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Almost Global Consensus on the n-Sphere
Johan Markdahl, Member, IEEE, Johan Thunberg, and Jorge Gonçalves

Abstract—This paper establishes novel results regarding the
global convergence properties of a large class of consensus proto-
cols for multi-agent systems that evolve on the n-dimensional unit
sphere or n-sphere. For any connected undirected graph and all
n ∈ N\{1}, each protocol in said class is shown to yield almost
global consensus. The feedback laws are intrinsic gradients of
a Lyapunov function and include the canonical gradient descent
protocol as a special case. This convergence result sheds new light
on the general problem of consensus on Riemannian manifolds;
the case of the n-sphere for n ∈ N\{1} differs from those of
the circle and SO(3) where the corresponding protocols fail
to achieve almost global consensus. Finally, we derive a novel
consensus protocol on SO(3) by combining two almost globally
convergent protocols on the n-sphere for n ∈ {1, 2}. Theoretical
and simulation results suggest that the combined protocol yields
almost global consensus on SO(3).

Index Terms—Consensus, agents and autonomous systems,
cooperative control, aerospace, nonlinear systems.

I. INTRODUCTION

CONSIDER a network of N agents whose states are
points on an n-dimensional manifold. Each agent has

a limited capability to sense certain information that pertain
to some of the other agents. Distributed control protocols
allow multi-agent systems to synchronize, i.e., to reach a
consensus as information propagates over time by means of
local interactions [1]. There are a number of results pertaining
to the case when the initial states of all agents belong to a
geodesically convex subset of the manifold [2]–[4], but the
likelihood of encountering such a scenario by chance decreases
exponentially with N . The problem of almost global consensus
on non-Euclidean manifolds is largely unexplored and requires
further study [5], [6]. This paper establishes almost global
convergence for a large class of consensus protocols on
all n-spheres except the circle, a rather unexpected finding.
Consensus problems on the circle and the sphere arise in
a number of engineering applications, including cooperative
reduced rigid-body attitude control [7], [8], planetary scale
mobile sensing networks [9], and self synchronizing chemical
and biological oscillators described by the Kuramoto model
[10], [11].

The reduced attitude provides a model for the orientation
of objects that for various reasons, such as task redundancy,
cylindrical symmetry, actuator failure, etc., lack one degree of
rotational freedom in three-dimensional space. The orientation
of such objects corresponds to a pointing direction with the
rotation about the axis of pointing being of little to no im-
portance [12]. The reduced attitude synchronization problem
is equivalent to the consensus problem on the 2-sphere. The
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problem of cooperative control on the n-sphere in R
n+1,

denoted Sn, has received some attention in the literature [13]–
[19] but comparatively less than equivalent problems on SO(3)
for which there is a vast literature including [2], [6], [20]–[28].

The problem of almost global consensus has been studied
on S1 [14]–[16], on SO(3) [29], [30], on Sn in the special
case of a complete graph [13], [17], and on other Riemannian
manifolds [5]. Tron et al. [29] apply an optimization based
method to characterize the stability of all equilibria on SO(3)
for a particular discrete-time consensus protocol. Their result
is akin to almost global consensus over any connected graph
topology. The algorithm makes use of a reshaping function
which depends on a parameter that must exceed a bound whose
value cannot be calculated from local information. Moreover,
the overall convergence speed of the algorithm decreases with
increasing values of the parameter. In contrast to [29], this
paper shows that almost global convergence of a large class of
consensus protocols on Sn for n ∈ N\{1} can be established
without the use of a reshaping function or any non-local
knowledge of the graph.

Tron et al. [29] divide the literature on discrete-time at-
titude consensus into two categories: extrinsic and intrinsic
algorithms. An algorithm is said to be extrinsic if it calculates
iterates in a Euclidean space and then projects them on SO(3).
There are extrinsic algorithms that provide consensus on a
global level [5]. The contribution of [29] is to provide the first
intrinsic almost globally convergent discrete-time consensus
protocol on SO(3). By intrinsic they refer to an algorithm
that evolves on SO(3) without relying on the embedding
of SO(3) in some ambient space. To further the line of
inquiry developed in [29], this paper formulates a consensus
protocol for systems that evolve on SO(3) in continuous time.
This protocol only depends on the number of agents and
displays stability properties to rival those of [29]. In this paper
we use the canonical embedding of Sn in Rn+1 to study
control algorithms for systems that evolve continuously on
Sn. The advantage of not using any other parametrization is
to avoid the so-called unwinding phenomenon [31], where an
equilibrium set is attractive but unstable.

The 2-sphere is akin to the quotient space SO(3)/SO(2)
and, as such, many results obtained for SO(3) also apply to
S2. Special cases sometimes allow for stronger results. This
paper shows that the conditions for achieving almost global
consensus are more favorable on Sn for n ∈ N\{1} than
what is implied by previously known results concerning S1

and SO(3). A large class of intrinsic consensus protocols over
connected, undirected graph topologies renders all equilibria
but the consensus set unstable on Sn. By contrast, analysis of
the corresponding consensus protocols on S1 ' SO(2) [15],
[16] and a simulation study on SO(3) [29] show that certain
graph topologies yield equilibrium sets aside from consensus
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that are asymptotically stable on SO(n), n ∈ {2, 3}.
The literature on continuous-time cooperative control on the

n-sphere has largely concerned special cases. Previous work
either concerns the case of a specific graph topology [8], [13],
[17], [30], a specific sphere [5], [8], [13], [14], [16], [18], or
a specific control law [8], [13], [29], [30], [32]. Many of them
also lack a rigorous proof of almost global convergence [5],
[14], [29], [30], [32], [33]. They only show that all equilibrium
sets except the consensus set are unstable, which is a weaker
result in general [34]. We provide a rigorous proof of almost
global convergence for a large class of analytic consensus
protocols over any connected graph by showing that the region
of attraction of any exponentially unstable equilibrium set have
measure zero on (Sn)N .

In the literature survey [35], it is observed that almost
global convergence of consensus protocols on nonlinear spaces
(in particular S1) is graph dependent and discusses three
control design procedures to circumvent this problem: reshap-
ing functions [14], [15], [29], gossip algorithms [15], and
dynamic feedback [5]. The main contribution of this paper is
to show that consensus on Sn is not graph dependent for any
n ∈ N\{1}, and that almost global consensus can be achieved
without utilizing any of the three designs in [35]. This leads
to the contra-intuitive but intriguing notion that almost global
consensus is more difficult to achieve on S1 than any other
sphere. Preliminary results are found in [32], conjectures are
made in [7], [13].

II. PROBLEM DESCRIPTION

The following notation is used in this paper. The inner and
outer product of x,y ∈ R

n are denoted by 〈x,y〉 and
x ⊗ y, respectively. The inner product of A,B ∈ R

n×n

is 〈A,B〉 = tr A>B. Let ‖ · ‖ denote the Euclidean norm
of a vector and ‖ · ‖F the Frobenius norm of a matrix. The
ordinary gradient is denoted ∇ : f(x) 7→ ∇f(x) ∈ Rn, the
intrinsic gradient on a manifold M is denoted ⧠ : f(x) 7→
⧠ f(x) ∈ TxM. The special orthogonal group is SO(n) =
{R ∈ Rn×n |R−1 = R>, det R = 1}. The Lie algebra of
SO(n) is so(n) = {S ∈ Rn×n |S> = −S}. The n-sphere
in Euclidean space is Sn = {x ∈ Rn+1 | ‖x‖ = 1}, where
n ∈ N. An undirected, simple graph is a pair G = (V, E)
where V ⊂ N is the node set and E ⊂ {e ⊂ V | |e| = 2} is
the edge set. A graph G is said to be connected if it contains
a tree subgraph with ‖V‖ − 1 edges.

A. Distributed Control Design on the n-Sphere

Consider a multi-agent system where each agent corresponds
to an index i ∈ V , and has a state xi ∈ S

n expressed in a
world coordinate frame W . Agent i uses a body-fixed frame
Bi that relates to W by a rotation matrix Ri(t) ∈ SO(n)
for all t ∈ [0,∞). Define Ri : [v]Bi

7→ [v]W , where the
bracket [ · ]F denote that its content is expressed in a frame
F . If the frame is omitted, then W is presupposed. Chose the
reduced attitude xi of agent i to satisfy [xi]Bi

= e1. Thus
[xi]W = Ri[xi]Bi

= Rie1, i.e., [xi]W is given by the first
column of Ri. The agents are capable of limited local sensing.
The topology of the communication network is described by

an undirected connected graph G = (V, E), where V = {i ∈
N | i ≤ N}, and {i, j} ∈ E implies that two neighboring
agents i and j can sense the so-called relative information
[Iij ]Bi

, [Iji]Bj
(see below) regarding the displacement of their

states xi and xj .
Control is based on relative information. The information

that agent i has access to regarding its neighbor agent j could
be defined to include

[pos{xj − xi}]Bi
⊆ [Iij ]Bi

, (1)

which is the relative information customary to the ambient
space Rn+1. The set of neighbors of agent i is Ni = {j ∈
V | {i, j} ∈ E}. The set of relative information known to agent
i ∈ V is [Ii]Bi

= pos∪j∈Ni
[Iij ]Bi

. The dynamics (2) of agent
i projects the input of agent i on the tangent space Txi

Sn, i.e.,
on a hyperplane orthogonal to xi.

Remark 1. It can be argued that

pos{Pi(xj − xi)} ⊆ Iij ,

where Pi : Rn+1 → Txi
Sn is an orthogonal projection

matrix, is preferable to (1) since it confines Iij to an intrinsic
rather than on ambient space. However, we argue that the
constraints on Iij come from limited sensing capabilities
rather than rigid-body dynamics, and that most applications
on S2 involve sensors that measure features of ambient rather
than intrinsic space.

While agent i may not be able to calculate some [ui]Bi
∈

[Ii]Bi
based on the information (1) obtained from all its

neighbors, that agent may still be able to calculate an input
[vi]Bi

∈ [Iij ]Bi
whose projection on Txi

Sn by the dynamics
of xi is identical to that of ui. This holds for inputs that
belongs to span∪j∈Ni

xj , and in particular for elements of
the positive cone pos∪j∈Ni

xj . Intuitively speaking, it is
reasonable to assume that agent i should be able to sense the
bearing and distance to any of its neighbors, and we therefore
set [Ii]Bi

= [pos∪j∈Ni
{xj}]Bi

.

System 2. The system is given by N agents, an undirected
and connected graph G = (V, E), agent states xi ∈ S

n, where
n ∈ N, and dynamics

ẋi = ui − 〈ui,xi〉xi = (I −Xi)ui = Piui, (2)

where ui : Ii → R
n+1 is the input signal of agent i, Xi =

xi ⊗ xi, and Pi = I −Xi for all i ∈ V .

The results and proofs in this paper are carried out using the
world frameW . To implement the control law in a distributed
fashion, ui must be transfered to Bi for all i ∈ V . Let
a control law in W be given by [ui]W =

∑
j∈Ni

fij [xj ]W .
Hence [ui]Bi

=
∑
j∈Ni

fijR
>
i [xj ]W =

∑
j∈Ni

fij [xj ]Bi
.

Moreover,

[ẋi]Bi
= Ri[ẋi]W = R>i [ui]W − 〈[ui]W , [xi]W〉R

>
i [xi]W

= [ui]Bi
− 〈[ui]Bi

, [xi]Bi
〉[xi]Bi

, (3)

since inner products are invariant under orthogonal changes of
coordinates. It is clear from (3) that (2) can be implemented
in a distributed fashion.
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The problem of multi-agent consensus on Sn concerns
the design of distributed control protocols (ui)

N
i=1 based on

relative information, as discussed in the above paragraphs, that
stabilize the consensus set

C = {(yi)
N
i=1 ∈ (Sn)N |yi = yj , ∀ i, j ∈ V}

= {(yi)
N
i=1 ∈ (Sn)N |yi = yj , ∀ {i, j} ∈ E} (4)

of System 2, where the second equality hinges on the as-
sumption that G is connected. If the states of all agents
assume the same value on the n-sphere, then they are said to
reach consensus. Terms such as consensus, synchronization,
rendezvous, and state-aggregation are used interchangeably in
this paper, but note that some authors, see e.g., [5], [17], assign
the definition of these concepts subtle nuances.

B. Problem Statement

This paper concerns some aspects of control design but the
main focus is stability analysis. Algorithm 3 is arguably the
most basic conceivable feedback for consensus on Sn by virtue
of its correspondence with the linear consensus protocol on
R
n+1 for single integrator dynamics given by ẋi = ui for

all i ∈ V . As such, it is of interest to determine the limits
of Algorithm 3’s performance, i.e., the global level stability
of the consensus set C as an equilibrium set of System 2. It
is important to establish that the region of attraction of the
undesired equilibria is thin, i.e., meager in the sense of Baire
and of measure zero [34].

Algorithm 3. The feedback is given by ui =
∑
j∈Ni

fijxj ,
where the constants fij ∈ (0,∞) satisfy fij = fji for all
{i, j} ∈ E .

Definition 4 (Measure zero). A set N ⊂ (Sn)N has measure
zero if for every chart φ : D → R

N(n+1) in some atlas of
(Sn)N , it holds that φ(D ∩N ) has Lebesgue measure zero.

Definition 5 (Almost global attractiveness). Consider a system
that evolves on (Sn)N . A set of equilibria D ⊂ (Sn)N is said
to be almost globally attractive if for all initial conditions
(xi,0)Ni=1 ∈ (Sn)N\N , where N is some set of zero measure,
it holds that limt→∞(x(t))Ni=1 ∈ D.

Problem 6. Show that there is a large class of consensus
protocols for System 2, including Algorithm 3, such that the
consensus set C is stable and almost globally attractive.

Problem 6 concerns the global behavior of System 2.
Under certain assumptions regarding the connectivity of G,
local consensus on Sn can be established with the region
of attraction being the largest geodesically convex sets on
Sn, i.e., open hemispheres [19]. See also [25] in the case
of an undirected graph and [27] in the case of a directed
and time-varying graph. A global stability result for discrete-
time consensus on SO(3) is provided in [29]. Almost global
asymptotical stability of the consensus set on the n-sphere is
known to hold when the graph is a tree [25] or is complete
in the case of first- and second-order models [13], [17]. The
author of [13] conjectures that global stability also holds for a

larger class of topologies whereas [15], [16] provides counter-
examples of basic consensus protocols that fail to generate
consensus on S1.

Remark 7. Global consensus on Sn cannot be achieved by
means of a continuous feedback due to topological constraints
[31]. It is however possible to achieve almost global asymp-
totical stability, as has been demonstrated on the circle [15],
[16]. To prove almost global convergence to the consensus set
is difficult since basic tools such as the Hartman-Grobman
theorem or stable-unstable manifold theorems are unavailable
due to the equilibria being nonhyperbolic [36]. Feasible
approaches include dual Lyapunov stability theory [37] and
a technique based on the stability in the first approximation
[34] that applies to convergent systems.

III. STABILITY OF THE CONSENSUS MANIFOLD

This section and the next concern System 2 governed by
Algorithm 8 which is an extension of Algorithm 3. Algorithm
8 provides a large class of smooth continuous-time consensus
protocol on the n-sphere. The stability properties of all equi-
libria are fully determined, as is that of the overall system.

A. Known Results

Consider a class of consensus protocols that formalizes the
idea of increasing system cohesion by moving an agent into
the convex hull of its state and those of its neighbors.

Algorithm 8. The input is given by

ui =
∑
j∈Ni

fij(sij)xj ,

where sij = 1−〈xi,xj〉 and the feedback gains fij : R→ R

are real analytic functions that satisfy
(i) fij : [0, 2]→ [0,∞),

(ii) fij = fji,
(iii) (n− 2 + sij)sijfij − (2− sij)s

2
ijf
′
ij > 0,

for all sij ∈ (0, 2] and all {i, j} ∈ E .

Note that fij depends on sij : Sn × Sn → [0, 2] given by

sij = 1
2‖xj − xi‖

2 = 1− 〈xi,xj〉, (5)

which is invariant under orthogonal changes of coordinates.
Algorithm 8 therefore complies with the requirements of
Section II-A regarding distributed feedback laws over the n-
sphere. Various forms of the closed loop dynamics of System
2 under Algorithm 8 is stated on the readers behalf and for
the sake of completeness

ẋi =
∑
j∈Ni

fij(sij)xj −
〈∑
j∈Ni

fij(sij)xj ,xi

〉
xi

=
∑
j∈Ni

fij(sij)(xj − (1− sij)xi)

= Pi

∑
j∈Ni

fij(sij)xj . (6)

Remark 9. Algorithm 8 comprises a class of algorithms that
includes those of Algorithm 3 for all n ∈ N\{1}. If fij = k ∈
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(0,∞) for all {i, j} ∈ E , then (iii) evaluates to k(n − 2 +
sij)sij ≥ ks2

ij > 0 for all sij ∈ (0, 2] when n ≥ 2 but for
n = 1 we obtain

(−1 + sij)sij · k + (2− sij)s
2
ij · 0 = −k(1− sij)sij ≤ 0

for all sij ∈ [0, 1]. Note that the class grows with n. For
example, if fij = skij for some k ∈ N then (iii) evaluates to

(n− (k + 1)(2− sij))s
k+1
ij ,

which is positive on (0, 2] when k ≤ n/2− 1. To see that the
class is empty for n = 1, note that (iii) can be rewritten as

f ′ij
fij

<
−1 + sij

(2− sij)sij
(7)

for all {i, j} ∈ E and all sij ∈ (0, 2). This implies
limsij→0 f

′
ij/fij = −∞. Since f ′ij is continuous, it is bounded

on [0, 2] whereby fij(0) = 0 and f ′ij(0) ≤ 0. Even if
f ′ij(0) = 0, the inequality (7) still implies that f ′ij(s) < 0 for
all s ∈ (0, δ) for some δ ∈ (0,∞). By continuity there exists
an ε ∈ (0,∞) such that fij(sij) < 0 for all sij ∈ (0, ε),
which contradicts requirement (i) of Algorithm 8.

Remark 10. For some feedback gains fij there is a ball in
the space Cω of real analytic functions consisting entirely of
feedback gains of other elements of Algorithm 8. For instance,
Algorithm 3 still converges if instead of a constant fij agent
i and j use fij + gij , where gij ∈ C

ω is of sufficiently small
norm. This could be interpreted as a form of robustness against
analytic radial errors, e.g., constant measurement errors that
are due to biased sensors.

Algorithm 8 can be derived by taking the gradient of the
candidate Lyapunov function

V (sij | {i, j} ∈ E) =
∑
{i,j}∈E

∫ sij

0
fij(r)dr. (8)

Denote ∇V = (∇iV )Ni=1, where ∇i = ∇xi
. Then

∇iV =
∑
j∈Ni

dV
dsij
∇isij = −

∑
j∈Ni

fij(sij)xj . (9)

It follows that ui = −∇iV and ẋi = −Pi∇iV for all i ∈ V .

Proposition 11. System 2 under Algorithm 8 converges to an
equilibrium set in (Sn)N . At any equilibrium point, each input
is parallel to the state of its agent.

Proof. Consider the potential function (8). It holds that

V̇ =
∑
{i,j}∈E

fij ṡij = −
∑
{i,j}∈E

fij(〈ẋi,xj〉+ 〈xi, ẋj〉)

= −
∑
i∈V

〈
ẋi,

∑
j∈Ni

fijxj

〉
−
∑
j∈V

〈∑
i∈Nj

fijxi, ẋj

〉
= −2

∑
i∈V
〈ui − 〈ui,xi〉xi,ui〉

= −2
∑
i∈V
‖ui‖

2 − 〈ui,xi〉
2 (10)

System 2 converges to the set {(xi)
N
i=1 | V̇ = 0} by LaSalle’s

theorem. The Cauchy-Schwarz inequality applied to (10)
shows that the input and state of each agent align up to sign
asymptotically. This implies ẋi = 0 for all i ∈ V , i.e., that the
system is at an equilibrium by inspection of (2). �

The equilibria that are characterized by Proposition 11 can
be divided into three categories:

(xi,ui) ∈
{(
− ui
‖ui‖

,ui
)
,

(
ui
‖ui‖

,ui
)
, (xi,0)

}
, (11)

where ui =
∑
j∈Ni

fijxj for all i ∈ V . The case of ui = 0 for
all i ∈ V is illustrated by Figure 1. The agent states in Figure
1 correspond to the six corners of an octahedron, which is one
of the five platonic solids. Likewise, the tetrahedral graph (i.e.,
the complete graph over four nodes) has the tetrahedron as an
equilibrium with xi = −ui/‖ui‖ for all i ∈ V; whereas the
cube, icosahedral, and dodecahedral graphs have respectively
the cube, icosahedron, and dodecahedron as equilibria with
xi = ui/‖ui‖ for all i ∈ V .

TxiS2

S2

xi

xj, j ∈ Ni

G

ji

(i, j)

Fig. 1. An equilibrium of a system on S2 (left) with an octahedral
graph (right). The sum of neighbor states projected on the
tangent plane Txi

S2 is zero (left).

Analogues of the following result, Proposition 12 concern-
ing consensus over the largest geodesically convex sets on Sn,
i.e., open hemispheres, and various generalizations thereof,
are known to the control community. For example, [4] uses
invariant convex hulls in a manner that was preceded in [2],
[38] to prove local convergence of time switched consensus
protocols on SE(3). To solve Problem 6, this paper provides
a companion to Proposition 12, Theorem 13, that characterize
all equilibrium sets of System 2 under Algorithm 8 in terms of
attractiveness and stability. Although Proposition 12 is used in
the proof of Theorem 13, its full power is not needed. Rather,
it is included as a contrast to highlight the greater generality
achieved by our analysis.

Proposition 12. Consider System 2 under Algorithm 8. The
consensus set C is asymptotically stable. Moreover, the system
reaches consensus asymptotically if there is some finite time
such that all agents belong to an open hemisphere.

Proof. Let H denote the open hemisphere. Since fij ∈ [0,∞)
for all j ∈ Ni, ẋi = Pi

∑
j∈Ni

fijxj points towards the
geodesically convex hull of {xj | j ∈ Ni} on Sn along the
tangent space Txi

Sn. This shows H to be invariant and C
to be stable. It remains to show attractiveness. Proposition 11
establishes that System 2 under Algorithm 8 converges to an
equilibrium set. Since H is invariant the desired result follows
if the only equilibrium configuration on H is a consensus.
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There must be at least one agent k that minimizes the
distance to the boundary of H. At any equilibrium, it holds
that xi is parallel ui for all i ∈ V by Proposition 11.
Since all agents belong to an open hemisphere it follows
that 0,−xi < pos{xi | i ∈ V}. By (11), only xi = ui/‖ui‖

remains. Agent k belongs to an extreme ray of the convex
cone pos{xi | i ∈ V}. But then xk = uk/‖uk‖ if and only
if xj = xk for all j ∈ Ni. An induction argument can be
applied to show that the system is at a consensus due to G
being connected. �

B. Main Result

In light of the results of the previous section, we hereby state
our main result.

Theorem 13. Consider System 2 under Algorithm 8 in the
case of n ∈ N\{1}. The consensus set C given by (4) is almost
globally asymptotically stable. Moreover, each trajectory of the
system converges to some point. The set of unstable equilibria
is meager. The rate of convergence is locally exponential if the
feedback gains fij are nonzero over C for all {i, j} ∈ E .

The proof of Theorem 13 is given in Section IV-D. Let
us briefly sketch the main ideas. That the consensus set is
asymptotically stable follows from Proposition 12. To prove
the exponential instability of the undesired equilibria we use
the indirect method of Lyapunov. The system is linearized
around an equilibrium on the n-sphere. Perturbing all agents
towards the north pole increases cohesion in the north hemi-
sphere while depleting it in the south. One such perturbation
corresponds to a direction of instability for the linearized
system. Finally, a known result connects exponential instability
with a measure zero and meager region of attraction.

IV. INSTABILITY OF UNDESIRED EQUILIBRIUM SETS

The global behavior of the system is determined by the
stability and attractiveness of all its equilibria, which often
can be characterized locally by linearization. However, to get
the global picture we must determine the measure of the see
of attraction for all unstable equilibria. It is possible for a set
of exponentially unstable equilibria to have a non-zero region
of attraction, but only if the system fails to be convergent [34].
Our control design guarantees System 2 under Algorithm 8 to
be convergent as is shown in Proposition 20. Let us therefore
study the signs of the real part of the linearization of System
2 under Algorithm 8 in order to establish the instability of all
undesired equilibria and equilibrium sets.

A. Linearization on the N -Fold n-Sphere

Proposition 14. The (n+ 1)× (n+ 1) blocks of the N(n+
1) × N(n + 1) matrix A that describes the linearization on
Sn of System 2 under Algorithm 8 are given by

Aii = −(〈ui,xi〉 I + xi ⊗ ui)Pi −
∑
j∈Ni

f ′ijPiXjPi,

for i ∈ V ,

Aij = Pi

(
fijI − f

′
ijxj ⊗ xi

)
Pj

for {i, j} ∈ E , and Aij = 0 otherwise. The matrix A is
symmetric at all equilibria.

Proof. For systems evolving on manifolds, a perturbation
technique is used to obtain the linearized dynamics. Let xi for
all i ∈ V be a solution to (2). Consider a perturbed solution
xi(ε,vi) given by

xi(ε,vi) = xi + εvi
‖xi + εvi‖

,

where vi is a nonzero constant vector for all i ∈ V . The per-
turbed solution is required to satisfy the differential equation

ẋi(ε,vi) = (I −Xi(ε,vi))ui(ε, (xj(ε,vj))j∈Ni
),

where Xi(ε,vi) = I − xi(ε,vi) ⊗ xi(ε,vi) is a perturbed
projection matrix and ui(ε, (xj(ε,vj))j∈Ni

) is the input of
the perturbed solution. The linearized dynamics on Sn can be
derived by studying the linear effect of vi on ẋi(ε,vi). Define

wi = d
dεxi(ε,vi)|ε=0 = vi

‖xi + εvi‖

∣∣∣∣
ε=0
−

xi + εvi
‖xi + εvi‖

3 〈xi,vi〉
∣∣∣∣
ε=0

= vi − xi ⊗ xivi = (I −Xi)vi = Pivi. (12)

The role of the matrix Pi is to project the perturbation onto
the tangent space Txi

Sn. Note that

d
dεXi(ε,vi)|ε=0 = wi ⊗ xi + xi ⊗wi

by the product rule. Let fij(ε,vi,vj) denote the perturbed
feedback gain. Then,

d
dεfij(ε,vi,vj)|ε=0 = −f ′ij(sij)(〈wi,xj〉+ 〈xi,wj〉).

Finally,

ẇi = d2

dtdεxi(ε,vi)|ε=0 = d
dε ẋi(ε,vi)|ε=0

= d
dε (I −Xi(ε,vi))

∑
j∈Ni

fij(ε,vi,vj) xj(ε,vj)
∣∣
ε=0

= −
( d

dεXi(ε,vi)
) ∑
j∈Ni

fij(ε,vi,vj) xj(ε,vj)
∣∣
ε=0 +

(I −Xi(ε,vi))
∑
j∈Ni

( d
dεfij(ε,vi,vj)

)
xj(ε,vj)

∣∣
ε=0 +

(I −Xi(ε,vi))
∑
j∈Ni

fij(ε,vi,vj) d
dεxj(ε,vj)

∣∣
ε=0

= − (wi ⊗ xi + xi ⊗wi)
∑
j∈Ni

fijxj−

(I −Xi)
∑
j∈Ni

f ′ij(〈wi,xj〉+ 〈xi,wj〉)xj+

(I −Xi)
∑
j∈Ni

fijwj

= − (wi ⊗ xi + xi ⊗wi)ui−
(I −Xi)

∑
j∈Ni

f ′ij(Xjwi + xj ⊗ xiwj)+

(I −Xi)
∑
j∈Ni

fijwj
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= −

〈ui,xi〉I + xi ⊗ ui + Pi

∑
j∈Ni

f ′ijXj

wi+

Pi

∑
j∈Ni

(
−f ′ijxj ⊗ xi + fijI

)
wj

= −

〈ui,xi〉I + xi ⊗ ui + Pi

∑
j∈Ni

f ′ijXj

Pivi+

Pi

∑
j∈Ni

(
fijI − f

′
ijxj ⊗ xi

)
Pjvj , (13)

where the relation 〈x,y〉z = (z ⊗ x) y = (z ⊗ y)x for all
x,y, z ∈ Rn+1 is used. The vector w = [w>1 . . .w

>
N ]> has

N(n+ 1) components whereas the linearized system actually
evolves on an Nn-dimensional space that lies embedded in
R
N(n+1). The dimension reduction is given implicitly by the

definition of wi which requires wi ∈ Txi
Sn. This constraint

is removed by using variables that are premultiplied by the
projection matrices Pi : Rn+1 → Txi

Sn, i.e., the variables
vi in (12). The matrix A is obtained by inspection of (13).

It remains to show that A is symmetric at all equilibria.
Proposition 11 reveals that ui is parallel to xi at any equilibria.
Thus Aii is symmetric by inspection. Moreover,

A>ji −Aij =
(
fjiPjPi − f

′
jiPjxi ⊗ xjPi

)>−(
fijPiPj − f

′
ijPixj ⊗ xiPj

)
= 0,

since fji = fij for all {i, j} ∈ E . �

Remark 15. Note that the matrix A is the negative intrinsic
Hessian matrix of the candidate Lyapunov function V given
by (8), i.e., H = ⧠ 2V = −A. The approach of this paper,
which is based on studying the linearization of the dynamics
(6), is therefore similar to that of [29], which study the nature
of the critical points of a potential function. Of course, our
results and many details differ from those of [29].

B. Instability of Undesired Equilibria

Consider an equilibrium such that all agents belong to the in-
tersection of Sn and a hyperplane in Rn+1. Perturb all agents
into an open hemisphere by an arbitrarily small movement
along a direction orthogonal to the hyperplane. By Proposition
12, the perturbed system converges to a consensus. Proposition
16 expands on this idea; perturbing all agents towards the
north pole increases cohesion in the north hemisphere while
depleting it in the south. We show that one such perturbation
corresponds to a direction of exponential instability for the
linearized system.

Proposition 16. Any equilibrium (xi)
N
i=1 < C of System 2

under Algorithm 8 is exponentially unstable.

Proof. The proof makes use of the linearization provided by
Proposition 14. The Courant-Fischer-Weyl min-max principle
bounds the range of the Rayleigh quotient of a symmetric
matrix by its minimal and maximal eigenvalues [39]. If the
Rayleigh quotient is positive for some argument, then the
maximal eigenvalue is positive. Recall that if A has a positive

eigenvalue at an equilibrium, then that equilibrium is unstable
by the indirect method of Lyapunov [40].

Proposition 11 establishes that the states and input are par-
allel at any equilibrium. The matrix A can then be expressed
as

Aij =
{
−〈ui,xi〉Pi −

∑
j∈Ni

f ′ijPiXjPi if j = i,

fijPiPj − f
′
ijPixj ⊗ xiPj if {i, j} ∈ E ,

and Aij = 0 otherwise. The matrix A is symmetric at all
equilibria by Proposition 14.

Let v = [y> . . .y>]> ∈ TC(Sn)N , i.e., y ∈ Rn+1 since
∪x∈SnTxS

n ' Rn+1, and consider

〈v,Av〉 =
∑
i∈V
〈y,Aiiy〉+

∑
j∈Ni

〈y,Aijy〉

=
〈

y,
(∑
i∈V

Aii +
∑
j∈Ni

Aij

y
〉
.

Denote B =
∑
i∈V Aii +

∑
j∈Ni

Aij . The matrix B is
symmetric due to A being symmetric whereby σ(B) ⊂ R by
the spectral theorem. If B has a strictly positive eigenvalue,
then for the corresponding eigenvector z ∈ Rn+1 it holds that
〈z,Bz〉 > 0 whereby setting y = z yields 〈v,Av〉 > 0. The
min-max principle then implies that A has a strictly positive
eigenvalue, i.e., the equilibrium is exponentially unstable.

Let us prove that B has a positive eigenvalue. Consider

tr B =
∑
i∈V
−n〈ui,xi〉+

∑
j∈Ni

(
−f ′ij(1− 〈xi,xj〉

2)+

fij(n− 1 + 〈xi,xj〉
2)− f ′ij〈xi,xj〉(〈xi,xj〉

2 − 1)
)

=
∑
i∈V
−n〈ui,xi〉+

∑
j∈Ni

(
fij(n− 1 + 〈xi,xj〉

2)−

f ′ij(2− sij)s
2
ij

)
= n

∑
i∈V
−〈ui,xi〉+

∑
j∈Ni

fij

−
∑
i∈V

∑
j∈Ni

fij(2− sij)sij + f ′ij(2− sij)s
2
ij

= n

∑
i∈V

∑
j∈Ni

−fij〈xi,xj〉+
∑
j∈Ni

fij

−
∑
i∈V

∑
j∈Ni

fij(2− sij)sij + f ′ij(2− sij)s
2
ij

= n
∑
i∈V

∑
j∈Ni

fijsij−∑
i∈V

∑
j∈Ni

fij(2− sij)sij + f ′ij(2− sij)s
2
ij

=
∑
i∈V

∑
j∈Ni

fij(n− 2 + sij)sij − f
′
ij(2− sij)s

2
ij ,

where we used that tr Xi = ‖xi‖
2 = 1 and sij = 1−〈xi,xj〉.

Recall that

fij(n− 2 + sij)sij − f
′
ij(2− sij)s

2
ij > 0
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for all sij ∈ (0, 2] and all {i, j} ∈ E by condition (iii) of
Algorithm 8. Since tr B ≥ 0 with strict inequality unless sij =
0 for all {i, j} ∈ E , i.e., unless (xi)

N
i=1 ∈ C, it follows that B

has a strictly positive eigenvalue. �

Remark 17. Requirement (iii) in Algorithm 8 arises from the
lower bound of tr B. This lower bound is clearly conservative
with respect to the requirements on fij for all {i, j} ∈ E that
results in A having a positive eigenvalue. The class of control
signals that yield almost global consensus on Sn is hence
larger than that given in Algorithm 8.

Proposition 18 is used to prove Theorem 13. The version
presented here is particularized for our purposes; a more
general result and its proof may e.g., be found in [34].

Proposition 18 (R.A. Freeman [34]). Consider a system
ẋ = f (x) that evolves on a state-space X , where f ∈ C1. Let
S ⊂ X be a set consisting entirely of exponentially unstable
equilibria. If each trajectory of the system converges to some
equilibrium, then the region of attraction of S is of zero
measure and meager in X .

C. Point-Wise Convergence

The instability requirements of Proposition 18 are satisfied by
Proposition 16. However, to show that every trajectory of the
system converges to a point, i.e., that the system is so-called
pointwise convergent [41], requires some additional analysis.
Point-wise convergence is of importance since Proposition 11
only establishes convergence to some equilibrium sets, all
of which have n degrees of rotational invariance. In theory,
it would be possible for each agent to traverse its sphere
indefinitely while the system as a whole approaches some
equilibrium set. The use of Proposition 19, a corollary of the
Łojasiewicz gradient inequality [42], may be not be necessary
but suffices to establish point-wise convergence. It is the reason
that we assume that the feedback gains fij ∈ C

ω[0, 2] for all
{i, j} ∈ E rather than C1[0, 2].

Proposition 19 (S. Łojasiewicz [41], [42]). Let M be a real
analytic Riemannian manifold and f : M → R be a real
analytic function. For the intrinsic gradient flow ẋ = −⧠ f
it either holds that limt→∞ x(t) = y for some y ∈M or the
set of ω-limit points is empty.

Proposition 20. Each trajectory of System 2 under Algorithm
8 converges to an equilibrium.

Proof. The n-sphere is a real analytic manifold, and so is
(Sn)N . Sums, composite functions, integrals, and derivatives
of multivariate analytic functions are analytic [43]. By analyt-
icity of the feedback gains in Algorithm 8, it follows that the
candidate Lyapunov function V given by (8) is analytic.

Equation (9) only provides the extrinsic gradient ∇V :
(Sn)N → (Rn+1)N of (8) without regard to the fact that
{xi} ∈ (Sn)N . The intrinsic gradient ⧠V : (Sn)N →
T (Sn)N is given by

⧠V = (⧠ iV )Ni=1 = (∇iV − 〈∇iV,xi〉xi)
N
i=1 ,

where ⧠ i = ⧠xi
. The intrinsic gradient ⧠V is hence the

projection of ∇V on the tangent space T(xi)N
i=1

(Sn)N [44].
Equation (9) gives ∇iV = −ui whereby

⧠V = − (ui − 〈ui,xi〉xi)
N
i=1 .

The closed-loop dynamics of System 2 under Algorithm 8 can
be written

ẋi = −⧠ iV (14)

for all i ∈ V , i.e., it is a gradient descent flow on (Sn)N .
The conditions of Proposition 19 are satisfied by (Sn)N

and (14). Since (Sn)N is compact, every sequence has a
convergent subsequence by the Bolzano-Weierstrass theorem
wherefore the set of limit points is nonempty. It follows that
(xi)

N
i=1 converges to a single point, and by Proposition 11 that

point is an equilibrium. �

D. Proof of Main Theorem

Recall that it remains to prove Theorem 13. Proposition 12,
16, 18, and 20 provide the sufficient tools to do so.

Proof of Theorem 13. The requirements of Proposition 18 are
satisfied by Proposition 20 and Proposition 16. Since all
system trajectories converge to equilibria by Proposition 20,
and the set of initial conditions (x0)Ni=1 resulting in trajectories
that converge to any equilibrium that does not belong to the
consensus set is of zero measure and meager by Proposition
18, it follows that the set of trajectories converging to the
consensus set is almost all of (Sn)N . This establish almost
global attractiveness. Stability follows from Proposition 12.

It remains to show local exponential stability. The linearized
system dynamics expressed in the variables (yi)

N
i=1 are hence

ẏi = P
∑
j∈Ni

fij(0)(yj − yi), (15)

where P = I − c ⊗ c and xi = c ∈ Sn for all i ∈ V . Each
vector yi of the linearized system evolves along a hyperplane
of codimension 1 given by H = Txi

Sn = ImP for all i ∈ V .
Since the graph is connected, and fij(0) is strictly positive
for all {i, j} ∈ E , it follows that (15) reaches consensus
exponentially if yi,0 ∈ H for all i ∈ V [1]. �

V. PERSPECTIVES

Let us compare what is known with regard to consensus on
S1 and SO(3) in relation to Theorem 13.

A. The Circle and the Sphere

Algorithm 3 does not satisfy property (iii) of Algorithm 8 in
the case of n = 1. The requirement is however only sufficient
for almost global consensus. A counter-example is provided by
[15], [16]: the equilibrium set over cycle graphs where agents
are spread out equidistantly over S1 such that the geodesic
distance dθ : S1 × S1 → [0, π] satisfies dθ(xi,xj) = 2π/N
for all {i, j} ∈ E is asymptotically stable. This section
explores the difference between S1 and S2 with regard to
the preconditions for achieving almost global consensus.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. Y, MONTH YEAR 8

Example 21. Consider six agents on S2 and a cycle graph

G = ({i ∈ N | i ≤ 6}, {1, 6} ∪ {{i, j} ∈ V × V | i− j = 1})

where we use the weights fij = 1 for all {i, j} ∈ E . One
equilibrium consists of the agents being equidistantly spread
out over the equator at a distance π/3 from one another, see
Figure 2. Then

A = PC ⊗ I3×3,

P =


P1 0 0 0 0 0
0 P2 0 0 0 0
0 0 P3 0 0 0
0 0 0 P4 0 0
0 0 0 0 P5 0
0 0 0 0 0 P6

 ,

C =


−1 1 0 0 0 1

1 −1 1 0 0 0
0 1 −1 1 0 0
0 0 1 −1 1 0
0 0 0 1 −1 1
1 0 0 0 1 −1

 ,
where ⊗ denote the Kronecker product, and I3×3 is the identity
matrix of dimension 3. The block diagonal elements of P
satisfy Pi = I3×3 − Ri−1e ⊗ e(R>)i−1 for some e ∈ S2.
Note that C is a circulant matrix for which all eigenpairs can
be calculated explicitly [45].

x1

23

14

5 6

x2x3

x4

x5 x6

Fig. 2. An equilibrium of a system on S2 with a cycle graph.

There is no loss of generality in setting e = e1 = [1 0 0 ]>
and positioning all agents on the equator to decouple Pi into
a block diagonal matrix,

Pi =
[
Qi 0
0 1

]
,

Qi = I2×2 −Ri−1e1 ⊗ e1(R>)i−1,

R = 1
2

[
1 −

√
3√

3 1

]
.

The linearized dynamics are thereby decoupled into two inde-
pendent subsystems corresponding to the variables yi ∈ R

2

and zi ∈ R for all i ∈ V . For perturbations (yi)
N
i=1 that

belong to the equatorial plane, it follows that

ẏi = Qi(yi−1 + yi+1 − yi), (16)

for all i ∈ V , where the indices are added modulo 6. For
perturbations that are normal to said plane, it holds that

ż = Cz

where z = [z1 z2, . . . , z6 ]>.
The dynamics (16) can be written on the form

ẏ = QC ⊗ I2×2y,

where Q is a block diagonal matrix with Qi for i ∈ V
as blocks, ⊗ denote the Kronecker product, I2×2 is the
identity matrix of dimension 2, and y = [y1

>, . . . ,y6
>]> ∈

R
2N . Unlike σ(PC ⊗ I3×3), the spectrum of PC ⊗ I2×2

belongs to the closed left half complex plane. Note that
σ(PC ⊗ I2×2) does not depend on e. An eigenpair can
be interpreted as a perturbation direction of the system re-
sulting in an instantaneous response that is either aligned
or negatively aligned with the perturbation. For exam-
ple, (0, [v> (Rv)> (R2v)> (R3v)> (R4v)> (R5v)>]>) is
an eigenpair of QC⊗ I2×2 for all v ∈ R2. It corresponds to
the perturbation of moving each agent a fixed distance along
its tangent space, thereby rotating the entire cyclic formation.

The dynamics of z are unstable since (1, [1 1 1 1 1 1]>) is
an eigenpair of C. This eigenpair can be interpreted as a
perturbation that takes all agents into the north hemisphere,
from where they reach consensus at the north pole. Another
eigenpair is (−3, [1−1 1−1 1−1]>). The corresponding
perturbation lifts and drops agents above and below the
equator, thereby distancing any agent from the convex hull of
itself and its neighbors. The response is hence a recoil towards
the equator, as demonstrated by the negative eigenvalue. The
effects of both these perturbations on the original nonlinear
system are illustrated in Figure 3. Note that effect of the first
perturbation always is a consensus whereas the effect of the
second is more sensitive; the nonlinear system will however
return to the equator if fij = f for all {i, j} ∈ E .

x1

x2
x3

x4
x5 x6

x1

x2

x3x4

x5

x6

0
t

Fig. 3. The trajectories of two nonlinear systems which are perturbed
from an equilibrium at the equator along the stable and
unstable manifolds (left and right respectively).

The unstable directions of perturbations are all orthogonal
to the equator. The stability of a cycle equilibrium of System
2 under Algorithm 3 on S1 is therefore not inherited by the
embedding of S1 in higher dimensional spheres. Aside from
the instability, it is important to note such a perturbation
bring all agents into a hemisphere from where they reach
consensus by Proposition 12, implying that the equator is
also unattractive. The circle is also embedded on an infinite
cylinder, but that case is not covered by this analysis.

The following corollary of Theorem 13 lack the generality
of its precursor, but is nevertheless a result that we find to be
interesting in its own right. It provides an exhaustive charac-
terization of the stability properties of a particular dynamical
system, both forwards and backwards in time. Recall that sij
defined by (5) measure the extrinsic distance between two
points on Sn. Theorem 22 states that, under certain conditions,
Algorithm 3 solves both the minimax and maximin problems
of sij over all {i, j} ∈ E almost globally.
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Corollary 22. Consider System 2 on S2 under Algorithm 3
with fij = 1 for all {i, j} ∈ E , where G = (V, E) is a
cycle graph. The α-limits of the flow from almost all initial
conditions belong to

{(xi)
N
i=1 ∈ (Sn)N | sij = max

(Sn)N
min
{k,l}∈E

skl,∀ {i, j} ∈ E}

whereas the ω-limits belong to the consensus set, i.e.,

{(xi)
N
i=1 ∈ (Sn)N | sij = min

(Sn)N
max
{k,l}∈E

skl, ∀ {i, j} ∈ E}.

Proof. This is a direct consequence of Theorem 13 and the
characterization of equilibria obtained by closing System 2
with the negation of Algorithm 3 provided in [7], [8]. �

B. Simulations

This section compares the global performance of two consen-
sus protocols on Sn for n ∈ {1, 2} and on SO(3) respectively
in simulation. To that end, consider the following multi-agent
system on the special orthogonal group SO(n).

System 23. The system is given by N agents, an undirected
graph G = (V, E), agent states Ri ∈ SO(n), and dynamics
Ṙi = ΩiRi where Ωi ∈ so(n) for all i ∈ V . It is assumed
that G is connected and that the system can be actuated on a
kinematic level, i.e., Ωi is the input signal of agent i.

Recall that Algorithm 3 can be derived by taking the
gradient of the potential function (8). A related consensus
protocol on SO(n) can be derived by taking the gradient of
the potential function V : SO(n)× SO(n)→ [0,∞) given by

V (Ri,Rj) = 1
2

∑
{i,j}∈E

∫ sij

0
fij(r)dr,

where fij : [0, 2n] → [0,∞) and sij = n − 〈Ri,Rj〉 for all
{i, j} ∈ E . As such, Algorithm 3 is similar to the following
algorithm on System 23.

Algorithm 24. The feedback is given by

Ωi =
∑
j∈Ni

fij(sij)(R
>
i Rj −R>j Ri),

where fij = fji for all {i, j} ∈ E .

Table I displays the outcome of running 106 trials of
Algorithm 3 on System 2 and 104 trials of Algorithm 24 on
System 23 for three different graphs (we set fij = 5 for
all {i, j} ∈ E for both algorithms). The initial conditions
are drawn uniformly from the sphere using the fact that
x ∈ N (0, I) implies that x/‖x‖ ∈ U(Sn) [46]. This method
is also used to draw from U(SO(3)) by first generating a
uniform distribution on the unit sphere in quaternion space,
i.e., drawing from U(S3), and then mapping the sample to
SO(3). By inspection of Table I, note that Algorithm 3 fails
to yield almost global consensus on S1. Likewise, almost
global consensus does not hold for Algorithm 24 on System
23 over SO(3). These results agree with those of [15], [29].
As predicted by Theorem 13, there were no failures to reach
consensus on S2 despite the high number of trials.

TABLE I. Number of failures to reach consensus on the space X ∈
{S1

, S2
, SO(3)} over 104 random trials using Algorithm

3 and 8 with constant feedback gains.

X

S1 1504 2173 2126
S2 0 0 0

SO(3) 711 66 86

C. Extension to the Special Orthogonal Group

In Section V-A we learn that a certain undesired equilibrium
set of System 2 under Algorithm 3 on S1 is stable. Section V-B
shows that the problem of multi-agent consensus on SO(3)
poses similar challenges. In fact, if the reduced attitudes of all
agents agree, then the remaining degree of rotational freedom
of each agent is confined to a set that is diffeomorphic to
S1. On the n-sphere, a perturbation that is orthogonal to
the equator will allow a system in such a configuration to
reach consensus. On SO(3), the destabilizing effect of such
a perturbation is counter-acted by the reduced attitude which,
figuratively speaking, serves as a ballast that stabilizes the two
other axes of all agent to a single great circle.

Let us utilize what we have learned about consensus on
S1 and S2 to attempt to design a control law on SO(3)
that stabilizes the consensus set almost globally. To that end,
rewrite the variables Ri of (23) as Ri = [xi yi zi], i.e.,
xi = Rie1, yi = Rie2, and zi = Rie3 whereby

[ẋi ẏi żi] = Ωi[xi yi zi]

for all i ∈ V . Let S : R3 → so(3) be the bijective linear map
defined by S(x)y 7→ x × y for all x,y ∈ R3. Denote ωi =
S−1(Ωi) for all i ∈ V . The following algorithm decouples the
evolution of xi from any dependence on yi and zi by utilizing
a decomposition of ωi into a part that is orthogonal to xi and
a part that is parallel to xi.

Algorithm 25. The feedback is given by

Ωi = S

xi × ui +
∑
j∈Ni

gijxi

 ,

where ui is the input signal of Algorithm 8 and the locally
Lipschitz function gij : Ii → R is related to the feedback gain
of a second almost globally convergent consensus protocol on
S1 for all {i, j} ∈ E . More specifically, we require that the
feedback gains gij are such that the system

ẏi =
∑
j∈Ni

gijzi, żi = −
∑
j∈Ni

gijyi, (17)

reach consensus for almost all initial conditions such that
xi(0) = xj(0) for all {i, j} ∈ E (these dynamics evolve over a
single great circle on S2 since zi = xi×yi and xi is constant,
i.e., zi can be expressed in terms of yi for all i ∈ V).

Remark 26. Note that any implementation of Algorithm 25
requires the use of an almost globally convergent consensus
protocol on S1, e.g., that of [15], [16]. The protocol of [15],
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[16] requires an upper bound on the total number of agents,
which is a weaker form of graph dependence than that of the
protocol in [29]. To see that Algorithm 25 can be implemented
by only using local and relative information, note that

[Ωi]Bi
= R>i [Ωi]WRi = S

R>i (xi × ui) +
∑
j∈Ni

gijR
>
i xi


= S

(R>i xi)× (R>i ui) +
∑
j∈Ni

gijR
>
i xi


= S

e1 ×
∑
j∈Ni

R>i Rje1 +
∑
j∈Ni

gije1

 .

The feedback hence only only depends on the relative infor-
mation (R>i Rj)j∈Ni

∈ Ii on SO(3).

The closed loop dynamics of System 2 under Algorithm 25
are given by

ẋi = (xi × ui)× xi = ui − 〈ui,xi〉xi = Piui, (18)

ẏi = (xi × ui)× yi +
∑
j∈Ni

gijzi,

= −〈ui,yi〉xi +
∑
j∈Ni

gijzi, (19)

żi = (xi × ui)× zi −
∑
j∈Ni

gijyi,

= −〈ui, zi〉xi −
∑
j∈Ni

gijyi, (20)

for all i ∈ V . Note that the dynamics of (xi)
N
i=1 given by

(18) are precisely those of System 2 under Algorithm 8. The
consensus set for the reduced attitudes (xi)

N
i=1 is hence almost

globally asymptotically stable by Theorem 13. We will utilize
the triangular structure of the system given by (18)–(20) to
establish a local convergence result. To this end, consider
Proposition 27 from [47] which have been adapted to our
setting.

Proposition 27 (M.I. El-Hawwary & M. Maggiore [47]).
Consider a system ẋ = f (x), where f is locally Lipschitz, that
evolves on a compact state-space X . Let S1 and S2, where
S1 ⊂ S2 ⊂ X , be two closed, positively invariant sets. Then,
S1 is asymptotically stable if the following conditions hold:
(i) S1 is asymptotically stable relative to S2,

(ii) S2 is asymptotically stable.

Remark 28. There exists a global version of Proposition 27
[47]. The case when convergence from S2 to S1 is global but
convergence from X to S2 is almost global can be addressed
by redefining X to be the region of attraction of S2, see [48].
It cannot be applied to our problem however. The problem is
that S1 is only almost globally stable relative to S2. We cannot
guarantee that the convergence from X to S2 would not bring
the system to state at which convergence from S2 to S1 fails.

Proposition 29. The consensus set on SO(3),

C = {(Ri)
N
i=1 ∈ (SO(3))N |Ri = Rj , ∀ {i, j} ∈ E},

is an asymptotically stable equilibrium set of System 23 under
Algorithm 25.

Proof. In terms of Proposition 27, let

S1 = {(Ri)
N
i=1 ∈ (SO(3))N |Ri = Rj , ∀ {i, j} ∈ E},

S2 = {(Ri)
N
i=1 ∈ (SO(3))N |Rie1 = Rje1, ∀ {i, j} ∈ E},

denote, respectively, the consensus set and reduced attitude
consensus set. Clearly S1, S2 are closed, positively invariant,
nested sets. Property (ii) follows by application of Theorem
13 to the dynamics (18). To establish property (i), consider the
case of (Ri(0))Ni=1 ∈ S2. Then {y1, . . .yN , z1, . . . , zN} ⊂ P ,
where P is the plane that has xi as normal for any i ∈ V . The
system (18)–(20) is hence on the form (17). The consensus set
of the system (17) is almost globally asymptotically stable by
our assumptions on gij for all {i, j} ∈ E , which implies (i).

It remains to show that there exists at least one consensus
protocol gij with the required properties. Let

gij = g

(
acos

(
〈yi,yj〉

(〈yi,yj〉
2 + 〈zi,yj〉

2)
1
2

)
sgn〈zi,yj〉

)
,

where g is the almost globally convergent consensus protocol
for the dynamics (21) in [15], [16], i.e.,

g(ϑ) =


− 1
N−1 (π + ϑ) if ϑ ∈ [−π,− 1

N π),
ϑ if ϑ ∈ [− 1

N π,
1
N π],

1
N−1 (π − ϑ) if ϑ ∈ ( 1

N π, π].

To see that gij is Lipschitz, note that the discontinuity of the
sign function appears when 〈yj , zi〉 = 0 in which case the
argument of g is acos sgn〈yi,yj〉 ∈ {0, π} and g(−π) = g(π).

Let {v1,v2} be a basis of P . If (Ri(0))Ni=1 ∈ S2, then

yi = cosϑiv1 + sinϑiv2,

zi = cos(ϑi + π
2 )v1 + sin(ϕi + π

2 )v2

= − sin θiv1 + cos θiv2.

for some ϑi ∈ (−π, π] for all i ∈ V . Moreover,

ẏi = −ϑ̇i sinϑiv1 + ϑ̇i cosϑiv2,

wherefore (19) yields,

ϑ̇i = 〈− sinϑiv1 + cosϑiv2, ẏi〉 =
∑
j∈Ni

gij . (21)

Note that yj = 〈yi,yj〉yi + 〈zi,yj〉zi on P . The argument
of g is hence acos〈yi,yj〉 sgn〈zi,yj〉 = ϑj − ϑi, which can
be interpreted as a signed relative arc length on S1. As such,
the dynamics (21) reduces to

ϑ̇i =
∑
j∈Ni

g(ϑj − ϑi), (22)

i.e., to the form of the almost globally convergent consensus
protocol [15], [16] on S1. �

Let us return to the simulation problem of Section V-B.
Generating uniformly distributed initial conditions on SO(3)
and simulating Algorithm 25 where the algorithm of [15],
[16] is used to generate consensus on S1 for the three graph
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topologies of Table I, we find no failures to reach consensus.
Algorithm 25 hence outperforms Algortihm 24 and rivals the
practical performance of the algorithm [29]. Moreover, the
version of Algorithm 25 based on [15], [16] only requires each
agent to know an upper bound on N . Algorithm 25 also rivals
the theoretical performance of [29], as shown in Corollary
30 of Theorem 13. Note that we cannot conclude that the
consensus manifold is almost globally stable from the result
of Corollary 30 since System 23 under Algorithm 25 is not a
gradient descent flow.

Corollary 30. Suppose all feedback gains gij , for {i, j} ∈ E ,
in Algorithm 25 are chosen such that all equilibria of system
(17) are exponentially unstable except for those in C. Then all
equilibria of System 23 under Algorithm 25 are exponentially
unstable except those in C which are asymptotically stable.

Proof. Note that the linearization decouples like the dynamics
(18)–(20). Theorem 13 establishes that the all equilibria except
those belonging to the consensus set are unstable for the sub-
system (18). Any candidate for a stable equilibrium must hence
satisfy xi = xj for all {i, j} ∈ E . This requirement reduces
the dynamics (18)–(20) to (17) for which all equilibria apart
from those in C are exponentially unstable by assumption. That
C is asymptotically stable follows from Proposition 29. �

VI. CONCLUSIONS

This paper establishes almost global consensus on the n-
sphere for general n ∈ N\{1}, a class of intrinsic consensus
protocols and all connected, undirected graph topologies. The
term intrinsic refers to the feedback law, which is an intrinsic
gradient. These results show that the conditions for achieving
almost global consensus are more favorable on the n-sphere
than known results regarding other Riemannian manifolds
would suggest. In particular, almost global consensus on S1

[15] and SO(3) [29], [30] requires protocols that are tailored
for this specific purpose. The case of S1 differs from that
of the general n-sphere due to its low dimension. There are
asymptotically stable equilibrium sets on S1 that are disjunct
from the consensus set. If these sets are embedded on the n-
sphere for n ∈ N\{1} in the form of great circles then any
normal to the corresponding equatorial plane is a direction
of instability. The circle can also be embedded on SO(3), but
there it gives rise to asymptotically stable undesired equilibria.
By combing our understanding of almost global consensus on
S1 and S2 we design a novel consensus protocol on SO(3)
which is shown to avoid undesired equilibria in simulation.
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