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Preface
The integers and basic notions of geometry are taught in and known from school. If one wants
a deeper understanding, in number theory one is naturally led to study more general numbers
than just the classical integers and, thus, to introduce the concept of integral elements in number
fields. The rings of integers in number fields have certain very beautiful properties (such as the
unique factorisation of ideals, generalising the unique factorisation of a positive integer into
products of primes) which characterise them as Dedekind rings. Parallely, in geometry one
studies affine varieties through their coordinate rings. It turns out that the coordinate ring of a
curve is a Dedekind ring if and only if the curve is non-singular (e.g. has no self intersection).
With this in mind, we shall work towards the concept and the characterisation of Dedekind
rings. Along the way, we shall introduce and demonstrate through examples basic concepts of
algebraic geometry and algebraic number theory. Moreover, we shall be naturally led to treat
many concepts from commutative algebra.
We will point out that and in which ways these concepts are generalisations of notions that are
taught in secondary schools.

Good books are the following. But, there are many more!

• M. Reid, Undergraduate Commutative Algebra, Cambridge University Press.
• E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry.
• Dino Lorenzini. An Invitation to Arithmetic Geometry, Graduate Studies in Mathematics,

Volume 9, American Mathematical Society.
• M. F. Atiyah, I. G. Macdonald. Introduction to Commutative Algebra, Addison-Wesley

Publishing Company.

These notes are a reworked version of my lecture notes of previous terms. In preparing them,
I used several sources. The most important one is the lecture Algebra 2, which I taught at the
Universität Duisburg-Essen in the summer term 2009, which, in turn, heavily relies on a lecture
for second year students by B. H. Matzat at the Universität Heidelberg from summer term 1998.
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Modules and ideals

Integrality

Affine plane curves

I. Basic ring theory

In this lecture all rings are assumed to be commutative (unless otherwise stated). That’s
why the course is called Commutative Algebra; another common name for this kind of
course is Commutative Ring Theory.

We see the lecture Commutative Algebra as a preparation for deeper study of Algebraic Number
Theory and Algebraic Geometry or their combination Arithmetic Geometry. Those subjects
relate number theoretic or respectively geometric properties with properties of rings. These
properties are then analysed via the methods provided by commutative algebra.
Motivated and inspired by this, we shall let us be guided by examples from number theory and
geometry. Accordingly, we will devote some time to introduce the ring of integers in a number
field and the coordinate ring of a curve.
We always point out how the notions studied arise from and are related to mathematics en-
countered and taught at school.

1 Modules and ideals

Aims:

• Learn and master the concept of a module;

• know examples and standard theorems;

• be able to prove simple properties;

• recognise that ideals are special cases of submodules;

• understand the special roles of prime and maximal ideals and their relation to irreducible
and prime elements in integral domains.

Modules as generalisations of vector spaces
In secondary schools, one studies ‘linear algebra’, that is, ways to solve systems of linear
equations. While doing so, one encounters R2 (or even Rn), the first example of a vector space.
In linear algebra classes for first year students at the university, this theory gets a more abstract
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and more powerful framework. Here we are going to extend it further, by considering ‘vector
spaces’ over a general ring, instead of a field. The notion of ‘module’ is obtained by dropping
the requirement that the coefficients lie in a field from the definition of a vector space. It then
reads as:

Definition 1.1 Let R be a ring. An abelian group (M,+,0) together with a map

. : R×M→M,(r,x) 7→ r.x

is called a (left) R-module if the following properties are satisfied:

(a) 1.x = x for all x ∈M.

(b) r.(x+ y) = r.x+ r.y for all r ∈ R and all x,y ∈M.

(c) (r+ s).x = r.x+ s.x for all r,s ∈ R and all x ∈M.

(d) (r · s).x = r.(s.x) for all r,s ∈ R and all x ∈M.

Example 1.2 (a) Let K be a field. Any K-vector space is a K-module, and vice versa.

(b) Any ring R is an R-module by multiplication. This rather trivial statement will allow us to
see ideals as submodules below.

(c) Let R be a ring. Then M := Rn := R×R×·· ·×R︸ ︷︷ ︸
n copies

is an R-module (natural +, diagonal .).

We can think of the elements of Rn also as column vectors, as one usually does in (basic)
linear algebra. Later on, we shall sometimes adopt this convention when doing computations
with matrices.

Submodules and ideals
At school, one enounters the set of all integer multiples of a given integer Z ·a = {n ·a | n ∈ Z}.
This is also denoted (a), and is an example of a principal ideal. Also because of the general
absence of unique factorisation (but not only), one introduces a more general notion, extending
the set of multiples, namely the notion of ideals.

Definition 1.3 A subset I ⊆ R is called an ideal if

• ∀ i, j ∈ I : i+ j ∈ I and

• ∀ i ∈ I∀r ∈ R : r · i ∈ I.

Notation: I ◁R (or I ⊴R).
An ideal of the form (a) := R.a := {ra | r ∈ R} for some a ∈ R, i.e. the set of multiples of a,
is called a principal ideal.

The notion of principal ideal captures the notion of divisibility, already treated early in school.
Divisibility of integers is one of the classical and fundamental objects of study in number theory
and, of course, known from school. We now see its abstraction to rings.
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Definition 1.4 Let R be a ring.

• An element r ∈ R divides an element s ∈ R (in symbols: r | s) if there is t ∈ R such that
s = rt.

Example: 3 | 6 in Z.

• An element r ∈ R is called a unit if there is s ∈ R such that rs = 1 (equivalently, r is a
unit if and only if r divides 1). The set of units forms a group w.r.t. ·, denoted as R×.

Examples:

– Z× = {−1,1}.
– K× = K \{0} for any field K.

– (Z/nZ)× = {a mod n | gcd(a,n) = 1}.
– (Z×Z)× = {(1,1),(1,−1),(−1,1),(−1,−1)}.

• Two elements r,s ∈ R are associate if there is a unit t ∈ R× such that r = ts (note that
being associate is an equivalence relation).

Example: 3 and −3 are associate in Z (except 3 and −3, there’s no other element in Z
that is associate with 3).

• An element r ∈ R is called a zero-divisor if there is s ∈ R, s ̸= 0 such that rs = 0.

Examples:

– 0 is a zero-divisor in any ring.

– The class of 2 is a zero-divisor in Z/6Z because 2 ·3≡ 0 mod 6.

– (1,0) is a zero-divisor in Z×Z because (1,0) · (0,1) = (0,0).

• A ring is called an integral domain (or domain, for short) if 0 is its only zero-divisor.
Examples:

– Z is an integral domain.

– Any field is an integral domain (because any non-zero element is invertible, hence
not a zero-divisor).

– The polynomial ring over any integral domain is an integral domain.

– Z/nZ with n ∈ N≥1 is an integral domain if and only if it is a field if and only if
n is a prime number.

– Z×Z is not an integral domain.

Here is now the translation of divisibility to (principal) ideals: For a,b ∈ R we have

(a)⊆ (b)⇔ b | a

and
(a) = (b)⇔ a | b and b | a.

Next we generalise the notion of ideal, by introducing submodules, which are nothing else but
vector subspaces for a ring.
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Definition 1.5 Let M be an R-module. A subset N ⊆M is called an R-submodule of M if
0 ∈ N and + and . restrict to N making it into an R-module, i.e. for all n1,n2 ∈ N and all r ∈ R
we have

r.n1 +n2 ∈ N.

Note that taking the R-module M = R via multiplication, the R-submodules of R are exactly the
ideals of R.

Generating and describing submodules and ideals

Definition 1.6 Let M be an R-module and let mi ∈M for i ∈ I (some ‘indexing’ set). Denote
by

⟨mi|i ∈ I⟩ := {∑
j∈J

r j.m j | J ⊆ I finite subset ,r j ∈ R for j ∈ J}.

It is thus the set of all finite R-linear combinations of the mi for i ∈ I. It is an R-submodule
of M and it is called the submodule generated by the mi, i ∈ I.
In the special case I = {1,2,3, . . . ,n} we have

⟨mi|i ∈ I⟩= ⟨m1,m2, . . . ,mn⟩= {
n

∑
i=1

ri.mi | r1, . . . ,rn ∈ R}.

An R-module M is called finitely generated if there are n ∈ N and elements m1, . . . ,mn ∈M
such that ⟨m1, . . . ,mn⟩= M.
Let Mi for i ∈ I be submodules. We write

∑
i∈I

Mi := {∑
j∈J

m j | J ⊆ I finite subset ,m j ∈M j for j ∈ J}.

It is an R-submodule of M and it is called the sum of the submodules Mi, i ∈ I. If the set I is
finite, one also writes +, for example M1 +M2 + · · ·+Mn. One then has

M1 +M2 + · · ·+Mn = {
n

∑
i=1

mi | m1 ∈M1,m2 ∈M2, . . . ,mn ∈Mn}.

The reason why in the above definition we always have to take finite subsets J ⊆ I is that in
algebra only finite sums are allowed unless one has ‘completed’ the module. The mathematical
theory of Analysis is based on completion (the reals are the completion of the rationals with
respect to the standard absolute value); also in algebra one can do completions (generalising
those from Analysis), but in this lecture we do not have the time to treat them.

Note that the intersection of submodules of a given module is again a submodule (however,
the similar statement with the union is false). The R-submodule ⟨mi|i ∈ I⟩ can also be seen
as the intersection of all submodules of M containing all mi for i ∈ I; alternatively, it can be
characterised as the smallest submodule of M containing all the mi for i ∈ I. Furthermore, the
R-submodule ∑i∈I Mi can be seen as the R-submodule of M generated by all elements from
all Mi.

We now explicitly describe the special case of ideals; for that one, we also use bracket (·) instead
of ⟨·⟩. Let a1, . . . ,an be elements of R. The ideal generated by a1, . . . ,an (i.e. the R-submodule
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of R generated by a1, . . . ,an) is

(a1, . . . ,an) = ⟨a1, . . . ,an⟩= {
n

∑
i=1

riai | r1, . . . ,rn ∈ R}.

Any such ideal is called finitely generated. As a particular instance, for a ∈ R we find the
principal ideal generated by a

(a) = ⟨a⟩= R ·a = {r ·a | r ∈ R}.

More generally, if S is an ‘indexing’ set and {as}s∈S are elements of R, then we also write
(as | s ∈ S) for ⟨as | s ∈ S⟩.

Homomorphisms
We first recall the definition of a ring homomorphism.

Definition 1.7 Let R,S be rings. A map ϕ : R→ S is called ring homomorphism if

• ϕ(1) = 1,

• ϕ(r+ s) = ϕ(r)+ϕ(s) for all r,s ∈ R, and

• ϕ(r · s) = ϕ(r) ·ϕ(s) for all r,s ∈ R.

The notion of linear maps between modules is exactly the same as the notion of linear maps
between vector spaces:

Definition 1.8 Let R be a ring and M,N be R-modules. A map ϕ : M → N is called an
R-module homomorphism (or short: R-homomorphism, or: R-linear (map)) if

• ϕ(m1 +m2) = ϕ(m1)+ϕ(m2) for all m1,m2 ∈M and

• ϕ(r.m) = r.ϕ(m) for all m ∈M and all r ∈ R.

Lemma 1.9 The kernel ker(ϕ) := {m ∈M | ϕ(m) = 0} is an R-submodule of M.
The image im(ϕ) := {ϕ(m) | m ∈M} is an R-submodule of N.
By the way, the quotient (see below) N/ im(ϕ) is called the cokernel of ϕ .

Proof. This works precisely as for vector spaces. ■

Since ideals are submodules, we conclude that the kernel of any ring homomorphism is an ideal.
But, attention, the image of a ring homomorphism is not always an ideal: it is an R-submodule
of the target ring, say S, and that is not the same as an ideal of S, in general; it is the same if the
ring homomorphism is surjective.

Definition 1.10 Let R be a ring and N,M be R-modules. Let ϕ : M→ N be an R-homomor-
phism. We say that ϕ is a monomorphism if ϕ is injective. It is called an epimorphism if ϕ is
surjective. Finally, it is called an isomorphism if it is bijective.
If N = M, then an R-homomorphism ϕ : M→M is also called an R-endomorphism.
We let HomR(M,N) (or Hom(M,N) if R is understood) be the set of all R-homomorphisms
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ϕ : M→ N. If M = N, then one lets EndR(M) := HomR(M,M).

Lemma 1.11 Let R be a ring and N,M be R-modules. Then HomR(M,N) is itself an R-
module with respect to pointwise defined + and ., i.e. ( f + g)(m) := f (m) + g(m) and
(r. f )(m) := r.( f (m)) for all f ,g ∈ HomR(M,N), all m ∈M and all r ∈ R.

Proof. Exercise. ■

R Let R be a ring and let M be an abelian group M (with group operation + and neutral
element 0). Denote by End(M) the endomorphism ring of M as an abelian group. Suppose
there is a map

. : R×M→M, (r,m) 7→ r.m.

Then M is a left R-module if and only if the map

R→ End(M), r 7→ (x 7→ r.x)

is a ring homomorphism. This can be checked as an exercise.

Quotient modules and quotient rings
In a sense, the dual notion of a submodule is that of a quotient. We give the construction of
quotient modules in a formal way. It is very useful to see it alongside the construction of the
residue rings Z/nZ for n ∈ Z, i.e. to see it as a generalisation of modular arithmetic.

Proposition 1.12 Let R be a ring and N ≤M be R-modules. The relation x∼ y :⇔ x−y ∈ N
defines an equivalence relation on M. The equivalence classes x = x+N = {x+n | n ∈ N}
form the R-module denoted M/N with

• + : M/N×M/N→M/N, (x+N,y+N) 7→ (x+N)+(y+N) := x+ y+N,

• 0 = 0 = 0+N = N as neutral element w.r.t. +,

• . : R×M/N→M/N, (r,x+N) 7→ r · (x+N) := rx+N.

The R-module M/N is called the quotient of M by (or modulo) N (also called factor module).

Proof. Exercise. ■

We now apply this proposition to the situation of an ideal I of a ring R. This gives us an R-module
structure on the quotient module R/I, and, in particular, a scalar multiplication

. : R×R/I→ R/I, (r,s+ I) 7→ rs+ I.

In this setting we can actually do better and observe that this formula only depends on the coset
r+ I, leading to a ‘proper’ product map

· : R/I×R/I→ R/I, (r+ I,s+ I) 7→ (r+ I) · (s+ I) := rs+ I.

This makes R/I into a ring with neutral element for multiplication 1+ I.
Example 1.13 (a) C∼= R[X ]/(X2 +1).

(b) Fp = Z/(p) for p a prime.
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(c) F4 = F2[X ]/(X2 +X +1). This is a field with 4 elements and will be studied explicitly in an
exercise.

A major tool in many of our arguments in these lectures are the isomorphism theorems.

Proposition 1.14 — Isomorphism theorems for modules. Let R be a ring.

(a) Let M,N be R-modules and ϕ : M→ N be an R-homomorphism. Then the map

M/ker(ϕ)→ im(ϕ), m+ker(ϕ) 7→ ϕ(m)

is well-defined and an R-isomorphism.

(b) Let M be an R-module and let N1 ⊆ N2 be R-submodules of M. Then there is an R-
isomorphism

(M/N1)/(N2/N1)∼= M/N2.

(c) Let M be an R-module and let N1 and N2 be R-submodules of M. Then there is an
R-isomorphism

(N1 +N2)/N1 ∼= N2/(N1∩N2).

Proof. Exercise. ■

The corresponding statement of (a) for rings also holds in the stronger form that the resulting
map is actually a ring homomorphism, which means a little more than just saying that it is a
linear map, namely, that products are preserved; that is checked very simply.

Proposition 1.15 Let R,S be rings and ϕ : R→ S be a ring homomorphism. Then the map

R/ker(ϕ)→ im(ϕ), r+ker(ϕ) 7→ ϕ(r)

is well-defined and an isomorphism of rings.

Prime ideals and maximal ideals
In Z and – by definition – in any other unique factorisation domain, any nonzero element can
be factored uniquely into a finite product of prime elements (up to association). This fails to
hold true for more general rings. However, in some classes of rings (e.g. Dedekind rings, see
later), prime ideals are the ‘building blocks’ of all nonzero ideals in same way as prime numbers
are the ‘building blocks’ of the integers. Thus prime ideals are natural generalisations of the
prime numbers known from school. We first recall the general definition of irreducible and prime
elements in integral domains, which both generalise the familiar notion of prime number in Z.

Definition 1.16 Let R be an integral domain.

(a) An element r ∈ R\ (R×∪{0}) is called irreducible if, whenever r = st with s, t ∈ R, then
s ∈ R× or t ∈ R×.

Example: n ∈ Z\{−1,0,1} is irreducible if and only if its only divisors are 1,−1,n,−n;
i.e., the integer n is irreducible if it is ±1 a prime number (according to the ‘school
definition’: it is ≥ 2, and its only positive divisors are 1,n).

(b) An element r ∈ R\ (R×∪{0}) is called a prime element if, whenever r | st with s, t ∈ R,
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then r | s or r | t.

Let R be an integral domain and r ∈ R\ (R×∪{0}). One always has (see Proposition 11.3):

r is prime ⇒ r is irreducible.

Definition 1.17 Let R be a ring and I ◁R, I ̸= R an ideal.
The ideal I is called maximal if there is no ideal J◁R such that I ⊊ J ⊊ R.
The ideal I is called prime if, whenever ab ∈ I, then a ∈ I or b ∈ I.

In any integral domain R, one has for r ∈ R\ ({0}∪R×):

r is a prime element ⇔ (r) is a prime ideal.

If R is a PID, then one also has (see Proposition 11.12):

r is an irreducible element ⇔ (r) is a maximal ideal.

Example 1.18 (a) The prime ideals of Z are precisely (0) and the principal ideals (p) for p a
prime number. The only prime ideal that is not also a maximal ideal is (0).

(b) Let K be a field. The prime ideals of the polynomial ring K[X ] are (0) and the principal
ideals ( f (X)), where f (X) is a (without loss of generality) monic (highest coefficient equal
to 1) and irreducible polynomial in K[X ].

Proposition 1.19 Let R be a ring and I ◁R, I ̸= R an ideal.

(a) Then I is a prime ideal if and only if R/I is an integral domain.

(b) Then I is a maximal ideal if and only if R/I is a field.

Proof. (a) Let I be a prime ideal and let a+ I,b+ I ∈ R/I such that (a+ I)(b+ I) = ab+ I =
0+ I = 0, i.e. ab ∈ I. By the property of I being a prime ideal, a ∈ I or b ∈ I, which immediately
translates to a+ I = 0 or b+ I = 0.
Conversely, assume that R/I is an integral domain and let a,b ∈ R such that ab ∈ I. This means
(a+ I)(b+ I) = 0, whence a+ I = 0 or b+ I = 0 so that a ∈ I or b ∈ I, proving that I is a prime
ideal.
(b) Suppose that I is a maximal ideal and let x+ I ̸= 0 be an element in R/I. We must show it is
invertible. The condition x+ I ̸= 0 means x ̸∈ I, whence the ideal J = (I,x) is an ideal strictly
bigger than I, whence J = R by the maximality of I. Consequently, there are i ∈ I and r ∈ R such
that 1 = i+ xr. This means that r+ I is the inverse of x+ I.
Now let us assume that R/I is a field and let J ⊋ I be an ideal of R strictly bigger than I. Let x be
an arbitrary element in J but not in I. As R/I is a field, the element x+ I is invertible, whence
there is y ∈ R such that (x+ I)(y+ I) = xy+ I = 1+ I ⊆ J. So, 1 ∈ J, whence R⊆ J, showing
that J = R, whence I is maximal. ■

Here are some important consequences.
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Corollary 1.20 Let R be a ring.

(a) Every maximal ideal is a prime ideal.

(b) R is an integral domain⇔ (0) is a prime ideal of R.

(c) R is a field⇔ (0) is a maximal ideal of R.

(d) If p is a prime number (in Z), then Z/(p) =: Fp is a field, the finite field with p elements.

(e) Let K be a field and f ∈ K[X ] a non-constant irreducible polynomial. Then ( f ) is a
maximal ideal of the principal ideal domain K[X ] and the quotient K[X ]/( f ) is a field.
(In French this field has the name corps de rupture de f .)

(f) Let f ∈ Fp[X ] be any irreducible polynomial of degree r ≥ 1. Then Fp[X ]/( f ) is a field
of cardinality pr. It is denoted Fpr (and if r > 1 it is different from Z/prZ, which is not
even an integral domain!).

In fact, one can show (see any class on Galois theory) that all fields of cardinality pr are
isomorphic, explaining the notation.

Proof. (a) Every field is an integral domain.
(b,c) R/(0) = R.
(d-f) trivial. ■

We later need the existence of maximal ideals.

Proposition 1.21 Let R be a ring different from the zero-ring. Then R has a maximal ideal.

The proof, which uses Zorn’s lemma, can be found on page 75.

Corollary 1.22 (a) Every ideal a⊊ R is contained in some maximal ideal m of R.

(b) Every non-unit x ∈ R\R× is contained in a maximal ideal m of R.

Proof. (a) Consider the natural projection π : R 7→ R/a. Let m be a maximal ideal of R/a, which
exists by Proposition 1.21. Then m := π−1(m) (preimage) is a maximal ideal of R, because
R/m∼= (R/a)/m is a field.
(b) If x is a non-unit, then (x) is a proper ideal of R, so we can apply (a). ■

2 Integrality
Aims:

• Learn and master the concept of algebraic elements and algebraic field extensions;

• learn and master the concept of integral elements and integral ring extensions;

• know examples and standard theorems;

• be able to prove simple properties.

In this section, we introduce a generalisation of the integers Z. As known from and studied
at school, the integers can be characterised as those rational numbers that can be written with
denominator 1. We will define integers in any finite extension of the rationals, and even beyond,
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called ‘algebraic integers’. This new notion will not only be useful in number theory, but also
allow us to study the geometry of curves. An example of an algebraic integer is

√
2, whereas√

2
2 = 1√

2
is not an algebraic integer.

We assume some basic familiarity with fields and field extensions (see the appendix to this
section for some details). In this section we shall introduce algebraic field extensions and their
natural generalisation integral ring extensions in parallel.

Generation of subrings and subfields

Definition 2.1

If R is a subring of a ring S, then we say that
R⊆ S is a ring extension.

If K is a subfield of a field L, then we say
that K ⊆ L is a field extension. For the latter,
the piece of notation L/K is also commonly
used.

As every field is a ring, a field extension is a special case of a ring extension, i.e. every field
extension is also a ring extension. However, in the case of a field extension we have the tools of
(usual) linear algebra at our disposal and we can prove stronger statements and/or give simpler
proofs for field extensions than for ring extensions.
We now aim at constructing ring extensions, starting from a ‘base ring’ R and adding elements to
it.

Lemma 2.2 Let R⊆ S be a ring extension.

(a) Let a ∈ S. Then the evaluation map

eva : R[X ]→ S,
d

∑
i=0

ciX i 7→
d

∑
i=0

ciai

is a ring homomorphism. The map is expressed more concisely as R[X ]∋ f (X) 7→ f (a)∈
S.

(b) (The same as (a) for more than one element.) Let ai ∈ S for i ∈ I (some ‘indexing’ set).
Then the evaluation map

ev(ai)i∈I : R[Xi | i ∈ I]→ S, f ((Xi)i∈I) 7→ f ((ai)i∈I)

is a ring homomorphism.

Proof. Exercise. ■

Definition 2.3 Assume the set-up of Lemma 2.2.

(a) The image of eva is called the subring of S generated by a over R and denoted as R[a].
We thus have the ring extensions R⊆ R[a]⊆ S.

(b) The image of ev(ai)i∈I is called the subring of S generated by the (ai)i∈I over R and denoted
as R[(ai)i∈I]. If I = {1,2,3, . . . ,n} is a finite set, we also write R[a1, . . . ,an].

Note that R[a] and R[(ai)i∈I] are indeed subrings, since images of ring homomorphisms are
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always subrings. Very explicitly, the elements of R[a] are all of the form ∑
d
i=0 riai with d ∈ N

and r0, . . . ,rn ∈ R. Of course, sums, differences and products of such elements are again of the
same form (providing a direct proof that R[a] is a subring of S).
Example 2.4 (a) The subring Z[2] of C is equal to Z.

(b) The subring Z[
√

2] of C is the ring A discussed in the beginning of this section. Reason:

n

∑
i=0

ri
√

2
i
=

n

∑
i=0 even

ri2i/2 +(
n

∑
i=1 odd

ri2(i−1)/2)
√

2.

Note that Z[
√

2] is finitely generated as a Z-module (i.e. as an abelian group).

We will be able to express this property by saying that
√

2 is integral over Z.

(c) The subring Z[1
2 ] of C is contained in Q. It is NOT finitely generated as a Z-module.

Reason: Consider a finite set of elements a1
2e1 , . . . ,

an
2en and let f be bigger than all e1, . . . ,en.

One can never express 1
2 f as a Z-linear combination of the elements of the chosen set. Hence,

there cannot exist a finite generating set.

This (negative) property will be expressed below as 1
2 is not integral over Z.

Let us also define the notion of the subfield generated by a set of elements. It need not coincide
with the subring generated by the same set of elements because of the possible existence of
non-invertible elements.
Note that the intersection of any set of subfields of a field L is again a field. Hence, it makes
sense to speak of the smallest subfield of L containing a given set of elements; namely, one can
define it as the intersection of all subfields of L containing that set of elements.

Definition 2.5 Let L/K be a field extension and a∈ L. Define K(a) to be the smallest subfield
of L containing a. We say that K(a) is the subfield of L generated by a over K or K adjoined a.
If ai ∈ L for i ∈ I (some ‘indexing’ set), we define K(ai | i ∈ I) to be the smallest subfield
of L containing ai for all i ∈ I. It is also called the subfield of L generated by a over K or K
adjoined the ai for i ∈ I.

Lemma 2.6 Let L/K be a field extension and a ∈ L. Then Frac(K[a]) = K(a).

Proof. The inclusion K[a]⊆ K(a) implies Frac(K[a])⊆ K(a). As K(a) is the intersection of all
fields containing K and a, one also has K(a)⊆ Frac(K[a]). ■

We now give examples analogous to the previous ones.
Example 2.7 (a) The subfield Q(2) of C is equal to Q.

(b) The subfield Q(
√

2) of C is equal to Q[
√

2] because the latter ring is already a field: The
inverse of a+b

√
2 ̸= 0 is a

a2−2b2 − b
a2−2b2

√
2. Note that the denominator is never 0. For, if it

were, then
√

2 = a
b ∈Q.

Below we will give a general argument that also implies this fact because
√

2 will turn out
to be algebraic over Q, in the definition to come.

(c) The subring Q[1
2 ] of Q is equal to Q.
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Algebraic and integral elements
Let R⊆ S be a ring extension and let a ∈ S. We are now going to study R[a]. We know that it is
generated, as R-module, by the elements

1 = a0,a,a2,a3,a4, . . .

When is R[a] generated, as R-module, by 1 = a0,a,a2, . . . ,an−1 for some n ∈ Z≥1?
Suppose this is the case. Then we can express an as an R-linear combination of lower powers
of a:

an = r0 + r1a+ r2a2 + · · ·+ rn−1an−1 with r0, . . . ,rn−1 ∈ R.

Setting ci =−ri for i = 0, . . . ,n−1, this can be rewritten as

0 = c0 + c1a+ c2a2 + · · ·+ cn−1an−1 +an = f (a)

for the monic polynomial f (X) = c0 + c1X + c2X2 + · · ·+ cn−1Xn−1 +Xn ∈ R[X ]. We have thus
produced a monic polynomial with coefficients in R that annihilates a.
Conversely, suppose we have such a monic polynomial satisfying f (a) = 0. Then an can be
written as an R-linear combination of 1 = a0,a,a2, . . . ,an−1. Even better: we can iterate this in-
ductively and conclude that am can be written as an R-linear combination of 1= a0,a,a2, . . . ,an−1

for any integer m≥ n.
Our conclusion of this short discussion is the following proposition.

Proposition 2.8 The ring R[a] can be generated by 1 = a0,a,a2, . . . ,an−1 as an R-module if
and only if there exists a monic polynomial f ∈ R[X ] of degree n such that f (a) = 0.

We turn this important property into a definition.

Definition 2.9

Let R⊆ S be a ring extension.
An element a ∈ S is called integral over R
if there exists a monic polynomial f ∈ R[X ]
such that f (a) = 0.

Let L/K be a field extension.
An element a∈ L is called algebraic over K
if there exists a monic polynomial f ∈ K[X ]
such that f (a) = 0. If a ∈ L is not algeb-
raic over K, we say that it is transcendental
over K.

Note that algebraic and integral are relative notions: an element is algebraic or integral over
some field/ring. Note also that ‘algebraic’ is just another word for ‘integral’ in the case of a field
extension L/K because any field extension can be viewed as a ring extension.
Example 2.10 (a) Let K be a field. Every a ∈ K is algebraic over K. Indeed, a is a zero of the

polynomial X−a ∈ K[X ].

(b)
√

2 is algebraic over Q. Indeed,
√

2 is a zero of the polynomial X2−2 ∈Q[X ]. Note that
the polynomial X−

√
2 may not be used here, since its coefficients are not in Q!

(c) π is algebraic over R (special case of (a)).

(d) i =
√
−1 is algebraic over Q.

(e) π is transcendental over Q. This is the theorem of Lindemann (from analysis). It implies by
Galois theory that the circle cannot be squared using compass and ruler. By this we refer to



2 Integrality 17

the ancient problem of constructing a square whose area is equal to that of a given circle,
just using a (non-marked) ruler and a compass.

(f) Let L/K be a field extension and a ∈ L. Then the evaluation map eva : K[X ]→ L given by
f 7→ f (a) (see Lemma 2.2) is injective if and only if a is transcendental over K.

Indeed, if a is algebraic over K, then there is a monic polynomial f ∈ K[X ] such that
f (a) = 0. This just means that f is in the kernel of the evaluation map, so eva is not injective.
Conversely, if eva is not injective, then there is some non-zero polynomial f in the kernel
of the evaluation map, which we may assume to be monic after division by the leading
coefficient. That, however, just means f (a) = 0, whence a is algebraic over K.

Example 2.11 (a) The elements of Q that are integral over Z are precisely the integers of Z.

(b)
√

2 ∈ R is integral over Z because X2−2 annihilates it.

(c) 1+
√

5
2 ∈ R is integral over Z because X2−X−1 annihilates it.

In the case of a field extension L/K, the tools of (usual) linear algebra and the fact that the
polynomial ring K[X ] is a principal ideal domain (Attention: in general, R[X ] does not have
this nice property! Even Z[X ] does not.) allow us establish the existence of a unique minimal
polynomial annihilating a given a ∈ L that is algebraic over K; this further shows that K[a]
equals K(a) and we obtain that the degree of the field extension K(a)/K equals the degree of the
minimal polynomial. The situation is a lot more complicated for general ring extensions, which
are not field extensions.

Proposition 2.12 Let L/K be a field extension and let a ∈ L be algebraic over K.

(a) If a is algebraic over K, then there is a unique monic polynomial ma ∈ K[X ] such that
ker(eva) = (ma), where (ma) is the principal ideal of K[X ] consisting of all the multiples
of ma. In particular, any f ∈ K[X ] such that f (a) = 0 is a multiple of ma.

The polynomial ma is called the minimal polynomial of a over K.

(b) Let a be algebraic over K. Then the minimal polynomial ma ∈ K[X ] of a over K is
irreducible (as element of K[X ]). It can also be characterised as the monic polynomial in
K[X ] of smallest degree having a as a zero.

(c) Let a be algebraic over K. Then the induced map

eva : K[X ]/(ma)→ L, f +(ma) 7→ f (a)

is an injective field homomorphism and identifies K[X ]/(ma) with K[a] and K(a).

(d) Let a be algebraic over K. Then K(a) is a finite extension of K and its degree [K(a) : K]
is equal to the degree of the minimal polynomial ma of a over K. A K-basis of K(a) is
given by 1,a,a2, . . . ,ad−1, where d = [K(a) : K].

Proof. (a) We know that K[X ] is a principal ideal domain. Hence, the kernel of eva is a principal
ideal, so, it is generated by one element f . As eva is not injective (a is assumed to be algebraic),
f is non-zero. A generator of a principal ideal is unique up to units in the ring. So, f is unique up
to multiplication by a unit of K, i.e. up to multiplication by an element from K \{0}. If f is of the
form rdXd +rd−1Xd−1+ · · ·+r0 ∈K[X ] with rd ̸= 0, then ma := 1

rd
f = Xd + rd−1

rd
Xd−1+ · · ·+ r0

rd
is the desired unique polynomial.
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(b) Let f ∈ K[X ] be a nonzero polynomial such that f (a) = 0. Then f ∈ ker(eva) = (ma), so
that ma | f , implying that the degree of ma is less than or equal to the degree of f .
If ma were reducible, then we would have ma = f g with f ,g ∈ K[X ] both of smaller degree than
the degree of ma. But 0 = ma(a) = f (a)g(a) would imply that f (a) = 0 or g(a) = 0. Both would
contradict the minimality of the degree of ma.
(c) Since ma is irreducible, K[X ]/(ma) is a field. The injectivity follows from the isomorph-
ism theorem for rings Proposition 1.15. Since K[a] is a field, K[a] = Frac(K[a]) = K(a) by
Lemma 2.6.
(d) We first notice that 1,a,a2, . . . ,ad−1 are K-linearly independent because any non-zero K-linear
combination of these elements would lead to an annihilating polynomial of a with coefficients
in K of degree at most d−1, which does not exist. We already know from Proposition 2.8 that
1,a, . . . ,ad−1 generate K[a] as a K-vector space. Consequently, these elements form a K-basis
of K[a]. ■

Example 2.13 We make a minor change with respect to Example 2.11(c) and take a := 1+
√
−5

2 ∈
C. This element is not integral over Z because the minimal polynomial of a over Q equals
f = X2−X + 5

2 . If there were a monic polynomial h ∈ Z[X ] annihilating a, then we would have
h = f g with some monic polynomial g ∈Q[X ]. Since h ∈ Z[X ], a lemma of Gauß that is proved
in most basic algebra classes implies that both f and g are in Z[X ], which is a contradiction.

Algebraic field extensions and integral ring extensions

Definition 2.14

A ring extension R⊆ S is called integral if
all s ∈ S are integral over R.

A field extension L/K is called algebraic if
every a ∈ L is algebraic over K.
If the extension L/K is not algebraic, it is
called transcendental.

Again, as every field is a ring, any algebraic field extension can be viewed as an integral ring
extension. We now characterise these notions by finiteness properties. For this, we need to apply
some more general tools from linear algebra working over rings: vector spaces (if L/K is a field
extension, we saw L as a K-vector space and that was a very important tool) will have to be
replaced by modules. The important thing to remark is that one does not have the notion of
dimension over rings, so the proofs will have to change a bit.
Recall from Linear Algebra:

Proposition 2.15 — Cramer’s rule. Let R be a ring and M = (mi, j)1≤i, j≤n be an n×n-matrix
with entries in R. The adjoined matrix is defined as M∗ = (m∗i, j)1≤i, j≤n with entries

m∗i, j := (−1)i+ j det(Mi, j),

where Mi, j is the matrix obtained from M by deleting the i-th column and the j-th row.
Then the following equation holds:

M ·M∗ = M∗ ·M = det(M) · idn×n.

We can now state and prove the following equivalent descriptions of integrality.

Proposition 2.16 Let S be a ring, R⊆ S a subring and a ∈ S. Then the following statements
are equivalent:
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(i) a is integral over R.

(ii) R[a]⊆ S is a finitely generated R-module.

(iii) R[a] is contained in a subring T ⊆ S such that T is a finitely generated R-module.

(iv) There is a finitely generated R-module T ⊆ S which contains 1 and such that multiplica-
tion by a sends T into itself.

Proof. (i)⇒ (ii): This follows from Proposition 2.8.
(ii)⇒ (iii): Just take T := R[a].
(iii)⇒ (iv): Take the same T .
(iv)⇒ (i): We must make a monic polynomial with coefficients in R annihilating a. For this we
use Cramer’s rule. As T is finitely generated as an R-module, we may pick a finite generating set
{t1, . . . , tn}, i.e. any element of t ∈ T can be represented as t = ∑

n
j=1 r jt j with some r j ∈ R for

j ∈ {1, . . . ,n}.
In particular, as multiplication by a sends T to itself, ati can be written as

ati =
n

∑
j=1

di, jt j with di, j ∈ R.

Form the matrix D = (di, j)1≤i, j≤n. It has coefficients in R. Let M := aidn×n−D. It is a matrix
with coefficients in S. Note that we have

M

 t1
t2
...
tn

= (

( a 0 ··· 0
0 a ··· 0
...

...
. . .

...
0 0 ··· a

)
−

 d1,1 d1,2 ··· d1,n
d2,1 d2,2 ··· d2,n

...
...

. . .
...

dn,1 dn,2 ··· dn,n

)

 t1
t2
...
tn

= 0

By Cramer’s rule, it follows

M∗M

 t1
t2
...
tn

= det(M)idn×n

 t1
t2
...
tn

= det(M)

 t1
t2
...
tn

= 0,

so that det(M)t j = 0 for all j ∈ {1, . . . ,n}. But, as 1 = ∑
n
j=1 e jt j for some e j ∈ R, it follows

det(M) = det(M) ·1 =
n

∑
j=1

e j det(M)t j = 0.

Hence, the characteristic polynomial of D:

f (X) := det(X · idn×n−D)

is a monic polynomial with entries in R such that f (a) = 0, whence a is integral over R. ■

Let us summarise this important proof in other words. The finite generation ‘(i)⇒ (ii)’ follows
from the explicit way in which one can represent ‘high’ powers of a by lower ones using the
relation an =−(cn−1an−1 + cn−2an−2 + · · ·+ c0) coming from the definition of integrality.
The core of the argument is the implication ‘(iv)⇒ (i)’. The finite generation and the stability
of T under multiplication by a enables us to express this multiplication as a square matrix D with
entries in R. Of course, a is an eigenvalue of D. As such, it should be a zero of the characteristic
polynomial of D, which is a monic polynomial with coefficients in R. That is exactly what we
show in the proof. The only complication is that we work over a ring, and hence the linear
algebra becomes a bit more complicated (than in standard linear algebra courses, which work
over fields or even R); this forces us to apply Cramer’s rule instead of a more direct argument.
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Proposition 2.17 Let R ⊆ S ⊆ T be ring extensions. Then the following statements are
equivalent:

(i) T is finitely generated as an R-module.

(ii) T is finitely generated as an S-module and S is finitely generated as an R-module.

Proof. (i)⇒ (ii): This is trivial.
(ii) ⇒ (i): Let t1, . . . , tn ∈ T be generators of T as an S-module. This means that any t ∈ T
can be written in the form t = ∑ i = 1nciti for c1, . . . ,cn ∈ S. Furthermore, let s1, . . . ,sm ∈ S be
generators of S as an R-module. This implies that every ci, for i = 1, . . . ,n can be written in the
form ci = ∑

m
j=1 ri, js j. This leads to the expression

t =
n

∑
i=1

m

∑
j=1

ri, js jti,

proving that the elements s jti for 1≤ j ≤ m and 1≤ i≤ n generate T as an R-module. ■

Corollary 2.18 Let R ⊆ S be a ring extension and let a1, . . . ,an ∈ S. Then the following
statements are equivalent:

(i) The elements a1, . . . ,an are integral over R.

(ii) R[a1, . . . ,an] is finitely generated as an R-module.

(iii) The ring extension R⊆ R[a1, . . . ,an] is integral.

Proof. (i)⇒ (ii): We proceed by induction. The case n = 1 is the implication (i)⇒ (ii) of Pro-
position 2.16. Assume the statement is proved for n−1. Then we know that T = R[a1, . . . ,an−1]
is finitely generated as an R-module. Furthermore T [an] is finitely generated as T -module as an

is integral over R (and hence over T ). By Proposition 2.17, T [an] = R[a1, . . . ,an−1,an] is finitely
generated as an R-module.
(ii) ⇒ (iii): Let a ∈ R[a1, . . . ,an]. The implication (iii) ⇒ (i) of Proposition 2.16 with T =
R[a1, . . . ,an] shows that a is integral over R.
(iii) ⇒ (i): By definition, elements in an integral ring extension are integral over the base
ring. ■

Corollary 2.19 Let R⊆ S be a ring extension. If S is finitely generated as an R-module, then
R⊆ S is an integral ring extension.

Proof. Take generators a1, . . . ,an of S as an R-module. Then S = R[a1, . . . ,an] and we can apply
Corollary 2.18. ■

Example 2.20 The ring extensions Z[
√

2]/Z and Z[1+
√

5
2 ]/Z are integral, whereas Z[1+

√
−5

2 ]/Z
is not.

Corollary 2.21 Let R⊆ S⊆ T be ring extensions. Then ‘transitivity of integrality’ holds:

T/R is integral ⇔ T/S is integral and S/R is integral.
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Proof. The direction ‘⇒’ is trivial. Conversely, let t ∈ T . By assumption it is integral over S, i.e.
t is annihilated by a monic polynomial Xn + sn−1Xn−1 + · · ·+ s0 ∈ S[X ]. All the coefficients lie
in the subring U := R[s0,s1, . . . ,sn−1]. As the coefficients of the minimal polynomial of t all lie
in the subring U := R[s0,s1, . . . ,sn−1], it follows that t is integral over U , whence U [t] is finitely
generated as a U-module. However, the integrality of R⊆ S implies by Corollary 2.18 that U is
finitely generated as an R-module. Consequently, Proposition 2.17 implies that U [t] is finitely
generated as an R-module. Consequently, t is integral over R. ■

Algebraic closure and integral closure

Definition 2.22

Let R⊆ S be a ring extension. Let L/K be a field extension.

(a) The set

RS = {a ∈ S | a is integral over R}

is called the integral closure of R in S. An
alternative name is: normalisation of R in S.

(a) The set

KL := {a ∈ L | a is algebraic over K}

is called the algebraic closure of K in L.

We will see in a moment that the integral
closure of R in S is integrally closed in S,
justifying the names.

Also the algebraic closure of K in L is al-
gebraically closed in L.

Note that R⊆ S is an integral ring extension
if and only if RS = S.

Note that L/K is an algebraic field extension
if and only if KL = L.

(b) We say that R is integrally closed in S if
RS = R.

(b) We say that K is algebraically closed
in L if KL = K.

(c) An integral domain R is called integrally
closed (i.e. without mentioning the ring in
which the closure is taken) if R is integrally
closed in its fraction field.

(c) A field K is called algebraically closed
(without mentioning any extension field) if
for any field extension L/K one has KL =K.

Note that this means that there is no proper
integral extension of R inside the fraction
field of R.

Note that this means that there is no proper
algebraic field extension of K.

Note that (a) and (b) are exactly the same for both sides, in the sense that considering fields as
rings, the right hand side column is a special case of the left hand side one. Attention! This is
not the case for point (c).
Our next aim is to show in an elegant way that RS is a ring.

Proposition 2.23 Let R⊆ S be a ring extension.

(a) RS is a subring of S.

(b) Any t ∈ S that is integral over RS lies in RS. In other words, RS is integrally closed in S
(justifying the name).

Proof. (a) Let a,b ∈ RS. As both of them are integral over R, the extension R[a,b] is integral. As
it contains a+b, a ·b as well as 0 and 1, these elements are integral over R and hence lie in RS,
showing that RS is a ring.
(b) Any s ∈ S that is integral over RS is also integral over R (by the transitivity of integrality),
whence s ∈ RS. ■
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We have the same for the algebraic closure of K in L.

Proposition 2.24 Let L/K be a field extension.

(a) The algebraic closure KL of K in L is an algebraic field extension of K.

(b) Any t ∈ L that is algebraic over KL lies in KL. In other words, KL is algebraically closed
in L (justifying the name).

Proof. The only point that is not covered by the ring situation Proposition 2.23 is that KL is a
field. We know that it is a ring and so we only need to show that any 0 ̸= b ∈ KL has an inverse.
As b is algebraic over K, we have K[b] = K(b). Consequently, 1/b lies in K(b)⊆ KL. ■

Number fields and rings of integers

Definition 2.25 A number field K is a finite field extension of Q. The ring of integers of K is
the integral closure of Z in K, i.e. ZK . An alternative notation is OK .

Example 2.26 (a) Q is a number field (but: R is not a number field).

(b) Q[X ]/( f (X)) is a number field with an irreducible non-constant polynomial f ∈Q[X ].

(c) Q(
√

d) = {a+b
√

d | a,b ∈ Z} for 0,1 ̸= d ∈ Z square-free, is a number field of degree 2 (a
quadratic field).

Example 2.27 Let d ̸= 0,1 be a squarefree integer. The ring of integers of Q(
√

d) is

(1) Z[
√

d], if d ≡ 2,3 (mod 4),

(2) Z[1+
√

d
2 ], if d ≡ 1 (mod 4).

(Proof as an exercise.)
The next couple of results are inspired by rings of integers, but we formulate the statements in
more generality.

Proposition 2.28 Every unique factorisation domain (UFD) is integrally closed.

Proof. Let R be a UFD with fraction field K. Let x = b
c ∈ K be integral over R. We assume that

b and c are coprime (i.e. do not have a common prime divisor). We want to show that x ∈ R.
Start with the equation annihilating x:

0 = xn +an−1xn−1 + · · ·+a0 =
bn

cn +an−1
bn−1

cn−1 + · · ·+a0.

Multiply through with cn and move bn to the other side:

bn =−c
(
an−1bn−1 + can−2bn−2 + · · ·+ cn−1a0

)
,

implying c ∈ R× (otherwise, this would contradict the coprimeness of b and c), so that x =
bc−1 ∈ R. ■

The following proposition shows, in particular, how one can write elements as fractions. In
the situation of that proposition, any element of L can be written as a fraction s

r , where s is an
integral element over R, and the denominator can be chosen in R. For instance, in Q(

√
2), any
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element can be written as a+b
√

2
d with a,b,d ∈ Z and, of course d ̸= 0. One finds here that the

integral elements are those that can be written with denominator 1. Attention! There’s a little

trap. The analog in Q(
√

5) looks slightly different: any element can be written as a+b 1+
√

5
2

d again
with a,b,d ∈ Z and d ̸= 0; in that writing, an element is integral if and only if the denominator
can be taken to be 1. Of course, one could simplify the writing to r+s

√
5

t with r,s, t ∈ Z, t ̸= 0,

but then there is an integral (over Z) element which needs a 2 in the denominator, namely 1+
√

5
2 .

Proposition 2.29 Let R be an integral domain, K = Frac(R), L/K a finite field extension and
S := RL the integral closure of R in L. Then the following statements hold:

(a) Every a ∈ L can be written as a = s
r with s ∈ S and 0 ̸= r ∈ R, i.e. all denominators can

be chosen in R.

(b) L = Frac(S) and S is integrally closed.

(c) If R is integrally closed, then S∩K = R.

Proof. (a) Let a ∈ L have the minimal polynomial over K

ma(X) = Xn +
cn−1

dn−1
Xn−1 +

cn−2

dn−2
Xn−2 + · · ·+ c0

d0
∈ K[X ]

with ci,di ∈ R and di ̸= 0 (for i = 0, . . . ,n−1). We form a common denominator d := d0 ·d1 ·
· · · ·dn−1 ∈ R, plug in a and multiply through with dn:

0 = dnma(a) = (da)n +
cn−1d
dn−1

(da)n−1 +
cn−2d2

dn−2
(da)n−2 + · · ·+ c0dn

d0
∈ R[X ],

showing that da is integral over R, i.e. da ∈ S, or in other words, a = s
d for some s ∈ S.

(b) By (a) we know that L is contained in the fraction field of S. As S is contained in L, it is
clear that also the fraction field of S is contained in L, showing the claimed equality. That S is
integrally closed means that it is integrally closed in L. We have already seen that the integral
closure of R in L is integrally closed in L.
(c) This is just by definition: If s ∈ S, then it is integral over R; if s is also in K, then as R is
integrally closed (in K), it follows that s ∈ R. The other inclusion S∩K ⊇ R is trivial. ■

Some notes on algebraically closed fields

Proposition 2.30 A field K is algebraically closed if and only if any non-constant polynomial
f ∈ K[X ] has a zero in K.

Proposition 2.31 Let K be a field. Then there exists an algebraic field extension K/K such
that K is algebraically closed.
The field K is called an algebraic closure of K (it is not unique, in general).

The proof is not so difficult, but, a bit long, so I am skipping it.
Example 2.32 (a) C is algebraically closed; R is not. RC = C.

(b) QC = {x ∈ C | x is algebraic over Q}=: Q. We have Q is an algebraic closure of Q.

(c) Both Q and C are algebraically closed, but C is not an algebraic closure of Q because the
extension C/Q is not algebraic.
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(d) Note that Q is countable (Exercise), since we can count the set of polynomials with coef-
ficients in Q and each polynomial only has finitely many zeros; but, as we know, C is not
countable.

3 Affine plane curves
Aims:

• Learn and master the concept of affine algebraic sets;

• learn and master the concept of the Zariski topology;

• know first examples of the translation of geometric into algebraic properties;

• know examples and standard theorems;

• be able to prove simple properties.

Curves are known from and studied at school. Here we take an algebraic point of view on them.
This point of view will enable us to express geometric properties in an algebraic way.

Definition 3.1 Let K be a field and L/K a field extension. Let n ∈ N. The set of L-points of
affine n-space is defined as An(L) := Ln (i.e. n-dimensional L-vector space).
Let S⊆ K[X1, . . . ,Xn] be a subset. Then

VS(L) := {(x1, . . . ,xn) ∈ An(L) | f (x1, . . . ,xn) = 0 for all f ∈ S}

is called the set of L-points of the affine (algebraic) set belonging to S.
If L = K is an algebraic closure of K, then we also call VS(K) the affine set belonging to S.
If the set S consists of a single non-constant polynomial, then VS(K) is also called a hypersur-
face in A(K).
If n = 2 and S = { f} with non-constant f , then VS(K) is called a plane curve (because it is a
curve in the plane A2(K). Its L-points are defined as VS(L) for L/K a field extension.

Convention: When the number of variables is clear, we write K[X ] for K[X1, . . . ,Xn]. In the same
way a tuple (x1, . . . ,xn) ∈ An(K) is also abbreviated as x if no confusion can arise.
The letter ‘V’ is chosen because of the word ‘vanishing set’ (German: ‘Verschwindungsmenge’).
Example 3.2 (a) K = R, n = 2, K[X ,Y ] ∋ f (X ,Y ) = aX +bY + c non-constant. Then V{ f}(R)

is a line (y = −a
b x− c

b if b ̸= 0; if b = 0, then it is the line with x-coordinate − c
a and any

y-coordinate).

(b) K = R, n = 2, K[X ,Y ] ∋ f (X ,Y ) = X2 +Y 2− 1. Then V{ f}(R) is the circle in R2 around
the origin with radius 1.

(c) K =Q, f (X ,Y ) := X2 +Y 2 +1. Note V{ f}(R) = /0, but (0, i) ∈ V{ f}(C).

(d) K = F2, f (X ,Y ) := X2 +Y 2 +1 = (X +Y +1)2 ∈ F2[X ]. Because of f (a,b) = 0⇔ a+b+
1 = 0 for any a,b ∈ L, L/F2, we have

V{ f}(L) = V{X+Y+1}(L),

which is a line.
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Lemma 3.3 A plane curve has infinitely many points over any algebraically closed field.
More precisely, let K be a field, K an algebraic closure of K and f (X ,Y ) ∈ K[X ,Y ] a non-
constant polynomial.
Then V{ f}(K) is an infinite set.

Proof. Any algebraically closed field has infinitely many elements. This can be proved using
Euclid’s argument for the infinity of primes, as follows. Suppose K only has finitely many
elements a1, . . . ,an. Form the polynomial g(X) := 1+∏

n
i=1(X −ai). Note that g(ai) = 1 ̸= 0

for all i = 1, . . . ,n. Hence, we have made a polynomial of positive degree without a zero,
contradiction.
Back to the proof. We consider f as a polynomial in the variable Y with coefficients in K[X ], i.e.

f (X ,Y ) =
d

∑
i=0

ai(X)Y i with ai(X) ∈ K[X ].

First case: d = 0, i.e. f (X ,Y ) = a0(X). Let x ∈ K be any zero of a0(x), which exists as K is
algebraically closed. Now (x,y) satisfies f for any y ∈ K, showing the infinity of solutions.
Second case: d > 0. Then ad(x) ̸= 0 for all but finitely many x ∈ K, hence, for infinitely many x.
Note that the polynomial f (x,Y ) = ∑

d
i=0 ai(x)Y i has at least one zero y, so that (x,y) satisfies f ,

again showing the infinity of solutions. ■

Example 3.4 (a) Let K =Q and consider f (X ,Y ) = X2 +Y 2−1 and the Q-points of the asso-
ciated curve C = S1 = V{ f}(Q). They correspond in a precise way to primitive pythagorean
triples (a,b,c) for a,b,c ∈ Z and a2 +b2 = c2. For details see an exercise.

Note that this is a nice and first illustration of the deep relations between geometry and
number theory (algebra). We will encounter several in this course.

(b) Let K be a field and consider f (X ,Y ) = X2 +Y 2.

The only solution of the form (x,0) is (0,0) in any field K. Suppose now (x,y) is a solution
with y ̸= 0. Then x2 =−y2, or z2 =−1 with z = x

y .

Hence, V{ f}(K) = {(0,0)} if and only if X2 =−1 has no solution in K.

In particular, V{ f}(R) = {(0,0)} (but: V{ f}(C) = V{X−iY}(C)∪V{X+iY}(C), union of two
lines) and V{ f}(Fp) = {(0,0)} if and only if p≡ 3 (mod 4).

Example 3.5 Let K be a field and f (X)=X3+aX2+bX+c be a separable polynomial (meaning
that it has no multiple zeros over K).
Any plane curve of the form V{Y 2− f (X)} is called an elliptic curve. It has many special properties
(see e.g. lectures on cryptography).

Definition 3.6 Let X be a set and O a set of subsets of X (i.e. the elements of O are sets;
they are called the open sets).
Then O is called a topology on X (alternatively: (X ,O) is called a topological space) if

(1) /0,X ∈ O (in words: the empty set and the whole space are open sets);

(2) if Ai ∈ O for i ∈ I, then
⋃

i∈I Ai ∈ O (in words: the union of arbitrarily many open sets is
an open set);

(3) if A,B ∈O , then A∩B ∈O (in words: the intersection of two (and, consequently, finitely
many) open sets is an open set).
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A set C ⊆X is called closed if X \C ∈O (in words: the closed sets are the complements
of the open sets).

The basic example known from any first course on Analysis is the topology on R or, more
generally, on Rn. In the latter case one defines O to consist of those sets U ⊆ Rn such that
for every x ∈U there is ε > 0 such that all y ∈ Rn with |y− x|< ε belong to U . These are by
definition the open subsets of Rn. It is a well-known exercise to show that O is indeed a topology
on Rn. One be aware that this standard topology behaves very differently from the topology on
An(K) that we are going to define now.

Proposition 3.7 Let K be a field and n ∈ N. Define

O := {An(K)\VS(K) | S⊆ K[X1, . . . ,Xn]}.

Then (An(K),O) is a topological space. The thus defined topology is called the Zariski
topology on An(K).
Note that, in particular, the closed subsets of An(K) for the Zariski topology are precisely the
affine sets.

Lemma 3.8 Let K be a field, L/K a field extension and n ∈ N.

(a) Let S⊆ T ⊆ K[X1, . . . ,Xn] be subsets. Then VT (L)⊆ VS(L).

(b) Let S⊆ K[X1, . . . ,Xn] and let a := (s | s ∈ S)◁K[X1, . . . ,Xn] be the ideal generated by S.
Then VS(L) = Va(L).

(c) V{(0)}(L) = An(L) and V{(1)}(L) = /0.

(d) Let Si ⊆ K[X1, . . . ,Xn] for i ∈ I (some indexing set) be subsets. Then V⋃
i∈I Si(L) =⋂

i∈I VSi(L).

(e) Let a,b◁K[X1, . . . ,Xn] be ideals. Then Va·b(L) = Va(L)∪Vb(L).

Proof. (a) and (c) are clear.
(b) The inclusion Va(L)⊆ VS(L) follows from (a). Let now x ∈ VS(L), meaning that f (x) = 0
for all f ∈ S. Since any g ∈ a can be written as a sum of products of elements from S, it follows
that g(x) = 0, proving the reverse inclusion.
(d) Let x ∈ An(L). Then

x ∈ V⋃
i∈I Si(L)⇔∀ f ∈

⋃
i∈I

Si : f (x) = 0⇔∀i ∈ I : ∀ f ∈ Si : f (x) = 0

⇔∀i ∈ I : x ∈ VSi(L)⇔ x ∈
⋂
i∈I

VSi(L).

(e) Since ab ⊆ a and ab ⊆ b, (b) gives the inclusions Va(L),Vb(L) ⊆ Vab(L), hence Va(L)∪
Vb(L)⊆ Vab(L). For the reverse inclusion, let x ̸∈ Va(L)∪Vb(L), meaning that there exists f ∈ a
and g ∈ b such that f (x) ̸= 0 ̸= g(x). Thus, f (x) ·g(x) ̸= 0, whence x ̸∈ Vab(L). ■

Proof of Proposition 3.7. We need to check the axioms (1), (2) and (3). Note that (1) is
Lemma 3.8 (c).
(2) For open sets An(K) \VSi(K) with Si ⊆ K[X ] for i ∈ I, we have:

⋃
i∈I An(K) \VSi(K) =

An(K)\
⋂

i∈I VSi(K)
Lemma 3.8(d)

= An(K)\V⋃
i∈I Si(K).
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(3) By Lemma 3.8 (b), any two open sets are of the form An(K) \Va(K) and An(K) \Vb(K)
with ideals a,b◁K[X ]. It follows: (An(K) \Va(K))∩ (An(K) \Vb(K)) = An(K) \ (Va(K)∪
Vb(K))

Lemma 3.8(e)
= An(K)\Va·b(K). ■

We next want to consider polynomial functions from a subset X ⊆ An(K) to K. Formally, we
see them as the image of the ring homomorphism

ϕX : K[X ]→Maps(X ,K), f 7→
(
(x1, . . . ,xn) 7→ f (x1, . . . ,xn)

)
with + and · on Maps(X ,K) defined pointwise: ( f + g)(x) := f (x)+ g(x) and ( f · g)(x) :=
f (x) ·g(x).

Definition 3.9 Let X be a subset of An(K). We define the vanishing ideal of X as

IX := ker(ϕX ) = { f ∈ K[X ] | f (x) = 0 for all x ∈X }.

The quotient ring K[X ] := K[X ]/IX is called the coordinate ring of X .

Note that IX is indeed an ideal because it is the kernel of a ring homomorphism. Moreover, by
the isomorphism theorem, we obtain an injection

ϕX : K[X ]→Maps(X ,K).

We may even replace Maps(X ,K) by C (X ,A1(K)), the continuous maps for the Zariski
topology (see exercise).
The coordinate ring consists hence of the polynomial functions from X to K. There are some
special ones, namely, the projection to the i-th coordinate, i.e. (x1, . . . ,xn) 7→ xi; this clearly
deserves the name i-th coordinate function; let us denote it by xi. The name coordinate ring is
hence explained! Note that any function f (X1, . . . ,Xn)+IX = ∑ai1,...,inX i1

1 . . .X in
n +IX is a

combination of the coordinate functions, namely, ∑ai1,...,inx
i1
1 . . .xin

n .
Example 3.10 • Line f (X ,Y ) := X−Y +2 ∈ R[X ,Y ], L := V f (R):

We have IL = (X−Y +2), i.e. that the vanishing ideal of L is the principal ideal generated
by f . This is a consequence of Proposition 3.13, which will be proved below.

We compute the structure of the coordinate ring in this case. Consider the ring homo-
morphism:

ϕ : R[X ,Y ]→ R[T ], g(X ,Y ) 7→ g(T,T +2).

Note that this homomorphism is chosen such that X−Y +2 gets mapped to T − (T +2)+
2 = 0 and so lies in the kernel. We now prove that the kernel is equal to IL (and hence
to (X −Y + 2)). Let g ∈ ker(ϕ). This means g(T,T + 2) is the zero polynomial. If we
now take a point (x,y) ∈L , then it satisfies y = x+2, whence g(x,y) = g(x,x+2) = 0
because it is equal to g(T,T +2) evaluated at T = x. This means g ∈IL , as claimed.

From the isomorphism theorem, we now obtain that the coordinate ring is just the polyno-
mial ring in one variable:

R[L ] = R[X ,Y ]/IL = R[X ,Y ]/(X−Y +2)∼= R[T ].

In other words, the coordinate functions satisfy the equality x2 = x1 +2.

• Parabola f (X ,Y ) := X2−Y +2 ∈ R[X ,Y ], P := V f (R):

Again by Proposition 3.13 we have IP = (X2−Y +2).
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With arguments similar to those used before, we conclude that the coordinate ring is

R[P] = R[X ,Y ]/IP = R[X ,Y ]/(X2−Y +2)∼= R[T ],

where the last isomorphism is given by sending the class of g(X ,Y ) to g(T,T 2 +2). So, it
is again isomorphic to the polynomial ring in one variable.

• Hyperbola f (X ,Y ) := XY −1 ∈ R[X ,Y ], H := V f (R):
We again have IH = (XY −1) by Proposition 3.13. This time we obtain

R[H ] = R[X ,Y ]/(XY −1)∼= R[X ,
1
X
]

= {
f

∑
i=e

aiX i | e, f ∈ Z,ai ∈ R} ⊂ R(X) := Frac(R[X ]).

Note that this ring is not isomorphic to the polynomial ring in one variable. For, suppose
to the contrary that there is a ring isomorphism ϕ : R[X , 1

X ]→ R[T ]. As X is a unit, so is
ϕ(X). Thus, ϕ(X) ∈ R[T ]× = R× is a constant polynomial. Consequently, the image of
ϕ lands in R, contradicting the surjectivity.

Here are basic properties of the vanishing ideal.

Lemma 3.11 Let K be a field and n ∈ N. Then the following statements hold:

(a) Let X ⊆ Y ⊆ An(K) be subsets. Then IX ⊇IY.

(b) I /0 = K[X ].

(c) If K has infinitely many elements, then IAn(K) = (0).

(d) Let S⊆ K[X ] be a subset. Then IVS(K) ⊇ S.

(e) Let X ⊆ An(K) be a subset. Then VIX
(K)⊇X .

(f) Let S⊆ K[X ] be a subset. Then VIVS(K)
(K) = VS(K).

(g) Let X ⊆ An(K) be a subset. Then IV(IX )(K) = IX .

Proof. Exercise. ■

Lemma 3.12 Let K be a field and let X ⊆ An(K) be an affine algebraic subset.
For any field extension L/K, consider

X (L) := VIX
(L),

the set of L-points of X .

(a) X = X (K).

(b) Every L-point (a1, . . . ,an) ∈X (L) gives rise to the K-algebra homomorphism

ev(a1,...,an) : K[X ] = K[X1, . . . ,Xn]/IX → L, g(X1, . . . ,Xn)+IX 7→ g(a1, . . . ,an).
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(c) If L = K, then the kernel of ev(a1,...,an) is equal to (X1−a1 +IX , . . . ,Xn−an +IX ).

Proof. (a) This is Lemma 3.11(f).
(b) The point is that the map is well-defined, which is ensured because the image does not depend
on the choice of representative in K[X1, . . . ,Xn] in any class in K[X ] = K[X1, . . . ,Xn]/IX .
(c) The ideal (X1− a1 +IX ,X2− a2 +IX , . . . ,Xn− an +IX ) is clearly maximal in K[X ]
because the quotient by it is K. As it is contained in ker(ev(a1,...,an)) it follows that the two ideals
are equal (as ev(a1,...,an) is not the zero-map – look at constants). ■

Proposition 3.13 Let K be a field. Let f ∈ K[X ,Y ] a nonconstant irreducible polynomial.
Assume that V f (K) is infinite (which is automatic if K = K is algebraically closed by
Lemma 3.3). Let C = V f (K) be the associated plane curve.
Then the vanishing ideal IC is ( f ) and the coordinate ring K[C] is isomorphic to K[X ,Y ]/( f ).

The most conceptual proof uses Hilbert’s Nullstellensatz; we include that proof on page 71. We
now give a direct proof, which relies on the following Lemma 3.14. In fact, once we have the
notion of Krull dimension, we can give yet another very short proof. All proofs are essentially
the same, except that in the more direct ones we specialise to curves, which makes the arguments
shorter.
We include an easy counter example to show that some assumption on the field or the curve C is
needed. Consider the irreducible polynomial f (X ,Y ) = X2 +1 ∈ R[X ,Y ]. The associated curve
C = V f (R) is the empty set and hence the vanishing ideal IC is the entire polynomial ring.
The next lemma uses the same idea as Nagata’s normalisation lemma 8.10 specialised to the case
of two variables. It shows that the coordinate ring is not ‘too far off’ a polynomial ring in one
variable, in the following sense: there is a transcendental element T in the coordinate ring (the
transcendence assumption means that the subring K[T ] of the coordinate ring is isomorphic to a
polynomial ring) such that the coordinate ring is an integral ring extension of K[T ]. This will be
essential in the proof of Proposition 3.13.

Lemma 3.14 Let K be a field and I ⊴ K[X ,Y ] be an ideal containing f ∈I , a nonconstant
polynomial of total degree d > 0. Let T := X−Y d+1 +I ∈ K[X ,Y ]/I .

(a) The ring extension K[T ]⊆ K[X ,Y ]/I is integral.

(b) Assume that V f (K) is infinite ( automatic if K = K is algebraically closed by Lemma 3.3).
If I = IC with C =Vf (K) a curve, then T is transcendental over K.

Proof. (a) We explicitely write down the polynomial f (X ,Y ) = ∑0≤i, j s.t. i+ j≤d ai, jX iY j. Con-
sider the polynomial g(T,Z) = f (T +Zd+1,Z) ∈ K[T ][Z], i.e. we see it as a polynomial in the
variable Z with coefficients in K[T ]. We find

g(T,Z)= ∑
0≤i, j s.t. i+ j≤d

ai, j(T +Zd+1)iZ j = ∑
0≤i, j s.t. i+ j≤d

ai, jZ(d+1)i+ j+ lower degree terms in Z.

Note that all the (d +1)i+ j are distinct for i, j in the considered range. This description makes
it clear that the coefficient in front of the highest power of Z does not involve any T ; it is one
of the ai, j, say a := ar,s. This means we can divide by it. Call the resulting monic polynomial
h(T,Z) = 1

a g(T,Z) ∈ K[T ][Z].



30 Chapter I. Basic ring theory

Now let us use the T from the assertion, i.e. T = X −Y d+1 +I . Write h(Z) for the image of
h(T ,Z) ∈ (K[T ])[Z]⊆ (K[X ,Y ]/I )[Z]. It is a monic polynomial. Then we get

h(Y ) =
1
a

g(T ,Y ) =
1
a

f (X−Y d+1 +Y d+1,Y ) =
1
a

f (X ,Y ) ∈I .

This means that the class Y +I is annihilated by the monic polynomial h(Z). Thus, Y +I is
integral over K[T ].
As K[X ,Y ]/I is generated over K[T ] by Y +I , the integrality of K[T ]⊆ K[X ,Y ]/I follows.
(b) Suppose that T is not transcendental over K, then it is algebraic over K, hence the ring
extension K ⊆ K[T ] is integral. Furthermore, by (a), the ring extension K[T ] ⊆ K[X ,Y ]/I is
also integral, whence by the transitivity of integrality (Corollary 2.21) the ring extension K ⊆
K[X ,Y ]/I is integral as well. In particular, the classes of X and Y are integral, hence algebraic,
over K. So there are polynomials mX ,mY ∈ K[Z] such that mX(X +I ) = 0 = mY (Y +I ), in
other words mX(X),mY (Y ) ∈I . This means that for any point (x,y) ∈C = VI (K) (the equality
follows from Lemma 3.11 (f)), we have mX(x) = 0 = mY (y). Consequently, there are only finitely
many possibilities for the x-coordinate and only finitely many possibilities for the y-coordinate
of any point of the curve. Thus, the curve C only has finitely many points, contradicting our
assumption. ■

First proof of Proposition 3.13. The inclusion ( f )⊆IC is clear. We need to show the reverse
inclusion. In order to do this, we consider the natural projection (coming from the inclusion
( f )⊆IC)

π : K[X ,Y ]/( f )↠ K[X ,Y ]/IC.

It suffices to show that it is an isomorphism. In order to do so, let g ∈IC and consider its class
g = g+( f ) ∈ K[X ,Y ]/( f ); we aim to show that it is the zero class, i.e. g ∈ ( f ).
Next, we want to use Lemma 3.14; we therefore consider elements T := X −Y d+1 ∈ K[X ,Y ]
with d being the total degree of f and its images T ∈ K[X ,Y ]/( f ) and T̃ := π(T ) ∈ K[X ,Y ]/IC.
Part (b) of the lemma tells us that T̃ (and hence also T ) is transcendental over K, and by part (a),
the ring extension K[T ]⊆ K[X ,Y ]/( f ) is integral.
We apply the latter statement to the element g in order to get an equality of the form

gn +
n−1

∑
i=1

ri(T )gi + r0(T ) = 0

in the ring K[X ,Y ]/( f ), where the ri ∈ K[T ] are polynomials (we can see them as usual polyno-
mials because T is transcendental over K). Let us suppose that n is minimal with this property.
As g vanishes on all points of C, so do r0(T ) and r0(T ) = r0(X −Y d+1). This implies that
r0(T ) = r0(X−Y d+1) belongs to IC, so that r0(T̃ ) is zero in K[X ,Y ]/IC.
As T̃ in K[X ,Y ]/IC is transcendental over K, this implies that r0 = 0, i.e. r0 is the zero polyno-
mial (all coefficients are zero). Thus, in the ring K[X ,Y ]/( f ) we have the equality

g(gn−1 +
n−1

∑
i=1

ri(T )gi−1) = 0.

In other words

g(gn−1 +
n−1

∑
i=1

ri(X−Y d+1)gi−1) ∈ ( f ).

As f is irreducible, the ideal ( f ) is prime. Consequently, g ∈ ( f ), as desired; for, if g were not
in ( f ), we would have gn−1 +∑

n−1
i=1 ri(T )gi−1 = 0, contradicting the minimality of n. ■
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Lemma 3.15 Let (X ,OX ) be a topological space and Y ⊆X be a subset. Define OY :=
{U ∩Y |U ∈ OX }.
Then OY is a topology on Y , called the relative topology or the subset topology.

Proof. Exercise. ■

Definition 3.16 Let X be a topological space (we do not always mention O explicitly).
A subset Y ⊆X is called reducible if there are two closed subsets Y1,Y2 ⊊Y for the relative
topology on Y such that Y = Y1∪Y2. By the definition of the relative topology, Y ⊆X
is reducible if and only if there are closed subsets X1,X2 ⊆X such that Y ⊆X1∪X2,
Y ̸⊆X1 and Y ̸⊆X2.
If Y is not reducible, it is called irreducible.
An affine set X ⊆ An(K) is called an affine variety if X is irreducible.

Example 3.17 • Let f (X ,Y ) = XY ∈ R[X ,Y ]. Then V f (R) is the union of the x-axis and
the y-axis, so clearly V f (R) is reducible for the Zariski topology (and also the usual real
topology). More precisely,

V f (R) = VX(R)∪VY (R).

• The line X−Y +2 is irreducible for the Zariski topology, but not for the usual real topology
(take two closed ‘half lines’ overlapping).

• The hyperbola H is also irreducible for the Zariski topology. This is a consequence of
the next proposition, since the coordinate ring R[H ] is an integral domain. This might
contradict our intuition, since the the hyperbola consists of two branches and is reducible
for the usual real topology.

At the end of this section we are able to formulate a topological statement on an affine algebraic
set as a purely algebraic statement on the coordinate ring! This kind of phenomenon will be
encountered all the time in the sequel of the lecture.

Proposition 3.18 Let /0 ̸= X ⊆ An(K) be an affine set. Then the following statements are
equivalent:

(i) X is irreducible for the Zariski topology (i.e. X is a variety).

(ii) IX is a prime ideal of K[X1, . . . ,Xn].

(iii) The coordinate ring K[X ] is an integral domain.

Proof. The equivalence of (ii) and (iii) is Proposition 1.19 (recall K[X ] = K[X ]/IX ).
¬(ii)⇒¬(i): Suppose IX is not a prime ideal. Then there are two elements f1, f2 ∈ K[X ]\IX

such that f1 · f2 ∈IX . This, however, implies:

X =
(
V( f1)(K)∪V( f2)(K)

)
∩X =

(
V( f1)(K)∩X

)
∪
(
V( f2)(K)∩X

)
,

since V( f1)(K)∪V( f2)(K) = V( f1· f2)(K)⊇X . Note that f1 ̸∈IX precisely means that there is
x ∈X such that f1(x) ̸= 0. Hence, X ̸= V( f1)(K)∩X . Of course, the same argument applies
with f1 replaced by f2, proving that X is reducible.
¬(i)⇒¬(ii): Suppose X is reducible, i.e. X = X1∪X2 with X1 ⊊ X and X2 ⊊ X closed
subsets of X (and hence closed subsets of An(K), since they are the intersection of some closed
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set of An(K) with the closed set X ). This means IXi ⊋ IX for i = 1,2 as otherwise X = Xi

by Lemma 3.11. Hence, there are f1 ∈ IX1 and f2 ∈ IX2 such that f1, f2 ̸∈ IX . Note that
f1(x) f2(x) = 0 for all x ∈X , as at least one of the two factors is 0. Thus, f1 · f2 ∈IX . This
shows that IX is not a prime ideal. ■

We add an example that becomes important later, when we will discuss the relationship between
non-singularity and normality.
Example 3.19 Let f (X ,Y ) = Y 2−X3 ∈ C[X ,Y ] and consider the curve C f := V f (C) defined
by f . Consider its coordinate ring R = C[C f ] = C[X ,Y ]/(Y 2−X3).

(a) We have that R is an integral domain because Y 2−X3 is an irreducible polynomial.

(b) Write x,y for the classes of X ,Y in R. Let K be the field of fractions of R. Put t = y/x.

As y = tx, we find 0 = t2x2− x3 = x2(t2− x), from which we derive t2 = x and y = tx = t3

because the calculations are done in the field K.

Moreover, we have K = C(t) := Frac(C[t]). Indeed, the inclusion ⊆ follows from the fact
that K is generated over C by x = t2 and y = t3. The other inclusion is obvious because
t = y/x ∈ K.

(c) The ring R is not normal, i.e. not integrally closed in K =C(t). The reason is that t is integral
over R (e.g. because t2 = x) but t ̸∈ R.

(d) We have that C[t] is the normalisation of R, i.e. the integral closure of R in K. The reason is
simply that C[t] is normal, as it is integrally closed and that R ⊂ C[t] is integral and both
rings have the same field of fractions.
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II. Modules

4 Direct sums, products, free modules and exact sequences
Aims:

• Learn and master the concepts of direct products and direct sums of modules, and know
the differences between the two;

• learn and master the concept of free modules;

• learn and master the concept of exact sequences;

• get to know the Hom-functor and its exactness properties;

• know examples and standard theorems;

• be able to prove simple properties.

Direct products and direct sums
We first define direct products and direct sums of modules.

Definition 4.1 Let R be a ring and Mi for i ∈ I (some set) R-modules.

(a) The direct product of the Mi for i ∈ I is defined as the cartesian product ∏i∈I Mi with
component-wise operation. More precisely, let (xi)i∈I,(yi)i∈I ∈∏i∈I Mi and r ∈ R, then
one puts

(xi)i∈I +(yi)i∈I := (xi + yi)i∈I and r.(xi)i∈I := (r.xi)i∈I.

One checks easily that ∏i∈I Mi is an R-module.

If I = {1, . . . ,n} is a finite set, one also writes ∏
n
i=1 Mi = M1×M2× ·· ·×Mn and its

elements are denoted as (x1,x2, . . . ,xn).

(b) The natural map π j : ∏i∈I Mi→M j given by (xi)i∈I 7→ x j is called the j-th projection.
One checks easily that π j is a surjective R-module homomorphism.

(c) The direct sum of the Mi for i ∈ I is defined as the subset of the cartesian product ∏i∈I Mi
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with component-wise operation consisting of those (xi)i∈I ∈∏i∈I Mi such that xi ̸= 0 only
for finitely many i ∈ I. The notation is

⊕
i∈I Mi.

One checks easily that
⊕

i∈I Mi is an R-module.

If I = {1, . . . ,n} is a finite set, one also writes
⊕n

i=1 Mi = M1⊕M2⊕ ·· ·⊕Mn and its
elements are denoted as (x1,x2, . . . ,xn) or x1⊕ x2⊕·· ·⊕ xn.

(d) The natural map ε j : M j →
⊕

i∈I Mi given by ε(x) = (xi)i∈I with x j = x and xi = 0 for
i ̸= j is called the j-th injection.

One checks easily that ε j is an injective R-module homomorphism.

Corollary 4.2 Let R be a ring and M1, . . . ,Mn be R-modules. Then the identity induces an
R-isomorphism

⊕n
i=1 Mi ∼= ∏

n
i=1 Mi.

Proof. This is obvious. ■

Proposition 4.3 Let R be a ring and Mi for i ∈ I (some set) R-modules.

(a) The direct product P := ∏i∈I Mi together with the projections πi satisfies the following
universal property:

For all R-modules N together with R-homomorphisms φi : N→Mi for i ∈ I
there is one and only one R-homomorphism φ : N→ P such that πi ◦φ = φi

for all i ∈ I, as in the diagram

N
φ //

φi   

P

πi

��
Mi.

(b) The direct sum S :=
⊕

i∈I Mi together with the injections εi satisfies the following univer-
sal property:

For all R-modules N together with R-homomorphisms φi : Mi→ N for i ∈ I
there is one and only one R-homomorphism φ : S→ N such that φ ◦ εi = φi

for all i ∈ I, as in the diagram

N oo
φ

``

φi

SOO

εi

Mi.

Proof. Exercise. ■

Free modules
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Definition 4.4 Let R be a ring and M an R-module.
Recall the definition of a generating set: A subset B ⊆ M is called a generating set of M
as R-module if for every m ∈M there are n ∈ N, b1, . . . ,bn ∈ B and r1, . . . ,rn ∈ R such that
m = ∑

n
i=1 ribi.

A subset B ⊆ M is called R-free (or: R-linearly independent) if for any n ∈ N and any
b1, . . . ,bn ∈ B the equation 0 = ∑

n
i=1 ribi implies 0 = r1 = r2 = · · ·= rn.

A subset B⊆M is called an R-basis of M if B is an R-free generating set.
A module M having a basis B is called a free R-module.

Proposition 4.5 Let R be a ring, let I be a set and FI :=
⊕

i∈I R. Define ε : I → FI by
ε( j) = (xi)i∈I , where x j = 1 and xi = 0 if i ̸= j.

(a) Then FI is R-free with basis B = {ε(i) | i ∈ I}.

(b) FI together with ε satisfies the following universal property:

For all R-modules M and all maps δ : I → M there is one and only one
R-homomorphism φ : FI →M such that φ ◦ ε = δ , as in the diagram

I ε //

δ ��

FI

φ

��
M.

Proof. (a) is clear.
(b) For (xi)i∈I ∈ FI define φ((xi)i∈I) := ∑i∈I xiδ (i); note that this is a finite sum (because of the
definition of the direct sum) and hence makes sense; clearly φ ◦ ε = δ holds. It is trivial to check
that φ is an R-homomorphism.
For the uniqueness note that φ(ε(i)) := δ (i) forces φ((xi)i∈I) := ∑i∈I xiδ (i) by the properties of
an R-homomorphism. This shows the uniqueness. ■

Example 4.6 (a) Let R = K be a field. Then R-modules are K-vector spaces. Hence, all
R-modules are free. Their rank is the dimension as a K-vector space.

(b) Let R = Z. Then Zn is a free Z-module of rank n.

(c) Let R = Z and M = Z/2Z. Then M is not Z-free.

Proposition 4.7 Let R be a ring.

(a) Let M be an R-module and B⊆M a generating set. Then there is a surjective R-homo-
morphism FB→M, where FB is the free R-module from Proposition 4.5. In other words,
M is a quotient of FB.

(b) Let M be a free R-module with basis B. Then M is isomorphic to FB.

Proof. (a) Consider δ : B→M given by the identity, i.e. the inclusion of B into M. The universal
property of FB gives an R-homomorphism φ : FB→M. As φ ◦ ε = δ , B is in the image of φ . As
the image contains a set of generators for the whole module M, the image is equal to M, i.e. φ is
surjective.
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(b) Then φ (from (a)) is given by (rb)b∈B 7→ ∑b∈B rbb. If (rb)b∈B is in the kernel of φ , then
∑b∈B rbb = 0. The freeness of the basis B now implies rb = 0 for all b ∈ B, showing (rb)b∈B = 0,
i.e. the injectivity. ■

Lemma 4.8 Let R be a ring and M a finitely generated free R-module. Then all R-bases of M
have the same length.
This length is called the R-rank or the R-dimension of M.

Proof. We prove this using linear algebra. Let B = {b1, . . . ,bn} and C = {c1, . . . ,cm} with n≥m
be two R-bases of M. Of course, we can express one basis in terms of the other one:

bi =
m

∑
j=1

ti, jc j and c j =
n

∑
k=1

s j,kbk, hence bi =
n

∑
k=1

(
m

∑
j=1

ti, js j,k)bk.

As B is a basis, we conclude
m

∑
j=1

ti, js j,k = δi,k.

Writing this in matrix form with T = (ti, j)1≤i≤n,1≤ j≤m and S = (s j,k)1≤ j≤m,1≤k≤n yields

T ·S =



t1,1 . . . t1,m
...

. . .
...

tm,1 . . . tm,m

tm+1,1 . . . tm+1,m
...

. . .
...

tn,1 . . . tn,m


◦

s1,1 . . . s1,m s1,m+1 . . . s1,n
...

. . .
...

...
. . .

...
sm,1 . . . sm,m sm,m+1 . . . sm,n

= idn×n.

Assume n > m. Then we can add n−m rows with entries 0 to S at the bottom and n−m columns
with entries 0 to T on the right without changing the product. However, the determinant of these
enlarged matrices is 0, whence also the determinant of their product is zero, which contradicts
the fact that their product is the identity, which has determinant 1. ■

Exact sequences

Definition 4.9 Let R be a ring and let a < b ∈ Z∪ {−∞,∞}. For each n ∈ Z such that
a ≤ n ≤ b, let Mn be an R-module. Also let φn : Mn−1 → Mn be an R-homomorphism. In
other words, for all a′,b′ ∈ Z such that a≤ a′ < b′ ≤ b we have the sequence

Ma′
φa′+1−−−→Ma′+1

φa′+2−−−→Ma′+2
φa′+3−−−→ . . .

φb′−2−−−→Mb′−2
φb′−1−−−→Mb′−1

φb′−→Mb′ .

Such a sequence is called a complex if im(φn−1)⊆ ker(φn) for all n in the range. That is the
case if and only if φn ◦φn−1 = 0 for all n in the range.
The sequence is called exact if im(φn−1) = ker(φn) for all n in the range (of course, this
implies that it is also a complex).

We will often consider finite sequences, mostly of the form

(∗) 0→M1→M2→M3→ 0,

where 0 denotes the zero module {0} ⊆ R. If a sequence of the form (∗) is exact, then it is called
a short exact sequence.
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Lemma 4.10 Let R be a ring.

(a) Let A α−→ B be an R-homomorphism. Then α is injective if and only if the sequence
0→ A→ B is exact.

(b) Let B
β−→C be an R-homomorphism. Then β is surjective if and only if the sequence

B
β−→C→ 0 is exact.

(c) Let 0→ A α−→ B
β−→C→ 0 be a complex. It is an exact sequence if and only if C = im(β )

and α is an isomorphism from A to ker(β ).

Proof. (a) Just note: ker(α) = im(0→ A) = {0}.
(b) Just note: C = ker(C→ 0) = im(α).
(c) Combine (a) and (b) with the exactness at B. ■

Proposition 4.11 Let R be a ring and Mi,Ni for i = 1,2,3 be R-modules.

(a) Let
0→ N1

φ2−→ N2
φ3−→ N3

be a sequence. This sequence is exact if and only if

0→ HomR(M,N1)
φ̃2−→ HomR(M,N2)

φ̃3−→ HomR(M,N3)

is exact for all R-modules M. The R-homomorphism φ̃i sends α ∈ HomR(M,Ni−1) to
φi ◦α ∈ HomR(M,Ni) for i = 2,3.

(b) Let
M1

ψ2−→M2
ψ3−→M3→ 0

be a sequence. This sequence is exact if and only if

0→ HomR(M3,N)
ψ̃3−→ HomR(M2,N)

ψ̃2−→ HomR(M1,N)

is exact for all R-modules N. The R-homomorphism ψ̃i sends α ∈ HomR(Mi,N) to
α ◦ψi ∈ HomR(Mi−1,N) for i = 2,3.

For the directions ‘⇒’ one also says that in case (a) that the functor HomR(M, ·) is covariant
(preserves directions of arrows) and left-exact and in case (b) that the functor HomR(·,N) is
contravariant (reverses directions of arrows) and left-exact.

Proof. (a) ‘⇒’:

• We know that φ2 is injective. If α ∈ ker(φ̃2), then by definition φ2 ◦α is the zero map.
This implies that α is zero, showing that φ̃2 is injective.

• We know that φ3 ◦φ2 is the zero map. This implies that φ̃3
(
φ̃2(α)

)
= φ3 ◦φ2 ◦α is the zero

map for all α ∈ HomR(M,N1). Hence, im(φ̃2)⊆ ker(φ̃3).

• Let β ∈ ker(φ̃3), i.e. φ3 ◦β is the zero map. This means im(β )⊆ ker(φ3), hence, we obtain
that

φ
−1
2 ◦β : M

β−→ im(β )⊆ ker(φ3) = im(φ2)
φ
−1
2−−→ N1
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is an element in HomR(M,N1). It satisfies φ̃2(φ
−1
2 ◦ β ) = φ2 ◦ φ

−1
2 ◦ β = β , whence

β ∈ im(φ̃2), showing im(φ̃2)⊇ ker(φ̃3).

‘⇐’:

• We know that φ̃2 is injective for all R-modules M. Choose M := ker(φ2), and consider the
inclusion ι : ker(φ2)→ N1. Note that

φ̃2(ι) = φ2 ◦ ι : ker(φ2)
ι−→ N1

φ2−→ N2

is the zero-map. But, as φ̃2 is injective, it follows that already ι is the zero map, meaning
that ker(φ2) is the zero module, so that φ2 is injective.

• We want to show φ3 ◦φ2 = 0. For this take M := N1, and consider idN1 the identity on N1.
We know that φ̃3 ◦ φ̃2 is the zero map. In particular,

0 = φ̃3 ◦ φ̃2(idN1) = φ3 ◦φ2 ◦ idN1 = φ3 ◦φ2.

• We want to show that ker(φ3) ⊆ im(φ2). For this take M := ker(φ3) and consider the
inclusion ι : ker(φ3)→ N2. Note that

0 = φ̃3(ι) = φ3 ◦ ι : ker(φ3)
ι−→ N2

φ3−→ N3

is the zero map. We know that ker(φ̃3)⊆ im(φ̃2). Hence, there is some β : ker(φ3)→ N1
such that ι = φ̃2(β ) = φ2 ◦ β . In particular, the image of ι , which is equal to ker(φ3),
equals the image of φ2 ◦β , which is certainly contained in the image of φ2, as was to be
shown.

(b) Exercise. ■

Proposition 4.12 Let R be a ring, M, N, Mi and Ni for i ∈ I (some set) be R-modules. Then
there are natural R-isomorphisms:

(a) Φ : HomR(M,∏i∈I Ni)→∏i∈I HomR(M,Ni) and

(b) Ψ : HomR(
⊕

i∈I Mi,N)→∏i∈I HomR(Mi,N).

Proof. (a) Let π j : ∏i∈I Ni→ N j be the j-th projection. Define Φ as follows:

Φ(ϕ : M→∏
i∈I

Ni) := (πi ◦ϕ : M→ Ni)i∈I.

It is clear that Φ is an R-homomorphism. The rest of the statement is exactly the universal
property of the product from Proposition 4.3. Indeed, suppose that we are given ϕi : M→ Ni for
each i ∈ I. Then the universal property of ∏i∈I Ni tells us that there is a unique ϕ : M→∏i∈I Ni

such that ϕi = πi ◦ϕ for all i∈ I. This is precisely the required preimage, showing the surjectivity.
The uniqueness of ϕ gives us a unique preimage, which also implies injectivity.
(b) Exercise. ■

Lemma 4.13 Let R be a ring and M an R-module. Then the map

Φ : HomR(R,M)→M, Φ(α : R→M) := α(1)
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is an R-isomorphism.

Proof. Clear. ■

Proposition 4.14 Let R be a ring and

0 // A
α
//

||
t

B
β

//
||

s

C // 0

be a short exact sequence. Then the following statements are equivalent:

(i) There is an R-homomorphism s : C→ B such that β ◦ s = idC. Then s is called a split
and one says that the short exact sequence is split/splits.

(ii) There is an R-homomorphism t : B→ A such that t ◦α = idA. Then t is also called a
split and one also says that the short exact sequence is split/splits.

(iii) There is an R-isomorphism ϕ : A⊕C → B such that ϕ ◦ (A a7→a−−→ A⊕C) = α and
β ◦ϕ ◦ (C c 7→c−−→ A⊕C) = idC.

Proof. Exercise. ■

Proposition 4.15 Let R be a ring and F a free R-module.

(a) Then F satisfies the following universal property:

For all surjective R-homomorphisms φ : M ↠ N and all R-homomorphisms
ψ : F→ N, there exists an R-homomorphism α : F→M such that φ ◦α = ψ ,
as in the diagram

F

ψ

��

α

~~
M

φ

// // N.

A module that satisfies this universal property is called projective. Thus, F is projective.

(b) If 0→ A→ B→ F → 0 is a short exact sequence of R-modules, then B∼= A⊕F .

Proof. (a) Let B be an R-basis of F , so that we can identify F with FB; we have the inclusion
ε : B→ FB. Let hence φ : M ↠ N be a surjective R-homomorphism and ψ : F → N an R-
homomorphism. For each b∈B choose an mb ∈M such that φ(mb) =ψ(b), using the surjectivity
of φ .
Consider the map δ : B→M sending b ∈ B to mb. By the universal property of FB there exists
the required α .
(b) The universal property of (a) (applied with ψ = idF ) shows that there is α : F → B such that
φ ◦α = idF . Hence, the exact sequence is split and Proposition 4.14 shows B∼= A⊕F . ■
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5 Tensor products

This section is only treated briefly in the lecture and the exercises. The sequel of the lecture does
not depend on it.
Tensor products of modules are very important tools in algebra. Without any effort we could state
(almost) the whole section for non-commutative rings. However, then we would have to make
distinctions between left and right modules. For the sake of simplicity we stick to commutative
rings and all modules are considered as left modules.

Definition 5.1 Let R be a ring, M,N be R-modules.
Let P be a Z-module (note that this just means abelian group). A Z-bilinear map

f : M×N→ P

is called balanced if for all r ∈ R, all m ∈M and all n ∈ N one has

f (rm,n) = f (m,rn).

In this case, we call (P, f ) a balanced product of M and N.
A balanced product (M⊗R N,⊗) is called a tensor product of M and N over R if the following
universal property holds:

For all balanced products (P, f ) there is a unique group homomorphism φ :
M⊗R N→ P such that f = φ ◦⊗ (draw diagram).

Of course, we have to show that tensor products exists. This is what we start with.

Proposition 5.2 Let R be a ring and let M,N be R-modules.
Then a tensor product (M⊗R N,⊗) of M and N over R exists. If (P, f ) is any other tensor
product, then there is a unique group isomorphism φ : M⊗R N→ P such that f = φ ◦⊗.

Proof. The uniqueness statement is a consequence of the uniqueness in the universal property.
This works similarly as the uniqueness of the direct product, the direct sum, etc. (that are proved
in the exercises).
Let F := Z[M×N], i.e. the free Z-module with basis M×N, that is the finite Z-linear combina-
tions of pairs (m,n) for m ∈M and n ∈ N.
Define G as the Z-submodule of F generated by the following elements:

(m1 +m2,n)− (m1,n)− (m2,n) ∀m1,m2 ∈M, ∀n ∈ N,

(m,n1 +n2)− (m,n1)− (m,n2) ∀m ∈M, ∀n1,n2 ∈ N,

(rm,n)− (m,rn) ∀r ∈ R, ∀m ∈M, ∀n ∈ N.

Define M⊗R N := F/G, as Z-module. We shall use the notation m⊗ n for the residue class
(m,n)+G. Define the map ⊗ as

⊗ : M×N→M⊗R N, (m,n) 7→ m⊗n.

It is Z-bilinear and balanced by construction.
We now need to check the universal property. Let hence (P, f ) be a balanced product of M and N.
First we use the universal property of the free module F = Z[M×N]. For that let ε : M×N→ F
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denote the inclusion. We obtain a unique group homomorphism φ : F → P such that φ ◦ ε = f
(draw diagram).
Claim: G⊆ ker(φ). Note first that f (m,n) = φ ◦ε(m,n) = φ((m,n)) for all m ∈M and all n ∈N.
In particular, we have due to the bilinearity of f for all m1,m2 ∈M and all n ∈ N:

φ((m1 +m2,n)) = f (m1 +m2,n) = f (m1,n)+ f (m2,n) = φ((m1,n))+φ((m2,n)),

whence (m1 +m2,n)− (m1,n)− (m2,n) ∈ ker(φ). In the same way one shows that the other two
kinds of elements also lie in ker(φ), implying the claim.
Due to the claim, φ induces a homomorphism φ : F/G→ P such that φ ◦⊗= f (note that ⊗ is
just ε composed with the natural projection F → F/G).
As for the uniqueness of φ . Note that the image of⊗ is a generating system of F/G. Its elements
are of the form m⊗ n. As we have φ ◦⊗(m,n) = φ(m⊗ n) = f (m,n), the values of φ at the
generating set are prescribed and φ is hence unique. ■

Example 5.3 (a) Let R = Z, M = Z/(m) and N = Z/(n) with gcd(m,n) = 1. Then M⊗N =
Z/(m)⊗ZZ/(n) = 0.

Reason: As the gcd is 1, there are a,b ∈ Z such that 1 = am+bn. Then for all r ∈ Z/(m)
and all s ∈ Z/(n) we have:

r⊗ s = r ·1⊗ s = r(am+bn)⊗ s = ram⊗ s+(rbn⊗ s)

= 0⊗ s+ rb⊗ns = 0⊗0+ rb⊗0 = 0⊗0+0⊗0 = 0.

(b) Let R = Z, M = Z/(m) and N =Q. Then M⊗N = Z/(m)⊗ZQ= 0.

Reason: Let r ∈ Z/(m) and a
b ∈Q. Then we have

r⊗ a
b
= r⊗m

a
mb

= rm⊗ a
mb

= 0⊗ a
mb

= 0⊗0 = 0.

(c) Let R = Z, M =Q and N any Z-module. Then Q⊗Z N is a Q-vector space.

Reason: It is an abelian group. The Q-scalar multiplication is defined by q.(r⊗n) := qr⊗n.

(d) Let M be any R-module. Then R⊗R M r⊗m7→rm−−−−−→M is an isomorphism.

Reason: It suffices to show that M together with the map R×M
(r,m)7→rm−−−−−→ M is a tensor

product. That is a very easy checking of the universal property.

Next we need to consider tensor products of maps.

Proposition 5.4 Let R be a ring and let f : M1→M2 and g : N1→ N2 be R-homomorphisms.
Then there is a unique group homomorphism

f ⊗g : M1⊗R N1→M2⊗R N2

such that f ⊗g(m⊗n) = f (m)⊗g(n).
The map f ⊗g is called the tensor product of f and g.

Proof. The map ⊗◦ ( f ,g) : M1×N1
f ,g−→ M2×N2

⊗−→ M2⊗R N2 makes M2⊗R N2 into a bal-
anced product of M1 and N1 (draw diagram). By the universal property there is thus a unique
homomorphism M1⊗R N1→M2⊗R N2 with the desired property. ■
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Lemma 5.5 Let M1
f1−→M2

f2−→M3 and N1
g1−→ N2

g2−→ N3 be R-homomorphisms.
Then ( f2⊗g2)◦ ( f1⊗g1) = ( f2 ◦ f1)⊗ (g2 ◦g1).

Proof. ( f2 ◦ f1)⊗ (g2 ◦ g1)(m⊗ n) = ( f2 ◦ f1(m))⊗ (g2 ◦ g1(n)) = f2⊗ g2( f1(m)⊗ g1(n)) =
( f2⊗g2)◦ ( f1⊗g1)(m⊗n). ■

Corollary 5.6 Let f : M1→M2 and g : N1→ N2 be R-homomorphisms.
Then f ⊗g = (idM2⊗g)◦ ( f ⊗ idN1) = ( f ⊗ idN2)◦ (idM1⊗g).

Proof. This follows immediately from the previous lemma. ■

Proposition 5.7 Let R be a ring.

(a) Let Mi for i ∈ I and N be R-modules. Then there is a unique group isomorphism

Φ : (
⊕
i∈I

Mi)⊗R N→
⊕
i∈I

(Mi⊗R N)

such that (mi)i∈I⊗n 7→ (mi⊗n)i∈I .

(b) Let Ni for i ∈ I and M be R-modules. Then there is a unique group isomorphism

Φ : M⊗R (
⊕
i∈I

Ni)→
⊕
i∈I

(M⊗R Ni)

such that m⊗ (ni)i∈I 7→ (m⊗ni)i∈I .

Proof. We only prove (a), as (b) works in precisely the same way.
First we show the existence of the claimed homomorphism Φ by using the universal property of
the tensor product. Define the map

f : (
⊕
i∈I

Mi)×N→
⊕
i∈I

(Mi⊗R N), ((mi)i∈I,n) 7→ (mi,n)i∈I.

This map makes
⊕

i∈I(Mi⊗R N) into a balanced product of
⊕

i∈I Mi and N, whence by the
universal property of the tensor product the claimed homomorphism exists (and is unique).
Next we use the universal property of the direct sum to construct a homomorphism Ψ in the
opposite direction, which will turn out to be the inverse of Φ. Let j ∈ I. By ε j denote the
embedding of M j into the j-th component of

⊕
i∈I Mi. From these we further obtain group

homomorphisms M j⊗R N
ε j⊗idN−−−−→ (

⊕
i∈I Mi)⊗R N. Further consider the embeddings ι j of M j⊗R

N into the j-th component of
⊕

i∈I(Mi⊗R N) from the definition of a direct sum. The universal
property of direct sums now yields a homomorphism Ψ :

⊕
i∈I(Mi⊗R N)→ (

⊕
i∈I Mi)⊗R N such

that Ψ◦ ι j = ε j⊗ idN for all j ∈ J.
Now it is easy to compute on generators that Φ◦Ψ = id and Ψ◦Φ = id. ■

Lemma 5.8 Let R be a ring and let M, N be R-modules. Then M⊗R N ∼= N⊗R M.

Proof. This is not difficult and can be done as an exercise. ■

Example 5.9 Let L/K be a field extension. Then L⊗K K[X ] is isomorphic to L[X ] as an
L-algebra.
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Lemma 5.10 Let R and S be rings. Let M be an R-module, P an S-module, N an S-module
and an R-module such that s(rn) = r(sn) for all r ∈ R, all s ∈ S and all n ∈ N.

(a) M⊗R N is an S-module via s.(m⊗n) = m⊗ (sn).

(b) N⊗S P is an R-module via r.(n⊗ p) = (rn)⊗ p.

(c) There is an isomorphism

(M⊗R N)⊗S P∼= M⊗R (N⊗S P).

Proof. This is not difficult and can be done as an exercise. ■

Lemma 5.11 Let R be a ring, let M,N be R-modules, and let P be a Z-module.

(a) HomZ(N,P) is an R-module via (r.ϕ)(n) := ϕ(rn) for r ∈ R, n ∈ N, ϕ ∈ HomZ(N,P).

(b) There is an isomorphism of abelian groups:

HomR(M,HomZ(N,P))∼= HomZ(M⊗R N,P).

(c) HomZ(P,M) is an R-module via (r.ϕ)(m) := ϕ(rm) for r ∈ R, m ∈M, ϕ ∈ HomZ(P,M).

(d) There is an isomorphism of abelian groups:

HomR(HomZ(P,M),N)∼= HomZ(P,M⊗R N).

Proof. (a) and (c): Simple checking.
(b) The key point is the following bijection:

{Balanced maps f : M×N→ P} −→ HomR(M,HomZ(N,P)),

which is given by
f 7→

(
m 7→ (n 7→ f (m,n))

)
.

To see that it is a bijection, we give its inverse:

ϕ 7→
(
(m,n) 7→ (ϕ(m))(n)

)
.

Now it suffices to use the universal property of the tensor product.
(d) is similar to (b). ■

Proposition 5.12 Let R be a ring.

(a) Let N, M1, M2, M3 be R-modules. If the sequence

M1
f−→M2

g−→M3→ 0

is exact, then so is the sequence

M1⊗R N
f⊗id−−−→M2⊗R N

g⊗id−−→M3⊗R N→ 0.

One says that the functor ·⊗R N is right-exact.
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(b) Let M, N1, N2, N3 be R-modules. If the sequence

N1
f−→ N2

g−→ N3→ 0

is exact, then so is the sequence

M⊗R N1
id⊗ f−−−→M⊗R N2

id⊗g−−→M⊗R N3→ 0.

One says that the functor M⊗R · is right-exact.

Proof. We only prove (a), since (b) works precisely in the same way. We use Proposition 4.11
and obtain the exact sequence:

0→ HomR(M3,HomZ(N,P))→ HomR(M2,HomZ(N,P))→ HomR(M1,HomZ(N,P))

for any Z-module P. By Lemma 5.11 this exact sequence is nothing else but:

0→ HomZ(M3⊗R N,P)→ HomZ(M2⊗R N,P)→ HomZ(M1⊗R N,P).

As P was arbitrary, again from Proposition 4.11 we obtain the exact sequence

M1⊗R N→M2⊗R N→M3⊗R N→ 0,

as claimed. ■

Definition 5.13 Let R be a ring.

(a) An R-module M is called flat over R if for all injective R-homomorphisms

ϕ : N1→ N2

also the group homomorphism

idM⊗ϕ : M⊗R N1→M⊗R N2

is injective.

(b) An R-module M is called faithfully flat over R if M is flat over R and for all R-homomor-
phisms ϕ : N1→ N2, the injectivity of idM⊗ϕ implies the injectivity of ϕ .

(c) A ring homomorphism φ : R→ S is called (faithfully) flat if S is (faithfully) flat as
R-module via φ .

Lemma 5.14 Let R be a ring and let M, N be R-modules.

(a) M is flat over R⇔ M⊗R • preserves exactness of sequences.

(b) N is flat over R⇔ •⊗R N preserves exactness of sequences.

Proof. Combine Definition 5.13 and Proposition 5.12. ■
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Example 5.15 (a) Q is flat as Z-module.

Reason: We don’t give a complete proof here (since we haven’t discussed the module theory
over Z). The reason is that any finitely generated abelian group is the direct sum of its
torsion elements (that are the elements of finite order) and a free module. Tensoring with Q
kills the torsion part and is injective on the free part (we will see that below).

(b) Q is not faithfully flat as Z-module.

Reason: Consider Z/(p2)→ Z/(p), the natural projection (for p a prime), which is not
injective. Tensoring with Q kills both sides (see Example 5.3), so we get 0∼=Z/(p2)⊗ZQ→
Z/(p)⊗ZQ∼= 0, which is trivially injective.

(c) Fp is not flat as Z-module (for p a prime).

Reason: The homomorphism Z n7→pn−−−→ Z (multiplication by p) is clearly injective. But, after
tensoring it with Fp over Z, we obtain the zero map, which is not injective.

6 Localisation

Aims:

• Learn and master the concepts of local rings and the localisation of modules;

• learn and master Nakayama’s lemma and some of its consequences;

• learn and master exactness properties of localisation;

• know examples and standard theorems;

• be able to prove simple properties.

Definition 6.1 A ring R is called local if it has a single maximal ideal.

Example 6.2 (a) Every field K is a local ring, its unique maximal ideal being the zero ideal.

(b) Let p be a prime number. The ring Z/(pn) is a local ring with unique maximal ideal
generated by p.

Reason: (p) is a maximal ideal, the quotient being Fp, a field. If a ⊊ Z/(pn) is a proper
ideal and x ∈ a, then x = py+(pn), as otherwise x would be a unit. This shows that x ∈ (p),
whence a⊆ (p).

(c) {a
b ∈Q | a,b ∈ Z,gcd(a,b) = 1,2 ∤ b} is a local ring (see Example 6.7, where one also finds

a geometric example).

Lemma 6.3 Let R be a local ring with unique maximal ideal m. Then we have

R =m⊔R× (disjoint union).

Hence, the set of units is the complement of the maximal ideal R× = R\m, and, equivalently,
the maximal ideal is the set of non-units m= R\R×.
Moreover, any ring R is local if and only if R\R× is an ideal of R.
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Proof. We already know from Corollary 1.22 (b) that every non-unit lies in some maximal ideal,
whence it lies in m. On the other hand, every element of m is a non-unit, as otherwise m= R. To
see the last statement, just note that if I := R\R× is an ideal, then it is necessarily maximal and
also the only maximal ideal, as any ideal containing an element outside I contains a unit. ■

We will now introduce/recall the process of localisation of rings and modules, which makes
modules/rings local.

Proposition 6.4 Let R be a ring, D⊂ R a multiplicatively closed subset (i.e. for d1,d2 ∈ D
we have d1d2 ∈ D) containing 1.

(a) An equivalence relation on D×R is defined by

(d1,r1)∼ (d2,r2) ⇔ ∃s ∈ D : s(r1d2− r2d1) = 0.

The equivalence class of (d1,r1) is denoted by r1
d1

. So, D is the set of denominators.

(b) The set of equivalence classes D−1R is a ring with respect to

+ : D−1R×D−1R→ D−1R,
r1

d1
+

r2

d2
=

r1d2 + r2d1

d1d2

and
· : D−1R×D−1R→ D−1R,

r1

d1
· r2

d2
=

r1r2

d1d2
.

Neutral elements are 0 := 0
1 and 1 := 1

1 .

(c) The map µ : R→ D−1R, r 7→ r
1 , is a ring homomorphism with kernel {r ∈ R | ∃d ∈

D : rd = 0}. In particular, if R is an integral domain, then this ring homomorphism is
injective.

Proof. Easy checking. ■

Note that for an integral domain R, the equivalence relation takes the easier form

(d1,r1)∼ (d2,r2) ⇔ r1d2− r2d1 = 0,

provided 0 ̸∈ D (if 0 ∈ D, then D−1R is always the zero ring, as any element is equivalent to 0
1 ).

If R is an integral domain and 1 ∈ D′ ⊂ D is a multiplicatively closed subset, then D′−1R is the
subring of D−1R the elements of which can be written as fractions r

d′ with denominator d′ ∈ D′

(exercise).
Example 6.5 Let R be an integral domain. Then D = R\{0} is a multiplicatively closed subset.
Then Frac(R) := D−1R is the field of fractions of R.
Subexamples:

(a) For R = Z, we have FracZ=Q.

(b) Let K be a field and R := K[X1, . . . ,Xn]. Then FracK[X1, . . . ,Xn] =: K(X1, . . . ,Xn) is the field
of rational functions over K (in n variables). To be explicit, the elements of K(X1, . . . ,Xn)

are equivalence classes written as f (X1,...,Xn)
g(X1,...,Xn)

with f ,g ∈ K[X1, . . . ,Xn], g(X1, . . . ,Xn) not the
zero-polynomial. The equivalence relation is, of course, the one from the definition; as
K[X1, . . . ,Xn] is a UFD, we may represent the class f (X1,...,Xn)

g(X1,...,Xn)
as a ‘lowest fraction’, by

dividing numerator and denominator by their greatest common divisor.
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Definition 6.6 Let R be a ring and p◁R be a prime ideal. Then D := R\p is multiplicatively
closed and 1 ∈ D and 0 ̸∈ D.
Then Rp := D−1R is called the localisation of R at p.

Example 6.7 (a) Let R be an integral domain. Then (0) is a prime ideal and Frac(R) = R(0)
(hence the examples above can also be seen as localisations).

In that case, we also have D = R \ p ⊆ R \ {0} and so the localisation Rp at any prime
ideal p is the subring of R(0) = Frac(R) consisting of fractions r

d that can be written with
denominator d ∈ D, i.e. d ̸∈ p.

(b) Let R = Z and p a prime number, so that (p) is a prime ideal. Then the localisation of Z
at (p) is Z(p) and its elements are { r

d ∈Q | p ∤ d,gcd(r,d) = 1}. Here we used that Z is an
integral domain and so Z(p) ⊂ Frac(Z) =Q.

(c) Let R be a local ring with maximal ideal m. As all maximal ideals are prime, we can consider
Rm, the localisation of R at m. Because of Lemma 6.3, D = R\m= R×, the map µ : R→ Rm

is an isomorphism.

(d) Let K be a field and consider An(K). Let a = (a1, . . . ,an) ∈ An(K).

Let p be the kernel of the ring homomorphism

K[X1, . . . ,Xn]→ K, f 7→ f (a1, . . . ,an).

Explicitly, p= { f ∈ K[X1, . . . ,Xn] | f (a) = 0}. As this homomorphism is clearly surjective
(take constant polynomials as preimages), we have that K[X1, . . . ,Xn]/p is isomorphic to K,
showing that p is a maximal (and, hence, a prime) ideal.

The localisation K[X1, . . . ,Xn]p is the subring of K(X1, . . . ,Xn) consisting of elements that
can be written as f (X1,...,Xn)

g(X1,...,Xn)
with g(a1, . . . ,an) ̸= 0. This is the same as the set of rational

functions K(X1, . . . ,Xn) that are defined in a Zariski-open neighbourhood of a:

{ϕ ∈K(X1, . . . ,Xn) | ∃a∈U ⊆An(K) Zariski-open neighbourhood ,ϕ|U well-defined}

Namely, let f
g ∈ K[X1, . . . ,Xn]p so that g(a) ̸= 0. Then the function x 7→ f (x)

g(x) is well-defined
(i.e. we do not divide by 0) on the Zariski-open set An(K) \V(g)(K), which contains a.

On the other hand, if for f
g ∈ K(X1, . . . ,Xn) the function x 7→ f (x)

g(x) is well-defined in some
Zariski-open neighbourhood of a, then, in particular, it is well-defined at a, implying
f
g ∈ K[X1, . . . ,Xn]p.

Example 6.8 Let R be a ring and let f ∈ R be an element which is not nilpotent (i.e. f n ̸= 0
for all n ∈ N). Then D := { f n | n ∈ N} (use 0 ∈ N) is multiplicatively closed and we can form
D−1R. This ring is sometimes denoted R f (Attention: easy confusion is possible).
Subexample: Let R = Z and 0 ̸= a ∈ N. Let D = {an | n ∈ N}. Then

D−1Z=
{

q ∈Q | ∃r ∈ Z,∃n ∈ Z≥0 : q =
r
an

}
.

Proposition 6.9 Let R be a ring and D⊆ R a multiplicatively closed subset with 1 ∈ D. Let
µ : R→ D−1R, given by r 7→ r

1 .

(a) The map
{b◁D−1R ideal } −→ {a◁R ideal }, b 7→ µ

−1(b)◁R
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is an injection, which preserves inclusions and intersections. Moreover, if b◁D−1R is a
prime ideal, then so is µ−1(b)◁R.

(b) Let a⊊ R be an ideal. Then the following statements are equivalent:

(i) a = µ−1(aD−1R) (here aD−1R is short for the ideal of D−1R generated by µ(a),
i.e. by all elements of the form a

1 for a ∈ a).

(ii) a= µ−1(b) for some ideal b◁D−1R (i.e. a is in the image of the map in (a)).

(iii) Every d ∈ D is a non-zero divisor modulo a, meaning that if r ∈ R and rd ∈ a, then
r ∈ a.

Note that in these cases D∩a= /0.

(c) The map in (a) defines a bijection between the prime ideals of D−1R and the prime ideals
p of R such that D∩p= /0. In particular, if p is a prime ideal of R with D∩p= /0, then
pD−1R is a prime ideal.

Proof. Exercise. ■

Corollary 6.10 Let R be a ring and p◁R be a prime ideal. Then the localisation Rp of R at p
is a local ring (in fact, its maximal ideal is D−1p, in the notation of Proposition 6.17).

Proof. Let D = R\p. Note that /0 = a∩D = a∩ (R\p) is equivalent to a⊆ p.
Let I ⊊ Rp be a prime ideal. Then by Proposition 6.9, µ−1(I) is a prime ideal of R contained
in p. As the map in (a) is a bijection and inclusion preserving, we find I = (µ−1(I))Rp ⊆ pRp.
Hence, pRp is the only maximal ideal of Rp (as it contains all maximal ideals). ■

Definition 6.11 Let R be a ring. The Jacobson radical is defined as the intersection of all
maximal ideals of R:

J(R) :=
⋂

m◁R maximal ideal

m

For instance, J(Z) = 0 because it consists of those integers that are divisible by all prime numbers.
If R is a local ring, then J(R) =mR, its maximal ideal.

Lemma 6.12 Let R a ring and let a◁R be an ideal which is contained in J(R). Then for any
a ∈ a, one has 1−a ∈ R×.

Proof. If 1−a were not a unit, then there would be a maximal ideal m containing 1−a. Since
a ∈ J(R), it follows that a ∈m, whence 1 ∈m, contradiction. ■

Lemma 6.13 Let R be a ring, M an R-module and a◁R an ideal. Then aM = {∑n
i=1 aimi | n∈

N,ai ∈ a, mi ∈M for i = 1, . . . ,n} ⊆M is an R-submodule of M.

Proof. Easy checking. ■
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Proposition 6.14 — Nakayama’s Lemma. Let R be a ring and M a finitely generated
R-module. Let a◁R be an ideal such that a⊆ J(R). Suppose aM = M. Then M = 0.

Proof. We use that M is finitely generated by choosing finitely many generators m1, . . . ,mn for
M as an R-module. Now we use aM = M in order to express each generator as an a-linear
combination of these generators. More precisely, for each i ∈ {1, . . . ,n} there are ai, j ∈ a (for
1≤ j ≤ n) such that

mi =
n

∑
j=1

ai, jm j.

We write the coefficients into a matrix A = (ai, j)1≤i, j≤n. It satisfies:

A :=


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

 ·


m1
m2
...

mn

=


m1
m2
...

mn

 .

We now form the matrix B := idn×n−A. By the previous calculation we obtain

B ·


m1
m2
...

mn

= 0.

Let B∗ be the adjoint matrix, which satisfies B∗ ·B = det(B) · idn×n. Hence:

0 = B∗ ·B ·


m1
m2
...

mn

= det(B) ·


m1
m2
...

mn

 .

Hence, for all i ∈ {1, . . . ,n} we find det(B) ·mi = 0, thus det(B) ·M = 0. The usual rules for
computing the determinant immediately show det(B) = 1−a for some a ∈ A. Hence, we have
(1−a)M = 0.
By Lemma 6.12 we get (1− a) ∈ R×, let b ∈ R× be such that b(1− a) = 1. Hence 0 =
b · (1−a) ·M = M. ■

The following corollary turns out to be very useful in many applications.

Corollary 6.15 Let R be a local ring with maximal ideal a and let M be a finitely generated
R-module. Let x1, . . . ,xn ∈M be elements such that their images xi := xi +aM are generators
of the quotient module M/aM.
Then x1, . . . ,xn generate M as an R-module.

Proof. Let N be the submodule of M generated by x1, . . . ,xn. We want to show M = N, or in
other terms M/N = 0. Let m ∈M be any element. By assumption there exists y ∈ N such that

m+aM = y+aM.

This means that there are elements a1, . . . ,ar ∈ a and m1, . . . ,mr ∈M such that

m = y+
r

∑
i=1

aimi.
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Passing to classes in M/N we get

m+N =
r

∑
i=1

ai(mi +N)

thus m+N ∈ a(M/N). This shows a(M/N) = M/N. By Proposition 6.14 we obtain M/N = 0,
hence M = N, as required. ■

Example 6.16 Let p be a prime number and consider Z(p), the localisation of Z at (p). We can
represent its elements as fractions a

b ∈Q with gcd(a,b) = 1 and p ∤ b. Note that the map

π : Z(p)→ Fp,
a
b
7→ ab−1 mod p

is a well-defined surjective ring homomorphism. Its kernel is p := pZ(p), the elements of which
are of the form pa

b ∈Q with gcd(pa,b) = 1. This shows that p is a maximal (and hence a prime)
ideal of Z(p).
Consider V = Zn

(p). Then by Corollary 6.15, a list of vectors v1, . . . ,vm ∈V generates V if and
only if π(v1), . . . ,π(vm) generates Fn

p.
For this conclusion, we use that V/pV ∼= Fn

p.

A concrete example is the following one: Let p = 2 and R =Z(2). Then the vectors
( 7

5
14
11

)
,
(10

3
13
7

)
generate R2 because the vectors modulo 2 are

(
1
0

)
,
(

0
1

)
, which generate R/2R = F2

2.

Proposition 6.17 Let R be a ring, D⊂ R a multiplicatively closed subset containing 1. Let
M be an R-module.

(a) An equivalence relation on D×M is defined by

(d1,m1)∼ (d2,m2) ⇔ ∃s ∈ D : s(d1m2−d2m1) = 0.

(b) The set of equivalence classes D−1M is an D−1R-module with respect to

+ : D−1M×D−1M→ D−1M,
m1

d1
+

m2

d2
=

d2m1 +d1m2

d1d2

and scalar-multiplication

· : D−1R×D−1M→ D−1M,
r
d1
· m

d2
=

rm
d1d2

.

The neutral element is 0 := 0
1 .

(c) The map µ : M→ D−1M, m 7→ m
1 , is an R-homomorphism with kernel {m ∈M | ∃d ∈

D : dm = 0}.

Proof. Easy checking. ■

Lemma 6.18 Let R be a ring, D ⊂ R multiplicatively closed containing 1. Let M,N be
R-modules and φ : M→ N an R-homomorphism.
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(a) The map

φD : D−1M→ D−1N,
m
d
7→ φ(m)

d

is an D−1R-homomorphism.

(b) Let

A α−→ B
β−→C

be an exact sequence of R-modules. Then the sequence

D−1A αD−→ D−1B
βD−→ D−1C

is also exact. One says that localisation is an exact functor.

In particular φD is injective (surjective, bijective) if φ is injective (surjective, bijective).

Proof. (a) Easy checking.
(b) First of all β ◦α = 0 immediatly implies βD ◦αD = 0 because βD ◦αD(

a
d ) =

β◦α(a)
d = 0

d = 0.
Let now b

d be in the kernel of βD, that is 0 = βD(
b
d ) =

β (b)
d . Hence, there is s ∈ D such that

0 = sβ (b) = β (sb). Using the exactness of the original sequence, we find an a ∈ A such that
α(a) = sb. Thus, b

d = α(a)
sd = αD(

a
sd ). ■

Lemma 6.19 Let R be a ring and m a maximal ideal.

(a) The natural map µ : R→ Rm, r 7→ r
1 induces a ring isomorphism

R/m∼= Rm/mRm.

(b) Let M be an R-module and denote by Mm its localisation at m. Then:

M/mM ∼= Mm/mRmMm.

Proof. Exercise. ■

The next proposition gives local characterisations, i.e. it gives criteria saying that a certain
property (injectivity, surjectivity) holds if and only if it holds in all localisations. We first start
with a lemma that gives a local characterisation of a module to be zero.

Lemma 6.20 Let R be a ring and M an R-module. Then the following statements are
equivalent:

(i) M is the zero module.

(ii) For all prime ideals p◁R, the localisation Mp is the zero module.

(iii) For all maximal ideals m◁R, the localisation Mm is the zero module.

Proof. ‘(i)⇒ (ii)’: Clear.
‘(ii)⇒ (iii)’ is trivial because all maximal ideals are prime.
‘(iii)⇒ (i)’: Assume M ̸= 0 and let 0 ̸= m ∈M, put N := R.m⊆M and let a be the kernel of the
surjective ring homomorphism R r 7→r.m−−−→ N. As m ̸= 0, the unit 1 is not in its kernel, and hence a
is a proper ideal of R. As such it is contained in some maximal ideal m. The injectivitiy N ↪→M
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leads to the injectivity of Nm ↪→Mm by Lemmata 6.18 and 4.10. Hence, Nm = 0. So, m
1 = 0

1 ∈Nm.
So, there is s ∈ R\m such that sm = 0. This, however, means s ∈ a⊆m, contradiction. ■

Proposition 6.21 Let R be a ring and ϕ : M→ N an R-homomorphism. For a prime ideal
p◁R, denote by ϕp : Mp → Np the localisation at p. Then the following statements are
equivalent:

(i) ϕ is injective (surjective).

(ii) For all prime ideals p◁R, the localisation ϕp is injective (surjective).

(iii) For all maximal ideals m◁R, the localisation ϕm is injective (surjective).

Proof. ‘(i)⇒ (ii)’: Lemma 6.18.
‘(ii)⇒ (iii)’ is trivial because all maximal ideals are prime.
‘(iii)⇒ (i)’: We only show this statement for the injectivity. The surjectivity is very similar. Let
K be the kernel of ϕ , so that we have the exact sequence

0→ K→M
ϕ−→ N.

By Lemma 6.18, also the sequence

0→ Km→Mm
ϕm−→ Nm

is exact for any maximal ideal m. As ϕm is injective, it follows that Km = 0. By Lemma 6.20,
K = 0, showing that ϕ is injective. ■

Appendix: Localisation as a tensor product

Lemma 6.22 Let R be a ring, D⊂ R multiplicatively closed containing 1 and M an R-module.
The map

ψ : D−1M→ D−1R⊗R M,
m
d
7→ 1

d
⊗m

is an D−1R-isomorphism, where D−1R⊗R M is an D−1R-module via x
d .(

y
s ⊗m) := ( x

d
y
s )⊗m.

Proof. First we check that ψ is well-defined: Let m1
d = m2

s , i.e. there is u ∈ S such that u(sm1−
dm2) = 0. Now 1

d ⊗m1 =
su

sdu ⊗m1 =
1

sdu ⊗ sum1 =
1

sdu ⊗dum2 =
du
sdu ⊗m2 =

1
s ⊗m2. That ψ

is an D−1R-homomorphism is easily checked.
We now construct an inverse to ψ using the universal property of the tensor product. Define

f : D−1R×M→ D−1M, (
x
d
,m) 7→ xm

d
.

This is a balanced map over R. Hence, there is a unique Z-homomorphism φ : D−1R⊗M→
D−1M such that φ( x

d ⊗m) = xm
d .

It is clear that φ is an D−1R-homomorphism and that φ ◦ψ and ψ ◦φ are the identity. ■
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III. Advanced ring theory

7 Noetherian rings and Hilbert’s Basissatz
Aims:

• Learn and master the concepts of Noetherian and Artinian modules and rings;

• know Hilbert’s Basissatz;

• be able to prove simple properties.

In this short section, we treat Noetherian and Artinian rings and prove Hilbert’s basis theorem.

Definition 7.1 Let R be a ring and M an R-module. The module M is called Noetherian (resp.
Artinian) if every ascending (resp. descending) chain of R-submodules of M

M1 ⊆M2 ⊆M3 ⊆ . . .

(resp. M1 ⊇M2 ⊇M3 ⊇ . . . ) becomes stationary, i.e. there is N ∈ N such that for all n≥ N
we have Mn = MN .
The ring R is called Noetherian (resp. Artinian) if it has this property as an R-module, i.e. if
every ascending (descending) chain of ideals becomes stationary.

Example 7.2 (a) Z is Noetherian.

(b) More generally, every principal ideal domain (PID) is Noetherian (see Proposition 11.14).

(c) Any field K is Noetherian and Artinian (since its only ideals are the trivial ones (0) and K,
one cannot build any infinite (ascending or descending) chain).

(d) The polynomial ring in infinitely many variables X1,X2, . . . over any field K is not Noetherian:
The ideal chain

(X1)⊊ (X1,X2)⊊ (X1,X2,X3)⊊ . . .

never becomes stationary.

(e) Z is not Artinian: The ideal chain

(2)⊋ (22)⊋ (23)⊋ (24)⊋ . . .
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never becomes stationary.

Lemma 7.3 Let R be a ring and M an R-module.
Then M is Noetherian (resp. Artinian) if and only if every non-empty set S of submodules
of M has a maximal (resp. minimal) element.
By a maximal (resp. minimal) element of S we mean an R-module N ∈ S such that N ⊆ N1
(resp. N ⊇ N1) implies N = N1 for any N1 ∈ S.

Proof. We only prove the Lemma for the Noetherian case. The Artinian case is similar.
Let S be a non-empty set of R-submodules of M that does not have a maximal element. Then
construct an infinite ascending chain with strict inclusions as follows. Choose any M1 ∈ S. As
M1 is not maximal, it is strictly contained in some M2 ∈ S. As M2 is not maximal, it is strictly
contained in some M3 ∈ S, etc. leading to the claimed chain. Hence, M is not Noetherian.
Conversely, let M1 ⊆ M2 ⊆ M3 ⊆ . . . be an ascending chain. Let S = {Mi | i ∈ N}. This set
contains a maximal element MN by assumption. This means that the chain becomes stationary
at N. ■

Proposition 7.4 Let R be a ring and M an R-module. The following statements are equivalent:

(i) M is Noetherian.

(ii) Every submodule N ≤M is finitely generated as an R-module.

Proof. ‘(i)⇒ (ii)’: Assume that N is not finitely generated. In particular, there are then elements
ni ∈ N for i ∈ N such that ⟨n1⟩⊊ ⟨n1,n2⟩⊊ ⟨n1,n2,n3⟩⊊ . . . , contradicting the Noetherian-ness
of M.
‘(ii)⇒ (i)’: Let M1⊆M2⊆M3⊆ . . . be an ascending chain of R-submodules. Form U :=

⋃
i∈N Mi.

It is an R-submodule of M, which is finitely generated by assumption. Let x1, . . . ,xd ∈U be
generators of U . As all xi already lie in some M ji , there is an N such that xi ∈ MN for all
i = 1, . . . ,d. Hence, the chain becomes stationary at N. ■

The proposition shows that in particular every principal ideal domain is a Noetherian ring, since
all ideals (recall that the ideals of a ring R are precisely the R-submodules of R) are generated by
a single element, hence, finitely generated. Hence, we obtain that Z and K[X ] (for K a field) are
Noetherian; however, we do not yet know about the polynomial ring in more than one variable;
its Noetherian property is the content of Hilbert’s Basissatz.

Lemma 7.5 Let R be a ring and 0→N→M→M/N→ 0 be an exact sequence of R-modules.
The following statements are equivalent:

(i) M is Noetherian (resp. Artinian).

(ii) N and M/N are Noetherian (resp. Artinian).

Proof. We only prove this in the Noetherian case. The Artinian one is similar.
‘(i) ⇒ (ii)’: N is Noetherian because every ascending chain of submodules of N is also an
ascending chain of submodules of M, and hence becomes stationary.
To see that M/N is Noetherian consider an ascending chain of R-submodules M1 ⊆M2 ⊆M3 ⊆
. . . of M/N. Taking preimages for the natural projection π : M→M/N gives an ascending chain
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in M, which by assumption becomes stationary. Because of π(π−1(Mi)) = Mi, also the original
chain becomes stationary.
‘(ii)⇒ (i)’: Let

M1 ⊆M2 ⊆M3 ⊆ . . .

be an ascending chain of R-submodules. The chain

M1∩N ⊆M2∩N ⊆M3∩N ⊆ . . .

becomes stationary (say, at the integer n) because its members are submodules of the Noetherian
R-module N. Moreover, the chain

(M1 +N)/N ⊆ (M2 +N)/N ⊆ (M3 +N)/N ⊆ . . .

also becomes stationary (say, at the integer m) because its members are submodules of the
Noetherian R-module M/N. By one of the isomorphism theorems, we have (Mi +N)/N ∼=
Mi/(Mi∩N). Let now i be greater than n and m. We hence have for all j ≥ 0:

Mi/(Mi∩N) = Mi+ j/(Mi∩N).

The other isomorphism theorem then yields:

0∼= (Mi+ j/(Mi∩N))/(Mi/(Mi∩N))∼= Mi+ j/Mi,

showing Mi = Mi+ j. ■

Proposition 7.6 Let R be a Noetherian (resp. Artinian) ring. Then every finitely generated
R-module is Noetherian (resp. Artinian).

Proof. Exercise. ■

Proposition 7.7 — Hilbert’s Basissatz. Let R be a Noetherian ring and n ∈ N. Then
R[X1, . . . ,Xn] is a Noetherian ring. In particular, every ideal a◁ R[X1, . . . ,Xn] is finitely
generated.

Proof. By induction it clearly suffices to prove the case n = 1. So, let a◁R[X ] be any ideal. We
show that a is finitely generated, which implies the assertion by Proposition 7.4.
The very nice trick is the following:

a0 := {a0 ∈ R | a0 ∈ a}◁R

⊆

a1 := {a1 ∈ R | ∃b0 ∈ R : a1X +b0 ∈ a}◁R

⊆

a2 := {a2 ∈ R | ∃b0,b1 ∈ R : a2X2 +b1X +b0 ∈ a}◁R

⊆

...

So, an is the set of highest coefficients of polynomials of degree n lying in a. The inclusion
an−1 ⊆ an is true because if we multiply a polynomial of degree n− 1 by X , we obtain a
polynomial of degree n with the same highest coefficient.
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The ascending ideal chain a0 ⊆ a1 ⊆ a2 ⊆ . . . becomes stationary because R is Noetherian, say
ad = ad+i for all i ∈ N. Moreover, since R is Noetherian, all the ai are finitely generated (as
ideals of R) by Proposition 7.4, say, ai = (ai,1, . . . ,ai,mi).
By construction, for each ai, j there is a polynomial fi, j ∈ a of degree i with highest coefficient ai, j.
Let b be the ideal of R[X ] generated by the finitely many fi, j ∈ a for 0≤ i≤ d and 1≤ j ≤ mi.
Claim: b= a.
Of course, b⊆ a. We show by induction on e that any f ∈ a of degree e lies in b. If e = 0, then
f ∈ a0, whence f ∈ b.
Next we treat 0 < e≤ d. Suppose we already know that any polynomial in a of degree at most
e− 1 lies in b. Let now f ∈ a be of degree e. The highest coefficient ae of f lies in ae. This
means that ae = ∑

me
j=1 r jae, j for some r j ∈ R. Now, the polynomial g(X) = ∑

me
j=1 r j fe, j has highest

coefficient ae and is of degree e. But, now f −g is in a and of degree at most e−1, whence it
lies in b. We can thus conclude that f lies in b, as well.
Finally we deal with d < e. Just as before, suppose we already know that any polynomial in a of
degree at most e−1 lies in b and let again f ∈ a be of degree e. The highest coefficient ae of f
lies in ae = ad and, hence, there are r j for j = 1, . . . ,md such that ae = ∑

md
j=1 r jad, j. Consequently,

the polynomial g(X) = ∑
md
j=1 r j fd, j has highest coefficient ae and is of degree d. But, now

f (X)−g(X)Xe−d is in a and of degree at most e−1, whence it lies in b. We can thus conclude
that f lies in b, as well, finishing the proof of the claim and the Proposition. ■

Proposition 7.8 Let R be a Noetherian ring and D⊆ R be a multiplicatively closed subset
with 1 ∈ D. Then D−1R is also a Noetherian ring.

Proof. Exercise. ■

8 Krull dimension of rings
Aims:

• Learn and master the concept of Krull dimension;

• know the going up theorem for prime ideals in integral extensions;

• know that the Krull dimension is invariant under integral ring extensions;

• know examples (in particular, that of rings of integers in number fields and coordinate
rings of curves) and standard theorems;

• be able to prove simple properties.

This section has two main corollaries:

• The ring of integers of a number field has Krull dimension 1.

• The coordinate ring of a plane curve has Krull dimension 1 (fitting well with the intuitive
concept that a curve is a ‘geometric object of dimension 1’).

Definition 8.1 Let R be a ring. A chain of prime ideals of length n in R is

pn ⊊ pn−1 ⊊ pn−2 ⊊ · · ·⊊ p1 ⊊ p0,

where pi ◁R is a prime ideal for all i = 0, . . . ,n.
The height h(p) of a prime ideal p◁R is the supremum of the lengths of all prime ideal
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chains with p0 = p.
The Krull dimension dim(R) of the ring R is the supremum of the heights of all prime ideals
of R.

Example 8.2 (a) The Krull dimension of Z is 1.

Reason: Recall that the prime ideals of Z are (0) (height 0) and (p) for a prime p, which is
also maximal. So, the longest prime ideal chain is (0)⊊ (p).

(b) The Krull dimension of any field is 0.

Reason: (0) is the only ideal, hence, also the only prime ideal.

(c) Let K be a field. The polynomial ring K[X1, . . . ,Xn] has Krull dimension n. This needs a
non-trivial proof! See below.

Primes in integral extensions

In the sequel, we are going to consider ring extensions R⊆ S. If we denote ι : R→ S the inclusion
and b◁S an ideal, then ι−1(b) = b∩R (in the obvious sense). In particular, if b is a prime ideal,
then so is ι−1(b) = b∩R (see Exercise).

Lemma 8.3 Let R⊆ S be a ring extension such that S is integral over R. Let b◁S be an ideal
and a := b∩R◁R.

(a) Then R/a ↪→ S/b is an integral ring extension (note that this is injective because of the
isomorphism theorem).

(b) Assume that b is a prime ideal. Then a is maximal⇔ b is maximal.

(c) Assume in addition that S is an integral domain. Then: R is a field⇔ S is a field.

Proof. Exercise. ■

Lemma 8.4 Let R⊆ S be an integral ring extension.

(a) Let b◁S be an ideal containing x ∈ b which is not a zero-divisor. Then b∩R =: a◁R is
not the zero ideal.

(b) Let P1 ⊊P2 be a chain of prime ideals of S. Then p1 :=P1 ∩R ⊊P2 ∩R =: p2 is a
chain of prime ideals of R.

Proof. (a) Since S is integral over R, there are n ∈ N and r0, . . . ,rn−1 ∈ R such that

0 = xn +
n−1

∑
i=0

rixi.

We assume that n is minimal with this property. This implies r0 ̸= 0 as otherwise we could write

0 = x ·
(
xn−1 +

n−1

∑
i=1

rixi−1)
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and, from the fact that x is not a zero-divisor, conclude xn−1 +∑
n−1
i=1 rixi−1 = 0, leading to a

contradiction. Thus, rewriting gives

0 ̸= r0 =−x ·
(
xn−1 +

n−1

∑
i=1

rixi−1) ∈ R∩b= a.

(b) Consider the integral (see Lemma 8.3) ring extension R/p1 ↪→ S/P1. The ideal P2/P1 in
S/P1 is prime because (S/P1)/(P2/P1)∼= S/P2 (isomorphism theorem) is an integral domain.
This also means that P2/P1 consists of non-zero divisors only (except for 0). Consequently, by
(a), we have (0) ̸=

(
P2/P1

)
∩
(
R/p1

)∼= p2/p1. ■

Lemma 8.5 Let R⊆ S be an integral ring extension and let T ⊆ R be a multiplicatively closed
subset containing 1. Then T−1R⊆ T−1S is an integral ring extension.

Proof. Exercise. ■

Lemma 8.6 Let R ⊆ S be an integral ring extension and let p◁R be a prime ideal. Then
there is a prime ideal P◁S lying over p, by which we mean p=P∩R.

Proof. Let T := R\p so that Rp = T−1R is the localisation of R at p. By Lemma 8.5, Rp ↪→ T−1S
is an integral ring extension. Let m be a maximal ideal of T−1S.
Consider the commutative diagram:

R �
� integral //

α

��

S

β

��
Rp
� � integral // T−1S.

Put P := β−1(m). It is a prime ideal. Note that m∩Rp is maximal by Lemma 8.3, hence,
m∩Rp = pRp is the unique maximal ideal of the local ring Rp. Consequently, we have due to the
commutativity of the diagram:

p= α
−1(pRp) = α

−1(m∩Rp) = R∩β
−1(m) = R∩P,

showing that P satisfies the requirements. ■

Proposition 8.7 — Going up. Let R ⊆ S be an integral ring extension. For prime ideals
p1 ⊊ p2 in R and a prime ideal P1 ◁S lying over p1 (i.e. P1∩R = p1), there is a prime ideal
P2 in S lying over p2 (i.e. P2∩R = p2) such that P1 ⊊P2.

Proof. By Lemma 8.3, R/p1 ↪→ S/P1 is an integral ring extension. By Lemma 8.6, there is
P2 ◁ S/P1 lying over p2 := p2/p1 such that P2 ∩R/p1 = p2/p1. Define P2 as π

−1
S (P2) for

πS : S→ S/P1 the natural projection. Clearly, P2 ⊇P1 (as P1 is in the preimage, being the
preimage of the 0 class). By the commutativity of the diagram

R �
� integral //

πR

��

S

πS

��
R/p1

� � integral // S/P1,
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we have
P2∩R = π

−1
S (P2)∩R = π

−1
R (P2∩R/p1) = π

−1
R (p2/p1) = p2.

This also implies P2 ̸=P1. ■

Corollary 8.8 Let R⊆ S be an integral ring extension. Then the Krull dimension of R equals
the Krull dimension of S.

Proof. We first note that the Krull dimension of R is at least the Krull dimension of S. Reason:
If Pn ⊊Pn−1 ⊊ · · ·⊊P0 is an ideal chain in S, then Pn∩R ⊊Pn−1∩R ⊊ · · ·⊊P0∩R is an
ideal chain in R by Lemma 8.4.
Now we show that the Krull dimension of S is at least that of R. Let pn ⊊ pn−1 ⊊ · · ·⊊ p0 be an
ideal chain in R and let Pn be any prime ideal of S lying over pn, which exists by Lemma 8.6.
Then Proposition 8.7 allows us to obtain an ideal chain Pn ⊊ Pn−1 ⊊ · · · ⊊ P0 such that
Pi∩R = pi for i = 0, . . . ,n, implying the desired inequality. ■

Corollary 8.9 Let R be an integral domain of Krull dimension 1 and let L be a finite extension
of K := FracR. Then the integral closure of R in L has Krull dimension 1.
In particular, rings of integers of number fields have Krull dimension 1.

Proof. The integral closure of R in L is an integral ring extension of R. By Corollary 8.8, the
Krull dimension of S is the same as that of R, whence it is 1. ■

Krull dimension of the coordinate ring of a curve
Our next aim is to compute the Krull dimension of K[X1, . . . ,Xn] for some field K. First we
need Nagata’s Normalisation Lemma, which will be an essential step in the proof of Noether’s
Normalisation Theorem and of the computation of the Krull dimension of K[X1, . . . ,Xn].

Proposition 8.10 — Nagata. Let K be a field and f ∈K[X1, . . . ,Xn] be a non-constant polyno-
mial. Then there are m2,m3, . . . ,mn ∈N such that the ring extension R := K[ f ,z2,z3, . . . ,zn]⊆
K[X1, . . . ,Xn] =: S with zi := Xi−Xmi

1 ∈ K[X1, . . . ,Xn] is integral.

Proof. The proof works like the proof of Lemma 3.14 (a), except that now the number of
variables is abitrary but finite.
First note: S = R[X1]. Reason: The inclusion ⊇ is trivial. For n≥ i > 1, we have Xi = zi +Xmi

1 ∈
R[X1], proving the inclusion ⊆.
It suffices to show that X1 is integral over R. The main step is to construct a monic polynomial
h ∈ R[T ] such that h(X1) = 0. We take the following general approach: For any mi ∈ N for
i = 2,3, . . . ,n the polynomial

h(T ) := f (T,z2 +T m2 ,z3 +T m3 , . . . ,zn +T mn)− f (X1, . . . ,Xn) ∈ R[T ]

obviously has X1 as a zero. But, in order to prove the integrality of X1 we need the highest
coefficient of h to be in R× = K[X1, . . . ,Xn]

× = K×, so that we can divide by it, making h monic.
We will achieve this by making a ‘good’ choice of the mi, as follows.
Let d be the total degree of f in the following sense:

f (X1, . . . ,Xn) = ∑
(i1,...,in) s.t. |i|≤d

a(i1,...,in)X
i1
1 · · ·X

in
n
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with one of the a(i1,...,in) ̸= 0 for which |i| := ∑
n
j=1 i j = d. Now we compute (letting m1 = 1)

h(T )

=
(

∑
(i1,...,in) s.t. |i|≤d

a(i1,...,in)T
i1(z2 +T m2)i2(z3 +T m3)i3 . . .(zn +T mn)in

)
− f (X1, . . . ,Xn)

= ∑
(i1,...,in) s.t. |i|≤d

a(i1,...,in)T
∑

n
j=1 i jm j + terms of lower degree in T.

Now choose m j = (d+1) j−1. Then the ∑
n
j=1 i jm j = ∑

n
j=1 i j(d+1) j−1 are distinct for all choices

of 0≤ i j ≤ d (consider it as the (d+1)-adic expansion of an integer). In particular, among these
numbers there is a maximal one with 0 ̸= a(i1,...,in). Then this is the highest coefficient of h and it
lies in K×, as needed. ■

Definition 8.11 Let K be a field. A finitely generated K-algebra is also called an affine
K-algebra. Any such is of the form K[X1, . . . ,Xn]/I with n ∈ N and I ⊴ K[X1, . . . ,Xn] and
ideal.

Proposition 8.12 — Noether’s Normalisation Theorem. Let K be a field and R a non-zero
affine K-algebra of the form R = K[X1, . . . ,Xn]/I for some n ∈ Z≥0.
Then there is r ∈ Z≥0, r ≤ n and there are elements y1, . . . ,yr ∈ R such that

(1) K[y1, . . . ,yr]⊆ R is an integral ring extension and

(2) y1, . . . ,yr are K-algebraically independent (by definition, this means that K[y1, . . . ,yr] is
isomorphic to the polynomial ring in r variables).

The subring K[y1, . . . ,yr] of R is called a Noether normalisation of R.

Proof. We use induction on n ∈ Z≥0. If n = 0, then R = K and the result is trivially true.
Assume now that the result is proved up to n− 1. We show it for n and concretely write
R = K[X1, . . . ,Xn]/I. Denote by ϕ : K[X1, . . . ,Xn]↠ R the natural quotient morphism.
If I =(0), then R is isomorphic to K[X1, . . . ,Xn] and the result is trivially true. Now assume I ̸=(0)
and let f ∈ I be a non-constant polynomial. We apply Nagata’s Normalisation Lemma 8.10
and obtain elements z2, . . . ,zn ∈ K[X1, . . . ,Xn] such that K[ f ,z2, . . . ,zn] ⊆ K[X1, . . . ,Xn] is an
integral ring extension. Now, apply ϕ to this extension and obtain the integral ring extension
ϕ(K[ f ,z2, . . . ,zn]) ⊆ R, i.e. the integral ring extension R′ ⊆ R with R′ := K[ϕ(z2), . . . ,ϕ(zn)].
Now, R′ is generated by n− 1 elements, hence, by the induction hypothesis, it is an integral
extension of K[y1, . . . ,yr] with r ≤ n−1 algebraically independent elements y1, . . . ,yr ∈ R′ ⊆ R.
As integrality is transitive, R is integral over K[y1, . . . ,yr], proving the proposition. ■

Note that by Corollary 8.8 one obtains that the Krull dimension of R is equal to r in view of the
following proposition.

Proposition 8.13 Let K be a field. The Krull dimension of K[X1, . . . ,Xn] is equal to n.

Proof. We apply induction on n to prove the Proposition. If n = 0, then the Krull dimension is 0
being the Krull dimension of a field. Let us assume that we have already proved that the Krull
dimension of K[X1, . . . ,Xn−1] is n−1.
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Let now m be the Krull dimension of K[X1, . . . ,Xn]. We first prove m≥ n. The reason simply is
that we can write down a chain of prime ideals of length n, namely:

(0)⊊ (X1)⊊ (X1,X2)⊊ (X1,X2,X3)⊊ · · ·⊊ (X1,X2, . . . ,Xn).

Now let
(0)⊊P1 ⊊P2 ⊊P3 ⊊ · · ·⊊Pm

be a chain of prime ideals of K[X1, . . . ,Xn]. We pick any non-constant f ∈ P1 and apply
Nagata’s Normalisation Lemma 8.10, which yields elements z2, . . . ,zn ∈ K[X1, . . . ,Xn] such that
R⊆ K[X1, . . . ,Xn] with R := K[ f ,z2, . . . ,zn] is an integral ring extension. Setting pi := R∩Pi we
obtain by Lemma 8.4 the chain of prime ideals of R of length m:

(0)⊊ p1 ⊊ p2 ⊊ p3 ⊊ · · ·⊊ pm.

Let R := K[ f ,z2, . . . ,zn]/p1. Note that this is an integral domain, which can be generated (as a
K-algebra) by n− 1 elements, namely, the classes of z2, . . . ,zn. Let π : R = K[ f ,z2, . . . ,zn]→
K[ f ,z2, . . . ,zn]/p1 = R be the natural projection. We apply it to the prime ideal chain of the pi

and get:
(0) = p1/p1 ⊊ p2/p1 ⊊ p3/p1 ⊊ · · ·⊊ pm/p1,

which is a prime ideal chain of R of length m−1. By Noether’s Normalisation Theorem 8.12 it
follows that the Krull dimension of R is at most n−1, yielding the other inequality m≤ n and
finishing the proof. ■

Corollary 8.14 Let K be a field and f (X ,Y ) ∈ K[X ,Y ] be a non-constant polynomial. Let
C = V( f )(K) be the resulting plane curve.
Then the Krull dimension of the coordinate ring K[C] = K[X ,Y ]/IC is equal to 1.

Proof. This is now immediate by Lemma 3.14. ■

We include an easy lemma on Krull dimensions, which enables us to give another proof of
Proposition 3.13.

Lemma 8.15 Let ϕ : R ↠ S be a surjective ring homomorphism.

(a) The Krull dimension of S is less than or equal to the Krull dimension of R.

(b) If R is an integral domain and the Krull dimensions of R and S are equal and finite, then
ϕ is an isomorphism.

Proof. (a) ϕ−1 of a prime ideal is a prime ideal. Moreover, if ϕ−1(a) = ϕ−1(b), then we have
ϕ(ϕ−1(a)) = ϕ(ϕ−1(b)), hence, a = b using here the surjectivity of ϕ . This shows that the
inverse image of any prime ideal chain is a prime ideal chain of the same length.
(b) Since R is an integral domain, any prime ideal chain of maximal length starts with the prime
ideal (0). Let a be the kernel of ϕ . It is contained in any ϕ−1(p). Hence, if ϕ is non-zero, the
pull-back of any chain of prime ideals of S can be prolonged by starting it with (0), showing that
the Krull dimension of R is strictly larger than that of S. ■

Second proof of Proposition 3.13. (This proof is shorter, but depends on Krull dimensions.) The
Krull dimensions of K[X ,Y ]/( f ) and K[C] = K[X ,Y ]/IC are both equal to 1 due to Lemma 3.14.
As f is irreducible, ( f ) is prime and K[X ,Y ]/( f ) is an integral domain. Consequently, the
natural projection K[X ,Y ]/( f ) ↠ K[X ,Y ]/IC is an isomorphism by Lemma 8.15 (b). Thus
( f ) = IC. ■
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9 Dedekind rings
Aims:

• Learn and master the concept of regular local rings;

• learn and master the concept of Dedekind rings;

• learn and master the local characterisation of Dedekind rings;

• learn and master the characterisation of smoothness of a curve in terms of Dedekind rings;

• know examples and standard theorems;

• be able to prove simple properties.

Lemma 9.1 Let R be an integral domain with field of fractions K and D⊆ R a multiplicatively
closed subset containing 1.

(a) If R is integrally closed, then D−1R is integrally closed.

(b) Let R̃ be the integral closure of R in K and let D̃−1R be the integral closure of D−1R in K.

Then D−1R̃ = D̃−1R.

Proof. (a) Note that K is also the field of fractions of D−1R. Let a
b ∈ K be integral over D−1R.

Then (after choosing a common demoninator of the coefficients) there is an equation of the form:

0 =
(a

b

)n
+

cn−1

d

(a
b

)n−1
+

cn−2

d

(a
b

)n−2
+ · · ·+ c1

d
a
b
+

c0

d

with c0,c1, . . . ,cn−1 ∈ R and d ∈ D. Multiplying by dn we obtain:

0 =
(ad

b

)n
+ cn−1

(ad
b

)n−1
+ cn−2d

(ad
b

)n−2
+ · · ·+ c1dn−2 ad

b
+ c0dn−1,

showing that da
b is integral over R. As R is integrally closed, it follows that da

b is in R, whence
a
b ∈ D−1R.
(b) By (a), D−1R̃ is integrally closed. As R̃/R is an integral ring extension, by Lemma 8.5 it
follows that D−1R̃/D−1R is an integral ring extension. This shows that D−1R̃ is the integral
closure of D−1R. ■

Now we can prove the local characterisation of integrally closed integral domains.

Proposition 9.2 Let R be an integral domain. Then the following statements are equivalent:

(i) R is integrally closed.

(ii) Rp is integrally closed for all prime ideals p◁R.

(iii) Rm is integrally closed for all maximal ideals m◁R.

Proof. ‘(i)⇒ (ii)’: Lemma 9.1.
‘(ii)⇒ (iii)’: Trivial because every maximal ideal is prime.
‘(iii)⇒ (i)’: Let us denote by R̃ the integral closure of R. By Lemma 9.1, we know that the
localisation R̃m of R̃ at m is the integral closure of Rm.
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Let ι : R ↪→ R̃ be the natural embedding. Of course, R is integrally closed if and only if ι is an
isomorphism. By Proposition 6.21 this is the case if and only if the localisation ιm : Rm ↪→ R̃m

is an isomorphism for all maximal ideals m. That is, however, the case by assumption and the
previous discussion. ■

Lemma 9.3 Let R be a Noetherian local ring and m◁R its maximal ideal.

(a) mn/mn+1 is an R/m-vector space for the natural operation.

(b) dimR/m(m/m2) is the minimal number of generators of the ideal m.

(c) If dimR/m(m/m2) = 1, then m is a principal ideal and there are no ideals a◁R such that
mn+1 ⊊ a⊊mn for any n ∈ N.

Proof. Exercise. ■

Definition 9.4 A Noetherian local ring with maximal ideal m is called regular if the Krull
dimension of R equals dimR/m(m/m2).

Proposition 9.5 Let R be a regular local ring of Krull dimension 1.

(a) There is x ∈ R such that all non-zero ideals are of the form (xn) for some n ∈ N.

(b) Every non-zero r ∈ R can be uniquely written as uxn with u ∈ R× and n ∈ N.

(c) R is a principal ideal domain (in particular, it is an integral domain).

Proof. By Lemma 9.3 we know that m is a principal ideal. Let x be a generator, i.e. (x) =m. As
a preparation, we first consider M :=

⋂
n∈Nm

n =
⋂

n∈N(x
n).

We show M = 0. This is trivial if there is an integer n ≥ 1 such that xn = 0. We now assume
that no power of x equals 0. Let y ∈ M. We can write it as y = xr with some r ∈ R because
y ∈m. We show r ∈M. For that, we assume the opposite r ̸∈M. Then there is a minimal integer
n ≥ 1 such that r ̸∈ mn = (xn). Consequently, r = uxn−1 with a unit u ∈ R× = R \m. Then
on the one hand y = xr = uxn and on the other hand y = vxn+1 ∈ mn+1 ⊆M with some v ∈ R.
This leads to 0 = xn(u− vx). As xn ̸= 0, we conclude u− vx ∈m, leading to u ∈m, the desired
contradiction, showing r ∈M and, hence y = xr ∈ mM. This shows mM = M. Since M is an
ideal in a Noetherian ring, it is finitely generated, so Nakayama’s Lemma (Proposition 6.14)
implies that M = 0.
Now we show (b) and let 0 ̸= r ∈ R. As R = (x0)⊃ (x)⊃ (x2)⊃ (x3)⊃ ·· · and because of the
preparation, there is a maximal n such that r ∈ (xn). So, we can write r = vxn for some v ∈ R.
As R is a local ring, we have R = R×∪m= R×∪ (x). Consequently, v ∈ R× because otherwise
r ∈ (xn+1), contradicting the maximality of n.
Let 0 ̸= a◁R be any non-zero ideal. Let uixni (with ui ∈ R× and i = 1, . . . ,s) be generators of
the ideal. Put n := mini ni. Then a = (xn) because all other generators are multiples of u jxn j ,
where j is such that n j = n.
None of the ideals mn for n≥ 2 is a prime ideal (consider x ·xn−1). As the Krull dimension is 1, it
follows that (0) is a (hence, the) minimal prime ideal, showing that R is an integral domain. ■

Our next aim is to prove that regular local rings of Krull dimension 1 are precisely the local
principal ideal domains and also the local integrally closed integral domains.
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The following lemma is proved very similarly to Nakayama’s Lemma. It is essentially a ring
version of the characteristic polynomial known from linear algebra.

Lemma 9.6 Let R be a ring, a◁R an ideal and M a finitely generated R-module. Let
ϕ : M→M be an R-homomorphism such that the image ϕ(M) is contained in aM.
Then there are n ∈ N and a0,a1, . . . ,an−1 ∈ a such that

ϕ
n +an−1ϕ

n−1 +an−2ϕ
n−2 + · · ·+a2ϕ

2 +a1ϕ +a0id

is the zero-endomorphism on M.

Proof. Let x1, . . . ,xn be generators of M as R-module. By assumption there are ai, j ∈ a for
1≤ i, j ≤ n such that

ϕ(xi) =
n

∑
j=1

ai, jx j.

Consider the matrix

D(T ) := T · idn×n− (ai, j)1≤i, j≤n ∈Matn(R[T ]).

Note that D(T ) is made precisely in such a way that

D(ϕ)

( x1
x2
...

xn

)
= ((

ϕ 0 ··· 0
0 ϕ ··· 0
...

...
. . .

...
0 0 ··· ϕ

−
 a1,1 a1,2 ··· a1,n

a2,1 a2,2 ··· a2,n

...
...

. . .
...

an,1 an,2 ··· an,n

)

( x1
x2
...

xn

)
=

ϕ(x1)
ϕ(x2)

...
ϕ(xn)

−
ϕ(x1)

ϕ(x2)

...
ϕ(xn)

= 0.

If we multiply with the adjoint matrix D(T )∗, we obtain D(T )∗D(T ) = det(D(T ))idn×n. This
yields

0 = det(D(ϕ))

( x1
x2
...

xn

)
= D(ϕ)∗D(ϕ)

( x1
x2
...

xn

)
.

Consequently, det(D(ϕ)) is zero on all generators. We are done because the determinant
det(D(ϕ)) is of the desired form. ■

Lemma 9.7 Let R be a local Noetherian integral domain of Krull dimension 1 with maximal
ideal m. Let (0)⊊ I ◁R be an ideal. Then there is n ∈ N such that mn ⊆ I.

Proof. Let Σ be the set of all ideals I ◁R such that mn ̸⊆ I for all n ∈ N. This set is non-
empty as (0) ∈ Σ because mn ̸= (0) since R is an integral domain of non-zero Krull dimension.
Consequently, Σ contains a maximal element J as R is Noetherian. Assume J ̸= (0). Note that J
is not prime since it is neither (0) nor equal to m, which are the only prime ideals in R. Hence, J
contains a product xy with x,y∈ R without containing x and y individually. Due to the maximality
of J among the elements of Σ, the ideals (J,x) and (J,y) do not lie in Σ. Consequently, there are
m,n ∈ Z≥0 such that mn ⊆ (J,x) and mm ⊆ (J,y). We conclude

mm+n ⊆ (J,x)(J,y)⊆ J,

a contradiction. ■
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Proposition 9.8 Let R be a local Noetherian ring of Krull dimension 1. Then the following
statements are equivalent:

(i) R is an integrally closed integral domain.

(ii) R is regular.

(iii) R is a principal ideal domain.

Proof. ‘(ii)⇒ (iii)’: This was proved in Proposition 9.5.
‘(iii) ⇒ (i)’: Principal ideal domains are UFDs (Proposition 11.21) and UFDs are integrally
closed (Proposition 2.28).
‘(i)⇒ (ii)’: It suffices to show that m is a principal ideal because this means that dimR/m(m/m2)=
1, which is the Krull dimension of R, so that R is regular by definition.
We now construct an element x such that m= (x). To that aim, we start with any 0 ̸= a ∈m. By
Lemma 9.7 there is n ∈ N such that mn ⊆ (a) and mn−1 ̸⊆ (a). Take any b ∈ mn−1 \ (a). Put
x = a

b ∈ K, where K is the field of fractions of R.
We show that m= (x), as follows:

• x−1m⊆ R ideal, i.e. m
x ∈ R for all m ∈m because m

x = mb
a and mb ∈mmn−1 =mn ⊆ (a).

• x−1 ̸∈ R because otherwise r = x−1 = b
a ∈ R would imply b = ra ∈ (a).

• x−1m ̸⊆ m because of the following: Assume the contrary, i.e. x−1m ⊆ m. Then we

have the R-homomorphism ϕ : m m 7→mx−1

−−−−−→ m. As m is finitely generated (because R is
Noetherian), there are a0,a1, . . . ,an−1 ∈ R such that

ϕ
n +an−1ϕ

n−1 +an−2ϕ
n−2 + . . .a1ϕ +a0id

is the zero-endomorphism on m by Lemma 9.6 (with a= R). This means that

0 =
(
x−n +an−1x−(n−1)+an−2x−(n−2)+ . . .a1x−1 +a0

)
m.

As R is an integral domain and m ̸= 0 because the Krull dimension is not 0, we obtain

0 = x−n +an−1x−(n−1)+an−2x−(n−2)+ . . .a1x−1 +a0,

showing that x−1 is integral over R. As R is integrally closed, we obtain further x−1 ∈ R,
which we excluded before.

So, x−1m is an ideal of R which is not contained in m. Thus, x−1m= R, whence m= Rx = (x),
as was to be shown. ■

Definition 9.9 A Noetherian integrally closed integral domain of Krull dimension 1 is called
a Dedekind ring.

Example 9.10 Let K/Q be a number field and ZK its ring of integers. We have proved that ZK

is an integrally closed integral domain and that its Krull dimension is 1. So, ZK is a Dedekind
ring because it is also Noetherian (this is not so difficult, but needs some terminology that we
have not introduced; we will show this in the beginning of the lecture on Algebraic Number
Theory).
In a lecture on Algebraic Number Theory (e.g. next term) one sees that Dedekind rings have the
property that every non-zero ideal is a product of prime ideals in a unique way. This replaces the
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unique factorisation in prime elements, which holds in a factorial ring, but, fails to hold more
generally, as we have seen.
Below we shall provide further examples of Dedekind rings coming from geometry.
We can now conclude from our previous work the following local characterisation of Dedekind
rings.

Proposition 9.11 Let R be a Noetherian integral domain of Krull dimension 1. Then the
following assertions are equivalent:

(i) R is a Dedekind ring.

(ii) R is integrally closed.

(iii) Rm is integrally closed for all maximal ideals m◁R.

(iv) Rm is regular for all maximal ideals m◁R.

(v) Rm is a principal ideal domain for all maximal ideals m◁R.

Proof. All statements have been proved earlier! But, note that the Krull dimension of Rm is 1 for
all maximal ideals m. That is due to the fact that any non-zero prime ideal in an integral domain
of Krull dimension 1 is maximal and that mRm is also maximal and non-zero. ■

Let us now see what this means for plane curves. Let f (X ,Y ) ∈ K[X ,Y ] and a,b ∈ K such that
f (a,b) = 0. Recall the Taylor expansion:

TC,(a,b)(X ,Y ) =

∂ f
∂X
|(a,b)(X −a)+

∂ f
∂Y
|(a,b)(Y −b)+ terms of higher degree in (X−a) and (Y −b).

Definition 9.12 Let K be a field, f ∈ K[X ,Y ] a non-constant irreducible polynomial and
C = V( f )(K) the associated plane curve.
Let (a,b) ∈C be a point. The tangent equation to C at (a,b) is defined as

TC,(a,b)(X ,Y ) =
∂ f
∂X
|(a,b)(X−a)+

∂ f
∂Y
|(a,b)(Y −b) ∈ K[X ,Y ].

If TC,(a,b)(X ,Y ) is the zero polynomial, then we call (a,b) a singular point of C.
If (a,b) is non-singular (also called: smooth), then VTC,(a,b)(K) is a line (instead of A2(K)),
called the tangent line to C at (a,b).
A curve all of whose points are non-singular is called non-singular (or smooth).

Example 9.13 (a) Let f (X ,Y ) = Y 2−X3 ∈ K[X ,Y ] with K a field (say, of characteristic 0).

We have ∂ f
∂X = −3X2 and ∂ f

∂X = 2Y . Hence, (0,0) is a singularity and it is the only one.
(Draw a sketch.)

This kind of singularity is called a cusp (Spitze/pointe) for obvious reasons. The tangents to
the two branches coincide at the cusp.

(b) Let f (X ,Y ) = Y 2−X3−X2 ∈ K[X ,Y ] with K a field (say, of characteristic 0).

We have ∂ f
∂X =−3X2−2X and ∂ f

∂X = 2Y . Hence, (0,0) is a singularity and it is the only one.
(Draw a sketch.)
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This kind of singularity is called an ordinary double point. The tangents to the two branches
are distinct at the ordinary double point.

We now state our main theorem about coordinate rings of plane curves. It again relates a
geometric statement (smoothness of a curve) and an algebraic statement (coordinate ring is
Dedekind).

Theorem 9.14 Let K be an algebraically closed field, f ∈ K[X ,Y ] a non-constant irredu-
cible polynomial, C = V( f )(K) the associated plane curve and K[C] = K[X ,Y ]/( f (X ,Y )) the
coordinate ring.
Then the following two statements are equivalent:

(i) The curve C is smooth.

(ii) K[C] is a Dedekind ring.

In order to prove the theorem, we first prove the following lemma, which also relates a geometric
property (a point on a curve is nonsingular) and an algebraic property (the localisation of the
coordinate ring is regular).

Lemma 9.15 Let K be a field, f ∈ K[X ,Y ] a non-constant irreducible polynomial and
C = V( f )(K) the associated plane curve. Assume that C is infinite (this is automatic if K
is algebraically closed) and let K[C] = K[X ,Y ]/( f (X ,Y )) be the coordinate ring of C (see
Proposition 3.13).
Let (a,b) ∈C be a point and m = (X − a+( f ),Y − b+( f ))◁K[C] be the corresponding
maximal ideal (see Lemma 3.12).
Then the following two statements are equivalent:

(i) The point (a,b) is non-singular.

(ii) K[C]m is a regular local ring of Krull dimension 1, i.e. m/m2 can be generated by one
element as K[C]/m-vector space.

In order to derive Theorem 9.14 it suffices to prove that all maximal ideals are of the form used
in the lemma. This will be proved from a field theoretic version of Hilbert’s Nullstellensatz after
the proof of the lemma.

Proof. After a linear variable transformation we may assume (a,b) = (0,0). Then

f (X ,Y ) = αX +βY + higher terms.

Note that m2 is generated by X2 +( f ),Y 2 +( f ),XY +( f ), so that the K = K[C]/m-vector space
m/m2 is generated by X +( f ) and Y +( f ). Hence, the minimal number of generators is at
most 2, but could be 1. Note that we are using the isomorphisms K[C]m/(mK[C]m)∼= K[C]/m
and (mK[C]m/(mK[C]m)

2 ∼=m/m2 from Lemma 6.19 (b).
Note also that K[C] has Krull dimension 1 and is an integral domain because f is irreducible (see
Corollary 8.14). As m is not the zero ideal, also the localisation K[C]m has Krull dimension 1.
‘(i)⇒ (ii)’: We assume that (0,0) is not a singular point. Then α ̸= 0 or β ̸= 0. After possibly
exchanging X and Y we may, without loss of generality, assume α ̸= 0. It follows:

X +( f ) =
1
α

(
−βY − higher terms+( f )

)
≡−β

α
Y +( f ) (mod m2).
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So, Y +( f ) generates m/m2 as K-vector space, whence the dimension of this space is 1, which
is equal to the Krull dimension. This shows that K[C]m is regular.
‘(ii)⇒ (i)’: We now assume that (0,0) is a singular point. Then α = β = 0. So, X +( f ) and
Y +( f ) are K-linearly independent in m/m2, whence the K-dimension of m/m2 is bigger than
the Krull dimension, showing that K[C]m is not regular. ■

Proposition 9.16 — Field theoretic weak Nullstellensatz. Let K be a field, L/K a field
extension and a1, . . . ,an ∈ L elements such that L = K[a1, . . . ,an] (that is, the K-algebra

homomorphism K[X1, . . . ,Xn]
Xi 7→ai−−−→ L is surjective).

Then L/K is finite and algebraic.

Proof. Let L = K[a1, . . . ,an]. It is an affine K-algebra which is a field (and hence an integral
domain). So, we may apply Noether normalisation Proposition 8.12. We obtain elements
y1, . . . ,yr ∈ L such that L/K[y1, . . . ,yr] is an integral extension and K[y1, . . . ,yr] is isomorphic to
a polynomial ring in r variables. This means, in particular, that there are no relations between
the yi.
Assume r ≥ 1. Then y−1

1 ∈ L and hence integral over K[y1, . . . ,yr], so that it satisfies a monic
equation of the form

y−n
1 + fn−1(y1, . . . ,yr)y−n+1

1 + · · ·+ f0(y1, . . . ,yr) = 0,

where fi(y1, . . . ,yr) ∈ K[y1, . . . ,yr]. Multiplying through with yn we get

1+ fn−1(y1, . . . ,yr)y1 + · · ·+ f0(y1, . . . ,yr)yn
1 = 0,

i.e. a non-trivial relation between the yi. Conclusion: r = 0.
Hence, L/K is integral and hence algebraic. It is a finite field extension because it is generated
by finitely many algebraic elements. ■

We can now determine the maximal ideals of the coordinate ring of any affine algebraic set over
an algebraically closed field.

Corollary 9.17 Let K be an algebraically closed field and a◁K[X1, . . . ,Xn] a proper ideal.

(a) The maximal ideals m◁K[X1, . . . ,Xn] are precisely (X1− a1, . . . ,Xn− an) for a point
(a1, . . . ,an) ∈ Kn.

(b) The maximal ideals m◁K[X1, . . . ,Xn] which contain a are (X1− a1, . . . ,Xn− an) for a
point (a1, . . . ,an) ∈ Va(K).

(c) The maximal ideals of K[X1, . . . ,Xn]/a are precisely (X1−a1 +a, . . . ,Xn−an +a) for a
point (a1, . . . ,an) ∈ Va(K).

Proof. (a) We first determine what maximal ideals look like in general. Any ideal of the
form (X1− a1, . . . ,Xn− an) is clearly maximal (factoring it out gives K). Conversely, if m◁
K[X1, . . . ,Xn] is maximal then the quotient K[X1, . . . ,Xn]/m is a finite algebraic field extension
of K by Proposition 9.16, hence, equal to K because K is algebraically closed. Consequently,

denoting ai := π(Xi) for i = 1, . . . ,n with π : K[X1, . . . ,Xn]
natural projection−−−−−−−−−−→ K[X1, . . . ,Xn]/m∼= K,

we find (special case of Lemma 3.12) that m= (X1−a1, . . . ,Xn−an).
(b) Let m= (X1−a1, . . . ,Xn−an), so that {(a1, . . . ,an)}= Vm(K). We have:

a⊆m⇔{(a1, . . . ,an)}= Vm(K)⊆ Va(K)⇔ (a1, . . . ,an) ∈ Va(K).



10 Hilbert’s Nullstellensatz 69

(c) The maximal ideals of K[X ,Y ]/a are precisely the maximal ideals of K[X ,Y ] containing a.
Thus, (b) implies the assertion. ■

Proof of Theorem 9.14. By Corollary 9.17 the maximal ideals m of K[C] are precisely the
(X−a+( f ),Y −b+( f )) for (a,b) ∈C(K).
By Proposition 9.11 we have K[C] is a Dedekind ring if and only if K[C]m is a regular ring for
all maximal ideals m◁K[C]; that is the case if and only if all points (a,b) of C are smooth (by
Lemma 9.15). ■

10 Hilbert’s Nullstellensatz
Aims:

• Learn and master the various forms of Hilbert’s Nullstellensatz;

• learn and master the resulting correspondence between affine algebraic sets and radical
ideals;

• know examples and standard theorems;

• be able to prove simple properties.

Proposition 10.1 — Hilbert’s Nullstellensatz – weak form. Let K be an algebraically
closed field and a◁K[X1, . . . ,Xn] be a proper ideal. Then Va(K) ̸= /0.

Proof. Let m◁K[X1, . . . ,Xn] be a maximal ideal containing a. By Corollary 9.17 (b), m corres-
ponds to a point (a1, . . . ,an) ∈ Va(K), showing the non-emptyness of this set. ■

R In fact the assertion of Proposition 10.1 is equivalent to that of Proposition 9.16, in the
sense that the latter can also be deduced from the former, as follows:

Consider a K-algebra surjection φ : K[X1, . . . ,Xn]
Xi 7→ai−−−→ L. Its kernel m := ker(φ) is

a maximal ideal, since L is a field. By Proposition 10.1, we have Vm(K) ̸= /0. Let
(b1, . . . ,bn) be an element of Vm(K), which gives rise to the K-algebra homomorph-

ism ψ : K[X1, . . . ,Xn]
Xi 7→bi−−−→ K. Note that m is contained in the kernel of ψ (we have

f (b1, . . . ,bn) = 0 for all f ∈ m), whence they are equal. Consequently, K ⊆ L ⊆ K, and
we conclude that L/K is algebraic. It is finite because it is generated by finitely many
algebraic elements.

Definition 10.2 Let R be a ring and a◁R and ideal. The radical (ideal) of a is defined as
√
a := {r ∈ R | ∃n ∈ N : rn ∈ a}.

An ideal a is called a radical ideal if a=
√
a.

The Jacobson radical of a is defined as

J(a) =
⋂

a⊆m◁R maximal

m,

i.e. the intersection of all maximal ideals of R containing a (recall the definition of the
Jacobson radical of a ring: intersection of all maximal ideals; it is equal to J(0)).
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Lemma 10.3 Let K be a field and a◁K[X1, . . . ,Xn] an ideal.
Then Va(L) = V√a(L) for all field extensions L/K.

Proof. The inclusion ⊇ is trivial because of a ⊆
√
a. Let now (a1, . . . ,an) ∈ Va(L), that is,

f (a1, . . . ,an) = 0 for all f ∈ a. Let now g ∈
√
a. Then there is m ∈ N such that gm ∈ a, so that

g(a1, . . . ,an)
m = 0. Since we are in an integral domain, this implies g(a1, . . . ,an) = 0, showing

the inclusion ⊆. ■

Proposition 10.4 — General Hilbert’s Nullstellensatz. Let K be a field, R an affine K-
algebra, a◁R an ideal. Then

√
a= J(a).

Proof. ‘⊆’: Let m◁R be any maximal ideal containing a. Let f ∈
√
a. Then there is m ∈N such

that f m ∈ a⊆m. The prime ideal property of m now gives that f ∈m. This implies
√
a⊆m.

‘⊇’: Let f ∈ R\
√
a. We want to show f ̸∈ J(a).

From f ̸∈
√
a it follows that f n ̸∈ a for all n ∈ N. So, the set D = { f n | n ∈ N} ⊆ R/a =: R is

multiplicatively closed and does not contain 0 (the zero of R = R/a, of course). We write f for
the class f +a ∈ R. It is a unit in D−1R because we are allowing f in the denominator.
Let q be a maximal ideal of D−1R. As f is a unit, f ̸∈ q. As R is an affine K-algebra, so is the
field D−1R/q=: L (we modded out by a maximal ideal). Proposition 9.16 yields that L/K is a
finite field extension.
Note that the ring R/(R∩q) contains K and lies in L. Due to the finiteness of L/K, this ring is
itself a field, so that R∩q is a maximal ideal of R.
Recall that f ̸∈ q, so f does not lie in the maximal ideal R∩q.
Set q := π−1(q) with the natural projection π : R ↠ R = R/a. It is a maximal ideal containing a,
but f ̸∈ q. Consequently, f ̸∈ J(a). ■

Theorem 10.5 — Hilbert’s Nullstellensatz. Let K be an algebraically closed field and
consider an ideal a⊴ K[X1, . . . ,Xn].
Then IVa(K) =

√
a.

In particular, the radical ideals of K[X1, . . . ,Xn] are in bijection with the affine algebraic sets
in An(K). More precisely, the maps

{a⊴ K[X1, . . . ,Xn] | a=
√
a}⇆ {V ⊆ An(K) | V affine algebraic set}

a
Φ7→ Va(K)

IV ←[
Ψ

V

are inverses to each other and thus bijections.

Proof. ‘⊇’: By Lemmata 3.11 and 10.3 we have
√
a⊆IV√a(K) = IVa(K).

‘⊆’: Let m be a maximal ideal of K[X1, . . . ,Xn] containing a. By Corollary 9.17 we know
m= (X1−a1, . . . ,Xn−an) for some (a1, . . . ,an) ∈ Va(K). We have

IVa(K) ⊆IVm(K) = { f ∈ K[X1, . . . ,Xn] | f (a) = 0}=m.

Consequently, IVa(K) ⊆ J(a) =
√
a, using Proposition 10.4.

The final statement follows like this:

X = Va(K) 7→IVa(K) =
√
a 7→ V√a(K) = Va(K) = X



10 Hilbert’s Nullstellensatz 71

and
a=
√
a 7→ Va(K) 7→IVa(K) =

√
a.

This shows the correspondence. ■

Finally let us prove that the vanishing ideal IC of the curve defined by a non-constant irreducible
f ∈ K[X ,Y ] (over an algebraically closed field K) is ( f ) and hence the coordinate ring K[C] is
isomorphic to K[X ,Y ]/( f ).

Third proof of Proposition 3.13 for K algebraically closed. Recall that K[X ,Y ] is a unique fac-
torisation domain. Hence any irreducible element is a prime element. Thus, f is a prime element,
and consequently ( f ) is a prime ideal, implying

√
( f ) = ( f ). Thus Hilbert’s Nullstellensatz 10.5

yields IC =
√

( f ) = ( f ). ■
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Appendix: Background on fields

IV. Appendix

11 Appendix: Background on rings
This section is merely meant as a short summary of basic ring theory. If one is not familiar
(enough) with this topic, other sources must be consulted.

The definition of a ring
Rings are abstractions motivated by the integers Z. One enounters them (mostly implicitly) at
school, e.g. the integers, the rationals, the reals, and square matrices of a given size.

Definition 11.1 A set R, containing two elements 0 and 1 (not necessarily distinct), together
with maps

+ : R×R→ R,(x,y) 7→ x+ y and · : R×R→ R,(x,y) 7→ x · y

is called a unitary ring if the following properties are satisfied:

(a) (R,+,0) is an abelian group with respect to + and neutral element 0,

(b) R = {0} or (R\{0}, ·,1) is a semi-group with respect to · and neutral element 1 and

(c) a · (b+ c) = a ·b+a · c and (b+ c) ·a = b ·a+ c ·a for all a,b,c ∈ R (distributivity).

The attribute unitary refers to the existence of the element 1 in the ring. We only consider
such rings, and will thus usually not mention the word unitary.
If (R\{0}, ·) is an abelian semi-group, then R is called a commutative ring. Most (but not
all) of the lecture only treats commutative rings; hence, the name Commutative Algebra. By a
ring, we usually mean a commutative ring.
If R is a commutative ring and if in addition (R \ {0}, ·,1) is an abelian group (not only a
semi-group; i.e. we ask all R ∋ r ̸= 0 to possess an inverse for multiplication, usually denoted
1
r or r−1) and 1 ̸= 0, then R is called a field.
A subset S⊆ R is called a (commutative) subring if 0,1 ∈ S and + and · restrict to S making
it into a ring.
[We recall the definition of a semi-group and a group: A set S, containing an element denoted 1,
together with a map · : S×S→ S, (s, t) 7→ s · t is called a semi-group if the following hold:
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(a) s · (t ·u) = (s · t) ·u for all s, t,u ∈ S (associativity),

(b) 1 · s = s = s ·1 for all s ∈ S (neutral element).

If, in addition, it holds that

(c) for all s ∈ S there are t,u ∈ S such that s · t = 1 = u · s (notation s−1 for both) (existence of
inverses),

then S is called a group. If s · t = t · s for all s, t ∈ S, then the (semi-)group is called abelian or
commutative.]

Example 11.2 (a) Z: basic example of a commutative ring.

(b) Q: basic example of a field.

(c) MN(Q) (N×N-matrices): if N > 1, example of a non-commutative ring.

(d) Z[X ], Q[X ]: both polynomial rings are commutative; they are not fields.

(e) {0} is called the zero-ring (with 1 = 0 and the only possible definitions of + and ·, namely
0+0 = 0 and 0 ·0 = 0).

(f) Z/nZ for n ∈ N, the ring of residues mod n.

(g) Fp, Fpr for a prime number p and r ∈ N: finite fields of cardinality p, pr, respectively (see
below).

(h) Z×Z is also a commutative ring for (a1,b1)+ (a2,b2) = (a1 + a2,b1 + b2) and (a1,b1) ·
(a2,b2) = (a1 ·a2,b1 ·b2).

Integral domains

Proposition 11.3 Let R be an integral domain.

(a) Let r ∈ R. Then
r ∈ R×⇔ (r) = R.

(b) Let r,s ∈ R. Then
r | s⇔ (r)⊇ (s).

(c) Let r,s ∈ R. Then r and s are associate if and only if (r) = (s).

(d) Let r ∈ R\ (R×∪{0}). Then r is a prime element if and only if (r) is a prime ideal of R.

(e) Let r ∈ R be a prime element. Then r is irreducible.

Proof. (a), (b), (c) and (d) are an exercise.
(e) Let r ∈ R be a prime element. In order to check that r is irreducible, let r = st with s, t ∈ R.
This means in particular that r | st. By the primality of r, it follows r | s or r | t. Without loss
of generality assume r | s, i.e. s = ru for some u ∈ R. Then we have r = st = rut, whence
r(1−ut) = 0, which implies 1−ut = 0 by the property that R is an integral domain and r ̸= 0.
Thus t ∈ R×, as was to be shown. ■

Algebras
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Definition 11.4 Let R and S be (not necessarily commutative) rings. We say that S is
an R-algebra if there is a ring homomorphism ϕ : R→ S such that ϕ(R) ⊆ Z (S), where
Z (S) = {s ∈ S | ts = st ∀ t ∈ S} is the centre of S (note that the condition ϕ(R)⊆Z (S) is
empty if S is commutative). Many people use the terminology associative R-algebra for
R-algebra; but, we will stick to the shorter one since we are not going to encounter any
non-associative algebras (like Lie algebras).

Example 11.5 Let K be a field. Then the polynomial ring K[X ] is a K-algebra.
Consider EndK(V ) for a K-vector space V . Then EndK(V ) is a K-algebra (K embeds into the
scalar matrices, which are equal to the centre of EndK(V )).

Ideals
Example 11.6 (a) Let R be a ring. Then {0}, (1) = R are both trivially ideals.

(b) Let ϕ : R→ S be a ring homomorphism. Then ker(ϕ) is an ideal of R.

(c) {nm|m ∈ Z}◁Z.

(d) (n,m) = (g) with g the greatest common divisor of n,m ∈ Z.

(e) (n)∩ (m) = (lcm(n,m)).

The sum and the product of two ideals a,b of some ring R are defined as

a+b= {a+b | a ∈ a,b ∈ b} and a ·b= {
m

∑
i=1

ai ·bi | m ∈ N,ai ∈ a,bi ∈ b for i = 1, . . . ,m}.

It is clear that both are ideals.

On maximal ideals
Proof of Proposition 1.21. This proof uses Zorn’s Lemma (which one also needs for the exist-
ence of bases in general (i.e. not finite dimensional) vector spaces).
Let M := {a⊊ R ideal } be the set of all proper ideals of R. Of course, (0) ∈M (here we use
that R is not the zero ring), so M ̸= /0.
Inclusion ⊆ gives a partial ordering on M : by definition this means:

• a⊆ a for all a ∈M ,

• If a⊆ b and b⊆ a, then a= b.

But, for general a,b ∈M , we do not necessarily have a ⊆ b or b ⊆ a. A subset (ai)i∈I ⊆M
(where I is any set) is called totally ordered if for any i, j ∈ I one has ai ⊆ a j or a j ⊆ ai.
Claim: Any totally ordered subset (ai)i∈I ⊆M has an upper bound, namely a :=

⋃
i∈I ai, meaning

a⊆M and ai ⊆ a for all i ∈ I.
The claim is very easy to see. The last statement ai ⊆ a for i ∈ I is trivial. In order to see that a
is an ideal, let x,y ∈ a. Then there are i, j ∈ I such that x ∈ ai and y ∈ a j. Because of ai ⊆ a j or
a j ⊆ ai, we have that x+ y ∈ a j or x+ y ∈ ai, so that x+ y ∈ a in both cases. Given r ∈ R and
x ∈ a, there is i ∈ I such that x ∈ ai, whence rx ∈ ai, thus rx ∈ a, showing that a is an ideal of R.
If a were equal to the whole ring R, then there would be i ∈ I such that 1 ∈ ai. This, however,
would contradict ai ̸= R. Consequently, a ∈M , as claimed.
Zorn’s Lemma is the statement that a partially ordered set has a maximal element if every totally
ordered set of subsets has an upper bound.
So, M has a maximal element, i.e. an m ∈M such that if m⊆ a for any a ∈M , then m= a.
This is precisely the definition of a maximal ideal. ■
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On Euclidean rings

Definition 11.7 An integral domain R is called a Euclidean ring if there is a map δ : R\{0}→
N0 such that R has a division with remainder w.r.t. δ , i.e. if for all a,b ∈ R, b ̸= 0, there are
q,r ∈ R satisfying

a = qb+ r and (r = 0 or δ (r)< δ (b)).

Example 11.8 (a) Z w.r.t. δ = | · | (absolute value).

(b) The Gaussian integers Z[i] := {a+ bi ∈ C | a,b ∈ Z} with + and · coming from C, w.r.t.
δ (a+ ib) = a2 +b2 (see exercise).

(c) K[X ] with K a field (but not Z[X ]) w.r.t. δ = deg.

(d) There are principal ideal domains which are not Euclidean. Example: Z[1+
√
−19

2 ], the proof
that the ring is not Euclidean is quite hard.

Proposition 11.9 Every Euclidean ring is a principal ideal domain.

Proof. Let R be a Euclidean ring w.r.t. δ and let I ◁R be an ideal. We want to show that it is
principal. If I = {0}, then it is already principal, so that we may suppose I ̸= (0). Consider
the set M := {δ (i) ∈ N | i ∈ I \ {0}}. As a non-empty subset of N it has a smallest element
(induction principal, well-ordering principle, . . . ). Let n be this smallest element. It is of the
form n = δ (x) with 0 ̸= x ∈ I. Note (x)⊆ I.
Let now i ∈ I be any element. By the Euclidean property there are q,r ∈ R such that i = qx+ r
with r = 0 or δ (r) < δ (n). Since i ∈ I and x ∈ I, it follows that r = i− qx ∈ I. Due to the
minimality of n = δ (x), we must have r = 0. Thus i = qx ∈ (x). We have shown: I ⊆ (x)⊆ I,
hence, I = (x) is a principal ideal. ■

On principal ideal domains (PID)
Recall that any ideal I ⊴ R is called principal if there is a ∈ R such that I = (a).

Definition 11.10 An integral domain having the property that any ideal is principal is called
a principal ideal domain (PID).

Example 11.11 (a) Z is the most basic example of a PID.

(b) K[X ] is a PID if K is a field.

(c) Z[X ] is not a PID because (2,X) is not a principal ideal.

(d) More generally, any Euclidean integral domain is a PID (see Proposition 11.9).

Proposition 11.12 Let R be a principal ideal domain and let x ∈ R\ (R×∪{0}). Then the
following are equivalent:

(i) x is irreducible.

(ii) (x) is a maximal ideal.

(iii) (x) is a prime ideal.
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(iv) x is a prime element.

In particular, the non-zero prime ideals are the maximal ideals.

Proof. ‘(i)⇒(ii):’ If (x) were not a maximal ideal, then (x)⊊ (y)⊊R for some y∈R\(R×∪{0}),
whence y | x and y and x are not associate, so that x would not be irreducible.
‘(ii)⇒(iii):’ Proved in general in Corollary 1.20.
‘(iii)⇒(iv):’ and ‘(iv)⇒(i):’ are proved in the context of integral domains in Proposition 11.3. ■

Here is one important property of principal ideal domains, which means that they are Noetherian
rings (see Definition 7.1). Since this appendix is independent of (more precisely, it precedes)
the lecture, we formulate the property in a different way, which is equivalent for principal ideal
domains.

Definition 11.13 Let R be a ring. We say that in R any chain of strict divisors has finite
length if the following property holds:

For all elements {an}n∈N ⊆ R such that an+1 | an for all n ∈ N, there is N ∈ N
such that for all m≥ N one has (am) = (aN).

An equivalent formulation of the property is:

Any ascending chain
a1 ⊆ a2 ⊆ a3 ⊆ . . .

of principal ideals becomes stationary, i.e. there is N ∈ N such that for all m≥ N
one has aN = am.

(If one removes the word ‘principal’, then this is precisely the definition of being Noetherian.)

Proposition 11.14 Let R be a principal ideal domain. Then in R any chain of strict divisors
has finite length. Thus, any principal ideal domain is a Noetherian ring.

Proof. Let an = (an). These ideals form an ascending ideal chain:

a1 ⊆ a2 ⊆ a3 ⊆ a4 ⊆ . . .

Form the ideal a=
⋃

n∈N an. It is a principal ideal, i.e. a= (a) for some a∈ R. Of course, a∈ (a),
i.e. a ∈

⋃
n∈N an, whence there is N ∈ N such that a ∈ (aN). This means (a)⊆ (am)⊆ (a) for all

m≥ N, whence (a) = (aN) = (am) for all m≥ n. ■

On unique factorisation domains (UFD)
The following definition is an abstraction of one of the most important properties of integers
studied at school: the unique factorisation of a positive integer into a product of prime numbers.

Definition 11.15 An integral domain R is called a unique factorisation domain (UFD) or
factorial ring if any r ∈ R\ (R×∪{0}) can be written as a finite product of prime elements.

Example 11.16 (a) Z is the most basic example.

(b) Any field is a UFD (that’s trivial because R\ (R×∪{0}= /0).
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(c) The polynomial ring over any UFD is a UFD (that is not so easy; it has been proved by
Gauß).

Lemma 11.17 Let R be a UFD and r ∈ R\ (R×∪{0}). Then one has:

r is prime ⇔ r is irreducible.

Proof. For⇒, see above; we only have to show⇐. Assume r irreducible and apply the definition
of UFD to write r as a finite product of prime elements: r = p1 · p2 · . . . · pn. The irreducibility of
r implies n = 1, so r = p1 is prime. ■

We have thus found, in particular, that over Z the ‘school definition’ of a prime number coincides
with the definition given here (which is the conceptual one, in view of prime ideals, see below).
One could hope that any ring has equally nice properties as Z. Also for appreciating the
fundamental and special character of the integers (in particular, when teaching them at school), it
is important to know that not all rings share the same properties as Z. We now give an example
of a ring that does not admit unique factorisation into prime elements.
Example 11.18 The ring R := Z[

√
−5] = {a+b

√
−5 | a,b ∈ Z} is a subring of C. We have

6 = 2 ·3 = (1+
√
−5) · (1−

√
−5).

Since all four elements 2,3,1+
√
−5,1−

√
−5 are irreducible elements of R, we conclude that

R is not a UFD (but, it is an integral domain in which all chains of strict divisors have finite
length; see below).
For details see an exercise.
We remark that it makes sense to define greatest common divisors and lowest common multiples
in all rings. But, they need not exist, in general. In UFDs they always do!
We shall see later that being a UFD is a property that is too strong in many cases. They will be
replaced by Dedekind rings (which are locally PIDs – definitions come later; examples are the
rings of integers in number fields).

Lemma 11.19 Let R be an integral domain in which any chain of strict divisors has finite
length. Let r ∈ R\ (R×∪{0}). Then there are irreducible x1, . . . ,xn ∈ R\ (R×∪{0}) such
that r = x1 · x2 · · · · · xn.

Proof. We first show that every r ∈ R\ (R×∪{0}) has an irreducible divisor. Suppose this is not
the case and pick any non-unit divisor r1 | r s.t. (r)⊊ (r1). If no such r1 existed, then r would be
irreducible itself. Of course, r1 is not irreducible. So we can pick a non-unit divisor r2 | r1 s.t.
(r1)⊊ (r2). Like this we can continue and obtain an infinite chain of strict divisors, contrary to
our hypothesis.
Now, we have an irreducible non-unit divisor x1 | r s.t. (r)⊆ (x1). If r/x1 is a unit, then we are
done. Otherwise r/x1 has an irreducible non-unit divisor x2 | r/x1. If r/(x1x2) is a unit, then we
are done. Otherwise r/(x1x2) has an irreducible non-unit divisor.
Like this we continue. This process must stop as otherwise we would have an infinite chain of
strict divisors · · · | r

x1x2x3
| r

x1x2
| r

x1
| r, contrary to our hypothesis. ■

Proposition 11.20 Let R be an integral domain. The following are equivalent:

(i) R is a UFD.
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(ii) • Every irreducible element r ∈ R\ ({0}∪R×) is a prime element and

• in R any chain of strict divisors has finite lenghts.

(iii) Every r ∈ R\ (R×∪{0}) can be written uniquely (up to permutation and up to associate
elements) as a product of irreducible elements, i.e. if r = x1 · x2 · · · · · xn = y1 · y2 · · · · · ym

with irreducible elements xi,y j ∈ R\ (R×∪{0}), then n = m and there is a permutation
σ in the symmetric group on {1, . . . ,n} such that xi is associate with yσ(i) for all
i = 1, . . . ,n.

Proof. (ii)⇒ (i): Since irreducible elements are prime, Lemma 11.19 takes care of this implica-
tion.
(i)⇒ (iii): Recall that the prime elements are precisely the irreducible ones. So, we already have
the existence. We now show the uniqueness. Let

r = x1 · x2 · · · · · xn = y1 · y2 · · · · · ym.

It follows that xn divides y1 · y2 · · · · · ym. By the primality of x1 it must divide one of the y’s,
say after renumbering xn | ym. But, since ym is irreducible, we must have xn ∼ ym (associate!).
Dividing by xn on both sides, we obtain a shorter relation:

x1 · x2 · · · · · xn−1 = εy1 · y2 · · · · · ym−1,

where ε ∈ R× is a unit. Now it follows that xn−1 divides the right hand side, and, after renum-
bering, we have again xn−1 ∼ ym−1. Dividing by xn−1 (and possibly replacing the unit ε by a
different one) we obtain an even shorter relation:

x1 · x2 · · · · · xn−2 = εy1 · y2 · · · · · ym−2.

Like this we continue, and conclude n = m and that, after the above renumbering, xi ∼ yi are
associate for all i = 1, . . . ,n.
(iii)⇒ (ii): We first show that every irreducible element is prime. Let r ∈ R \ (R×∪{0}) be
irreducible and suppose that r | st with s, t ∈ R, i.e. ru = st for some u ∈ R. We may write
s, t and u uniquely (up to ordering and associates) as s = s1 · s2 · · · · · sn, t = t1 · t2 · · · · · tm and
u = u1 · u2 · · · · · uℓ with irreducible elements si, t j, uk (i = 1, . . . ,n; j = 1, . . . ,m; k = 1, . . . , ℓ).
The uniqueness of irreducible elements occurring in the equation

s1 · s2 · · · · · sn · t1 · t2 · · · · · tm = r ·u1 ·u2 · · · · ·uℓ

implies that r must be equal to one of the s’s or one of the t’s. This means that r divides s or it
divides t, as was to be shown.
That any chain of strict divisors has finite length, simply follows from the fact that, up to
associates, all divisors of a given 0 ̸= r ∈ R are given by the possible products of the irreducible
elements x1, . . . ,xn (using each xi at most once) occuring in r = x1 · x2 · · · · · xn. ■

Proposition 11.21 Every principal ideal domain (PID) is a unique factorisation domain
(UFD).

Proof. We have seen both properties or Proposition 11.20 (ii), namely in Propositions 11.12
and 11.14. ■

Hence we have the implications: Euclidean⇒ PID⇒ UFD.
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12 Appendix: Background on fields

In this section we recall some background on field extension.

Definition 12.1 A commutative ring R is called a field if R× = R\{0}, that is, if all non-zero
elements are (multiplicatively) invertible.

Definition 12.2 Let L be a field.
A subring K ⊆ L is called a subfield if K is also a field. In that case, one also speaks of L as a
field extension of K, denoted as L/K or K ↪→ L.
If L/K is a field extension, then L is a K-vector space with respect to the natural + and ·,
i.e. + : L×L→ L, (x,y) 7→ x+ y (the + is the + of the field L) and scalar multiplication
+ : K×L→ L, (x,y) 7→ x · y (the · is the · of the field L).
The degree of L/K is defined as [L : K] := dimK(L), the dimension of L as K-vector space.
One says that L/K is a finite field extension if [L : K]< ∞.

Lemma 12.3 — Multiplicativity of field degrees. Let K ⊆ L⊆M be finite field extensions.
Then

[M : K] = [M : L][L : K]

(in other words: dimK M = (dimK L)(dimL M).).

Proof. Exercise. ■

Proposition 12.4 Let R be an integral domain. Then the following statements hold:

(a) The relation
(r1,s1)∼ (r2,s2)⇔ r1s2 = r2s1

defines an equivalence relation on R× (R \ {0}). Denote the equivalence class of an
element (r,s) by r

s . Let Frac(R) denote the set of equivalence classes.

(b) Define + and · on Frac(R) by

r1

s1
+

r2

s2
:=

r1s2 + r2s1

s1s2
and

r1

s1
· r2

s2
:=

r1r2

s1s2
.

Then Frac(R) is a field with respect to + and · with 0 = 0
1 and 1 = 1

1 .

One calls Frac(R) the fraction field (or field of fractions) of R.

Proof. It suffices to make some easy checks. ■

Note that it is essential that R is an integral domain. We will later in the lecture identify the
fraction field with the localisation of R at the prime ideal (0).

Proof of Proposition 2.30. (a) Firstly, 0,1 ∈ KL is clear. Let a,b ∈ KL. We know that K(a,b) is
an algebraic field extension of K. Thus, K(a,b)⊆ KL. Consequently, −a, 1/a (if a ̸= 0), a+b
and a ·b are in K(a,b), hence, also in KL. This shows that KL is indeed a field.
(b) Assume K is algebraically closed and let f ∈ K[X ] be a non-constant polynomial. Let g =

∑
d
i=0 ciX i be a non-constant irreducible divisor of f . The natural injection K→K[X ]/(g) =: M is
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a finite field extension of K (remember that (g) is a maximal ideal of the principal ideal domain
K[X ]). Now, the class a := X +(g) ∈M is a zero of g, since

g(a) = g(X +(g)) =
d

∑
i=0

ci(X +(g))i =
d

∑
i=0

ciX i +(g) = 0+(g).

As K is algebraically closed, M = K, whence a ∈ K.
Conversely, suppose that K is such that any non-constant polynomial f ∈ K[X ] has a zero in K.
This means that there are no irreducible polynomials in K[X ] of degree strictly bigger than 1. Let
L/K be a field extension and a ∈ L algebraic over K. The minimal polynomial ma ∈ K[X ] is an
irreducible polynomial admitting a as a zero. Hence, the degree of ma is 1, whence ma = X−a,
so that a ∈ K, showing KL = K. ■

For constructing field extensions one needs irreducible polynomials. There are two very useful
criteria for deciding that a given polynomial with rational coefficients is irreducible: the reduction
criterion and the Eisenstein criterion.
Let A be a UFD. A polynomial f (X) = ∑

d
i=0 aiX i ∈ A[X ] is called primitive if the greatest

common divisors of its coefficients is 1. In particular, monic polynomials are primitive.
In order to understand the proofs we must recall some theory about the polynomial ring A[X ] for
a UFD A.

Theorem 12.5 — Gauß. Let A be a UFD with field of fractions K.

(a) A[X ] is a UFD.

(b) Let f ,g ∈ K[X ] be monic polynomials. If f g ∈ A[X ], then f ,g ∈ A[X ].

(c) Let f ∈ A[X ] be a non-constant primitive polynomial. Then the following statements are
equivalent:

(i) f is irreducible in A[X ].

(ii) f is a prime element of A[X ].

(iii) f is a prime element of K[X ].

(iv) f is irreducible in K[X ].

Proof. Any book on Basic Algebra. ■

Proposition 12.6 — Reduction criterion. Let A be a UFD and f (X) = ∑
d
i=0 aiX i ∈ A[X ] a

non-constant primitive polynomial. For a prime element p ∈ A we consider the reduction
mod p:

π : A[X ]→ A/(p)[X ],
r

∑
i=0

aiX i 7→
r

∑
i=0

aiX i,

which is a ring homomorphism (here ai denotes the class of ai in A/(p)).
If p does not divide ad and π( f ) is irreducible in A/(p)[X ], then f is irreducible in K[X ].

Proof. Suppose the contrary: f = gh with g,h ∈ A[X ] non-constant. Hence, we have π( f ) =
π(gh) = π(g)π(h). As π( f ) is irreducible, it follows that π(g) or π(h) is constant.
We now use p ∤ ad . We write g(X) = ∑

r
i=1 biX i and h(X) = ∑

s
i=1 ciX i with br ̸= 0 ̸= cs. Since

ad = brcs, we obtain that p ∤ br and p ∤ cs. Thus, the degree of π(g) is equal to the degree of g,
and the degree of π(h) is equal to the degree of h. One thus sees that either g is constant or h is
constant. This contradiction finishes the proof. ■
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Example 12.7 • Consider f1(X) = X2 +X + 1 ∈ Z[X ], f2(X) = X2 + 15X − 53 ∈ Z[X ],
f3(X) = X2 +14X−55 ∈ Z[X ] and f4(X) = X2 +15X−54 ∈ Z[X ].

These polynomials are monic, hence primitive. Note that the polynomial X2 +X +1 ∈
F2[X ] is irreducible (for the polynomials of degree at most 3 it suffices to verify that they
do not have a zero).

The reduction criterion modulo 2 thus shows that f1 and f2 are irreducible as elements
of Q[X ]. This argumentation does not apply to f3. The reduction of f3 modulo 3 is
X2 +2X +2 ∈ F3[X ] which is irreducible; hence, we obtain the same conclusion. For f4
one cannot use reduction modulo 2 nor modulo 3. In fact, no criterion can work because
X2 +15X−54 = (X +18)(X−3).

• Let A =Q[T ] and consider a polynomial of the form f (T,X) = ∑
d
i=0 ai(T )X i ∈ A[X ]. Note

that T is a prime element of Q[T ]: if T | g(T )h(T ) with g,h ∈Q[T ], then either T | h(T )
or T | g(T ).
The reduction of a polynomial a(T )∈ A[T ] modulo T is just the evaluation at zero, a(0): if
a(T ) = b0 +b1T + · · ·+beT e, then the class of a(T ) and the class of b0 = a(0) modulo T
are the same because a(T )−b0 = T · (b1 +b2T + . . .beT e−1) ∈ (T ).

Hence, if f (T,X) is monic in the variable X and f (0,X) is irreducible, then f (T,X) is
irreducible in A[X ] =Q[T,X ].

• The polynomial X2 +X + 2T X + 5T 2X +T 3 + 1 ∈ Q[T,X ] is irreducible because it is
monic (in the variable X) and f (0,X) = X2 +X +1 is irreducible.

Proposition 12.8 — Eisenstein criterion. Let A be a UFD and f (X) = ∑
d
i=0 aiX i ∈ A[X ] a

non-constant primitive polynomial. Let p ∈ A be a prime element such that

p ∤ ad , p | ai for all 0≤ i≤ d−1 and p2 ∤ a0.

Then f is irreducible K[X ].

Proof. Suppose the contrary and write f = gh with g(X) = ∑
r
i=0 biX i ∈ A[X ] and h(X) =

∑
s
i=0 ciX i ∈ A[X ] non-constant and br ̸= 0 ̸= cs. Because of ad = brcs, the condition p ∤ ad

implies p ∤ br and p ∤ cs. Because of a0 = b0c0, the conditions p | a0 and p2 ∤ a0 imply without
loss of generality that p | b0 and p ∤ c0.
Let t be the smallest integer between 1 and r such that p ∤ bt . Hence, 1≤ t ≤ r < d because p | b0
and p ∤ br. Writing ci = 0 for i > s we find

at︸︷︷︸
divisible by p

= b0ct +b1ct−1 + · · ·+bt−1c1︸ ︷︷ ︸
divisible by p

+ btc0︸︷︷︸
not divisible by p

.

This contradiction finishes the proof. ■

Example 12.9 • Consider f1(X) = X2 +2X +2 ∈ Z[X ] and f2(X) = X7 +72X2 +111X−
30 ∈ Z[X ]. These polynomials are monic, hence primitive. The Eisenstein criterion with
p = 2 shows that f1 is irreducible in Q[X ]. The irreducibility of f2 follows from the
Eisenstein criterion with p = 3.

• Let p be a prime number and A = Fp[T ]. Let f (T,X) = X p−T ∈ A[X ] = Fp[T,X ]. As in
Example 12.7 on sees that T is a prime element of A. The polynomial f (T,X) satisfies
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the assumptions of the Eisenstein criterion as a polynomial in the variable X for the prime
element T . Hence f (T,X) is irreducible.

This polynomial is actually an example of an irreducible, but inseparable polynomial.

• Let p be a prime number. Consider the polynomial X p−1 ∈Q[X ]. It is not irreducible
because

X p−1 = (X−1)(X p−1 +X p−2 + · · ·+X +1)︸ ︷︷ ︸
=:Φp(X)

∈ Z[X ].

One calls Φp(X) the p-th cyclotomic polynomial (in German: Kreisteilungspolynom). We
now show that Φp is irreducible in Q[X ].

It suffices to show that Φp(X +1) is irreducible (because if Φp(X +1) = f (X)g(X), then
Φp(X) = f (X−1)g(X−1)). We have

Φp(X +1) =
(X +1)p−1
(X +1)−1

=
(X +1)p−1

X
=

∑
p
i=1 (

p
i )X i

X
= X p +

p−1

∑
i=1

( p
i )X i−1,

which is an Eisenstein polynomial for the prime p because p | ( p
i ) for all 1 ≤ i ≤ p−1

and p2 ∤ ( p
1 ) = p. Hence, Φp(X) is irreducible in Q[X ].
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