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3.2.2 Multiple Wiener-Itô integrals . . . . . . . . . . . . . . . . . . . 69

3.2.3 Multiparameter Hermite Random Fields . . . . . . . . . . . . . 70

2



3.3 Proof of Theorem 3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Expanding into Wiener chaos . . . . . . . . . . . . . . . . . . . 72

3.3.2 Evaluating the L2(Ω)-norm . . . . . . . . . . . . . . . . . . . . 76

3.3.3 Concluding the proof of Theorem 3.1.1 . . . . . . . . . . . . . . 82

4 Statistical inference for Vasicek-type model driven by Hermite pro-

cesses 88

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
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Organization of the thesis

This thesis consists of two parts.

Part I is an introduction to Hermite processes, Hermite random fields, Fisher in-
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the necessary background for the articles [a] and [c]. In Section 2 we consider briefly

the multiparameter Hermite random fields and we study some less elementary facts

which are used in the article [b]. In section 3, we recall some terminology about Fisher

information related to the article [d]. Finally, our articles [a] to [d] are summarised in

Section 4.
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[a] T.T. Diu Tran (2017): Non-central limit theorem for quadratic functionals of
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no. 4.
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Gaussian multiparameter Hermite random fields. Under revision for Probability and
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[c] I. Nourdin, T.T. Diu Tran (2017): Statistical inference for Vasicek-type model

driven by Hermite processes. Submitted to Stochastic Process and their Applications.

[d] T.T. Diu Tran (2017+): Fisher information and multivariate Fouth Moment

Theorem. Main results have already been obtained. It should be submitted soon.
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Chapter 1

Introduction

1.1 Hermite processes in a nutshell

1.1.1 Historical definition of Hermite processes

Hermite processes form a family of self-similar stochastic processes with long-range

dependence. It includes the well-known fractional Brownian motion (fBm in short)

as a particular case, which is the only Hermite process to be Gaussian. Apart for

Gaussianity, Hermite processes share a number of basic properties with the fBm, such as

self similarity, stationary increments, long-range dependence and covariance structure.

The lack of Gaussianity makes the Hermite process an interesting alternative candidate

for modelling purposes. For instance, it can serve to understand how much a given

fractional model relies on the Gaussian assumption, because we may use it to test the

robustness of the model with respect to the Gaussian feature.

Originally, Hermite processes have first appeared as limits of correlated stationary

Gaussian random sequences. It is, roughly speaking, what the so-called Non-Central

Limit Theorem proved by Taqqu [39, 41] and Dobrushin, Major [13] states. Before being

in position to describe this result in more details, we first need to recall the important

notion of Hermite rank.

Denote by Hk(x) the Hermite polynomial of degree k, given by

Hk(x) = (−1)ke
x2

2
dk

dxk
e−

x2

2 .

The first few Hermite polynomials are H1(x) = x,H2(x) = x2 − 1 and H3(x) =

1



x3 − 3x. Assume on the other hand that g belongs to L2(R, 1√
2π
e−

x2

2 dx) and satis-

fies
∫
R g(x)e−

x2

2 dx = 0. As such the function g can be expressed as a linear sum of

Hermite polynomials as follows

g(x) =
∞∑
k=1

ckHk(x), (1.1.1)

where ck = 1
k!
E[g(N)Hk(N)] with N ∼ N (0, 1). The Hermite rank of g is then, by

definition, the index q of the first non-zero coefficient in the previous expansion (1.1.1):

q = min{k, ck 6= 0}.

In the series of papers [13, 39, 41] by Dobrushin, Major and Taqqu, the authors

investigated the asymptotic behavior, as N →∞, of the following family of stochastic

processes :

1

NH

[Nt]∑
i=1

g(Xi) (1.1.2)

where X = (Xi)i∈Z is a stationary Gaussian sequence with mean 0 and variance 1 that

displays long-range dependence. More precisely, let us assume that X is such that its

correlation function r(n) = E[X0Xn] satisfies

r(n) = n2H0−2L(n)

for some H0 ∈ (1− 1
2q
, 1), with q the Hermite rank of g and L a slowly varying function.

The main result of [13, 39, 41] is that the sequence (1.1.2) converges, in the sense

of finite-dimensional distributions, to a self-similar stochastic process with stationary

increments belonging to the q-th Wiener chaos, called Hermite process of order q and

self-similar parameter H = q(H0 − 1) + 1. Since 1 − 1
2q

< H0 < 1, note that the

parameter H belongs to (1
2
, 1) for all q ≥ 1.

The Hermite process of order q = 1 is nothing but the fBm; it is the only Hermite

process to be defined for any value of H ∈ (0, 1]. The Hermite process of order q = 2 is

called the Rosenblatt process ; it was introduced in Rosenblatt [37] but its current name

comes from Taqqu [39].

2



Recently, Hermite processes have received a lot of attention, not only from a the-

oretical point of view but also because of their great potential for applications. We

would liek to highlight the following references.

1. In Tudor and Viens [48] and Chronopoulou, Tudor and Viens [8], the authors

constructed strong consistent statistical estimators for the self-similar parameter

of the Rosenblatt process, by means of discrete observations after a careful analysis

of the asymptotic behavior of its quadratic variations. Later, Chronopoulou,

Tudor and Viens [9] extended the study in [48] to cover the case of all Hermite

processes.

2. Maejima and Tudor [22] introduced Wiener-Itô integrals with respect to the Her-

mite process. As an application, they studied stochastic differential equations

with this process as driving noise. They proved the existence and investigated

some properties of the so-called Hermite Ornstein-Uhlenbeck process, which is a

natural generalization of the celebrated fractional Ornstein-Uhlenbeck process.

3. Bertin, Torres and Tudor [4] were among the first to do some statistical inference

for a model involving the Rosenblatt process. They constructed a strong consis-

tent maximum likelihood estimator for the drift parameter. To do so, they used

a method based on the random walk approximation of the Rosenblatt process.

1.1.2 Hermite processes viewed as multiple Wiener-Itô inte-
grals

We now define Hermite processes by means of their time-indexed representation.

We only focus on the definition and properties that will be needed throughout this

thesis. For an in-depth introduction to Hermite processes, we refer the reader to the

recent book by Tudor [45].

Let q ≥ 1 be an integer. Denote by B = (Bt)t∈R a two-sided Brownian motion

defined on some probability space (Ω,F , P ). The q-th multiple Wiener-Itô integral of

kernel f ∈ L2(Rq) with respect to B is written in symbols as

IBq (f) =

∫
Rq
f(ξ1, . . . , ξq)dBξ1 . . . dBξq . (1.1.3)

3



For the construction of (1.1.3) and its main properties, we refer the reader to [24] or

[30]. Here, we only point out some basic facts. For any f ∈ L2(Rq) and g ∈ L2(Rp), we

have E[IBq (f)] = 0 and

E[IBq (f)IBp (g)] =

{
q!
〈
f̃ , g̃
〉
L2(Rp)

if q = p

0 if q 6= p,
(1.1.4)

where f̃ is the symmetrization of f defined by

f̃(ξ1, . . . , ξq) =
1

q!

∑
σ∈Sq

f(ξσ(1), . . . , ξσ(q)).

Furthermore, IBq (f) satisfies the so-called hypercontractivity property:

E[|IBq (f)|k]1/k ≤ (k − 1)q/2E[|IBq (f)|2]1/2 for any k ∈ [2,∞). (1.1.5)

The set HB
q of random variables of the form IBq (f), f ∈ L2(Rq), is called the q-th Wiener

chaos associated with B. As a convention, we set HB
0 = R.

Definition 1.1.1. Let (Bt)t∈R be a two-sided standard Brownian motion. The Hermite

process (Zq,H
t )t≥0 of order q ≥ 1 and self-similarity parameter H ∈ (1

2
, 1) is defined as

Zq,H
t = c(H, q)

∫
Rq

(∫ t

0

q∏
j=1

(s− ξj)
H0− 3

2
+ ds

)
dBξ1 . . . dBξq , (1.1.6)

where

c(H, q) =

√
H(2H − 1)

q!βq(H0 − 1
2
, 2− 2H0)

and H0 = 1 +
H − 1

q
∈
(

1− 1

2q
, 1
)
. (1.1.7)

The integral (1.1.6) is a multiple Wiener-Itô integral of order q with respect to the

Brownian motion B, as considered in (1.1.3). The positive constant c(H, q) in (1.1.7)

is calculated to ensure that E[(Zq,H
1 )2] = 1. A random variable which has the same law

as Zq,H
1 is called a Hermite random variable.

1.1.3 Basic properties of Hermite processes

Apart for Gaussianity, Hermite processes of any order q ≥ 2 share many basic

properties with the fractional Brownian motion. We make this statement more precise

in the following result.
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Proposition 1.1.2. Let Zq,H be a Hermite process of order q ≥ 1 and self-similarity

parameter H ∈ (1
2
, 1). Then,

(i) [ Self-similarity ] For all c > 0, (Zq,H
ct )t≥0

law
= (cHZq,H

t )t≥0.

(ii) [ Stationarity of increments ] For any h > 0, (Zq,H
t+h − Z

q,H
h )t≥0

law
= (Zq,H

t )t≥0.

(iii) [ Covariance function ] For all s, t ≥ 0, E[Zq,H
t Zq,H

s ] = 1
2
(t2H + s2H − |t− s|2H).

(iv) [ Long-range dependence ]
∑

n≥1 |E[Zq,H
1 (Zq,H

n+1 − Zq,H
n )]| =∞.

(v) [ Hölder continuity ] For any β ∈ (0, H), Hermite process Zq,H admits a version

with Hölder continuous sample paths of order β on any compact interval.

(vi) [ Finite moments ] For every p ≥ 1, t ≥ 0, E[|Zq,H
t |p] ≤ Cp,qt

pH , where Cp,q is a

positive constant depending on p and q.

Proof. Point (i) follows from the self-similarity of B with index 1/2, that is, dBcξ has

the same law as c1/2dBξ for all c > 0. Indeed, as a process,

Zq,H
ct = c(H, q)

∫
Rq

(∫ ct

0

q∏
j=1

(s− ξj)
H0− 3

2
+ ds

)
dBξ1 . . . dBξq

= c(H, q)

∫
Rq

(
c

∫ t

0

q∏
j=1

(cs− ξj)
H0− 3

2
+ ds

)
dBξ1 . . . dBξq

= c(H, q)

∫
Rq

(
c

∫ t

0

q∏
j=1

(cs− cξj)
H0− 3

2
+ ds

)
dBcξ1 . . . dBcξq

(d)
= ccq(H0−3/2)cq/2c(H, q)

∫
Rq

(
c

∫ t

0

q∏
j=1

(s− ξj)
H0− 3

2
+ ds

)
dBξ1 . . . dBξq

= cHZq,H
t .

Point (ii) is as a consequence of the definition (1.1.6) of Hermite process. In fact, for

any h > 0 we have, as a process,

Zq,H
t+h − Z

q,H
h = c(H, q)

∫
Rq

(∫ t+h

h

q∏
j=1

(s− ξj)
H0− 3

2
+ ds

)
dBξ1 . . . dBξq

= c(H, q)

∫
Rq

(∫ t

0

q∏
j=1

(s+ h− ξj)
H0− 3

2
+ ds

)
dBξ1 . . . dBξq

5



= c(H, q)

∫
Rq

(∫ t

0

q∏
j=1

(s− ξj)
H0− 3

2
+ ds

)
dBξ1+h . . . dBξq+h

(d)
= c(H, q)

∫
Rq

(∫ t

0

q∏
j=1

(s− ξj)
H0− 3

2
+ ds

)
dBξ1 . . . dBξq

= Zq,H
t .

Furthermore, all self-similar processes with stationary increments have the same covari-

ance function, see e.g., [45, Prop. A.1], which is given by

E[Zq,H
t Zq,H

s ] =
1

2
E[(Zq,H

1 )2](t2H + s2H − |t− s|2H), t, s ≥ 0.

Since E[(Zq,H
1 )2] = 1, Point (iii) is proved. For any integer n ≥ 1, we compute from

(iii) that

|E[Zq,H
1 (Zq,H

n+1 − Zq,H
n )]| =

∣∣∣1
2

(
(n+ 1)2H + (n− 1)2H − 2n2H

)∣∣∣
∼ H(2H − 1)n2H−2.

Since H > 1
2
, the Hermite process Zq,H exhibits long-range dependence (iv). We now

turn to the proofs of (v) and (vi). From (iii) and the hypercontractivity property

(1.1.5), it comes that, for any p ≥ 1,

E[|Zq,H
t − Zq,H

s |p] ≤ Cp,q
(
E[(Zq,H

t − Zq,H
s )2]

) p
2 = Cp,q|t− s|pH .

It follows from Kolmogorov’s continuity criterion that Zq,H admits a version with Hölder

continuous sample paths of any order β with 0 < β < H, which proves the point (v).

Furthermore, it also proves (vi).

1.1.4 Two further stochastic representations of Hermite pro-
cesses

Hermite processes can be represented as multiple Wiener-Itô integrals in at least

three different ways.

The first one is given by (1.1.6); it is the time-indexed representation, supported on

the real line and in the time domain.

6



The second one is the spectral representation on the real line. It was obtained by

Taqqu [41]; his finding is that, as a process,

Zq,H
t

(d)
= A(q,H)

∫
Rq

e(λ1+...+λq)t − 1

i(λ1 + . . .+ λq)
|λ1|

1
2
−H0 . . . |λq|

1
2
−H0W (dλ1) . . . dW (dλq), (1.1.8)

where W is a Gaussian complex-valued random spectral measure, H0 is given by (1.1.7)

and

A(q,H) :=

(
H(2H − 1)

q![2Γ(2− 2H0) sin(H0 − 1
2
)π]q

)
.

Finally, we introduce the time interval representation. It turns out to be of particular

interest when we want to simulate Zq,H or when we aim to construct a stochastic calculus

with respect to it, see e.g., [9, 48]. In the case of fractional Brownian motion (q = 1),

it is well-known that

Z1,H
t

(d)
=

∫ t

0

KH(t, s)dBs,

with (Bs)t≥0 a standard Brownian motion,

KH(t, s) = cHs
1
2
−H
∫ t

s

(u− s)H−
3
2uH−

1
2du, t > s, (1.1.9)

and cH =
( H(H−1)

β(2−2H,H− 1
2

)

) 1
2 . The time interval representation of the Hermite process

makes also use of the kernel KH given by (1.1.9). More precisely, it was shown in

Pipiras and Taqqu [34] that, as a process,

Zq,H
t

(d)
= bq,H

∫ t

0

. . .

∫ t

0

(∫ t

u1∨...∨uq
∂1K

H0(s, u1) . . . ∂1K
H0(s, uq)ds

)
dBu1 . . . dBuq

= bq,H

∫ t

0

. . .

∫ t

0

( q∏
i=1

u
1
2
−H0

i

∫ t

0

sq
(
H0− 1

2

) q∏
i=1

(s− ui)
H0− 3

2
+ ds

)
dBu1 . . . dBuq ,

(1.1.10)

where the positive constant bq,H is chosen so that E[(Zq,H
1 )2] = 1 and H0 given by

(1.1.7).

1.1.5 Wiener integrals with respect to Hermite process

We now introduce Wiener integrals of a deterministic function with respect to the

Hermite process, following the construction done in Maejima and Tudor [22]. Due
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to the equivalence in distribution of the three previous stochastic representations for

Hermite processes, we can choose the one we want. In the sequel, we deal with the

representation (1.1.6).

Firstly, let f be an elementary function on R of the form

f(u) =
n∑
j=1

aj1(tj ,tj+1](u).

We naturally define the Wiener integral of f with respect to Zq,H as∫
R
f(u)dZq,H

u =
n∑
j=1

aj(Z
q,H
tj+1
− Zq,H

tj ).

Observe that the Hermite process given by formula (1.1.6) can equivalently be written

this way:

Zq,H
t =

∫
Rq
I(1[0,t])(y1, . . . , yq)dB(y1) . . . dB(yq)

where B is a two-sided standard Brownian motion and I is the mapping from the set

of functions f : R→ R to the set of functions g : Rq → R given by

I(f)(y1, . . . , yq) := c(H, q)

∫
R
f(u)

q∏
i=1

(u− yi)
H0− 3

2
+ du

with c(H, q) and H0 defined as in (1.1.7). It follows that the Wiener integral of f with

respect to Zq,H can be expressed as the following q-th multiple Wiener integral∫
R
f(u)dZq,H

u =

∫
Rq
I(f)(y1, . . . , yq)dB(y1) . . . dB(yq). (1.1.11)

For every step function f , it is easily seen that E
[ ∫

R f(u)dZq,H
u

]
= 0 and

E

[(∫
R
f(u)dZq,H

u

)2]
= q!

∫
Rq

(I(f)(y1, . . . , yq))
2dy1 . . . dyq

= H(2H − 1)

∫
R

∫
R
f(u)f(v)|u− v|2H−2dudv.

Let us now introduce the linear space H of measurable functions f on R such that

||f ||2H := q!

∫
Rq

(I(f)(y1, . . . , yq))
2dy1 . . . dyq <∞.

8



It is immediate to compute that

||f ||2H = H(2H − 1)

∫
R

∫
R
f(u)f(v)|u− v|2H−2 <∞.

Observe that the mapping

f 7−→
∫
R
f(u)dZq,H

u (1.1.12)

is an isometry from the space of elementary functions equipped with the norm ‖.‖H
to L2(Ω). Furthermore, it was proved in [33] that, for every f ∈ H, there exists a

sequence of step functions (fn)n≥1 in H such that fn → f in H. For each n, the integral∫
R fn(u)dZq,H

u is well-defined and, for all n,m ≥ 0, one has

E

[(∫
R
fn(u)dZq,H

u −
∫
R
fm(u)dZq,H

u

)2]
= E

[(∫
R
(fn − fm)(u)dZq,H

u

)2]
= ||fn − fm||2H

m,n→∞−−−−→ 0.

Hence
{∫

R fn(u)dZq,H
u

}
n≥1

is a Cauchy sequence in L2(Ω) and thus admits a limit. It

allows one to define the Wiener integral of any deterministic functions in the space H
with respect to the Hermite process Zq,H as∫

R
f(u)dZq,H

u = lim
n→∞

∫
R
fn(u)dZq,H

u .

By construction, the isometry mapping (1.1.12) as well as the relation (1.1.11) still hold

for any function in H.

1.1.6 A particular case: the Rosenblatt process

The Rosenblatt process, usually denoted by RH in the litterature, is the other name

given to the Hermite process of order q = 2. For a given H ∈ (1
2
, 1), according to

Definition 1.1.1 it is defined as follows:

RH
t = c(H, 2)

∫
Rq

(∫ t

0

(s− ξ1)
H0− 3

2
+ (s− ξ2)

H0− 3
2

+ ds

)
dBξ1dBξ2 , (1.1.13)

where B is a standard Brownian motion on R, and where the positive constants C(H, 2)

and H0 are defined by (1.1.7). This stochastic process is H-self-similar with stationary

increments, exhibits long-range dependence and lives in the second Wiener chaos. As
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a result, it is not a Gaussian process. In the last few years, the Rosenblatt process has

been studied a lot. Among others, we would like to mention several papers related to

some topics of interest in this thesis: Tudor [46], Pipiras and Taqqu [34], Tudor and

Viens [48], Veillette and Taqqu [49], Maejima and Tudor [23]. In the sequel, we discuss

more closely about Rosenblatt distribution and the finite time interval representation

of a Rosenblatt process.

The Rosenblatt distribution is the marginal distribution of RH
t evaluated at time

t = 1, i.e., the distribution of the Rosenblatt random variable RH
1 . Using Monte Carlo

simulations, Torres and Tudor [43] have been able to draw empirical histograms for the

density of the Rosenblatt distribution, see Figure 1.1 below.

Figure 1.1: Density of the Rosenblatt distribution for H = 0.5, H = 0.8 and H = 0.9.

Furthermore, the authors of [43] simulated some sample paths of the Rosenblatt

process for different values of the parameter H, see Figure 1.2.

Figure 1.2: Simulations of sample trajectories for the Rosenblatt process with H = 0.8
(left) and H = 0.9 (right).

Since computing an explicit expression for the density function of the Rosenblatt

random variable is still an open problem, Veillette and Taqqu [49] developed a technique

10



to evaluate it numerically. The authors plotted the PDF and CDF of the Rosenblatt

distribution shown in Figure 1.3.

Figure 1.3: CDF and PDF of Rosenblatt distribution.

A careful look at the CDF of the Rosenblatt distribution RH
1 given in Figure 1.3

leads to the natural but very mysterious conjecture (borrowed from Taqqu [42]) that,

whatever the value of H,

P (RH
1 ≤ −0.6256) = 0.2658

P (RH
1 ≤ 1.3552) = 0.9123. (1.1.14)

To understand and prove (1.1.14) is still an open problem, the main obstacle being the

lack of an explicit expression for the density of RH
1 .

Let us now turn to the finite time interval representation of the Rosenblatt process.

Proposition 1.1.3. ([45, Prop. 3.7]) Let KH be the kernel (1.1.9) and let (RH
t )t∈[0,T ]

be the Rosenblatt process given by (1.1.13) with parameter H ∈ (1
2
, 1). Then

RH
t

(d)
= bH

∫ t

0

∫ t

0

(∫ t

u1∨u2
∂1K

H0(s, u1)∂1K
H0(s, u2)ds

)
dBu1dBu2 , (1.1.15)

where B is a Brownian motion, H0 = H+1
2

and bH = 1
H+1

√
2(2H−1)

H
.
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Since the Rosenblatt process belongs to the second Wiener chaos, its distribution is

characterized by its mixed cumulants, see e.g., [28, Prop. 2.7.13]. We recall that, given

a random variable X such that E[|X|p] <∞, ∀p ≥ 1, the sequence of the cumulants of

X, denoted by κp(X), p ≥ 1, is defined as follows

logE[eitX ] =
∞∑
p=1

(it)p

p!
κp(X), t ∈ R.

The first cumulant κ1 is the mean and the second one κ2 is the variance. Let us consider

a double Wiener-Itô integral IB2 (f) with f ∈ L2(R2) symmetric. Then, for all p ≥ 2,

the p-th cumulant of IB2 (f) can be easily computed as a circular integral of f , see [28,

Prop. 2.7.13]:

κp(I
B
2 (f)) = 2p−1(p− 1)!

∫
Rp
f(s1, s2)f(s2, s3) . . . f(sp−1, sp)f(sp, s1)ds1 . . . dsp.

(1.1.16)

Note that the circular shape for the cumulants of double Wiener-Itô integrals be-

comes wrong for higher order multiple Wiener-Itô integrals.

Sketch of the proof of Proposition 1.1.3: We follows Tudor’s arguments from [46]

and make use of the cumulants. Let us denote by R′Ht the right-hand side of (1.1.15).

Since the law of a double Wiener-Itô integral is completely determined by its cumulants

(1.1.16), we are left to show that

n∑
i=1

biR
H
ti
, and

n∑
i=1

biR
′H
ti

share the same cumulants. We only consider the case n = 2, because it is representative

of the difficulty. More precisely, let us show that, for every s, t ∈ [0, T ] and α, β ∈ R,

the random variables αRH
t + βRH

s and αR′Ht + βR′Hs have the same cumulants. We can

write, for all s, t ∈ [0, T ],

αR′Ht + βR′Hs = IB2 (fs,t)

where

ft,s(y1, y2) = α1[0,t](y1)1[0,t](y2)

∫ t

y1∨y2
∂1K

H0(u, y1)∂1K
H0(u, y2)du

+ β1[0,s](y1)1[0,s](y2)

∫ s

y1∨y2
∂1K

H0(u, y1)∂1K
H0(u, y2)du,

12



and

αRH
t + βRH

s = IB2 (gs,t)

where

gs,t(y1, y2) = c(H, 2)

(
α

∫ t

0

(u−y1)
H
2
−1

+ (u−y2)
H
2
−1

+ du+β

∫ s

0

(u−y1)
H
2
−1

+ (u−y2)
H
2
−1

+ du

)
.

Following computations in [46] or [45, Prop.3.7], both random variables IB2 (fs,t) and

IB2 (gs,t) share the same cumulants given by, for all p ≥ 2,

κp(I
B
2 (fs,t)) = κp(I

B
2 (gs,t))

= (p− 1)!2p−1bpH(H0(2H0 − 1))p
∑

tj∈{t,s}

∫ t1

0

. . .

∫ tp

0

du1 . . . dup

× α]{tj=t}β]{tj=s}|u1 − u2|2H0−2|u2 − u3|2H0−2 . . . |up − u1|2H0−2.

This concludes our proof. �

1.2 Multiparameter Hermite random fields

1.2.1 Where our interest for multiparameter Hermite random
fields comes from

Multiparameter Hermite random fields (aka Hermite sheets) are a generalization of

Hermite processes, but instead of a time interval we now deal with a subset of Rd. The

family of Hermite sheets share several properties with the family of Hermite processes,

including self-similarity, stationary increments and Hölder continuity. Hermite sheet is

parametrized by the order q ≥ 1 and the self-similarity parameter H = (H1, . . . , Hd).

It includes the well-known fractional Brownian motion (if q = 1, d = 1) as well as the

fractional Brownian sheet (if q = 1, d ≥ 2). These latter are the only Gaussian fields in

the class of Hermite sheets. When q = 2, it contains the Rosenblatt process (if d = 1)

and the Rosenblatt sheet (if d ≥ 2).

Hermite random fields have been introduced as limits of some Hermite variations

of the fractional Brownian sheet. We refer the reader to [31] or [36]. Among various

aspects of the fractional Brownian sheet, we focus here on the study of its weighted

power variations. We start with some historical facts.
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1. In Nourdin, Nualart and Tudor [26], see also the references therein, the authors

gave a complete description of the convergence of normalized weighted power

variations of the fractional Brownian motion for any Hurst parameter H ∈ (0, 1).

2. Réveillac [35] proved the convergence in the sense of finite-dimensional distribu-

tions of the weighted quadratic variation of a two-parameter fractional Brownian

sheet. Generalized results for any fractional Brownian sheet are announced in a

work in progress by Pakkanen and Réveillac [32] (private communication).

3. Réveillac, Stauch and Tudor [36] proved central and non-central limit theorems

for the Hermite variations of the two-parameter fractional Brownian sheet. Later,

generalized variations of d-parameter fractional Brownian sheet were studied by

Pakkanen and Réveillac [31]. The multiparameter Hermite random field appeared

in the limit of non-central limit theorems. Furthermore, in the case of non-central

asymptotics, Breton [6] gave the rate of convergence for the Hermite variations of

fractional Brownian sheet. The study of weighted power variations of fractional

Brownian sheet is still an open problem. We have investigated it in our paper in

progress [44] (not included in this thesis).

The study of power variations of multiparameter non-Gaussian Hermite random

fields, including Hermite processes, has received less attention: see [9, 48] for quadratic

variations of Hermite processes. Our main achievement on this aspect is to extend the

result of [9] to the family of Hermite random fields.

1.2.2 Fractional Brownian sheet

The fractional Brownian sheet (in short fBs) BH with Hurst parameter H ∈ (0, 1)d

is one particular example of Hermite random fields. It can also be viewed as a general-

ization of the well-known fractional Brownian motion. In the sequel, we introduce the

definition of BH as well as some of its basic properties. From now on, we fix d ≥ 1 in

N.

Definition 1.2.1. A d-parameter fractional Brownian sheet BH = (BH1,...,Hd
t1,...,td

)(t1,...,td)∈[0,∞)d

with Hurst indices H = (H1, . . . , Hd) ∈ (0, 1)d is a centered d-parameter Gaussian pro-
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cess whose covariance function is given by

E[BH
t B

H
s ] =

d∏
i=1

1

2
(t2Hii + s2Hi

i − |ti − si|2Hi).

There also exists a version of fractional Brownian sheet BH whose covariance is

defined by

E[BH
t B

H
s ] =

1

2
(‖t‖2H + ‖s‖2H − ‖t− s‖2H),

where ‖.‖ denotes the Euclidian norm, (see e.g., [1]).

When H1 = . . . = Hd = 1
2
, it is nothing but the Brownian sheet, that is, a centered

Gaussian process (Bt)t≥0 = (Bt1,...,td)(t1,...,td)≥0 with covariance

E[BtBs] =
d∏
i=1

(ti ∧ si).

Note that the covariance structure of fBs is defined as the tensor product of the

covariance of a fBm. Thanks to this fact, fBs shares some properties with fBm such

as self-similarity, stationary increments and Hölder continuity. Precisely, the following

proposition states what happens only for the two-parameter fractional Brownian sheet,

for the sake of simplicity.

Proposition 1.2.2. Let BH1,H2 be a two-parameter fractional Brownian sheet with

Hurst parameter (H1, H2) ∈ (0, 1)2. Then,

(i) [ Self-similarity ] For all h, k > 0, (BH1,H2

hs,kt )s,t≥0
law
= (hH1kH2BH1,H2

s,t )s,t≥0.

(ii) [ Stationarity of increments ] For any h, k > 0,

(BH1,H2

s+h,t+k −B
H1,H2

h,t+k −B
H1,H2

s+h,k +BH1,H2

h,k )s,t≥0
law
= (BH1,H2

s,t )s,t≥0.

(iii) [ Hölder continuity ] The fBs BH1,H2 admits a version with Hölder continuous

sample paths of order (β1, β2) on any compact set, for any β1 ∈ (0, H1) and β2 ∈
(0, H2).
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1.2.3 Definition of multiparameter Hermite random fields

We now introduce the definition of multiparameter Hermite random fields, following

Tudor [45].

Let q ≥ 1 be an integer. Denote by B = (Bt)t∈Rd a Brownian sheet. The q-th

multiple Wiener-Itô integral of kernel f ∈ L2((Rd)q) with respect to B is written in

symbols as

IBq (f) =

∫
(Rd)q

f(u1, . . . ,uq)dBu1 . . . dBuq . (1.2.1)

For the construction of (1.2.1) and its main properties, we refer the reader to [30]

(chapter 1 therein) or [31, Section 3]. It is readily verified that, for any f ∈ L2((Rd)q)

and g ∈ L2((Rd)p), we have E[IBq (f)] = 0 and

E[IBq (f)IBp (g)] =

{
q!
〈
f̃ , g̃
〉
L2((Rd)p)

if q = p

0 if q 6= p,
(1.2.2)

where f̃ is the symmetrization of f defined by

f̃(u1, . . . ,uq) =
1

q!

∑
σ∈Sq

f(uσ(1), . . . ,uσ(q)).

Definition 1.2.3. Let (Bt)t∈Rd be a standard Brownian sheet. The d-parameter

Hermite random field (Zq,H
t )t≥0 of order q ≥ 1 and self-similarity parameter H =

(H1, . . . , Hd) ∈ (1
2
, 1)d is defined as

Zq,H
t = cq,H

∫
(Rd)q

dBu1,1,...,u1,d . . . dBuq,1,...,uq,d

×
(∫ t1

0

da1 . . .

∫ td

0

dad

q∏
j=1

(a1 − uj,1)
−( 1

2
+

1−H1
q

)

+ . . . (ad − uj,d)
−( 1

2
+

1−Hd
q

)

+

)

= cq,H

∫
(Rd)q

dBu1 . . . dBuq

∫ t

0

da

q∏
j=1

(a− uj)
−( 1

2
+ 1−H

q
)

+ , (1.2.3)

where x+ = max(x, 0), and c(q,H) is the unique positive constant depending only on q

and H chosen so that E[Zq,H(1)2] = 1. The integral (1.2.3) is a q-th multiple Wiener-Itô

integral of order q with respect to the Brownian sheet B, as considered in (1.2.1).
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1.2.4 Basic properties of multiparameter Hermite random
fields

Similarly as Hermite processes, apart for Gaussianity the multiparameter Hermite

random fields of any order q ≥ 2 share most of the basic properties of the fractional

Brownian sheet. Let us make this statement more precise.

Proposition 1.2.4. Fix an integer d ≥ 1. Let Zq,H be a d-parameter Hermite random

field of order q ≥ 1 and self-similarity parameter H ∈ (1
2
, 1)d. Then,

(i) [ Self-similarity ] For all c > 0, (Zq,H
ct )t≥0

law
= (cHZq,H

t )t≥0.

(ii) [ Stationarity of increments ] For any h > 0,h ∈ Rd, ∆Zq,H
[h,h+t]

law
= ∆Zq,H

[0,t], where

∆Zq,H
[s,t] denotes the increment of Zq,H given by

∆Zq,H
[s,t] =

∑
r∈{0,1}d

(−1)d−
∑d
i=1 riZq,H

s+r×(t−s). (1.2.4)

(iii) [ Covariance function ] For all s, t ≥ 0,

E[Zq,H
t Zq,H

s ] =
d∏
i=1

1

2
(t2Hii + s2Hi

i − |ti − si|2Hi).

(iv) [ Hölder continuity ] Hermite process Zq,H admits a version with Hölder continuous

sample paths of order β = (β1, . . . , βd) for any β ∈ (0,H).

Observe that (1.2.4) reduces to ∆Zq,H
[s,t] = Zq,H

t − Zq,H
s when d = 1, and to ∆Zq,H

[s,t] =

Zq,H
t1,t2 − Z

q,H
t1,s2 − Z

q,H
s1,t2 + Zq,H

s1,s2
when d = 2.

Proof. Point (i) follows from the self-similarity of the Brownian sheet B with index 1/2,

that is, dBct has the same law as c1/2dBt for all c = (c1, . . . , cd) > 0. Indeed,

Zq,H
ct = cq,H

∫
(Rd)q

(∫ ct

0

q∏
j=1

(s− yj)
−
(

1
2

+ 1−H
q

)
+ ds

)
dBy1 . . . dByq

= cq,H

∫
Rq

(
c

∫ t

0

q∏
j=1

(cs− yj)
−
(

1
2

+ 1−H
q

)
+ ds

)
dBy1 . . . dByq

= cq,H

∫
Rq

(
c

∫ t

0

q∏
j=1

(cs− cyj)
−
(

1
2

+ 1−H
q

)
+ ds

)
dBcy1 . . . dBcyq
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(d)
= cc−q(

1
2

+ 1−H
q

)cq/2cq,H

∫
Rq

(
c

∫ t

0

q∏
j=1

(s− yj)
−
(

1
2

+ 1−H
q

)
+ ds

)
dBy1 . . . dByq

= cHZq,H
t .

To prove point (ii), we deal with the increments of Zq,H and then use the change of

variable s′ = s − h. For the sake of simplicity, we will only check the case d = 2. In

fact, for any h1, h2 > 0 we have

∆Zq,H
[h,h+t] = Zq,H1,H2

h1+t1,h2+t2
− Zq,H1,H2

h1+t1,h2
− Zq,H1,H2

h1,h2+t2
+ Zq,H1,H2

h1,h2

= cq,H

∫
(R2)q

dBy1,1,y1,2 . . . dByq,1,yq,2

×
(∫ h1+t1

h1

ds1

∫ h2+t2

h2

ds2

q∏
j=1

(s1 − yj,1)
−( 1

2
+

1−H1
q

)

+ (s2 − yj,2)
−( 1

2
+

1−H2
q

)

+

)
.

The change of variables s′1 = s1 − h1, s
′
2 = s2 − h gives

∆Zq,H
[h,h+t] = cq,H

∫
(R2)q

dBy1,1,y1,2 . . . dByq,1,yq,2

×
(∫ t1

0

ds1

∫ t2

0

ds2

q∏
j=1

(s1 + h1 − yj,1)
−( 1

2
+

1−H1
q

)

+ (s2 + h2 − yj,2)
−( 1

2
+

1−H2
q

)

+

)
= cq,H

∫
(R2)q

dBy1,1+h1,y1,2+h2 . . . dByq,1+h1,yq,2+h2

×
(∫ t1

0

ds1

∫ t2

0

ds2

q∏
j=1

(s1 − yj,1)
−( 1

2
+

1−H1
q

)

+ (s2 − yj,2)
−( 1

2
+

1−H2
q

)

+

)
(d)
= cq,H

∫
(R2)q

dBy1,1,y1,2 . . . dByq,1,yq,2

×
(∫ t1

0

ds1

∫ t2

0

ds2

q∏
j=1

(s1 − yj,1)
−( 1

2
+

1−H1
q

)

+ (s2 − yj,2)
−( 1

2
+

1−H2
q

)

+

)
= ∆Zq,H

[0,t].

For point (iii), we refer the reader to [45, Chapter 4] for the details of calculation. From

(i) and (ii), we have for all p ≥ 2,

E[|∆Zq,H
[s,t]|

p] = E[|Zq,H
1 |p]|t1 − s1|pH1 . . . |td − sd|pHd .
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Applying Kolmogorov’s criterion for Wiener random fields depending on several pa-

rameters, Zq,H admits a version with Hölder continuous sample paths of any order

β = (β1, . . . , βd) with 0 < βj < Hj for j = 1, . . . , d, which proves the point (iv).

1.2.5 A further stochastic representation of Hermite random
fields

We now introduce the finite-time representation for the Hermite sheet Zq,H. The

equivalence in the sense of finite-dimensional distributions between Zq,H in (1.2.3) and

the following representation is shown in [45, Chapter 4]:

Zq,H(t)
(d)
= bq,H

∫ t1

0

. . .

∫ td

0

dWu1,1,...,u1,d . . .

∫ t1

0

. . .

∫ td

0

dWuq,1,...,uq,d

×
(∫ t1

u1,1∨...∨uq,1
da1∂1K

H′1(a1, u1,1) . . . ∂1K
H′1(a1, uq,1)

)
...

×
(∫ td

u1,d∨...∨uq,d
dad∂1K

H′d(ad, u1,d) . . . ∂1K
H′d(ad, uq,d)

)

= bq,H

∫
[0,t]q

dWu1 . . . dWuq

d∏
j=1

∫ tj

u1,j∨...∨uq,j
da∂1K

H′j(a, u1,j) . . . ∂1K
H′j(a, uq,j), (1.2.5)

where KH stands for the usual kernel appearing in the classical expression of the frac-

tional Brownian motion BH as a Volterra integral with respect to Brownian motion

given by (1.1.9), the positive constant bq,H is chosen to ensure that E[Zq,H(1)2] = 1

and H′ = 1 + H−1
q

.

1.2.6 Wiener integrals with respect to Hermite random fields

We now introduce Wiener integrals of a deterministic function with respect to the d-

parametric Hermite random field (Zq,H
t )t∈Rd , following the construction done in Clarke

De la Cerda and Tudor [10]. When d = 1, notice that we recover the construction of

Wiener integrals with respect to Hermite processes.

Firstly, let f be an elementary function on Rd of the form

f(u) =
n∑
j=1

aj1(tj ,tj+1](u) =
n∑
j=1

aj1(t1,j ,t1,j+1]×...×(td,j ,td,j+1](u1, . . . , ud).
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We define naturally the Wiener integral of f with respect to Zq,H as∫
Rd
f(u)dZq,H

u =
n∑
j=1

aj∆Z
q,H
[tj ,tj+1],

where ∆Zq,H
[tj ,tj+1] is the generalized increment of Zq,H given by (1.2.4). Observe that

the Hermite sheet given by formula (1.2.3) can equivalently be written as follows

Zq,H
t =

∫
(Rd)q

J(1[0,t1]×...×[0,td])(y1, . . . ,yq)dB(y1) . . . dB(yq),

where B is a Brownian sheet and J is the mapping from the set of functions f : Rd → R
to the set of functions g : (Rd)q → R given by

J(f)(y1, . . . ,yq) : = c(H, q)

∫
Rd
f(u)

q∏
i=1

(u− yi)
−
(

1
2

+ 1−H
q

)
+ du

= c(H, q)

∫
Rd
f(u1, . . . , ud)

q∏
i=1

d∏
j=1

(uj − yi,j)
−
(

1
2

+
1−Hi
q

)
+ du1 . . . ud.

It follows that the Wiener integral for step functions f with respect to Zq,H can be

expressed as the following q-th multiple Wiener integral∫
Rd
f(u)dZq,H

u =

∫
(Rd)q

J(f)(y1, . . . ,yq)dB(y1) . . . dB(yq). (1.2.6)

For every step function f , it is readily verified that E
[ ∫

Rd f(u)dZq,H
u

]
= 0 and

E

[(∫
Rd
f(u)dZq,H

u

)2]
= q!

∫
(Rd)q

(J(f)(y1, . . . ,yq))
2dy1 . . . dyq

= H(2H− 1)

∫
Rd

∫
Rd
f(u)f(v)|u− v|2H−2dudv

=

∫
Rd

∫
Rd
f(u1, . . . , ud)f(v1, . . . , vd)

d∏
i=1

Hi(2Hi − 1)|ui − vi|2Hi−2du1 . . . duddv1 . . . dvd.

Let us now introduce the linear space H of measurable functions f on Rd such that

‖f‖2
H := q!

∫
(Rd)q

(I(f)(y1, . . . ,yq))
2dy1 . . . dyq <∞.

Playing with the expression of the norm yields

‖f‖2
H = H(2H− 1)

∫
Rd

∫
Rd
f(u)f(v)|u− v|2H−2dudv <∞.
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Observe that the mapping

f 7−→
∫
Rd
f(u)dZq,H

u (1.2.7)

is an isometry from the space of elementary functions equipped with the norm ‖.‖H to

L2(Ω). Furthermore, it was shown in [33] that the set of elementary functions is dense

in H. Then the isometry mapping (1.2.7) and the relation (1.2.6) still hold for any

function in H.

1.3 Introduction to Fisher information

We now leave the world of Hermite processes and fields, to introduce the definitions

of entropy and Fisher information for continuous random variables or vectors, two

notions at the heart of the work in progress [d] (see Section 1.4). We then describe

the relationships between the different induced forms of convergences. For the sake of

simplicity, we first start with the one-dimensional case.

1.3.1 Entropy and Fisher information for real-valued random
variables

Definition 1.3.1. ([18, Def. 1.4, 1.5]) The differential entropy (or simply, the entropy)

of a continuous random variable F with density f is defined by:

H(F ) = H(f) := −
∫
f(x) log f(x)dx = −E[log f(F )]. (1.3.1)

We use the convention that 0 log 0 ≡ 0. For two continuous random variables F and Z

with densities f and φ respectively, the measure of the discrepancy between the distri-

butions of F and Z is the relative entropy (or the so-called Kullback-Leibler distance)

defined by

D(F‖Z) = D(f‖φ) :=

∫
f(x) log

(
f(x)

φ(x)

)
dx. (1.3.2)

Note that if supp(f) * supp(φ), then D(f‖φ) =∞.

Remark 1.3.2. The relative entropy is non-negative: D(F‖Z) ≥ 0 for any random

variables F,Z with densities f and φ respectively. Indeed, using Jensen’s inequality for
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the convex function − log, we have

D(F‖Z) = −
∫
f(x) log

(
φ(x)

f(x)

)
dx = E

[
− log

(
φ(F )

f(F )

)]
≥ − log

(
E

[
φ(F )

f(F )

])
= − log

(∫
φ(x)

f(x)
f(x)dx

)
= − log

(∫
φ(x)dx

)
= 0.

Definition 1.3.3. ([18, Def. 1.12]) For a random variable F with continuously differ-

entiable density f , we define the score function ρF of F as the R-valued function given

by

ρF (x) =
f ′(x)

f(x)
=

d

dx
(log f(x)).

Additionally, if we assume that F has variance σ2, we define the Fisher information

J(F ) and the standardised Fisher information Jst(F ) as follows:

J(F ) = E[ρF (F )2] (1.3.3)

Jst(F ) = σ2E[(ρF (F ))2]− 1 = σ2J(F )− 1. (1.3.4)

It is easily seen that the score function ρF is uniquely determined by the so-called

Stein identity (see e.g. [18, C1]). That is, ρF is the only function satisfying

E[ρF (F )g(F )] = −E[g′(F )] (1.3.5)

for any test function g : R → R. Moreover, if Z is N (0, σ2)-distributed then J(Z) =

σ−2. Hence, σ−2Jst(F ) = J(F ) − σ−2 = J(F ) − J(Z) is the difference between the

Fisher information of F and Z.

We now turn to the study of relationships between convergences in the sense of

entropy, Fisher information, total variation and Lp-distances.

Throughout the sequel, we denote by F a centered real-valued random variable with

unit variance and smooth density f , and we let Z ∼ N (0, 1) be a standard Gaussian

with density φ(x) = 1√
2π
e−x

2/2, x ∈ R.
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The Lp-distance (resp. supremum norm) between densities of F and Z is given by

‖f − φ‖Lp =

(∫
R
|f(x)− φ(x)|pdx

)1/p

,(
resp. ‖f − φ‖∞ = sup

x∈R
‖f(x)− φ(x)‖

)
.

The total variation distance dTV (F,Z) between F and Z is defined as

dTV (F,Z) = sup
A∈B(R)

|P(F ∈ A)− P(Z ∈ A)|.

It is known that the convergence in total variation distance is stronger than the con-

vergence in distribution, see e.g., [28, Proposition C.3.1]. Moreover, for any p ∈ [1,∞),

‖f − φ‖Lp ≤ ‖f − φ‖1/p

L1 ‖f − φ‖1−1/p
∞ .

Thus, a bound for Lp-distance may be always deduced from a bound for L1 and supre-

mum distances. Furthermore, we have the following useful identity for total variation

distance, see e.g., [28],

dTV (F,Z) =
1

2
sup
‖h‖∞≤1

|E[h(F )]− E[h(Z)]|

=
1

2

∫
R
|f(x)− φ(x)|dx =

1

2
‖f − φ‖L1 .

As a result, controlling both the total variation distance and the supremum distance

implies the Lp-convergence for any p ∈ (1,∞).

It is worth pointing out that a link between relative entropy and total variation

distance is provided by the celebrated Csiszár-Kullback-Pinsker inequality, implying

that for any probability densities, the convergence in the sense of relative entropy is

stronger than convergence in total variation distance. More precisely:

Proposition 1.3.4. ( [18, Lemma 1.8]) For any random variables F and Z, we have

2(dTV (F,Z))2 ≤ D(F‖Z).

In 1975, Shimizu [38] (see also [18, Lemma E.1]) proved that the convergence in the

sense of Fisher information distance to a standard Gaussian random variable is stronger
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than convergence in total variation distance and supremum norm. The constants ob-

tained by Shimizu in his original paper [38] have been then improved by Johnson and

Barron [3] and Ley and Swan [21].

Proposition 1.3.5. (Shimizu’s inequality) Let F be a centered real-valued random vari-

able with unit variance and continuously differentiable density f . Let Z be a standard

Gaussian random variable. Then the following two inequalities hold:

sup
x
|f(x)− φ(x)| ≤

√
J(F ) (1.3.6)

dTV (F,Z) ≤ 1√
2

√
J(F ). (1.3.7)

The relative entropy and the Fisher information are also strongly related to each

other via the so-called de Bruijn’s identity, see e.g., [2, Lemma 1] or [18, C1].

Lemma 1.3.6. (de Bruijn’s identity) Let F be a centered real-valued random variable

with unit variance and let Z be a standard Gaussian. Assume, without loss of generality,

that F and Z are independent. Then,

D(F‖Z) =

∫ 1

0

J(
√
tF +

√
1− tZ)− 1

2t
dt. (1.3.8)

Furthermore, taking into account (see e.g., [18, Lemma 1.21]) that

J(
√
tF +

√
1− tZ) ≤ tJ(F ) + (1− t)J(Z) = 1 + t(J(F )− 1),

we obtain

D(F‖Z) ≤ 1

2
(J(F )− 1). (1.3.9)

As a consequence, convergence in the sense of Fisher information distance to a standard

Gaussian random variable is stronger than convergence in the sense of relative entropy

distance.

1.3.2 Entropy and Fisher information for random vectors

Definition 1.3.7. ([18, Def 3.1]) The differential entropy (or simply, the entropy) of a

continuous random vector F with density f is defined by:

H(F ) = H(f) := −
∫
f(x) log f(x)dx = −E[log f(F )]. (1.3.10)
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We use the convention 0 log 0 ≡ 0. The measure of the discrepancy between the distri-

butions of F and Z is the relative entropy (aka the Kullback-Leibler distance)

D(F‖Z) :=

∫
f(x) log

(
f(x)

φ(x)

)
dx. (1.3.11)

Now we can define the Fisher information matrix as follows. Given a function p,

write ∇p for the gradient vector (∂p/∂x1, . . . , ∂p/∂xn)T and Hess p for the Hessian

matrix (Hess p)ij = ∂2p/∂xi∂xj.

Definition 1.3.8. ([18, Def 3.2]) For a random vector F with differentiable density f

and covariance matrix C > 0, we define the score ρF of F as the Rd-valued function

given by

ρF : Rd → Rd : x 7→ ρF (x) = (ρF,1(x), . . . , ρF,d(x))T := ∇ log f(x). (1.3.12)

We also define the Fisher information matrix J(F ) and its standardised version Jst(F )

of F by

J(F ) := E[ρF (F )ρF (F )T ] (1.3.13)

Jst(F ) := CE[(ρF (F ) + C−1F )(ρF (F ) + C−1F )T ] = C(J(F )− C−1) (1.3.14)

(with components of J(F ) are J(F )ij = E[ρF,i(F )ρF,j(F )] for 1 ≤ i, j ≤ d).

It is known that the score vector-function ρF (F ) is uniquely determined by the

following integration by parts (see e.g., [18, Lemma 3.3]). That is, ρF is the only

function satisfying:

E[ρF (F )g(F )] = −E[∇g(F )] for all test function g : Rd → R. (1.3.15)

In particular,

E[ρF,i(F )g(F )] = −E
[ ∂g
∂xi

(F )
]

∀1 ≤ i ≤ d. (1.3.16)

Note that if Z is a centered Gaussian vector with covariance C, then J(Z) = C−1 and

the positive semidefinite matrix C−1Jst(F ) = J(F )−C−1 is the difference between the

Fisher information matrices of F and Z.
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As in dimension one, let us now review the relationships between convergence to

Gaussian vectors in the sense of entropy, Fisher information, total variation and Lp-

distances.

Similarly as in dimension one, the total variation distance dTV (F,Z) between d-

dimensional random vectors F and Z is defined as

dTV (F,Z) = sup
A∈B(Rd)

|P(F ∈ A)− P(Z ∈ A)|.

We also have a strong connection between total variation distance and L1-norm of

densities as follows:

dTV (F,Z) =
1

2
sup
‖h‖∞≤1

|E[h(F )]− E[h(Z)]|

=
1

2

∫
Rd
|f(x)− φ(x)|dx =

1

2
‖f − φ‖L1

In the multi-dimensional case, the relative entropy and the total variation distance

are also linked together. Precisely:

Proposition 1.3.9. (Csiszár-Kullback-Pinsker inequality) For any random vectors F

and Z, we have

2(dTV (F,Z))2 ≤ D(F‖Z). (1.3.17)

Therefore, the convergence in the sense of relative entropy is stronger than conver-

gence in total variation distance. In particular, note that D(F‖Z) ≥ 0. See, e.g., [5]

for a proof of (1.3.17) and original references or see [15].

The analogue in dimension one of the relationship between relative entropy and

Fisher information is provided by the multidimensional counterpart of de Bruijn’s iden-

tity, see e.g., [19, Lemma 2.2].

Lemma 1.3.10. (Multivariate de Bruijn’s identity) Let F be a d-dimensional random

vector with invertible covariance matrix C and let Z be Gaussian with covariance C as

well. Then,

D(F‖Z) =

∫ 1

0

tr(Jst(Ft))

2t
dt, (1.3.18)

where Ft :=
√
tF +

√
1− tZ is the centered random vector with covariance matrix C

and ’tr’ is the usual trace operator.
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If F and Z are random vectors that have both identity covariance matrix, a straight-

forward extension of [18, Lemma 1.21] to the multivariate setting yields that the stan-

dardised Fisher information decreases along convolutions. Precisely, for all 0 ≤ t ≤ 1,

tr(Jst(Ft)) ≤ t tr(Jst(F )) + (1− t)tr(Jst(Z)) = t tr(Jst(F )).

It follows that

D(F‖Z) ≤ 1

2
tr(Jst(F )). (1.3.19)

As a consequence, convergence in the sense of Fisher information to a standard Gaussian

random vector is stronger than convergence in the sense of relative entropy.

1.4 Summary of the four articles that constitute

this thesis

1.4.1 [a] Non-central limit theorems for quadratic function-
als of Hermite-driven long memory moving average pro-
cesses

Fractional Ornstein-Uhlenbeck process, fOU in short, is the unique strong solution

of the Langevin equation, driven by the fractional Brownian motion BH as a noise.

Namely,

dXt = −αXtdt+ σdBH
t , X0 = 0. (1.4.1)

Here σ > 0 is a constant, and α > 0 is the drift of the model.

The fOU process has received a lot of attention recently, especially because one can

use the powerful toolbox of Gaussian analysis to deal with it, see e.g., [16, 17, 20, 47].

But in some practical models, the Gaussian assumption may be implausible (cf. Taqqu

[40]). This is why we propose to add a new parameter, namely q ≥ 1, in (1.4.1):

dXt = −αXtdt+ σdZq,H
t , x0 = 0. (1.4.2)

In (1.4.2), Zq,H is a Hermite process of order q ≥ 1 and Hurst parameter H ∈ (1/2, 1).

Note that q = 1 in (1.4.2) corresponds to (1.4.1). The stochastic differential equation
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(1.4.2) has a unique strong solution that is the almost surely continuous process given

by

Xt = σ

∫ t

0

e−α(t−u)dZq,H
u , t ≥ 0. (1.4.3)

Here, the integral
∫ t

0
eαudZq,H

u must be understood in the Riemann-Stieljes sense (see

[22, Prop. 1]). Following [22], the stochastic process (1.4.3) is called (non-stationary)

Hermite Ornstein-Uhlenbeck process of order q.

More generally, we can consider a class of long memory moving average processes

driven by Hermite process of the form

X
(q,H)
t :=

∫ t

0

x(t− u)dZq,H(u), t ≥ 0, (1.4.4)

where x is a regular deterministic function. For x(u) = σe−αu with σ and α > 0, one

recovers the Hermite Ornstein-Uhlenbeck process (1.4.3). The purpose of the article [a]

is to study the asymptotic behavior, as T →∞, of the normalized quadratic functional

G
(q,H)
T (t) :=

1

T 2H0−1

∫ Tt

0

((
X(q,H)
s

)2 − E
[(
X(q,H)
s

)2
])
ds, (1.4.5)

where H0 given by (1.1.7), because of its potential to be then used for dealing with

statistical inference related to (1.4.2).

Theorem 1.1 in [a] proves a non-central limit theorem for G
(q,H)
T as T →∞. Roughly

speaking, it shows the convergence, in the sense of finite-dimensional distributions, to

the Rosenblatt process (up to a multiplicative constant), irrespective of the value of

q ≥ 2 and H ∈ (1
2
, 1).

Theorem 1.4.1. ([a, Theorem 1.1]) Let H ∈ (1
2
, 1) and let Z(q,H) be a Hermite process

of order q ≥ 2 and self-similarity parameter H. Consider the Hermite-driven moving

average process X(q,H) defined by (1.4.4), and assume that the kernel x is a real-valued

integrable function on [0,∞) satisfying, in addition,∫
R2
+

|x(u)||x(v)||u− v|2H−2dudv <∞. (1.4.6)

Then, as T → ∞, the family of stochastic processes G
(q,H)
T converges in the sense of

finite-dimensional distributions to b(H, q)RH′, where RH′ is the Rosenblatt process of

parameter H ′ = 1 + (2H − 2)/q, and b(H, q) is an explicit positive constant.
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For q = 1 (Gaussian case), X(1,H) is nothing but the fractional Volterra process,

which includes fOU process as a particular case. Theorem 1.2 in [a] shows that, for

all H ∈ (3
4
, 1), the family of stochastic processes G

(1,H)
T converges to the Rosenblatt

process in the sense of finite-dimensional distributions, up to a multiplicative constant.

The result complements a study initiated by Nourdin et al in [27] where a central limit

theorem was established for H ∈ (1
2
, 3

4
).

Theorem 1.4.2. ([a, Theorem 1.2]) Let H ∈ (3
4
, 1). Consider the fractional Volterra

process X(1,H) given by (1.4.4) with q = 1. If the function x defining X(1,H) is an

integrable function on [0,∞) and satisfies (1.4.6), then the family of stochastic processes

G
(1,H)
T converges in the sense of finite-dimensional distributions, as T → ∞, to the

Rosenblatt process RH′′ of parameter H ′′ = 2H − 1 multiplied by an explicit positive

constant b(1, H).

As a consequence of Theorem 1.4.1, it is worth pointing out that, irrespective of the

value of the self-similarity parameter H ∈ (1
2
, 1), the normalized quadratic functionals

of any non-Gaussian Hermite-driven long memory moving average processes (q ≥ 2)

always exhibits a convergence to a random variable belonging to the second Wiener

chaos. It is in contrast with what happens in the Gaussian case (q = 1), where either

central or non-central limit theorems may arise depending on the value of the self-

similarity parameter. This phenomenon is analogous to the one studied in the works

[9, 11, 12, 48].

Proof of Theorem 1.4.1 and 1.4.2 are done via the expansion of G
(q,H)
T into a sum

of components belonging to different Wiener chaoses. The asymptotic behavior of each

chaos component is then analyzed and it follows that the dominant term is the term

in the second Wiener chaos (i.e. other terms are negligible). The convergence of the

second chaos term is studied by means of the isometry property of multiple integrals,

and eventually leads to the convergence of G
(q,H)
T to the Rosenblatt process.

29



1.4.2 [b] Non-central limit theorem for quadratic variations of
non-Gaussian multiparameter Hermite random fields

Let Zq,H = (Zq,H
t )t∈[0,1]d be a d-parameter Hermite random field of order q ≥ 1 and

self-similarity parameter H = (H1, . . . , Hd) ∈ (1
2
, 1)d. The quadratic variation of Zq,H

is defined as

VN :=
1

N

N−1∑
i=0

[
N2H

(
∆Zq,H

[ i
N
, i+1

N
]

)2

− 1

]
, (1.4.7)

where ∆Zq,H
[s,t] is the increments of Zq,H given by (1.2.4). The bold notation is here

systematically used in presence of multi-indices (we refer to [b, Section 3.2] for precise

definitions). Quadratic variation is often the quantity of interest when we deal with the

estimation problem for the self-similarity parameter, see [9, 48].

When q = 1, Z1,H is either a fractional Brownian motion if d = 1 or a fractional

Brownian sheet if d ≥ 2. The behavior of the quadratic variation of fBm is well-known

since the eighties, and was analyzed in a series of seminal works by Breuer and Major [7],

Dobrushin and Major [13], Giraitis and Surgailis [14] or Taqqu [41]. In the case d ≥ 2,

the asymptotic behavior for the quadratic variation of fBs has been actually known

recently and we refer the readers to [31, 32] (see also [35]). In all these references,

central and non-central limit theorems may arise, depending on the value of the Hurst

parameter.

Note that in the case q ≥ 2 and d = 1, we deal with the quadratic variation of

a non-Gaussian Hermite process. Chronopoulou, Tudor and Viens [9] (see also [48])

showed the following behavior for the sequence VN :

N (2−2H)/qVN
L2(Ω)−−−→ cq,HR

H′

1 .

Here, RH′
1 is a Rosenblatt random variable with Hurst parameter H ′ = 1 + (2H − 2)/q

and cq,H is an explicit constant.

When q ≥ 2 and d ≥ 2, we have extended the result of [9] by studying quadratic

variations for the class of non-Gaussian Hermite sheets. Precisely, Theorem 1.1 in [b]

proves the following non-central limit theorem.
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Theorem 1.4.3. ([b, Theorem 1.1]) Fix q ≥ 2, d ≥ 1 and H ∈ (1
2
, 1)d. Let Zq,H be a

d-parameter Hermite random field of order q with self-similarity parameter H. Then

c−1
q,HN(2−2H)/qVN

L2(Ω)−−−→ RH′

1 ,

where RH′
1 is a d-parameter Rosenblatt sheet with Hurst parameter H′ = 1 + (2H−2)/q

evaluated at time 1, and cq,H is an explicit constant.

In this multiparameter setting, we observe the same phenomenon than in [a]. What-

ever the value of the self-similarity parameter, the normalized quadratic variation of

a non-Gaussian multiparameter Hermite random fields always converges to a random

variable belonging to the second Wiener chaos.

Our proof of Theorem 1.4.3 is based on the use of chaotic expansion of the quadratic

variation VN into multiple Wiener-Itô integrals, that is, we use a similar strategy than

in [a]. Among all these chaos terms, the dominant one is the term in the second Wiener

chaos. The convergence to Rosenblatt sheet evaluated at time 1 is then shown by

applying the isometry property of multiple Wiener-Itô integrals.

1.4.3 [c] Statistical inference for Vasicek-type model driven by
Hermite processes

Let us now review the recent contribution [c] about parameter estimation for

Vasicek-type model driven by Hermite processes. Fractional Vasicek process is the

unique almost surely continuous solution to the following SDE:

dXt = a(b−Xt)dt+ dBH
t , (1.4.8)

where BH is a fractional Brownian motion of index H ∈ (1
2
, 1), and a > 0, b ∈ R

are real parameters. The statistical inference for fractional Vasicek model has been

analyzed recently in [50]. This stochastic model, displaying self-similarity and long-

range dependence, has been used to describe phenomenons appearing in hydrology,

geophysics, telecommunication, economics or finance.

In [c], we propose a new extended model of (1.4.8), where fractional Brownian

motion is replaced by a Hermite process:

dXt = a(b−Xt)dt+ dZq,H
t , t ≥ 0, (1.4.9)

31



with initial condition X0 = 0. Here a > 0 and b ∈ R are unknown drift parameters,

and Zq,H is a Hermite process of order q ≥ 1 with known Hurst parameter H ∈ (1
2
, 1).

When q = 1 in (1.4.9), one recovers the fractional Vasicek model. When b = 0,

the solution to (1.4.9) is nothing but a Hermite Ornstein-Uhlenbeck process. These

various models have the potential to successfully model non-Gaussian data with long

range dependence and self-similarity.

Our main purpose in [c] is to construct an estimator for (a, b) in (1.4.9) based on

continuous-time observations of the sample paths of X. We prove the strong consistency

and we derive rates of convergence.

Our estimators for the drift parameters a and b in (1.4.9) are defined as follows:

âT =

(
αT

HΓ(2H)

)− 1
2H

, where αT = 1
T

∫ T
0
X2
t dt−

(
1
T

∫ T
0
Xtdt

)2

, (1.4.10)

b̂T =
1

T

∫ T

0

Xtdt.

Before describing our result, we state the following proposition which will be needed to

study the joint convergence of the estimators.

Proposition 1.4.4. ([c, Proposition 1.2]) Assume either (q = 1 and H > 3
4
) or q ≥ 2.

Fix T > 0, and let UT = (UT (t))t≥0 be the process defined as UT (t) =
∫ t

0
e−T (t−u)dZq,H

u .

Finally, let GT be the random variable defined as

GT = T
2
q

(1−H)+2H

∫ 1

0

(
UT (t)2 − E[UT (t)2])dt.

Then GT converges in L2(Ω) to a limit written G∞. Moreover, G∞/BH,q is distributed

according to the Rosenblatt distribution of parameter 1 − 2
q
(1 − H), where BH,q is an

explicit constant depending only on H and q.

We can now describe the asymptotic behavior of (âT , b̂T ) as T →∞.

Theorem 1.4.5. ([c, Theorem 1.3]) Let X = (Xt)t≥0 be given by (1.4.9), where Zq,H =

(Zq,H
t )t≥0 is a Hermite process of order q ≥ 1 and parameter H ∈ (1

2
, 1), and where a > 0

and b ∈ R are (unknown) real parameters. The following convergences take place as

T →∞.
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1. [Consistency] (âT , b̂T )
a.s.→ (a, b).

2. [Fluctuations] They depend on the values of q and H.

• (Case q = 1 and H < 3
4
)(√

T{âT − a}, T 1−H{b̂T − b}
)

law→
(
− a1+4HσH

2H2Γ(2H)
N,

1

a
N ′
)
,

(1.4.11)

where N,N ′ ∼ N (0, 1) are independent and σH is given by

σH =
2H − 1

HΓ(2H)2

√√√√∫
R

(∫
R2
+

e−(u+v)|u− v − x|2H−2dudv

)2

dx. (1.4.12)

• (Case q = 1 and H = 3
4
)(√

T

log T
{âT − a}, T

1
4

{
b̂T − b}

)
→
(

3

4

√
a

π
N,

N ′

a

)
, (1.4.13)

where N,N ′ ∼ N (0, 1) are independent.

• (Case q = 1 and H > 3
4
)(

T 2(1−H){âT − a}, T 1−H{b̂T − b}) law→
(
− a2H−1

2H2Γ(2H)

(
G∞ − (BH

1 )2
)
,
BH

1

a

)
,

(1.4.14)

where BH = Z1,H is the fractional Brownian motion and G∞ is defined in

Proposition 1.4.4.

• (Case q ≥ 2 and any H)

(
T

2
q

(1−H){âT − a}, T 1−H{b̂T − b}) law→

(
− a1− 2

q
(1−H)

2H2Γ(2H)
G∞,

Zq,H
1

a

)
,

(1.4.15)

where G∞ is defined in Proposition 1.4.4.

We see from Theorem 1.4.5 that the strong consistency of (âT , b̂T ) is universal for

any Vasicek type model driven by Hermite process as a noise, no matter that it is

Gaussian or not. Very differently, the fluctuations of our estimators around the true
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value of the drift parameters depend heavily on the order q and Hurst parameter H of

the underlying Hermite process. This gives us some hints to understand how much the

fractional model (1.4.8) relies on the Gaussian feature.

1.4.4 [d] Fisher information and multivariate Fourth Moment
Theorem

Fix an integer d ≥ 1. Let F = (F1, . . . , Fd) be a d-dimensional centered random

vector with invertible covariance matrix C. We assume that the law of F admits a

density f = fF with respect to the Lebesgue measure. Let Z = (Z1, . . . , Zd) be a

d-dimensional centered Gaussian vector which has the same covariance matrix C as

F and admits the density φ = φd(.;C). Without loss of generality, we may and will

assume that the vectors F and Z are stochastically independent.

In the first part of [d], we extend the relationship (1.3.19) for any covariance matrix

C of F . Precisely, the convergence in the sense of standardised Fisher information is

always stronger than the convergence in the sense of relative entropy.

Proposition 1.4.6. ([d, Ch. 5, Prop. 5.2.1]) Let the above notation. Then,

D(F‖Z) ≤ ‖C‖op ×
1

2
tr(C−1Jst(F )) = ‖C‖op ×

1

2

(
tr(J(F ))− tr(J(Z))

)
(1.4.16)

As a consequence,

‖f − φ‖2
L1(Rd) = 4(dTV (F,Z))2 ≤ 2D(F‖Z) ≤ ‖C‖optr(C−1Jst(F )). (1.4.17)

The study of normal approximations for sequences of multiple stochastic integrals

has received a lot of attention recently. In the main part of [d], we are interested in

estimating the discrepancy between the distributions of F and the Gaussian vector Z by

working with Lp- norms, total variation distance, relative entropy or Fisher information,

when F is a d-dimensional centered random vector whose components are multiple

stochastic integrals.

In [29], Nourdin, Peccati and Swan have obtained an upper bound for the total

variation distance between the distributions of the sequences of d-dimensional random

vector Fn and the standard Gaussian vector Zn, via an evaluation of the relative entropy
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involving Malliavin calculus. Precisely, suppose that Fn = (Iq1(f1,n), . . . , Iqd(fd,n)) is a

random vector with unit covariance matrix and qi ≥ 1,∀i = 1, . . . , d. Then,

2(dTV (Fn, Zn))2 ≤ D(Fn‖Zn) ≤ O(1)∆n| log ∆n|,

where ∆ = E[‖Fn‖4]−E[‖Zn‖4]. Here the constant depends on d, q1, . . . , qd and on the

sequence (Fn), but not n. The notation ‖.‖ denotes the Euclidian norm on Rd.

Furthermore, in the one-dimensional case, Nourdin and Nualart [25] exhibited a

sufficient condition, in terms of the negative moments of the norm of the Malliavin

derivative, under which convergence in Fisher information to the standard Gaussian of

sequences belonging to a given Wiener chaos is actually equivalent to convergence of

only the fourth moment. That is, if F = Iq(f), q ≥ 2 has unit variance, then under

assumption E[‖DF‖−4−ε] ≤ η for some ε > 0 and η ≥ 1 we have

J(F )− 1 ≤ cst(E[F 4]− 3).

Here the constant depends on q, ε and η but not on F . As a direct consequence of this

upper bound, together with the Fourth Moment Theorem (see [28, Theorem 5.2.7]), we

obtain the equivalence of various forms of convergence. More precisely, given a sequence

of random variables (Fn) of multiple stochastic integrals with unit variance, one has,

under the assumption that lim supn→∞E[‖DFn‖−4−ε] <∞ and with N ∼ N (0, 1):

Convergence of the fourth moments: E[F 4
n ]→ 3;

⇐⇒ Convergence in distribution: Fn
(d)−→ N ;

⇐⇒ Convergence in total variation distance: dTV (Fn, N)→ 0;

⇐⇒ Convergence in the sense of relative entropy: D(Fn‖N)→ 0;

⇐⇒ Convergence in the sense of Fisher information: J(Fn)→ 1;

⇐⇒ Uniform convergence of densities: ‖fFn −φ‖∞ → 0, where fFn and φ are densities

of Fn and N respectively.
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In the multi-dimensional case, that is when F = (Iq1(f1), . . . , Iqd(fd)), one can nat-

urally wonder whether under suitable sufficient conditions we could obtain an upper

bound on Fisher information and deduce from them a list of equivalences between

different forms of convergence.

Before stating our results, we recall that a random vector F = (F1, . . . , Fd) in D∞

is called non-degenerate if its Malliavin matrix γF = (〈DFi, DFj〉H)1≤i,j≤d is invertible

a.s. and (detγF )−1 ∈ ∩p≥1L
p(Ω).

Theorem 1.4.7. ([d, Ch. 5, Thm 5.2.3]) Let F = (F1, . . . , Fd) = (Iq1(f1), . . . , Iqd(fd))

be a non-degenerate random vector with 1 ≤ q1 ≤ . . . ≤ qd and fi ∈ H�qi. Let γF be

the Malliavin matrix of F . Denote by C := (E[FiFj])1≤i,j≤d the covariance matrix of F

and set Q := diag(q1, . . . , qd). Then, for any real number p > 12,

tr(C−1Jst(F )) ≤ cst(C,Q, d)‖(detγF )−1‖4
p

d∑
j=1

∥∥∥‖DFj‖2
H − qjcjj

∥∥∥
L2(Ω)

, (1.4.18)

where cst(C,Q, d) means a positive constant depending only on d, C and Q.

As a direct result of Theorem 1.4.7 and the Fourth Moment Theorem, we obtain the

following equivalence between different ways of converging to the normal distribution

for random vectors whose components are multiple stochastic integrals.

Corollary 1.4.8. ([d, Ch.5, Corrollary 5.2.4]) Let d ≥ 2 and let q1, . . . , qd ≥ 1 be some

fixed integers. Consider vectors

Fn = (F1,n, . . . , Fd,n) = (Iq1(f1,n), . . . , Iqd(fd,n)), n ≥ 1,

with fi,n ∈ H�qi. Let C = (cij)1≤i,j≤d be a symmetric non-negative definite matrix, and

let Z ∼ Nd(0, C). Assume that Fn is uniformly non-degenerate (in the sense that γFn

is invertible a.s. for all n and lim supn→∞ ‖(det γFn)−1‖Lp <∞ for all p > 12) and that

lim
n→∞

E[Fi,nFj,n] = cij, 1 ≤ i, j ≤ d.

Then, as n→∞, the following assertions are equivalent:

(a) Fn converges in law to Z;
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(b) For every 1 ≤ i ≤ d, Fi,n converges in law to N (0, cii);

(c) tr(J(Fn))→ tr(J(Z)), that is Fn converges to Z in the sense of Fisher information

distance;

(d) D(Fn‖Z)→ 0;

(e) dTV (Fn, Z)→ 0;

(f) ‖fFn − φ‖∞ → 0, where fFn and φ are densities of Fn and Z respectively, that is

the uniform convergence of densities.
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Abstract

Let (Zq,H
t )t≥0 denote a Hermite process of order q ≥ 1 and self-similarity parameter

H ∈ (1
2
, 1). Consider the Hermite-driven moving average process

Xq,H
t =

∫ t

0

x(t− u)dZq,H
u , t ≥ 0.

In the special case of x(u) = e−θu, θ > 0, X is the non-stationary Hermite Ornstein-

Uhlenbeck process of order q. Under suitable integrability conditions on the kernel x,

we prove that as T →∞, the normalized quadratic functional

Gq,H
T (t) =

1

T 2H0−1

∫ Tt

0

((
Xq,H
s

)2 − E
[(
Xq,H
s

)2
])
ds, t ≥ 0,
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where H0 = 1 + (H − 1)/q, converges in the sense of finite-dimensional distribution

to the Rosenblatt process of parameter H ′ = 1 + (2H − 2)/q, up to a multiplicative

constant, irrespective of self-similarity parameter whenever q ≥ 2. In the Gaussian case

(q = 1), our result complements the study started by Nourdin et al in [10], where either

central or non-central limit theorems may arise depending on the value of self-similarity

parameter. A crucial key in our analysis is an extension of the connection between the

classical multiple Wiener-Itô integral and the one with respect to a random spectral

measure (initiated by Taqqu (1979)), which may be independent of interest.

2.1 Motivation and main results

Let (Zq,H
t )t≥0 be a Hermite process of order q ≥ 1 and self-similarity parameter

H ∈ (1
2
, 1). It is a H-self-similar process with stationary increments, exhibits long-

range dependence and can be expressed as a multiple Wiener-Itô integral of order q

with respect to a two-sided standard Brownian motion (B(t))t∈R as follows:

Zq,H
t = c(H, q)

∫
Rq

(∫ t

0

q∏
j=1

(s− ξj)
H0− 3

2
+ ds

)
dB(ξ1) . . . dB(ξq), (2.1.1)

where

c(H, q) =

√
H(2H − 1)

q!βq(H0 − 1
2
, 2− 2H0)

and H0 = 1 +
H − 1

q
. (2.1.2)

Particular examples include the fractional Brownian motion (q = 1) and the Rosenblatt

process (q = 2). For q ≥ 2, it is no longer Gaussian. All Hermite processes share the

same basic properties with fractional Brownian motion such as self-similarity, stationary

increments, long-range dependence and even covariance structure. The Hermite process

has been pretty much studied in the last decade, due to its potential to be good model

for various phenomena.

A theory of stochastic integration with respect to Zq,H , as well as stochastic dif-

ferential equation driven by this process, have been considered recently. We refer to

[9, 12] for a recent account of the fractional Brownian motion and its large amount of

applications. We refer to [15, 16, 17] for different aspects of the Rosenblatt process.
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Furthermore, in the direction of stochastic calculus, the construction of Wiener inte-

grals with respect to Zq,H is studied in [6]. According to this latter reference, stochastic

integrals of the form ∫
R
f(u)dZq,H

u (2.1.3)

are well-defined for elements of H = {f : R→ R :
∫
R

∫
R f(u)f(v)|u−v|2H−2dudv <∞},

endowed with the norm

||f ||2H = H(2H − 1)

∫
R

∫
R
f(u)f(v)|u− v|2H−2dudv. (2.1.4)

Moreover, when f ∈ H, the stochastic integral (2.1.3) can be written as∫
R
f(u)dZq,H

u = c(H, q)

∫
Rq

(∫
R
f(u)

q∏
j=1

(u− ξj)
H0− 3

2
+ du

)
dB(ξ1) . . . dB(ξq) (2.1.5)

where c(H, q) and H0 are as in (2.1.2). Since the elements of H may be not functions

but distributions (see [12]), it is more practical to work with the following subspace of

H, which is a set of functions:

|H| =
{
f : R→ R :

∫
R

∫
R
|f(u)||f(v)||u− v|2H−2dudv <∞

}
.

Consider the stochastic integral equation

X(t) = ξ − λ
∫ t

0

X(s)ds+ σZq,H
t , t ≥ 0, (2.1.6)

where λ, σ > 0 and where the initial condition ξ can be any random variable. By [6,

Prop. 1], the unique continuous solution of (2.1.6) is given by

X(t) = e−λt
(
ξ + σ

∫ t

0

eλudZq,H
u

)
, t ≥ 0.

In particular, if for ξ we choose ξ = σ
∫ 0

−∞ e
λudZq,H(u), then

X(t) = σ

∫ t

−∞
e−λ(t−u)dZq,H

u , t ≥ 0. (2.1.7)

According to [6], the process X defined by (2.1.7) is referred to as the Hermite Ornstein-

Uhlenbeck process of order q. On the other hand, if the initial condition ξ is set to be

zero, then the unique continuous solution of (2.1.6) is this time given by

X(t) = σ

∫ t

0

e−λ(t−u)dZq,H
u , t ≥ 0. (2.1.8)
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In this paper, we call the stochastic process (2.1.8) the non-stationary Hermite Ornstein-

Uhlenbeck process of order q. It is a particular example of a wider class of moving

average processes driven by Hermite process, of the form

Xq,H
t :=

∫ t

0

x(t− u)dZq,H
u , t ≥ 0. (2.1.9)

In many situations of interests (see, e.g., [1, 18]), we may have to analyze the

asymptotic behavior of the quadratic functionals of X
(q,H)
t for statistical purposes. More

precisely, let us consider

Gq,H
T (t) :=

1

T 2H0−1

∫ Tt

0

((
Xq,H
s

)2 − E
[(
Xq,H
s

)2
])
ds. (2.1.10)

In this paper, we will show that Gq,H
T converges in the sense of finite-dimensional distri-

bution to the Rosenblatt process (up to a multiplicative constant), irrespective of the

value of q ≥ 2 and H ∈ (1
2
, 1). The case q = 1 is apart, see Theorem 2.1.2 below.

Theorem 2.1.1. Let H ∈ (1
2
, 1) and let Zq,H be a Hermite process of order q ≥ 2 and

self-similarity parameter H. Consider the Hermite-driven moving average process Xq,H

defined by (2.1.9), and assume that the kernel x is a real-valued integrable function on

[0,∞) satisfying, in addition,∫
R2
+

|x(u)||x(v)||u− v|2H−2dudv <∞. (2.1.11)

Then, as T → ∞, the family of stochastic processes Gq,H
T converges in the sense of

finite-dimensional distribution to b(H, q)RH′, where RH′ is the Rosenblatt process of

parameter H ′ = 1+(2H−2)/q (which is the second-order Hermite process of parameter

H ′), and the multiplicative constant b(H, q) is given by

b(H, q) =
H(2H − 1)√

(H0 − 1
2
)(4H0 − 3)

∫
R2
+

x(u)x(v)|u− v|(q−1)(2H0−2)dudv. (2.1.12)

(The fact that (2.1.12) is well-defined is part of the conclusion of the theorem.)

Theorem 2.1.1 only deals with q ≥ 2, because q = 1 is different. In this case, Z1,H

is nothing but the fractional Brownian motion of index H and X1,H is the fractional
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Volterra process, as considered by Nourdin, Nualart and Zintout in [10]. In this latter

reference, a Central Limit Theorem for G1,H
T has been established for H ∈ (1

2
, 3

4
). Here,

we rather study the situation where H ∈ (3
4
, 1) and, in contrast to [10], we show a

Non-Central Limit Theorem. More precisely, we have the following theorem.

Theorem 2.1.2. Let H ∈ (3
4
, 1). Consider the fractional Volterra process X1,H given

by (2.1.9) with q = 1. If the function x defining X1,H is an integrable function on

[0,∞) and satisfies (2.1.11), then the family of stochastic processes G1,H
T converges in

the sense of finite-dimensional distribution, as T → ∞, to the Rosenblatt process RH′′

of parameter H ′′ = 2H − 1 multiplied by b(1, H) as above.

It is worth pointing out that, irrespective of the self-similarity parameter H ∈ (1
2
, 1),

the normalized quadratic functionals of any non-Gaussian Hermite-driven long memory

moving average processes (q ≥ 2) exhibits a convergence to a random variable belonging

to the second Wiener chaos. It is in strong contrast with what happens in the Gaussian

case (q = 1), where either central or non-central limit theorems may arise depending

on the value of the self-similarity parameter.

We note that our Theorem 2.1.2 is pretty close to Taqqu’s seminal result [13], but

cannot be obtained as a consequence of it. In contrast, the statement of Theorem

2.1.1 is completely new, and provides new hints on the importance and relevance of the

Rosenblatt process in statistics.

Our proofs of Theorems 2.1.1 and 2.1.2 are based on the use of chaotic expansions

into multiple Wiener-Itô integrals and the key transformation lemma from the classical

multiple Wiener-Itô integrals into the one with respect to a random spectral measure

(following a strategy initiated by Taqqu in [14]). Let us sketch them. Since the random

variable Xq,H
t is an element of the q-th Wiener chaos, we can firstly rely on the product

formula for multiple integrals to obtain that the quadratic functional Gq,H
T (t) can be

decomposed into a sum of multiple integrals of even orders from 2 to 2q. Secondly,

we prove that the projection onto the second Wiener chaos converges in L2(Ω) to the

Rosenblatt process: we do this by using its spectral representation of multiple Wiener-

Itô integrals and by checking the L2(R2) convergence of its kernel. Finally, we prove

that all the remaining terms in the chaos expansion are asymptotically negligible.
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Our findings and the strategy we have followed to obtain them owe a lot and were

influenced by several seminal papers on Non-Central Limit Theorems for functionals

of Gaussian (or related) processes, including Dobrushin and Major [5], Taqqu [14] and

most recently, Clausel et al [2, 3] and Neufcourt and Viens [8].

Our paper is organised as follows. Section 2 contains preliminary key lemmas. The

proofs of our two main results, namely Theorems 2.1.1 and 2.1.2, are then provided in

Section 3 and Section 4.

2.2 Preliminaries

Here, we mainly follow Taqqu [14]. We describe a useful connection between mul-

tiple Wiener-Itô integrals with respect to random spectral measure and the classical

stochastic Itô integrals. Stochastic representations of the Rosenblatt process are then

provided at the end of the section.

2.2.1 Multiple Wiener-Itô integrals with respect to Brownian
motion

Let f ∈ L2(Rq) and let us denote by IBq (f) the qth multiple Wiener-Itô integral of

f with respect to the standard two-sided Brownian motion (Bt)t∈R, in symbols

IBq (f) =

∫
Rq
f(ξ1, . . . , ξq)dB(ξ1) . . . dB(ξq).

When f is symmetric, we can see IBq (f) as the following iterated adapted Itô stochastic

integral:

IBq (f) = q!

∫ ∞
−∞

dB(ξ1)

∫ ξ1

−∞
dB(ξ2) . . .

∫ ξq−1

−∞
dB(ξq)f(ξ1, . . . , ξq).

Moreover, when f is not necessarily symmetric one has IBq (f) = IBq (f̃), where f̃ is the

symmetrization of f defined by

f̃(ξ1, . . . , ξq) =
1

q!

∑
σ∈Sq

f(ξσ(1), . . . , ξσ(q)). (2.2.1)

The set of random variables of the form IBq (f), f ∈ L2(Rq), is called the qth Wiener

chaos of B. We refer to Nualart’s book [12] (chapter 1 therein) or Nourdin and Peccati’s
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books [9, 11] for a detailed exposition of the construction and properties of multiple

Wiener-Itô integrals. Here, let us only recall the product formula between two multiple

integrals: if f ∈ L2(Rp) and g ∈ L2(Rq) are two symmetric functions then

IBp (f)IBq (g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
IBp+q−2r(f⊗̃rg), (2.2.2)

where the contraction f ⊗r g, which belongs to L2(Rp+q−2r) for every r = 0, 1, . . . , p∧ q,
is given by

f ⊗r g(y1, . . . , yp−r, z1, . . . , zq−r)

=

∫
Rr
f(y1, . . . , yp−r, ξ1, . . . , ξr)g(z1, . . . , zq−r, ξ1, . . . , ξr)dξ1 . . . dξr (2.2.3)

and where a tilde denotes the symmetrization, see (2.2.1). Observe that

‖f⊗̃rg‖L2(Rp+q−2r) ≤ ‖f ⊗r g‖L2(Rp+q−2r) ≤ ‖f‖L2(Rp)‖g‖L2(Rq), r = 0, . . . , p∧ q (2.2.4)

by Cauchy-Schwarz inequality, and that f ⊗p g = 〈f, g〉L2(Rp) when p = q. Furthermore,

we have the orthogonality property

E[IBp (f)IBq (g)] =

{
p!
〈
f̃ , g̃
〉
L2(Rp)

if p = q

0 if p 6= q.

2.2.2 Multiple Wiener-Itô integrals with respect to a random
spectral measure

Let W be a Gaussian complex-valued random spectral measure that satisfies

E[W (A)] = 0, E[W (A)W (B)] = µ(A ∩ B),W (A) = W (−A) and W (
⋃n
j=1 Aj) =∑n

j=1 W (Aj) for all disjoint Borel sets that have finite Lebesgue measure (denoted here

by µ). The Gaussian random variables ReW (A) and ImW (A) are then independent

with expectation zero and variance µ(A)/2. We now recall briefly the construction of

multiple Wiener-Itô integrals with respect to W , as defined in Major [7] or Section 4

of Dobrushin [4]. To define such stochastic integrals let us introduce the real Hilbert

space Hm of complex-valued symmetric functions f(λ1, . . . , λm), λj ∈ R, j = 1, 2, . . . ,m,

which are even, i.e. f(λ1, . . . , λm) = f(−λ1, . . . ,−λm), and square integrable, that is,

‖f‖2 =

∫
Rm
|f(λ1, . . . , λm)|2dλ1 . . . dλm <∞.
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The scalar product is similarly defined: namely, if f, g ∈ Hm, then

〈f, g〉Hm =

∫
f(λ1, . . . , λm)g(λ1, . . . , λm)dλ1 . . . dλm.

The integrals IWm are then defined through an isometric mapping from Hm to L2(Ω):

f 7−→ IWm (f) =

∫
R
f(λ1, . . . , λm)W (dλ1) . . .W (dλm),

Following e.g. the lecture notes of Major [?], if f ∈ Hm and g ∈ Hn, then E[IWm (f)] = 0

and

E[IWm (f)IWn (g)] =

{
m! 〈f, g〉Hm if m = n

0 if m 6= n.
(2.2.5)

2.2.3 Preliminary lemmas

We recall a connection between the classical Wiener-Itô integral IB and the one

with respect to a random spectral measure IW that will play an important role in our

analysis.

Lemma 2.2.1. [14, Lemma 6.1] Let A(ξ1, . . . , ξm) be a real-valued symmetric function

in L2(Rm) and let

FA(λ1, . . . , λm) =
1

(2π)m/2

∫
Rm

ei
∑m
j=1 ξjλjA(ξ1, . . . , ξm)dξ1 . . . dξm (2.2.6)

be its Fourier transform. Then∫
Rm

A(ξ1, . . . , ξm)dB(ξ1) . . . dB(ξm)
(d)
=

∫
Rm
FA(λ1, . . . , λm)W (dλ1) . . .W (dλm).

Applying Lemma 2.2.1, we deduce the following lemma which is an extended result

of Lemma 6.2 in [14].

Lemma 2.2.2. Let

A(ξ1, . . . , ξm+n) =

∫
R2

φ(z1, z2)
m∏
j=1

(z1 − ξj)
H0− 3

2
+

m+n∏
k=m+1

(z2 − ξk)
H0− 3

2
+ dz1dz2

where 1
2
< H0 < 1 and where φ is an integrable function on R2 whose Fourier transform

is given by (2.2.6). Let

Ã(ξ1, . . . , ξm+n) =
1

(m+ n)!

∑
σ∈Sm+n

A(ξσ(1), . . . , ξσ(m+n))
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be the symmetrization of A. Assume that∫
Rm+n

|Ã(ξ1, . . . , ξm+n)|2dξ1 . . . dξm+n <∞.

Then,∫
Rm+n

Ã(ξ1, . . . , ξm+n)dB(ξ1) . . . dB(ξm+n)

(d)
=

(
Γ(H0 − 1

2
)

√
2π

)m+n ∫
Rm+n

W (dλ1) . . .W (dλm+n)
m+n∏
j=1

|λj|
1
2
−H0

× 1

(m+ n)!

∑
σ∈Sm+n

2πFφ(λσ(1) + . . .+ λσ(m), λσ(m+1) + . . .+ λσ(m+n)).

Proof. Thanks to Lemma 2.2.1, we first estimate the Fourier transform of

A(ξ1, . . . , ξm+n). Because the function u
H0− 3

2
+ belongs neither to L1(R) nor to L2(R), by

similar arguments as in the proof of [14, Lemma 6.2] let us introduce

AT (ξ1, . . . , ξm+n) =

{
A(ξ1, . . . ξm+n) if |ξj| < T ∀j = 1, . . . ,m+ n.

0 otherwise.

Set

Bλ(a, b) =
1√
2π

∫ b

a

e−iuλuH0− 3
2du

for 0 ≤ a ≤ b <∞, and Bλ(a,∞) = limb→∞Bλ(a, b). By [14, page 80], we get

sup
0≤a≤b

|Bλ(a, b)| ≤
1√
2π

(
1

H0 − 1
2

+
2

|λ|

)
.

Now,

FAT (λ1, . . . , λm+n) =
1

(
√

2π)m+n

∫
Rm+n

dξ1 . . . dξm+ne
i
∑m+n
j=1 λjξj

∫
R2

dz1dz2φ(z1, z2)

×
m∏
j=1

(z1 − ξj)
H0− 3

2
+

m+n∏
j=m+1

(z2 − ξj)
H0− 3

2
+ 1{|ξj |<T,∀j=1,...,m+n}.

The change of variables ξj = z1 − uj for j = 1, . . . ,m and ξj = z2 − uj for j =

m+ 1, . . . ,m+ n yields

FAT (λ1, . . . , λm+n)

=
1

(
√

2π)m+n

∫
Rm+n

du1 . . . dum+ne
−i

∑m+n
j=1 λjuj

∫
R2

dz1dz2φ(z1, z2)ei
∑m
j=1 λjz1ei

∑m+n
j=m+1 λjz2

×
m∏
j=1

u
H0− 3

2
j 1{uj>0}1{z1−T<uj<z1+T}

m+n∏
j=m+1

u
H0− 3

2
j 1{uj>0}1{z2−T<uj<z2+T}.
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Suppose that λ1, . . . , λm+n are different from zero. Since φ is integrable on R2 then

|FAT (λ1, . . . , λm+n)|

≤
∫
R2

dz1dz2|φ(z1, z2)|
m∏
j=1

Bλj(max(0, z1 − T ),max(0, z1 + T ))

×
m+n∏
j=m+1

Bλj(max(0, z2 − T ),max(0, z2 + T ))

≤
∫
R2

dz1dz2|φ(z1, z2)|
m+n∏
j=1

1√
2π

(
1

H0 − 1
2

+
2

|λj|

)
,

which is finite and uniformly bounded with respect to T . Thus,

FA(λ1, . . . , λm+n) = lim
T→∞

FAT (λ1, . . . , λm+n)

= 2πFφ(λ1 + . . .+ λm, λm+1 + . . .+ λm+n)
m+n∏
j=1

(
1√
2π

∫ ∞
0

e−iuλjuH0− 3
2du

)
.

The integral inside the product is an improper Riemann integral. After the change of

variables v = u|λj|, we get

FA(λ1, . . . , λm+n)

= 2πFφ(λ1 + . . .+ λm, λm+1 + . . .+ λm+n)

×
m+n∏
j=1

(
|λj|

1
2
−H0

1√
2π

∫ ∞
0

e−iusignλjuH0− 3
2du

)
= 2πFφ(λ1 + . . .+ λm, λm+1 + . . .+ λm+n)

×
m+n∏
j=1

(
|λj|

1
2
−H0

1√
2π

Γ(H0 −
1

2
)C(λj)

)
,

where C(λ) = e−i
π
2

(H0− 1
2

) for λ > 0, C(−λ) = C(λ) and thus |C(λ)| = 1 for all λ 6=
0, see appendix for the detailed computations. Applying Lemma 2.2.1 by noticing

that C(λj)W (dλj)
(d)
= W (dλj) (see [4, Proposition 4.2]) and symmetrizing the Fourier

transform of A(λ1, . . . , λm+n) lead to the desired conclusion.
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2.2.4 Stochastic representations of the Rosenblatt process

Let (RH(t))t≥0 be the Rosenblatt process of parameter H ∈ (1
2
, 1). The time repre-

sentation of RH is

RH(t) = a1(D)

∫
R2

(∫ t

0

(s− ξ1)
D− 3

2
+ (s− ξ2)

D− 3
2

+ ds

)
dB(ξ1)dB(ξ2)

= A1(H)

∫
R2

(∫ t

0

(s− ξ1)
H
2
−1

+ (s− ξ2)
H
2
−1

+ ds

)
dB(ξ1)dB(ξ2),

where D = H+1
2

and

a1(D) :=

√
(D − 1/2)(4D − 3)

β(D − 1/2, 2− 2D)
=

√
(H/2)(2H − 1)

β(H/2, 1−H)
=: A1(H).

Observe also that 1/2 < H < 1 ⇐⇒ 3/4 < D < 1. The corresponding spectral

representation of this process, see for instance [14, 15] or apply Lemma 2.2.2, is given

by

RH(t) = a2(D)

∫
R2

|λ1|
1
2
−D|λ2|

1
2
−D e

i(λ1+λ2)t − 1

i(λ1 + λ2)
W (dλ1)W (dλ2)

= A2(H)

∫
R2

|λ1|−
H
2 |λ2|−

H
2
ei(λ1+λ2)t − 1

i(λ1 + λ2)
W (dλ1)W (dλ2),

where

a2(D) :=

√
(2D − 1)(4D − 3)

2[2Γ(2− 2D) sin(π(D − 1/2))]2
=

√
H(2H − 1)

2[2Γ(1−H) sin(Hπ/2)]2
=: A2(H).

2.3 Proof of Theorem 2.1.1

We are now in a position to give the proof of our Theorem 2.1.1. It is devided into

four steps.

2.3.1 Chaotic decomposition

Using (2.1.5), we can write X(q,H) as a q-th Wiener-Itô integral with respect to the

standard two-sided Brownian motion (Bt)t∈R as follows:

X
(q,H)
t =

∫
Rq
L(x, t)(ξ1, . . . , ξq)dB(ξ1) . . . dB(ξq) = IBq (L(x, t)), (2.3.1)
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where

L(x, t)(ξ1, . . . , ξq) := c(H, q)

∫
R

1[0,t](z)x(t− z)

q∏
j=1

(z − ξj)
H0− 3

2
+ dz, (2.3.2)

with c(H, q) and H0 given by (2.1.2). Applying the product formula (2.2.2) for multiple

Wiener-Itô integrals, we easily obtain that

(X
(q,H)
t )2 − E[(X

(q,H)
t )2] =

q−1∑
r=0

r!

(
q

r

)2

IB2q−2r(L(x, t)⊗̃rL(x, t)). (2.3.3)

Let us compute the contractions appearing in the right-hand side of (2.3.3). For every

0 ≤ r ≤ q − 1, by using Fubini’s theorem we first have

L(x,s)⊗r L(x, s)(ξ1, . . . , ξ2q−2r)

=

∫
Rr
dy1 . . . dyrL(x, s)(ξ1, . . . , ξq−r, y1, . . . , yr)L(x, s)(ξq−r+1, . . . , ξ2q−2r, y1, . . . , yr)

= c(H, q)2

∫
Rr
dy1 . . . dyr

∫ s

0

dz1x(s− z1)

q−r∏
j=1

(z1 − ξj)
H0− 3

2
+

r∏
i=1

(z1 − yi)
H0− 3

2
+

×
∫ s

0

dz2x(s− z2)

2q−2r∏
j=q−r+1

(z2 − ξj)
H0− 3

2
+

r∏
i=1

(z2 − yi)
H0− 3

2
+

= c(H, q)2

∫
[0,s]2

dz1dz2x(s− z1)x(s− z2)

q−r∏
j=1

(z1 − ξj)
H0− 3

2
+

2q−2r∏
j=q−r+1

(z2 − ξj)
H0− 3

2
+

×
(∫

R
dy(z1 − y)

H0− 3
2

+ (z2 − y)
H0− 3

2
+

)r
,

and, since for any z1, z2 ≥ 0∫
R
(z1 − y)

H0− 3
2

+ (z2 − y)
H0− 3

2
+ dy = β

(
H0 −

1

2
, 2− 2H0

)
|z1 − z2|2H0−2, (2.3.4)

we end up with the following expression

L(x, s)⊗r L(x, s)(ξ1, . . . , ξ2q−2r)

= c(H, q)2β
(
H0 −

1

2
, 2− 2H0

)r ∫
[0,s]2

dz1dz2x(s− z1)x(s− z2)|z1 − z2|(2H0−2)r

×
q−r∏
j=1

(z1 − ξj)
H0− 3

2
+

2q−2r∏
j=q−r+1

(z2 − ξj)
H0− 3

2
+ . (2.3.5)

55



Recall G
(q,H)
T from (2.1.10). As a consequence, we can write

G
(q,H)
T (t) = F2q,T (t) + c2q−2F2q−2,T (t) + . . .+ c4F4,T (t) + c2F2,T (t) (2.3.6)

where c2q−2r := r!
(
q
r

)2
and for 0 ≤ r ≤ q − 1,

F2q−2r,T (t) :=
1

T 2H0−1

∫ Tt

0

IB2q−2r(L(x, s)⊗̃rL(x, s))ds, (2.3.7)

where the kernels in each Wiener integral above are given explicitly in (2.3.5).

2.3.2 Spectral representations

Recall the expression of the contractions L(x, s) ⊗r L(x, s), 0 ≤ r ≤ q − 1 given in

(2.3.5). Set

φr(s, z1, z2) :=c(H, q)2β
(
H0 −

1

2
, 2− 2H0

)r
× 1[0,s](z1)1[0,s](z2)x(s− z1)x(s− z2)|z1 − z2|(2H0−2)r.

It is a symmetric function with respect to z1 and z2. Furthermore, by Hölder’s inequal-

ity, we have∫
R2

∣∣∣1[0,s](z1)1[0,s](z2)x(s− z1)x(s− z2)|z1 − z2|(2H0−2)r
∣∣∣dz1dz2

≤
∫

[0,s]2
|x(s− z1)||x(s− z2)||z1 − z2|(2H0−2)rdz1dz2

=

∫
[0,s]2
|x(z1)||x(z2)||z1 − z2|r

(2H−2)
q dz1dz2

≤
(∫

[0,∞)2
|x(z1)||x(z2)||z1 − z2|2H−2dz1dz2

) r
q
(∫ ∞

0

|x(z)|dz
)2(1− r

q
)

.

Using the integrability of x together with the assumption (2.1.11), it turns out that

φr(., z1, z2) is integrable on R2
+. Applying Lemma 2.2.2 with m = n = q − r, we get

F2q−2r,T (t) =
1

T 2H0−1

∫ Tt

0

IB2q−2r(L(x, s)⊗̃rL(x, s))ds

(d)
= Ar(H, q)

1

T 2H0−1

∫
R2q−2r

W (dλ1) . . .W (dλ2q−2r)

2q−2r∏
j=1

|λj|
1
2
−H0

× 1

(2q − 2r)!

∑
σ∈S2q−2r

∫ Tt

0

ds

∫
[0,s]2

dξ1dξ2x(s− ξ1)x(s− ξ2)|ξ1 − ξ2|(2H0−2)r

× ei(λσ(1)+...+λσ(q−r))ξ1ei(λσ(q−r+1)+...+λσ(2q−2r))ξ2 ,
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where

Ar(H, q) := c(H, q)2β(H0 −
1

2
, 2− 2H0)r

(
Γ(H0 − 1

2
)

√
2π

)2q−2r

. (2.3.8)

The change of variable s = Ts′ yields

F2q−2r,T (t)
(d)
= Ar(H, q)T

2−2H0

∫
R2q−2r

W (dλ1) . . .W (dλ2q−2r)

2q−2r∏
j=1

|λj|
1
2
−H0

× 1

(2q − 2r)!

∑
σ∈S2q−2r

∫ t

0

ds

∫
[0,T s]2

dξ1dξ2x(Ts− ξ1)x(Ts− ξ2)|ξ1 − ξ2|(2H0−2)r

× ei(λσ(1)+...+λσ(q−r))ξ1ei(λσ(q−r+1)+...+λσ(2q−2r))ξ2 .

Let us do a further change of variables: λ′σ(j) = Tλσ(j), j = 1, . . . , 2q − 2r and ξ′k =

Ts− ξk, k = 1, 2. Thanks to the self-similarity of W with index 1/2 (that is, W (T−1dλ)

has the same law as T−1/2W (dλ)) we finally obtain that

F2q−2r,T (t)
(d)
= Ar(H, q)T

−(2−2H0)(q−1−r)

×
∫
R2q−2r

W (dλ1) . . .W (dλ2q−2r)

2q−2r∏
j=1

|λj|
1
2
−H0

∫ t

0

dsei(λ1+...+λ2q−2r)s

× 1

(2q − 2r)!

∑
σ∈S2q−2r

∫
[0,T s]2

dξ1dξ2x(ξ1)x(ξ2)|ξ1 − ξ2|(2H0−2)r

× e−i(λσ(1)+...+λσ(q−r))
ξ1
T e−i(λσ(q−r+1)+...+λσ(2q−2r))

ξ2
T .
(2.3.9)

2.3.3 Reduction lemma

Lemma 2.3.1. Fix t, fix H ∈ (1
2
, 1) and fix q ≥ 2. Assume (2.1.11) and the integrability

of the kernel x. Then for any r ∈ {0, . . . , q − 2}, one has

lim
T→∞

E[F2q−2r,T (t)2] = 0.

Proof. Without loss of generality, we may and will assume that t = 1. From the spectral

representation of multiple Wiener-Itô integrals (2.3.9), one has
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E[F2q−2r,T (1)2]

= T−2(2−2H0)(q−1−r)A2
r(H, q)(2q − 2r)!

∫
R2q−2r

dλ1 . . . dλ2q−2r

2q−2r∏
j=1

|λj|1−2H0

×
(

1

(2q − 2r)!

∑
σ∈S2q−2r

∫ 1

0

dsei(λ1+...+λ2q−2r)s

∫
[0,T s]2

dξ1dξ2x(ξ1)x(ξ2)|ξ1 − ξ2|(2H0−2)r

× e−i(λσ(1)+...+λσ(q−r))
ξ1
T e−i(λσ(q−r+1)+...+λσ(2q−2r))

ξ2
T

)2

.

Since x is a real-valued integrable function on [0,∞) satisfying assumption (2.1.11), we

deduce from Lebesgue dominated convergence that, as T →∞,

1

(2q − 2r)!

∑
σ∈S2q−2r

∫ 1

0

dsei(λ1+...+λ2q−2r)s

∫
[0,T s]2

dξ1dξ2x(ξ1)x(ξ2)|ξ1 − ξ2|(2H0−2)r

× e−i(λσ(1)+...+λσ(q−r))
ξ1
T e−i(λσ(q−r+1)+...+λσ(2q−2r))

ξ2
T

−→
∫

[0,∞)2
x(u)x(v)|u− v|(2H0−2)rdudv

∫ 1

0

ei(λ1+...+λ2q−2r)sds.

Since 1 − 1
2q
< H0 < 1 and 0 ≤ r ≤ q − 2, we have T−2(2−2H0)(q−1−r) → 0 as T → ∞.

Moreover, since
∫ 1

0
ei(λ1+...+λ2q−2r)ξdξ = ei(λ1+...+λ2q−2r)−1

i(λ1+...+λ2q−2r)
,∫

R2q−2r

dλ1 . . . dλ2q−2r

2q−2r∏
j=1

|λj|1−2H0

∣∣∣∣ ei(λ1+...+λ2q−2r) − 1

i(λ1 + . . .+ λ2q−2r)

∣∣∣∣2 ≤ (∫
R
|λ|1−2H0dλ

)2q−2r

which is integrable at zero, and∫
R2q−2r

dλ1 . . . dλ2q−2r

2q−2r∏
j=1

|λj|1−2H0

∣∣∣∣ ei(λ1+...+λ2q−2r) − 1

i(λ1 + . . .+ λ2q−2r)

∣∣∣∣2

≤
∫
R2q−2r

dλ1 . . . dλ2q−2r

2q−2r∏
j=1

|λj|1−2H0
4

(λ1 + . . .+ λ2q−2r)2

which is integrable at infinity, we have∫
R2q−2r

dλ1 . . . dλ2q−2r

2q−2r∏
j=1

|λj|1−2H0

∣∣∣∣ ei(λ1+...+λ2q−2r) − 1

i(λ1 + . . .+ λ2q−2r)

∣∣∣∣2 <∞.
All these facts taken together imply

E[F2q−2r,T (1)2] −→ 0, as T →∞, for all 0 ≤ r ≤ q − 2, (2.3.10)

which proves the lemma.
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2.3.4 Concluding the proof of Theorem 2.1.1

Thanks to Lemma 2.3.1, we are left to concentrate on the convergence of the term

F2,T (belonging to the second Wiener chaos) corresponding to r = q − 1. Recall from

(2.3.9) that F2,T (t) has the same law as the double Wiener integral with symmetric

kernel given by

fT (t, λ1,λ2) := Aq−1(H, q)|λ1|
1
2
−H0|λ2|

1
2
−H0

∫ t

0

dsei(λ1+λ2)s

×
∫

[0,T s]2
dξ1dξ2e

−i(λ1 ξ1T +λ2
ξ2
T

)x(ξ1)x(ξ2)|ξ1 − ξ2|(q−1)(2H0−2). (2.3.11)

Observe that fT (t, .) is symmetric, so there is no need to care about symmetrization.

By the isometry property of multiple Wiener-Itô integrals with respect to the random

spectral measure, in order to prove the L2(Ω)-convergence of c2F2,T to bRH′ , we can

equivalently prove that c2fT (t, .) converges in L2(R2) to the kernel of bRH′(t) . First,

by Lebesgue dominated convergence, as T →∞, we have

fT (t, λ1, λ2) −→ Aq−1(H, q)

∫
R2

x(u)x(v)|u− v|(q−1)(2H0−2)dudv

× |λ1|
1
2
−H0|λ2|

1
2
−H0

ei(λ1+λ2)t − 1

i(λ1 + λ2)
.

This shows that fT (t, .) converges pointwise to the kernel of RH′(t), up to some constant.

Moreover, for all 0 < S < T ,

‖fT (t, .)− fS(t, .)‖2
L2(R2)

= A2
q−1(H, q)

∫
R2

dλ1dλ2|λ1|1−2H0|λ2|1−2H0

×
(∫ t

0

dsei(λ1+λ2)s

∫
[0,T s]2\[0,Ss]2

dξ1dξ2e
−i(λ1 ξ1T +λ2

ξ2
T

)x(ξ1)x(ξ2)|ξ1 − ξ2|(q−1)(2H0−2)

)2

.

By Lebesgue dominated convergence, it comes that ‖fT (t, .) − fS(t, .)‖2
L2(R2) −→ 0 as

T, S →∞. It follows that (fT (t, .))T≥0 is a Cauchy sequence in L2(R2). Hence, the mul-

tiple Wiener integral c2F2,T (with kernel (2.3.11)) converges in L2(Ω) to b(H, q)× RH′

with the explicit constant b(H, q) as in (2.1.12). (Note that c2 = q!). The finite-

dimensional convergence then follows from (2.3.9). The proof of Theorem 2.1.1 is

achieved.
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2.4 Proof of Theorem 2.1.2

We follow the same route as for the proof of Theorem 2.1.1, with some slight modifi-

cations. Here, the chaos decomposition ofG1,H
T contains uniquely the term F2,T obtained

for q = 1 and r = 0. Its spectral representation is as follows:

F2,T (t) =
H(2H − 1)

β(H − 1
2
, 2− 2H)

Γ2(H − 1
2
)

2π

∫
R2

W (dλ1)W (dλ2)|λ1|
1
2
−H |λ2|

1
2
−H

×
∫ t

0

dsei(λ1+λ2)s

∫
[0,T s]2

dξ1dξ2e
−i(λ1 ξ1T +λ2

ξ2
T

)x(ξ1)x(ξ2).

It is easily seen that that F2,T is well-defined if and only if 3/4 < H < 1. The same

arguments as in the proof of Theorem 2.1.1 yield

G1,H
T (t) = F2,T (t) −→ H(2H − 1)√

(H − 1/2)(4H − 3)

(∫ ∞
0

x(u)du

)2

×RH′′(t) (2.4.1)

in L2(Ω) as T →∞, thus completing the proof of the theorem.
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Appendix

The following identity has been used at the end of the proof of Lemma 2.2.2 and

also appeared in the proof of [14, Lemma 6.2].
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For all H0 ∈ (1/2, 1), we have

I :=

∫ ∞
0

e−iuuH0− 3
2du = e−i

π
2

(H0− 1
2

)Γ(H0 −
1

2
).

Proof. First, observe that

uH0− 3
2 =

1

Γ(3
2
−H0)

∫ ∞
0

e−tut
1
2
−H0dt.

Then, Fubini’s theorem yields

I =
1

Γ(3
2
−H0)

∫ ∞
0

due−iu
∫ ∞

0

dte−tut
1
2
−H0

=
1

Γ(3
2
−H0)

∫ ∞
0

dt t
1
2
−H0

∫ ∞
0

due−u(t+i)

=
1

Γ(3
2
−H0)

∫ ∞
0

t
1
2
−H0

1

t+ i
dt =

1

Γ(3
2
−H0)

∫ ∞
0

t
1
2
−H0(t− i)
t2 + 1

dt

=
1

Γ(3
2
−H0)

(∫ ∞
0

t
3
2
−H0

t2 + 1
dt− i

∫ ∞
0

t
1
2
−H0

t2 + 1
dt

)
.

A change of variables t =
√
u and v = u

u+1
leads to∫ ∞

0

t
3
2
−H0

t2 + 1
dt =

1

2

∫ ∞
0

u
1−2H0

4

u+ 1
du =

1

2

∫ 1

0

v
1−2H0

4 (1− v)
2H0−5

4

=
1

2
β
(5− 2H0

4
,
2H0 − 1

4

)
=

1

2

Γ(5−2H0

4
)Γ(2H0−1

4
)

Γ(1)
.

Similarly, one also has,∫ ∞
0

t
1
2
−H0

t2 + 1
dt =

1

2
β
(3− 2H0

4
,
2H0 + 1

4

)
=

1

2

Γ(3−2H0

4
)Γ(2H0+1

4
)

Γ(1)
.

Furthermore, by using the identity Γ(1− z)Γ(z) = π
sin(πz)

, 0 < z < 1, we obtain

I =
1

2Γ(3
2
−H0)

(
π

sin(2H0−1
4

π)
− i π

sin(3−2H0

4
π)

)
=

1

2Γ(3
2
−H0)

(
π

sin(2H0−1
4

π)
− i π

cos(2H0−1
4

π)

)
=

π

Γ(3
2
−H0)

e−i
π
2

(H0− 1
2

)

2 sin(2H0−1
4

π) cos(2H0−1
4

π)

=
e−i

π
2

(H0− 1
2

)π

Γ(3
2
−H0) sin(2H0−1

2
π)

= e−i
π
2

(H0− 1
2

)Γ(H0 −
1

2
).
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Abstract

Let (Zq,H
t )t∈[0,1]d denote a d-parameter Hermite random field of order q ≥ 1 and self-

similarity parameter H = (H1, . . . , Hd) ∈ (1
2
, 1)d. This process is H-self-similar, has

stationary increments and exhibits long-range dependence. Particular examples include

fractional Brownian motion (q = 1, d = 1), fractional Brownian sheet (q = 1, d ≥ 2),

Rosenblatt process (q = 2, d = 1) as well as Rosenblatt sheet (q = 2, d ≥ 2). For any

q ≥ 2, d ≥ 1 and H ∈ (1
2
, 1)d we show in this paper that a proper normalization of the

quadratic variation of Zq,H converges in L2(Ω) to a standard d-parameter Rosenblatt

random variable with self-similarity index H′′ = 1 + (2H− 2)/q.
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3.1 Motivation and main results

In recent years, analysing the asymptotic behaviour of power variations of self-

similar stochastic processes has attracted a lot of attention. This is because they play an

important role in various aspects, both in probability and statistics. As far as quadratic

variations are concerned, a classical application is to use them for the construction

of efficient estimators for the self-similarity parameter (see e.g. [2, 15]). For a less

conventional application, let us also mention the recent reference [5], in which the

authors have used weighted power variations of fractional Brownian motion to compute

exact rates of convergence of some approximating schemes associated to one-dimensional

fractional stochastic differential equations.

In this paper, we deal with the quadratic variation in the context of multiparameter

Hermite random fields. To be more specific, let Zq,H = (Zq,H
t )t∈[0,1]d stand for the

d-parameter Hermite random field of order q ≥ 1 and self-similarity parameter H =

(H1, . . . , Hd) ∈ (1
2
, 1)d (see Definition 3.2.1 for the precise meaning), and consider a

renormalized version of its quadratic variation, namely

VN :=
1

N

N−1∑
i=0

[
N2H

(
∆Zq,H

[ i
N
, i+1

N
]

)2

− 1

]
, (3.1.1)

where ∆Zq,H
[s,t] is the increments of Zq,H defined as

∆Zq,H
[s,t] =

∑
r∈{0,1}d

(−1)d−
∑
i riZq,H

s+r.(t−s), (3.1.2)

and where the bold notation is systematically used in presence of multi-indices (we

refer to Section 2 for precise definitions). As illustrating examples, observe that (3.1.2)

reduces to ∆Zq,H
[s,t] = Zq,H

t −Zq,H
s when d = 1, and to ∆Zq,H1,H2

[s,t] = Zq,H1,H2
t1,t2 −Zq,H1,H2

t1,s2 −
Zq,H1,H2
s1,t2 + Zq,H1,H2

s1,s2
when d = 2.

It is well-known that each Hermite random field Zq,H is H-self-similar (that is,

(Zq,H
at )t∈Rd

(d)
= (aHZq,H

t )t∈Rd for any a > 0), has stationary increments (that is

(∆Zq,H
[0,t])t∈Rd

(d)
= (∆Zq,H

[h,h+t])t∈Rd for all h ∈ Rd) and exhibits long-range dependence.

Also, when q = 1, observe that Z1,H is either the fractional Brownian motion (if d = 1)

or the fractional Brownian sheet (if d ≥ 2); in particular, among all the Hermite ran-

65



dom fields Zq,H, it is the only one to be Gaussian. When q = 2, we use the usual

terminologies Rosenblatt process (if d = 1) or Rosenblatt sheet (if d ≥ 2).

Before describing our results, let us give a brief overview of the current state of the

art. Firstly, let us consider the case q = d = 1, that is, the case where Z1,H = BH is

a fractional Brownian motion with Hurst parameter H. The behavior of the quadratic

variation of BH is well-known since the eighties, and dates back to the seminal works

of Breuer and Major [1], Dobrushin and Major [3], Giraitis and Surgailis [4] or Taqqu

[13]. We have, as N →∞:

• If H < 3/4, then

N−1/2

N∑
j=1

(
N2H

(
BH
j/N −BH

(j−1)/N

)2

− 1

)
(d)−→ N (0, σ2

H).

• If H = 3/4, then

(N logN)−1/2

N∑
j=1

(
N3/2

(
BH
j/N −BH

(j−1)/N

)2

− 1

)
(d)−→ N (0, σ2

3/4).

• If H > 3/4, then

N1−2H

N∑
j=1

(
N2H

(
BH
j/N −BH

(j−1)/N

)2

− 1

)
L2(Ω)−−−→ “Rosenblatt r.v”,

where “Rosenblatt r.v” denotes the random variable which is the value at time 1

of the Rosenblatt process.

Secondly, assume now that q = 1 and d = 2, that is, consider the case where Z1,H is this

time a two-parameter fractional Brownian sheet with Hurst parameter H = (H1, H2).

According to Réveillac, Stauch and Tudor [12] and with ϕ(N,H) a suitable scaling

factor, the quadratic variation of Z1,H behaves as follows, as N →∞:

• If H /∈ (3/4, 1)2, then

ϕ(N,H)
N∑
i=1

N∑
j=1

(
N2H1+2H2

(
∆Z1,H

[ i−1
N
, i
N

]

)2

− 1

)
(d)−→ N (0, σ2

H).
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• If H ∈ (3/4, 1)2, then

ϕ(N,H)
N∑
i=1

N∑
j=1

(
N2H1+2H2

(
∆Z1,H

[ i−1
N
, i
N

]

)2

− 1

)
L2(Ω)−−−→ “two-parameter Rosenblatt r.v”,

where “two-parameter Rosenblatt r.v” means the value at point 1 = (1, 1) of the

two-parameter Rosenblatt sheet.

Here, we observe the following interesting phenomenon: the limit law in the mixture case

(that is, when H1 ≤ 3/4 and H2 > 3/4) is Gaussian. For the simplicity of exposition,

above we have only described what happens when d = 2. But the asymptotic behaviour

for the quadratic variation of Z1,H is actually known for any value of the dimension

d ≥ 2, and we refer to Pakkanen and Réveillac [9, 10, 11] for precise statements.

Let us finally review the existing literature about the quadratic variation of Zq,H

in the non-Gaussian case, that is, when q ≥ 2. It is certainly because it is a more

difficult case to deal with that only the case where d = 1 has been studied so far.

Chronopoulou, Tudor and Viens have shown in [2] (see also [15, 14]) that, properly

renormalized, the quadratic variation of Zq,H converges in L2(Ω), for any q ≥ 2 and

any value of H ∈ (1/2, 1), to the Rosenblatt random variable. A consequence of this

finding is that fractional Brownian motion is the only Hermite process (d = 1) for which

there exists a range of parameters such that its quadratic variation exhibits normal

convergence; indeed, for all the other Hermite processes, [2] shows that we have the

convergence towards a non-Gaussian random variable belonging to the second Wiener

chaos.

In the present paper, we study what happens in the remaining cases, that is, when

q and d are both bigger or equal than 2. Thanks to our main result, Theorem 3.1.1, we

now have a complete picture for the asymptotic behaviour of the quadratic variation of

any Hermite random field.
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Theorem 3.1.1. Fix q ≥ 2, d ≥ 1 and H ∈ (1
2
, 1)d. Let Zq,H be a d-parameter Hermite

random field of order q and self-similarity parameter H (see Definition 3.2.1). Then

c
−1/2
1,H N(2−2H)/q(q!q)−1VN converges, in L2(Ω), to the standard d-parameter Rosenblatt

sheet with self-similarity parameter 1+(2H−2)/q evaluated at time 1, where c1,H given

by (3.3.9).

Our proof of Theorem 3.1.1 follows a strategy introduced by Tudor and Viens in [15],

based on the use of chaotic expansion into multiple Wiener-Itô integrals. Let us sketch

it. Since the Hermite random field Zq,H is an element of the q-th Wiener chaos, we can

firstly rely on the product formula for multiple integrals to obtain that the quadratic

variation VN can be decomposed into a sum of multiple integrals of even orders from

2 to 2q, see Section 3.3.1. We are thus left to analyse the behavior of each chaos

component. As we will prove in Section 3.3.2, the dominant term of VN (after proper

normalization) is the term in the second Wiener chaos, that is, all the other terms

in the chaotic expansion are asymptotically negligible. Finally, by using the isometric

property of multiple Wiener-Itô integrals and checking the L2(([0, 1]d)2) convergence of

its kernel, we will prove in Section 3.3.3 that the projection onto the second Wiener

chaos converges in L2(Ω) to the d-parameter Rosenblatt random variable, which will

lead to the convergence of the normalization of VN to the same random variable.

In conclusion, it is worth pointing out that, irrespective of the self-similarity parame-

ter, the (properly normalized) quadratic variation of any non-Gaussian multiparameter

Hermite random fields exhibits a convergence to a random variable belonging to the

second Wiener chaos. It is in strong contrast with what happens in the Gaussian case

(q = 1), where either central or non-central limit theorems may arise, depending on the

value of the self-similarity parameter.

The remainder of the paper is structured as follows. Section 3.2 contains some

preliminaries and useful notation. The proof of our main result, namely Theorem 3.1.1,

is then provided in Section 3.3.
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3.2 Preliminaries

This section describes the notation and the mathematical objects (together with

their main properties) that are used throughout this paper.

3.2.1 Notation

Fix an integer d ≥ 1. In what follows, we shall systematically use bold

notation when dealing with multi-indexed quantities. We thus write a =

(a1, a2, . . . , ad), ab = (a1b1, a2b2, . . . , adbd) or a/b = (a1/b1, a2/b2, . . . , ad/bd). Simi-

larly, [a,b] =
∏d

i=1[ai, bi], (a,b) =
∏d

i=1(ai, bi). Summation is as follows:
∑N

i=1 ai =∑N1

i1=1

∑N2

i2=1 . . .
∑Nd

id=1 ai1,i2,...,id whereas, for products, we shall write ab =
∏d

i=1 a
bi
i . Fi-

nally, we shall write a < b (resp. a ≤ b) whenever a1 < b1, a2 < b2, . . ., ad < bd (resp.

a1 ≤ b1, a2 ≤ b2, . . ., ad ≤ bd).

3.2.2 Multiple Wiener-Itô integrals

We will now briefly review the theory of multiple Wiener-Itô integrals with respect

to the Brownian sheet, as described e.g. in Nualart’s book [8] (chapter 1 therein) or in

[9, Section 3]. Let f ∈ L2((Rd)q) and let us denote by IWq (f) the q-fold multiple Wiener-

Itô integral of f with respect to the standard two-sided Brownian sheet (Wt)t∈Rd . In

symbols, such an integral is written

IWq (f) =

∫
(Rd)q

dWu1 . . . dWuqf(u1, . . . ,uq). (3.2.1)

Moreover, one has IWq (f) = IWq (f̃), where f̃ is the symmetrization of f defined by

f̃(u1, . . . ,uq) =
1

q!

∑
σ∈Sq

f(uσ(1), . . . ,uσ(q)). (3.2.2)

The set of random variables of the form IWq (f), when f runs over L2((Rd)q), is called

the qth Wiener chaos of W . Furthermore, if f ∈ L2((Rd)p) and g ∈ L2((Rd)q) are two

symmetric functions, then

IWp (f)IWq (g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
IWp+q−2r(f⊗̃rg), (3.2.3)
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where the contraction f⊗rg, which belongs to L2((Rd)p+q−2r) for every r = 0, 1, . . . , p∧q,
is given by

f ⊗r g(u1, . . . ,up−r,v1, . . . ,vq−r)

=

∫
(Rd)r

da1 . . . darf(u1, . . . ,up−r, a1, . . . , ar)g(v1, . . . ,vq−r, a1, . . . , ar) (3.2.4)

and f⊗̃rg stands for the symmetrization of f⊗r g (according to the notation introduced

in (3.2.2)). For any r = 0, . . . , p ∧ q, Cauchy-Schwarz inequality yields

‖f⊗̃rg‖L2((Rd)p+q−2r) ≤ ‖f ⊗r g‖L2((Rd)p+q−2r) ≤ ‖f‖L2((Rd)p)‖g‖L2((Rd)q). (3.2.5)

Also, f ⊗p g = 〈f, g〉L2((Rd)p) when q = p. Furthermore, multiple Wiener-Itô integrals

satisfy the following isometry and orthogonality properties

E[IWp (f)IWq (g)] =

{
p!
〈
f̃ , g̃
〉
L2((Rd)p)

if p = q

0 if p 6= q.

3.2.3 Multiparameter Hermite Random Fields

Let us now introduce our main object of interest in this paper, the so-called multipa-

rameter Hermite random field. We follow the definition given by Tudor in [14, Chapter

4].

Definition 3.2.1. Let q, d ≥ 1 be two integers and let H = (H1, . . . , Hd) be a vector

belonging to (1
2
, 1)d. The d-parameter Hermite random field of order q and self-similarity

parameter H means any random field of the form

Zq,H(t) = cq,H

∫
(Rd)q

dWu1,1,...,u1,d . . . dWuq,1,...,uq,d

×
(∫ t1

0

da1 . . .

∫ td

0

dad

q∏
j=1

(a1 − uj,1)
−( 1

2
+

1−H1
q

)

+ . . . (ad − uj,d)
−( 1

2
+

1−Hd
q

)

+

)

= cq,H

∫
(Rd)q

dWu1 . . . dWuq

∫ t

0

da

q∏
j=1

(a− uj)
−( 1

2
+ 1−H

q
)

+ , (3.2.6)

where x+ = max(x, 0), W is a standard two-sided Brownian sheet, and c(q,H) is the

unique positive constant depending only on q and H chosen so that E[Zq,H(1)2] = 1.
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The above integral (3.2.6) represents a multiple Wiener-Itô integral of the form

(3.2.1).

In many occasions (for instance when one wants to simulate Zq,H, or when one

looks for constructing a stochastic calculus with respect to it), the following finite-time

representation for Zq,H may also be of interest:

Zq,H(t)
(d)
= bq,H

∫ t1

0

. . .

∫ td

0

dWu1,1,...,u1,d . . .

∫ t1

0

. . .

∫ td

0

dWuq,1,...,uq,d

×
(∫ t1

u1,1∨...∨uq,1
da1∂1K

H′1(a1, u1,1) . . . ∂1K
H′1(a1, uq,1)

)
...

×
(∫ td

u1,d∨...∨uq,d
dad∂1K

H′d(ad, u1,d) . . . ∂1K
H′d(ad, uq,d)

)

= bq,H

∫
[0,t]q

dWu1 . . . dWuq

d∏
j=1

∫ tj

u1,j∨...∨uq,j
da∂1K

H′j(a, u1,j) . . . ∂1K
H′j(a, uq,j). (3.2.7)

In (3.2.7), KH stands for the usual kernel appearing in the classical expression of the

fractional Brownian motion BH as a Volterra integral with respect to Brownian motion

(see e.g. [6, 7]), that is, BH
t =

∫ t
0
KH(t, s)dBs, whereas

bq,H :=
(H(2H− 1))1/2

(q!(H′(2H′ − 1))q)1/2
= (
√
q!)d−1

d∏
j=1

(Hj(2Hj − 1))1/2

(q!(H ′j(2H
′
j − 1))q)1/2

(3.2.8)

is the unique positive constant ensuring that E[Zq,H(1)2] = 1, where

H′ := 1 +
H− 1

q

(
⇐⇒ (2H′ − 2)q = 2H− 2

)
. (3.2.9)

For a proof of (3.2.7) when d = 2, we refer to Tudor [14, Chapter 4]. Extension to any

value of d as presented here is straightforward.

3.3 Proof of Theorem 3.1.1

We are now in a position to give the proof of our Theorem 3.1.1. It is divided into

three steps.
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3.3.1 Expanding into Wiener chaos

In preparation of analysing the quadratic variation (3.1.1), let us find an explicit

expression for the chaos decomposition of VN. Using (3.2.7) and proceeding by induction

on the dimension d, we can write ∆Zq,H

[ i
N
, i+1

N
]

as a q-th Wiener Itô integral with respect

to the standard two-sided Brownian sheet (Wt)t∈Rd as follows: for every 0 ≤ i ≤ N− 1,

one has

∆Zq,H

[ i
N
, i+1

N
]
= Iq(fi,N), (3.3.1)

where

fi,N(x1, . . . ,xq) = bq,H

d∏
j=1

fij ,Nj(x1,j, . . . , xq,j), (3.3.2)

with fi,N(x1, . . . , xq) denoting the expression

1[0, i+1
N

](x1 ∨ . . . ∨ xq)
∫ i+1

N

x1∨...∨xq
du∂1K

H′(u, x1) . . . ∂1K
H′(u, xq)

− 1[0, i
N

](x1 ∨ . . . ∨ xq)
∫ i

N

x1∨...∨xq
du∂1K

H′(u, x1) . . . ∂1K
H′(u, xq), (3.3.3)

and with bq,H and H′ given by (3.2.8) and (3.2.9) respectively. Indeed, for d = 1, see

[2, Section 3, p.8], it reduces to

∆Zq,H

[ i
N
, i+1
N

]
= Zq,H

i+1
N

− Zq,H
i
N

= bq,HIq(fi,N),

while for d = 2, it is easy to verify that

∆Zq,H

[ i
N
, i+1

N
]
= Zq,H1,H2

i+1
N
, j+1
M

− Zq,H1,H2
i
N
, j+1
M

− Zq,H1,H2
i+1
N
, j
M

+ Zq,H1,H2
i
N
, j
M

= Iq(fi,j,N,M)

where

fi,j,N,M(x1, y1, . . . , xq, yq)

= bq,H1,H21[0, i+1
N

](x1 ∨ . . . ∨ xq)
∫ i+1

N

x1∨...∨xq
du∂1K

H′1(u, x1) . . . ∂1K
H′1(u, xq)

× 1[0, j+1
M

](y1 ∨ . . . ∨ yq)
∫ j+1

M

y1∨...∨yq
dv∂1K

H′2(v, y1) . . . ∂1K
H′2(v, yq)

− bq,H1,H21[0, i+1
N

](x1 ∨ . . . ∨ xq)
∫ i+1

N

x1∨...∨xq
du∂1K

H′1(u, x1) . . . ∂1K
H′1(u, xq)
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× 1[0, j
M

](y1 ∨ . . . ∨ yq)
∫ j

M

y1∨...∨yq
dv∂1K

H′2(v, y1) . . . ∂1K
H′2(v, yq)

− bq,H1,H21[0, i
N

](x1 ∨ . . . ∨ xq)
∫ i

N

x1∨...∨xq
du∂1K

H′1(u, x1) . . . ∂1K
H′1(u, xq)

× 1[0, j+1
M

](y1 ∨ . . . ∨ yq)
∫ j+1

M

y1∨...∨yq
dv∂1K

H′2(v, y1) . . . ∂1K
H′2(v, yq)

+ bq,H1,H21[0, i
N

](x1 ∨ . . . ∨ xq)
∫ i

N

x1∨...∨xq
du∂1K

H′1(u, x1) . . . ∂1K
H′1(u, xq)

× 1[0, j
M

](y1 ∨ . . . ∨ yq)
∫ j

M

y1∨...∨yq
dv∂1K

H′2(v, y1) . . . ∂1K
H′2(v, yq)

= bq,H1,H2fi,N(x1, . . . , xq)fj,M(y1, . . . , yq).

The last equality above is obtained by grouping each term of fi,j,N,M together. Suppose

that the expression (3.3.1), (3.3.2) is true for d, that is, the kernel of ∆Zq,H

[ i
N
, i+1

N
]

is equal

to

bq,H
∑

(r1,...,rd)∈{0,1}d
(−1)d−

∑d
i=1 ri

d∏
j=1

1
[0,

ij+rj
Nj

]
(x1,j ∨ . . . ∨ xq,j)

×
∫ ij+rj

Nj

x1,j∨...∨xq,j
du∂1K

H′j(u, x1,j) . . . ∂1K
H′j(u, xq,j)

= bq,H

d∏
j=1

fij ,Nj(x1,j, . . . , xq,j).

Then, for the case d+ 1 we have

∆Zq,H

[ i
N
, i+1

N
]
=

∑
r∈{0,1}d+1

(−1)d+1−
∑d+1
i=1 riZq,H

i+r
N

=
∑

(r1,...,rd)∈{0,1}d
(−1)d−

∑d
i=1 riZq,H(

i1+r1
N1

,...,
id+rd
Nd

,
id+1+1

Nd+1

)
+

∑
(r1,...,rd)∈{0,1}d

(−1)d+1−
∑d
i=1 riZq,H(

i1+r1
N1

,...,
id+rd
Nd

,
id+1
Nd+1

)
=

∑
(r1,...,rd)∈{0,1}d

(−1)d−
∑d
i=1 ri

(
Zq,H(

i1+r1
N1

,...,
id+rd
Nd

,
id+1+1

Nd+1

) − Zq,H(
i1+r1
N1

,...,
id+rd
Nd

,
id+1
Nd+1

)).
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It belongs to the q-Wiener chaos with the kernel fi,N given by

fi,N = bq,H
∑

(r1,...,rd)∈{0,1}d
(−1)d−

∑d
i=1 ri

d∏
j=1

1
[0,

ij+rj
Nj

]
(x1,j ∨ . . . ∨ xq,j)

×
∫ ij+rj

Nj

x1,j∨...∨xq,j
du∂1K

H′j(u, x1,j) . . . ∂1K
H′j(u, xq,j)

×
(∫ id+1+1

Nd+1

x1,d+1∨...∨xq,d+1

du′∂1K
H′d+1(u′, x1,d+1) . . . ∂1K

H′d+1(u′, xq,d+1)

−
∫ id+1

Nd+1

x1,d+1∨...∨xq,d+1

du′∂1K
H′d+1(u′, x1,d+1) . . . ∂1K

H′d+1(u′, xq,d+1)

)
.

By the induction hypothesis, one gets fi,N = bq,H
∏d+1

j=1 fij ,Nj(x1,j, . . . , xq,j), which is our

desired expression.

Next, by applying the product formula (3.2.3), we can write

(
∆Zq,H

[ i
N
, i+1

N
]

)2

− E
[(

∆Zq,H

[ i
N
, i+1

N
]

)2]
=

q−1∑
r=0

r!

(
q

r

)2

I2q−2r(fi,N⊗̃rfi,N). (3.3.4)

Let us compute the contractions appearing in the right-hand side of (3.3.4). For every

0 ≤ r ≤ q − 1, we have

(fi,N ⊗r fi,N)(x1, . . . ,x2q−2r)

=

∫
([0,1]d)r

da1 . . . darfi,N(x1, . . . ,xq−r, a1, . . . , ar)

× fi,N(xq−r+1, . . . ,x2q−2r, a1, . . . , ar)

= b2
q,H

∫
([0,1]d)r

da1 . . . dar

d∏
j=1

fij ,Nj(x1,j, . . . , xq−r,j, a1,j, . . . , ar,j)

×
d∏
j=1

fij ,Nj(xq−r+1,j, . . . , x2q−2r,j, a1,j, . . . , ar,j)

= b2
q,H

d∏
j=1

(fij ,Nj ⊗r fij ,Nj)(x1,j, . . . , x2q−2r,j), (3.3.5)
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where

(fi,N ⊗r fi,N)(x1, . . . , x2q−2r) = (H ′(2H ′ − 1))r

×
{
1

[0,
i+1

N
]
(x1 ∨ . . . xq−r)

∫ i+1
N

x1∨...xq−r
du∂1K

H′(u, x1) . . . ∂1K
H′(u, xq−r)

× 1[0, i+1
N

](xq−r+1 ∨ . . . x2q−2r)

∫ i+1
N

xq−r+1∨...x2q−2r

du′∂1K
H′(u′, xq−r+1) . . .

. . . ∂1K
H′(u′, x2q−2r)|u− u′|(2H

′−2)r

− 1[0, i+1
N

](x1 ∨ . . . xq−r)
∫ i+1

N

x1∨...xq−r
du∂1K

H′(u, x1) . . . ∂1K
H′(u, xq−r)

× 1[0, i
N

](xq−r+1 ∨ . . . x2q−2r)

∫ i
N

xq−r+1∨...x2q−2r

du′∂1K
H′(u′, xq−r+1) . . .

. . . ∂1K
H′(u′, x2q−2r)|u− u′|(2H

′−2)r

− 1[0, i
N

](x1 ∨ . . . xq−r)
∫ i

N

x1∨...xq−r
du∂1K

H′(u, x1) . . . ∂1K
H′(u, xq−r)

× 1[0, i+1
N

](xq−r+1 ∨ . . . x2q−2r)

∫ i+1
N

xq−r+1∨...x2q−2r

du′∂1K
H′(u′, xq−r+1) . . .

. . . ∂1K
H′(u′, x2q−2r)|u− u′|(2H

′−2)r

+ 1[0, i
N

](x1 ∨ . . . xq−r)
∫ i

N

x1∨...xq−r
du∂1K

H′(u, x1) . . . ∂1K
H′(u, xq−r)

× 1[0, i
N

](xq−r+1 ∨ . . . x2q−2r)

∫ i
N

xq−r+1∨...x2q−2r

du′∂1K
H′(u′, xq−r+1) . . .

. . . ∂1K
H′(u′, x2q−2r)|u− u′|(2H

′−2)r

}
.

(3.3.6)

(See [2, page 10] for a detailed computation of the expression (3.3.6).) Moreover, since

Zq,H is H-self-similar and has stationary increments, one has

∆Zq,H

[ i
N
, i+1

N
]

(d)
= N−H∆Zq,H

[i,i+1]

(d)
= N−HZq,H

[0,1].

It follows that

E

[
N2H

(
∆Zq,H

[ i
N
, i+1

N
]

)2
]

= E[Zq,H(1)2] = 1.

As a consequence, we have

VN = F2q,N + c2q−2F2q−2,N + . . .+ c4F4,N + c2F2,N. (3.3.7)
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where c2q−2r = r!
(
q
r

)2
, r = 0, . . . , q − 1, are the combinator constants coming from the

product formula, and

F2q−2r,N := N2H−1I2q−2r

(N−1∑
i=0

fi,N⊗̃rfi,N
)
, (3.3.8)

for the kernels fi,N ⊗r fi,N computed in (3.3.5)-(3.3.6).

3.3.2 Evaluating the L2(Ω)-norm

Set

c1,H =
2!2db4

q,H(H′(2H′ − 1))2q

(4H′ − 3)(4H′ − 2)[(2H′ − 2)(q − 1) + 1]2[(H′ − 1)(q − 1) + 1]2
. (3.3.9)

We claim that

lim
N→∞

E[c−1
1,HN2(2−2H′)c−2

2 V 2
N] = 1. (3.3.10)

Let us prove (3.3.10). Due to the orthogonality property for Wiener chaoses of

different orders, it is sufficient to evaluate the L2(Ω)-norm of each multiple Wiener-Itô

integrals appearing in the chaotic decomposition (3.3.7) of VN. Let us start with the

double integral:

F2,N = N2H−1I2

(N−1∑
i=0

fi,N ⊗q−1 fi,N

)
.

Since the kernel
∑N−1

i=0 fi,N ⊗q−1 fi,N is symmetric, one has

E[F 2
2,N] = 2!N4H−2

∥∥∥∥N−1∑
i=0

fi,N ⊗q−1 fi,N

∥∥∥∥2

L2(([0,1]d)2)

= 2!N4H−2

N−1∑
i,k=0

〈fi,N ⊗q−1 fi,N, fk,N ⊗q−1 fk,N〉L2(([0,1]d)2) .

Let us now compute the scalar products in the above expression. By

using (3.3.5), (3.3.6), by applying Fubini’s theorem and by noting that∫ u∧v
0

∂1K
H′(u, a)∂1K

H′(v, a)da = H ′(2H ′ − 1)|u− v|2H′−2, it is easy to verify that
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〈fi,N ⊗q−1 fi,N, fk,N ⊗q−1 fk,N〉L2(([0,1]d)2)

= b4
q,H

d∏
j=1

〈
fij ,Nj ⊗q−1 fij ,Nj , fkj ,Nj ⊗q−1 fkj ,Nj

〉
L2([0,1]2)

= b4
q,H(H′(2H′ − 1))2q

d∏
j=1

∫ ij+1

Nj

ij
Nj

duj

∫ ij+1

Nj

ij
Nj

dvj

∫ kj+1

Nj

kj
Nj

du′j

∫ kj+1

Nj

kj
Nj

dv′j

× |uj − vj|(2H
′
j−2)(q−1)|u′j − v′j|(2H

′
j−2)(q−1)

× |uj − u′j|2H
′
j−2|vj − v′j|2H

′
j−2,

(see, e.g., [2, page 11]). The change of variables u′ = (u − i
N

)N for each uj, u
′
j, vj, v

′
j

with j from 1 to d yields

E[F 2
2,N] = 2b4

q,H(H′(2H′ − 1))2qN4H−2N−4N−(2H′−2)2q

×
N−1∑
i,k=0

d∏
j=1

∫ 1

0

duj

∫ 1

0

dvj

∫ 1

0

du′j

∫ 1

0

dv′j|uj − vj|(2H
′
j−2)(q−1)|u′j − v′j|(2H

′
j−2)(q−1)

× |uj − u′j + ij − kj|2H
′
j−2|vj − v′j + ij − kj|2H

′
j−2.

(3.3.11)

Now, we split the sum
∑N−1

i,k=0 appearing in E[F 2
2,N] just above into

N−1∑
i,k=0

=
N−1∑
i,k=0

∃1≤j≤d:ij=kj

+
N−1∑
i,k=0
∀j:ij 6=kj

. (3.3.12)

For the first term in the right-hand side of (3.3.12), without loss of generality, let us

assume that i1 = k1, . . . , im = km for some 1 ≤ m < d and ij 6= kj for all m+1 ≤ j ≤ d.

Then,
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N−2

N−1∑
i,k=0

i1=k1,...,im=km

d∏
j=1

∫
[0,1]4

dujdvjdu
′
jdv
′
j|uj − vj|(2H

′
j−2)(q−1)|u′j − v′j|(2H

′
j−2)(q−1)

× |uj − u′j + ij − kj|2H
′
j−2|vj − v′j + ij − kj|2H

′
j−2

=
m∏
j=1

N−1
j

∫
[0,1]4

dujdvjdu
′
jdv
′
j(|uj − vj||u′j − v′j|)(2H′j−2)(q−1)(|uj − u′j||vj − v′j|)2H′j−2

×
Nj−1∑

im+1,km+1=0
im+1 6=km+1

. . .

Nj−1∑
id,kd=0
id 6=kd

d∏
j=m+1

∫
[0,1]4

dujdvjdu
′
jdv
′
j(|uj − vj||u′j − v′j|)(2H′j−2)(q−1)

×N−2
j |uj − u′j + ij − kj|2H

′
j−2|vj − v′j + ij − kj|2H

′
j−2.

By switching sum and product in the above expression, we arrive

m∏
j=1

N−1
j

∫
[0,1]4

dujdvjdu
′
jdv
′
j(|uj − vj||u′j − v′j|)(2H′j−2)(q−1)(|uj − u′j||vj − v′j|)2H′j−2

×
d∏

j=m+1

( Nj−1∑
ij ,kj=0
ij 6=kj

∫
[0,1]4

dujdvjdu
′
jdv
′
j|uj − vj|(2H

′
j−2)(q−1)|u′j − v′j|(2H

′
j−2)(q−1)

×N−2
j |uj − u′j + ij − kj|2H

′
j−2|vj − v′j + ij − kj|2H

′
j−2

)
=

m∏
j=1

N−1
j

∫
[0,1]4

dujdvjdu
′
jdv
′
j(|uj − vj||u′j − v′j|)(2H′j−2)(q−1)(|uj − u′j||vj − v′j|)2H′j−2

×
d∏

j=m+1

(∫
[0,1]4

dujdvjdu
′
jdv
′
j|uj − vj|(2H

′
j−2)(q−1)|u′j − v′j|(2H

′
j−2)(q−1)

× 2N−2
j

Nj−1∑
ij ,kj=0
ij>kj

|uj − u′j + ij − kj|2H
′
j−2|vj − v′j + ij − kj|2H

′
j−2

)
.

One has that

N−2

N−1∑
i,k=0
i>k

|u− u′ + i− k|2H′−2|v − v′ + i− k|2H′−2

= N2(2H′−2) 1

N

N∑
n=1

(
1− n

N

)∣∣∣u− u′
N

+
n

N

∣∣∣2H′−2∣∣∣v − v′
N

+
n

N

∣∣∣2H′−2
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is asymptotically equivalent to N2(2H′−2)
∫ 1

0
(1 − x)x4H′−4dx = N2(2H′−2) 1

(4H′−3)(4H′−2)
.

It follows that

N−2

N−1∑
i,k=0

i1=k1,...,im=km

d∏
j=1

∫
[0,1]4

dujdvjdu
′
jdv
′
j|uj − vj|(2H

′
j−2)(q−1)|u′j − v′j|(2H

′
j−2)(q−1)

× |uj − u′j + ij − kj|2H
′
j−2|vj − v′j + ij − kj|2H

′
j−2

≈
m∏
j=1

N−1
j

∫
[0,1]4

dujdvjdu
′
jdv
′
j|uj − vj|(2H

′
j−2)(q−1)|u′j − v′j|(2H

′
j−2)(q−1)

× |uj − u′j|2H
′
j−2|vj − v′j|2H

′
j−2

×
d∏

j=m+1

2N
2(2H′j−2)

j

1

(4H ′j − 3)(4H ′j − 2)

(∫
[0,1]2

dujdvj|uj − vj|(2H
′
j−2)(q−1)

)2

.

Since 2(2− 2H ′j)− 1 < 0 for all j, one gets, as N→∞,

N2(2−2H′j) ×N−2

N−1∑
i,k=0

∃1≤j≤d:ij=kj

d∏
j=1

∫
[0,1]4

dujdvjdu
′
jdv
′
j|uj − vj|(2H

′
j−2)(q−1)|u′j − v′j|(2H

′
j−2)(q−1)

× |uj − u′j + ij − kj|2H
′
j−2|vj − v′j + ij − kj|2H

′
j−2 −→ 0.

(3.3.13)

Similarly for the second term in (3.3.12), that is, when ij 6= kj for all 1 ≤ j ≤ d, we

have

N−2

N−1∑
i,k=0

ij 6=kj , ∀j

d∏
j=1

∫
[0,1]4

dujdvjdu
′
jdv
′
j|uj − vj|(2H

′
j−2)(q−1)|u′j − v′j|(2H

′
j−2)(q−1)

× |uj − u′j + ij − kj|2H
′
j−2|vj − v′j + ij − kj|2H

′
j−2

≈
d∏
j=1

N
2(2H′j−2)

j

2

(4H ′j − 3)(4H ′j − 2)

(∫
[0,1]2

dujdvj|uj − vj|(2H
′
j−2)(q−1)

)2

=
d∏
j=1

N
2(2H′j−2)

j

2

(4H ′j − 3)(4H ′j − 2)[(2H ′j − 2)(q − 1) + 1]2[(H ′j − 1)(q − 1) + 1]2
.
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It follows that

N2(2−2H′) ×N−2

N−1∑
i,k=0

ij 6=kj , ∀j

d∏
j=1

∫
[0,1]4

dujdvjdu
′
jdv
′
j|uj − vj|(2H

′
j−2)(q−1)|u′j − v′j|(2H

′
j−2)(q−1)

× |uj − u′j + ij − kj|2H
′
j−2|vj − v′j + ij − kj|2H

′
j−2

−→
d∏
j=1

2

(4H ′j − 3)(4H ′j − 2)[(2H ′j − 2)(q − 1) + 1]2[(H ′j − 1)(q − 1) + 1]2
. (3.3.14)

To conclude that

lim
N→∞

E[c−1
1,HN2(2−2H′)F 2

2,N] = 1, (3.3.15)

we use the expression (3.3.11) for E[F 2
2,N]. The first sum in (3.3.12) goes to zero

according to (3.3.13), whereas the second sum goes to the quantity in (3.3.14). Going

back to the definition (3.3.9) of c1,H, we arrive to the desired conclusion (3.3.15).

Let us now consider the remaining terms F4,N, . . . , F2q,N in the chaos decomposition

(3.3.7). Using that ‖g̃‖L2 ≤ ‖g‖L2 for any square integrable function g, one can write,

for every 0 ≤ r ≤ q − 2,

E[F 2
2q−2r,N] = N4H−2(2q − 2r)!

∥∥∥∥N−1∑
i=0

fi,N⊗̃rfi,N
∥∥∥∥2

L2(([0,1]d)2q−2r)

≤ N4H−2(2q − 2r)!

∥∥∥∥N−1∑
i=0

fi,N ⊗r fi,N
∥∥∥∥2

L2(([0,1]d)2q−2r)

= (2q − 2r)!N4H−2

N−1∑
i,k=0

〈fi,N ⊗r fi,N, fk,N ⊗r fk,N〉L2(([0,1]d)2q−2r) .

Proceeding as above, we obtain

〈fi,N ⊗r fi,N, fk,N ⊗r fk,N〉L2([0,1]d·(2q−2r))

= b4
q,H(H′(2H′ − 1))2q

d∏
j=1

∫ ij+1

Nj

ij
Nj

duj

∫ ij+1

Nj

ij
Nj

dvj

∫ kj+1

Nj

kj
Nj

du′j

∫ kj+1

Nj

kj
Nj

dv′j

× |uj − vj|(2H
′
j−2)r|u′j − v′j|(2H

′
j−2)r

× |uj − u′j|(2H
′
j−2)(q−r)|vj − v′j|(2H

′
j−2)(q−r).
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Using the change of variables u′ = (u − i
N

)N for each uj, uj, vj, v
′
j with j = 1, . . . , d,

one obtains

E[F 2
2q−2r,N] ≤ (2q − 2r)!b4

q,H(H′(2H′ − 1))2qN4H−2N−4N−(2H′−2)2q

×
N−1∑
i,k=0

( d∏
j=1

∫ 1

0

duj

∫ 1

0

dvj

∫ 1

0

du′j

∫ 1

0

dv′j|uj − vj|(2H
′
j−2)r|u′j − v′j|(2H

′
j−2)r

× |uj − u′j + ij − kj|(2H
′
j−2)(q−r)|vj − v′j + ij − kj|(2H

′
j−2)(q−r)

)
.

Switching sum and product in the above expression, one obtains

E[F 2
2q−2r,N] ≤ (2q − 2r)!b4

q,H(H′(2H′ − 1))2qN−2

×
d∏
j=1

∫
[0,1]4

dujdvjdu
′
jdv
′
j|uj − vj|(2H

′
j−2)r|u′j − v′j|(2H

′
j−2)r

×
( Nj−1∑
ij ,kj=0

|uj − u′j + ij − kj|(2H
′
j−2)(q−r)|vj − v′j + ij − kj|(2H

′
j−2)(q−r)

)
.

(3.3.16)

Note that the above sum
∑Nj−1

ij ,kj=0 can be divided into two parts: the diagonal part with

ij = kj and the non-diagonal part with ij 6= kj. It is easily seen that the non-diagonal

part is dominant. Indeed, the diagonal part in the right-hand side of (3.3.16) is equal

to

(2q − 2r)!b4
q,H(H′(2H′ − 1))2qN−1

d∏
j=1

∫
[0,1]4

dujdvjdu
′
jdv
′
j

× |uj − vj|(2H
′
j−2)r|u′j − v′j|(2H

′
j−2)r|uj − u′j|(2H

′
j−2)(q−r)|vj − v′j|(2H

′
j−2)(q−r).

and it tends to zero since (2H ′j − 2)r > −1 and (2H ′j − 2)(q − r) > −1. Thus, in order

to find a bound of E[F 2
2q−2r,N] in (3.3.16), we have to study the following sum

1

N2

N−1∑
i,k=0
i 6=k

|u− u′ + i− k|(2H′−2)(q−r)|v − v′ + i− k|(2H′−2)(q−r) (3.3.17)

for all q ≥ 2 and r = 0, . . . , q − 2, when u, u′, v, v′ ∈ [0, 1]. In (3.3.17), one has set

H ′ = 1 + H−1
q

with H > 1
2
. We now analyse the behavior of (3.3.17) according to the

following three cases: H > 3
4
, H < 3

4
and H = 3

4
.
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• If H > 3
4
, then (3.3.17) is equal to

N (2H′−2)(2q−2r) 2

N

N∑
n=1

(
1− n

N

)∣∣∣u− u′
N

+
n

N

∣∣∣(2H′−2)(q−r)∣∣∣v − v′
N

+
n

N

∣∣∣(2H′−2)(q−r)
.

By multiplying (3.3.17) by N (2−2H′)(2q−2r) one has

N (2−2H′)(2q−2r) × 1

N2

N−1∑
i,k=0
i 6=k

|u− u′ + i− k|(2H′−2)(q−r)|v − v′ + i− k|(2H′−2)(q−r)

=
2

N

N∑
n=1

(
1− n

N

)∣∣∣u− u′
N

+
n

N

∣∣∣(2H′−2)(q−r)∣∣∣v − v′
N

+
n

N

∣∣∣(2H′−2)(q−r)

≈ 2

∫ 1

0

(1− x)x2(2H′−2)(q−r)dx <∞ since H >
3

4
.

• If H < 3
4
, (3.3.17) is bounded by

1

N

∑
r∈Z\{0}

|u− u′ + r|(2H′−2)(2q−2r)|v − v′ + r|(2H′−2)(2q−2r) = O(
1

N
).

• If H = 3
4
, following the same route as in the case H < 3

4
, we arrive to (3.3.17) =

O( logN
N

).

Now, we go back to (3.3.16). From the analysis of (3.3.17), we conclude that

E[F 2
2q−2r,N] =


O(N−(2H′−2)(2q−2r)) if H ∈ (3

4
, 1)

O(N−1) if H ∈ (1
2
, 3

4
)

O( logN
N

) if H = 3
4

Therefore, for all 0 ≤ r ≤ q − 2 and as N→∞, one has

lim
N→∞

E[N2(2−2H′)F 2
2q−2r,N] = 0. (3.3.18)

Thus, from (3.3.15), (3.3.18) and the orthogonality of Wiener chaos, we obtain (3.3.10).

3.3.3 Concluding the proof of Theorem 3.1.1

Thanks to (3.3.18), in order to understand the asymptotic behavior of the normalized

sequence of VN, it is enough to analyse the convergence of the term
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N2−2H′F2,N = I2

(
N2H−1N2−2H′

N−1∑
i=0

fi,N ⊗q−1 fi,N

)
, (3.3.19)

with

fi,N ⊗q−1 fi,N(x1,x2) = b2
q,H

d∏
j=1

(fij ,Nj ⊗q−1 fij ,Nj)(x1,j, x2,j)

= b2
q,H(H′(2H′ − 1))q−1

×
d∏
j=1

(
1

[0,
ij
Nj

]
(x1,j)1[0,

ij
Nj

]
(x2,j)

∫ ij+1

Nj

ij
Nj

du

∫ ij+1

Nj

ij
Nj

du′∂1K
H′j(u, x1,j)

× ∂1K
H′j(u′, x2,j)|u− u′|(2H

′
j−2)(q−1)

+ 1
[0,

ij
Nj

]
(x1,j)1[

ij
Nj
,
ij+1

Nj
]
(x2,j)

∫ ij+1

Nj

ij
Nj

du

∫ ij+1

Nj

x2,j

du′∂1K
H′j(u, x1,j)

× ∂1K
H′j(u′, x2,j)|u− u′|(2H

′
j−2)(q−1)

+ 1
[
ij
Nj
,
ij+1

Nj
]
(x1,j)1[0,

ij+1

Nj
]
(x2,j)

∫ ij+1

Nj

x1,j

du

∫ ij+1

Nj

ij
Nj

du′∂1K
H′j(u, x1,j)

× ∂1K
H′j(u′, x2,j)|u− u′|(2H

′
j−2)(q−1)

+ 1
[
ij
Nj
,
ij
Nj

]
(x1,j)1[

ij
Nj
,
ij+1

Nj
]
(x2,j)

∫ ij+1

Nj

x1,j

du

∫ ij+1

Nj

x2,j

du′∂1K
H′j(u, x1,j)

× ∂1K
H′j(u′, x2,j)|u− u′|(2H

′
j−2)(q−1)

)
.

Among the four terms in the right-hand side of the above expression, only the first

one is not asymptotically negligible in L2(Ω) as N → ∞, see [2, page 14 and 15] or

follow the lines of [15] for details. Furthermore, by the isometry property for multiple

Wiener-Itô integrals, evaluating the L2(Ω)-limit of a sequence belonging to the second

Wiener chaos is equivalent to evaluating the L2(([0, 1]d)2)-limit of the sequence of their

corresponding symmetric kernels. Therefore, we are left to find the limit of fN
2 in

L2(([0, 1]d)2), where
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fN
2 (x1,x2) : = N2H−1N2−2H′b2

q,H(H′(2H′ − 1))q−1

×
N−1∑
i=0

( d∏
j=1

1
[0,

ij
Nj

]
(x1,j)1[0,

ij
Nj

]
(x2,j)

∫ ij+1

Nj

ij
Nj

du

∫ ij+1

Nj

ij
Nj

du′∂1K
H′j(u, x1,j)

× ∂1K
H′j(u′, x2,j)|u− u′|(2H

′
j−2)(q−1)

)
= N2H−1N2−2H′b2

q,H(H′(2H′ − 1))q−1

×
d∏
j=1

(Nj−1∑
ij=0

1
[0,

ij
Nj

]
(x1,j)1[0,

ij
Nj

]
(x2,j)

∫ ij+1

Nj

ij
Nj

du

∫ ij+1

Nj

ij
Nj

du′∂1K
H′j(u, x1,j)

× ∂1K
H′j(u′, x2,j)|u− u′|(2H

′
j−2)(q−1)

)
.

According to [2, Theorem 3.2], it is shown that for each j from 1 to d, the following

quantity

N
2Hj−1
j N

2−2H′j
j

Nj−1∑
ij=1

1
[0,

ij
Nj

]
(x1,j)1[0,

ij
Nj

]
(x2,j)

∫ ij+1

Nj

ij
Nj

du

∫ ij+1

Nj

ij
Nj

du′∂1K
H′j(u, x1,j)

× ∂1K
H′j(u′, x2,j)|u− u′|(2H

′
j−2)(q−1)

converges in L2(R2) to the kernel of a standard Rosenblatt process with self-similarity

2H ′j − 1 at time 1 (up to an explicit multiplicative constant). Since the kernel of

the Rosenblatt sheet has the form of a tensor product from 1 to d of the kernel of

the Rosenblatt process, (see (3.2.7)), it follows that fN
2 converges to the kernel of

a Rosenblatt sheet with self-similarity parameter 2H′ − 1 evaluated at time 1 up to

a constant. Therefore, the double Wiener-Itô integral N2−2H′F2,N in (3.3.19) con-

verges in L2(Ω) to a Rosenblatt sheet R2H′−1
1 with self-similarity parameter 2H′ − 1

evaluated at time 1, which leads to the convergence of N2−2H′c−1
2 VN to the same

limit (up to a constant). In order to find the explicit constant, we use the fact

that limN→∞E[(c
− 1

2
1,HN2−2H′c−1

2 VN)2] = E[(R2H′−1
1 )2] = 1 to eventually obtain that

c
− 1

2
1,HN2−2H′c−1

2 VN converges in L2(Ω) to the Rosenblatt sheet R2H′−1
1 as N → ∞ with

c2 = q!q.
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[12] A. Réveillac, M. Stauch, C. A. Tudor (2012): Hermite variations of the fractional

Brownian sheet. Stoch. Dyn. 12, no. 3.

[13] M. Taqqu (1979): Convergence of integrated processes of arbitrary Hermite rank.

Z. Wahrsch. Verw. Gebiete. 50, no. 1, 53-83.

[14] C. A. Tudor (2013): Analysis of variations for self-similar processes: A stochastic

calculus approach. Probability and its Applications. Springer.

[15] C. A. Tudor, F. G. Viens (2009): Variations and estimators for self-similarity

parameters via Malliavin calculus. Ann. Probab. 37, no. 6, 2093-2134.

87



Chapter 4

Statistical inference for
Vasicek-type model driven by
Hermite processes

Ivan Nourdin, T. T. Diu Tran
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Abstract

Let (Zq,H
t )t≥0 denote a Hermite process of order q ≥ 1 and self-similarity parameter

H ∈ (1
2
, 1). This process is H-self-similar, has stationary increments and exhibits long-

range dependence. When q = 1, it corresponds to the fractional Brownian motion,

whereas it is not Gaussian as soon as q ≥ 2.

In this paper, we deal with the following Vasicek-type model driven by Zq,H :

X0 = 0, dXt = a(b−Xt)dt+ dZq,H
t , t ≥ 0,

where a > 0 and b ∈ R are considered as unknown drift parameters. We provide

estimators for a and b based on continuous-time observations. For all possible values of

H and q, we prove strong consistency and we analyze the asymptotic fluctuations.
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4.1 Introduction

Our aim in this paper is to introduce and analyze a non-Gaussian extension of the

fractional model considered in the seminal paper [1] of Comte and Renault (see also

Chronopoulou and Viens [2], as well as the motivations and references therein) and used

by these authors to model a situation where, unlike the classical Black-Scholes-Merton

model, the volatility exhibits long-memory. More precisely, we deal with the parameter

estimation problem for a Vasicek-type process X, defined as the unique (pathwise)

solution to

X0 = 0, dXt = a(b−Xt)dt+ dZq,H
t , t ≥ 0, (4.1.1)

where Zq,H is a Hermite process of order q ≥ 1 and Hurst parameter H ∈ (1
2
, 1).

Equivalently, X is the process given explicitly by

Xt = b(1− e−at) +

∫ t

0

e−a(t−s)dZq,H
s , (4.1.2)

where the integral with respect to Zq,H must be understood in the Riemann-Stieltjes

sense. In (4.1.1) and (4.1.2), parameters a > 0 and b ∈ R are considered as (unknown)

real parameters.

Hermite processes Zq,H of order q ≥ 2 form a class of genuine non-Gaussian general-

izations of the celebrated fractional Brownian motion (fBm), this latter corresponding

to the case q = 1. Like the fBm, they are self-similar, have stationary increments and

exhibit long-range dependence. Their main noticeable difference with respect to fBm

is that they are not Gaussian. For more details about this family of processes, we refer

the reader to Section 4.2.2.

As we said, the goal of the present paper is to propose suitable estimators for a and

b in (4.1.1)-(4.1.2), and to study their asymptotic properties (that is, their consistency

as well as their fluctuations around the true value of the parameter) when a continuous

record of observation for X is available. Our main motivation behind this study is

to understand whether the Gaussian feature of the fractional Brownian motion BH

really matters when estimating the unknown parameters in the fractional Vasicek model

considered in Comte-Renault [1] and given by

X0 = 0, dXt = a(b−Xt)dt+ dBH
t , t ≥ 0. (4.1.3)
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More precisely, we look for an answer to the following question. Do our estimators for

a and b have the same asymptotic behavior when q = 1 (fBm case, model (4.1.3)) and

q ≥ 2 (non-Gaussian case, model (4.1.1))? If the answer to this question appears to be

no, it means that assuming the noise is Gaussian (like done in Comte-Renault [1]) is

not an insignificant hypothesis. On the contrary, if the results obtained for q = 1 and

q ≥ 2 happen to be of the same nature, one could conclude that the Hermite Vasicek

model (4.1.1) displays some kind of universality with respect to the order q, and then

working under the Gaussian assumption for the noise is actually not a loss of generality,

as far as statistical inference for parameters a and b is concerned.

Let us now describe in more details the results we have obtained.

Definition 4.1.1. Recall from (4.1.1)-(4.1.2) the definition of the Vasicek-type process

X = (Xt)t≥0 driven by the Hermite process Zq,H . Assume that q ≥ 1 and H ∈ (1
2
, 1)

are known, whereas a > 0 and b ∈ R are unknown. Suppose that we continuously

observe X over the time interval [0, T ], T > 0. Then, we define estimators for a and b

as follows:

âT =

(
αT

HΓ(2H)

)− 1
2H

, where αT = 1
T

∫ T
0
X2
t dt−

(
1
T

∫ T
0
Xtdt

)2

, (4.1.4)

b̂T =
1

T

∫ T

0

Xtdt.

In order to describe the asymptotic behavior of (âT , b̂T ) when T →∞, we first need

to define a random variable, called G∞, which is Zq,H-measurable. It is the object of

the following proposition.

Proposition 4.1.2. Assume either (q = 1 and H > 3
4
) or q ≥ 2. Fix T > 0, and let

UT = (UT (t))t≥0 be the process defined as UT (t) =
∫ t

0
e−T (t−u)dZq,H

u . Finally, define the

random variable GT by

GT = T
2
q

(1−H)+2H

∫ 1

0

(
UT (t)2 − E[UT (t)2])dt.

Then GT converges in L2(Ω) to a limit written G∞. Moreover, G∞/BH,q is distributed

according to the Rosenblatt distribution of parameter 1− 2
q
(1−H), where

BH,q =
H(2H − 1)√

(H0 − 1
2
)(4H0 − 3)

×
Γ(2H + 2

q
(1−H))

2H + 2
q
(1−H)− 1

, with H0 = 1− 1−H
q

. (4.1.5)
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(The definition of the Rosenblatt distribution is recalled in Definition 4.2.3.)

We can now describe the asymptotic behavior of (âT , b̂T ) as T →∞.

Theorem 4.1.3. Let X = (Xt)t≥0 be given by (4.1.1)-(4.1.2), where Zq,H = (Zq,H
t )t≥0

is a Hermite process of order q ≥ 1 and parameter H ∈ (1
2
, 1), and where a > 0 and

b ∈ R are (unknown) real parameters. The following convergences take place as T →∞.

1. [Consistency] (âT , b̂T )
a.s.→ (a, b).

2. [Fluctuations] They depend on the values of q and H.

• (Case q = 1 and H < 3
4
)(√

T{âT − a}, T 1−H{b̂T − b}
)

law→
(
− a1+4HσH

2H2Γ(2H)
N,

1

a
N ′
)
, (4.1.6)

where N,N ′ ∼ N (0, 1) are independent and σH is given by

σH =
2H − 1

HΓ(2H)2

√√√√∫
R

(∫
R2
+

e−(u+v)|u− v − x|2H−2dudv

)2

dx. (4.1.7)

• (Case q = 1 and H = 3
4
)(√

T

log T
{âT − a}, T

1
4

{
b̂T − b}

)
→
(

3

4

√
a

π
N,

1

a
N ′
)
, (4.1.8)

where N,N ′ ∼ N (0, 1) are independent.

• (Case q = 1 and H > 3
4
)(

T 2(1−H){âT − a}, T 1−H{b̂T − b}) law→
(
− a2H−1

2H2Γ(2H)

(
G∞ − (BH

1 )2
)
,

1

a
BH

1

)
,

(4.1.9)

where BH = Z1,H is the fractional Brownian motion and G∞ is defined in

Proposition 4.1.2.

• (Case q ≥ 2 and any H)(
T

2
q

(1−H){âT − a}, T 1−H{b̂T − b}) law→

(
− a1− 2

q
(1−H)

2H2Γ(2H)
G∞,

1

a
Zq,H

1

)
,(4.1.10)

where G∞ is defined in Proposition 4.1.2.
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As we see from our Theorem 4.1.3, strong consistency for âT and b̂T always holds,

irrespective of the values of q (and H). That is, when one is only interested in the first

order approximation for a and b, Vasicek-type model (4.1.1)-(4.1.2) displays a kind of

universality with respect to the order q of the underlying Hermite process. But, as

point 2 shows, the situation becomes different when one looks at the fluctuations, that

is, when one seeks to construct asymptotic confidence intervals: they heavily depend

on q (and H).

The rest of the paper is structured as follows. Section 4.2 presents some basic results

about multiple Wiener-Itô integrals and Hermite processes, as well as some other facts

which are used throughout the paper. The proof of Proposition 4.1.2 is then given in

Section 4.3. Section 4.4 is devoted to the proof of the consistency part of Theorem

4.1.3, whereas the fluctuations are analyzed in Section 4.5.

4.2 Preliminaries

4.2.1 Multiple Wiener-Itô integrals

Let B =
{
B(h), h ∈ L2(R)

}
be a Brownian field defined on a probability space

(Ω,F ,P), that is, a centered Gaussian family satisfying E[B(h)B(g)] = 〈h, g〉L2(R) for

any h, g ∈ L2(R).

For every q ≥ 1, the qth Wiener chaos Hq is defined as the closed linear subspace of

L2(Ω) generated by the family of random variables {Hq(B(h)), h ∈ L2(R), ‖h‖L2(R) =

1}, where Hq is the qth Hermite polynomial (H1(x) = x, H2(x) = x2 − 1, H3(x) =

x3 − 3x, and so on).

The mapping IBq (h⊗q) = Hq(B(h)) can be extended to a linear isometry between

L2
s(Rq) (= the space of symmetric square integrable functions of Rq, equipped with

the modified norm
√
q!‖ · ‖L2(Rq)) and the qth Wiener chaos Hq. When f ∈ L2

s(Rq),

the random variable IBq (f) is called the multiple Wiener-Itô integral of f of order q;

equivalently, one may write

IBq (f) =

∫
Rq
f(ξ1, . . . , ξq)dBξ1 . . . dBξq . (4.2.1)

Multiple Wiener-Itô integrals enjoy many nice properties. We refer to [7] or [10] for
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a comprehensive list of them. Here, we only recall the orthogonality relationship, the

isometry formula and the hypercontractivity property.

First, the orthogonality relationship (when p 6= q) or isometry formula (when p = q)

states that, if f ∈ L2
s(Rp) and g ∈ L2

s(Rq) with p, q ≥ 1, then

E[IBp (f)IBq (g)] =

{
p!
〈
f, g
〉
L2(Rp)

if p = q

0 if p 6= q.
(4.2.2)

Second, the hypercontractivity property reads as follows: for any q ≥ 1, any k ∈
[2,∞) and any f ∈ L2

s(Rq),

E[|IBq (f)|k]1/k ≤ (k − 1)q/2E[|IBq (f)|2]1/2. (4.2.3)

As a consequence, for any q ≥ 1 and any k ∈ [2,∞), there exists a constant Ck,q > 0

such that, for any F ∈ ⊕ql=1Hl, we have

E[|F |k]1/k ≤ Ck,q
√
E[F 2]. (4.2.4)

4.2.2 Hermite processes

We now give the definition and present some basic properties of Hermite processes.

We refer the reader to the recent book [12] for any missing proof and/or any unexplained

notion.

Definition 4.2.1. The Hermite process (Zq,H
t )t≥0 of order q ≥ 1 and self-similarity

parameter H ∈ (1
2
, 1) is defined as

Zq,H
t = c(H, q)

∫
Rq

(∫ t

0

q∏
j=1

(s− ξj)
H0− 3

2
+ ds

)
dBξ1 . . . dBξq , (4.2.5)

where

c(H, q) =

√
H(2H − 1)

q!βq(H0 − 1
2
, 2− 2H0)

and H0 = 1 +
H − 1

q
∈
(

1− 1

2q
, 1

)
. (4.2.6)

(The integral (4.2.5) is a multiple Wiener-Itô integral of order q of the form (4.2.1).)

The positive constant c(H, q) in (4.2.6) has been chosen to ensure that E[(Zq,H
1 )2] =

1.
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Definition 4.2.2. A random variable which has the same law as Zq,H
1 is called a

Hermite random variable of order q and parameter H.

Hermite process of order q = 1 is nothing but the fractional Brownian motion. It is

the only Hermite process to be Gaussian (and that one could have defined for H ≤ 1
2

as well). Hermite process of order q = 2 is called the Rosenblatt process.

Definition 4.2.3. A random variable which has the same law as Z2,H
1 is called a

Rosenblatt random variable of parameter H.

Except for Gaussianity, Hermite processes of order q ≥ 2 share many properties

with the fractional Brownian motion (corresponding to q = 1). We list some of them

in the next statement.

Proposition 4.2.4. The Hermite process Zq,H of order q ≥ 1 and Hurst parameter

H ∈ (1
2
, 1) enjoys the following properties.

• [Self-similarity] For all c > 0, (Zq,H
ct )t≥0

law
= (cHZq,H

t )t≥0.

• [Stationarity of increments] For any h > 0, (Zq,H
t+h − Z

q,H
h )t≥0

law
= (Zq,H

t )t≥0.

• [Covariance function] For all s, t ≥ 0, E[Zq,H
t Zq,H

s ] = 1
2
(t2H + s2H − |t− s|2H).

• [Long-range dependence]
∑∞

n=0 |E[Zq,H
1 (Zq,H

n+1 − Zq,H
n )]| =∞.

• [Hölder continuity] For any ζ ∈ (0, H) and any compact interval [0, T ] ⊂ R+,

(Zq,H
t )t∈[0,T ] admits a version with Hölder continuous sample paths of order ζ.

• [Finite moments] For every p ≥ 1, there exists a constant Cp,q > 0 such that

E[|Zq,H
t |p] ≤ Cp,qt

pH for all t ≥ 0.

4.2.3 Wiener integral with respect to Hermite processes

The Wiener integral of a deterministic function f with respect to a Hermite process

Zq,H , which we denote by
∫
R f(u)dZq,H

u , has been constructed by Maejima and Tudor

in [5].
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Below is a very short summary of what will is needed in the paper about those

integrals. The stochastic integral
∫
R f(u)dZq,H

u is well-defined for any f belonging to

the space |H| of functions f : R→ R such that∫
R

∫
R
|f(u)f(v)||u− v|2H−2dudv <∞.

We then have, for any f, g ∈ |H|, that

E
[ ∫

R
f(u)dZq,H

u

∫
R
g(v)dZq,H

u

]
= H(2H − 1)

∫
R

∫
R
f(u)g(v)|u− v|2H−2dudv. (4.2.7)

Another important and useful property is that, whenever f ∈ |H|, the stochastic integral∫
R f(u)dZq,H

u admits the following representation as a multiple Wiener-Itô integral of

the form (4.2.1):∫
R
f(u)dZq,H

u = c(H, q)

∫
Rq

(∫
R
f(u)

q∏
j=1

(u− ξj)
H0− 3

2
+ du

)
dBξ1 . . . dBξq , (4.2.8)

with c(H, q) and H0 given in (4.2.6).

4.2.4 Existing limit theorems

To the best of our knowledge, only a few limit theorems have been already obtained

in the litterature for quadratic functionals of the Hermite process. Here we mainly focus

on one of them, because it is the one that we will need in order to study the fluctuations

of (âT , b̂T ) in Theorem 4.1.3. To state it, we define

Yt =

∫ t

0

e−a(t−u)dZq,H
u , t ≥ 0. (4.2.9)

The following result has been obtained by the second-named author in [11].

Proposition 4.2.5. Let Y be given by (4.2.9), with either q ≥ 2 or (q = 1 and H > 3
4
).

Then, as T →∞,

T
2
q

(1−H)−1

∫ T

0

(
Y 2
t − E[Y 2

t ]
)
dt

law→ BH,q a
−2H− 2

q
(1−H) ×RH′ , (4.2.10)

where RH′ is distributed according to a Rosenblatt random variable of parameter H ′ =

1− 2
q
(1−H) and BH,q is given by (4.1.5).
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Along the proof of Theorem 4.1.3, we will also make use of another result, which

has been shown in [6].

Proposition 4.2.6. Let Y be given by (4.2.9), with q = 1 and H ∈
(

1
2
, 3

4

)
. Then, as

T →∞,

T−
1
2

∫ T

0

(
Y 2
t − E[Y 2

t ]
)
dt

law→ a2HσH N, (4.2.11)

where σH is given by (4.1.7) and N ∼ N (0, 1).

Relying on the seminal Peccati-Tudor criterion on asymptotic joint normality (see,

e.g., [7, Theorem 6.2.3]) and since T−
1
2

∫ T
0

(
Y 2
t − E[Y 2

t ]
)
dt (resp. T−HBH

T ) belongs to

the second (resp. first) Wiener chaos, we have even more than (4.2.11) for free, namely(
T−

1
2

∫ T

0

(
Y 2
t − E[Y 2

t ]
)
dt, T−HBH

T

)
law→ (a2HσH N,N

′), (4.2.12)

where N,N ′ ∼ N(0, 1) are independent.

Finally, in the critical case q = 1 and H = 3
4
, we will rely on the following result,

established by Hu, Nualart and Zhou in [4, Theorem 5.4].

Proposition 4.2.7. Let Y be given by (4.2.9), with q = 1 and H = 3
4
. Then, as

T →∞,

(T log T )−
1
2

∫ T

0

(
Y 2
t − E[Y 2

t ]
)
dt

law→ 27

64a2
N, (4.2.13)

where N ∼ N(0, 1).

Similarly to (4.2.12) and for exactly the same reason, we have even more than

(4.2.13) for free, namely:(
(T log T )−

1
2

∫ T

0

(
Y 2
t − E[Y 2

t ]
)
dt, T−

3
4B

3
4
T

)
law→ (

27

64a2
N,N ′), (4.2.14)

where N,N ′ ∼ N(0, 1) are independent.

4.2.5 A few other useful facts

In this section, we let X be given by (4.1.2), with a > 0, b ∈ R and Zq,H a Hermite

process of order q ≥ 1 and Hurst parameter H ∈ (1
2
, 1). We can write

Xt = h(t) + Yt, where h(t) = b(1− e−at) and Y is given by (4.2.9). (4.2.15)
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The following limit, obtained as a consequence of the isometry property (4.2.7), will be

used many times throughout the sequel:

E[Y 2
T ] = H(2H − 1)

∫
[0,T ]2

e−a(T−u)e−a(T−v)|u− v|2H−2dudv

= H(2H − 1)

∫
[0,T ]2

e−a ue−a v|u− v|2H−2dudv

→ H(2H − 1)

∫
[0,∞)2

e−a ue−a v|u− v|2H−2dudv

= a−2HHΓ(2H) <∞. (4.2.16)

Identity (4.2.16) comes from

(2H − 1)

∫
[0,∞)2

e−a(t+s)|t− s|2H−2dsdt

= a−2H(2H − 1)

∫
[0,∞)2

e−(t+s)|t− s|2H−2dsdt = a−2HΓ(2H), (4.2.17)

see, e.g., Lemma 5.1 in Hu-Nualart [3] for the second equality. In particular, we note

that

E[Y 2
T ] = O(1) as T →∞. (4.2.18)

Another simple but important fact that will be used is the following identity:∫ T

0

Ytdt =
1

a
(Zq,H

T − YT ), (4.2.19)

which holds true since∫ T

0

Ytdt =

∫ T

0

(∫ t

0

e−a(t−u)dZq,H
u

)
dt =

∫ T

0

(∫ T

u

e−a(t−u)dt

)
dZq,H

u =
1

a
(Zq,H

T − YT ).

4.3 Proof of Proposition 4.1.2

We are now ready to prove Proposition 4.1.2.

We start by showing that GT converges well in L2(Ω). In order to do so, we will

check that the Cauchy criterion is satisfied. According to (4.2.8), we can write UT (t) =

c(H, q)Iq(gT (t, ·)), where

gT (t, ξ1, . . . , ξq) =

∫ t

0

e−T (t−v)

q∏
j=1

(v − ξj)
H0− 3

2
+ dv.
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As a result, we can write, thanks to [9, identity (3.25)],

Cov(US(s)2, UT (t)2)

= c(H, q)4

q∑
r=1

(
q

r

)2{
q!2‖gS(s, ·)⊗r gT (t, ·)‖2 + r!2(2q − 2r)!‖gS(s, ·)⊗̃rgT (t, ·)‖2

}
,

implying in turn that

E[GTGS]

= (ST )
2
q

(1−H)+2H

∫
[0,1]2

Cov(US(s)2, UT (t)2)dsdt

= c(H, q)4(ST )
2
q

(1−H)+2H
q∑
r=1

(
q

r

)2

q!2
∫

[0,1]2
‖gS(s, ·)⊗r gT (t, ·)‖2dsdt

+c(H, q)4(ST )
2
q

(1−H)+2H
q∑
r=1

(
q

r

)2

r!2(2q − 2r)!

∫
[0,1]2
‖gS(s, ·)⊗̃rgT (t, ·)‖2dsdt.

To check the Cauchy criterion for GT , we are thus left to show the existence, for any

r ∈ {1, . . . , q}, of

lim
S,T→∞

(ST )
2
q

(1−H)+2H

∫
[0,1]2
‖gS(s, ·)⊗r gT (t, ·)‖2dsdt (4.3.1)

and lim
S,T→∞

(ST )
2
q

(1−H)+2H

∫
[0,1]2
‖gS(s, ·)⊗̃rgT (t, ·)‖2dsdt. (4.3.2)

Using that
∫
R(u−x)

H0− 3
2

+ (v−x)
H0− 3

2
+ du = cH |v−u|2H0−2 with cH a constant depending

only on H and whose value can change from one line to another, we have(
gS(s, ·)⊗r gT (t, ·)

)
(x1, . . . , x2q−2r)

= cH

∫ s

0

∫ t

0

|v − u|(2H0−2)re−S(s−u)e−T (t−v)

q−r∏
j=1

(u− xj)
H0− 3

2
+

2q−2r∏
j=q−r+1

(v − yj)
H0− 3

2
+ dudv.

Now, let σ, γ be two permutations of S2q−2r, and write gS(s, ·) ⊗σ,r gT (t, ·) to indicate

the function

(x1, . . . , x2q−2r) 7→
(
gS(s, ·)⊗r gT (t, ·)

)
(xσ(1), . . . , xσ(2q−2r)).

We can write, for some integers a1, . . . , a4 satisfying a1 + a2 = a3 + a4 = q − r (and
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whose exact value is useless in what follows),〈
gS(s, ·)⊗σ,r gT (t, ·), gS(s, ·)⊗γ,r gT (t, ·)

〉
= cH

∫ s

0

∫ t

0

∫ s

0

∫ t

0

|v − u|(2H0−2)r|z − w|(2H0−2)r|u− w|(2H0−2)a1

×|u− z|(2H0−2)a2|v − w|(2H0−2)a3 |u− z|(2H0−2)a4

×e−S(s−u)e−T (t−v)e−S(s−w)e−T (t−z)dudvdwdz.

We deduce that

(ST )
2
q

(1−H)+2H

∫
[0,1]2

〈
gS(s, ·)⊗σ,r gT (t, ·), gS(s, ·)⊗γ,r gT (t, ·)

〉
dsdt

= cH(ST )
2
q

(1−H)+2H

∫
[0,1]2

(∫ s

0

∫ t

0

∫ s

0

∫ t

0

|v − u|(2H0−2)r|z − w|(2H0−2)r

×|u− w|(2H0−2)a1|u− z|(2H0−2)a2 |v − w|(2H0−2)a3|v − z|(2H0−2)a4

×e−S(s−u)e−T (t−v)e−S(s−w)e−T (t−z)dudvdwdz
)
dsdt

= cH(ST )
2
q

(1−H)+2H

∫
[0,1]2

(∫ s

0

∫ t

0

∫ s

0

∫ t

0

|v − u− t+ s|(2H0−2)r|z − w + t− s|(2H0−2)r

×|u− w|(2H0−2)a1|u− z + t− s|(2H0−2)a2 |v − w − t+ s|(2H0−2)a3

×|v − z|(2H0−2)a4e−Sue−Tve−Swe−Tzdudvdwdz
)
dsdt

= cHS
2
q

(1−H)(1+a1−q)T
2
q

(1−H)(1+a4−q)

×
∫

[0,1]2

(∫ Ss

0

∫ Tt

0

∫ Ss

0

∫ Tt

0

∣∣∣ v
T
− u

S
− t+ s

∣∣∣(2H0−2)r ∣∣∣ z
T
− w

S
+ t− s

∣∣∣(2H0−2)r

×|u− w|(2H0−2)a1
∣∣∣u
S
− z

T
+ t− s

∣∣∣(2H0−2)a2
∣∣∣ v
T
− w

S
− t+ s

∣∣∣(2H0−2)a3

×|v − z|(2H0−2)a4e−ue−ve−we−zdudvdwdz
)
dsdt.

It follows that

lim
S,T→∞

(ST )
2
q

(1−H)+2H

∫
[0,1]2

〈
gS(s, ·)⊗σ,r gT (t, ·), gS(s, ·)⊗γ,r gT (t, ·)

〉
dsdt

exists whatever r and a1, . . . , a4 such that a1 + a2 = a3 + a4 = q − r. Note that this

limit is always zero, except when r = 1, a1 = a4 = q− 1 and a2 = a3 = 0, in which case

it is given by

cH

∫
[0,1]2
|t− s|4H0−4 dtds×

(∫
R2
+

|u− w|(2H0−2)(q−1)e−(u+w)dudw

)2

<∞.

99



Since

gS(s, ·)⊗̃rgT (t, ·) =
1

(2q − 2r)!

∑
σ∈S2q−2r

gS(s, ·)⊗σ,r gT (t, ·)

the existence of the two limits (4.3.1)-(4.3.2) follow, implying in turn the existence of

G∞.

Now, let us check the claim about the distribution of G∞. Let Ỹt = U1(t), that is,

Ỹt =
∫ t

0
e−(t−u)dZq,H

u , t ≥ 0. By a scaling argument, it is straightforward to check that

(ỸtT )t≥0
law
= TH(UT (t))t≥0 for any fixed T > 0. As a result,

T
2
q

(1−H)−1

∫ T

0

(Ỹ 2
t − E[Ỹ 2

t ])dt = T
2
q

(1−H)

∫ 1

0

(Ỹ 2
tT − E[Ỹ 2

tT ])dt
law
= GT .

Using (4.2.10), we deduce that GT/BH,q converges in law to the Rosenblatt distribution

of parameter 1− 2
q
(1−H), hence the claim.

4.4 Proof of the consistency part in Theorem 4.1.3

The consistency part of Theorem 4.1.3 is directly obtained as a consequence of the

following two propositions.

Proposition 4.4.1. Let X be given by (4.1.1)-(4.1.2) with a > 0, b ∈ R, q ≥ 1 and

H ∈ (1
2
, 1). As T →∞, one has

1

T

∫ T

0

Xtdt→ b a.s. (4.4.1)

Proof. We use (4.1.2) to write

1

T

∫ T

0

Xtdt =
b

T

∫ T

0

(1− e−at)dt+
1

T

∫ T

0

Ytdt.

Since it is straightforward that b
T

∫ T
0

(1 − e−at)dt → b, we are left to show that

1
T

∫ T
0
Ytdt→ 0 almost surely.

By (4.2.19), one can write, for any integer n ≥ 1,

E

[(
1

n

∫ n

0

Ytdt

)2
]
≤ 2

a2n2

(
E[(Zq,H

n )2] + E[Y 2
n ]
)

= O(n2H−2),
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where the last equality comes from the H-selfsimilarity property of Zq,H as well as

(4.2.18). Since 1
T

∫ T
0
Ytdt belongs to the qth Wiener chaos, it enjoys the hypercontrac-

tivity property (4.2.3). As a result, for all p > 1
1−H and λ > 0,

∞∑
n=1

P
(∣∣∣ 1
n

∫ n

0

Ytdt
∣∣∣ > λ

)
≤ 1

λp

∞∑
n=1

E
[∣∣∣ 1
n

∫ n

0

Ytdt
∣∣∣p] ≤ cst(p)

λp

∞∑
n=1

E
[( 1

n

∫ n

0

Ytdt
)2
]p/2

≤ cst(p)

λp

∞∑
n=1

n−(1−H)p <∞.

We deduce from the Borel-Cantelli lemma that 1
n

∫ n
0
Ytdt→ 0 almost surely as n→∞.

Finally, fix T > 0 and let n = bT c be its integer part. We can write

1

T

∫ T

0

Ytdt =
1

n

∫ n

0

Ytdt+
1

T

∫ T

n

Ytdt+

(
1

T
− 1

n

)∫ n

0

Ytdt. (4.4.2)

We have just proved above that 1
n

∫ n
0
Ytdt tends to zero almost surely as n → ∞. We

now consider the second and third terms in (4.4.2). We have, almost surely as T →∞,∣∣∣∣( 1

T
− 1

n

)∫ n

0

Ytdt

∣∣∣∣ =

(
1− n

T

)∣∣∣∣ 1n
∫ n

0

Ytdt

∣∣∣∣ ≤ ∣∣∣∣ 1n
∫ n

0

Ytdt

∣∣∣∣→ 0,

and ∣∣∣∣ 1

T

∫ T

n

Ytdt

∣∣∣∣ ≤ 1

n

∫ n+1

n

|Yt|dt.

To conclude, it remains to prove that 1
n

∫ n+1

n
|Yt|dt → 0 almost surely as n → ∞.

Using (4.2.18) we have, for all fixed λ > 0,

P
{

1

n

∫ n+1

n

|Yt|dt > λ

}
≤ 1

λ2
E
[(

1

n

∫ n+1

n

|Yt|dt
)2]

≤ 1

λ2n2

∫ n+1

n

∫ n+1

n

√
E[Y 2

s ]
√
E[Y 2

t ]dsdt = O(n−2).

Hence, as n→∞, the Borel-Cantelli lemma applies and implies that 1
n

∫ n+1

n
|Yt|dt goes

to zero almost surely. This completes the proof of (4.4.1).

Proposition 4.4.2. Let X be given by (4.1.1)-(4.1.2) with a > 0, b ∈ R, q ≥ 1 and

H ∈ (1
2
, 1). As T →∞, one has

1

T

∫ T

0

X2
t dt→ b2 + a−2HHΓ(2H) a.s. (4.4.3)
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Proof. We first use (4.1.2) to write

1

T

∫ T

0

X2
t dt =

1

T

∫ T

0

h(t)2dt+
2

T

∫ T

0

h(t)Ytdt+
1

T

∫ T

0

Y 2
t dt.

We now study separately the three terms in the previous decomposition. More precisely

we will prove that, as T →∞,

1

T

∫ T

0

h(t)2dt → b2, (4.4.4)

1

T

∫ T

0

h(t)Ytdt → 0 a.s. (4.4.5)

1

T

∫ T

0

Y 2
t dt → a−2HHΓ(2H) a.s., (4.4.6)

from which (4.4.3) follows immediately.

First term. By Lebesgue dominated convergence, one has

1

T

∫ T

0

h(t)2dt =

∫ 1

0

h(Tt)2dt = b2

∫ 1

0

(1− e−aT t)2dt→ b2,

that is, (4.4.4) holds.

Second term. First, we claim that

T−H
∫ T

0

h(t)Ytdt
law→ b

a
Zq,H

1 . (4.4.7)

Indeed, let us decompose:∫ T

0

h(t)Ytdt = b

∫ T

0

(1− e−at)Ytdt = b

∫ T

0

Ytdt− b
∫ T

0

e−at Ytdt.

Using (4.2.18) in the last line, we can write∫ T

0

e−at Ytdt =

∫ T

0

e−at
(∫ t

0

e−a(t−s)dZq,H
s

)
dt

=

∫ T

0

(∫ T

s

e−a(2t−s)dt

)
dZq,H

s =
1

2a

∫ T

0

(e−a(2T−s) − e−as)dZq,H
s

=
1

2a

(
e−aTYT −

∫ T

0

e−asdZq,H
s

)
→ − 1

2a

∫ ∞
0

e−asdZq,H
s in L2(Ω) as T →∞. (4.4.8)
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The announced convergence (4.4.7) is a consequence of (4.2.19), (4.4.8) and the selfsim-

ilarity of Zq,H . Now, relying on the Borel-Cantelli lemma and the fact that
∫ T

0
h(t)Ytdt

enjoys the hypercontractivity property, it is not difficult to deduce from (4.4.7) that

(4.4.5) holds.

Third term. Firstly, let us write, as T →∞,

1

T

∫ T

0

E[Y 2
t ]dt = H(2H − 1)

1

T

∫ T

0

dt

∫ t

0

∫ t

0

dudve−aue−av|u− v|2H−2

= H(2H − 1)

∫ 1

0

dt

∫ Tt

0

∫ Tt

0

dudve−aue−av|u− v|2H−2

−→ H(2H − 1)

∫ ∞
0

∫ ∞
0

dudve−aue−av|u− v|2H−2

= a−2HHΓ(2H). (4.4.9)

To conclude the proof of (4.4.6), we are thus left to show that :

1

T

∫ T

0

(Y 2
t − E[Y 2

t ])dt→ 0 a.s. (4.4.10)

First, we claim that, as n ∈ N∗ goes to infinity,

Gn :=
1

n

∫ n

0

(Y 2
t − E[Y 2

t ])dt→ 0 a.s. (4.4.11)

Indeed, for all fixed λ > 0 and p ≥ 1 we have, by the hypercontractivity property

(4.2.4) for Gn belonging to a finite sum of Wiener chaoses,

P{|Gn| > λ} ≤ 1

λp
E[|Gn|p] ≤

cst(p)

λp
E[G2

n]p/2.

If (q ≥ 1 and H > 3
4
) or q ≥ 2, combining (4.2.10) with, e.g., [8, Lemma 2.4] leads

to

sup
T>0

E
[(
T

2
q

(1−H)−1

∫ T

0

(Y 2
t − E[Y 2

t ])dt

)2]
<∞ (4.4.12)

(note that one could also prove (4.4.12) directly), implying in turn that P{|Gn| > λ} =

O(n−
2p
q

(1−H)); choosing p so that 2p
q

(1−H) > 1 leads to
∑∞

n=1 P{|Gn| > λ} <∞, and

so our claim (4.4.11) follows from Borel-Cantelli lemma.

If q = 1 and H < 3
4
, the same reasoning (but using this time (4.2.11) instead of

(4.2.10)) leads exactly to the same conclusion (4.4.11).
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Now, fix T > 0 and consider its integer part n = bT c. One has

GT = Gn +
1

T

∫ T

n

(Y 2
t − E[Y 2

t ])dt+

(
1

T
− 1

n

)∫ n

0

(Y 2
t − E[Y 2

t ])dt. (4.4.13)

We have just proved above that Gn tends to zero almost surely as n → ∞. We now

consider the third term in (4.4.13). We have, using (4.4.11):∣∣∣∣ 1

T
− 1

n

∣∣∣∣∣∣∣∣ ∫ n

0

(Y 2
t − E[Y 2

t ])dt

∣∣∣∣ =

(
1− n

T

)∣∣∣∣ 1n
∫ n

0

(Y 2
t − E[Y 2

t ])dt

∣∣∣∣ ≤ |Gn| → 0 a.s.

Finally, as far as the second term in (4.4.13) is concerned, we have∣∣∣∣ 1

T

∫ T

n

(Y 2
t − E[Y 2

t ])dt

∣∣∣∣ ≤ 1

n

∫ n+1

n

|Y 2
t − E[Y 2

t ]|dt.

To conclude, it thus remains to prove that, as n→∞,

Fn :=
1

n

∫ n+1

n

|Y 2
t − E[Y 2

t ]|dt→ 0 a.s. (4.4.14)

By hypercontractivity and (4.2.16), one can write

Var(Y 2
t ) ≤ cst(q)(E[Y 2

t ])2 ≤ cst(q)a−4HH2Γ(2H)2.

Thus, supt Var(Y 2
t ) <∞, and it follows that

E[F 2
n ] =

1

n2

∫ n+1

n

∫ n+1

n

E
[∣∣Y 2

t − E[Y 2
t ]
∣∣∣∣Y 2

s − E[Y 2
s ]
∣∣]dsdt = O(n−2).

Hence
∑∞

n=1 P{|Fn| > λ} ≤
∑∞

n=1
1
λ2
E[F 2

n ] <∞ for all λ > 0, and Borel-Cantelli lemma

leads to (4.4.14) and concludes the proof of (4.4.6).

4.5 Proof of the fluctuation part in Theorem 4.1.3

We now turn to the proof of the part of Theorem 4.1.3 related to fluctuations. We

start with the fluctuations of b̂T , which are easier compared to âT .

Fluctuations of b̂T . Using first (4.2.15) and then (4.2.19), we can write

T 1−H{b̂T − b} = T 1−H
{

1

T

∫ T

0

Ytdt−
b

T

∫ T

0

e−atdt

}
=
Zq,H
T

aTH
+O(T−H), (4.5.1)
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which will be enough to conclude, see the end of the present section.

Fluctuations of âT . As a preliminary step, we first concentrate on the asymptotic

behavior, as T →∞, of the random quantity

`T := αT − a−2HHΓ(2H),

where αT is given by (4.1.4). Since Xt = h(t) + Yt, see (4.2.15), we have

`T = AT +BT + 2CT +DT − E2
T − 2ETFT − F 2

T ,

where

AT =
1

T

∫ T

0

(Y 2
t − E[Y 2

t ])dt, BT =
1

T

∫ T

0

E[Y 2
t ]dt− a−2HHΓ(2H)

CT =
1

T

∫ T

0

Yth(t)dt, DT =
1

T

∫ T

0

h2(t)dt, ET =
1

T

∫ T

0

Ytdt, FT =
1

T

∫ T

0

h(t)dt.

We now treat each of these terms separately.

Term BT . Recall from (4.2.16) that

E[Y 2
t ] = H(2H − 1)

∫
[0,T ]2

e−a(u+v)|u− v|2H−2dudv

→ H(2H − 1)

∫
[0,∞)2

e−a(u+v)|u− v|2H−2dudv = a−2HHΓ(2H).

As a result,

|BT | =

∣∣∣∣ 1

T

∫ T

0

E[Y 2
t ]dt− a−2HHΓ(2H)

∣∣∣∣
≤ H(2H − 1)

T

∫ T

0

dt

∫
[0,∞)2\[0,t]2

dudv e−a(u+v)|u− v|2H−2

≤ 2H(2H − 1)

T

∫ T

0

dt

∫ ∞
t

dv e−av
∫ ∞

0

du e−au1{v≥u}(v − u)2H−2

≤ 2H(2H − 1)

T

∫ ∞
0

dt

∫ ∞
t

dv e−av
∫ v

0

du u2H−2

=
2H

T

∫ ∞
0

dt

∫ ∞
t

dv e−avv2H−1 =
2H

T

∫ ∞
0

e−avv2Hdv = O(
1

T
).

Term CT . We can write

CT =
1

T

∫ T

0

Yth(t)dt =
b

T

∫ T

0

(1− e−at)Ytdt = b

(
1

T

∫ T

0

Ytdt−
1

T

∫ T

0

e−atYtdt

)
.
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But

1

T

∫ T

0

e−atYtdt =
1

T

∫ T

0

e−at
(∫ t

0

e−a(t−s)dZq,H
s

)
dt

=
1

T

∫ T

0

eas
(∫ T

s

e−2atdt

)
dZq,H

s =
1

2aT

(∫ T

0

e−asdZq,H
s − e−aTYT

)
.

Using (4.2.18) and
∫ T

0
e−asdZq,H

s →
∫∞

0
e−asdZq,H

s in L2(Ω), we deduce that

CT = bET +O(
1

T
).

Term DT . It is straightforward to check that

DT =
1

T

∫ T

0

h2(t)dt =
b2

T

∫ T

0

(1− e−at)2dt = b2 +O(
1

T
).

Term ET . Thanks to (4.2.18) and (4.2.19), we have

ET =
1

T

∫ T

0

YTdt =
1

a T
(Zq,H

T − YT ) =
Zq,H
T

a T
+O(

1

T
).

Since Zq,H
T

law
= THZq,H

1 by selfsimilarity, we deduce

E2
T =

(Zq,H
T )2

a2T 2
+O(TH−2).

Term FT . Similarly to DT , it is straightforward to check that

FT =
1

T

∫ T

0

h(t)dt =
b

T

∫ T

0

(1− e−at)dt = b+O(
1

T
).

Combining everything together, we eventually obtain that

`T = AT −
(Zq,H

T )2

a2T 2
+O(T−1). (4.5.2)

Fluctuations of (âT , b̂T ). We first rely on the scaling property satisfied by Zq,H to

obtain that(
T

2
q

(1−H)AT , T
−HZq,H

T

)
law
=
(
a−

2
q

(1−H)−2H GaT , Z
q,H
1

)
L2

→
(
a−

2
q

(1−H)−2H G∞, Z
q,H
1

)
.
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If (q = 1 and H > 3
4
) or q ≥ 2, a Taylor expansion yields

T
2
q

(1−H){âT − a} = T
2
q

(1−H) a

[(
1 +

a2H `T
HΓ(2H)

)− 1
2H

− 1

]

= − a1+2H

2H2Γ(2H)

(
T

2
q

(1−H)AT − T
2
q

(1−H)−2 (Zq,H
T )2

a2

)
+ o(1),

implying in turn(
T

2
q

(1−H){âT − a}, T 1−H{b̂T − b})
=

(
− a1+2H

2H2Γ(2H)

[
T

2
q

(1−H)AT − T 2( 1
q
−1)(1−H) (T−HZq,H

T )2

a2

]
,
T−HZq,H

T

a

)
+ o(1),

so that (
T

2
q

(1−H){âT − a}, T 1−H{b̂T − b})
law→


(
−a

1− 2
q (1−H)

2H2Γ(2H)
G∞,

Zq,H1

a

)
if q ≥ 2

(
− a2H−1

2H2Γ(2H)
(G∞ − (BH

1 )2),
BH1
a

)
if q = 1 and H > 3

4

,

as claimed.

If q = 1 and H < 3
4
, we write BH instead of Z1,H for simplicity. We deduce from

(4.5.2) and T−2(BH
T )2 law

= T 2H−2(BH
1 )2 that

√
T`T =

√
TAT + o(1), so that(√

T{âT − a}, T 1−H{b̂T − b}) =

(
− a1+2H

2H2Γ(2H)

√
TAT ,

T−HBH
T

a

)
+ o(1),

implying in turn by (4.2.12) that(√
T{âT − a}, T 1−H{b̂T − b})→ (

− a1+4HσH
2H2Γ(2H)

N,
N ′

a

)
,

where N,N ′ ∼ N(0, 1) are independent, as claimed.

Finally, if q = 1 and H = 3
4
, we deduce again from (4.5.2) and T−2(B

3/4
T )2 law

=

T−
1
2 (B

3/4
1 )2 that √

T

log T
`T =

√
T

log T
AT + o(1),
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so that, using (4.2.14),(√
T

log T
{âT − a}, T

1
4

{
b̂T − b}

)
=

(
−16a

5
2

9
√
π

√
T

log T
AT ,

T−
3
4BH

T

a

)
+ o(1)

→
(

3

4

√
a

π
N,

N ′

a

)
,

where N,N ′ ∼ N(0, 1) are independent.
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Chapter 5

Fisher information and multivariate
Fourth Moment Theorem

T. T. Diu Tran

Université du Luxembourg

Abstract

Under the non-degenerate condition in the sense of Malliavin calculus, the conver-

gence in Fisher information distance of random vectors whose components are multiple

stochastic integrals to any Gaussian random vectors is actually equivalent to conver-

gence of only the fourth moments of each component. Furthermore, by using the

multivariate de Bruijn’s identity and score vector-function, we show that the relative

entropy is bounded from above by Fisher information, thus extending the result in

[2]. The equivalence between several forms of convergence (namely, convergence in

law, total variation distance, relative entropy, Fisher information distance and uniform

convergence for densities) for sequences of uniformly non-degenerate random vectors

having chaotic components is then given.

5.1 Preliminaries

Fix an integer d ≥ 1. Throughout the paper, we consider a d-dimensional square-

integrable and centered random vector F = (F1, . . . , Fd) with invertible covariance

matrix C > 0 (i.e aTCa > 0,∀a ∈ Rd \{0}). Assume that the law of F admits a density
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f = fF with respect to the Lebesgue measure with support in Rd. Let Z = (Z1, . . . , Zd)

be a d-dimensional centered Gaussian vector which has the same covariance matrix as

F and admits the density φ = φd(.;C). Without loss of generality, we may and will

assume that the vectors F and Z are stochastically independent.

5.1.1 Malliavin operators

Let H be a real separable Hilbert space with inner product 〈., .〉. A centered Gaussian

familyX = {X(h) : h ∈ H}, defined on a probability space (Ω,F , P ), is called isonormal

Gaussian process over H if E[X(h1)X(h2)] = 〈h, g〉H for every h1, h2 ∈ H.

Let S be the set of all smooth cylindrical random variables of the form

F = g(X(h1), . . . , X(hn)),

where n ≥ 1, hi ∈ H, and g is infinitely differentiable such that all its partial derivatives

have at most polynomial growth. The Malliavin derivative of F with respect to X is

the element of L2(Ω;H) defined by

DF =
n∑
i=1

∂g

∂xi
(X(h1), . . . , X(hn))hi.

In particular, DX(h) = h. For any m ≥ 1 and p ≥ 1, we denote by Dm,p the closure of

S with respect to the norm

‖F‖pm,p = E[|F |p] +
m∑
j=1

E[‖DjF‖p
H⊗j ].

The Malliavin derivaive D satisfies the chain rule: if ϕ : Rn → R is in C1
b and if

F1, . . . , Fn are in D1,2, then ϕ(F1, . . . , Fn) ∈ D1,2 and we have

Dϕ(F1, . . . , Fn) =
n∑
i=1

∂ϕ

∂xi
(F1, . . . , Fn)DFi.

The divergence operator δ is defined as the adjoint of the derivaive operator D. A

random element u ∈ L2(Ω,H) belongs to the domain of the divergence operator δ,

denoted Dom(δ), if and only if it satisfies

|E[〈DF, u〉H]| ≤ cu
√
E[F 2] for anyF ∈ S.
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If u ∈ Dom(δ), then δ(u) is defined by the so-called integration by parts formula:

E[Fδ(u)] = E[〈DF, u〉H],

for every F ∈ D1,2.

5.1.2 Peccati-Tudor theorem for vector-valued multiple
stochastic integrals

Let us state the following very useful result roughly asserting that, for vectors of

multiple integrals, joint convergence is actually equivalent to componentwise conver-

gence.

Theorem 5.1.1. ([3]) Let d ≥ 2 and q1, . . . , qd ≥ 1 be some fixed integers. Consider

vectors

Fn = (Fn,1, . . . Fn,d) = (Iq1(fn,1), . . . Iqd(fn,d)), n ≥ 1,

with fn,i ∈ H�qi. Let N ∼ Nd(0, C) with det (C) > 0 and assume that

lim
n→∞

E[Fn,iFn,j] = Ci,j, 1 ≥ i, j ≤ d.

Then, as n→∞, the following two assertions are equivalent:

a) Fn converges in law to N ;

b) For every 1 ≤ i ≤ d, Fn,i converges in law to N (0, Ci,i).

5.2 Main results

We now state and prove our main results, already presented in the Introduction of

this thesis. We keep and use the same notation and definitions as in the Introduction.

5.2.1 Multivariate de Bruijn’s identity and upper bound for
relative entropy

Let us recall first the following elementary inequality: if A,B are two d×d symmetric

matrices, and if A is semi-positive definite, then

λmin(B)× tr(A) ≤ tr(AB) ≤ λmax(B)× tr(A), (5.2.1)
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where λmin(B) and λmax(B) stand for the minimum and maximum eigenvalues of B,

respectively. Observe that λmax(B) = ‖B‖op, the operator norm of B.

Proposition 5.2.1. Let F and Z be independent random vectors with the same covari-

ance matrix C. Then,

D(F‖Z) ≤ ‖C‖op ×
1

2
tr(C−1Jst(F )) = ‖C‖op ×

1

2

(
tr(J(F ))− tr(J(Z))

)
. (5.2.2)

As a consequence,

‖f − φ‖2
L1(Rd) = 4(dTV (F,Z))2 ≤ 2D(F‖Z) ≤ ‖C‖optr(C−1Jst(F )). (5.2.3)

Proof. Write tr(Jst(Ft)) = tr(C−1Jst(Ft)C) and apply (5.2.1) to A = C−1Jst(Ft) and

B = C, in order to obtain that

tr(Jst(Ft)) ≤ ‖C‖op × tr(C−1Jst(Ft)) = ‖C‖op
(

tr(J(Ft))− tr(C−1)
)
.

Furthermore, from definition (1.3.15), it is easily seen that (see appendix for details)

ρt(Ft) = E[
√
tρF (F ) +

√
1− tρZ(Z)|Ft].

Then, by Jensen’s inequality, the independence of F and Z and the fact that E[ρF (F )] =

0 and J(Z) = C−1, we have

tr(J(Ft)) =
d∑
j=1

E[(ρt,j(Ft))
2]

=
d∑
j=1

E

[(
E[
√
tρF,j(F ) +

√
1− tρZ,j(Z)|Ft]

)2
]

≤
d∑
j=1

E

[
E[
(√

tρF,j(F ) +
√

1− tρZ,j(Z)
)2

|Ft]
]

(Jensen)

=
d∑
j=1

E

[(√
tρF,j(F ) +

√
1− tρZ,j(Z)

)2
]

=
d∑
j=1

E

[(√
tρF,j(F )

)2
]

+
d∑
j=1

E

[(√
1− tρZ,j(Z)

)2
]

= t tr(J(F )) + (1− t) tr(J(Z))

= t( tr(J(F ))− tr(C−1)) + tr(C−1).
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Putting everything together, we obtain

D(F‖Z) =

∫ 1

0

tr(Jst(Ft))

2t
dt ≤ ‖C‖op

1

2

∫ 1

0

tr(J(Ft))− tr(C−1)

t
dt

≤ ‖C‖op
1

2
( tr(J(F ))− tr(C−1)) = ‖C‖op

1

2
tr(C−1Jst(F )).

Our proof is complete.

5.2.2 Convergence in the sense of Fisher information in the
multivariate Fourth Moment Theorem

The next theorem (Theorem 5.2.3) will rely on the following notion of non-

degeneracy.

Definition 5.2.2. ([1, Sec.5]) A random vector F = (F1, . . . , Fd) in D∞ is called non-

degenerate if its Malliavin matrix γF = (〈DFi, DFj〉H)1≤i,j≤d is invertible a.s. and

(detγF )−1 ∈ ∩p≥1L
p(Ω).

Recall the notation: C = (E[FiFj])1≤i,j≤d covariance matrix of F and Q :=

diag(q1, . . . , qd).

Theorem 5.2.3. Let F = (F1, . . . , Fd) = (Iq1(f1), . . . , Iqd(fd)) be a non-degenerate

random vector with 1 ≤ q1 ≤ . . . ≤ qd and fi ∈ H�qi. Let γF be the Malliavin matrix of

F . Then, for any real number p > 12,

tr(C−1Jst(F )) ≤ cst(C,Q, d)‖(detγF )−1‖4
p

d∑
j=1

∥∥∥‖DFj‖2
H − qjcjj

∥∥∥
L2(Ω)

. (5.2.4)

Proof. Denote by γ−1
F = ((γ−1

F )ij)1≤i,j≤d the inverse matrix of the Malliavin matrix γF .

Note that

D((γ−1
F )ijDFj) = D(γ−1

F )ij ⊗DFj + (γ−1
F )ijD

2Fj.

Applying Hölder’s inequality with 1
p

+ 1
q

= 1 we have

E
[
‖(γ−1

F )ijDFj‖H
]
≤ E

[
|(γ−1

F )ij|‖DFj‖H
]
≤ E

[
|(γ−1

F )ij|p
] 1
p
E
[
‖DFj‖qH

] 1
q
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and

E
[
‖D((γ−1

F )ijDFj)‖2
H⊗2

]
≤ E

[
‖D(γ−1

F )ij‖2
H‖DFj‖2

H

]
+ E

[
|(γ−1

F )ij|2‖D2Fj‖2
H⊗2

]
≤ E

[
‖D(γ−1

F )ij‖2p
H

] 1
p
E
[
‖DFj‖2q

H

] 1
q

+ E
[
|(γ−1

F )ij|2p
] 1
p
E
[
‖D2Fj‖2q

H⊗2

] 1
q
.

Recall from [1, Lemma 5.6] that, for any real number p > 1, ‖γ−1
F ‖p ≤ c‖(detγ)−1‖2p

where the constant c depends on q1, . . . , qd and C. Combining this with the hypercon-

tractivity property of Wiener chaos, we conclude that (γ−1
F )ijDFj ∈ D1,2. The Meyer

inequality eventually yields that (γ−1
F )ijDFj ∈ Domδ.

Let ϕ : Rn → R be a test function. We have, on one hand, for all 1 ≤ i ≤ d

〈DFi, Dϕ(F )〉H =
d∑
j=1

∂jϕ(F ) 〈DFi, DFj〉H .

It follows that

∂jϕ(F ) =
d∑

k=1

(γ−1
F )jk 〈DFk, Dϕ(F )〉H . (5.2.5)

Therefore,

−E[ρF,i(F )ϕ(F )] = E[∂iϕ(F )] =
d∑
j=1

E
[ 〈
Dϕ(F ), (γ−1

F )ijDFj
〉
H

]
=

d∑
j=1

E
[
δ
(

(γ−1
F )ijDFj

)
ϕ(F )

]
Hence

ρF,i(F ) = −E
[
δ
( d∑
j=1

(γ−1
F )ijDFj

)∣∣∣F].
On the other hand, denote by C−1 = (c−1

ij )1≤i,j≤d the inverse matrix of C =

(E[FiFj])1≤i,j≤d. Since δDFj = qjFj, we can write

(C−1F )i =
d∑
j=1

c−1
ij Fj =

d∑
j=1

c−1
ij

1

qj
δDFj = δ

( d∑
j=1

c−1
ij

1

qj
DFj

)
.

Therefore,

ρF,i(F ) + (C−1F )i = −
d∑
j=1

E

[
δ

(
(γ−1
F )ijDFj − c−1

ij

1

qj
DFj

)∣∣∣∣F].
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From (1.3.14) and by Jensen inequality, we have

tr(C−1Jst(F )) =
d∑
i=1

E
[(
ρF,i(F ) + (C−1F )i

)2
]

=
d∑
i=1

E

[( d∑
j=1

E

[
δ

(
(γ−1
F )ijDFj − c−1

ij

1

qj
DFj

)∣∣∣∣F])2]

≤ d

d∑
i=1

E

[ d∑
j=1

(
E

[
δ

(
(γ−1
F )ijDFj − c−1

ij

1

qj
DFj

)∣∣∣∣F])2]

= d

d∑
i,j=1

E

[
δ

(
(γ−1
F )ijDFj − c−1

ij

1

qj
DFj

)2]

= d

d∑
i,j=1

E

[
δ

(
DFj

(
(γ−1
F )ij −

c−1
ij

qj

))2]
.

Now, use the Meyer inequality to get that

E

[
δ

(
DFj

(
(γ−1
F )ij −

c−1
ij

qj

))2]
≤ cst

∥∥∥∥((γ−1
F )ij −

c−1
ij

qj

)
DFj

∥∥∥∥2

D1,2

≤ cst

(
E

[∥∥∥((γ−1
F )ij −

c−1
ij

qj

)
DFj

∥∥∥2

H

]
+ E

[∥∥∥D(((γ−1
F )ij −

c−1
ij

qj

)
DFj

)∥∥∥2

H⊗2

])
.

Notice that

E

[∥∥∥((γ−1
F )ij −

c−1
ij

qj

)
DFj

∥∥∥2

H

]
= E

[∣∣∣(γ−1
F )ij −

c−1
ij

qj

∣∣∣2‖DFj‖2
H

]
≤ E

[∣∣∣(γ−1
F )ij −

c−1
ij

qj

∣∣∣2p] 1
p
E
[
‖DFj‖2q

H

] 1
q

and

E

[∥∥∥D(((γ−1
F )ij −

c−1
ij

qj

)
DFj

)∥∥∥2

H⊗2

]
≤ 2E

[∥∥∥D((γ−1
F )ij −

c−1
ij

qj

)∥∥∥2

H
‖DFj‖2

H

]
+ 2E

[∣∣∣((γ−1
F )ij −

c−1
ij

qj

)∣∣∣2‖D2Fj‖2
H⊗2

]
≤ 2E

[∥∥∥D((γ−1
F )ij −

c−1
ij

qj
)
∥∥∥2p

H

] 1
p

E
[
‖DFj‖2q

H

] 1
q

+ 2E

[∣∣∣((γ−1
F )ij −

c−1
ij

qj

)∣∣∣2p] 1
p
E
[
‖D2Fj‖2q

H⊗2

] 1
q
.
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Applying the hypercontractivity for ‖DFj‖2q
H and ‖D2Fj‖2q

H⊗2 yields

tr(C−1Jst(F )) ≤ c
d∑

i,j=1

∥∥∥(γ−1
F )ij −

c−1
ij

qj

∥∥∥2

D1,2p
= c
∥∥γ−1

F − C
−1Q−1

∥∥2

1,2p
.

Finally, recall from [1, Lemma 5.7] that for all p > 12,

∥∥γ−1
F − C

−1Q−1
∥∥

1,2p
≤ c‖(detγF )−1‖4

p

d∑
j=1

∥∥∥‖DFj‖2
H − qjcjj

∥∥∥
L2(Ω)

,

where the constant c depends only on C,Q and d. This completes the proof.

5.2.3 Equivalence between several forms of convergence

The following statement contains a set of equivalence between several forms of con-

vergence for vectors of multiple integrals, under a uniform non-degeneracy condition.

Corollary 5.2.4. Let d ≥ 2 and let q1, . . . , qd ≥ 1 be some fixed integers. Consider

vectors

Fn = (F1,n, . . . , Fd,n) = (Iq1(f1,n), . . . , Iqd(fd,n)), n ≥ 1,

with fi,n ∈ H�qi. Let C = (cij)1≤i,j≤d be a symmetric non-negative definite matrix,

and let Z ∼ Nd(0, C). Assume that Fn is uniformly non-degenerate (that is, γFn is

invertible a.s. for all n and lim supn→∞ ‖(det γFn)−1‖Lp <∞ for all p > 12) and that

lim
n→∞

E[Fi,nFj,n] = cij, 1 ≤ i, j ≤ d.

Then, as n→∞, the following assertions are equivalent:

(a) Fn converges in law to Z;

(b) For every 1 ≤ i ≤ d, Fi,n converges in law to N (0, cii);

(c) tr(J(Fn))→ tr(J(Z)), that is Fn converges to Z in the sense of Fisher information

distance;

(d) D(Fn‖Z)→ 0;

(e) dTV (Fn, Z)→ 0;
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(f) ‖fFn − φ‖∞ → 0, where fFn and φ are densities of Fn and Z respectively, that is

the uniform convergence of densities.

Proof. Equivalence between (a) and (b) corresponds to the Peccati-Tudor theorem (The-

orem 5.1.1) for vector-valued multiple stochastic integrals. Moreover, it follows from

(b) that ‖DFi,n‖2
H → qicii in L2(Ω) as n → ∞ for all i = 1, . . . , n. On the other hand,

since Fn is uniformly non-degenerate, then supn ‖(det γFn)−1‖4
p < ∞. Applying Theo-

rem 5.2.3, we have the convergence in the sense of Fisher information (c). The proof of

(c)⇒ (d) follows immediately from the estimation between relative entropy and Fisher

information (5.2.2). Implication (d) ⇒ (e) is proved via the Csiszár-Kullback-Pinsker

inequality, whereas (e) ⇒ (a) comes from the fact that convergence in total variation

is stronger then convergence in law.

Finally, the equivalence between (a), (b) and (f) comes from [1, Theorem 5.2], which

asserts that

sup
x∈Rd
|fF (x)− φ(x)| ≤ cst

(∣∣(E[(FiFj)i,j]− C
∣∣+

d∑
j=1

√
E[F 4

j ]− 3(E[F 2
j ])2

)
,

together with the fact that uniform convergence of densities is stronger than convergence

in distribution. Our proof is finished.
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Appendix

If U, V are independent random variables with score functions ρU and ρV , and if

W = U + V with sore function ρW , then for all ϕ ∈ C∞c (Rd)

E[ρW (W )ϕ(W )] = −E[ϕ′(W )]

= −E[ϕ′(U + V )] = E[ρU(U)ϕ(U + V )].

It follows that

ρW (W ) = E[ρU(U)|W ].

Similarly, from the definition of score function (1.3.15), it is easy to give an exact

expression for the score vector-function of Ft, see e.g. [2, Lemma V.2].

Proposition 5.2.5. One has

ρt(Ft) = E[
√
tρF (F ) +

√
1− tρZ(Z)|Ft]. (5.2.6)
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Proof. ∀ϕ ∈ C∞c (Rd),

E[ρt(Ft)ϕ(Ft)] = −E[∇ϕ(Ft)]

= −E[∇ϕ(
√
tF +

√
1− tZ)]

=
1√
t
E[ρF (F )ϕ(

√
tF +

√
1− tZ)]

or =
1√

1− t
E[ρN(N)ϕ(

√
tF +

√
1− tZ)].

It follows that

ρt(Ft) =
1√
t
E[ρF (F )|Ft] =

1√
1− t

E[ρZ(Z)|Ft].

Then,

ρt(Ft) = tρt(Ft) + (1− t)ρt(Ft) = E[
√
tρF (F ) +

√
1− tρZ(Z)|Ft].
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