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ABSTRACT 1 

This paper assesses the performance of the Two-Steps approach on a large-scale network. This 2 
model, recently proposed by Cantelmo et al. [1], sequentially calibrates generations and 3 
distribution values of the dynamic demand matrix. The authors initially applied this model to a 4 
simple motorway, showing its capability of producing more reliable results. This paper moves 5 
one-step forward, by applying this methodology with real data on the network of the Grand 6 
Duchy of Luxembourg.   7 
Traffic counts and average speeds have been used to compare results obtained through the 8 
proposed methodology with the ones obtained by using a standard bi-level formulation. Results 9 
show how the proposed model outperforms the standard ones, as breaking the optimisation 10 
process in two parts strongly reduces the localism of the problem. The contribution of this paper 11 
is twofold. First, we show that the Two-Step approach results are less impacted by the choice of 12 
the initial seed matrix with respect to classical. As the model reduces the number of variables, the 13 
overall reliability of the model increases. Second, as the model assumes a linear relation between 14 
time-dependent distributions and generated traffic volumes, we show that the objective function 15 
explicitly accounts for the structure of the historical o-d flows, capturing congestion dynamics at 16 
a network level and reducing the overfitting of data issue.  17 
To support the claim that the model is practice ready, a Matlab package has been developed to 18 
interface the proposed framework with PTV Visum, a commercial software for static and 19 
dynamic traffic analysis.  20 
 21 
   22 
   23 
 24 
 25 
 26 
 27 
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INTRODUCTION 1 

Dynamic Traffic Assignment (DTA) models represent essential tools for managing transportation 2 
systems. DTA models take as input the demand from each origin and destination and at each time 3 
period, and in turn estimate and/or predict route and link flows on transportation networks.  4 

In order to generate the mobility demand, usually represented in the form of 5 
Origin-Destination (OD) matrices, traditional approaches combine survey data and mathematical 6 
tools [2]. Additionaly, more recent works have done a significant progress into including new 7 
data sources, such as Call Detail Records (CDR), GSM data, sensing data and geospatial data [3]. 8 
Unfortunately, the estimated demand matrix is at most a concise representation of the systematic 9 
component of the demand – such as the typical behaviour during a working day. However, daily 10 
demand patterns can substantially differ from the systematic ones because of several elements, 11 
including weather conditions or road works, as well as because of the inherent stochasticity of 12 
the travel demand. Deviations between estimated and actual demand patterns can be mitigated by 13 
using traffic measurements, which can be used to update an existing (a-priori) OD matrix. This 14 
problem, which is known in the literature as the Dynamic Origin-Destination Estimation 15 
(DODE) problem, exploits a properly specified objective function for estimating the 16 
time-dependent OD flows. 17 

While the DODE problem has been initially treated as an extension of its static 18 
counterpart [5-6], the last decades have witnessed to a considerable effort by researchers in order 19 
to develop methodologies able to deal with the dynamic case [6]. As DTA models are applied in 20 
both offline (medium-long term planning and design) and online (real-time management) 21 
contexts, DODE is commonly classified between sequential or simultaneous approaches, where 22 
usually the first is adopted for online while the second for offline applications [6]. By limiting 23 
our focus to the offline case, DODE is usually formulated as a bi-level optimisation problem. In 24 
the upper level, OD flows are updated by minimising the error between simulated and observed 25 
traffic data, while in the lower level the DTA solves the combined Route Choice (RC) and 26 
Dynamic Network Loading (DNL) problems [7].  27 

Earlier DODE models explicitly accounted for the assignment matrix – i.e. the set of 28 
rules linking OD and link flows - for updating the demand vector. However, this matrix assumes 29 
a linear relation between demand and supply parameters, assumption that does not hold for 30 
congested networks [8]. In order to overcome this issue, Balakrishna et al. [9] proposed a bi-level 31 
formulation that does not rely on this information. Instead, the authors suggested using a 32 
simulation-based DTA model to generate traffic measures and to include additional information, 33 
such as link speed, within the objective function, in order to represent the congested/uncongested 34 
network conditions. Following this seminal work, many researchers developed new and more 35 
robust assignment-free algorithms able to properly capture the non-linearity between link-flow 36 
propagation and time-varying OD demand [10]–[13]. Despite this intense effort, the resulting 37 
optimisation problem remains highly non-linear and non-convex. To reduce the number of 38 
possible solutions, classical methods often include information about a reference OD demand 39 
matrix (usually known as historical or “seed” matrix) within the objective function. Therefore, if 40 
the structure of this seed matrix is different from the real one, this localism can lead to 41 
substantial errors [8].  42 

Recently, Marzano et al. [14] pointed out that DODE is generally unable to provide an 43 
effective estimation when the ratio between unknown and known variables (OD flows and traffic 44 
measurements, respectively) is greater than one. Hence, the easiest solution is to reformulate the 45 
objective function in order to reduce the number of variables. This can be done, for instance, by 46 
using Principal Component Analysis (PCA) [15]. Alternatively, Cascetta et al. [16] introduced 47 
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the so-called “quasi-dynamic assumption”, which assumes that the generated demand for a 1 
certain OD pair is time dependent, while its spatial distribution is constant. Under this 2 
assumption, as demonstrated in [16], the DODE problem becomes less underdetermined and 3 
more likely to find more robust results. Nevertheless, the authors point out that the resulting 4 
matrix will be “intrinsically biased” since this assumption introduces an “intrinsic error”. 5 
Similarly, Cantelmo et al. [1] proposed a Two-Steps procedure, which separates the DODE in 6 
two sub-optimization problems. The first step searches for generation values that best fit the 7 
traffic data while keeping spatial and temporal distributions constant. In the second step, the 8 
standard bi-level procedure searches for a more reliable demand matrix.  9 

Although the model has been tested on a simple network, the Two-Step approach has 10 
three characteristics that make it an ideal candidate for applications on large-scale networks. First, 11 
as pointed out by Antoniou et al. [17], the starting matrix is still a key input for all state-of-the-art 12 
DODE models. The first step of this formulation improves the historical demand matrix by 13 
performing a broad evaluation of the solution space and estimating a “good” updated seed matrix 14 
to be used in the second step. Secondly, the proposed model reduces the number of variables in 15 
the first step, increasing the overall reliability of the results [1], [14]. On this point, the idea of 16 
performing successive iterations and linearizations has been already introduced and validated in 17 
[18] for the online DODE, showing that the reliability of the results generally increases.  18 

Driven by these considerations, the contribution of this paper is twofold. First, we apply 19 
the Two-Steps approach to the real metropolitan network of Luxembourg. While the previous 20 
study [1] tested the algorithm on a simple motorway, this paper shows that the Two-Steps 21 
approach outperforms the standard formulation on a real-life network. We numerically 22 
demonstrate that properties of robustness and reliability hold for a general network, and that the 23 
localism of the model strongly decreases. The test-network represents most of the country of 24 
Luxembourg, including urban roads, motorways and primary roads. Real traffic counts extracted 25 
from loop detectors are used within the calibration process to update the demand. 26 

Second, as speed profiles on the counting stations were not available, we extend the 27 
objective function by including the average speeds over the analysis period, which have been 28 
calculated through Floating Car Data (FCD). We show that, when combined with a standard 29 
DODE procedure, this information leads to a poor calibration of the demand, as the DODE 30 
overfits the data within the objective function. However, as the Two-Steps approach over-impose 31 
a linear relation between distribution and generation for a certain traffic zone, it is more likely to 32 
capture congestion dynamics at network level, such as the systematic overestimation or 33 
underestimating of the demand, thus to avoid this issue.   34 

Finally, to support the claim that the model is ready for practical implementation, it is 35 
interfaced with PTV-Visum, one of the most widely adopted software tools for traffic analysis 36 
[19]. 37 

The paper is structured as follows. The next paragraph defines the methodology, 38 
including the “conventional” model (called Single-Step OD estimation in the rest of this paper) 39 
and the proposed Two-Steps approach. The paper then describes the case study, including the 40 
network, the dataset used for the experiments and the results. Finally, in the last section 41 
conclusions are drawn. 42 

 43 

METHODOLOGY 44 

The DODE is usually formulated as a constrained optimisation problem, which requires the 45 
formulation of: 46 
 47 
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i. An objective function, which is composed of variables and constraints related to routeing 1 
conditions and behavioural assumptions; 2 

ii. An optimisation method, which can be classified in Path Search, Pattern Search or 3 
Random Search approaches [9]; 4 

iii. A parameter updating rule; 5 

The remainder of this section describes the set of functions and algorithms used in the proposed 6 
paper for performing Single-Step and Two-Steps demand estimation.  7 

Objective function 8 

Simultaneous GLS Estimator 9 

The most widely adopted goal function for solving the offline DODE is the Generalized Least 10 
Squared (GLS) proposed in [5]. Considering different types of measures and a simultaneous 11 
approach, the problem can be formulated as:  12 
 13 

(𝒅#∗, … , 𝒅'∗ ) = 𝑎𝑟𝑔𝑚𝑖𝑛	

⎣
⎢
⎢
⎢
⎡ 𝑧#5𝒍#,… , 𝒍', 𝒍𝟏8 ,… , 𝒍𝒏8 : +
+𝑧<(𝒏#,… , 𝒏', 𝒏𝟏=,… , 𝒏𝒏=) +
+𝑧>(𝒙#, … , 𝒙', 𝒙𝟏=,… , 𝒙𝒏=) +
+𝑧@(𝒓#, … , 𝒓', 𝒓𝟏=,… , 𝒓𝒏=) + ⎦

⎥
⎥
⎥
⎤
                      

(1a) 

 14 
Where l/𝐥F represent, respectively, simulated and measured link performances, n/𝐧H calibrated and 15 
observed values on the node, x/𝐱J indicate the estimated and historical value for the OD flows 16 
(seed matrix) and r/𝐫J	the simulated and observed route performances. Finally, 𝒅𝒏∗   designates the 17 
estimated demand matrix for time interval n, while 𝑧: {𝑧#, 𝑧<, 𝑧>, 𝑧@} is the estimator of the error 18 
between simulated/estimated and measured/a priori values. 19 

The dependence between supply and demand in Equation (1a) is obtained directly by 20 
simulation performing a dynamic traffic assignment (DTA), so that: 21 

 22 
𝒍#, … , 𝒍' = 𝐅(𝒙#, … , 𝒙') 
	𝒏#, … , 𝒏' 	= 𝐅(𝒙#, … , 𝒙') 
𝒓#,… , 𝒓' = 𝐅(𝒙#,… , 𝒙') 

(1b) 

 23 
with function F representing the Dynamic Traffic Assignment (DTA) function. The objective 24 
function presented in Equation (1a) presents a series of agreeable properties that make it an ideal 25 
candidate for assignment-matrix free algorithms. First, apart from the traffic counts, the function 26 
may account for different sources of information, such as link speeds and densities – which have 27 
been proved to capture the non-linear relation between demand and supply parameters [9], [20]. 28 
Moreover, recent works showed how more elaborate information, such as point-to-point data, 29 
can also be included in this function, largely improving the overall estimation accuracy [17], [21], 30 
[22]. An additional advantage of the simultaneous GLS presented in Equation (1a) with respect to 31 
the sequential case is that all variables are jointly estimated, which is formally more correct as 32 
OD flows over different time intervals are likely to be correlated [8]. However, for large 33 
networks, this approach becomes less reliable and, if not enough traffic data is available [14], the 34 
sequential approach is preferred.  35 
 36 
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Strict Quasi-Dynamic Simultaneous Generalized Least Squared  1 

As suggested in [16], the objective function described in equation (1) can be enhanced by 2 
exploiting information on aggregated socio-demographic data such as generation data by traffic 3 
zones. The objective function (1a) can be then reformulated as: 4 
 5 

(𝑬#∗, … , 𝑬'∗ ) = 𝑎𝑟𝑔𝑚𝑖𝑛	

⎣
⎢
⎢
⎢
⎡ z#R 5𝒍#,… , 𝒍', 𝒍𝟏8 ,… , 𝒍𝒏8 : +
+z<R (𝒏#, … , 𝒏', 𝒏𝟏=,… , 𝒏𝒏=) +
+z>R (𝒙#,… , 𝒙', 𝒙𝟏=,… , 𝒙𝒏=) +
+z@R (𝒓#,… , 𝒓', 𝒓𝟏=,… , 𝒓𝒏=) + ⎦

⎥
⎥
⎥
⎤
 (2a) 

subject to 6 
 7 

 (2b) 
  8 
Where: 9 

- EnO = generated flow from traffic zone O and time interval n; 10 
- 𝑬'∗  = generation vector containing the generated flow from all zones in time interval n. 11 
- 𝑥'TU = demand flow from origin zone O to destination zone D in time interval n. 12 
- 𝑑U|T

XYYZ,'
 = seed matrix spatial/temporal distribution to move in traffic zone D from traffic 13 

zone O in time interval n. 14 

Constraint (2b) is the main difference between the general quasi-dynamic formulation proposed 15 
in [16] and the one proposed in Equation (2). The former explicitly considers a probability 16 
function that captures the correlation between generation and distribution over a certain 17 
sub-period of time. As a consequence, 𝑑U|T

XYYZ,'  is updated during the optimization process. 18 
Instead, constraint (2b) assumes a constant value of the distribution, resulting in a smoother 19 
objective function. Equation (2b) presents two major advantages with respect to the standard 20 
GLS. First, as the number of unknown variables strongly decreases, the simultaneous approach 21 
can be applied to larger networks. Second, this approach does not necessarily require to 22 
explicitly account for historical OD flows within the objective function. As pointed out in the 23 
introduction, historical OD flows are usually included within equation (1a) in order to reduce the 24 
number of possible solutions. However, this information is already considered within constraint 25 
(2b), that over-impose, to the estimated matrix, the spatial/temporal structure of the historical 26 
demand. However, a main drawback of this formulation is that it is likely to provide a poor fit of 27 
the traffic data with respect to equation (1) or to the general quasi-dynamic formulation, as 28 
pointed out in [1]. Thus, it is an ideal candidate for being used in the first phase of the Two-Step 29 
approach, where the main purpose is to have a broad evaluation of the solution space, rather than 30 
to best fit the observations.  31 

Optimisation method: SPSA 32 

The optimisation method adopted in this paper is the Simultaneous Perturbation Stochastic 33 
Approximation (SPSA) algorithm proposed in [23]. While we adopt the original model in this 34 
paper, as has been proven to be very effective for tacling the DODE problem, many authors 35 
proposed enhanced versions [11]–[13], which can also be combined with the proposed 36 
framework. The SPSA is a stochastic approximation of the deterministic finite difference 37 
gradient method, which has been proved to be very effective for tackling the DODE, but 38 

nDOdEx nSeed
OD

O
n

OD
n """= ,,      ,

|
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becomes computationally too expensive for large networks [10]. By assuming a one-sided 1 
perturbation [11], the SPSA computes the approximated gradient 𝑮𝒊 at each iteration –i as:  2 
 3 
 4 

	

𝒈H^5𝜽`: =
𝑧5𝜽` + 𝑐`∆^: − 𝑧(𝜽`)

𝑐` d
(∆#^)
⋮

(∆f^)
g (3a) 

With 𝜽` the vector with the estimated variables, 𝑧(𝜽`) the objective function value in 𝜽`, ci the 5 
perturbation step, Grad_rep the number of replications to compute the average gradient and Δ is 6 
a vector with elements {-1,1}. Given the stochastic nature of the model, it is recommended to 7 
repeat the perturbation multiple times in order to obtain a good approximation. If only one 8 
replication is used, then 𝑮𝒊 = 𝒈H^. In Equation (3a), the asymmetric design (SPSA-AD) model is 9 
showed. The main advantage of using this formulation is that it allows to reduce the number of 10 
simulations needed while still providing a proper approximation of the gradient [11]. 11 

Parameter updating rule 12 

Given a properly specified objective function and a descent direction – the gradient 𝑮`– the 13 
parameters are updated at each iteration according to: 14 
 15 

𝜽`h# = 𝜽` − 𝛼`𝑮` (4) 
  16 
Where 𝛼` is the stepsize and  𝜽` is again the vector of parameters to be updated, the OD or the 17 
Generation flows if we are minimizing, respectively, objective functions (1) or (2). Concerning 18 
the value of 𝛼`, we proposed to use a line search to find the optimal value in order to reduce the 19 
overall computational time.  20 

Single-Step and Two-Steps approach 21 

The Single-Step OD estimation is formulated in this paper as a single constrained optimisation 22 
problem, which minimises Equation (1) according to a certain optimisation method, the SPSA, 23 
and the parameter updating rule showed in Equation (4). Results of this, quite general, 24 
optimisation framework depend on the overall quality of the initial seed matrix [17]. While a 25 
more elaborate algorithm may improve the performances of the standard SPSA when applied to 26 
large networks, this critical element still remains [12], [17]. The main contribution of breaking 27 
the optimisation problem in two phases is to relax this strong limitation. 28 

 The proposed Two-Steps approach combines the set of rules, functions and algorithms 29 
described in the previous sub-sections. Specifically, the first step minimises Equation (2) in order 30 
to optimise the generated demand flows for each zone in each time interval. Hence, in the first 31 
phase, the variables are the total generated demand flows, which reduces the dimension of the 32 
problem considerably. In the second step, the classical DODE procedure is performed by 33 
minimising Equation (1), improving temporal and spatial matrix distributions. Breaking the 34 
problem as such, one benefits of the right demand level identified in the first phase. As the 35 

𝑮𝒊 = 𝒈j(𝜽𝒊) =
∑ 𝒈H^5𝜽`:
𝑮𝒓𝒂𝒅_𝒓𝒆𝒑
𝒌q𝟏
𝐺𝑟𝑎𝑑_𝑟𝑒𝑝  (3b) 
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objective function presented in (2) reduces the number of variables used, it becomes less 1 
sensitive to the network size. Thus, the estimated matrix can be used in the second level of the 2 
Two-Step approach, where the optimisation can exploit a better initial point in order to achieve 3 
overall better results. 4 

The idea of updating the generation in the first step derives from the increasing attention 5 
received by this type of aggregated information in the literature [11], [16]. This high significance 6 
derives mainly by the following considerations: 7 

 8 
• Total generated trips can limit a demand overestimation during the DODE, which is 9 

otherwise likely to occur when dealing with congested networks; 10 
• As generation models are considered the most reliable models in transport engineering 11 

applications, total generated trips are more easily observable than OD trips; 12 
• Adopting the generation values inside the DODE, as in (2), reduces the number of variables.  13 

The goal of the first step is to act on the seed matrix in order to obtain a “right level of 14 
demand”, then moving to the second step in order to optimise the dynamic distributions OD trips 15 
as in (1). 16 

 17 

CASE STUDY: LUXEMBOURG 18 

We now test both approaches to the real large-sized network of Luxembourg, showed in Figure 19 
(1). The Grand Duchy of Luxembourg is a small country placed in the heart of Europe, bordered 20 
by Belgium to the west, Germany to the east and France to the south. As most of the activities 21 
are located in the capital, Luxembourg City,  the country is facing mobility challenges, which are 22 
being made worse by the 170.000 workers - about 43% of the commuting demand [24] - coming 23 
every day to Luxembourg City from the neighbouring countries.  24 

The main goal of the case study proposed in this section is to model the complex 25 
interaction between the cross-borders – commuters coming from France, Germany and Belgium 26 
– and the road users living within the Grand Duchy’s borders. This latter demand segment can be 27 
further divided into people living in the capital and people living in the countryside, where the 28 
second one is the predominant component of the commuting demand. The ring of Luxembourg 29 
City represents the bottleneck for this system, as its capacity is not sufficient to properly serve 30 
the high volume of demand moving to the capital during the rush hour, hence major congestion 31 
patterns are reported every day. 32 

 The network, showed in Figure (1), includes all national motorways, which go from the 33 
city of Ettelbruck to Luxembourg City in the north, and from the capital to the east, west and 34 
south borders. Additionally, the network includes also primary and secondary roads, as they are 35 
commonly used by commuters.  36 
 37 
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Figure 1: The Grand Duchy of Luxembourg network, with detail of Luxembourg City 
      1 

Description of the Data 2 

As part of the initiative “Digital Luxembourg”, the Grand Duchy is developing a new 3 
open-data portal (https://data.public.lu), which gathers different sources of information including 4 
socio-demographic data. These data, collected by the National Institute of Statistics (STATEC), 5 
include the growth of the population for each year, the population for each canton and the 6 
number of cross-borders. Based on these statistics, a static matrix for the morning commute has 7 
been estimated through the classical Four-Step demand generation model. A departure time 8 
choice model based on the Vickrey/Small [25] formulation has been then used to derive a 9 
dynamic OD matrix from the static one. This dynamic matrix accounts for 46 traffic zones and 10 
represents the historical demand (Seed Matrix) for the experiments presented in the next 11 
sub-sections. 12 
 Concerning the supply side, the Luxembourgish Road Administration agency collects 13 
and provides traffic counts on most of the motorways and primary roads of the Grand Duchy. 14 
Unfortunately, these data present two major limitations. The first main limitation is that, based on 15 
the publicly available data, only three detectors are located inside the ring of Luxembourg. This 16 
means that we can expect to have a realistic representation of the demand on the regional 17 
network and on the ring, but it is not possible to validate the estimated solution inside the city. 18 
The second problem concerns the time interval aggregation for these data, as traffic counts are 19 
aggregated on an hourly basis. This time interval is clearly too large for a network with an 20 
average free-flow travel time of 20 minutes since basic congestion dynamics could not be 21 
properly captured. Finally, neither the open-data portal nor the Luxembourgish Road 22 
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Administration provides information on the speeds, which are an essential input when dealing 1 
with large congested networks such as the one proposed in Figure (1).  2 
 To compensate this lack of information, average speeds on the ring, which have been 3 
calculated by using Floating Car Data (FCD), have also been considered within the estimation 4 
process. The obtained information is based on the average of all available information and does 5 
not contain specifications about time and location. 6 

FCD carry definitely more information than just the average speeds, as demonstrated in 7 
[26], but privacy laws do not allow sharing sensible data in Europe. Thus, the available average 8 
speed broadly captures, in this study, the congestion on the ringway at a network level. The 9 
downside is that many possible solutions exist, which can create congestion on the ring. As a 10 
consequence, the most logical solution for the DODE should be to keep the demand as close as 11 
possible to the historical demand, while at the same time reproducing the speed profile. However, 12 
as this information is strongly aggregate, the Single-Step approach has the tendency to over-fit 13 
the average speed, while the Two-Step approach manage to provide more reliable results by 14 
exploiting the Link-Flows as a constraint within the objective function. This claim is numerically 15 
illustrated in the next section. 16 

Experiment Setup 17 

The network introduced in the previous section consists of 3700 links and 1469 nodes. 18 
Luxembourg City, located in the heart of the system, represents the typical middle-sized 19 
European city in terms of network dimension and has the typical structure of a metropolitan area, 20 
composed of a city centre, the ring, and suburb areas. Considering the speed profile and that the 21 
infrastructure is composed of highways, primary roads and urban roads, we can classify this 22 
system as a large-sized heavily congested network. In this study, we consider the morning peak 23 
between 5 AM and noon (8 hours). After some data cleaning, 54 counting stations have been 24 
retained, all located on the main arterial roads going to Luxembourg City and on the ring. The 25 
seed-matrix accounts for 307.544 trips and 16928 time dependent OD pairs. Both traffic counts 26 
and the average speed are included in the objective function, where the Root Mean Squared Error 27 
(RMSE) is the chosen estimator 𝑧: {𝑧#, 𝑧<}: 28 
 29 

𝑅𝑀𝑆𝐸 = y∑ (𝑞J` − 𝑞`)<{
`q#

𝑁  (4) 

Where N is the number of observations, 𝑞J` is the observed value for the measured data and 𝑞` is 30 
the simulated one.  31 

Finally, to be able to solve the DODE on the network of Luxembourg, we developed a 32 
Matlab package for solving the dynamic O-D estimation using PTV Visum as DTA model. The 33 
package, named MAMBA-DEV, allows performing assignment-free dynamic or static OD 34 
estimation, using a deterministic and/or stochastic approximation of the gradient. The package 35 
also includes the Two-Step approach discussed in this paper. While the MAMBA-DEV package 36 
has been designed for Luxembourg, it can work with any network in Visum, supporting the idea 37 
that the model is ready for practical implementation.  38 

Results 39 

Comparison between Single-Step and Two-Steps approach  40 

The first experiment proposed in this section aims to numerically validate two properties of the 41 
Two-Steps approach formulated in the methodology section: 42 
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 1 

i. The Two-Steps approach outperforms the standard one on big sized networks; 2 
ii. The first step is likely to find a good initial point to be updated through the 3 

objective function presented in Equation (1); 4 

The starting point of this experiment is not a “good initial point”, as it derives from a static 5 
matrix and has not previously been calibrated. The initial matrix provides in fact a rather poor fit 6 
with the traffic counts (𝑟< = 0.2686 and 𝑅𝑀𝑆𝐸�`'^������ = 452.61	𝑉𝑒ℎ/ℎ). In order to reduce 7 
this error, weights have been considered so that the traffic counts are responsible for 70% of the 8 
overall error within the objective function, while the average speed is responsible for the 9 
remaining 30%, thus a relatively poor representation of the average speed is expected.   10 

 As showed in Figure (2), the Two-Steps approach clearly outperforms the Single-Step 11 
in terms of estimation results, as the latter just collapses on the closest local minima. While the 12 
model reduces error on the traffic counts (𝑟< = 0.3194), these results are far from being 13 
acceptable for any practical application (𝑅𝑀𝑆𝐸�`'^�����

X`'��Y�X�Y� = 438.89	𝑉𝑒ℎ/ℎ). 14 
 By contrast, results from the Two-Steps approach seem more reasonable and similar to 15 
the expectations (𝑟< = 0.7097, 𝑅𝑀𝑆𝐸�`'^�����

����X�Y� = 241.31	𝑉𝑒ℎ/ℎ). During the first phase, the 16 
model exploits Equation (2) to explore the solution space by updating only the generations. After 17 
finding a local minimum, the model switches to Equation (1) in order to find the best fit with the 18 
observations. 19 
 It should be pointed out that the second step of the model is basically adopting the same 20 
algorithm as the Single-Step approach. The only difference is the starting point, which has been 21 
updated during the first step of the algorithm. While this framework collapsed in a few iterations 22 
when coupled with the historical seed-matrix, exploiting the more reliable demand matrix 23 
estimated through Equation (2) gives a relevant contribution to the overall optimisation, stressing 24 
how both phases of the Two-Steps approach are complementary and, thus, necessary.  25 
 Figure (2e) depicts the Spider Chart plot of the estimation error for speeds, flows and 26 
seed-matrix – i.e. the initial point. For each measure, this relative error has been calculated as: 27 

 28 

𝑅𝑒𝑙Yff�f =
𝑅𝑀𝑆𝐸�Y���fY�

max	(𝑅𝑀𝑆𝐸����X�Y�, 𝑅𝑀𝑆𝐸X`'��Y�X�Y�)
 (5) 

 29 
 Figure (2e) intuitively shows the dynamics behind the optimization. The Single-Step approach 30 
does not manage to move from the initial point, thus to reduce the error on the Link Flows.  31 
As the Two-Steps approach moves to a new solution during the first phase of the optimization, 32 
the distance with respect to the initial matrix is larger, while the error on the link flows is two 33 
times smaller than the one for the Two-Steps. However, the Two-Steps also increases the error on 34 
the speeds, which was expected as this information has a low weight in the goal function. Thus, 35 
in the section we introduce a second experiment, which aims at finding a consistent solution for 36 
both counts and speeds.  37 
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Figure 2: (a) Objective Function trend; (b) Estimated and Observed Average Speed; (c) Scatter 
Estimated and Observed Link Flows for the Two-Steps; (d) Scatter Estimated and Observed Link 
Flows for the Single-Steps; (e) Spider Chart of the relative error for the estimated matrix in terms 
of Link-Flows, Distance from the Historical OD flows (Seed Matrix) and Average Speed; 
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Improving the results obtained: Good Starting Matrix  1 

The second experiment presented in this section aims at demonstrating that, even when a “good” 2 
a prior demand matrix is available, the Single-Step approach is more likely to over-fit the data 3 
with respect to the proposed methodology. Results illustrated in Figure (2) show how using the 4 
Two-Steps approach reduces the localism of the standard single-step DODE, relaxing the 5 
dependency on the starting matrix. However, although the model outperformed the Single-Step 6 
formulation, the overall estimation is still unsatisfactory. While the model largely reduced the 7 
error on the link flows, increasing the 𝑟< from 0.2686 to 0.7097, the estimated OD matrix 8 
significantly underestimates the congestion on the ring. Thus, we performed a second experiment 9 
to correct this error. The OD matrix obtained through the Two-Steps approach in the previous 10 
estimation is now used as initial point for this second experiment, simulating the situation for 11 
which a “good” a priori OD matrix is available. The objective function still accounts for both 12 
traffic counts and average speed, but this time the latter accounts for 70% of the error, while 13 
former are mostly used as a constraint to reduce the search space, avoiding the model to move 14 
too far from the current solution.   15 
 Results, shown in Figure (3), prove that both Two-Steps and Single-Step methods 16 
estimate a reasonable approximation of the congestion pattern. While congestion between 8 AM 17 
and 9 AM is still slightly underrepresented, the average speed on the ring seems more realistic, as 18 
the congestion period begins and terminates approximately at the same time for both models. 19 
However, the Single-Step clearly approximates the average speed on the ring better than the 20 
Two-Step approach. By contrast, the error on the link flows clearly shows that the Single-Step is 21 
overfitting the speed data, which was expected given the aggregate nature of this information, 22 
while strongly increasing the error with respect to the link flows (𝑅𝑀𝑆𝐸�`'^�����

X`'��Y�X�Y� =23 
338.61	𝑉𝑒ℎ/ℎ). 24 
 Instead, the Two-Steps approach manages to provide a realistic fitting for both traffic 25 
counts and speed. Although the error on the Link Flows increases with respect to the starting 26 
point (𝑅𝑀𝑆𝐸�`'^�����

����X�Y� = 291.10	𝑉𝑒ℎ/ℎ), the difference is not as big as for the Single-Step 27 
approach, as the 𝑟< shows in Figure (3). This brings to a second important consideration. In this 28 
second experiment, no improvement is observed in the second step of the Two-Steps approach.  29 
 Constraint (2b) imposes a linear relation between temporal and spatial distribution, 30 
meaning that the spatial and temporal structure of the demand is constant during the first step of 31 
the optimisation. The direct consequence of that is that the matrix estimated through Experiment 32 
II keeps the same structure as the one obtained through Experiment I, while the total demand is 33 
different. Although the real OD matrix is not available, as we are dealing with real traffic 34 
information, we can easily calculate the error in terms of Euclidean distance with respect the 35 
initial matrix, as we would like to keep the distance with respect to the “good” historical OD 36 
flows as small as possible. While the Euclidean distance between the estimated matrix and the 37 
initial one is only 718 trips for the Two-Step approach, this error increases up to 6449 trips when 38 
using the Single-Step approach as optimization framework.    39 
In essence, we may argue that the Two-Steps approach kept the structure of the demand from the 40 
Seed-Matrix, but sensed and increased the demand in order to move the traffic state on the ring 41 
from the uncongested to the congested branch of the fundamental diagram. This suggests that the 42 
Two-Steps approach is more likely to exploit aggregate data, without altering the structure of the 43 
demand in order to overfit the available data. 44 
 45 
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Figure 3: (a) Objective Function trend; (b) Estimated and Observed Average Speed; (c) Scatter 
Estimated and Observed Link Flows for the Two-Steps; (e) Spider Chart of the relative error for 
the estimated matrix in terms of Link-Flows, Distance from the Historical OD flows (Seed Matrix) 
and Average Speed; 
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 This is further illustrated in the Spider Chart (Figure (3e)). While the Single-Step 1 
provides a substantial improvement with respect to the Two-Steps in terms of speeds, Figure (3e) 2 
shows that it clearly alters the structure of the demand, moving to a new local minimum and 3 
increasing the error on the link flow. Instead, the Two-Step estimation seems more robust. 4 
Although it does not provide an extremely accurate fit of the speed, it keeps the original structure 5 
of the demand and provides a reasonable approximation for both speeds and traffic counts, which 6 
is in line with the expectations. 7 
  8 
 9 

 CONCLUSIONS 10 

In the previous work, the Two-Step approach showed to be able to provide more reliable 11 
estimation with respect to the Single-Step case. However, these results were based on a small 12 
network. This paper analyses the properties of using the Two-Steps approach on large-scale 13 
congested networks. The contribution of this study is both methodological and practical.  14 

From the methodological point of view, the proposed approach relaxes the strong 15 
limitation of having a good starting demand matrix. As reported in [17], the capability of the 16 
DODE solution algorithm to correct the biases within the temporal and spatial structure of the 17 
demand is a strict requirement for having robust results. New data sources can improve the 18 
performances of the Single-Step, however, if such information is not available, then the 19 
Single-Step approach is likely to estimate a wrong structure of the demand. On the other hand, 20 
the Two-Steps approach showed that even considering only traffic counts and average speed, the 21 
model is capable of modifying the structure of the OD matrix in order to achieve more consistent 22 
results.  23 

Following this procedure, the first step of the model estimates the total flow generated 24 
for each traffic zone, while keeping constant the distributions, thus using them as an indirect 25 
constraint for the demand. The assumption of having a linear relation between distributions 26 
reduces the number of possible solutions for the DODE. At the same time, as aggregate data 27 
works as an indirect constraint, the demand term can be removed from the goal function. The 28 
combination of these two effects creates a smoother objective function, with less local minima 29 
with respect to the classical sequential GLS proposed in [5]. Additionally, we showed in this 30 
paper that even when a “good” starting matrix is available, the Single-Step approach has the 31 
tendency of overfitting the available data, specifically those having a higher weight within the 32 
objective function. Although in this condition the estimated matrix results acceptable, the 33 
Two-Step approach seems likely to provide results that are more robust. 34 

From a practical point of view, the model has been integrated within a Matlab package 35 
for dynamic demand estimation (MAMBA-DEV), which exploits PTV Visum as traffic 36 
assignment module. While the case study shows the network of Luxembourg, it can be easily 37 
implemented with any network in Visum, thus we can claim that the model is ready for practice. 38 

Supporting these points, the paper introduces an experiment on a large-scale heavily 39 
congested network accounting for real traffic data. The main limitation of the work presented in 40 
this paper regards indeed the data used for the DODE. As the amount of information was limited, 41 
the calibrated matrix cannot be used yet for practical operations, such as long term planning. 42 
However, it represents the first attempt to have a dynamic matrix which covers a large part of the 43 
Grand Duchy of Luxembourg, which can be used as a starting point for further optimisation if a 44 
larger data set is available, as showed in the second experiment. Nevertheless, the test cases 45 
presented in this work support the idea that the model can handle real data and large networks. 46 
Future work will focus on validating the results through a larger database and implement more 47 
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elaborate models within MAMBA-DEV package, which may include smarter optimisation 1 
methods [12] [15]. Specifically, the authors aims at comparing the proposed model with the 2 
Quasi-Dynamic model proposed in [16], as this model it is also expected to reduce the localism 3 
of the model with respect to the classical GLS. 4 
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