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ABSTRACT
This paper presents a multiscale visibility graph representation

for time series as well as feature extraction methods for time se-

ries classification (TSC). Unlike traditional TSC approaches that

seek to find global similarities in time series databases (e.g., Near-
est Neighbor with Dynamic Time Warping distance) or meth-

ods specializing in locating local patterns/subsequences (e.g.,
shapelets), we extract solely statistical features from graphs that

are generated from time series. Specifically, we augment time

series by means of their multiscale approximations, which are fur-

ther transformed into a set of visibility graphs. After extracting

probability distributions of small motifs, density, assortativity,

etc., these features are used for building highly accurate clas-

sification models using generic classifiers (e.g., Support Vector
Machine and eXtreme Gradient Boosting). Thanks to the way

how we transform time series into graphs and extract features

from them, we are able to capture both global and local features

from time series. Based on extensive experiments on a large num-

ber of open datasets and comparison with five state-of-the-art

TSC algorithms, our approach is shown to be both accurate and

efficient: it is more accurate than Learning Shapelets and at the

same time faster than Fast Shapelets.

1 INTRODUCTION
Time series data refer to sequences of data that are ordered either

temporally, spatially or in another defined order. They can be

frequently found in a variety of domains, including financial data

analysis, medical and health monitoring and industrial automa-

tion applications [27, 28]. Recently, it turns out to be feasible

to model software systems as time series in order to conduct

malware detection and classification [43]. Due to their wide ap-

plication scenarios and abundance, there has been an increasing

need for efficient knowledge discovery methods to extract useful

information from time series databases. One of the major tasks

in time series mining is time series classification (TSC), which

consists of applying a learning algorithm on labeled data to train

a model that will then be used to predict the classes of samples

from an unlabeled data set. Due to the sequential characteristic of

time series data, state-of-the-art classification algorithms (such

as SVM and Random Forest [13]) that perform well for generic

data are generally not suitable for TSC. It is thus important and

beneficial to have a feature extractionmechanism that transforms
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the sequential characteristics of time series data into unordered

feature vectors, so that any modern classification algorithm can

be taken advantage of. After all, one of the most challenging

aspects of TSC lies in the sequentiality property.

Traditionally, researchers often rely on one of the simplest

classifiers for TSC: the k Nearest Neighbor (kNN) algorithm. As

stated in [6], “all of the current empirical evidence suggests that

simple nearest neighbor classification is very difficult to beat”.

To perform well, kNN classifiers leverage the Dynamic Time

Warping (DTW) [7] distance which mitigates problems caused

by distortion in the time axis. One intrinsic issue with DTW,

however, is that it focuses on finding global similarities, i.e., the
overall curve shape of time series. It also requires applications

to specify a proper warping window size or to properly align

data samples. As a result, DTW can be sensitive to data align-

ment/segmentation and it performs better when data are properly

curated. In practice, however, well-aligned time series data are

difficult or expensive to come by [17].

To address the phase issue of DTW- and other distance-

based 1NN approaches, the research community has pro-

posed approaches that focuses on finding defining local fea-
tures/subsequences in order to be invariant to data alignment

and rotation. Popular methods that fall into this category in-

clude Bag-of-Patterns [31], SAX-VSM [39] and shapelets-based

algorithms [47], such as Fast Shapelets (FS) [35] and Learning

Shapelets (LS) [15]. The majority of these techniques have taken

advantage of text feature extraction approaches – e.g., TF-IDF –
after converting time series into alphabetical strings. Such con-

version is often done via Symbolic Aggregate approXimation

(SAX) [30], which requires two parameters (i.e., cardinality and

PAA window size) to be set and it may not always be trivial

to find the best pair. Besides, many approaches attempt to find

time series subsequences that are representative of each class,

e.g., shapelets by definition are defining time series subsequences

that are calculated by exhaustive or optimized search. Overall,

many of these methods have suffered from high computation

complexity or suboptimal classification accuracy [42].

Graph representations for TSC, on the other hand, have not

been investigated extensively by the time series mining research

community possibly due to their high computation complexity.

Nevertheless, thanks to recent development of graph mining al-

gorithms [5, 33], some of the formerly complex problems can be

solved extremely efficiently with optimization and paralleliza-

tion techniques [2]. Such advances give us the opportunity to

re-evaluate the possibility of taking advantage of graph repre-

sentations and extracting graph features for building an efficient

and accurate TSC algorithm.



This paper proposes a novel approach for TSC that considers

time series as complex graphs/networks and extracts from these

networks important statistical features, which are fed to modern

generic classifiers to learn structural knowledge from the original

time series. After evaluating the classification performance with

a large open dataset, we find out that our approach is capable

of making efficient and accurate classification predictions. The

main contributions of this paper are listed as follows:

• We present a multiscale graph representation for time

series, so that both global and local features from time

series can be captured, making this approach agnostic

to time series alignment and outperform major distance-

based TSC algorithms.

• Since we transform time series that are intrinsically se-

quential into unordered feature vectors, it is then suitable

for taking advantage of modern generic classifiers (e.g., RF,
SVM and XGBoost) for efficient feature selection and clas-

sification. This clear separation of feature extraction and

actual classification can help researcher focus on finding

insightful characteristics in time series data without the

need for reinventing the wheel and designing a classifier

from scratch specifically for time series.

• We propose a novel feature extraction and classification

method for time series based on calculating probability

distributions of small motifs (i.e., repeated patterns) in vis-

ibility graphs and other statistical features such as density,

degree statistics, assortativity and coreness. This feature

extraction mechanism is parameter-free, so that it can be

easy to use and help yield reproducible results.

• We have intentionally chosen a collection of statistical

features that are computationally efficient to extract from

graphs and validated their effectiveness in controlled ex-

periments. Moreover, since our feature extraction and clas-

sification process is inherently parallel, it is suitable for

and capable of large scale data explorations.

• After extensively evaluating our approach with a large

number of open datasets and comparing with related re-

search efforts, experiment results indeed suggest that accu-

rate and efficient classification can be obtained following

this paradigm.

The remainder of this paper is structured as follows. Section 2

lays down the necessary background. Next, we present our ap-

proach in section 3 and detail TSC accuracy and efficiency evalu-

ation results along with a case study in section 4. For interested

readers, section 5 introduces research work related to ours. Fi-

nally, we conclude the paper with future research directions in

section 6.

2 BACKGROUND
Traditionally, time series refer to a sequence of numbers that are

chronologically ordered. However, in the research community

time series have a much broader scope and do not associate

strictly with timestamps:

Definition 2.1 (Time series). A time series instance T is

an ordered sequence of n real-valued variables, i.e., T =

(v1, ...,vn ),vi ∈ R.

If we consider each point in a time series as a single feature

in a vector, then time series data usually have a huge number

of features. When considering these features as a vector in an

n-dimensional space, time series data are often high dimensional.

Due to difficulties to conduct knowledge discovery tasks on high

dimensional data, it is frequently required to reduce the dimen-

sionality of time series in order to improve computation effi-

ciency:

Definition 2.2 (Dimensionality reduction). The dimensionality

of a time series sample T is the length of T , denoted by |T |. If T ′

is an approximated representation of T and |T ′ | ≪ |T |, then T ′

is a dimension-reduced representation of T .

The research community has proposed a number of dimension-

ality reduction techniques for time series, including sampling,

Wavelet transform [25, 26], Piecewise Aggregate Approximation

(PAA) [19], etc.. Among them PAA is perhaps one of the sim-

plest and most widely applied approaches. PAA reduces time

series T = (v1, ...,vn ) from n dimensions to s dimensions by

firstly dividing the data into s segments of equal size, then the

approximation is a vector of the mean values of the data readings

per segment [30]. Let T ′ = (v ′
1
, ...,v ′s ) be this vector where v

′
i is

computed by equation 1. For the sake of simplicity,
n
s is often

chosen to be an integer or rounded to the nearest one.

v ′i =
s

n

n
s i∑

k= ns (i−1)+1

vk (1)

One of the core routines in distance-based classification al-

gorithms involves evaluating the dissimilarity (or similarity) of

two time series. There are a number of dissimilarity measures

for time series, two of the most frequently used measures in the

research community are Euclidean distance and DTW distance.

The Euclidean distance maintains a one-to-one mapping of all

the points in two series. On the other hand, the DTW distance

tries to find the best mapping of points in two series using the

dynamic programming paradigm, so that the minimum distance

between these two series is achieved. The paradigm is called

“time warping” since the time axis of series can be expanded or

compressed in order to ensure the minimum distance, i.e., an ith

point in X can be mapped to a jth point (it is possible that i , j),
or one point in X may even be mapped to multiple points in Y .

2.1 Visibility Graph
Aiming for taking advantage of graph theories as a way of

characterizing time series, an algorithm named visibility graph

(VG) [22, 23] is proposed to transforms time series into a network

structure. The creation of VGs relies on an extremely simple idea:

each point in a time series is treated as a vertical bar, whose

height is the corresponding numerical value. When considering

these bars on a landscape, it is then straightforward that the

top of a bar may be visible from the top of other bars. Assume

each time-step as a vertex in a graph, then two vertices are con-

nected if the top of the vertical bars are visible to each other, i.e.,
there exists a straight line from the top of the two bars without

intersecting with other bars. More formally,

Definition 2.3 (Visibility graph). Given a time series T =

(v1, ...,vn ), its VG representation G = (V ,E) has n vertices:

V = (1, ...,n). An edge e = (i, j) ∈ E iff ∀k such that i < k <

j (1 ≤ i, j ≤ n) inequality vk < vj + (vi −vj )
j−k
j−i is satisfied.

It is obvious that VGs are undirected, although it is possible

to create a directed version by limiting the direction of view-

points from the vertical bars. Besides, VGs are always connected

since each node will always be visible to its neighbors. Finally,



0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Visibility Graph

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Horizontal Visibility Graph

Figure 1: An example of converting time series to visibility graph
and horizontal visibility graph.

VGs are invariant when time series undergo affine transforma-

tions, i.e., the visibility criterion remains fulfilled when rescaling

the time series either horizontally or vertically. However, VGs

are not suitable for non-stationary time series, i.e., those hav-

ing monotonically increasing/decreasing trends in time. Such

trends should be removed before applying VG generation. The

goal of VGs is to characterize structural properties [23] of time

series, such as periodicity, fractality, etc., although it is shown

that it can be extended to weighted VGs in order to quantitatively

distinguish generic time series [41].

Creation of VGs from time series without optimization gener-

ally hasO(n2) computation complexity, where n is the dimension-

ality of time series data. However, a more efficient VG generation

algorithm [1] can have a sub-quadratic computation complexity.

Specifically, this algorithm can reduce the complexity of time

series VG generation down to O(n log
2(n)). When further taking

advantage of parallelization,O(n log
2(n)) work can be effectively

solved within O(log
2(n)) time. Another simplified variant of VG,

horizontal visibility graph (HVG) [32], only connects nodes i and
j if a horizontal line can be drawn between these nodes. Creation

of HVGs without any optimization generally has a computation

complexity of O(n).

Definition 2.4 (Horizontal visibility graph). Given a time series

T = (v1, ...,vn ), its HVG representation Ḡ = (V ,E) has n vertices:

V = (1, ...,n). An edge e = (i, j) ∈ E iff ∀k such that i < k <
j (1 ≤ i, j ≤ n) inequality vi ,vj > vk is satisfied.

VG and its variants have been shown to be able to differentiate

certain time series. For instance, [18] have extracted motifs from

HVGs and claimed the motif statistics can be used for differenti-

ating various types of time series data, including white Gaussian

noises, fully chaotic logistic maps and noisy fully chaotic logistic

maps. The authors further claimed that HVG motif profiles from

heart rate time series can be used to cluster different types of

meditative activities.

Intuitively, VGs and HVGs are very similar concepts and HVG

is a subgraph of VG. However, when extracting statistics from

them, VGs can be more capable of capturing global features,

while HVGs are often more sensitive to local variations. As a

result, VGs and HVGs can be joined to provide more accurate

representations of time series data. We will discuss more about

such heuristics in section 4.2. For simplicity, in the remainder

of this paper the term VG indicates the combination of VG and

HVG if HVG is not explicitly specified.

2.2 Graph Features
Extracting features from graphs has become a popular research

topic thanks to the recent applications in social network anal-

ysis, physics as well as bio-informatics. There are a number of

research avenues in graph mining, the most popular ones are

about finding communities or clusters within large graphs and

characterizing graphs by means of finding and counting recur-

rent patterns. Since time series VGs are always connected, it is

thus not immediately helpful to extract clusters, since clusters in

these graphs will always correspond to subsequences of original

time series. Graph motifs or graphlets, however, are especially

interesting since they are sub-graph structures or patterns in a

larger graph that are recurrent and statistically significant. Find-

ing motifs in graphs is generally a complex problem, but there

have been a number of research work for efficiently extracting

motifs from graph data, such as GTrieScanner [37] and Parallel

Parameterized Graphlet Decomposition (PGD) [2]. Due to the

fact that the number of motifs increases exponentially with mo-

tif size, the complexity of finding motifs is also exponentially

correlated with motif size. Researchers thus generally focus on

optimizing computation efficiency of locating small motifs (of

size up to four). PGD is the state-of-the-art approach for effi-

ciently finding and counting small motifs in graphs and can be

several magnitudes faster than other approaches. Table 1 shows

all possible small graph motifs up to size four. Note that PGD

works only for undirected graphs, while GTrieScanner works on

both directed and undirected graphs. However, motifs extracted

by GTrieScanner are only connected motifs and the running time

is significantly slower than PGD. As a result, in this paper we

take advantage of PGD for small motif counting.

Table 1: All graphmotifs up to size 4. Note that connected graphs
may contain disconnected motifs.

# Motif Name # Motif Name

M21 2-edge M22 2-node-independent

M31 3-triangle M33 3-node-1-edge

C
o
n
n
e
c
t
e
d

M32 3-path

D
i
s
c
o
n
n
e
c
t
e
d M34 3-node-independent

M41 4-clique M47 4-node-triangle

M42 4-chordal-cycle M48 4-node-star

M43 4-tailed-triangle M49 4-node-2-edges

M44 4-cycle M410 4-node-1-edge

M45 4-star M411 4-node-independent

M46 4-path

Researchers argue that motif distribution extracted from VGs

can be extremely helpful for identifying different types of artifi-

cially generated time series. However, in practice motif distribu-

tions may not be as distinguishable as those from artificial data.

For example, Figure 2 illustrates the motif distributions of three

different classes of time series from the ArrowHead dataset. As
shown, it can be very difficult to tell one class apart from another

given only these distributions since the probability distributions

of different classes tend to overlap, especially in this case for

instances from class 2 and 3. Besides small motifs, other graph

features are also easy to obtain, e.g., vertex and edge statistics

as well as structural metrics. In this paper we consider some

additional graph features listed as follows:

• Density: the ratio of the number of edges to the number

of all possible edges. Graph density is computed following

equation 2 and has a computation complexity of O(1).

p =
2|E |

|V |(|V | − 1)
(2)

• K-core: the K-core of a graph G = (V ,E) is a maximal

subgraph H = (V ′,E ′) in which each vertex has a degree

of at least K , i.e., ∀v ∈ V ′ : degH (v) ≥ K . Consequently,
it is a cohesiveness measurement of interlinked subgraphs



M41 M42 M43 M44 M45 M46
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ilit

y

Class 1

Class 2

Class 3

Connected Motifs

M47 M48 M49 M410 M411

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Class 1

Class 2

Class 3

Disconnected Motifs

Figure 2: Boxplots of motif probability distribution of different
classes from the ArrowHead Dataset’s training set.

within a network and K is computed by equation 3. Com-

puting K has an O(|E |) time complexity [5].

K = argmax

H ∈G
CoreH ≥ K (3)

• Assortativity coefficient: a metric to measure the correla-

tion of vertices in a graph through calculating the Pearson

correlation coefficient of degree between pairs of con-

nected vertices. Equation 4 shows how assortativity coef-

ficient is computed,

r =

∑
xy xy(exy − axby )

σaσb
(4)

where ax and by represents respectively the fraction of

edges that start and end at vertices with values x andy, and
exy is the measure of assortativity, such that

∑
xy exy = 1,∑

y exy = ax and

∑
x exy = by . Finally, σa and σb are

the standard deviations of the distributions ax and by .
Computing r has an O(|E |) time complexity [33].

• Degree statistics including max, min and mean degree per

vertex. Naturally, computing such statistics has an O(|V |)
time complexity.

Note that there are a plethora of features that can be extracted

from graphs [11], and such features are not necessarily equally

easy to obtain. For instance, the diameter of a graph – which is

the shortest distance between the two most distant vertices in the

graph – can be computationally expensive to calculate since it

demands O(|V |(|V | + |E |)) computation. Nonetheless, this paper

does not intend to find the exclusive set of features that are both

efficient and descriptive for time series VGs. Rather, we try to

investigate if these aforementioned statistical features are indeed

helpful for TSC.

3 MULTISCALE VISIBILITY GRAPH
Time series data differ greatly in characteristics depending on

how they are captured, sampled and their underlying applica-

tions: in one domain global features may be helpful, while in

another domain local features (i.e., defining subsequences) can
become more important for classification. After transforming

real-valued time series into VGs, specific features from such VGs

– such as probability distributions of small motifs – are more re-

flective of local features than global ones. We refer to this type of

representation as Uniscale Visibility Graph (UVG) in the remain-

der of this paper. In this case, extracting more global features

(i.e., probability distributions of large motifs) becomes exponen-

tially expensive for computation. To mitigate this problem, we

propose the Multiscale Visibility Graph (MVG) representation

such that each time series sequence is transformed into a set of

dimensionality-reduced approximations: these downscaled ap-

proximations are then converted into a set of VGs. Consequently,

features are extracted from each graph in MVGs, thus approxi-

mating the process of extracting features of different scales. This

approach is inspired by computationally efficient wavelet trans-

form [10], with the exception that time series in each scale are

represented with graph structures instead of numerical values.

We first define the multiscale representation of time series as

follows:

Definition 3.1 (Multiscale Approximation). Given a time series

T0 = (v1, ...,vn ), its approximated multiscale representation is a

set of time series
ˆT = (T1,T2, , ...,Tm ), where Ti (1 ≤ i ≤ m) is a

downscaled approximation of T0, such that |Ti | = |T0 |/2
i = n/2i .

In addition, to avoid tiny and meaningless representations we en-

force a constant threshold τ for the downscaled approximations,

i.e., |Tm | > τ .

The downscaling of T0 can be achieved with widely used di-

mensionality reduction techniques such as PAA (cf. equation 1).

Since the size of downscaled time series representations follows

an exponential decay, time series multiscale representations
ˆT

often consists of a small number downscaled series. Besides, con-

sidering

∑∞
i=1

n ∗ 2
−i = n, theoretically the maximal dimension

of
ˆT when fully expanded is n.

Definition 3.2 (Multiscale representation). Given a time se-

ries T0 and its approximated multiscale representation
ˆT =

(T1,T2, , ...,Tm ), its multiscale representation is the union of
ˆT

and T0, i.e., T = (T0,T1,T2, , ...,Tm ).

Approximated multiscale representations can help smoothing

time series and reducing noises, while full multiscale represen-

tations consist of both the original time series and augmented

versions. Each series in multiscale representations can be trans-

formed into VGs, thus we have a natural definition for multiscale

visibility graphs, which are supersets of approximated multiscale

visibility graphs (AMVGs):

Definition 3.3 (Multiscale visibility graph). Given a time se-

ries T and its multiscale representation T = (T0,T1,T2, , ...,Tm ),
its multiscale visibility graph is a set of graphs G =

(G0,G1,G2, , ...,Gm ), where Gi (1 ≤ i ≤ m) is the corresponding

visibility graph created from Ti .

Since the number of vertices in Gi equals the dimensionality

of Ti , to avoid meaningless trivial graphs it is natural to set τ
to a small integer (e.g., τ = 15), such that the smallest graph

in G contains more than τ vertices. Note that τ should not be

considered as a parameter for the feature extraction process.

Rather, it is more an optimization trick and bearing a default

value of 0 will not cause any issues, since feature selection is

done during classification.

3.1 Feature Extraction
As shown in Algorithm 1, feature extraction in MVGs follow

the same paradigm as extracting features from individual graphs

in an MVG and concatenating all features together, since graph

features extracted in this paper are solely statistical and do not

pertain orders. Consequently, these features can be fed into any

generic classification algorithms [13] well studied in the machine

learning and data mining community. It is utterly important that

this feature extraction transforms the sequential characteristics



of time series data into unordered feature vectors, so that any

modern classification algorithm can be taken advantage of.

Algorithm 1 Building time series MVGs and extracting features

from them.

1: procedure ExtractFeatures(T )

2: F← � ▷ Feature set

3: G← � ▷ MVGs

4: T ′ ← T
5: while |T ′ | > τ do ▷ Ignore trivial graphs

6: G← G ∪ BuildVGAndHVG(T ′)
7: T ′ ← DimensionalityReduction(T ) ▷ |T ′ | ≤ |T |

2

8: for G ∈ G do
9: M← Motif Probabil ityDistr ibution(G)
10: M← Normalize(M)
11: F← F ∪ {M, OtherStatist ics(G)}
12: return F

Although features have become unordered, it is nevertheless

important to carefully curate them in order to achieve better

classification results. Note that PGD is very efficient in counting

motifs in graphs, and the dominant features from time series

MVGs will be the probability distribution of motifs of different

sizes:

Definition 3.4 (Motif probability distribution). Given a time

series visibility graphG and the set of motifsM, the motif proba-

bility distribution PG is the set of probabilities corresponding to

each motif inM.

Empirically, the distribution of connected and disconnected

motifs vary greatly in graphs. It is thus desirable to calculate

separately motif probability distributions depending upon motif

connectivity. To that end, the motif probability distributions

(MPDs) are calculated per motif size and connectivity. This es-

sentially normalizes extracted motif features. Specifically, MPDs

are normalized according to the following five groups (cf. Table 1):
{{M21,M22}, {M31,M32}, {M33,M34}, {M41, ...,M46}, {M47, ...,

M411}}. Finally, it is obvious that other graph features – e.g.,
graph density and assortativity coefficient – are independent

of MPDs. As a result, no further curation for such features is

needed.

3.2 Classification
When features are extracted, we can feed them into a generic

classifier to learn from labeled samples and predict the class of

unlabeled ones. We are in favor of most well-known and widely

accepted and well optimized algorithms such as SVM, Random

Forest and eXtreme Gradient Boosting (XGBoost) [8] for this

task. Especially, as a highly optimized distributed gradient boost-

ing library, XGBoost runs on major distributed environment. It

has gained remarkable adoption since its inception and is well

known for its performance in machine learning and data mining

competitions.

Typical classification tasks involve learning models and se-

lecting a performant estimator through the process of valida-

tion. Although in this study we have proposed a parameter-free

method for feature extraction, it is still required to tune the hyper-

parameters for generic classifiers. Note that hyper-parameters

in machine learning refers to parameters that are external to the

model and such values cannot be estimated from the training

data. As a result, they are often set using heuristics. For instance,

the k in kNN classifier can be considered as a hyper-parameter,

since “there is no analytical formula available to calculate an

appropriate value” [21]. In order to tune hyper-parameters in

our classifiers, we conduct cross-validation to evaluate the per-

formance of estimators and apply grid search to find the most

satisfactory estimator based on the cross entropy scores:

− log P(ŷ |y) = −(y log(ŷ) + (1 − y) log(1 − ŷ)) (5)

where y is the ground truth, and ŷ is the probabilistic predic-

tions by an estimator. Since datasets may be highly imbalanced,

which will lead to degraded classification results, we can apply

random oversampling techniques over the minority class and

use stratified cross validation to preserve class balance when

validating models.

4 EVALUATION
To evaluate our approach, we conduct experiments using a large

number of publicly accessible datasets. We first introduce the

datasets. Then we list and validate our heuristics, followed by

creating an accurate classifier with stacked generalization. Next,

we compare the accuracy and efficiency of our method with state-

of-the-art approaches. Finally, we close this section with a case

study and discussions.

4.1 Datasets
When validating our heuristics, we consider the most popular

and largest open dataset for TSC: the UCR Time Series Classifi-

cation Archive [9]. Specifically, we use a subset from the UCR

archive that are more recent (added after the summer of 2015),

which include datasets from various fields ranging from elec-

trocardiograms (ECG) to intra-species image recognition data.

These datasets have a uniform file format and consistent internal

data structures, making it possible to conduct batch processing in

a content-agnostic manner. Furthermore, datasets in this subset

are generally larger in size, making it more reliable to evaluate

the scalability of TSC algorithms.

When comparing our approach with state-of-the-art ap-

proaches, we take advantage of the UEA & UCR Time Series

Classification Repository since it contains all datasets from the

UCR archive. In addition, this repository also provides open

source implementation for more than 18 TSC algorithms [3]

and benchmarking results are publicly available from the reposi-

tory website
1
. We compare our results with relevant algorithms

using the default train and test split from this repository.

4.2 Validating Heuristics
Before diving directly into MVG representations, it would be a

prerequisite to validate our heuristics step by step. We summarize

these heuristics below:

(1) Motif statistics from VGs and HVGs can serve better dur-

ing classification when combined with other graph fea-

tures such as degree statistics.

(2) Features from HVGs are more capable of capturing local
characteristics while those from VGs are capable of captur-

ing global characteristics. Combining features from both

HVGs and VGs can help yield more accurate classification

results.

(3) Multiscale representations are able to reveal time series

features at different scales, and a generic classifier is able

to conduct feature selection and find important features to

perform more accurate classification than using features

without multiscale augmentation.

1
http://timeseriesclassification.com/

http://timeseriesclassification.com/


When validating these heuristics, we feed the features corre-

sponding to each heuristic to an XGBoost classifier for 3-fold

cross-validation and model selection. A set of hyper-parameters

have been set for grid search, including the learning rate (three

choices from 0.01 to 0.3), number of estimators (10 choices from

10 to 100), max tree depth (10 or 20). In order to prevent overfit-

ting, the subsampling and column sampling hyper-parameters

are both set to 0.5 to randomly collect half of the data instances

and features to grow trees. To reduce the impact of random over

sampling on minority classes and floating-point summation is-

sues in parallel processing, all experiments have been repeated

five times and average accuracy scores are calculated. Finally,

all experiments are conducted on a Linux server with two Intel

Xeon E5-2430 CPUs with a clock rate of 2.20GHz. With this setup,

we illustrate step by step how experiments are setup and present

the final classification results in Table 2.

4.2.1 Choosing Graph Features. We first investigate which

graph features are helpful for extracting distinguishable informa-

tion from time series. Specifically, we transform time series into

UVGs consisting of both VG and HVG representations and try

to extract MPDs as well as other features (density, assortativity

and degree statistics) from these graphs. We are interested in

finding out whether MPDs are sufficient for TSC and if extract-

ing other statistic features from graphs are necessary. Next, we

take advantage of XGBoost classifier to train on different feature

sets and classify the test datasets. Columns A, B, C and D in

Table 2 presents the classification error rates using HVG with

only MPDs, HVG with MPDs and other graph features, VG with

only MPDs and VG with all features. Comparison on the bottom

of the table shows that including features such as density and

assortativity coefficient indeed helps improving classification ac-

curacy. For HVGs, including features other than MPDs increases

classification accuracy in 32 datasets, while for VGs 29 datasets

saw accuracy improvements. A Wilcoxon signed rank test with

p-values 9.48e-7 and 9.56e-5 suggests that such improvement is

indeed significant (both p-values < 0.05). Figure 3 shows the clas-

sification results in the form of scatter plots, where each point

represent a dataset. Such results along with the Wilcoxon test

indeed suggest that our Heuristic (1) is valid.
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Figure 3: Comparison of classification error rates: using MPDs
with or without other graph features.

4.2.2 VG and HVG. Next, it is necessary to show that graph

features extracted from both VGs and HVGs are important. Recall

that, intuitively, VGs are helpful for capturing global features

while HVG can help locating local features. We separately test the

distinguishing power of VGs and HVGs for time series in order to

make sure that both can lead to satisfactory classification results.

Furthermore, we conduct experiments to investigate if combining

VGs and HVGs can better capture both global and local features

for time series and thus lead to more accurate classification.

Figure 4 illustrates the comparison of classification accuracy

with VG and HVG features as well as combining both VG and
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Figure 4: Comparison of classification error rates: using HVGs,
VGs or combining two together (denoted as UVG here).

HVG. The first scatter plot shows that for majority datasets,

VG features can yield more accurate classification performance.

However, it is still worth mentioning that HVG features can also

outperform VG features in some specific datasets, possibly due

to the reason that local features are more influential in such

datasets. Moreover, it is obvious from the other two scatter plots

in Figure 4 that combining both VG features and HVG features

can greatly boost the classification accuracy. This is probably

due to the excellent feature selection capability of XGBoost, so

that the classifier is able to find out which features are more

important during the training process. In addition, as shown in

Table 2, using VGs outperforms HVGs in 30 datasets with a p-
value of 3.09e-3, suggesting VGs are capable of capturing more

characteristics in time series. Finally, combining features from

both VGs and HVGs yields more accurate results in 27 datasets

with a p-value of 5.01e-3, indicating significant improvement

when combining two different types of graphs. As a result, the

validity of our Heuristic (2) can be confirmed.

4.2.3 UVG, AMVG and MVG. Since we have demonstrated

that taking advantage of both VG and HVG features can improve

classification accuracy for UVG representations, now we can

investigate whether Heuristic (3) holds, i.e., if multiscale repre-

sentations can help achieving even more accurate results. To

visually inspect which representation suites best for TSC, we

further draw scatter plots of the accuracy results in Figure 5. It is

then obvious that AMVG and UVG (scatter plot on top) lead to

similar classification accuracy, which suggests that AMVG can be

good approximations for original time series data. Furthermore,

the two scatter plots in the bottom of Figure 5 indeed confirm that

MVG representations result in better classification performance,

since almost all dots representing results from different datasets

fall on the side of MVG.
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Figure 5: Comparison of UVG, AMVG and MVG’s error rates.

From Table 2, we can see that multiscale approximations out-

performs uniscale time series in 19 datasets, with a Wilcoxon

p-value of 0.8623 > 0.05. As a result, AMVG representations are

not statistically significantly different than UVGs. On the other

hand, MVGs outperform AMVG in 29 datasets with a p-value of
1.72e-4 and MVGs are more accurate than UVGs in 30 datasets

with a p-value of 8.74e-4, suggesting that MVG representations

indeed contribute significantly towards a more accurate feature

extraction and TSC process. As a result, our Heuristic (3) is valid.



Table 2: Error rates of classifying 39 UCR datasets compared with 1NN-Euclidean and 1NN-DTW. Different heuristic combinations are
taken into account. Bold-faced values indicate lowest error rates (including ties) for specific datasets in all experiments.

Scales→ UVG AMVG MVG

Type of Graphs→ HVG VG VG+HVG

Features→ MPDs All MPDs All All

Dataset #Cls. #Train #Test Dim. 1NN-ED 1NN-DTW A B C D E F G

ArrowHead 3 36 175 251 0.200 0.200 0.482 0.449 0.406 0.407 0.385 0.405 0.398

BeetleFly 2 20 20 512 0.250 0.300 0.440 0.410 0.250 0.170 0.250 0.150 0.180

BirdChicken 2 20 20 512 0.450 0.300 0.260 0.150 0.000 0.000 0.000 0.050 0.050

Computers 2 250 250 720 0.424 0.380 0.294 0.284 0.367 0.338 0.281 0.292 0.266
DistalPhalanxOutlineAgeGroup 3 139 400 80 0.218 0.228 0.204 0.202 0.214 0.196 0.202 0.196 0.188
DistalPhalanxOutlineCorrect 2 276 600 80 0.248 0.232 0.409 0.389 0.251 0.263 0.251 0.264 0.231
DistalPhalanxTW 6 139 400 80 0.273 0.272 0.342 0.348 0.298 0.300 0.315 0.275 0.279

ECG5000 5 500 4500 140 0.075 0.075 0.289 0.182 0.137 0.112 0.116 0.076 0.075
Earthquakes 2 139 322 512 0.326 0.258 0.262 0.255 0.286 0.265 0.245 0.276 0.283

ElectricDevices 7 8926 7711 96 0.450 0.376 0.503 0.493 0.392 0.357 0.366 0.368 0.338
FordA 2 1320 3601 500 0.341 0.341 0.009 0.009 0.254 0.220 0.007 0.167 0.006
FordB 2 810 3636 500 0.442 0.414 0.328 0.318 0.313 0.290 0.271 0.257 0.230
Ham 2 109 105 431 0.400 0.400 0.463 0.463 0.347 0.345 0.389 0.389 0.343
HandOutlines 2 370 1000 2709 0.199 0.197 0.293 0.288 0.275 0.225 0.221 0.215 0.206

Herring 2 64 64 512 0.484 0.469 0.425 0.419 0.450 0.484 0.381 0.431 0.288
InsectWingbeatSound 11 220 1980 256 0.438 0.422 0.808 0.763 0.586 0.577 0.557 0.484 0.488

LargeKitchenAppliances 3 375 375 720 0.507 0.205 0.461 0.414 0.490 0.478 0.380 0.346 0.325

Meat 3 60 60 448 0.067 0.067 0.497 0.490 0.160 0.097 0.117 0.050 0.080

MiddlePhalanxOutlineAgeGroup 3 154 400 80 0.260 0.253 0.274 0.279 0.246 0.238 0.267 0.266 0.247

MiddlePhalanxOutlineCorrect 2 291 600 80 0.247 0.318 0.534 0.531 0.305 0.294 0.337 0.426 0.314

MiddlePhalanxTW 6 154 399 80 0.439 0.419 0.471 0.443 0.419 0.426 0.401 0.434 0.410

PhalangesOutlinesCorrect 2 1800 858 80 0.239 0.239 0.397 0.391 0.302 0.291 0.288 0.272 0.264

Phoneme 39 214 1896 1024 0.891 0.773 0.798 0.786 0.812 0.797 0.759 0.772 0.730
ProximalPhalanxOutlineAgeGroup 3 400 205 80 0.215 0.215 0.207 0.194 0.185 0.192 0.178 0.152 0.170

ProximalPhalanxOutlineCorrect 2 600 291 80 0.192 0.210 0.280 0.267 0.167 0.165 0.174 0.181 0.144
ProximalPhalanxTW 6 205 400 80 0.292 0.263 0.303 0.307 0.257 0.259 0.257 0.300 0.233
RefrigerationDevices 3 375 375 720 0.605 0.560 0.533 0.523 0.526 0.494 0.478 0.415 0.417

ScreenType 3 375 375 720 0.640 0.589 0.506 0.486 0.678 0.669 0.572 0.506 0.499

ShapeletSim 2 20 180 500 0.461 0.300 0.189 0.194 0.067 0.051 0.017 0.161 0.047

ShapesAll 60 600 600 512 0.248 0.198 0.715 0.595 0.585 0.485 0.448 0.332 0.313

SmallKitchenAppliances 3 375 375 720 0.659 0.328 0.239 0.212 0.282 0.261 0.205 0.205 0.206

Strawberry 2 370 613 235 0.062 0.062 0.217 0.205 0.117 0.113 0.097 0.099 0.094

ToeSegmentation1 2 40 228 277 0.320 0.250 0.354 0.339 0.289 0.301 0.296 0.261 0.259

ToeSegmentation2 2 36 130 343 0.192 0.092 0.185 0.185 0.205 0.182 0.185 0.218 0.185

UWaveGestureLibraryAll 8 896 3582 945 0.052 0.034 0.551 0.498 0.516 0.482 0.386 0.278 0.265

Wine 2 57 54 234 0.389 0.389 0.493 0.404 0.530 0.519 0.448 0.556 0.548

WordSynonyms 25 267 638 270 0.382 0.252 0.794 0.770 0.662 0.610 0.578 0.559 0.571

Worms 5 77 181 900 0.635 0.586 0.492 0.470 0.414 0.409 0.387 0.448 0.409

WormsTwoClass 2 77 181 900 0.414 0.414 0.328 0.306 0.242 0.248 0.243 0.239 0.233

Comparison versus G G B D D E F G E

Number of more accurate datasets 26 23 32 30 29 27 19 29 30

Wilcoxon test p-value 0.01 0.1638 9.48e-7 3.09e-3 9.56e-5 5.01e-3 0.8623 1.72e-4 8.74e-4

4.2.4 Summary of Heuristic Validation. Overall, all our heuris-
tics are supported by experiment results and each heuristic con-

tributes significantly to a more accurate TSC process. Table 2

also shows the comparison between our approach and Euclidean

distance- as well as DTW-based nearest neighbor classification.

Our approach outperforms 1NN-Euclidean in 26 datasets with a

Wilcoxonp-value of 0.01, suggesting MVG features with XGBoost

is significantly more accurate than 1NN-Euclidean. Moreover,

MVG appears to be in par with 1NN-DTW in terms of classifi-

cation accuracy since 23 datasets are in favor of MVG with a

p-value of 0.1638. Next, we will try to build a more robust and

accurate classifier using stacked generalization.

4.3 Stacked Generalization
Previously we have solely taken advantage of XGBoost for classi-

fying time series with features extracted from graphs. However,

it can also be interesting to investigate if other classifiers can

achieve similar results. Besides, although modern classifiers such

as XGBoost and RF are capable of efficiently conducting feature

selection during training, we can still conduct feature selection

processes and feed such a priori information to classifiers in order

to achieve better classification accuracy. To that end, we propose

feeding different sets of features to a collection of classifiers and

then create a meta-classifier using stacked generalization (a.k.a
stacking or blending) [44]. This meta-classifier will then hope-

fully generate better final predictions. In fact, a variant of this

technique has led to winning the Netflix Prize with a reward of

one million dollars [40].

Before building a meta-classifier with stacked generalization,

we first make sure that features we previously extracted are suit-

able inputs for different classifiers such as RF and SVM. Generally,

tree-based classifiers are not so sensitive to monotonic transfor-

mations of individual features. As a result, it is often not required

to have features scaled to similar magnitudes for RF and XGBoost.

However, since SVM’s kernel functions (in an Euclidean space)

are usually sensitive to different feature magnitudes, we use Min-

Max scaling to transform each feature into range of zero and one.

After that, we compare the classification performance of these

three classifiers.



In order to evaluate the significance of the differences a generic

classifier can incur, we take advantage of the Nemenyi test [12],

which is a post-hoc test aiming for finding whether groups of

data differ after a statistical test of multiple comparisons. This

test can be illustrated by means of a critical difference diagram,

where average ranks of all approaches are presented. Specifically,

the location of vertical lines indicate the average ranking of an

approach and bold lines (insignificance lines) indicate groups of

approaches that are not significantly different. In this case, for one

approach to be considered significantly better than another, its

overall ranking has to be at least 0.5307 higher than its competitor.

As shown in Figure 6, XGBoost performs slightly better than

RF in general, and both are significantly more accurate than

SVM. Such results are not surprising, since [13] have empirically

tested hundreds of classifiers and concluded that RF produces the

most accurate classification results. This study was conducted

before the initial release of XGBoost, and the recent adoption

momentum of XGBoost indeed suggests that XGBoost is great

for yielding accurate classification results.
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Figure 6: Critical difference diagram comparison of RF, SVM and
XGBoost.

Now that generic classifiers can be used for graph features

extracted from time series, we then set to investigate whether

stacking can help further increase classification accuracy.We first

stack top performing classifiers in each family before blending

classifiers from different families. Specifically, we first select the

top five most accurate classifiers from RF, SVM and XGBoost

through cross validation. Then these five classifiers are stacked

to produce a meta-classifier, which is used for producing final

predictions. Finally, when stacking classifiers of different families,

five classifiers from each family have been selected, thus the meta-

classifier has been trained with 15 classifiers. Our algorithm is

described in Algorithm 2.

Algorithm 2 Algorithm for creating an ensemble classifiers us-

ing stacked generalization.

Input: Training dataset D = {Xi , yi }mi=1
(Xi ∈ R

n, yi ∈ Z)
Base classifiers H (with different hyper-parameters)

Output: An stacked ensemble E
1: procedure BuildStackingEnsemble(D, H)
2: S← CreateStratifiedKFolds(D, cv=3) ▷ 3-fold CV

3: E← � ▷ Best performing base estimators

4: for all h ∈ H do
5: H ← �
6: for all S = {Dtrain, Dvalidation } ∈ S do
7: TrainClassifier(h, Dtrain )
8: ŷ ←Predict(h, Xvalidation )
9: score← − log P (ŷ |yvalidation )
10: H ← H ∪ {h, score }
11: H ← arg sort(H ) ▷ Sort estimators by score

12: E← E ∪ slice(H, k ) ▷ Select top-k estimators

13: W ← ComputeEstimatorWeights(E) ▷ with logistic regression

14: E ←
∑|E|
i=1

WiEi
15: return E

Our experiments show that, for RF and SVM, stacking their top

performing classifiers indeed increases final classification. In the

case of XGBoost, however, stacking its most accurate classifiers

does not seem to significantly increase classification accuracy,

since the classification results of stacked generalization is on par

with those with a single most accurate classification during cross

validation. It possibly indicates that XGBoost has already very

good generalization capabilities. Finally, stacking most accurate

classifiers from three different families can help achieving better

classification accuracy than single best XGBoost classifier in most

datasets. As a result, stacked generalization can indeed be helpful

for further improving the performance of MVG.

Figure 7 demonstrates how stacked generalization can help

boosting classification accuracy. It is straightforward that stack-

ing XGBoost and SVM produces similar classification accuracy,

while stacking top performers from all three families can be sig-

nificantly more accurate than using a single family. As a result,

we are confident that staked generalization is favorable for more

accurate TSC.
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Figure 7: Critical difference diagram comparison of stacking sin-
gle family of classifiers versus all families of classifiers.

4.4 Accuracy Benchmarking
Finally, we compare our results with the state-of-the-art and

relevant approaches. Table 3 presents the classification error rates

as well as the running time statistics. Specifically, datasets in this

experiment are from the UEA & UCR Time Series Classification

Repository thanks to the many benchmarking results that are

publicly available. Note that although names of the datasets used

in this repository are exactly the same compared to our previous

experiments, the similarity of their contents is not guaranteed. In

fact, the training and testing datasets may have been swapped for

a number of datasets. An obvious example is the FordA dataset,
where in this experiment the training dataset and testing set

are of size 1320 and 3601 respectively, while in our previous

experiments the training set has 3601 samples and the testing

test has 1320.

We compare our method MVG with five state-of-the-art ap-

proaches: two distance-based global similarity matching algo-

rithms including Euclidean- and DTW-based nearest neighbor

classification (1NN-ED and 1NN-DTW), and three local pattern

matching algorithms including Learning Shapelets (LS) [15], Fast

Shapelets (FS) [35] and SAX-VSM [39]. Among all five approaches,

LS is recognized as the most accurate classifier [42] by the re-

search community. However, LS is also known for its high compu-

tation complexity. We first compare the classification accuracy of

different approaches in this section and then investigate MVG’s

efficiency later in section 4.5.

Viewing the error rate comparison columns in Table 3, it is

obvious that MVG is the most accurate classifier with 16 win-

ning datasets. LS then follows MVG with 12 winning datasets. A

Wilcoxon test between MVG and LS yields a p-value of 0.3421 >
0.05, suggesting that MVG should not be considered significantly

better than LS. SAX-VSM is ranked third with 10 winning cases.

The Wilcoxon test again suggest that such difference is not sta-

tistically significant. However, MVG is indeed significantly more

accurate than FS, 1NN-DTW and 1NN-ED. Moreover, scatter

plots in Figure 8 shows that most of the points in each compar-

ison are located away from the diagonal line, suggesting that

MVG is indeed a very different approach when compared to the

state-of-the-art. Having confirmed MVG’s excellent accuracy, we

continue to investigate its runtime efficiency.



Table 3: Classification error rates compared with five benchmark approaches and running time statistics (in seconds).

Classification Error Rate MVG Runtime FS

Runtime

Dataset # Cls. #Train #Test Dim.

1NN-

ED

1NN-

DTW

LS FS

SAX-

VSM

MVG FE Clf.

∑
ArrowHead 3 36 175 251 0.200 0.297 0.154 0.406 0.211 0.371 8 29 37 30
BeetleFly 2 20 20 512 0.250 0.300 0.200 0.300 0.100 0.050 2 21 23 54

BirdChicken 2 20 20 512 0.450 0.250 0.200 0.250 0.000 0.000 4 22 26 38

Computers 2 250 250 720 0.424 0.300 0.416 0.500 0.380 0.252 22 51 73 1293

DistalPhalanxOutlineAgeGroup 3 400 139 80 0.374 0.230 0.281 0.345 0.158 0.254 11 86 97 45
DistalPhalanxOutlineCorrect 2 600 276 80 0.283 0.283 0.221 0.250 0.272 0.281 19 93 112 101
DistalPhalanxTW 6 400 139 80 0.367 0.410 0.374 0.374 0.396 0.381 12 204 216 59
ECG5000 5 500 4500 140 0.075 0.076 0.068 0.077 0.090 0.069 162 190 352 170
Earthquakes 2 322 139 512 0.288 0.281 0.259 0.295 0.252 0.252 22 78 100 3689

ElectricDevices 7 8926 7711 96 0.448 0.398 0.413 0.421 0.295 0.332 406 6344 6750 3558
FordA 2 3601 1320 500 0.335 0.445 0.043 0.213 0.173 0.014 207 410 617 44832

FordB 2 3636 810 500 0.394 0.380 0.083 0.272 0.249 0.333 183 534 717 45874

Ham 2 109 105 431 0.400 0.533 0.333 0.352 0.190 0.343 8 32 40 670

HandOutlines 2 1000 370 2709 0.138 0.119 0.519 0.189 0.092 0.200 4431 182 4613 179745

Herring 2 64 64 512 0.484 0.469 0.375 0.469 0.375 0.344 19 30 49 286

InsectWingbeatSound 11 220 1980 256 0.438 0.645 0.394 0.511 0.453 0.459 85 130 215 705

LargeKitchenAppliances 3 375 375 720 0.507 0.205 0.299 0.440 0.123 0.288 32 89 121 7301

Meat 3 60 60 448 0.150 0.067 0.100 0.067 0.067 0.050 10 31 41 120

MiddlePhalanxOutlineAgeGroup 3 400 154 80 0.481 0.500 0.429 0.455 0.455 0.435 9 88 97 50
MiddlePhalanxOutlineCorrect 2 600 291 80 0.234 0.302 0.220 0.271 0.323 0.289 15 87 102 80
MiddlePhalanxTW 6 399 154 80 0.487 0.494 0.494 0.468 0.513 0.481 9 177 186 62
PhalangesOutlinesCorrect 2 1800 858 80 0.239 0.272 0.235 0.256 0.290 0.248 48 209 257 332

Phoneme 39 214 1896 1024 0.891 0.772 0.782 0.826 0.895 0.692 134 1419 1553 25604

ProximalPhalanxOutlineAgeGroup 3 400 205 80 0.215 0.195 0.166 0.220 0.176 0.166 11 70 81 41
ProximalPhalanxOutlineCorrect 2 600 291 80 0.192 0.216 0.151 0.196 0.172 0.144 18 80 98 80
ProximalPhalanxTW 6 400 205 80 0.293 0.239 0.224 0.298 0.390 0.220 12 160 172 49
RefrigerationDevices 3 375 375 720 0.605 0.536 0.485 0.667 0.347 0.421 37 77 114 12798

ScreenType 3 375 375 720 0.640 0.603 0.571 0.587 0.488 0.480 35 89 124 8473

ShapeletSim 2 20 180 500 0.461 0.350 0.050 0.000 0.283 0.000 6 22 28 76

ShapesAll 60 600 600 512 0.248 0.232 0.232 0.420 0.302 0.255 168 1833 2001 7939

SmallKitchenAppliances 3 375 375 720 0.656 0.357 0.336 0.667 0.421 0.208 30 75 105 5667

Strawberry 2 613 370 235 0.054 0.059 0.089 0.097 0.043 0.076 29 75 104 314

ToeSegmentation1 2 40 228 277 0.320 0.228 0.066 0.044 0.070 0.197 8 26 34 30
ToeSegmentation2 2 36 130 343 0.192 0.162 0.085 0.308 0.138 0.185 6 22 28 38

UWaveGestureLibraryAll 8 896 3582 945 0.052 0.108 0.047 0.211 0.201 0.258 470 343 813 32047

Wine 2 57 54 234 0.389 0.426 0.500 0.241 0.037 0.519 4 27 31 22
WordSynonyms 25 267 638 270 0.382 0.351 0.393 0.569 0.509 0.522 39 1017 1056 907
Worms 5 181 77 900 0.545 0.416 0.390 0.351 0.442 0.182 26 98 124 6852

WormsTwoClass 2 181 77 900 0.390 0.377 0.273 0.273 0.286 0.130 27 45 72 5044

Number of best (including ties) 1 2 12 3 10 16 24 15

Wilcoxon test p-value 0.0023 0.0044 0.3421 0.0005 0.5767 – Total time→ 21379 395075
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Figure 8: Comparison of classification accuracy with five state-of-the-art approaches in the form of scatter plots.

4.5 Efficiency
The pipeline of MVG consists of a feature extraction phase and a

train-validate-test process. During the feature extraction process,

time series are firstly transformed in to VGs and then features are

extracted from such graphs. With optimization from [1], trans-

forming time series of length n into VGs has a computation

complexity ofO(n log
2(n)) and it can be effectively solved within

O(log
2(n)) time when taking full advantage of parallelization.

Extracting motif features from VGs may be potentially expen-

sive, fortunately PGD provides a fully parallel way of counting

small motifs. For instance, counting graph cliques of size 4 – one

of the most time consuming tasks in PGD – has a computation

complexity ofO(m ·∆ ·Tmax ), wherem is the number of 4-motifs

(i.e., 11), ∆ is the maximum degree and Tmax is the maximum

number of triangles incident to an edge and Tmax ≪ ∆. PGD is

hundreds of times faster than other motif counting algorithms:

counting motifs from a graph with more than 26,000 vertices

can take only 0.01 seconds on a twelve-core commodity CPU [2].

Since other statistic features such as density, k-core, assortativity
and degree statistics extracted from time series VGs are inten-

tionally chosen to be simple metrics, collecting these features has

a time complexity of O(max(|V |, |E |)). Since we use a multiscale

graph representation, ultimately graph generation has a mono-

thread complexity of O(n log
3(n)) and in parallel an O(log

3(n))
time complexity. As a result, feature extraction per graph has a

computation complexity of O(max(|V |, |E |) +m · ∆ ·Tmax ). The



classification process leverages state-of-the-art classifiers that are

widely used and well-optimized. Overall, the efficiency of MVG

may be best illustrated when we compare our method against

our benchmarking approaches.

Previous research [42] has shown that LS is extremely time

consuming, and FS as an approximated approach can be 100X

faster than LS. As a result, FS will be a good and strong baseline

to which the running time of our approach can be compared.

Thus we record the running time of FS and MVG and compare

their efficiency. These experiments are conducted on a computer

with Intel i7-4980HQ quad-core CPU clocked at 2.80GHz, 16GB

memory and solid-state drive suitable for fast I/O. We use the

FS implementation by its original authors [35] with default pa-

rameters. Columns located on the right side of Table 3 shows

the running time per dataset for MVG and FS. For MVG, running

time for feature extraction and training are recorded separately

and then summed. Overall, MVG completes faster than FS for 24

datasets. The total running time of FS for all 39 datasets amounts

to 395075 seconds, which is more than 18 times that of MVG.

A scatter plot of the running time is provided in Figure 9, obvi-

ously MVG can be up to 100X faster than FS, suggesting that it

is indeed an efficient TSC approach. In addition, we note that

FS appears to be time consuming with large datasets with time

series of high dimensionality, while the running time of MVG

remains reasonable as datasets grow larger. Furthermore, since

we have experimented only on a quad-core commodity computer

that is not really powerful in terms of parallel processing, the

efficiency of MVG can be easily boosted by adding more comput-

ing cores. Overall, MVG can indeed be considered an efficient

TSC approach.
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Figure 9: Runtime comparison between FS and MVG.

4.6 Case Study
Although accuracy and efficiency are very important measure-

ments for TSC approaches, it is also desirable for TSC methods

to have comprehensible classification processes, so that users

may gain extra insights into his/her time series data. Popular

approaches based on shapelets and subsequences may have a

natural advantage in classification comprehensibility. However,

since features extracted in MVG are solely statistical, it can be

difficult to locate exactly where a distinguishing subsequence lies

in the original time series. However, for MVG it is still possible

to understand which features have contributed most to correct

classification. For instance, when feeding features to train an

XGBoost classifier, it will assign weights to all the features. Af-

ter ranking these features, we can also gain insights into the

data. For instance, Figure 10 illustrates a scatter matrix plot for

the test dataset of FordA showing ten most important features

learned by the classifier
2
. Out of ten features, six are features

from HVGs, which are created from the original series (T0). VGs

features from dimensionality-reduced approximations (T2 and

T3) are also present. Moreover, it appears that most highly ranked

graph features for this dataset are MPDs and assortativity, sug-

gesting that statistics other than MPDs are indeed helpful. Finally,

visually from the kernel density estimation it is obvious that some

features alone – e.g.,T0 HVG P(M44) – can already provide good

classification guidelines, suggesting that it is feasible for MVG to

present visually comprehensible cues regarding its classification

decisions.

4.7 Discussions
Due to specific characteristics of VGs, obviously MVGmay not be

suitable for every TSC scenarios. For instance, VGs are agnostic

of affine transformations in time series. That is, in applications

where the absolute oscillation is more important, MVG is less

likely to detect such characteristics. Furthermore, when dealing

with non-stationary time series data where trends are very fre-

quently found, MVGworks best when trends are not the deciding

factor since VGs may not be able to capture long-term monolithic

trends. Since many graph features have been taken into account

in MVG, we believe it can be robust in practical applications.

In addition to limitations inherited from VGs, our approach is

more suitable for applications where the size of training datasets

is larger, so that classification models can generalize better. In

fact, when we review the classification accuracy of MVG, it seems

that a majority of its winning datasets have either long time series

or large training datasets. This is perhaps innate to the nature of

statistics: sample size has to be sufficiently large to make accurate

estimations. Based on running time comparison, MVG also scales

well with large datasets, which can be an important advantage

in the era of big data.

5 RELATEDWORK
TSC is a major task in time series mining thanks to its wide

application scenarios. As a consequence, there are a plethora

of classification algorithms for TSC. Classical TSC approaches

involve utilizing 1NN classification together with similarity mea-

sures specific to time series data, e.g., DTW [7] and its variants

with lower bounding [36] and early abandoning techniques [34].

Another line of research transforms time series into texts and

resort to text classification algorithms. For example, inspired by

the well known bag-of-words approach, [31] proposes the Bag-of-
Patterns approach for TSC. SAX-VSM [39] also takes advantage

of bag-of-words approach and builds term frequency-inverse

document frequency (TF-IDF) vectors in its training phase. It

defines a similarity measure of two vectors (that are constructed

from original series) based on their inner product. Both Bag-of-

Patterns and SAX-VSM rely on SAX [30] for transforming time

series into texts. A more recent work, Representative Pattern

Mining (RPM) [42], also tries to classify time series by means of

finding the most representative SAX-symbolized subsequences.

Our previous work Domain Series Corpus (DSCo) [24, 29] also

transforms time series into texts and approximates TSC to a

pseudo language detection problem. [38] invents another sym-

bolic representation based on Fourier transform and proposes a

bag-of-patterns approach named BOSS ensemble based on this

symbolic representation method.

2
To save space, we show more illustrations comparing original time series and

important MVG features on project website. URL: http://daoyuan.li/mvg/

http://daoyuan.li/mvg/
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Figure 10: Scatter matrix of ten most important features for FordA’s test dataset. Different point colors indicate different classes and the
diagonal shows the Gaussian kernel density estimation for each feature.

Recently, shapelet-based approaches are gaining popularity

among the research community. A shapelet [47] is a single subse-

quence in time series that is representative of its class. However,

these approaches [15, 16] are known for their high computation

complexity. As we have demonstrated in this paper, FS [35] as

an approximated approach can also take long time to run. High

computation complexity is also present for TSC approaches using

deep neural networks [46]. Finally, [4] introduce an ensemble

algorithm named Collective of Transformation-based Ensembles

(COTE) – an ensemble of 35 different classifiers – that has shown

to be very accurate but has a time complexity ofO(m4n2), where

m is the dimensionality of time series and n is the size of training

dataset.

Although the concept of time series VGs has appeared for

almost a decade, using it for TSC has just started picking up.

Machine learning approaches taking advantage of VG and its

variants are generally using artificially generated data [45] or

EEG signals. Finally, graph kernel methods [20] can be used

for evaluating graph similarity, which may potentially be used

for TSC as well. Our approach transforms TSC into a graph

classification [14] problem. Since we convert time series into

a set of graphs at different scales, we have not experimented

generic graph classification algorithms. However, they are indeed

interesting for future experiments.

6 CONCLUSIONS AND FUTUREWORK
This paper proposes a graph-based multiscale time series rep-

resentation named MVG and a feature extraction method for

TSC. MVG transforms time series into a collection of visibility

graphs of various scales and feature extraction are conducted by

investigating statistical graph features such as probability distri-

butions of small motifs, assortativity as well as degree statistics.



After a large scale evaluation with open datasets and comparison

with a number of state-of-the-art TSC algorithms, our proposed

approach appears to be both accurate and efficient: it can be more

accurate than LS and up to ∼100X faster than FS.

In the future, we plan to further investigate other useful and

efficient graph features – such as degree distribution entropy,

centrality, bipartivity, etc. [11] – for MVG in order to further

improve its accuracy. Currently we have only evaluated MVG

with univariate time series data, we are also excited to investigate

the possibility of adopting MVG for multivariate TSC.
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