
Towards Intelligent Robot Assistants for the non-

destructive Disassembly of End of Life Products

Jan Jungbluth Wolfgang Gerke Peter Plapper

Technology Research Group
Faculty of Environmental Planning and

Technology

Faculty of Science, Technology and

Communication

SEW EURODRIVE University of Applied Sciences Trier University of Luxembourg

Bruchsal, Germany Birkenfeld, Germany Luxembourg, Luxembourg

jan.jungbluth.w@sew-eurodrive.de w.gerke@umwelt-campus.de peter.plapper@uni.lu

 Abstract - The effective collaboration between humans and

robots in complex and task rich environments like End of Life

product disassembly depends on the ability of the robot to

anticipate the workflow as well as the assistance the human co-

worker wants. Our approach towards such an intelligent system

is the development of an informed software agent that controls

the robot assistance behavior. We inform the agent with

procedural and declarative knowledge about the disassembly

domain through models of the product structure and actor/object

models. The product structure is then transformed to a directed

graph and used to build, share and define a goal-orientated

coarse workflow. Depending on the tasks and wanted assistance,

the system can generate adaptable and detailed workflows

through searching in the situation space on the basis of

predefined and task dependent actions. The created detailed

workflow consists of a sequence of actions that are used to call,

parameterize and execute robot programs for the fulfillment of

the assistance. The aim of this research is to equip robot systems

with higher cognitive skills to allow them to be autonomous in the

performance of their assistance to improve the ergonomics of

disassembly workstations.

 Index Terms – Human-Robot Interaction, Human-Robot

Collaboration, Robot Assistant, Cognitive Robotics, Disassembly

Assistance.

I. INTRODUCTION

 Disassembling is involved in many processes, for example

remanufacturing, corrective maintenance, proper disposal and

manufacturing. However, fully automated disassembly lines

are, compared to product assembly lines, rare. One reason is

that disassembling at the end of a product lifetime is much

harder to automatize than assembling. In disassembly we have

to cope with fouling, wear, damaged or only absent parts.

Furthermore, we have to deal with product manipulations,

such as individual extensions or improvised fixes, which are

not obviously visible. It is the unpredictable condition of a

product that prohibits further automation. Even if better sensor

technology could identify inappropriate product conditions, it

would be impossible, or highly expensive, to treat all

possibilities in a fully automated manner. Other challenges are

the small lot sizes or individualized products (lot size 1).

Today’s fully automated processes are not flexible enough for

the treatment of different products or variants. In corrective

maintenance, it is a normal case to have an unsteady,

unpredictable flow of different products. Dismantling

processes in corrective maintenance may also have different

target stages, depending on what part has to be replaced.

Furthermore, there is, especially in central waste recycling

plants, a lack of information about the product structure. For

example, types of materials in the product. These are reasons

why disassembly workplaces stayed unautomated, thus

resulting in a bad situation for the workforce, who remain

exposed to health problems due to heavy workload. In

addition, the economic fitness of disassembly processes is

highly reduced by the substantial amount of manual labor in

the destructive disassembly process. Consequently, important

concepts for environmental protection, such as

remanufacturing, cannot spread wider into industry.

A solution for this problem would be intelligent robot-based

assistants, which would be a compromise between automation

and manual labor with great advantages in the disassembly

domain. One advantage is that only humans have the cognitive

abilities to identify and handle the aforementioned unexpected

situations. Thus, humans are able to ensure the overall success

of the process by contributing their awareness to adapting the

process to a situation [1]. The robot instead can provide

assistance with power and endurance over the complete

disassembly process and thereby improve the ergonomics of

the workplace. Therefore, multi-skilled robots may take over

automatable tasks, such as unscrewing, or support the

execution of tasks, e.g., handling of heavy parts. Especially

over the 10 last years, with the development of lightweight

and force-sensitive robots, new robot skills have extended the

robots’ fields of application. Those new skills provide

realizable “assistance opportunities” in disassembly

procedures, and some of them could be integrated into one

robotic system. However, once integrated, the problem arises

of controlling the multi-skilled robot and its behavior to assist

the user in a situation- and goal-oriented manner. Even

providing the system with needed precise positions

information is big issue [2]. Manually programming the whole

process would not be meaningful [3], especially if we consider

many different products. Only intelligent systems with higher

autonomy could support and interact fluently with humans in

such a dynamic environment [4, 5]. Therefore, the system

needs to identify the disassembly process and the work

contend by itself. Then, the robot must know how to assist the

user in a certain task; it also needs necessary information and

skills to perform this task. To meet these challenges, we take

the approach of an informed software agent, the architecture

of which we present and explain in Section 2. In Section 3, we

explain the kind of information that is provided to the agent

and in section 4 we clarify how we decompose the complex

disassembly problem into individual subproblems. Coarse

disassembly planning is used to identify the task sequence that

strips down the assembly. In Section 5, we present our

approach to assigning the work content of each task to the

participants through a planning search in the possible situation

space. Explained in Section 6 is how we execute the

determined detailed plan by invoking and parametrizing robot

programs to finally control the robot assistance behavior.

II. THE AGENT-BASED ROBOT CONTROL ARCHITECTURE

Today’s industrial robot controllers are not suitable for human

-robot interaction in complex environments such as

disassembly workstations [1]. In such environments, the

objective and the boundary condition change from task to task

and require some planning, higher skills, and knowledge to

succeed efficiently. Our approach to empower industrial

robots to this application field is to overlay the robot controller

with an intelligent agent-based control system, which does

high-level planning, defines and controls the robot behavior,

e.g., the type of assistance, and guarantees the necessary

information to the underlying robot controller. The developed

software agent, which we present in this section, consists of

different software modules (see Figure 1). In the agent’s

“Knowledge Base” module, we store a symbolic

representation of the product structure, which we call the

product model. The model contains information about the

parts and how the parts are connected with each other in the

assembly. Therefore, we model different classes of parts and

connections. We also model the actions that the actors (the

user and the robot) provide to the overall system, to act in the

environment or on the product structure. We explain all the

stored information in further detail at the time of its use,

following the systems information flow and processing. In the

“Coarse Planning” module we create, depending on the

disassembly objective and the product model, a coarse plan

that consists of a sequence of disassembly steps. Each

disassembly step consists of one or more tasks. A task defines

an independent subproblem, which is the removal of a

specified connection and the referenced parts. Moreover, we

use the coarse planning to assign the means of production,

such as tools, robot effectors, and carriage cases, to a task.

This is done through the “Stock Manager” module. Depending

on the connection type, different assistance behaviors of the

robot are available and selectable in a task by the user.

Furthermore, the user can rearrange the task order and

manipulate parts’ condition states, for example, to mark a

damaged part, over the human-machine-interface (HMI)

module to adapt the process to the circumstances and his/her

will. The coarse plan is then processed task by task by the

“Detail Planning” module, in which we first create a discrete

state space representation of the current and the target

situations. A search through the possible state space, which

considers the actions provided by the user and the robot, leads

to a set of possible action sequences from which the fittest

sequence is selected for execution. The selected action

sequence is then performed, monitored and synchronized by

the “Control” module through advising the user over the

“HMI” module or invoking and parameterizing programs on

the underlying robot controller.

Fig. 1 The agent’s architecture and the information flow between the different
software modules.

Currently under construction is the “Perception” module. In

the first place, it is foreseen to track the human hands to

synchronize the process without action-executed confirmation-

button pressing. We use the “Perception” module also to

recognize and interpret gestures and voice commands to alter

the robot behavior in the execution phase. The “Learn”

module is considered in the agent architecture to adapt the

assistance behavior to an individual user. A possible purpose

of machine learning is to predict the user’s desire for an

assistance behavior by comparing the current situation with

similar situations from recorded older interactions. Also, the

agent could improve the coarse planning, particularly the

ordering of parallel executable tasks, by learning from

manually adapted plans. Furthermore, recording and analyzing

such disassembly processes could produce valuable data and

lead to deeper insights into the disassembly process. Next, we

explain the system in more detail, starting in the knowledge

base and considering the product model.

III. THE PRODUCT MODEL

A technical product is an assembly of parts that are linked

together through connections. The step-by-step removal of

these connections is the process of disassembling. The

sequence of removing the connections is not arbitrary but

partially defined through the product structure. Finding this

disassembly sequence is known as disassembly planning,

which is the topic of Section 4. So to generate the disassembly

sequence later, we first have to present the structure in an

appropriate and machine readable manner. Disassembly

planning is an ongoing research field which also gains interest,

through the assembly-by-disassembly approach, from the

well-studied area of assembly planning. The majority of

reviewed publications in this area use undirected and directed

graphs as well as hypergraphs to represent the product

structure [6–14]. Other approaches are based on petri nets

[15], description logic and object-oriented models [16], and

more recent approaches are based on ontologies [17–21]. Most

works focus on sequence generation and thus lack in providing

metadata for the human-robot interaction. For our usage, we

have decided to develop an easy-to-use, light but

comprehensive model to represent the product structure. After

careful consideration, we have chosen the object-orientated

approach based on its advantages of information

encapsulation, easy implementation, and extension. In

addition, we can create other structures from the object-

orientated model. We now explain the two fundamental

classes of which our product model is composed.

A. Part Classes

In contrast to the works in [6] and [9], we do not tie

functional parts to connections; instead, we clearly separate

parts and connections into our fundamental classes. To

distinguish between different classes of parts that have

different needs of information in the sense of disassembly, we

use a flat taxonomy-like hierarchy of classes (see Figure 2).

Each class inherited from the super class carries common and

more specialized information in its attributes. A common

attribute, for example, is the position and orientation of a part

in reference to the main coordinate system of the assembly.

More specialized information could be the thread length or the

driver style of a screw class instance. An overview of the

attributes we use in the super class is listed in the table of

Figure 2. Whenever a component indicates some special needs

of information in the disassembly process, we can create a

new class or extend a similar one. Chiefly, this is necessary for

fasteners or connection techniques, but it could also be used to

model fluids or gases. While the removal processes of a joint

can have parameters that depend on the attributes of a part, we

uncouple this information from the process. For example, the

thread length and the thread pitch of a screw define the

number of twists until the screw is loose. In this sense, it is a

great advantage to use variable process parameters and to

uncouple part-dependent facts from processes. Furthermore,

we implemented state descriptions and qualifiers for each part

class to represent each class’s possible and current condition.

This could be used to mark a part that it is damaged or

missing. Beyond representing several parts, it is essential to

model subassemblies. Mostly, it is not advisable to strip down

a subassembly in another assembly. Typically, it is better to

fractionalize subassemblies after their removal from the main

assembly. So treating a subassembly as a special part class is

beneficial in the manner that subassemblies gets completely

removed from the main assembly and then further dismantled.

Also considered is information for the further treatment of the

parts. In a remanufacturing process, we could be interested in

adding information to the parts about a test and a rework

process a part has to pass to get back into production. For

appropriate recycling, the material is an important attribute.

Fig. 2 The inheritance hierarchy of part classes with details of common and

individual attributes.

This approach to equip the robot with the necessary

information looks plausible, but it also means a substantial

amount of knowledge engineering. Some of this information is

already stored in today’s CAD systems in a form of standard

part libraries and could be used as a source of information for

the product data model. Some information needs to be

consolidated and made available in a clearly structured

manner that is readable for humans and machines.

B. Connection Classes

Similarly to the part classes, we build hierarchies with

connection classes (see Figure 3). Some common attributes are

also illustrated in the table of Figure 3. A connection defines

what kind of liaison is between two or among more parts and

could be of any type. From a face-to-face contact, a weld joint

or a magnetic attraction, any kind of liaison can be designed

and implemented. The real power of the different connection

classes is that they describe a formal process. If we can

describe a certain state and objects in such a process, then we

have a situation. Knowing the situation gives the assistant the

ability to link commands dynamically with context

information. In Section 5, we describe a formal process

definition that makes use of a state representation and a set of

actions, which could be performed by the acting agents (e.g.,

the user and the robot). We use this formal process description

in detailed planning (Section 5) to find the best sequence of

actions to remove the bound. As we see more clearly in

Section 4.1, we can represent the product structure in a

symbolical (machine-readable) manner by describing the parts

and connections of an assembly.

Fig. 3 Inheritance hierarchy of the connection class. The ordering implied the

disassembly priority of each class from low to high. Also illustrated are the

common attributes of the super class.

For the efficient manual design of these connections, we

integrated functions into the NX 10 CAD system, which also

generates the instances of the part classes during the

connection creation. In future work, the product model will be

automatically created by the product configurator. The format

used to store the part and connection instances for a product

model will be based on the XML format and be transferred via

RFID directly from the assembly or via web services to the

software agent.

IV. COARSE DISASSEMBLY PLANNING

Coarse disassembly planning reduces the amount of process

definition done by the user to a significant level. While the

disassembly task can vary among corrective maintenance,

remanufacturing and recycling, we have to be able to create

substructures of the complete disassembly for the exchange of

wear and tear parts and target-oriented plans for the removal

of valuable components. We also have to generate plans for

the full dismantling of the product for recycling purposes. To

achieve this, the disassembly task is communicated to the

agent through the product model and the part to be removed.

In this form, we are able to determine a plan for the removal

of valuable or broken parts and, through selecting the root

component of the assembly, the complete disassembly of a

product. In the reviewed works [6–21] on assembly or

disassembly planning, the main focus was on finding a

sequence in which the parts could be added or removed to

create a complete assembly or disassembly. It was not

considered, to build substructures of assemblies, or to do

further task and process planning. The used techniques vary

depending on how the product structure was modeled. Most

techniques used on graphs are mathematical and based on the

adjacency matrix [11-13]. The inference is used by ontologies

and description logic approaches [17–21], and rule-based

systems use forward or backward chaining. Also found in the

reviewed papers are applications of fuzzy logic and genetic

algorithms [1]. We have decided to use the simple but

powerful approach of topological sorting and do further task

and process planning. We build the coarse plan in five steps.

The first step is to create the product graph from the product

model. In the second step, we create the minimal graph with

the selected part as “root”. Then we create a sequence of

disassembly steps and tasks through topological sorting in the

third step. In the fourth step, we assign the means of

production to each task. In the last step, the user has to define

the type of assistance we want in a certain task. Each step is

shortly discussed as follows:

A. Creating the Product Graph

We represented the product structure internally through a

directed graph G(V, E), which consists of a set of vertices V

and edges E. A vertex v represents a part instance, and an

edge e(vi, vj) represents a link between two parts with the

direction from the head vi to the tail-vertex vj. A connection

instance may have several edges depending on the connection

type to better depict the interactions between parts. The graph

is automatically created by the parts and connections

described in the product model. For a better understanding of

this topic, we will explain the graph creation and the part and

connection models from the previous topic. For further

explanation, kindly compare the sectional view of an electrical

drive (in Figure 4) and its product graph (in Figure 5). We

now explain three different connection types, two part types,

and how we represent them in the graph. First, we consider the

bolted joint of the four hex-head screws (Number 1.1–1.4 in

Figure 5) that link together the cover plate (2), the sealing (3)

and the drive body (15). The four screws are all instances of

the “screw” part class. The sealing, the cover plate, and the

drive body are instances of the “component” part class. The

bolted joint is symbolically described by only one instance

from the “screw” connection class because the screws are

identical, and they link the same parts. In the screw connection

instance, we define the screws as head- vertices and the other

components as tail-vertices. This connection is represented in

the graph with sixteen edges, from each screw to any of the

other three connected parts. The next connection we have to

specify is the cover plate, which is lying on the sealing. We

represent it by an instance of the “stacked” connection class.

This connection is represented by one edge from the cover

plate to the sealing.

Fig. 4 A cross-sectional view of an electrical drive with numbered parts.

9 10

78

11

13

1264

2

1 3
5

14

15

Fig. 5 A product graph of the electrical drive of Figure 4. The numbers on the
edges are the IDs of connection instances.

An instance of the “covered” connection is used to describe

the situation that one part avoids access to another part

without any physical interaction. This case applies to the cover

plate and the cylinder head screw (5). The covered instance is

also illustrated on the graph by one edge from the cover plate

to the screw.

B. Disassembly Planning

The part to be disassembled defines the start node of a

breadth-first algorithm, which adds all parent nodes and

corresponding edges to a new subgraph. Through topological

sorting of the subgraph, we then create the disassembly

sequence. In each step of the sequence, we identify part nodes

that have no ingoing edges and could be removed. Through

the outgoing edges of each part node, we get related

connection instances. Then, a new task is created with the

connection and part instances (see Figure 6), thereby taking

care that parts that belong to the same connection instance are

grouped together in the same task (in the current disassembly

step). Moreover, if a part is attached to more than one

connection, then we sort the connections by their disassembly

priority in the task. The disassembly priority describes which

connection of a set of liaisons has to threaten first. For

example, if part A lies on part B and between A and B is a

glue, then it is better to warm up the parts until the glue loses

its strength and then remove part A. Because multiple parts

and connections could be removed independently in a

disassembly step, we can have multiple parallel executable

tasks. If all removable parts are handled in one disassembly

step, we delete the nodes and edges and create a new step.

This process repeats until the subgraph has no more nodes.

C. Assigning the Means of Production

Especially in remanufacturing processes, we have to

separate unequal, and usable from unusable, parts for their

further treatment. To do so, we have to store the parts in

different transport boxes and keep track of which part is in

which box. Assigning the right box to a part, and vice versa, is

one duty of the local “stock manager” module. The stock

manager uses the width, height and length attributes of a part

to find a suitable box in the local stock. The box is then

assigned to the task and part. If the box is not available in the

local stock, then the stock manager produces an order. While

we model all process-involved objects in our environment, we

have a class that represents boxes. A box object has attributes,

such as its storage dimensions or their position and orientation

in reference to the robot work frame, and qualifiers to

represent their current state, e.g., if there is a box available, or

it is ordered. Furthermore, the local stock manager determines

the needed human and robot tools by accessing the attributes

of a part with respect to the connection type. For example, a

screw instance has three different tools: the tool for human

use, such as a screwdriver, a robot tool for manipulating the

part, usually a gripper, and a robot screw tool to loosen the

joint. Like the box object, each tool is represented by an

instance of a tool or robot tool class and has attributes, such as

their positions, and state qualifiers. Furthermore, we assign the

actors, e.g., the user and the robot, to the tasks to have all

process relevant entities together.

D. Plan Manipulation and Assistance Definition

The sequence generated through the agent is a partially

ordered plan. So there are different possible processes and the

created one does not have to match a user’s expectation.

Furthermore, there could be other reasons that the user wants

to rearrange or manipulate the found order. To rearrange the

process, the user can move tasks back and forth in the

disassembly sequence and manipulate the process in other

methods by modifying the state qualifiers of the parts and

objects to adapt the process to the current product state. More

input is needed regarding the fact that the user has to define

how he expects to be supported. Therefore, the user has to

choose for each connection one type of assistance from a set

of recommended assistance behaviors. At the moment, this is

done by right clicking on the link with the computer mouse,

which is a very unnatural method to communicate and flow-

break. Using multimodal communication, through gestures

and voice commands, to define or change the form of

assistance would be a great advantage and is currently under

investigation. To reduce the amount of assignment in this

kind, future work will have to investigate if machine learning

or case-based reasoning is able to predict a user’s wish for

assistance with tolerable accuracy.

To summarize the steps to this point, we have used a

decomposition strategy [22] to split the complex disassembly

problem into smaller, independent subproblems. The

subproblem we consider is the removal of a certain type of

connection, which is a process that we can generally describe

formally and solve efficiently because of its smaller size.

Furthermore, we can think of the coarse planning in a manner

that it determines work that has to be done, without assigning

it to the user or robot. The detailed planning in the next step

solves the subproblem and assigns the work to the actors.

Fig. 6 The disassembly sequence computed by the agent for the removal of the

incremental encoder of the electrical drive of Figure 4. The graph on the left
illustrates how the different part and connection instances are connected.

V. THE DETAILED DISASSEMBLY PLANNING

In the ideal case, the manual removal of a connection

takes place through a fixed sequence of actions. In

disassembly workstations, we regularly find cases in which the

sequence has to be adapted, probably with other actions, to

produce the wanted output. Collaborative work also means

that actions might be executed by one or another agent, in a

dynamic manner that produces many variants of the process.

The actors can also provide assistance to each other, for

example, the user can change a robot effector so that there are

even more possibilities. With this combinatory problem in

mind, we have decided that the process should not be

explicitly defined through the use of fixed finite state

machines or petri nets. Instead, we use a search approach to

find a suitable sequence of actions to solve our subproblem.

To represent our issue as a search problem, we have first to

decide on a vocabulary of conditions, objects, and actions.

Then, we have to encode actions from our domain and define

a problem instance by defining the initial and the target

conditions. We now explain how we generate the initial state

and target state, represent the actions and what algorithms we

used to search for a solution by using an easy example task.

We consider the loosening of a “stacked” connection, in which

part A is simply lying on part B.

A. The Task State Description

 The state we want to represent depends on the connection

type and the involved objects, such as part(s), tool(s), boxes

and the acting agents. Since we have already collected all

these objects in a task description, we can create the initial

state by merging all objects’ state descriptions. Some objects’

state values are predefined, for example, the PartState,

PartPos, and ConnectionState (see Table 1), but could be

manipulated by the user. The value of the BoxState and

BoxPos are defined by the stock manager, depending on

whether, if the box is ordered, it is full or ready to use. The

robot states are defined by sending queries to the robot

controller. The users HandPos state will be tracked, and the

HandState value is estimated by the perception module. These

state values represent literals, which formally represent the

condition of the task at the beginning, the end, and in between

through a state vector. In a state, we also save the parent’s ID,

the costs and the action type that created the state. For the

initial state, these attributes are zero. The end condition of the

task state is partially defined, through the default values of the

ConnectionState and PartPos (see Table I). It is the users’

choice to add other state dimensions and values to the end

condition to define it more precisely.

B. Describing actions

Methods to describe or analyze manual and robot-

automated tasks are well known, for example, Method-Time-

Measurement (MTM) and Robot-Time-And-Motion (RTM).

For the new type of collaborative work, there is quite a lack of

methods. An adapted Method-Time-Measurement as process

logic for cognitive automated assembly was mentioned in

[23], which did not mention a human-robot interaction. Other

studies such as [24] only link the basic Methods-Time-

Measurement (MTM-1) system to equivalent robot actions

without any collaborative actions. We have decided to

describe actions only with the motion and end-effector

elements of RTM, thus treating the human as a robot, and

added a new element: collaborative actions. The removal of a

stacked connection is described by the actions listed in Table

II.

TABLE I

OBSERVED OBJECTS IN THE TASK. EACH OBJECT CAN HAVE SEVERAL

DIMENSIONS AND STATE VALUES. THE GREEN VALUES INDICATE PREDEFINED

STATES OF THE INITIAL TASK STATE. THE LITERALS IN RED ARE DEFAULT

VALUES FOR THE TARGET STATE OF THE TASK.

Object type
State

dimension
State values

Stacked

Connection

Connection-

State

isStacked, isDetached,

isRemoved

Human

HandState isEmpty, isNotEmpty

HandPos
atUnknownPos, atPartPos,
atBoxMagazinPos,

atRobotGuidePos

Robot

RobotState
isUnknown, isIdle, isRunning,
isGuided

RobotPos
atUnknownPos, atHomePos,
atPartPos, atBoxMagazinPos,

atRobotToolMagazinPos,

RobotTool

RobotToolState isUnknown, isOpen, isClosed

RobotToolPos
atUnknownPos, atRobotFlange,

atRobotToolMagazinPos

Part

PartState isOK, isNOK,

PartPos
atUnkownPos, atPartPos,
atGripper, atHand, atBox

Box BoxState isAvailable, isOrdered, isFull

BoxPos
atUnknownPos,

atBoxMagazinPos

Each action has a precondition and transmission vector, which

describes when the action is executable and how it affects the

state. Each action defines which program on the robot

controller is called when the action gets executed. The

attribute list of an action is used to parametrize the robot

program with the needed parameters. For example, the actions

GotoPartPos and GotoBoxMagazinPos in Table 2 have the

position of the part and box in the actions parameter list. Both

actions call the same robot program, which only moves from

its current position to the “send” part or box position.

Furthermore, actions have a cost value that is dynamically

assigned with respect to the user’s choice of assistance. If an

action is part of the assistance the user wants, it gets a lower

cost assigned. In this example, we have mentioned three

different robot behaviors. The Manual behavior defines only

human actions and, therefore, manual work. Automatic means

that the robot works autonomously. The Collaborative form

describes that the user guides the robot to the unknown part

position, and the robot can then grasp the part and put it in the

transport box. We use this approach to provide to the users a

set of known and predictable robot behaviors that stay

adaptive to allow necessary modifications.

B. Searching for solutions

 Although the problem of removing part A, which is lying

on part B, does not look very complicated, we have to be

aware of the combinative size of the problem. In a naive

breadth-first search approach, with a branching factor of 8 and

the minimal process depth of 4, we have 84 (4,096) different

paths to compute.

TABLE II

ALL ACTIONS THAT COULD TAKE PLACE IN THE PROCESS OF REMOVING THE

STACKED CONNECTION. THE DIFFERENT ASSISTANCE OPPORTUNITIES AND THE

CORRESPONDING WEIGHTING OF THE ACTION ARE INDICATED BY L FOR LOW

AND H FOR HIGH ACTION COSTS.

A
c
to

r

Type Action

M
a

n
u

a
l

A
u

to
m

a
ti

c

C
o

ll
a

b
o

ra
ti

v
e

H
u

m
an

Motion Element

GotoPartPos L H H

GotoBoxMagazinPos L H H

GotoRobotGuidePos H H L

End-effector
Element

GrabPart L H H

ReleasePart L H H

Collaborative

Element
GuideRobotToPartPos H H L

R
o
b
o

t

Motion

Element

GotoHomePos H H H

GotoPartPos H L H

GotoBoxMagazinPos H L L

End-effector

Element

OpenGripper H H H

CloseGripper H H H

GrabPart H L L

ReleasePart H L L

Collaborative
Element

GetGuidedToPartPos H H L

A method of improving the algorithm is the use of an extended

state list that stops us from extending paths on nodes we have

already extended. Furthermore, we have implemented a policy

that forbids the algorithm to use two motion elements in a

row. This already gives us (for the problem mentioned) a good

computational state space. To find the best path of actions, we

have used a branch and bound search with extended list and

the policy (see Figure 7). If the initial state could be a starting

point of all assistance behaviors, we would get without

dynamic weighting only one form of assistance. With dynamic

weighting, we get the user selected form of assistance. This

approach of assigning the work content to the agents might

seem overloaded on the problem we mentioned, but it uses a

generic approach that we can use for all other disassembly

subproblems, such as screwing and so on. Also, our technique

gives the assistance system a highly adaptable behavior. If the

user leaves the workplace, his/her actions are not usable, and

the only behavior is the Automatic one. If the part position is

unknown in the Automatic mode, the next found assistance

form is the Collaborative behavior (see Figure 8). In the case

that the search algorithm might not find a suitable sequence of

actions (solution), it can explain its reasoning process through

the symbolic structure of the situation state space. Also, a

great advantage of the search approach is that when we build

these detail plans, task after task, we do not have to worry

about plan merging, because at each task we create a new plan

on the actual situation.

Fig. 7 A state space created by the search algorithm. From the initial state

(blue diamond) and with the Automatic assistance behavior, a solution state

(red diamond) was found, and the robot actions on the green path could be

executed.

VI. EXECUTION OF THE DETAILED PLANS

The “Control” module of the agent is responsible for the

execution of the robot programs, for the guidance of the user

and for the synchronization of both. The robot programs are

invoked and started through a TCP/IP socket connection from

the Robot Controller. Then, the robot program starts and

connects as a client to our agent to receive the actions

parameters list items. At the moment, the disassembly is

processed task by task and action after action. The

synchronization of the user and robot actions rely on the user’s

pressing of the confirmation button. To improve the

synchronization, we want to track the human hand movements

to estimate if an action was carried out.

Fig. 8 This state space was created by the search algorithm also with the
Automatic assistance selected, but through the fact that the part position is

unknown, the solution consists of the actions of the Collaborative assistance
behavior.

This lets us keep track of the user progress. For example, if we

observe that the user moves his hand to the part position and

then to the box position, we can assume that he has removed

the part. This would be a very efficient way to synchronize the

users’ and robots’ actions. Another important goal is to enable

the parallel execution of tasks. The reduced robot motion in

collaborative workplaces and the step-by-step workflow

wastes much time, and the user gets bored waiting for his/her

turn. So this is a very crucial skill for the assistant. Another

ambition is to enable the user to give commands through a

gesture or voice in full operation. This could be used to give

simple commands, such as “stop,” “open gripper” or “close

gripper,” or to change the assistance behavior completely and

force detailed replanning.

VII. CONCLUSION

In this paper, we have represented an approach of a robot-

based disassembly assistant controlled by an informed

software agent. We have discussed the need for a common

workflow for a fluent, safe and purposeful assistance in

collaborative disassembly. We have further described our

approach to inform the agent with product models and our

developed two-stage process of workflow planning. Therefore,

we have explained the first planning step, which is based on

the product graph, topological sorting, and task planning

algorithms. We have also illustrated the second task-based

planning step, which has focused on the refining of the

workflow depending on the situation and the user-chosen

assistance through a branch and bound search algorithm. In

Section 6, we have discussed executing the robot assistant

behavior. Finally, we can summarize that the information and

methods we have provided to the robot assistance system

enable higher autonomy to perform valuable assistance.

VIII. ACKNOWLEDGMENTS

This research is conducted in a cooperation among the Company

SEW EURODRIVE, the University of Luxembourg and the

University of Applied Sciences Trier - Environmental Campus

Birkenfeld.

REFERENCES

[1] Wolfgang Gerke, Technische Assistenzsysteme: Vom Industrieroboter

zum Roboterassistenten. Berlin: De Gruyter Oldenbourg, 2015.
[2] S. L. Kendal and M. Creen, An Introduction to Knowledge

Engineering. London: Springer-Verlag London Limited, 2007.

[3] A. Perzylo et al., “Intuitive instruction of industrial robots: Semantic
process descriptions for small lot production,” in 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

pp. 2293–2300.
[4] B. Ludwig, Planbasierte Mensch-Maschine-Interaktion in

multimodalen Assistenzsystemen. Berlin: Springer Vieweg, 2015.

[5] R. R. Murphy, Introduction to AI robotics. New Delhi: Prentice-Hall of
India, 2004, c2000.

[6] J. M. Henrioud and A. Bourjault, “Computer aided assembly process

planning,” Laboratoire d’Automatique de Besancon, Besancon, France,
1992.

[7] T. de Fazio and D. Whitney, “Simplified generation of all mechanical

assembly sequences,” (en), IEEE J. Robot. Automat., vol. 3, no. 6, pp.
640–658, 1987.

[8] G. Dini, F. Failli, and M. Santochi, “A disassembly planning software

system for the optimization of recycling processes,” (en), Production
Planning & Control, vol. 12, no. 1, pp. 2–12, 2001.

[9] L. S. Homem de Mello and A. C. Sanderson, “A correct and complete

algorithm for the generation of mechanical assembly sequences,” in
Proceedings, 1989 International Conference on Robotics and

Automation: A correct and complete algorithm for the generation of

mechanical assembly sequences, May. 1989, pp. 56–61.
[10] L. S. Homem de Mello and A. C. Sanderson, “AND/OR graph

representation of assembly plans,” (en), IEEE Trans. Robot. Automat.,

vol. 6, no. 2, pp. 188–199, 1990.
[11] J. Yu, L. D. Xu, Z. Bi, and C. Wang, “Extended Interference Matrices

for Exploded View of Assembly Planning,” (en), IEEE Trans.

Automat. Sci. Eng., vol. 11, no. 1, pp. 279–286, 2014.
[12] Y. Jyh-Cheng and L. Yi-Ming, “The Structure Representation for the

Concurrent Analysis of Product Assembly and Disassembly,”

Department of Mechanical and Automation Engineering, 2005.
[13] N. S. Ong and Y. C. Wong, “Automatic Subassembly Detection from a

Product Model for Disassembly Sequence Generation,” (en), The

International Journal of Advanced Manufacturing Technology, vol. 15,
no. 6, pp. 425–431, 1999.

[14] H. J. Kim, S. Kernbaum, and G. Seliger, “Emulation-based control of a

disassembly system for LCD monitors,” The International Journal of
Advanced Manufacturing Technology, vol. 40, pp. 383–392, 2009

[15] G. D. GRADI, “PETRI-NET Modelling of an Assembly Process

System,” Institute of Information Theory and Automation -
Department of Adaptive Systems, Prague, Czech Republic

[16] Xu, C. Wang, Z. Bi, and J. Yu, “Object-Oriented Templates for

Automated Assembly Planning of Complex Products,” (en), IEEE

Trans. Automat. Sci. Eng., vol. 11, no. 2, pp. 492–503, 2014.

[17] M. Merdan, W. Lepuschitz, T. Meurer, and M. Vincze, “Towards

ontology-based automated disassembly systems,” in IECON 2010 -
36th Annual Conference of IEEE Industrial Electronics, pp. 1392–

1397.
[18] N. Lohse, H. Hirani, S. Ratchev, and M. Turitto, “An ontology for the

definition and validation of assembly processes for evolvable assembly

systems,” in (ISATP 2005). The 6th IEEE International Symposium on
Assembly and Task Planning: From Nano to Macro Assembly and

Manufacturing, 2005, Jul. 2005, pp. 242–247.

[19] K.-Y. Kim, D. G. Manley, H. Yang, and B. O. Nnaji, “Ontology-based
virtual assembly model for collaborative virtual prototyping and

simulation,” in Proceedings of the 2005 International Symposium on

Collaborative Technologies and Systems, 2005, pp. 251–258.
[20] S. Chen, J. Yi, H. Jiang, and X. Zhu, “Ontology and CBR based

automated decision-making method for the disassembly of mechanical

products,” (en), Advanced Engineering Informatics, vol. 30, no. 3, pp.
564–584, 2016.

[21] S. Balakirsky, Z. Kootbally, C. Schlenoff, T. Kramer, and S. Gupta,

“An industrial robotic knowledge representation for kit building
applications,” in 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2012), pp. 1365–1370.

[22] Q. Yang, Intelligent planning: A decomposition and abstraction based

approach. Berlin: Springer, 1997.

[23] B. Britzke, MTM in einer globalisierten Wirtschaft: Arbeitsprozesse

systematisch gestalten und optimieren. s.l.: mi-Wirtschaftsbuch, 2013.

[24] D. Schröter, P. Kuhlang, T. Finsterbusch, B. Kuhrke, and A. Verl,
“Introducing Process Building Blocks for Designing Human Robot

Interaction Work Systems and Calculating Accurate Cycle Times,”

(en), Procedia CIRP, vol. 44, pp. 216–221, 2016.

