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Abstract

This paper presents a novel approach to the problem of almost global atti-
tude stabilization. The reduced attitude is steered along a geodesic path on
the n − 1-sphere. Meanwhile, the full attitude is stabilized on SO(n). This
action, essentially two maneuvers in sequel, is fused into one smooth motion.
Our algorithm is useful in applications where stabilization of the reduced
attitude takes precedence over stabilization of the full attitude. A two pa-
rameter feedback gain affords further trade-offs between the full and reduced
attitude convergence speed. The closed loop kinematics on SO(3) are solved
for the states as functions of time and the initial conditions, providing pre-
cise knowledge of the transient dynamics. The exact solutions also help us to
characterize the asymptotic behavior of the system such as establishing the
region of attraction by straightforward evaluation of limits. The geometric
flavor of these ideas is illustrated by a numerical example.
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1. Introduction

The attitude tracking problem for a rigid-body is well-known in the literature.
It is interesting from a theoretical point of view due to the nonlinear state
equations and the topology of the underlying state space SO(3). Application
oriented approaches to attitude control often make use of parameterizations
such as Euler angles or unit quaternions to represent SO(3). The choice of
parameterization is not without importance since it may affect the limits of
control performance [17, 23, 27]. An often cited result states that global sta-
bility cannot be achieved on SO(3) by means of a continuous, time-invariant
feedback [27]. It is however possible to achieve almost global asymptotic
stability through continuous time-invariant feedback [23, 31], almost semi-
global stability [10], or global stability by means of a hybrid control approach
[18]. These subjects have also been studied with regards to the reduced at-
titude, i.e., on the 2-sphere [2, 23]. The problem of pose control on SE(3)
is strongly related to the aforementioned problems. Many of the previously
referenced results can be combined with position control algorithms in an
inner-and-outer-loop configuration to achieve pose stabilization [29].

Like [10, 18, 23, 31], this paper provides a novel approach to the attitude
stabilization problem. The generalized full attitude is stabilized on SO(n).
Meanwhile, the generalized reduced attitude is steered along a geodesic path
on the (n − 1)-sphere. The motion of the reduced attitude is decoupled
from the remaining degree of freedom of the full attitude but not vice versa.
An action consisting of two sequential manoeuvres is thus fused into one
smooth motion. This algorithm is of use in applications where the stabiliza-
tion of the reduced attitude takes precedence over that of the full attitude.
A two parameter feedback gain affords further trade-offs regarding the full
and reduced attitude convergence speed. The kinematic model is suited for
applications in the field of visual servo control [3, 4]. Consider a camera
that is tracking an object. The goal is to keep the camera pointing towards
the object whereas the roll angle is of secondary importance. The proposed
algorithm solves this problem by steering the principal axis directly towards
the object while simultaneously stabilizing the roll angles without resorting
to a non-smooth control consisting of two separate motions.

While literature on the kinematics and dynamics of n-dimensional rigid-
bodies (e.g., [21]) may primarily be theoretically motivated, the developments
also provide a unified framework for the cases of n ∈ {2, 3}. The generalized
reduced attitude encompasses all orientations in physical space: the heading
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on a circle, the reduced attitude on the sphere, and the unit quaternions
on the 3-sphere. Relevant literature includes works concerning stabilization
[19], synchronization [7], and estimation [8] on SO(n). It also includes the
previous work [13, 14] of the authors. Note that work on SO(n) for n ≥ 4 is
not only of theoretical concern; it also finds applications in the visualization
of high-dimensional data [34].

Exact solutions to a closed-loop system yields insights into both its tran-
sient and asymptotic behaviors and may therefore be of value in applications.
The literature on exact solutions to attitude dynamics may, roughly speak-
ing, be divided into two separate categories. First, there are a number of
works where the exact solutions are obtained during the control design pro-
cess, e.g., using exact linearization [5], optimal control design techniques such
as the Pontryagin maximum principle [33], or in the process of building an
attitude observer [11]. Second, there are studies of the equations defining
rigid-body dynamics under a set of specific assumptions whereby the exact
solutions become one of the main results [6, 16, 22]. This paper belongs
to the second category. The closed-loop kinematics on SO(3) are solved for
the states as functions of time and the initial conditions, providing precise
knowledge of the workings of the transient dynamics.

Recent work on the problem of finding exact solutions to closed-loop sys-
tems on SO(n) includes [13, 14]. Related but somewhat different problems
are addressed in [6, 16, 22]. Earlier work [12] by the authors is strongly
related but also underdeveloped; its scope is limited to the case of SO(3).
This paper concerns a generalization of the equations studied in [12, 14].
The results of [14] is also generalized in [13], partly towards application in
model-predictive control and sampled control systems and without focus on
the behavior of the reduced attitude. The work [15] addresses the problem
of continuous actuation under discrete-time sampling. The exact solutions
provide an alternative to the zero-order hold technique. The algorithm al-
ternates in a fashion that is continuous in time between the closed-loop and
open-loop versions of a single control law. The feedback law proposed in this
paper can also be used in such applications by virtue of the exact solutions.

2. Preliminaries

Let A,B ∈ C
n×n. The spectrum of A is written as σ(A). Denote the

transpose ofA byA⊤ and the complex conjugate byA∗. The inner product is

defined by 〈A,B〉 = tr(A⊤B) and the Frobenius norm by ‖A‖F = 〈A,A〉

1

2 .
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The outer product of two vectors x,y ∈ R
n is defined as x ⊗ y = xy⊤. The

commutator of two matrices is [A,B] = AB−BA and the anti-commutator
is {A,B} = AB +BA.

The special orthogonal group is SO(n) = {R ∈ R
n×n

|R−1 = R⊤, detR =
1}. The special orthogonal Lie algebra is so(n) = {S ∈ R

n×n
|S⊤ = −S}.

The n-sphere is Sn = {x ∈ R
n+1

| ‖x‖ = 1}. The geodesic distance between
x,y ∈ S

n is given by ϑ(x,y) = arccos〈x,y〉. An almost globally asymptot-
ically stable equilibrium is stable and attractive from all initial conditions
in the state space except for a set of zero measure. The terms attitude
stabilization, reduced attitude stabilization, and geodesic path refer to the
stabilization problem on SO(n), the n-sphere, and curves that are geodesic
up to parametrization respectively.

Real matrix valued, real matrix variable hyperbolic functions are defined
by means of the matrix exponential, e.g., cosh : Rn×n

→ GL(n) is given by
cosh(A) = 1

2
[exp(A) + exp(−A)] for all A ∈ R

n×n. Let Log : C\{0} → C

denote the principal logarithm, i.e., Log z = log r + iϑ, where z = r eiϑ

and ϑ ∈ (−π, π]. Let Atanh : C\{−1, 1} → C denote the principal inverse
hyperbolic tangent, i.e., Atanh z = 1

2
[Log(1 + z) − Log(1 − z)]. Note that

tanh : C\{−1, 1} → C satisfies tanhAtanh z = z for all z ∈ C\{−1, 1}.
Extend these definitions to the extended real number line R ∪ {−∞,∞}

and the Riemann sphere C ∪ {∞} by letting log 0 = −∞, Atanh 1 = ∞,
tanh∞ = 1 etc. [30].

3. Problem Description

3.1. Stabilization and Tracking

The orientation or attitude of a rigid body is represented by a rotation ma-
trix that transforms the body fixed frame into a given inertial fixed frame.
Let X ∈ SO(3) denote this rotation matrix. The kinematics of a rigid body
dictates that Ẋ = ΩX, where Ω ∈ so(3) is a skew-symmetric matrix rep-
resenting the angular velocity vector of the rigid body. The attitude stabi-
lization problem is the problem of designing a feedback law that stabilizes
a desired frame Xd which without loss of generality can be taken to be the
identity matrix.

The attitude tracking problem concerns the design of an Ω that rotates
X into a desired moving frame Xd ∈ SO(3). Assume that Xd is generated
by Ẋd = ΩdXd, where Ωd ∈ so(3) is known. Furthermore assume that
the relative rotation error R = X⊤

d X ∈ SO(3) is known to the feedback
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algorithm. Note that rotating X into Xd is equivalent to rotating R into I.
Moreover,

Ṙ = Ẋ
⊤
d X +X⊤

d Ẋ = (ΩdXd)
⊤X +X⊤

d ΩX = −X⊤
d ΩdXdR +X⊤

d ΩXdR

= X⊤
d (−Ωd +Ω)XdR = UR, (1)

where U = X⊤
d (−Ωd +Ω)Xd ∈ so(3). The kinematic level attitude tracking

problem in the case of known Rd,Ωd can hence be reduced to the attitude
stabilization problem. It is also clear that attitude stabilization is a special
case of attitude tracking.

From a mathematical perspective it is appealing to strive for generaliza-
tion. Consider the evolution of a positively oriented n-dimensional orthogonal
frame represented by R ∈ SO(n). The dynamics are given by

Ṙ = UR, (2)

where U ∈ so(n). The kinematic level generalized attitude stabilization
problem concerns the design of an U that stabilizes the identity matrix on
SO(n). It is assumed that R can be actuated along any direction of its
tangent plane at the identity TISO(n) = so(n). Note that SO(n) is invariant
under the kinematics (2), i.e., any solution R(t) to (2) that satisfies R(0) =
R0 ∈ SO(n) remains in SO(n) for all t ∈ [0,∞).

3.2. The Reduced Attitude

It is sometimes preferable to only consider n − 1 of the 1
2
n(n − 1) degrees

of freedom on SO(n). In the case of SO(3), these correspond to the reduced
attitude [23]. The reduced attitude consists of the points on the unit sphere
S

2
≃ SO(3)/SO(2). It formalizes the notion of pointing orientations such as

the two degrees of rotational freedom possessed by objects with cylindrical
symmetry. The reduced attitude is also employed in redundant tasks like
robotic spray painting and welding that only require the utilization of two of
the usual three degrees of rotational freedom in physical space [32].

Reduced attitude control by means of kinematic actuation is a special case
of control on the unit n-sphere, Sn = {x ∈ R

n+1
| ‖x‖ = 1}. The generalized

reduced attitude can be used to model all physical rotations. The heading
of a two-dimensional rigid-body is an element of S1, the pointing direction
of a cylindrical rigid-body is an element of S

2, and the full attitude can
be parametrized by S

3 through a composition of two maps via the unit
quaternions S0(H) = {q ∈ H | |q| = 1}.
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Let e1 ∈ S
n−1 be a vector expressed in the body-fixed frame of an n-

dimensional rigid body. The reduced attitude x ∈ S
n−1 is defined as the

inertial frame coordinates of e1, i.e., x = Xe1. The reduced attitude stabi-
lization problem is solved by a feedback algorithm that can turn x into any
desired value xd ∈ S

n−1. Note that ẋ = Ẋe1 = ΩXe1 = Ωx. Assume that
xd = Xde1 satisfies ẋd = Ωdxd. Set r = X⊤

d x = X⊤
d Xe1 = Re1. Turning x

into xd is equivalent to turning r into e1. Moreover, ṙ = Ṙe1 = URe1 = Ur,
where U = X⊤

d (−Ωd +Ω)Xd ∈ so(n), like in the SO(3) case. The evolution
of r is controllable on S

n−1 [26].
Note that ṙ ⊥ r due to U ∈ so(n). The set so(n) has more than enough

degrees of freedom to fully actuate r. It suffices to express U in terms of a
control u ∈ R

n by letting U = u ⊗ r − (u ⊗ r)⊤ ∈ so(n). Then,

ṙ = u ⊗ r r − r ⊗ u r = u − 〈u, r〉r = (I − r ⊗ r)u, (3)

where the identity u ⊗ v w = 〈v,w〉u for any u,v,w ∈ R
n is used. Since

u is arbitrary, r can be actuated in any direction along its tangent plane
TrS

n−1 = {v ∈ R
n
| 〈r,v〉 = 0}, i.e., the hyperplane of vectors orthogonal

to r. The generalized kinematic level reduced attitude stabilization problem
concerns the design of an u that stabilizes e1.

Note that by setting u = v, the dynamics (3) moves r in the steepest
descent direction of the geodesic distance ϑ(v, r) = arccos〈v, r〉 in the case
of a constant v ∈ S

n,

argmin
u∈Sn

ϑ̇ = argmax
u∈Sn

d
dt
〈v, r〉 = argmax

u∈Sn

〈v, (I − r ⊗ r)u〉 = v.

We say that a feedback u is geodesic if it controls the system along a path
of minimum length in the state-space, i.e., if there is a reparametrization of
time that turns the state trajectory into a geodesic curve.

3.3. Problem Statement
This paper concerns the formulation and proof of stability of a control law
that solves the problem of stabilizing the full attitude almost globally while
simultaneously providing a geodesic feedback for the reduced attitude. In
other words, we design a control signal U such that I is an almost globally
asymptotically stable equilibrium of the full attitude R and the reduced
attitude r moves towards e1 along a great circle. Moreover, on SO(3), which
is the most interesting case for application purposes, we also solve the closed-
loop equations generated by the proposed algorithm for R as a function of
time, the initial condition, and two gain parameters.
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4. Control Design

This section presents an algorithm that stabilizes the identity matrix on
SO(n). The proposed algorithm is also shown to stabilize the generalized
reduced attitude along a geodesic curve on the (n− 1)-sphere from all initial
conditions except a single point.

Algorithm 1. Let the feedback U : SO(n) → so(n) be given by

U = PR⊤
−RP + kRQ(R⊤

−R)QR⊤, (4)

where P ∈ {A ∈ R
n×n

|A2 = A, A⊤ = A}, i.e., P is a constant orthogonal
projection, k ∈ (0,∞), and Q = I −P.

Remark 2. The control gain k is introduced to afford a trade-off between the
reduced and full attitude convergence rates. Note that a second feedback gain
parameter can be introduced by multiplying U by some positive constant.
This is equivalent to scaling time, wherefore a single parameter suffices.

The resulting closed loop system is

Ṙ = UR = P −RPR + kRQ(R⊤
−R)Q. (5)

Note that Q is also an orthogonal projection matrix, i.e., Q2 = Q and
Q⊤ = Q. Moreover, P and Q satisfy the relations P+Q = I and PQ = 0..

Consider the case of P = e1⊗ e1, where {e1, . . . , en} denotes the standard
basis of Rn. This is equivalent, up to a change of coordinates, to the case of
rankP = 1. The dynamics of the reduced attitude are given by

ṙ = e1 − 〈e1, r〉r, (6)

i.e., equation (3) with u = e1. This feedback results in r ∈ S
n−1 moving

towards e1 along a great circle. The case of P = e1 ⊗ e1 is further explored
in Section 5 and 7.

The first skew-symmetric difference in (4) is designed to steer RP to P. If
P = I, this control action suffices to stabilize the identity matrix. Otherwise,
when ‖RP−P‖2 is sufficiently small, the second skew-symmetric term kicks
in to steer RQ to Q. Intuitively speaking, in the case of P = e1 × e1, this
can be interpreted as stabilization on S

n−1
≃ SO(n)\SO(n − 1) followed by

stabilization on SO(n−1), where the two control actions have been fused into
one smooth motion. SinceR = R(P+Q) = RP+RQ, if limt→∞R(t)P = P
and limt→∞R(t)Q = Q, then limt→∞ R(t) = I.
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Remark 3. The algorithm of [12] as well as the two algorithms of [14] are
special cases of Algorithm 1. In [12], n = 3 and P = e1 ⊗ e1. In [14], n ∈ N,
and P = I or P = I− en ⊗ en for the two respective algorithms. This paper
explores the general case of n ∈ N and P ∈ {A ∈ R

n×n
|A2 = A, A⊤ = A},

with focus on projection matrices that satisfy rankP ≤ n − 2. The case of
rankP ∈ {1, n− 1, n} is considerably simpler.

5. The Reduced Attitude

Let us show that (4) is a geodesic feedback for the reduced attitude in the
special case of P = e1 ⊗ e1, which is equivalent to the case of rankP = 1 up
to a change of coordinates. Our objective is to turn the unit vector r into e1
by means of a continuous rotation about a constant axis. A stability proof
in the case of a general orthogonal projection matrix P is also given.

Proposition 4. Set P = e1 ⊗ e1 in Algorithm 1. The equilibrium r = e1 of
(6) is almost globally exponentially stable on S

n−1. The unstable manifold
{−e1} corresponds to a single point that is antipodal to the desired equilib-
rium. Moreover, r evolves from its initial value to e1 along a great circle.

Proof. Define a candidate Lyapunov function V : Sn−1
→ [0, 2] by

V = 1
2
‖r − e1‖

2
2 = 1− 〈e1, r〉.

Then V̇ = −〈e1, e1−〈e1, r〉r〉 = −(2−V )V by (6). The equilibrium r = e1 is
almost globally asymptotically stable by application of LaSalle’s invariance
principle and Lyapunov’s theorem. Local exponential stability follows from
V̇ ≤ −V on the hemisphere {r ∈ S

n−1
| 〈e1, r〉 ≥ 0}.

The Euclidean metric d(x,y) = ‖x − y‖2 and intrinsic arc length metric
ϑ(x,y) = arccos〈x,y〉 for any x, y ∈ S

n−1 are related by d(x,y)2 = ‖x −

y‖22 = 2(1 − 〈x,y〉) = 2[1 − cosϑ(x,y)] for all x,y ∈ S
n−1. It follows

that the gradients of d and ϑ, defined using the metric tensor induced by
the inner product in Euclidean space, are negatively aligned. Moreover,
∇V = −e1 = −u, so r only moves in the steepest decent direction of ϑ,
i.e., r(t) is a geodesic curve up to parametrization which makes u a geodesic
feedback.

Remark 5. The problem of geodesic feedback as well as other control prob-
lems on the sphere such as dynamic level control and tracking on the 2-sphere
are addressed in [2]. The work [26] explores the problems of controllability,
observability, and minimum energy optimal control on the n-sphere.
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Consider the case of a general orthogonal projection matrix P. Postmul-
tiply Ṙ by P to find that

ṘP = P − (RP)2, (7)

where the k-term in (5) is canceled due to PQ = 0. Note that P and Q sat-
isfy the following relations cosh(Pt) = Q+cosh(t)P, sinh(Pt) = sinh(t)P,
where cosh and sinh denote matrix variable, matrix valued hyperbolic func-
tions defined by replacing the exponential function in their scalar variable,
scalar valued analogues by the matrix exponential. The matrix cosh(Pt) is
nonsingular since σ[cosh(Pt)] ⊂ {1, cosh t} ⊂ (1,∞).

Proposition 6. The unique solution to Ḣ = P − H2 as a trajectory in the
homogeneous space

H = {H ∈ R
n×n

|H = RP,R ∈ SO(n)} (8)

with initial condition H(0) = H0 ∈ H is given by

H(t) =[sinh(Pt) + cosh(Pt)H0][cosh(Pt) + sinh(Pt)H0]
−1. (9)

Proof. A proof of global existence and uniqueness is given by Lemma 23
in Appendix A. Denote H(t) = X(t)Y(t)−1, where X(t) = sinh(Pt) +
cosh(Pt)H0, Y(t) = cosh(Pt)+ sinh(Pt)H0. It can be shown that Y−1(t) is
well-defined for all t ∈ [0,∞). Note that Ẋ(t) = PY(t) and Ẏ(t) = PX(t).
The proof is by verification that H(t) satisfies (7),

Ḣ(t) = Ẋ(t)Y(t)−1
−X(t)Y(t)−1Ẏ(t)Y(t)−1

= PY(t)Y(t)−1
−X(t)Y(t)−1PX(t)Y(t)−1

= P −H(t)PH(t) = P −H(t)2.

Moreover, H(0) = H0.

Introduce the set of rotation matrices with partly negative spectrum,

N = {R ∈ SO(n) | − 1 ∈ σ(R)}.

Observe that N is a set of zero measure in SO(n). One can show that
N = {R ∈ SO(3) |R⊤ = R}\{I} in the case of SO(3), but such a relation
does not hold in higher dimensions as illustrated by the matrix

R =

[

R11 0
0 −I

]

∈ SO(n)

which belongs to N for all R11 ∈ SO(n− 2), where n ≥ 4.
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Proposition 7. The system Ḣ = P − H2 over the homogeneous space H

given by (8) converges to the equilibrium manifold {H ∈ H |H2 = P}. The
equilibrium H = P is almost globally asymptotically stable.

Proof. Consider the candidate Lyapunov function V = tr(P −H). Since

V̇ = − tr(P −H2) = −p+

p
∑

i=1

λ2
i = −p +

p
∑

i=1

a2i − b2i ,

where p = rankP and λi = ai + ibi for i ∈ {1, . . . , p} are eigenvalues of
H (the eigenvalue zero has at least algebraic multiplicity n − p). Note that
ρ ≤ ‖H‖2 ≤ ‖R‖2‖P‖2 = 1, where ρ is the spectral radius of H, implies
a2i + b2i ≤ 1. It follows that

V̇ ≤ −p +

p
∑

i=1

1− b2i − b2i = −2

p
∑

i=1

b2i ,

which is negative semidefinite. The spectrum of H converges to {−1, 0, 1}
as time goes to infinity by LaSalle’s invariance principle.

Note that if (λ,v) is an eigenpair of H = RP with λ ∈ {−1, 1}, then
Pv = v, Rv = λv. Let V = {v1, . . . ,vp} be a linearly independent set of
eigenvectors with λi ∈ {−1, 1} that maximizes |V| = p. Since R is normal,
there is a basis {v1, . . . ,vn} of Rn where (λi,vi) are eigenpairs of R with
λi ∈ {−1, 1} for i ∈ {1, . . . , p} and Pvi = 0 for i ∈ {p + 1, . . . , n}. Clearly,
(P −H2)vi = 0 if i ∈ {p+ 1, . . . , n} and

(P −H2)vi = (1− λ2)v = 0

if i ∈ {1, . . . , p}. The matrix P − H2 maps a basis of Rn to zero, and is
therefore zero. It follows that RP converges to {H ∈ H |H2 = P}.

Lemma 24 in Appendix A tells us that−1 /∈ σ(R0) implies−1 /∈ σ(PR0P).
Suppose R0 ∈ SO(n)\N . Proposition 6 and some calculations yield

lim
t→∞

PR(t)P = lim
t→∞

P[tanh(t) I +PR0P][I + tanh(t)PR0P]−1 = P,

lim
t→∞

QR(t)P = lim
t→∞

QR0P[cosh(Pt) + sinh(Pt)R0P]−1 = 0,

which implies limt→∞R(t)P = P since P + Q = I. The matrix P is an
almost global attractor due to {H ∈ R

n×n
|H = RP, R ∈ N} being a set

of zero measure in H.
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6. The Full Attitude

To establish almost global asymptotic stability poses a challenge since the
set of undesired equilibria is spread out through SO(n). The proof consists of
four parts: (i) LaSalle’s invariance principle is used to characterize the set of
all equilibria M; (ii) the local stability properties of each equilibria R ∈ M is
studied using the indirect method of Lyapunov; (iii) by normal hyperbolicity
of M, it is shown that the ω-limit set of any system trajectory is a singleton;
and finally, by (ii) and (iii) it becomes possible to draw conclusions regarding
the global behavior of the system based on a local analysis of all R ∈ M.

6.1. LaSalle’s Invariance Principle

Let us show that R converges to an equilibrium set consisting of symmetric
rotation matrices.

Proposition 8. The closed-loop dynamics generated by Algorithm 1 converges
to the set of equilibria M ⊂ SO(n) given by

M = {R ∈ SO(n) |R⊤ = R, [R,P] = 0} ⊂ {I} ∪ N .

Proof. Consider the candidate Lyapunov function V = tr(I−R) whose time-
derivative satisfies

V̇ = − trP + trPR2
− k trRQR⊤Q + k trRQRQ

= − trP2 + 〈P,R2
〉 − k‖QRQ‖

2
F + k tr(QRQ)2

= −‖P‖
2
F + 〈P,R2

〉 − k‖QRQ‖
2
F + k〈QR⊤Q,QRQ〉. (10)

The inequality 〈A,B〉 ≤ ‖A‖∗‖B‖2, where A, B ∈ R
n×n and ‖ · ‖∗ denotes

the nuclear norm, implies that 〈P,R2
〉 ≤ ‖P‖∗‖R

2
‖2 = ‖P‖∗ = rankP =

‖P‖
2
F . The Cauchy-Schwarz inequality gives 〈QR⊤Q,QRQ〉 ≤ ‖QRQ‖

2
F ,

i.e., V̇ is negative semidefinite.
The matrix R converges to the largest invariant set satisfying 〈P,R2

〉 =
‖P‖

2
F and 〈QR⊤Q,QRQ〉 = ‖QRQ‖

2
F by LaSalle’s invariance principle.

The latter equality gives QRQ = QR⊤Q whereas the former yields R2P =
P after some calculations. To that end, let P = OΠO⊤, where O ∈ O(n),
express the spectral decomposition of P. Then trPR2 = trP implies
trO⊤R2OΠ = trΠ which requires O⊤R2OΠ = Π, i.e., R2P = P, due
to Π being diagonal and O⊤R2O ∈ SO(n).
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Let us show that the closed loop system converges to a set of equilibria.
Proposition 7 implies that (RP)2 = P asymptotically, which implies PRP =
R⊤P. Substitute P = R2P to obtain PRP = R⊤P = RP, whereby

RPR = PRPR = (R⊤PR⊤P)⊤ = (RPRP)⊤ = P.

From RPR = P and QRQ = QR⊤Q it follows that Ṙ given by (5) is the
zero matrix, i.e., the system converges to a set of equilibria.

Take any eigenpair (λ,v) of R. Since RPR = P gives PR = R⊤P, it
follows that

λ‖Pv‖22 = λ〈Pv,Pv〉 = 〈λPv,v〉 = 〈PRv,v〉 = 〈R⊤Pv,v〉

= 〈v,PRv〉 = 〈v, λPv〉 = λ∗
〈v,Pv〉 = λ∗

‖Pv‖22,

it either holds that λ∗ = λ or Pv = 0. Consider the latter case. Then
Qv = v whereby λv = QRQv = QR⊤Qv = λ∗v. So λ∗ = λ, whereby
λ ∈ {−1, 1}. Let R = UΛU∗ denote a spectral factorization of R. Clearly
R⊤ = R∗ = R, i.e., R is symmetric. Moreover, PR = R⊤P = RP implies
that [R,P] = 0.

Remark 9. It can be shown that ‖U‖
2
F = −2V̇ , where V̇ is given by (10),

which bounds the L2-norm of U as
∫∞
0

‖U‖
2
F dt ≤ 2V (0).

Proposition 10. The equilibrium set M in Proposition 8 admits a decompo-
sition as a finite union

M =





⋃

i∈E(n)
Mi ∩ P



 ∪ {I},

where

Mi = {R ∈ SO(n) |R⊤ = R, V (R) = 2i},

P = {A ∈ R
n×n

| [A,P] = 0},

E(n) = {2, . . . , 2
⌊

n
2

⌋

}, and V = tr(I − R). Each differentiable manifold
Mi ∩ P is path connected and separated by a continuous function from the
others. The ω-limit set of any solution R(t) to (5) either equals {I} or is a
subset of Mi ∩ P for some i ∈ E .
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Proof. The elements of the set M are symmetric by Proposition 8. Let
−1 ∈ σ(R) have algebraic multiplicity i ∈ E . Then trR = (n−i)·1+i·(−1) =
n− 2i, i.e., V (R) = 2i.

Let X,Y ∈ Mi. Form a curve Z : [0, 1] → SO(n) from X to Y by

Z(t) = Y
t
2X1−tY

t
2 . Since −1 ∈ σ(R), we need to use a non-principal matrix

logarithm log to calculate Z. Let the branch-cut of log be non-real. We
may write Z(t) = exp[ t

2
logY] exp[(1− t) logX] exp[ t

2
logY], since X and Y

have real non-principal matrix logarithms [28]. Note that Z is a symmetric
rotation matrix; each factor is a matrix function of a symmetric matrix and
hence symmetric [24],

Z⊤(t) = exp[ t
2
logY]⊤ exp[(1− t) logX]⊤ exp[ t

2
logY]⊤

= exp[ t
2
logY] exp[(1− t) logX] exp[ t

2
logY] = Z(t),

Z⊤(t)Z(t) = exp[− t
2
logY] exp[−(1− t) logX] exp[− t

2
logY]·

exp[ t
2
logY] exp[(1− t) logX] exp[ t

2
logY] = I,

detZ(t) = etr t logY etr(1−t) logX = 1,

for all t ∈ [0, 1]. Since Z ∈ SO(n) is symmetric, it follows that σ(Z) ⊂

{−1, 1}. The trace function is continuous but only assumes integer values
on the set of symmetric rotation matrices, i.e., trZi(t) = 2i for all t ∈ [0, 1]
implying that Z : [0, 1] → Mi. Moreover, [P,Z] = 0 by [24] wherefore
Z : [0, 1] → Mi ∩ P, thereby establishing that Mi ∩ P is path connected.

Let Ω denote the ω-limit set of a solutionR of (5) and suppose Ω∩Mi 6= ∅

for some i ∈ E . Recall that V = tr(I −R) decreases in time, as is clear by
(10) and that V |Mj

= 2j for any j ∈ E . Since R is separated by V from Mj

and Ω∩Mi 6= ∅, there exists some finite time at which R is close enough to
V that it cannot come arbitrarily close to Mj for any j ∈ E such that j > i
at a later time without violating the decreasingness of V , i.e., Ω ∩Mj = ∅.
Likewise, Ω ∩Mk = ∅ for all k ∈ E such that k < i or else Ω ∩Mi = ∅ by
repetition of the same reasoning with i replaced by k. It follows that Ω ⊂ Mi

or Ω = {I} by Proposition 8 and 10.

LaSalle’s invariance principle is used in Proposition 8 to establish con-
vergence to a set M of equilibria. It remains to determine the region of
attraction R of the identity matrix I ∈ M. Since V = tr(I − R) de-
creases in time by (10) and achieves its minimum at I, it is clear that
S = {R ∈ SO(n) | V (R) < V |M2

= 4} ⊂ R due to S ∩ M = {I}. On
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SO(3), M = M2 ∪ {I} wherefore R = S = SO(3)\M2. The trace func-
tion achieves its global minimum over SO(3) on M2. The general case of
SO(n) is less straightforward since M contains many saddle points of the
trace function, as is illustrated by Example 11.

Example 11. Any R ∈ SO(3) with −1 ∈ σ(R) is a global minimizer of the
trace function, a fact that can be used for stability analysis. By contrast,
consider a sequence {Ri}

∞
i=1 ⊂ SO(4) where

σ(Ri) = {exp(iϑ), exp(−iϑ), exp(iϕ), exp(−iϕ)}.

The sequence of spectra {σ(Ri)}
∞
i=1 obtained by setting ϑi =

1
n
, ϕi = π− 1

n+1

converges to {1,−1} as n goes to infinity with

tr(Ri) = 2(cos 1
n
− cos 1

n+1
),

which approaches zero from below. It follows that limi→∞Ri is not even a
local minimizer of the trace function.

6.2. The Indirect Method of Lyapunov

A first step towards characterizing the global stability properties of the
closed-loop system (5) is to study local stability by linearizing the dynamics
on M ⊂ SO(n). The indirect method of Lyapunov can then be used to
determine stability and instability.

Proposition 12. The linearization on SO(n) of the closed-loop system given
by (5) at an equilibrium R ∈ M is

Ẋ = −XPR −RPX + kRQ(X⊤
−X)Q, (11)

where X = SR for some S ∈ so(n).

Proof. Consider a smooth perturbation of a solutionR(t) given byR(t, ε,S(t)),
where ε ∈ [0,∞) and S : [0,∞) → so(n). The perturbed solution is required
to be a smooth function R(t, ε,S) = exp(εS(t))R(t) ∈ SO(n) that satisfies
(5) with R(t, 0,S) = R(t). Then X(t) = d

dε
R(t, ε,S(t))

∣

∣

ε=0
= S(t)R(t) rep-

resents the part of the perturbed solution that is linear in ε. The linearizion
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on SO(n) at R ∈ M is given by

Ẋ = d
2

dtdε
R(t, ε,S)

∣

∣

∣

ε=0
= d

2

dεdt
R(t, ε,S)

∣

∣

∣

ε=0
= d

dε
Ṙ(t, ε,S)

∣

∣

∣

ε=0

= d
dε
{P − exp(εS)RP exp(εS)R+

k exp(εS)RQ[R⊤ exp(εS⊤)− exp(εS)R]Q}|ε=0

= − SRPR −RPSR + k SRQ(R⊤
−R)Q+

kRQ(R⊤S⊤
−R)Q + kRQ(R⊤

− SR)Q

= −XPR −RPX + kRQ(X⊤
−X)Q.

Proposition 13 is used in Section 6.3 to establish that, roughly speaking,
Mi ∩P is a normally hyperbolic invariant manifold [1]. This is a generaliza-
tion of the notion of a hyperbolic equilibrium point to the case of equilibrium
manifolds. Much like in the case of a single hyperbolic equilibrium, the the-
ory of normally hyperbolic invariant manifolds allows us to conclude that
the system (5) is point-wise convergent, i.e., that the ω-limit set of each
trajectory is a singleton.

Proposition 13. Let

F = −XPR −RPX + kRQ(X⊤
−X)Q (12)

denote the right-hand side of the linearization of (5) at R ∈ Mi given
by Proposition 12. The only pure imaginary eigenvalue of F is zero. The
eigenspace of zero is Xi ∩ P, where

Xi = {SR |S ∈ so(n), {S,R} = 0}, P = {A ∈ R
n×n

| [P,A] = 0}.

Proof. The eigenpairs of the linearization are (λ,X) ∈ C×C
n×n that satisfy

λX = F(X), X = SR. Consider the case of a purely imaginary eigenvalue,
i.e., λ = ib for some b ∈ R. Then

ibSR = −SRPR −RPSR − kRQ(RS + SR)Q

or

ibS = −SRP −PRS − kQ(SR +RS)Q (13)

since [P,R] = 0 which is equivalent to [Q,R] = 0.
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This implies ibPSP = −(PSPR + RPSP), ibQSQ = −k(QSQR +
RQSQ). Denote Y = PSP, assume b 6= 0, and substitute

Y = i
b
(YR +RY)

into itself to obtain Y = −
2

b
2 (Y+RYR). But then (1+ 2

b
2 )‖Y‖F = 2

b
2‖Y‖F ,

implying that Y = PSP = 0. Likewise, it can be shown that QSQ = 0.
Multiply by Q from the left and P from the right to find that ibQSP =

−QSPR. Note that R satisfies the requirements for the existence of a

square root R
1

2 [24]. Since R2 = I, it holds that R
3

2 = R
1

2 , which implies

−ibQSPR
1

2 = QSPR
1

2 . Since b ∈ R, QSP = 0, i.e., SP = PSP. By
analogous reasoning we find PSQ = 0, i.e., PS = PSP whereby [P,S] = 0.

It follows that S = PSP+PSQ+QSP+QSQ = 0, contradicting that
(ib,X) is an eigenpair of F. It follows that b = 0. From

SRP +PRS + kQ(SR +RS)Q = 0,

we find P(SR +RS)P = 0, Q(SR+RS)Q = 0, QSRP = 0, PRSQ = 0.
The two last equalities also yield PSRQ = 0, QRSP = 0 by [P,R] = 0,
[P,S] = 0. Altogether, SR +RS = 0 or {S,R} = 0.

Proposition 14. The linearized system given by Proposition 12 is exponen-
tially unstable at all R ∈ Mi\{I} for all i ∈ E . The number of eigenvalues
of F with nonzero real part is

dim imF = dim SO(n)− dimker F.

The linearization is exponentially stable at R = I.

Proof. Since [P,R] = 0, P and R are simultaneously diagonalizable, i.e.,
they share an orthonormal basis of eigenvectors. Suppose that there are two
linearly independent eigenpairs, (−1,v) and (−1,u) of R such that (1,v)
and (1,u) are eigenpairs of either P or Q. Set S = u ⊗ v − v ⊗ u, then
either

F = −SRP −PRS − kQ(SR +RS)Q = 2S,

or

F = −SRP −PRS − kQ(SR +RS)Q = 2kS,
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i.e., either (2,SR) is an eigenpair of F or (2k,SR) is.
Suppose the above construction is impossible. Since the eigenvalue mul-

tiplicity m(−1) = i is even, it must be the case that m(−1) = 2 and (−1,u),
(−1,v) are eigenpairs of R such that (1,u) is an eigenpair of P and (1,v)
is an eigenpair of Q. Set S = u ⊗ v − v ⊗ u ∈ so(n) whereby

F = −SRP −PRS − kQ(SR +RS)Q

= −(u ⊗ v − v ⊗ u)RP −PR(u ⊗ v − v ⊗ u)

= −v ⊗ u + u ⊗ v = S,

i.e., (1,SR) is an eigenpair of F.
Consider the construction of eigenvectors of F for R ∈ Mi. Let there

be m eigenpairs (λj,vj) of R such that (1,vj) is an eigenpair of P, j ∈

{1, . . . , m} and i −m eigenpairs such that (1,vj), j ∈ {m + 1, . . . , i}, is an
eigenpair of Q. Set S = vk ⊗ vl − vl ⊗ vk for some l, k ∈ {1, . . . , i}. Then

F = − SRP −PRS − kQ(SR +RS)Q =

= − λlvk ⊗ vlP + λkvl ⊗ vkP − λkPvk ⊗ vl + λlPvl ⊗ vk+

− kQ(λlvk ⊗ vl − λkvl ⊗ vk + λkvk ⊗ vl − λlvl ⊗ vk)Q

= λl(Pvl ⊗ vk − vk ⊗ vlP) + λk(vl ⊗ vkP −Pvk ⊗ vl)+

− kQ[λl(vk ⊗ vl − vl ⊗ vk) + λk(vk ⊗ vl − vl ⊗ vk)]Q.

There are three cases to consider: either l, k ∈ {1, . . . , m} whereby F =
−(λl + λk)S, l ∈ {1, . . . , m} and k ∈ {m + 1, . . . , n} whereby F = −λlS,
or l, k ∈ {m + 1, . . . , n} whereby F = −k(λl + λk)S. Assume there are
j ≤ i indices l ∈ {1, . . . , m} such λl = −1. Then there are i − j indices l ∈
{m+ 1, . . . , n} such that λl = −1. Let ri denote the number of eigenvectors
of F at R ∈ Mi ∩ P with nonzero eigenvalue. Then

ri =

(

j

2

)

+

(

m− j

2

)

+

(

m

1

)(

n−m

1

)

+

(

i− j

2

)

+

(

n−m− (i− j)

2

)

.

The combinatorial identity
(

n

2

)

=

(

k

2

)

+

(

k

1

)(

n− k

1

)

+

(

n− k

2

)

, (14)

for any n ∈ N and k ∈ {1, . . . , n}, is obtained by noting that to chose two
numbers in {1, . . . , n} can be done by either choosing two in {1, . . . , k}, one
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in {1, . . . , k} and one in {k + 1, . . . , n}, or two in {k + 1, . . . , n}. Repeated
application of (14) in the expression for ri yields

ri =

(

n

2

)

−

(

j

1

)(

m− j

1

)

−

(

i− j

1

)(

n−m

1

)

= dimTRSO(n)− dimkerF = dim imF.

Consider the case ofR = I. Let p = rankP. By reasoning as above, there
are

(

p

2

)

linearly independent eigenpairs of F on of the form (−2,S),
(

p

1

)(

n−p

1

)

on the form (−1,S), and
(

n−p

2

)

on the form (−2k,S). In total, there are

(

p

2

)

+

(

p

1

)(

n− p

1

)

+

(

n− p

2

)

=

(

n

2

)

= dim so(n)

linearly independent eigenvectors with negative eigenvalues. It follows that
the identity matrix is an exponentially stable equilibrium of the closed-loop
dynamics (5).

6.3. Point-Wise Convergence

It remains to determine if each solution R to (5) converges to a single equi-
librium within its ω-limit set Ω ⊂ M or if the asymptotic behavior of the
closed-loop system is more complex than that. This property, so-called point-
wise convergence [9], allows us to draw conclusions regarding the region of
attraction of exponentially unstable equilbria [25].

Proposition 15 (B. Aulbach [1]). Consider an autonomous system

ẋ = f (x), (15)

where f ∈ C
3(Rn,Rn). Suppose (15) has a differentiable manifold M of equi-

librium points. Let x(t) be any solution of (15) with ω-limit set Ω. Suppose
that

(i) there exists a point y ∈ Ω, i.e., Ω is nonempty,

(ii) there exists a neighborhood B of y such that Ω ∩ B ⊂ M,

(iii) n− dimM eigenvalues of the Jacobian J(y) of f evaluated at y have
nonzero real parts.

Then limt→∞ x(t) = y, i.e., Ω = {y}.
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Proposition 16. Any solution R of (5) with initial condition on SO(n) con-
verges to an equilibrium point.

Proof. The proof is by verification of property (i)–(iii) of Proposition 15 with
respect to the system given by (5) and the differentiable manifold of equilibria
Mi ∩ P characterized by Proposition 10.

(i) Since SO(n) is compact, any trajectory can be sampled as {R(tj)}
∞
j=0

for some {tj}
∞
j=0 ⊂ [0,∞) such that limj→∞R(tj) exists by the Bolzano-

Weierstrass theorem. The limit limj→∞R(tj) belongs to the ω-limit set Ω.
(ii) The inclusion Ω ⊂ Mi ∩ P holds by Proposition 10.
(iii) The number of eigenvalues with nonzero real part is dim imF by

Proposition 13. Since Mi ∩ P is connected it holds that dimMi ∩ P =
dimTRMi ∩ P. Note that tr(I − R) = 2i for all R ∈ Mi, as required by

Proposition 10, is implied by TRMi ⊂ {A ∈ R
n×n

|A⊤ = A} since the trace
function is integer valued over symmetric rotation matrices. Furthermore,

TRMi ∩ P = TRSO(n) ∩ {A ∈ R
n×n

| [P,A] = 0, A⊤ = A}

= {X ∈ R
n×n

|X = SR, S ∈ so(n), [P,X] = 0, X⊤ = X}

= {X |X = SR, S ∈ so(n), [P,S] = 0, {R,S} = 0}

= Xi ∩ P = kerF, (16)

where kerF = Xi ∩ P is characterized by Proposition 13. Recall the result
of Proposition 14. The number of eigenvalues with nonzero real part is

dim SO(n)− dimkerF = dim SO(n)− dimMi ∩ P.

6.4. Global Stability Analysis

We are now ready to state and prove one of the two main results of this paper,
Theorem 18. For the proof, Proposition 17 is required. It gives conditions
under which the local stability by the first approximation of all equilibria
can be used to infer global stability properties of the entire system. Our
work thus far ensures that the conditions of Proposition 17 are fulfilled with
respect to the undesired equilibria contained in M\{I}

Proposition 17 (R.A. Freeman [25]). Consider a system of the form

ẋ = f (x),
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where f is a vector field on an n-dimensional, connected, smooth Riemannian
manifold X . Suppose S ⊂ X is a set of equilibria, that f is C

1, that each
equilibrium in S is exponentially unstable, and suppose that

R(S) = ∪x∈SR(x), (17)

where R maps a set of equilibria to the union of their regions of attraction.
Then R(S) is of measure zero and meager on X .

In passing we note that it is possible for a set to attract trajectories that
do not have a limit, i.e., condition 17 may fail to hold under unfavorable cir-
cumstances. An example of such behavior, where an exponentially unstable
set is globally attractive, is provided in [25].

Theorem 18. The identity matrix is an almost globally asymptotically stable
equilibrium of the closed-loop dynamics generated by Algorithm 1. The rate
of convergence is locally exponential. The set of initial conditions from which
convergence to the identity matrix fails is meager in SO(n).

Proof. All trajectories converge to equilibria by Proposition 16, which implies
that condition (17) of Proposition 17 is fulfilled. The set M\{I} consists of
exponentially unstable equilibria by Proposition 14. By Proposition 17, the
region of attraction of M\{I} is meager and has zero measure on SO(n). It
follows that the identity matrix is almost globally attractive. The identity
matrix is exponentially stable by Proposition 14 and by the principle of
stability in the first approximation.

7. Exact Solutions on SO(3)

We provide the exact solutions in the case of SO(3). This case is the most
interesting from an applications point of view. If necessary, exchange the
roles of P and Q as well as the coordinates such that P = e1e

⊤
1 and

Q = I − e1e
⊤
1 . This can be done without loss of generality since either

(rankP, rankQ) = (1, 2), (rankP, rankQ) = (2, 1), (rankP, rankQ) =
(3, 0), or (rankP, rankQ) = (0, 3). The first two cases imply P = ee⊤

and Q = ee⊤ respectively for some e ∈ S
2. A change of coordinates yields

e = e1. The case of Q = e1e
⊤
1 is easier because the control (4) simplifies

to U = PR⊤
−RP. The solution is given implicitly by Proposition 6 and

the constraint R ∈ SO(3). It is provided explicitly by [14, 15]. The last two
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cases imply P = I or Q = I respectively and is covered in Proposition 6, as
well as in [14] since it can be generated by a simpler algorithm. Note that
the first case is the geodesic control law for the reduced attitude.

Let us denote

R =

[

r11 r12
r21 R22

]

. (18)

Algorithm 1 with P = e1e
⊤
1 and Q redefined as Q = (I − P) generates the

following system on SO(n): ṙ11 = 1 − r211, ṙ21 = −r11r21, ṙ12 = r12[−r11I +
k(R⊤

22 −R22)], and Ṙ22 = −r21r12 + kR22(R
⊤
22 −R22).

Proposition 6 tells us that

R(t)P =

[

r11 0
r21 0

]

= [sinh(Pt) + cosh(Pt)R0P][cosh(Pt) + sinh(Pt)R0P]−1.

On the form of the block-matrix partition in (18), the solutions are given by

r11(t) = tanh(t+Atanh r11,0), r21(t) =
sech t

1 + tanh(t)r11,0
r21,0,

for all r11,0 ∈ (−1, 1], see [14]. It remains to solve (18) for r12(t) and R22(t).
Note however that due to the constraints that define SO(3) it will suffice to
solve the equations defining a subset of the elements of r12(t) and R22(t) to
determine R(t).

Use the relation on SO(n) provided by Lemma 25 in Appendix A to find
that

Ṙ22 = −r11R22 − SR22S + k tr(R22S)R22S.

Multiplying by S yields

Ṙ22S = −r11R22S + SR22 − k tr(R22S)R22.

Take the trace and substitute the relations regarding SO(3) from Lemma 25
to obtain

tr Ṙ22 = k(1 + r11)
2 + (1− r11) trR22 − k(trR22)

2, (19)

tr Ṙ22S = (1− r11 − k trR22) trR22S. (20)
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Proposition 19. The unique solution to (19) and (20) for R0 ∈ SO(n) is
given by

trR22(t) = tanh{f [R0]− k log[1− r11(t)]}{1 + r11[t]},

trR22(t)S = g{R0} exp{t} sech{t+Atanh r11,0}·

sech{f [R0]− k log[1− r11(t)]},

where

f(R0) = Atanh[(1 + r11,0) trR22,0] + k log[1− r11,0],

r11(t) = tanh(t +Atanh r11,0),

g(R0) = {sech[Atanh r11,0] sech[Atanh(1 + r11,0) trR22,0]}
−1 trR0S.

Proof. Global existence and uniqueness is implied by Lemma 23 in Appendix
A. It remains to verify that the proposed solution solves the required system.
Note that

tr Ṙ22(t) = (1− tanh2
{f [R0]− k log[1− r11(t)]})(−1)2k 1−r

2

11{t}
1−r11{t}

(1 + r11{t})

+ tanh(f{R0} − log{1− r11[t]})(1− r211{t})

= k(1− tanh2
{f [R0]− log[1− r11(t)]})(1 + r11{t})

2+

tanh(f{R0} − log{1− r11[t]})(1 + r11{t})(1− r11{t})

= k[1 + r11(t)]
2 + [1− r11(t)] trR22(t)− k[trR22(t)]

2,

trR22{t}S − g{R0} tanh{t+Atanh r11,0} trR22{t}S−

g{R0} exp{t+Atanh r11,0} sech{t+Atanh r11,0}·

sech{f [R0]− k log[1− r11(t)]} tanh{f [R0]− log[1− r11(t)]}·

{−1}2k 1−r
2

11[t]
1−r11[t]

= [1− r11(t)− k trR22(t)] trR22(t)S.

Moreover, trR22(0) = tanh(Atanh trR22,0) = trR22,0 and trR22(0)S =
trR22,0S.

Remark 20. The use of the principal inverse hyperbolic tangent Atanh :
C → C ∪ {∞}, as described in Section 2, is convenient here since (1 +
r11) trR22 ∈ (−4, 4] whereas Atanh : (−1, 1) → R. The appearance of
a discontinuous function in the exact solutions need not lead to a loss of
continuous dependence on the initial conditions since the inverse hyperbolic

22



tangent only appears as part of an argument of the hyperbolic tangent. If
required, it is possible to find an expression for the exact solutions that does
not rely on the use of the inverse hyperbolic tangent by applying a sum of
arguments formula. This would however result in expressions that make the
proof of Proposition 19 clunky. See [12] for more details.

Theorem 21. The solution to the closed-loop system generated by Algorithm
1 in the case of R(0) = R0 /∈ N is given by

r11(t) = tanh(t+Atanh r11,0), r21(t) =
sech t

1 + tanh(t)r11,0
r21,0,

which specify Re1, and the unique solution to the following linear system









(Re1)
⊤ 0

S(Re1) −I

e⊤2 e⊤3
−e⊤3 e⊤2









[

Re2
Re3

]

=









0
0

trR22

trR22S









,

where S : R3
→ so(3) is the map defined by S(x)y = x×y for all x,y ∈ R

3

and trR22, trR22S are given by Proposition 19.

Proof. The first equation follows from RR⊤= I. The second equation states
that Re1 ×Re2 = Re3. The third and fourth equation follow from Propo-
sition 19.

Let us verify the uniqueness of the solution under the stated assumptions.
Let A denote the system matrix. The matrix A is nonsingular if and only if

B = A⊤A =

[

Re1 −S(Re1) e2 −e3
0 −I e3 e2

]









(Re1)
⊤ 0

S(Re1) −I

e⊤2 e⊤3
−e⊤3 e⊤2









=

[

Re1e
⊤
1 R

⊤
− S(Re1)

2 + e2e
⊤
2 + e3e

⊤
3 S(Re1) + e2e

⊤
3 − e3e

⊤
2

−S(Re1) + e3e
⊤
2 − e2e

⊤
3 I + e3e

⊤
3 + e2e

⊤
2

]

=

[

B11 B12

B21 B22

]

(21)

is nonsingular. The matrix B is nonsingular if one of its diagonal blocks
and the Schur complement of that block are both nonsingular. Note that
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B−1
22 = (I+ e3e

⊤
3 + e2e

⊤
2 )

−1 = I− 1
2
(e3e

⊤
3 + e2e

⊤
2 ). The Schur complement of

B22 is

C = B11 −B12B
−1
22 B21

= Re1e
⊤
1 R

⊤ + (e2e
⊤
3 − e3e

⊤
2 )B

−1
22 (e2e

⊤
3 − e3e

⊤
2 ) + e2e

⊤
2 + e3e

⊤
3 +

S(Re1)(B
−1
22 − I)S(Re1)

= Re1e
⊤
1 R

⊤ + 1
2
(e2e

⊤
2 + e3e

⊤
3 ) +

1
2
S(Re1)(e2e

⊤
2 + e3e

⊤
3 )S(Re1)

⊤, (22)

which is positive definite for all R ∈ SO(3) by inspection.

Remark 22. The explicit solution to the linear system of equations (21) is
given in [12]. The solution can also be obtained by solving the system using
the Schur complement provided in the proof of Theorem 21. The explicit
expression for the exact solutions, which is somewhat long and complicated,
is omitted.

8. Numerical Example

To provide an intuitive understanding for the workings of Algorithm 1 let us
consider an example of its behavior in simulation. The system trajectory in
the case of

P =





0 0 0
0 1 0
0 0 0



 , R(0) = R0 =







0 1√
3

−
2√
6

1√
2

−
1√
3

−
1√
6

−
1√
2

−
1√
3

−
1√
6







is displayed in Figure 1. Observe that the reduced attitude corresponding to
the diagonal path in Figure 1 moves along a great circle on the unit sphere
whereas the other two paths are non-geodesic. This is also clear from Figure
2; the shortest travelled distance equals the corresponding initial geodesic
distance. The geodesic distance from Rei to ei is given by arccosRii, as can
be shown by taking the inner product of the two vectors. Note that although
arccosR22(0) = maxi∈[3] arccosRii(0), it is arccosR22(t) that converges to
zero the fastest initially, see Figure 2.

9. Conclusions

This paper begins with the optimal control problem on SO(3) of minimiz-
ing the distance traveled by the reduced attitude while stabilizing the full
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Figure 1. The initial frame R0 (circles) and desired frame I (arrows). A display of
the system evolution on the time intervals [0, 1.2], [1.2, 2.4], and [2.4, 3.9]
(left to right).

0 1 2 3 4 5
0

1

2

3

4

t

Figure 2. The errors arccos(Rii) (solid lines) and travelled distance
∫ t

0 ‖Ṙei‖2dτ
(dashed lines).

attitude. Consider a two-step control sequence: first stabilize the reduced
attitude and then align the remaining two vectors by means of a planar
rotation. Its use would be inadvisable in practice due to a lack of either
smoothness or precision; the first step must either display finite time con-
vergence or a steady-state error. Rather, this paper fuses the two steps into
one smooth motion. Being just a weighted sum of the two sequential con-
trol laws—it remarkably achieves almost global exponential stability. The
setting is generalized to SO(n) where geometric control techniques allow us
to prove almost global exponential stability for a class of feedback laws that
use orthogonal projection matrices as gain factors. Throughout the paper,
we contrasts the cases of SO(3) and SO(n) with each other. Working with
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rotation matrices directly on the manifolds rather than in Euclidean space by
means of parametrizations makes generalizations from SO(3) to SO(n) come
naturally, showcasing the strengths of the geometric control approach.
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A. Lemmas

Lemma 23. The closed-loop system generated by Algorithm 1 and system
(18) have unique solutions that belong to SO(n) for all t ∈ [0,∞).

Proof. The kinematics (2) constrains the solutions to lie in SO(n) for any
initial condition on SO(n) by restricting the instantaneous movement to
TISO(n) = so(n). Recall that it suffices to prove that the right-hand side
is locally Lipschitz in R for all R ∈ SO(n) to establish global existence and
uniqueness of solutions to (5) and system (18) due to SO(n) being a compact
and invariant subset of Rn×n [20]. Furthermore, any linear combination or
product of two functions that are Lipschitz on a domain is also Lipschitz on
the same domain. It is clear that the two right-hand sides can be decomposed
in this manner using functions that are Lipschitz on SO(n).

Lemma 24. Let P be an orthogonal projection and R ∈ SO(n). Then −1 /∈
σ(R) implies −1 /∈ σ(PRP).

Proof. Suppose (−1,v) is an eigenpair of PRP with ‖v‖2 = 1. Then
(Pv)∗RPv = −1. Since ‖R‖2 = 1, this implies Pv = v whereby v∗Rv =
−1. The last identity requires that (−1,v) is an eigenpair of R.
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Lemma 25. Consider the block-matrix partitions

R =

[

R11 R12

R21 R22

]

∈ SO(n), R =

[

r11 r12
r21 R22

]

∈ SO(3),

where R22 ∈ R
2×2. The relations r21r12 = r11R22 + SR22S and (trR22)

2 +
(trR22S)

2 = (1 + r11)
2, where

S ∈

{[

0 −1
1 0

]

,

[

0 1
−1 0

]}

,

holds on SO(3). The relation R22(R
⊤
22 − R22) = tr(R22S)R22S holds on

SO(n).

Proof. The proof is by elementary calculations on the level of matrix ele-
ments. We only provide a partial proof. The first relation is given by

[

r21r12 r21r13
r31r13 r31r13

]

=

[

r11r22 r11r23
r11r32 r11r33

]

+

[

−r33 r32
r23 −r22

]

,

where R = [rij ]. The north-west of these four identities states that r33 =
r11r22 − r21r12 which follows from setting the cross product of the first two
columns in R equal to the third. The other identities can be proven to hold
by reasoning analogously.

30




