents (e.g., 

the user and the robot). We use this formal process description 

in detailed planning (Section 5) to find the best sequence of 

actions to remove the bound. As we see more clearly in 

Section 4.1, we can represent the product structure in a 

symbolical (machine-readable) manner by describing the parts 

and connections of an assembly.  

 

Fig. 3 Inheritance hierarchy of the connection class. The ordering implied the 

disassembly priority of each class from low to high. Also illustrated are the 

common attributes of the super class. 

For the efficient manual design of these connections, we 

integrated functions into the NX 10 CAD system, which also 

generates the instances of the part classes during the 



connection creation. In future work, the product model will be 

automatically created by the product configurator. The format 

used to store the part and connection instances for a product 

model will be based on the XML format and be transferred via 

RFID directly from the assembly or via web services to the 

software agent. 

IV. COARSE DISASSEMBLY PLANNING 

Coarse disassembly planning reduces the amount of process 

definition done by the user to a significant level. While the 

disassembly task can vary among corrective maintenance, 

remanufacturing and recycling, we have to be able to create 

substructures of the complete disassembly for the exchange of 

wear and tear parts and target-oriented plans for the removal 

of valuable components. We also have to generate plans for 

the full dismantling of the product for recycling purposes. To 

achieve this, the disassembly task is communicated to the 

agent through the product model and the part to be removed. 

In this form, we are able to determine a plan for the removal 

of valuable or broken parts and, through selecting the root 

component of the assembly, the complete disassembly of a 

product. In the reviewed works [6–21] on assembly or 

disassembly planning, the main focus was on finding a 

sequence in which the parts could be added or removed to 

create a complete assembly or disassembly. It was not 

considered, to build substructures of assemblies, or to do 

further task and process planning. The used techniques vary 

depending on how the product structure was modeled. Most 

techniques used on graphs are mathematical and based on the 

adjacency matrix [11-13]. The inference is used by ontologies 

and description logic approaches [17–21], and rule-based 

systems use forward or backward chaining. Also found in the 

reviewed papers are applications of fuzzy logic and genetic 

algorithms [1]. We have decided to use the simple but 

powerful approach of topological sorting and do further task 

and process planning. We build the coarse plan in five steps. 

The first step is to create the product graph from the product 

model. In the second step, we create the minimal graph with 

the selected part as “root”. Then we create a sequence of 

disassembly steps and tasks through topological sorting in the 

third step.  In the fourth step, we assign the means of 

production to each task. In the last step, the user has to define 

the type of assistance we want in a certain task. Each step is 

shortly discussed as follows: 

 

A. Creating the Product Graph 

We represented the product structure internally through a 

directed graph G(V, E), which consists of a set of vertices V 

and edges E. A vertex v represents a part instance, and an 

edge e(vi, vj) represents a link between two parts with the 

direction from the head vi to the tail-vertex vj. A connection 

instance may have several edges depending on the connection 

type to better depict the interactions between parts. The graph 

is automatically created by the parts and connections 

described in the product model. For a better understanding of 

this topic, we will explain the graph creation and the part and 

connection models from the previous topic. For further 

explanation, kindly compare the sectional view of an electrical 

drive (in Figure 4) and its product graph (in Figure 5). We 

now explain three different connection types, two part types, 

and how we represent them in the graph. First, we consider the 

bolted joint of the four hex-head screws (Number 1.1–1.4 in 

Figure 5) that link together the cover plate (2), the sealing (3) 

and the drive body (15). The four screws are all instances of 

the “screw” part class. The sealing, the cover plate, and the 

drive body are instances of the “component” part class. The 

bolted joint is symbolically described by only one instance 

from the “screw” connection class because the screws are 

identical, and they link the same parts. In the screw connection 

instance, we define the screws as head- vertices and the other 

components as tail-vertices. This connection is represented in 

the graph with sixteen edges, from each screw to any of the 

other three connected parts. The next connection we have to 

specify is the cover plate, which is lying on the sealing. We 

represent it by an instance of the “stacked” connection class. 

This connection is represented by one edge from the cover 

plate to the sealing.  

 

Fig. 4 A cross-sectional view of an electrical drive with numbered parts. 
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Fig. 5 A product graph of the electrical drive of Figure 4. The numbers on the 
edges are the IDs of connection instances. 

An instance of the “covered” connection is used to describe 

the situation that one part avoids access to another part 

without any physical interaction. This case applies to the cover 

plate and the cylinder head screw (5). The covered instance is 

also illustrated on the graph by one edge from the cover plate 

to the screw. 

B. Disassembly Planning 

The part to be disassembled defines the start node of a 

breadth-first algorithm, which adds all parent nodes and 

corresponding edges to a new subgraph. Through topological 

sorting of the subgraph, we then create the disassembly 

sequence. In each step of the sequence, we identify part nodes 

that have no ingoing edges and could be removed. Through 

the outgoing edges of each part node, we get related 

connection instances. Then, a new task is created with the 

connection and part instances (see Figure 6), thereby taking 

care that parts that belong to the same connection instance are 

grouped together in the same task (in the current disassembly 

step). Moreover, if a part is attached to more than one 

connection, then we sort the connections by their disassembly 

priority in the task. The disassembly priority describes which 

connection of a set of liaisons has to threaten first. For 

example, if part A lies on part B and between A and B is a 

glue, then it is better to warm up the parts until the glue loses 

its strength and then remove part A. Because multiple parts 

and connections could be removed independently in a 

disassembly step, we can have multiple parallel executable 

tasks. If all removable parts are handled in one disassembly 

step, we delete the nodes and edges and create a new step. 

This process repeats until the subgraph has no more nodes. 

C. Assigning the Means of Production 

Especially in remanufacturing processes, we have to 

separate unequal, and usable from unusable, parts for their 

further treatment. To do so, we have to store the parts in 

different transport boxes and keep track of which part is in 

which box. Assigning the right box to a part, and vice versa, is 

one duty of the local “stock manager” module. The stock 

manager uses the width, height and length attributes of a part 

to find a suitable box in the local stock. The box is then 

assigned to the task and part. If the box is not available in the 

local stock, then the stock manager produces an order. While 

we model all process-involved objects in our environment, we 

have a class that represents boxes. A box object has attributes, 

such as its storage dimensions or their position and orientation 

in reference to the robot work frame, and qualifiers to 

represent their current state, e.g., if there is a box available, or 

it is ordered. Furthermore, the local stock manager determines 

the needed human and robot tools by accessing the attributes 

of a part with respect to the connection type. For example, a 

screw instance has three different tools: the tool for human 

use, such as a screwdriver, a robot tool for manipulating the 

part, usually a gripper, and a robot screw tool to loosen the 

joint. Like the box object, each tool is represented by an 

instance of a tool or robot tool class and has attributes, such as 

their positions, and state qualifiers. Furthermore, we assign the 

actors, e.g., the user and the robot, to the tasks to have all 

process relevant entities together. 

D. Plan Manipulation and Assistance Definition 

The sequence generated through the agent is a partially 

ordered plan. So there are different possible processes and the 

created one does not have to match a user’s expectation. 

Furthermore, there could be other reasons that the user wants 

to rearrange or manipulate the found order. To rearrange the 

process, the user can move tasks back and forth in the 

disassembly sequence and manipulate the process in other 

methods by modifying the state qualifiers of the parts and 

objects to adapt the process to the current product state. More 

input is needed regarding the fact that the user has to define 

how he expects to be supported. Therefore, the user has to 

choose for each connection one type of assistance from a set 

of recommended assistance behaviors. At the moment, this is 

done by right clicking on the link with the computer mouse, 

which is a very unnatural method to communicate and flow-

break. Using multimodal communication, through gestures 

and voice commands, to define or change the form of 

assistance would be a great advantage and is currently under 

investigation. To reduce the amount of assignment in this 

kind, future work will have to investigate if machine learning 

or case-based reasoning is able to predict a user’s wish for 

assistance with tolerable accuracy.  

To summarize the steps to this point, we have used a 

decomposition strategy [22] to split the complex disassembly 

problem into smaller, independent subproblems. The 

subproblem we consider is the removal of a certain type of 

connection, which is a process that we can generally describe 

formally and solve efficiently because of its smaller size. 

Furthermore, we can think of the coarse planning in a manner 

that it determines work that has to be done, without assigning 

it to the user or robot. The detailed planning in the next step 

solves the subproblem and assigns the work to the actors. 



 

 
Fig. 6 The disassembly sequence computed by the agent for the removal of the 

incremental encoder of the electrical drive of Figure 4. The graph on the left 
illustrates how the different part and connection instances are connected. 

 

 

 

V.  THE DETAILED DISASSEMBLY PLANNING 

In the ideal case, the manual removal of a connection 

takes place through a fixed sequence of actions. In 

disassembly workstations, we regularly find cases in which the 

sequence has to be adapted, probably with other actions, to 

produce the wanted output. Collaborative work also means 

that actions might be executed by one or another agent, in a 

dynamic manner that produces many variants of the process. 

The actors can also provide assistance to each other, for 

example, the user can change a robot effector so that there are 

even more possibilities. With this combinatory problem in 

mind, we have decided that the process should not be 

explicitly defined through the use of fixed finite state 

machines or petri nets. Instead, we use a search approach to 

find a suitable sequence of actions to solve our subproblem. 

To represent our issue as a search problem, we have first to 

decide on a vocabulary of conditions, objects, and actions. 

Then, we have to encode actions from our domain and define 

a problem instance by defining the initial and the target 

conditions. We now explain how we generate the initial state 

and target state, represent the actions and what algorithms we 

used to search for a solution by using an easy example task. 

We consider the loosening of a “stacked” connection, in which 

part A is simply lying on part B. 

A. The Task State Description 

  The state we want to represent depends on the connection 

type and the involved objects, such as part(s), tool(s), boxes 

and the acting agents. Since we have already collected all 

these objects in a task description, we can create the initial 

state by merging all objects’ state descriptions. Some objects’ 

state values are predefined, for example, the PartState, 

PartPos, and ConnectionState (see Table 1), but could be 

manipulated by the user. The value of the BoxState and 

BoxPos are defined by the stock manager, depending on 

whether, if the box is ordered, it is full or ready to use. The 

robot states are defined by sending queries to the robot 

controller. The users HandPos state will be tracked, and the 

HandState value is estimated by the perception module. These 

state values represent literals, which formally represent the 

condition of the task at the beginning, the end, and in between 

through a state vector. In a state, we also save the parent’s ID, 

the costs and the action type that created the state. For the 

initial state, these attributes are zero. The end condition of the 

task state is partially defined, through the default values of the 

ConnectionState and PartPos (see Table I). It is the users’ 

choice to add other state dimensions and values to the end 

condition to define it more precisely. 

 

B. Describing actions 

Methods to describe or analyze manual and robot-

automated tasks are well known, for example, Method-Time-

Measurement (MTM) and Robot-Time-And-Motion (RTM). 

For the new type of collaborative work, there is quite a lack of 

methods. An adapted Method-Time-Measurement as process 

logic for cognitive automated assembly was mentioned in 

[23], which did not mention a human-robot interaction. Other 

studies such as [24] only link the basic Methods-Time-

Measurement (MTM-1) system to equivalent robot actions 

without any collaborative actions. We have decided to 

describe actions only with the motion and end-effector 

elements of RTM, thus treating the human as a robot, and 

added a new element: collaborative actions. The removal of a 

stacked connection is described by the actions listed in Table 

II. 

TABLE I 

OBSERVED OBJECTS IN THE TASK. EACH OBJECT CAN HAVE SEVERAL 

DIMENSIONS AND STATE VALUES. THE GREEN VALUES INDICATE PREDEFINED 

STATES OF THE INITIAL TASK STATE. THE LITERALS IN RED ARE DEFAULT 

VALUES FOR THE TARGET STATE OF THE TASK. 

Object type  
State 

dimension 
State values 

Stacked 

Connection  

Connection-

State 

isStacked, isDetached, 

isRemoved 

Human 

HandState isEmpty, isNotEmpty 

HandPos 
atUnknownPos, atPartPos, 
atBoxMagazinPos, 

atRobotGuidePos 

Robot 

RobotState 
isUnknown, isIdle, isRunning, 
isGuided 

RobotPos 
atUnknownPos, atHomePos, 
atPartPos, atBoxMagazinPos, 

atRobotToolMagazinPos,  

RobotTool  

RobotToolState isUnknown, isOpen, isClosed 

RobotToolPos 
atUnknownPos, atRobotFlange, 

atRobotToolMagazinPos 

Part              

PartState isOK, isNOK, 

PartPos 
atUnkownPos, atPartPos, 
atGripper, atHand, atBox  

Box  BoxState isAvailable, isOrdered, isFull 



BoxPos 
atUnknownPos, 

atBoxMagazinPos 

 

Each action has a precondition and transmission vector, which 

describes when the action is executable and how it affects the 

state. Each action defines which program on the robot 

controller is called when the action gets executed. The 

attribute list of an action is used to parametrize the robot 

program with the needed parameters. For example, the actions 

GotoPartPos and GotoBoxMagazinPos in Table 2 have the 

position of the part and box in the actions parameter list. Both 

actions call the same robot program, which only moves from 

its current position to the “send” part or box position. 

Furthermore, actions have a cost value that is dynamically 

assigned with respect to the user’s choice of assistance. If an 

action is part of the assistance the user wants, it gets a lower 

cost assigned. In this example, we have mentioned three 

different robot behaviors. The Manual behavior defines only 

human actions and, therefore, manual work. Automatic means 

that the robot works autonomously. The Collaborative form 

describes that the user guides the robot to the unknown part 

position, and the robot can then grasp the part and put it in the 

transport box. We use this approach to provide to the users a 

set of known and predictable robot behaviors that stay 

adaptive to allow necessary modifications. 

B. Searching for solutions  

 Although the problem of removing part A, which is lying 

on part B, does not look very complicated, we have to be 

aware of the combinative size of the problem. In a naive 

breadth-first search approach, with a branching factor of 8 and 

the minimal process depth of 4, we have 84 (4,096) different 

paths to compute. 

TABLE II 

ALL ACTIONS THAT COULD TAKE PLACE IN THE PROCESS OF REMOVING THE 

STACKED CONNECTION. THE DIFFERENT ASSISTANCE OPPORTUNITIES AND THE 

CORRESPONDING WEIGHTING OF THE ACTION ARE INDICATED BY L FOR LOW 

AND H FOR HIGH ACTION COSTS. 

A
c
to

r 

Type Action 

M
a

n
u

a
l 

A
u

to
m

a
ti

c 

C
o

ll
a

b
o

ra
ti

v
e 

H
u

m
an

 

Motion Element 

GotoPartPos L H H 

GotoBoxMagazinPos L H H 

GotoRobotGuidePos H H L 

End-effector 
Element 

GrabPart L H H 

ReleasePart L H H 

Collaborative 

Element 
GuideRobotToPartPos H H L 

R
o
b
o

t 

Motion 

Element 

GotoHomePos H H H 

GotoPartPos H L H 

GotoBoxMagazinPos H L L 

End-effector 

Element 

OpenGripper H H H 

CloseGripper H H H 

GrabPart H L L 

ReleasePart H L L 

Collaborative 
Element 

GetGuidedToPartPos H H L 

 

A method of improving the algorithm is the use of an extended 

state list that stops us from extending paths on nodes we have 

already extended. Furthermore, we have implemented a policy 

that forbids the algorithm to use two motion elements in a 

row. This already gives us (for the problem mentioned) a good 

computational state space. To find the best path of actions, we 

have used a branch and bound search with extended list and 

the policy (see Figure 7). If the initial state could be a starting 

point of all assistance behaviors, we would get without 

dynamic weighting only one form of assistance. With dynamic 

weighting, we get the user selected form of assistance. This 

approach of assigning the work content to the agents might 

seem overloaded on the problem we mentioned, but it uses a 

generic approach that we can use for all other disassembly 

subproblems, such as screwing and so on. Also, our technique 

gives the assistance system a highly adaptable behavior. If the 

user leaves the workplace, his/her actions are not usable, and 

the only behavior is the Automatic one. If the part position is 

unknown in the Automatic mode, the next found assistance 

form is the Collaborative behavior (see Figure 8).  In the case 

that the search algorithm might not find a suitable sequence of 

actions (solution), it can explain its reasoning process through 

the symbolic structure of the situation state space. Also, a 

great advantage of the search approach is that when we build 

these detail plans, task after task, we do not have to worry 

about plan merging, because at each task we create a new plan 

on the actual situation. 

  

 
Fig. 7 A state space created by the search algorithm. From the initial state 

(blue diamond) and with the Automatic assistance behavior, a solution state 

(red diamond) was found, and the robot actions on the green path could be 

executed. 

 

VI.  EXECUTION OF THE DETAILED PLANS 

The “Control” module of the agent is responsible for the 

execution of the robot programs, for the guidance of the user 

and for the synchronization of both. The robot programs are 

invoked and started through a TCP/IP socket connection from 

the Robot Controller. Then, the robot program starts and 

connects as a client to our agent to receive the actions 

parameters list items. At the moment, the disassembly is 

processed task by task and action after action. The 

synchronization of the user and robot actions rely on the user’s 

pressing of the confirmation button. To improve the 

synchronization, we want to track the human hand movements 

to estimate if an action was carried out.  



 

Fig. 8 This state space was created by the search algorithm also with the 
Automatic assistance selected, but through the fact that the part position is 

unknown, the solution consists of the actions of the Collaborative assistance 
behavior.  

This lets us keep track of the user progress. For example, if we 

observe that the user moves his hand to the part position and 

then to the box position, we can assume that he has removed 

the part. This would be a very efficient way to synchronize the 

users’ and robots’ actions. Another important goal is to enable 

the parallel execution of tasks. The reduced robot motion in 

collaborative workplaces and the step-by-step workflow 

wastes much time, and the user gets bored waiting for his/her 

turn. So this is a very crucial skill for the assistant. Another 

ambition is to enable the user to give commands through a 

gesture or voice in full operation. This could be used to give 

simple commands, such as “stop,” “open gripper” or “close 

gripper,” or to change the assistance behavior completely and 

force detailed replanning. 

  

VII. CONCLUSION 

 

In this paper, we have represented an approach of a robot-

based disassembly assistant controlled by an informed 

software agent. We have discussed the need for a common 

workflow for a fluent, safe and purposeful assistance in 

collaborative disassembly. We have further described our 

approach to inform the agent with product models and our 

developed two-stage process of workflow planning. Therefore, 

we have explained the first planning step, which is based on 

the product graph, topological sorting, and task planning 

algorithms. We have also illustrated the second task-based 

planning step, which has focused on the refining of the 

workflow depending on the situation and the user-chosen 

assistance through a branch and bound search algorithm. In 

Section 6, we have discussed executing the robot assistant 

behavior. Finally, we can summarize that the information and 

methods we have provided to the robot assistance system 

enable higher autonomy to perform valuable assistance.  
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