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Abstract
Starting from themost general formulation of stochastic thermodynamics—i.e. a thermodynamically
consistent nonautonomous stochastic dynamics describing systems in contact with several reservoirs
—wedefine a procedure to identify the conservative and theminimal set of nonconservative
contributions in the entropy production. The former is expressed as the difference between changes
caused by time-dependent drivings and a generalized potential difference. The latter is a sumover the
minimal set offlux-force contributions controlling the dissipative flows across the system.When the
system is initially prepared at equilibrium (e.g. by turning off drivings and forces), a finite-time
detailed fluctuation theoremholds for the different contributions. Our approach relies on identifying
the complete set of conserved quantities and can be viewed as the extension of the theory of generalized
Gibbs ensembles to nonequilibrium situations.

1. Introduction

Stochastic thermodynamics provides a rigorous formulation of nonequilibrium thermodynamics for open
systems described byMarkovian dynamics [1–4]. Thermodynamic quantities fluctuate and the first and second
law of thermodynamics can be formulated along single stochastic trajectories.Most notably, entropy-
production fluctuations exhibit a universal symmetry, called fluctuation theorem (FT). This latter implies,
among other things, that the average entropy production is non-negative. Besides being conceptually new, this
framework has been shown experimentally relevant inmany different contexts [5]. It also provides a solid
ground to analyze energy conversion [3, 6, 7], the cost of information processing [8–12], and speed-accuracy
trade-offs [13, 14] in small systems operating far from equilibrium.

In stochastic thermodynamics, the dynamics is expressed in terms ofMarkovian rates describing transition
probabilities per unit time between states. The thermodynamics, on the other hand, assigns conserved quantities
to each system state (e.g. energy and particle number). Thismeans that transitions among states entail an
exchange of these conserved quantities between the system and the reservoirs. The core assumption providing
the connection between dynamics and thermodynamics is local detailed balance. It states that the log ratio of
each forward and backward transition rate corresponds to the entropy changes in the reservoirs caused by the
exchange of the conserved quantities (divided by the Boltzmann constant). These changes are expressed as the
product of the entropic intensive fields characterizing the reservoirs (e.g. inverse temperature, chemical
potential divided by temperature) and the corresponding changes of conserved quantities in the reservoirs, in
accordance to the fundamental relation of equilibrium thermodynamics in the entropy representation.
Microscopically, the local detailed balance arises from the assumption that the reservoirs are at equilibrium [15].

In this paper, we ask a few simple questions which lie at the heart of nonequilibrium thermodynamics.We
consider a system subject to time-dependent drivings—i.e. nonautonomous—and in contact withmultiple
reservoirs.What is themost fundamental representation of the EP for such a system? In otherwords, howmany
independent nonconservative forcesmultiplied by their conjugated flux appear in the EP?Which
thermodynamic potential is extremized by the dynamics in absence of drivingwhen the forces are set to zero?
Howdo generic time-dependent drivings affect the EP? Surprisingly, up to now, no systematic procedure exists
to answer these questions.We provide one in this paper based on a systematic identification of conserved
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quantities.While some of them are obvious from the start (e.g. energy and particle number) the others are
system specific and depend on theway inwhich reservoirs are coupled to the system and on the topology of the
network of transitions.

Themain outcome of our analysis is a rewriting of the EP, equation (36), which identifies three types of
contributions: a driving contribution caused by the nonautonomousmechanisms, a change of a generalized
Massieu potential, and aflow contributionmade of a sumover a fundamental set offlux-force contributions.
For autonomous systems relaxing to equilibrium—all forcesmust be zero—thefirst and the third contributions
vanish and the dynamicsmaximizes the potential. This amounts to a dynamical realization of themaximization
of the Shannon entropy under the constrains of conserved quantities, which is commonly done by handwhen
deriving generalizedGibbs distributions. For (autonomous) steady-state dynamics, the first two contributions
vanish andwe recover the results of [16], showing that conservation laws reduce the number of forces created by
the reservoirs. The key achievement of this paper is to demonstrate that conservation laws are essential to achieve
a general and systematic treatment of stochastic thermodynamics.

Important results ensue.We show that system-specific conservation laws can cause the forces to depend on
systemquantities and not only on intensive fields.We derive themost general formulation offinite-time detailed
FTs expressed in terms ofmeasurable quantities. This result amounts tomake use of conservation laws on the FT
derived in [17].We identify theminimal cost required formaking a transformation fromone system state to
another one. In doing sowe generalize tomultiple reservoirs the nonequilibriumLandauer’s principle derived in
[18–20].We also apply ourmethod to four differentmodels which reveal different implications of our theory.

This paper is organized as follows. In section 2we derive an abstract formulation of stochastic
thermodynamics.We then describe the procedure to identify all conserved quantities, whichwe use to rewrite
the local detailed balance in terms of potential and (nonconservative)flow contributions. In section 3we use the
above decomposition to establish balance equations along stochastic trajectories, which allow us to formulate
ourfinite-time detailed FT, section 4. In section 5we discuss the ensemble average description of our EP
decompositions, as well as the nonequilibriumLandauer’s principle. Four detailed applications conclude our
analysis in section 6. Thefirst is referenced systematically throughout the paper to illustrate our results. It
describes two quantumdots coupled to three reservoirs. The second describes a quantumpoint contact tightly
coupled to a quantumdot and shows that thermodynamic forces can depend on system features. The third is a
molecularmotor exemplifying the differences between conservative and nonconservative forces in relation to
the topology of the network used tomodel it. The last one is a randomized grid illustrating that our formalism
becomes essential when analyzingmore complex systems.

2. Edge level descpription

After formulating stochastic thermodynamics for continuous-timeMarkov jumpprocesses from a graph-
theoretical perspective, we describe the general procedure to identify conservative and nonconservative
contributions to the local detailed balance.

2.1. Stochastic dynamics
Weconsider an externally driven open system characterized by a discrete number of states, whichwe label by n.

Allowed transitions between pairs of states, ¬
n

n m, are described by directed edges, nº ( )e nm, . The index
n = 1, ... labels different types of transitions between the same pair of states, e.g. transitions due to different
reservoirs. The time evolution of the probability offinding the system in the state n, º ( )p p tn n , is governed by
themaster equation

å= á ñ ( )p D Jd , 1t n
e

e
n e

which is herewritten as a continuity equation. Indeed, the incidencematrixD,

+

-

⎧
⎨⎪
⎩⎪

≔
⟶
⟵ ( )D

n

n

1 if

1 if
0 otherwise

, 2e
n

e

e

associates each edge to the pair of states that it connects. It thus encodes the network topology. On the
graph identified by { }n and { }e , it can be thought of as a (negative) divergence operator when acting on edge-
space vectors—as in themaster equation (1)—or as a gradient operator when acting on state-space vectors. The
ensemble averaged edge probability currents,

á ñ = ( )( )J w p , 3e
e o e
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are expressed in terms of the transition rates, º{ ( )}w w te e , which describe the probability per unit time of
observing a transition along the edge e. The function

( ) ≔ ⟵ ( )o e m m, for , 4
e

maps each edge into the state fromwhich it originates. For thermodynamic consistency, each transition
nº ( )e nm, withfinite ratewehas a corresponding backward transition n- º ( )e mn, with afinite rate -w e.

The stochastic dynamics is assumed to be ergodic at any time.

Notation. Fromnowon, upper–lower indices and Einstein summation notationwill be used: repeated upper–
lower indices implies the summation over all the allowed values for those indices. Themeaning of all the indices
thatwill be used is summarized in table 1. Time derivatives are denoted by ‘dt ’ or ‘¶t ’whereas the overdot ‘ ˙ ’ is
reserved for rates of change of quantities that are not exact time derivatives.We also take the Boltzmann constant
kB equal to 1.

2.2. Stochastic thermodynamics
Physically, each system state, n, is characterized by given values of some system quantities, k{ }Yn , for

Nk = ¼ k1, , , which encompass the internal energy,En, and possibly additional ones, see table 2 for some
examples. Thesemust be regarded as conserved quantities in the total system, as their change in the system is
always balanced by an opposite change in the reservoirs. Indeed, when labeling the reservoirs with { }r , for

N= ¼r 1, , r , the balance equation for kY can bewritten as

å d- º =k k k k
¢

¢
      ( )( )Y Y Y D Y . 5n m n e

n

r
e

r

rsystem

,

reservoir

where d k( )Ye
r, quantifies theflowof kY supplied by the reservoir r to the system along the transition e. For the

purpose of our discussion, we introduce the index k= ( )y r, , i.e. the conserved quantity kY exchangedwith the
reservoir r, and define thematrix dY whose entries are d dº k{ }( )Y Ye

y
e

r, . Enforcingmicroscopic reversibility, one
concludes that d d= - -Y Ye

y
e

y . As afirst remark,more than one reservoirmay be involved in each transition, see

Table 1. Summary of the indices used throughout the paper and the
object they label.

Index Label for Number

n State Nn

e Transition Ne

k Systemquantity Nk
r Reservoir Nr

kº ( )y r, Conserved quantity kY from reservoir r Ny

α Cycle Na

λ Conservation law and conserved quantity Nl
yp ‘Potential’ y Nl

yf ‘Force’ y N N- ly

ρ Symmetry Nr

η Fundamental cycle N N-a r

N N= - ly

Table 2.Examples of systemquantity-intensive field
conjugated pairs in the entropy representation [21,
sections 2 and 3]. b ≔ T1r r denotes the inverse
temperature of the reservoir. Since charges are carried
by particles, the conjugated pair b-( )Q V,n r r is usually
embedded in b m-( )N ,n r r , see e.g. [22, section
1.7.2, 23].

System quantity kY Intensive field k( )f r,

Energy,En Inverse temperature, br

Particles number,Nn Chemical potential, b m- r r

Charge,Qn Electric potential, b- Vr r

Displacement,Xn Generic force, b- kr r

Angle, qn Torque, b t- r r

3
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figure 1 and the application in section 6.2. As a second remark, the conserved quantitiesmay not be solely k{ }Y ,
since additional onesmay arise due to the topological properties of the system, aswewill see in the next
subsection.

Each reservoir r is characterized by a set of entropic intensive fields, k{ }( )f r, for Nk = ¼ k1, , , which are
conjugated to the exchange of the systemquantities k{ }Y [21, sections 2 and 3]. A short list of kY – k( )f r,

conjugated pairs is reported in table 2. The thermodynamic consistency of the stochastic dynamics is ensured by
the local detailed balance property,

d= - +
-

( )w

w
f Y S Dln . 6e

e
y e

y
n e

n

It relates the log ratio of the forward and backward transition rates to the entropy change generated in the
reservoirs, i.e.minus the entropyflow d-{ }f Yy e

y . The second termon the rhs is the internal entropy change
occurring during the transition, since Sn denotes the internal entropy of the state n. This point is further
evidencedwhenwriting the entropy balance along a transition

å å d= - + -
k

k
k

- -

⎧⎨⎩
⎫⎬⎭ [ ] ( )( )

( )
( )

( )w p

w p
f Y S p Dln ln , 7

e o e

e o e r
r e

r
n n e

n
,

,

which expresses the edge EP, the lhs, as the entropy change in each reservoir r plus the system entropy change,
the rhs. See section 6.1.1 for explicit examples of dY and { }fy .

In themost general formulation, the internal entropy S, the conserved quantities k{ }Y (hence d{ }Ye
y ), and

their conjugated fields { }fy , change in time. Physically, thismodeling corresponds to two possible ways of

controlling a system: either through k{ }Y or Swhich characterize the system states, or through { }fy which

characterize the properties of the reservoirs. Throughout the paper, we use theword ‘driving’ to describe any of
these time-dependent controls, while we refer to those systems that are not time-dependently driven as
autonomous.

2.3. Network-specific conserved quantities
Wenow specify the procedure to identify the complete set of conserved quantities of a system. In doing so, we
extend the results of [16]. For this purpose, let a{ }C for Na = ¼ a1, , , be an independent set of network cycles.
Algebraically, a{ }C is amaximal set of independent vectors in Dker ,

=a ( )D C n0, for all , 8e
n e

inwhich atmost one entry in each forward–backward transition pair is nonzero. SinceD is -{ }1, 0, 1 -valued,

a{ }C can always be chosen in such away that their entries are { }0, 1 . In this representation, their 1-entries

Figure 1.Pictorial representation of a system coupled to several reservoirs. Transitionsmay involvemore than one reservoir and
exchange between reservoirs.Work reservoirs are also taken into account.

4
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identify sets of transitions forming loops. In the examples, wewill represent cycles using the set of forward
transitions only, and negative entries denote transitions along the backward direction.We denote thematrix
whose columns are a{ }C by º a{ }C Ce .

Bymultiplying thematrices dY andC, we obtain theM-matrix [16]:

da a≔ ( )M Y C . 9y
e
y e

This fundamentalmatrix encodes the physical topology of the system. It describes theways inwhich the
conserved quantities k{ }Y are exchanged between the reservoirs across the system, as its entries quantify the
influx of { }y along each cycle,α. The physical topology is clearly build on top of the network topology encoded
inC.

The basis vectors of the Mcoker , are defined as the system conservation laws. They are denoted by lℓ{ } for
Nl = ¼ l1, , whereNl ≔ Mdim coker and satisfy

d a= =l
a

l
aℓ ℓ ( )Y C M 0, for all . 10y e

y e
y

y

From (8), this implies that d Îl ^ℓ ( )Y Dker . Since º^( )D Dker coim , one can introduce a set of states-space
vectors l{ }L —i.e. state variables in the states space—which aremapped into dlℓ{ }Y by the transpose ofD:

å åd d= ºl l

k
k
l k

⎧⎨⎩
⎫⎬⎭ℓ ℓ ( )( )

( )L D Y Y . 11n e
n

y e
y

r
r e

r
,

,

The properties of the incidencematrix guarantee that each lL is defined up to a reference value, see e.g. [24,
section 6.2].We thus confirm that l{ }L are conserved quantities since equation (11) are their balance equations:
the lhs identifies the change of l{ }L in the system,while the rhs expresses their change in the reservoirs. The
thermodynamic implications of shifting the reference values of l{ }L are discussed in section 3.

Importantly, the vector space spanned by the conserved quantities, l{ }L , encompasses the systemquantities
k{ }Y . They correspond to dº =k

k
k

k
k

¢ ¢ℓ ℓ( )y r, , so that the balance equation (5) are recovered. The remaining
conservation laws arise from the interplay between the specific topology of the network,C, and its couplingwith
the reservoirs, dY , andwewill refer to them as nontrivial. Only for these, the row vector ℓ may depend on time
sinceM is a function of time, see section 6.1.2 and the application in section 6.2.

Variations in time of the systemquantities k{ }Y induce changes in thematrixM. If these changes cause a
modification of the size of its cokernel, i.e. a change in the number of conserved quantities, we say that the
physical topologywas altered.We emphasize that these changes are not caused by changes in the network
topology since this latter remains unaltered. An example of physical topology transformation is given in
section 6.1.2 and in the application in section 6.4, while one of network topology is discussed in section 6.3.

Remark.The introduction of the conserved quantities is akin to that of scalar potentials for irrotationalfields in
continuous space. Indeed, the vector dlℓ Y replaces the field, DT plays the role of the gradient operator, and lL
becomes the potential. The condition expressed by equation (10) is that of irrotationalfields, as it tells us that
dlℓ Y vanishes along all loops.

2.4. Network-specific local detailed balance
Wenowmake use of the conserved quantities, l{ }L , to separate the conservative contributions in the local
detailed balance (6) from the nonconservative ones. This central result will provide the basis for our EP
decomposition in section 3.

We start by splitting the set { }y into two groups: a ‘potential’ one { }yp , and a ‘force’ one { }yf . Thefirstmust be

constructedwithNl elements such that thematrix whose entries are lℓ{ }yp
is nonsingular.We denote the entries

of the inverse of the lattermatrix by lℓ{ }yp . Crucially, since the rank of thematrix whose rows are lℓ{ } isNl, it is
always possible to identify a set of { }yp . However, itmay not be unique and different sets have different physical

interpretations, see sections 6.1.3 and 6.1.6 as well as the following sections. The second group, { }yf , is
constructedwith the remainingN N- ly elements of { }y .

With the above prescription, we canwrite the entries d{ }Ye
yp as functions of d{ }Ye

yf and l{ }Ln by inverting
lℓ{ }yp

in equation (11),

d d= -l
l

l
lℓ ℓ ℓ ( )Y L D Y . 12e

y y
n e

n y
y e

yp p p

f

f

The local detailed balance (6) can thus be rewritten as

f d= +
-

( )w

w
D Yln . 13e

e
n e

n
y e

y
f

f
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Thefirst contribution is conservative since it derives from the potential

f - l
l≔ ( )S F L , 14n n n

where

l lℓ≔ ( )F f 15y

y

p

p

is a linear combination of entropic intensive fields. Since fn is the entropy of the state nminus a linear
combination of conserved quantities, it can be viewed as theMassieu potential of the state n. (We recall that
Massieu potentials are the thermodynamic potentials of the entropy representation, see e.g. [21, section 5-4]. In
contrast, the nonconservative fundamental forces,

 -l
lℓ ℓ≔ ( )f f , 16y y

y
y yf p

p

f f

are caused by the presence ofmultiple reservoirs. Aswewill show, they control the currents of systemquantities
through the system. Importantly, ‘fundamental’must be understood as a property of the set of these forces, since
they are independent and inminimal number.

The identification of fn and { }yf
and their relationwith the local detailed balance, equation (13), is the key

result of our paper andwe summarize the procedure we used infigure 2. The complete set of conservation laws
played an essential role in this identification.

We saw that driving in the systemquantities k{ }Y , may induce changes in the physical topology, whereas the
driving in the reservoir properties, { }fy —aswell as in the entropy, S—is unable to do so. Since these changes

modify the cokernel ofM, fn and { }yf
aremodified aswell: when conservation laws are broken new

Figure 2. Schematic representation of our local detailed balance decomposition, whichwe summarize as follows. On the one hand, the
system is characterized by those systemquantities which are exchangedwith the reservoirs along transitions, as well as by the
topological properties of its network of transitions. The former is accounted for by thematrix of exchanged conserved quantities dY ,
while the latter by the incidencematrix,D, equation (2), which determines thematrix of cycles,C, equation (8)These twomatrices
combined give theM-matrix, equation (9), which encodes the physical topology of the system andwhose cokernel identifies the
complete set of conservation laws and conserved quantities, equations (10) and (11). On the other hand, the reservoirs are
characterized by entropic intensive fields, { }fy , which combinedwith thematrix of exchanged conserved quantities, dY , gives the
local detailed balanced, equation (6). Having identified all conservation laws, the variables y can be split into ‘potential’ y, { }yp , and

‘force’ y, { }yf . The first group identifies aMassieu potential for each state n, fn, equation (14), while the second one identifies the
fundamental forces, equation (16). These two set of thermodynamic quantities are thus combined in the local detailed balanced, (13).

6
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fundamental forces emerge, and vice versa the emergence of conservation laws breaks some fundamental forces
and creates additional terms in fn, see section 6.1.3.

Even in absence of topological changes, the formof fn and { }yf
may change in presence of driving. It is clear

that fn changes when S,
k{ }Y , or { }fyp

change, see equation (14). In turn, each fundamental force yf
depends on

both fyf
and { }fyp

, see equation (16). But in presence of nontrivial conservation laws, theymay also depend on

the systemquantities k{ }Y via the vectors lℓ{ } , see section 6.1.3 and the application in section 6.2. Notice that
while driving not caused by temperatures solely affects a given intensivefield, driving via temperature, say b ¢r ,
affects all thefields associated to ¢r , namely k ¢{ }( )f r, for Nk = k1, , , see table 2.

2.5. Fundamental cycles
Wenow express our conservative–nonconservative forces decomposition of the local detailed balance in terms
of cycle affinities. This provides the basis onwhich our potential-cycle affinities EP decomposition hinges on,
section 3.3.

The thermodynamic forces acting along cycles are referred to as cycle affinities. Using the local detailed
balance (13), they read

 =a a a
-

≔ ( )C
w

w
Mln . 17e e

e
y

y
f

f

As observed in [16], different cyclesmay be connected to the same set of reservoirs, thus carrying the same cycle
affinity. These are regarded as symmetries and they correspond to bases of Mker , yr{ } for

Nr = ¼ r ≕ M1, , dimker ,

y =a r
a ( )M y0, for all , 18y

as their entries identify sets of cycles which, once completed, leave the state of the reservoirs unchanged. A
notable consequence is that the affinities corresponding to these sets of cycles are zero irrespective of the fields
{ }fy . The rank-nullity theorem applied to thematrixM allows us to relate the number of symmetries to the
number of conservation laws [16]

N N N N- = -l a r ( ). 19y

Notice that, while theNy andNa arefixed for a given system,Nl, and henceNr, can change due to changes in the
physical topology. From equation (19)we thus learn that for any broken (resp. created) conservation law, a
symmetrymust break (resp. be created), see section 6.1.4 and the application in section 6.4.

The symmetries given by equation (18) lead us to identifyN N N-h a r≔ cycles, labeled by η, which
correspond to linearly independent columns ofM. These cycles can be thought of as physically independent,
since they cannot be combined to form cycles that leave the reservoirs unchanged upon completion. In other
words, they are theminimal subset of cycles whose affinity is nonzero for a generic choice of the fields { }fy

(specific choices of { }fy can alwaysmake any cycle affinity equal to zero).We refer to these cycles as fundamental

cycles and to their affinities as fundamental affinities. The fact that thematrix whose entries are h{ }M yf is square
and nonsingular, see appendix A, allows us to see the one-to-one correspondence between fundamental forces,
equation (16), and these affinities,

 = h
h ( )M , 20y yf f

where h{ }M yf
are the entries of the inversematrix of that having h{ }M yf as entries. In terms of h{ }, the local

detailed balance, equation (13), reads

f z= + h
h

-
( )w

w
Dln , 21e

e
n e

n
e

where

z dh h≔ ( )M Y 22e y e
y

f

f

quantifies the contribution of each transition e to the current along the fundamental cycle η as well as all those
cycles which are physically dependent on η. Algebraically, the row vectors of ζ, zh{ } , are dual to the physically
independent cycles, h{ }C ,

z d d= = =h
h

h
h

h
h h

h
¢ ¢ ¢ ¢ ( )C M Y C M M . 23e

e
y e

y e
y

y

f

f

f

f

Equation (21) is another key result of our paper, which expresses the conservative–nonconservative local
detailed balance decomposition in terms of fundamental affinities. Importantly, the affinities h{ }depend on
time both via { }fy and k{ }Y , where the latter originates from theM-matrix, equation (17). Differently from
{ }yf

, they always have the dimension of an entropy.

7
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Remark.Our set of fundamental cycles differs from that constructedwith spanning trees and discussed by
Schnakenberg in [25]. Algebraically, our set is notmerely in Dker , but rather in ⧹D Mker ker . Furthermore, it
is not constructed from the spanning trees of the graph.

2.6.Detailed-balanced networks
Wenow focus on a specific class of dynamics called detailed balanced. These dynamics are such that either there
are no forces = Æ({ } )yf or these are zero,

 = - =l
lℓ ℓ¯ ( )f f 0, 24y y

y
y yf p

p

f f

— equivalently the affinities are zero, see equation (17). A driven detailed-balanced dynamics implies that the
drivingmust keep the forces equal to zero at all times, while changing the potential fn. An autonomous detailed-
balanced dynamics will always relax to an equilibriumdistribution [26, 27]

f= - F{ } ( )p exp , 25
n n
eq

eq

defined by the detailed balance property: = - -( ) ( )w p w pe o e e o e
eq eq , for all e. The last term, Feq, is the logarithmof the

partition function

å fF
⎧⎨⎩

⎫⎬⎭≔ { } ( )ln exp , 26
m

meq

and can be identified as an equilibriumMassieu potential [21, sections 5-4 and 19-1, 28, section3.13].
We nowpoint out that one can transform a nondetailed-balance dynamics with the potential fn into a

detailed-balanced dynamics with the same potential, if one can turn off the forces—set them to zero—without
changing the potential. This is is always possible through an appropriate choice of thefields { }fyf

, viz.

= l
lℓ ℓ¯f fy y

y
y

f p

p

f
, except for the following cases: when there are fyf

such that b= ¢fy r
f

(i.e. fyf
is thefield conjugated

with the exchange of energy with the reservoir ¢r ) and ¢r is among the reservoirs involved in { }yp , then turning off

the corresponding force yf
via fyf

willmodify { }fyp
and in turn fn. Due to their importance for our FT,

section 4, we label thesefields by ¢{ }yf , to discriminate them from the other ones, denoted by { }yf .Wefinally
observe that for isothermal processes all thermal gradients vanish beforehand, and one realizes that  =¢ 0yf

for

all ¢yf , see e.g. sections 6.3 and 6.4. Therefore, turning off the forces never changes the potential.

Remark.The equilibriumdistribution, equation (25), is clearly the same onewould obtain using amaximum
entropy approach [28, section 3.17, 29]. Indeed, the distributionmaximizing the entropy functional constrained
by given values of the average conserved quantities á ñ =l l{ }L L ,

 å å å= - - - - -l
l l

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟[ ] [ ] ( )p p S p a p a p L Lln 1 , 27

n
n n n

n
n

n
n n

is given by

* = - -l
l{ } ( )p S a L aexp . 28

n n n

This is the equilibriumdistribution, equation (25), when the Lagrangemultipliers are given by = Fa eq and
=l la F , see equations (14) and (26).

3. Trajectory level description

Wenowbring our description from the level of edges to trajectories. A stochastic trajectory of duration t, nt , is
defined as a set of transitions { }ei sequentially occurring at times { }ti starting from n0 at time 0. If not otherwise
stated, the transitions index i runs from i=1 to the last transition prior to time t,Nt , whereas the state at time
t Î [ ]t0, is denoted by tn . The values of S, k{ }Y , and { }fy between time 0 and an arbitrary time t are all encoded

in the protocol pt , for t Î [ ]t0, .
Wefirst derive the balance for the conserved quantities, equation (11). The conservative and

nonconservative contributions identified at the level of single transitions via the local detailed balance,
equations (13) and (21), are then used to decompose the trajectory EP into its three fundamental contributions.
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3.1. Balance of conserved quantities
Since the conserved quantities are state variables their change along a trajectory for a given protocol reads

ò t t t tD = - = ¶ +l l l
t

l l
= t[ ] ( ) ( ) { ( )∣ ( ) ( )} ( )nL L t L L L D J0 d . 29t n n

t

n n n n e
n e

0
t 0

Thefirst termon the rhs accounts for the instantaneous changes due to the time-dependent driving, while the
second accounts for thefinite changes due to stochastic transitions, since

åt d d t -( ) ≔ ( ) ( )J t 30e

i
e
e

ii

are the trajectory-dependent instantaneous currents at time τ. Using the edge-wise balance, equation (11), we
can recast the above equation into

ò t t t tD = ¶ +l
t

l l
= t ℓ[ ] { ( )∣ ( ) ( )} ( )nL L Id , 31t

t

n n n y
y

0

where the physical currents

t d t t( ) ≔ ( ) ( ) ( )I Y J , 32y
e
y e

quantify the instantaneous influx of y at time t.

3.2. Entropy balance
The trajectory entropy balance is given by

ò òt t
t
t

t t d t tS = - = - + - -
-

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥[ ] ( ) ( )

( )
( )
( )

( ) ( ) ( ) ( )
( )
( )

( )

n J
w

w

p t

p
f Y J S S

p t

p
d ln ln

0
d ln

0
.

33

t

t
e e

e

n

n

t

y e
y e

n n
n

n0 0

t
t

t

0

0

0

As for the edge-wise balance, equation (7), the lhs is the EP, while the first and second termon the rhs are the
entropy change of the reservoirs and the entropy change of the system [25, 30]. Using our decomposition of the
local detailed balance, equation (13), we can recast the latter equality into

ò t f t t t tS = - + +[ ]
( )
( )

{ ( ) ( ) ( ) ( )} ( )n
p t

p
D J Iln

0
d . 34t

n

n

t

n e
n e

y
y

0

t

0

f
f

Since fn is a state variable, its variations along the trajectory can bewritten as

òf f f t f t t f tD = - = + ¶t = t[ ] ( ) ( ) { ( ) ( ) ( )∣ } ( )n t D J0 d . 35t n n

t

n e
n e

n n n
0

t 0

By combining equations (34) and (35), we can recast the trajectory EP in

å sS = + DF +[ ] [ ] [ ] [ ] ( )n n n nv , 36t t t
y

y t

f

f

where

ò t f t- ¶t = t[ ] ≔ ( )∣ ( )nv d , 37t

t

n n n
0

DF = F - F[ ] ( ) ( ) ( )n t 0 , 38t n nt 0

òs t t t[ ] ≔ ( ) ( ) ( )n Id , 39y t

t

y y
0

f f f

with

fF -≔ ( )pln . 40n n n

Equation (36), is themajor result of our paper. It shows the EP decomposed into a time-dependent driving
contribution, a potential difference, and aminimal set of flux-force terms. Thefirst termonly arises in presence
of time-dependent driving. It quantifies the entropy dissipatedwhen fn ismodified andwe refer to it as the
driving contribution. The second term is entirely conservative as it involves a difference between the final and
initial stochasticMassieu potential, equation (40)The last terms are nonconservative and prevent the systems
from reaching equilibrium. Each s [ ]ny tf

quantifies the entropy produced by the flowof { }yf , andwe refer to
them as flow contributions.

To developmore physical intuition of each single term,we nowdiscuss them separately and consider some
specific cases.Whenwriting the rate of driving contribution explicitly, equation (37), one obtains

f-¶ = -¶ + ¶ + ¶t t t l
l

l t
l ( )S F L F L . 41n n n n
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When all lℓ{ } are independent from systemquantities, the terms, ¶t l l{ }F L n, , account for the entropy
dissipated during themanipulation of the intensive fields { }fyp

, equation (15). In contrast, ¶l t l{ }F L n, and

-¶tSn characterize the dissipation due to the directmanipulation of the systemquantities. Clearly, the changes
of those fields that do not appear in fn do not contribute to [ ]nv t .

For autonomous processes, the EP becomes

 S = DF +[ ] [ ] [ ] ( )n n n , 42t t y
y

tf
f

where

 ò t t[ ] ≔ ( ) ( )n Id , 43y
t

t
y

0
f f

are the currents of { }yf integrated along the trajectory. The difference between thefinal and initial stochastic
Massieu potential captures the dissipation due to changes of the internal state of the system. For finite-
dimensional autonomous processes, it is typically subextensive in time and negligible with respect to the
nonconservative terms for long trajectories

 S =
¥[ ] [ ] ( )n n . 44t

t
y

y
tf

f

The nonconservative flow contributions, equations (39) and (44), quantify the dissipation due to the flowof
conserved quantities across the network. Finally, for autonomous detailed-balanced systems, the nonconserva-
tive terms vanish, in agreementwith the fact that these systems exhibit no netflows, and the EP becomes

S = DF[ ] [ ] ( )n n . 45t t

Table 3 summarizes the contributions of the EP for these commonprocesses.We nowproceedwith three
remarks.

Remark.Wehave already discussed the possibility of physical topologymodifications due to driving, which
consequently alter fn and { }yf

. For protocols crossing points in which thesemodifications occur, the trajectory
must be decomposed into subtrajectories characterized by the same physical-topology. For each of these, our
decomposition (36) applies.

Remark.The contributions of the EP in equation (36) depend on the choice of { }yp and { }yf .When aiming at

quantifying the dissipation of a physical system, some choicesmay bemore convenient than others depending
on the experimental apparatus, see e.g. section 6.1.6. This freedom can be thought of as a gauge of the EP. In the
long time limit, it only affects the flow contributions and it can be understood as a particular case of the gauge
freedoms discussed in [31, 32], which hinge on graph-theoretical arguments.

Remark.The driving contribution v and the nonequilibriumMassieu potential Fn are defined up to a gauge.
This is evidencedwhen transforming the state variables l{ }L according to

 +l
l
l l l
¢

¢( ) ( ) ( )L t U L t u 1 , 46n n n

where l
l
¢{ }U identify a nonsingularmatrix, l{ }u arefinite coefficients, and { }1n a vector whose entries are 1. The

first term can be considered as a basis change of Mcoker ,

l
l
l l
¢

¢ℓ ℓ ( )U , 47y y

while the second as a reference shift of lL . Under the transformation (47), thefields (15) transform as

l l l
l

¢
¢( ) ( ) ( )F t F t U , 48

where d= =l
l

l
l

l
l

l
l

l
l¢


¢

 
¢U U U U , thus guaranteeing that scalar products are preserved. As a consequence, the

stochasticMassieu potential, equation (40), and the rate of driving contribution, equation (41), transform as

Table 3.Entropy production for commonprocesses. ‘0’
denotes vanishing or negligible contribution,NESS is the
acronymof nonequilibrium steady state.

Dynamics v DF σ

Autonomous 0

NESS 0 0

Driven detailed-balanced 0

Autonomous detailed-balanced 0 0
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f fF  F - - ¶  -¶ + ¶( ) ( ) ( ) ( ) ( ) ( ) ( )f ft t t t t t1 , and 1 , 49n n n t n t n t n

where

l l
l l

¢
¢( ) ≔ ( ) ( )f t F t U u . 50

Crucially, neither the local detailed balance (13)nor the EP (69) are affected, as the physical process is not altered.
If only a basis change is considered, =l{ }u 0 , then =( )f t 0, and both Fn and v are left unvaried. Finally, for
cyclic protocols, one readily sees that the drivingwork over a period is gauge invariant, since ( )f t is
nonfluctuating.

The above gauge is akin to that affecting the potential-work connection andwhich led to several debates, see
[33] and references therein. The problem is rooted inwhat is experimentallymeasured, as different experimental
set-ups constrain to different gauge choices [33].We presented a general formulation of the gauge issue, by
considering reference shifts of any conserved quantity, and not only of energy.

3.3. Entropy balance along fundamental cycles
An equivalent decomposition of the EP, equation (33), can be achieved using the potential-affinities
decomposition of the local detailed balance, equation (21)

å gS = + DF +
h

h[ ] [ ] [ ] [ ] ( )n n n nv . 51t t t t

Here,

òg t t z th h h[ ] ≔ ( ) ( ) ( )n Jd , 52t

t

e
e

0
,

quantify the dissipation along the fundamental cycles, as z th{ ( )}Je
e

, , for Nh = ¼ h1, , , are the corresponding
instantaneous currents, equation (22) For autonomous processes, the EP becomes

 S = DF + h
h[ ] [ ] [ ] ( )n n n , 53t t t

where

 ò t z th h[ ] ≔ ( ) ( )n Jd 54t

t

e
e

0

measure the total circulation along h{ }.

4. Finite-time detailed FT

The driving andflow contributions of the EP, equation (36), are now shown to satisfy a finite-time detailed FT.
This constitutes another crucial result of our paper which generalizes previous FT formulations expressed in
terms of physical currents.

We consider a forward process of duration t defined as follows. The system is initially prepared in an
equilibrium state characterized by fn

eqi, equation (25). The latter state corresponds to the equilibriumprotocol pi

inwhich f p f=( )n ni
eqi and naturally  p ={ ( ) }0y if

. At time t = 0 the protocol pt , for  t t0 , is activated.
It is arbitrary except at the boundaries, t = 0 and t, where the following requirementsmust be satisfied: at time
0, theMassieu potential corresponding to p0 must be the same as that of the initial equilibrium state, i.e.
f p f=( )n n0

eqi. As a consequence, the fields p{ ( )}fy 0
f

can take arbitrarily values (i.e. they can be different from
p{ ( )}fy i

f
), while the other ones cannot: p p=¢ ¢{ ( ) ( )}f fy y0 i

f f
. This implies that  p{ ( )}y 0f

can be nonzerowhile

 p =¢{ ( ) }0y 0f
. Analogously, the protocol at time tmust be such that  p =¢( ) 0y tf

for all ¢yf while  { }yf
can be

arbitrary. This condition guarantees that theMassieu potential f p( )n t identifies the equilibrium state
corresponding to the equilibriumprotocol pf : f p f f p= =( ) ( )n n n tf

eqf and vanishing forces  p ={ ( ) }0y ff
.We

can thus introduce the backward process as that inwhich the system is initially prepared in the equilibrium state
given by pf , andwhich is driven by the time-reversed protocol, p pt t-≔†

t , see figure 3.
The finite-time detailed FT states that the forward and backward process are related by

å
s

s
s

- -
= + + DF

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

( { })
( { })

( )†

P v

P v
v

,

,
exp , 55

t y

t y y
y eq

f

f f

f

where s( { })P v,t yf
is the probability of observing a driving contribution of the EP equal to v, andflowones s{ }yf

along the forward process. Instead, s- -( { })†P v,t yf
is the probability of observing a driving contribution equal

to-v, andflowones s-{ }yf
along the backward process. The difference of equilibriumMassieu potentials,

equation (26),
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DF = F - F ( ), 56eq eq eqf i

refers to thefinal and initial equilibriumdistributions.When averaging over all possible values of v and s{ }yf
, the

integral FT ensues

å s- - = DF
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

{ } ( )vexp exp . 57
y

y eq

f

f

Weprove equation (55) in appendix B using a generating function techniquewhich is new to our knowledge.
We nowdiscuss insightful special cases of our general FTs.Wefirst consider those processes in which

 =¢ 0yf
for all ¢yf and at all times—isothermal processes are a notable instance—the protocol can terminate

without restrictions since f pt( )n always identifies an equilibrium state. If, in addition, the protocol keeps the
potential fn constant, viz. v=0, the FT (55) reads

å
s

s
s

-
=

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

({ })
({ })

( )†

P

P
exp . 58

t y

t y y
y

f

f f

f

Yet amore detailed case is when the process is autonomous, for whichwe have




 
-

=
({ })

({ })
{ } ( )P

P
exp , 59t

y

t
y y

y
f

f
f

f

written in terms of integrated currents of { }yf , equation (43). The latter FT can be seen as the result of having a
constant protocol with nonvanishing the fundamental forces  { }yf

—but vanishing  ¢{ }yf
—operating on a

system initially prepared at equilibrium. Since nothing distinguishes the forward process from the backward
one, the lhs is the ratio of the same probability distribution but at opposite values of { }yf , see application in
section 6.3.

Instead, for detailed-balanced systemswe recover a Jarzynski–Crooks-like FT [34, 35] generalized to any
formof time-dependent driving

-
= + DF

( )
( )

{ } ( )†
P v

P v
vexp . 60t

t
eq

Toprovide a physical interpretation of the argument of the exponential on the rhs of equation (55), let us
observe that once the protocol terminates, all fundamental forces can be switched off and the system relaxes to
the equilibrium initial condition of the backward process. During the relaxation, neither vnor s{ }yf

evolve and
the EP is equal to F - Fneq tf

, equation (45). Therefore, the argument of the exponential can be interpreted as the
dissipation of thefictitious composite process ‘forward process+ relaxation to equilibrium’.

Remark.Aswe discussed in equation (41), the driving contribution consists of several subcontributions, one for
each time-dependent parameter appearing in fn.We formulated the finite-time FT (55) for thewhole v, but it
can be equivalently expressed for the single subcontributions, see section 6.1.8.

FT forflow contributions along fundamental cycles
The FT (55) can also be expressed in terms of theflow contributions along the fundamental cycles gh{ } instead of
s{ }yf

Figure 3. Schematic representation of the forward and backward processes.
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å
g

g
g

- -
= + + DFh

h h
h

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

( { })
( { })

( )†
P v

P v
v

,

,
exp . 61

t

t
eq

Its proof is discussed in appendix B. The restrictions on p0 and pt that we expressed in terms of { }yf
can be re-

expressed in terms of h{ }via equation (20). For autonomous processes one canwrite the FT for the integrated
currents along fundamental cycles, equation (54),




 
-

=
h

h h
h({ })

({ })
{ } ( )P

P
exp , 62t

t

see equation (59).

5. Ensemble average level description

Wenowdiscuss our results at the ensemble average level and derive a general formulation of the nonequilibrium
Landauer’s principle.

5.1. Balance of conserved quantities
Using themaster equation (1) and the edge-wise balance (11), the balance equation for the average rates of
changes of conserved quantities reads

å º á ñ = á ñ + á ñl l l l
⎡
⎣⎢

⎤
⎦⎥ ℓ˙ ( )L p L L Id d , 63t

n
n n t y

y

where á ñ å ¶l l˙ ≔L L pn t n n is the average change due to the driving, and

dá ñ á ñ≔ ( )I Y J 64y
e
y e

are the average currents of { }y , see equations (3) and (32). Hence, the second term in equation (63),

å å dá ñ = á ñl

k
k
l k

⎧⎨⎩
⎫⎬⎭ℓ ℓ ( )( )

( )I Y J , 65y
y

r
r e

r e
,

,

accounts for the average flowof the conserved quantities in the reservoirs. Obviously, the balances (63) can also
be obtained by averaging the trajectory balances (31) along all stochastic trajectories.

5.2. Entropy balance
In contrast to conserved quantities, entropy is not conserved. The EP ratemeasures this nonconservation and is
always non-negative

åáSñ =
- -

˙ ( )( )
( )

( )
w p

w p

w p
ln 0. 66

e
e o e

e o e

e o e

The EP decomposition in driving, conservative and flow contributions at the ensemble level, can be obtained by
averaging equation (36). Alternatively, one can rewrite equation (66) as

áSñ = - á ñ + - á ñ˙ [ ] ( )f I S p D Jln , 67y
y

n n e
n e

wherewe used the local detailed balance property (6) and the definition of average physical current (64). Thefirst
term is the average entropy flow rate, while the second is the rate of change of the average system entropy. Using
the splitting of the set { }y explained in section 2, the physical currents of { }yp can be expressed as

á ñ = á ñ - á ñ - á ñl
l l lℓ ℓ[ ˙ ] ( )I L L Id , 68y y

t y
yp

p

f
f

wherewe partially inverted equation (63).When combinedwith equation (67), the EP rate can bewritten as

å sáSñ = á ñ + áFñ + á ñ˙ ˙ ˙ ( )v d , 69t
y

y

f

f

where fá ñ = -å ¶v̇ pn t n n is the driving contribution, sá ñ = á ñ˙ Iy y yf f f
theflow contributions, and

åáFñ = F ( )p 70
n

n n

the nonequilibriumMassieu potential.
Following a similar reasoning, and using the local detailed balance decomposition in terms of fundamental

affinities, equation (21), we obtain the EP rate decomposed as
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å gáSñ = á ñ + áFñ + á ñ
h

h˙ ˙ ˙ ( )v d , 71t

where g zá ñ = á ñh h h˙ Je
e

, are theflow contributions along the fundamental cycles.

5.3. Nonequilibriummassieu potential
In detailed-balanced systems, the nonequilibriumMassieu potential takes itsmaximumvalue at equilibrium,
equation (25), where it becomes the equilibriumMassieu potential, equation (26). Indeed,

 F - áFñ = áF - Fñ = ( ) ( )p p 0, 72eq eq
eq

where

 å( ) ≔ ( )p p p
p

p
ln 73

n
n

n

n

eq
eq

is the relative entropy between the nonequilibriumdistribution and the equilibriumonewhich quantifies the
distance from equilibrium.

Remark. For autonomous detailed-balanced networks, the difference of equilibrium and nonequilibrium initial
Massieu potential, equation (72), gives the average dissipation during the relaxation to equilibrium,

 áSñ = ( ( ) )p t p 00 eq . On the one hand, this shows how theMaxEnt principlementioned in section 2.6 is

embedded in the stochastic thermodynamic description (see also [36]). On the other hand, it underlines that its
validity is limited to detailed-balanced systems.

5.4. NonequilibriumLandauer’s principle
Wenow express equation (69) in terms of a well defined equilibriumdistribution, obtained by turning off the
forces withoutmodifying the potential fn.We already discussed that this procedure is alwayswell defined for
isothermal systems but requiresmore care for nonisothermal systems. Combining equations (69) and (72), one
finds that

 å sáSñ = á ñ - + á ñ˙ ˙ ( ) ˙ ( )v p pd , 74t
y

yirr
eq

f

f

wherewe introduced the average irreversible driving contribution

á ñ á ñ + F˙ ≔ ˙ ( )v v d . 75tirr eq

Notice that the above contribution is not affected by the gauge discussed in section 3. Integrating equation (74)
over timewe get

å sá ñ + á ñ = D + áSñ( ) ( )v p p . 76
y

yirr eq

f

f

This relation generalizes the nonequilibriumLandauer’s principle, which is typically derived for driven detailed-
balance systems, sá ñ = 0yf

, [20]—see also [18, 19, 36]—andwhich is used as the basis to study thermodynamics
of information processing [11]. It shows that not only driving but alsoflowEPmust be consumed tomove a
system away from equilibrium, as depicted infigure 4, and that theminimal cost for doing so is precisely
measured by the change in relative entropy. For driven detailed-balanced protocols connecting two equilibrium
states, we recover the classical result that á ñ = áSñv̇ 0irr .

5.5. Relationwith previous EPdecompositions
Wenowbriefly comment on the differences between our EP rate decomposition and other decompositions
found in the literature.

In [17], the obvious conserved quantities k{ }Y are used to express the EP rate in terms of a driving, a
conservative, and a nonconservative term. Thefirst two are expressed in terms of aMassieu potential based on
theNk obvious conserved quantities, k{ }Y , while the last is a sumofN N- ky flux-force contributions. Afinite-
time FT solely expressed in terms of physical observable ensues. In ourwork, by taking allNl conserved
quantities—trivial and nontrivial—into account, the nonconservative term is reduced to a sumofN N- ly

fundamentalflux-force contributions, and the newMassieu potential entering the driving and conservative
contribution takes all conservation laws into account. This has two crucial consequences for the ensuing FT: (i)
our class of equilibriumdistributions is broader since it is determined imposing a lower number of constraints,
equation (24) (i.e.N N- ly vanishing forces instead ofN N- ky ); (ii) thefinal value of the protocolmust be
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constrained as discussed in section 4 since the newMassieu potential does not always identifies an equilibrium
distribution.

In [16] the authors analyzed the reduction offlux-force contributions for systems at steady state, where the
conservative contribution is absent. Our decomposition (69) generalizes these results to nonautonomous
systems in transient regimes.

In [25, 37], decompositions based on graph-theoretic techniques are proposed, and the ensuing FTs are
studied in [38, 39], respectively. The nonconservative termof the EP rate is expressed as the sumofNa cycle flux–
affinity contributions. These are typically in large number, see e.g. sections 6.3 and 6.4.Our decomposition (71)
demonstrates that only a subset ofN N N N- = -a r ly fundamental cycleflux–affinity contributions are
necessary and sufficient to characterize the aforementioned term,whereNr is the number of symmetries.

Yet a different EP decomposition is the adiabatic–nonadiabatic one [40–44]. Here, the driving and
conservative terms arise from the stochastic potential Y -≔ { }p plnn n n

ss , which accounts for themismatch
between the actual and the steady-state probability distribution. Instead, the nonconservative contribution
quantifies the break of detailed balance of the steady state.Hence, the steady-state probability distribution plays
the role of a reference distribution in the sameway that the equilibriumone (obtained by setting the forces to
zero) does for our decomposition. This is particularly clear when comparing [40, equation (21)] to equation (74).
Naturally, the equilibriumdistribution ismuchmore accessible than the steady-state one and implies that our
decomposition is expressed in terms of physicallymeasurable quantities.

6. Applications

Wenow analyze fourmodel-systems: a double quantumdot (QD), a QD coupled to a quantumpoint contact
(QPC), amolecularmotor, and a randomized grid.

6.1.DoubleQD
Thismodel has been extensively used in the past [45–47] andwewill analyze it step by step following the order of
themain text to illustrate of our formalism and ourmain results.

6.1.1. Setup
The two single-level QDs is depicted infigure 5(a), whereas the energy landscape and the network of transitions
are shown infigures 5(b) and (c), respectively. Electrons can enter empty dots from the reservoirs but cannot
jump fromone dot to the other.When the two dots are occupied, an interaction energy, u, arises.

The network topology is encoded in the incidencematrix, whose representation in terms of the forward
transitions reads

=

- - -
- -

-

+ + + + + +

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ ( )D

1 1 1 0 0 0
1 0 0 0 1 1
0 1 1 1 0 0
0 0 0 1 1 1

. 77

1 2 3 4 5 6

00
10
01
11

Figure 4. Schematic representation of the transformation between twononequilibriumprobability distributions. The protocolmust
leave the potential fn unchanged upon turning off of the forces at all times. This ensures that fn always identifies an equilibrium
distribution (green curve) obtained by turning off the forces, shutting down the driving and letting the system relax (dashed gray
curves). The nonequilibrium transformation—the blue curve—can be thus comparedwith the equilibriumone.
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Energy, En, and total number of electrons,Nn, characterize each system state:



 

= =
= =
= =
= + + = ( )

E N
E N
E N
E u N

0, 0,
, 1,
, 1,

, 2, 78

00 00

01 d 01

10 u 10

11 u d 11

where thefirst entry in n refers to the occupancy of the upper dot while the second to the lower. The entries of the
matrix dY corresponding to the forward transitions are

 

 

 

d =

+

+

+

+ + + + + +

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
( )

( )
( )
( )
( )
( )
( )

Y

u

u

u

0 0 0 0
1 0 0 1 0 0
0 0 0 0
0 1 0 0 1 0
0 0 0 0
0 0 1 0 0 1

, 79

E

N

E

N

E

N

1 2 3 4 5 6

, 1

, 1

, 2

, 2

, 3

, 3

u u

d d

d d

see figure 5(c), whereas the entries related to backward transition are equal to the negative of the forward. For
instance, along thefirst transition the system gains u energy and 1 electron from the reservoir 1. The vector of
entropic intensivefields is given by

b b m b b m b b m= - - -( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

f . 80

E N E N E N, 1 , 1 , 2 , 2 , 3 , 3

1 1 1 2 2 2 3 3 3

Since theQDs and the electrons have no internal entropy, =S 0n for all n, the local detailed balance property,
equation (6), can be easily recovered from the product d-f Y . From a stochastic dynamics perspective, the latter
property arises when considering fermionic transition rates: d= G + -( { })w f Y1 expe e y e

y 1 and

d d= G +-
-{ }( { })w f Y f Yexp 1 expe e y e

y
y e

y 1 for electrons entering and leaving the dot.

6.1.2. Conservation laws
Wenow illustrate the identification of the full set of conservation laws. An independent set of cycles of this
network,figure 5(c), is stacked in thematrix

= - -
-

-

+
+
+
+
+
+

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )C

1 0 0
0 1 0
1 1 0
1 0 0

0 0 1
1 0 1

, 81

1 2 3

1

2

3

4

5

6

and corresponds to the cycles depicted infigure 6. Thenegative entries denote transitions performed in the
backwarddirection. Thematrix encoding the physical topology,M, readily follows from theproduct of dY andC,

Figure 5.DoubleQDcoupled to three reservoirs and coupledwith each other via a capacitor. Transitions related to thefirst reservoir
are depicted in bluewhile those related to the second and third one by green and red, respectively. (a)Pictorial representation of the
system. The upper dot u is coupled to thefirst reservoir, while the lower dot d is coupled to the second and third reservoir. The
reservoirs exchange energy and electrons with the dots, which cannot hostmore than one electron. (b)Energy landscape of the dot.
Importantly, when both dots are occupied, 11, a repulsive energy u adds to the occupied dots energies, u and d. (c)Transition
network of themodel.
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 

 

=

-

+

- - -
- -

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )

( )

( )
( )
( )
( )

( )

M

u

u

u u
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0 0 0
0
0 1 1

0 1 1
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E, 3

E

N

E

N

N

1 2 3

, 1

, 1

, 2

, 2

, 3

d d

d d

Its cokernel is spanned by

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

a1 0 1 0 1 0 , 83

E N E N E N

E

, 1 , 1 , 2 , 2 , 3 , 3

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

b0 1 0 0 0 0 , 83
E N E N E N, 1 , 1 , 2 , 2 , 3 , 3

u

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

c0 0 0 1 0 1 . 83

E N E N E N, 1 , 1 , 2 , 2 , 3 , 3

d

Thefirst vector identifies the energy state variable,En,

     d = + + + º
+ + + + + +

ℓ ( ) { } ( )Y u u u E D . 84E
n e

n
1 2 3 4 5 6

u d d u d d

The other two, instead, give the occupancy of the upper and lower dots, Nn
u and Nn

d,

d = º
+ + + + + +

ℓ ( ) { }Y N D1 0 0 1 0 0 ,n e

1 2 3 4 5 6
u u n

d = º
+ + + + + +

ℓ ( ) { } ( )Y N D0 1 1 0 1 1 . 85n e

1 2 3 4 5 6

d d n

Aposteriori, we see that these conservation laws arise from the fact that no electron transfer fromone dot to the
other is allowed. The total occupancy of the system,Nn, is recovered from the sumof the last two vectors. Despite
ℓ u and ℓ d are nontrivial conservation laws, they do not depend on any systemquantity, equation (78)1.

Let us now imagine that the interaction energy between the two dots is switched off, i.e. u 0. Two
conservation laws emerge in addition to those in equation (83):

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) a0 0 1 0 1 0 , 86

E N E N E N, 1 , 1 , 2 , 2 , 3 , 3

E,d

= -ℓ ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

b0 0 1 0 0 . 86

E N E N E N, 1 , 1 , 2 , 2 , 3 , 3
t

d

Thefirst is related to the upper–lowerQDdecoupling, as it corresponds to the conservation of energy of the
lower dot

   d = º
+ + + + + +

ℓ ( ) { } ( )( ) Y E D0 0 . 87E
n e

n

1 2 3 4 5 6

,d
d d d d

d

The conservation of energy in the upper dot is obtained as the difference between equations (83a) and (86a), and
reads

Figure 6.The independent set of cycles corresponding to the columns ofC in equation (81)Thefirst corresponds to the sequence
‘electron in u electron in d electron out of u electron out of d ’, inwhich the lowerQD is populated by the third reservoir. The
second and third cycle correspond to theflowof one electron from the second reservoir to the third one, when the upperQD is empty
andfilled, respectively.

1
Onemay argue that the above statementmight be due the fact that wefixed the electron occupancy of eachQD to one, equation (78).

However, the same conclusion is reachedwhen assuming: =N 000 , n=N01 d, n=N10 u, and n n= +N11 u d, for some positive integer
values nu and nd.
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 d = º
+ + + + + +

ℓ ( ) { } ( )( ) Y E D0 0 0 0 . 88E
n e

n
1 2 3 4 5 6

,u
u u

u

The second one, equation (86b), arises from the tight coupling between the transport of energy andmatter
through the second dot. Since ℓ t is in dcoker Y,

d = º
+ + + + + +

ℓ ( ) { } ( )Y L D0 0 0 0 0 0 , 89n e
n

1 2 3 4 5 6

t t

the conserved quantity Ln
t is a constant for all n, which can be chosen arbitrarily. Notice the dependence on the

systemquantity d of the nontrivial conservation law (86b).We thus showed that changes of systemquantities (u
in our case) canmodify the properties ofM, and hence the set of conservation laws—without changing the
network topology.

6.1.3.Massieu potential and fundamental forces
Wenowprovide the expressions of fn and yf

for the generic case ¹u 0. Therefore, we split the set { }y in
={ } {( ) ( ) ( )}y E N N, 1 , , 1 , , 2p and ={ } {( ) ( ) ( )}y E E N, 2 , , 3 , , 3f . From equation (83)we see the validity of

this splitting, as thematrix whose entries are lℓ{ }yp
is an identitymatrix. Thefields conjugatedwith the complete

set of conservation laws, equation (15), are

b b m b m= = - = - ( )F F F, , , 90E 1 u 1 1 d 2 2

fromwhich theMassieu potential of the state n, equation (14), follows

f b b m b m= - + + ( )E N N . 91n n n n1 1 1
u

2 2
d

Instead, the fundamental forces, equation (16), are given by

 b b= - ( )( ) a, 92E,2 1 2

 b b= - ( )( ) b, 92E,3 1 3

 b m b m= - ( )( ) c. 92N ,3 3 3 2 2

Thefirst two forces rule the energy flowing into thefirst reservoir from the second and third one, respectively,
whereas the third force rules the electrons flowing from the third to the second reservoir.

Concerning theway the changes of fn and { }yf
are intertwined, we see that the former depends on b1, m1,

m2, and b2, which arises from ( )f N ,2 . Therefore, while the changes of b=( )f E,3 3 and b m= -( )f N ,3 3 3 only affect
the related forces, the changes of b=( )f E,2 2 affect both ( )E,2 and fn. Since the vectors of conservation laws
(83c) do not depend on either En orNn, see section 6.1.2, the forces do not depend on systemquantities.

Alternatively, onemay split the set { }y in ={ } {( ) ( ) ( )}y N E N, 1 , , 2 , , 3p and

={ } {( ) ( ) ( )}y E N E, 1 , , 2 , , 3f .With this choice, we obtain

f b b m b m= - + + ( )E N N , 93n n n n2 1 1
u

3 3
d

and

 b b= - ( )( ) a, 94E,1 2 1

 b m b m= - ( )( ) b, 94N ,2 2 2 3 3

 b b= - ( )( ) c. 94E,3 2 3

With respect to the previous decomposition, we here consider the forces ruling the energy flow from thefirst and
third reservoir, and the electrons flow from the second reservoir.

Let us now reconsider the case of vanishing interaction energy, u=0, as in section 6.1.2. Thefive
conservation laws that we consider are En, En

d, Nn
u, Nn

d, Ln
t, andwe choose to split { }y as

={ } {( ) ( ) ( ) ( ) ( )}y E N E N E, 1 , , 1 , , 2 , , 2 , , 3p and ={ } {( )}y N , 3f . The potential follows

f b b m b m b b b b b b= - + + - - - - - -˜ [ ( ) ] ( ) ( ) ( )E N N E L , 95n n n n n n1 1 1
u

2 2 2 3 d
d

3 1
d

3 2
t

whereas the only force is

  b m b m= - - -˜ ( ) ( ) ( )( ) . 96N ,3 3 3 d 2 2 d

We see that the creation of two conservation laws destroyed twononconservative forces, equations (92a) and
(92b), whose expression can be spotted in the new potential, equation (95). Notice also how the emergence of the
nontrivial conservation law (86b)makes the fundamental force dependent on the systemquantity d.

6.1.4. Symmetries and fundamental cycles
The two single-level QDhas no symmetries for ¹u 0, since itsM-matrix (82)has empty kernel. Its three cycle
affinities, equations (81) and (17), are thus fundamental and read
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 b b= - ( )u u a, 971 1 3

  b m b m= - - -( ) ( ) ( )b, 972 3 d 3 2 d 2

  b m b m= + - - + -( ) ( ) ( )u u c, 973 3 d 3 2 d 2

while thematrix relating fundamental cycles to edges, equation (22), is given by

   
   
   

z =
+ +

- - - - - - -
+

+ + + + + +

h
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

u u
u u u

u u

0 0
0 0
0 0

1
. 98

1 2 3 4 5 6

1
2
3

e

d d d d

d d d d

d d d d

In sharp contrast with the fundamental forces, equation (92), the fundamental affinities depend both on the
fields and the systemquantities.

As the interaction energy is turned off, two symmetries emerge:

y = ( ) ( )a1 0 0 , 99
1 2 3

1

y = -( ) ( )b0 1 1 , 99
1 2 3

2

in agreementwith the creation of two conservation laws, see equations (19) and (86). They informus that since
theQDs are decoupled: (i) the cycle 1 does not produces changes in the reservoirs, i.e. its affinity is zero
irrespective of the entries of f ; (ii) the cycle 2 and 3 are physically dependent since the flowof electrons from the
second to the third reservoir is the samewith empty andfilled upper dot. Choosing the third cycle as the
fundamental one, its affinity reads as ̃( )N ,3 in equation (96), whereas thematrix of cycle contributions, see
equation (22) and section 6.1.3, becomes

z = - -
+ + + + + +

( ) ( )0 0 1 0 0 1 . 100e

1 2 3 4 5 6

3

Notice that both the transition+3—which belongs to the cycle 2—and+6—which belongs to the cycle 3—
contribute to the current along the fundamental cycle 3.

6.1.5. Detailed-balance dynamics
From equation (92), we see that the dynamics of the twoQDs is detailed balancedwhen b b b= =1 2 3 and
m m=2 3. In this case theMassieu potential of state n, equation (91), is given by

f b m m= - - -( ) ( )E N N . 101n n n n1 1
u

2
d

The only element distinguishing the latter from that in equation (91) is the fact that b b=2 1, which arises from
 =( ) 0E,2 . Therefore, a nondetailed-balanced dynamics described by the decomposition (91) and (92) can
becomedetailed-balancewithout changing fn as long as  =( ) 0E,2 . Instead, the decomposition in equations (93)
and (94c) requires both ( )E,1 and ( )E,3 to be zero.

6.1.6. EP decomposition
For the sake of illustrating our EP decomposition let us assume that only En, m2, and b3 change in time.
According to the expressions of fn and { }yf

derived in section 6.1.3, we can distinguish two driving
contributions of the EP, equations (37) and (41):

= +[ ] [ ] [ ] ( )( )n n nv v v , 102t t N tE ,2

where thefirst term,

òb t t¶t t[ ] ≔ ( )∣ ( )nv Ed , 103E t

t

n n1
0

is usually referred to asmechanical work in stochastic thermodynamics (up to b1), while the second,

òb t m t- ¶t t
[ ] ≔ ( ) ( )( ) nv Nd , 104N t

t

n,2 2
0

2
d

is the entropy dissipated due to the change of the chemical potential of the second reservoir. Theflow
contributions, equation (39), are instead given by

 òs t t=[ ] ( ) ( )( ) ( ) ( )n I ad , 105E t E

t

E,2 ,2
0

,2

òs t t t=[ ] ( ) ( ) ( )( ) ( ) ( )n I bd , 105E t

t

E E,3
0

,3 ,3
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òs t t t=[ ] ( ) ( ) ( )( ) ( ) ( )n I cd , 105N t

t

N N,3
0

,3 ,3

where, the forces are given in equation (92), while the instantaneous currents of yf are

 = - + + -+ - + -[ ] ( )[ ] ( )( )I J J u J J a, 106E,2 d
2 2

d
5 5

 = - + + -+ - + -[ ] ( )[ ] ( )( )I J J u J J b, 106E,3 d
3 3

d
6 6

= - + -+ - + - ( )( )I J J J J c. 106N ,3
3 3 6 6

We thus see that thefirst and the second flow contribution, equations (105a) and (105b), quantify the dissipation
due to the energyflowing from the second and third reservoir to the first, respectively. Analogously, the third
contribution, equation (105c), characterizes the EP due to theflowof electrons from the third reservoir to the
second. The EP is thus the sumof the terms in equations (102) and (105)plus a difference of stochasticMassieu
potential, equations (91) and (40).We notice that the change in time of b3 is accounted for by the second and
third flows, equations (105b) and (105c), while not by a driving contribution, as b3 does not contribute to fn,
equation (91)

It is worth noting that, from an experimental point of view, the driving contribution demands information
on the states of the trajectory. Instead, the flow contributions require themeasurement of the energyflow in the
second and third reservoir and the electronflow in the third. Let us now compare the above decompositionwith
that based on a different choice of { }y y,p f , e.g. the second onemade in section 6.1.3. In this case the driving
contribution reads,

= +[ ] [ ] [ ] ( )( )n n nv v v , 107t E t E t,3

where

òm t b t- ¶t t
[ ] ≔ ( ) ( )( ) nv Nd . 108E t

t

n,3 3
0

3
d

Theflow contributions read as in equation (102)with forces given in equation (94c) and other expressions for
the currents. Now, themeasurement of the energyflow in thefirst and third reservoir, as well as the electron flow
in the second reservoir, are required to quantify these terms in experiments.

Tomake the difference between the two choices even sharper, one can easily see that if the only quantity
changing in time is m2, the driving contribution of the second choice vanisheswhile that of thefirst does not.
Therefore, depending on the physical system and the experimental apparatus, one choicemay bemore
convenient than another when it comes to estimating the dissipation.

6.1.7. EP decomposition along fundamental cycles
For the scenario described in the previous subsection, section 6.1.6, theflow contributions along fundamental
cycles (52) read

òg t t z t=[ ] ( ) ( ) ( )n J ad , 109t

t

e
e

1
0

1 1,

òg t t z t=[ ] ( ) ( ) ( )n J bd , 109t

t

e
e

2
0

2 2,

òg t t z t=[ ] ( ) ( ) ( )n J cd , 109t

t

e
e

3
0

3 3,

where the affinities are given in equation (97) and the cycle-edge couplingmatrix ζ in equation (98). Concerning
their physical interpretation, thefirst contribution corresponds to the flowof energy from the third reservoir to
thefirst, while the last two to the entropy dissipatedwhen transferring electrons from the second reservoir to the
thirdwith empty and filled upper dot, respectively.

6.1.8. Finite-time detailed FT
Wenow illustrate the conditions underwhich our FT applies to the coupledQDs. The processmust start from
equilibrium, equation (25): all forces vanish and the potential is given in equation (101). As the protocol is
activated, itmust leave the fields appearing in fn, equation (91), (b1, b b=( )2 1 , m1, and m2) unchanged, but all
the others can be set to arbitrary values. Subsequently, all fields and systemquantities controlled by pt , for

t< < t0 , can change arbitrarily, until time t, inwhich the force in equation (92a)must be turned off. This
condition guarantees that the potential at time t is of the form in equation (101), thus identifying a new
equilibrium state.When the above force vanishes at all times, one can formulate FTs like those in equations (58)
and (59).

To simplify the application of the FT let us consider the conditions described in section 6.1.6, with the
further simplification that all temperatures are equal and constant: onlyEn and m2 change in time. Since b b=2 1
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at all times, we do not need toworry about how the protocol terminates and the FT reads

s
s

s
- - -

= + + + DF
( )

( )
{ } ( )( ) ( )

†
( ) ( )

( ) ( )
P v v

P v v
v v

, ,

, ,
exp , 110

t E N N

t E N N
E N N

,2 ,3

,2 ,3
,2 ,3 eq

where the different contributions are given in equations (103), (104), and (105c). Notice that the contributions of
v appear separately in the above expression, but one can equivalently express the FT in terms of the full driving
work v, equation (102), as in themain discussion.

6.1.9. FT for flow contributions along fundamental cycles
We saw in the previous example that the force ( )E,2 , equation (92a), must be zero at time 0 and t for the validity
of the FT (55), and at all times for the FTs (58) and (59). Using equation (20) in combinationwith the inverse of
the submatrix of (82)whose entries are h{ }M yf ,




= - - -
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

( ) ( ) ( )

M u
u

1 1 0
1 0

1 0

1
, 111

E E N, 2 , 3 , 3

1
2
3

d

d

we conclude that the above requirement becomes

  - + = ( )0, 1121 2 3

in terms of fundamental affinities, equation (97). Once identified the above condition, the application of the FT
readily follows.

6.2.QD coupled to aQPC
Wenow consider a simplified description of a two levels QD coupled to a thermal reservoir and aQPC, figure 7.
For a detailed analysis of this class of systemswe refer to [48]. The interest of thismodel is twofold, it shows how
single transitions can trigger exchanges involvingmultiple reservoir, and it also provides a further instance of a
fundamental force which depends on systemquantities due to nontrivial conservation laws.

The two states of theQD, l for ‘low’ and h for ‘high’, are characterized by different energies but the same
number of electrons

= = = = ( )E E N N0, , 1, 1. 113l h l h

The transition between these states can occur following either a phononic interactionwith the first reservoir,±1,
or following electron tunneling from the second to the third reservoir,±2. Along the latter transition, an
electronwith energy +u leaves the second reservoir and enters the thirdwith energy u. Thematrix of
exchanged conserved quantities, dY , thus reads




d =
+

-
-

+ +

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

( )
( )
( )
( )
( )

Y
u

u

0
0
0 1
0
0 1

, 114

E

E

N

E

N

1 2

, 1

, 2

, 2

, 3

, 3

Figure 7.Model ofQD coupledwith a thermal reservoir and a pair of particle reservoirsmodeling aQPC. The electron can jump to the
excited state following either a phononic interactionwith thefirst reservoir or an interactionwith theQPC. The latter involves an
electron current from the second to the third reservoir.
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while the vector of intensive fields is

b b b m b b m= - -( ) ( )
( ) ( ) ( ) ( ) ( )

f . 115

E E N E N, 1 , 2 , 2 , 3 , 3

1 2 2 2 3 3 3

The nontrivial local detailed balance property for the second transition follows from d-f Y , and reads

b m b m= - + - + -+

-
( ) ( ) ( )w

w
u uln . 1162

2
2 2 3 3

TheM-matrix,
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follows from the product of dY , equation (114), and thematrix of cycles,

=
-

+
+ ( ) ( )C 1

1
. 118

1

1

2

Its four-dimensional cokernel is spanned by

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )

a1 1 0 1 0 , 119

E E N E N

E

, 1 , 2 , 2 , 3 , 3

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )

b0 0 1 0 1 , 119

E E N E N

N

, 1 , 2 , 2 , 3 , 3

= - -ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )

u c0 1 0 0 , 119

E E N E N, 1 , 2 , 2 , 3 , 3

3

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )

u d0 0 1 0 . 119

E E N E N, 1 , 2 , 2 , 3 , 3

4

Thefirst two conservation laws are clearly the energy and the number of particles, equation (113), since
 d =ℓ ( )Y ,E and d =ℓ ( )Y 0, 0N . For the other two, d d= =ℓ ℓ ( )Y Y 0, 03 4 implies that the related conserved

quantities are constants, i.e. they do not depend on n.Mindful of the gauge freedomdescribed in section 3we
can set the conserved quantities related to ℓ N , ℓ 3, and ℓ 4 to zero.When ( )E, 1 is set as ‘force’ y, thefield related
to the energy conservation law

 m b m b= + - - -[( ) ( ) ] ( )F u u , 120E 2 2 3 3

determine the values of the nonequilibriumMassieu potential, f = -F En E n. Concerning the nonconservative
contributions, the fundamental force and the fundamental affinity read

 b= - = ( )( ) F . 121E E,1 1 1

Due to the emergence of nontrivial conservation laws, equations (119c) and (119d), the fundamental force
depends on a systemquantity. In detailed balance dynamics,  =( ) 0E,1 , andwe readily recover f b= - En n1 .

6.3.Molecularmotor
Wenow turn to the thermodynamic description of amolecularmotormoving along a single dimension, see
[49, 50]. Beside providing an instance of awork reservoir, thismodel also illustrates how changes in the topology
of the network can convert a conservative force into a nonconservative one.

Themotor conformations and transitions are described infigure 8. It can step against amechanical force k
thanks to the chemical force produced by the hydrolysis of ATP into ADP, which are exchangedwith reservoirs
at chemical potential mATP and mADP.We label each state of the process by = ( )n m x, , while each transition by
ex, where Î { }e 1, 2, 3, 4, 5, 6, 7 refers to the transitions at a given position Îx . The systemquantities are
the internal energy, =En m, the total number of ATP plus ADP molecules attached to themotor, =N Nn m,
and the position, =X xln where l is the size of a step. Importantly, each internal state is characterized by an
internal entropy =S sn m.
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Thematrix of exchanged conserved quantities for the transitions at given position x is written as

             

d =

- - - - - - -

- -

+ + + + + + +

Æ Æ Æ Æ Æ Æ Æ Æ⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟

( )

( )
( )
( )
( )

122

Y

E
N
N
X l

, ATP
, ADP

0 0 0 1 0 0 1
0 1 0 0 1 0 0

0 0 0 0 0 0

,

1 2 3 4 5 6 7

x

TD DT T TD D T DT D T DT D T TD D

x x x x x x x

whereas the fullmatrix is given by d d d d= - +( )Y Y Y Y... ...x x x1 1 . On the other side, the row vector of
intensive variables reads

b bm bm b= - - -( ) ( )
( ) ( ) ( ) ( )

f k . 123

E N N X, ATP , ADP

ATP ADP

Differently from all previous cases, the local detailed balance of the step transitions involves thework reservoir,
b-( )X k, ,

 b= - - - + -+

-
[( ) ] ( ) ( )

w

w
kl s sln . 1241

1
TD DT TD DT

x

x

Notice that the interpretation of the first term asminus entropyflow still holds:  - -+ ≔ ( )q kl1 TD DTx
is the

heat of transition, since the last term isminus thework that themechanical force exerts on the system [51, 52].
It is easily shown that the subnetwork at given x contains exactly one cycle cx,

=

+
+
+
+
+
+
+

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
( )C

0
1
1
1
1
1
1

, 125

c

x

1

2

3

4

5

6

7

x

x

x

x

x

x

x

x

which entails the intake of two ATPmolecules and the release of two ADP ones

d =
-

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟≔ ( )

( )
( )
( )
( )

M Y C

0
2
2

0

, 126

c

E

N

N

X

, ATP

, ADPx x x

x

irrespective of the position x. The fullM-matrix has thus an infinite-number of columns equal to equation (126),
and its three-dimensional cokernel is spanned by

=ℓ ( ) ( )
( ) ( ) ( ) ( )

a1 0 0 0 , 127

E N N X

E

, ATP , ADP

=ℓ ( ) ( )
( ) ( ) ( ) ( )

b0 1 1 0 , 127

E N N X

N

, ATP , ADP

Figure 8.Network of transitions describing the chemomechanical steppingof themotor,where xdenotes the generic position along the
stepping support. Themolecularmotor has six internal conformations distinguished by the state of the trailing, ∣·∣, and leading, ñ∣· ,motor
foot: ATP-bound (T), ADP-bound (D), or unbound (∅). Yellowarrowsdenote stepping transitions, + º ñ  ñ +{ ∣ ∣ ∣ ∣ }1 D T T Dx x x 1 ,
alongwhich themechanical force k acts (positive valuedrive the system toward increasing x). Internal transitionsmay entail the exchange
of ATP and ADP moleculeswithparticle reservoirs (green arrows) or the hydrolysis of ATP into ADP (blue arrows). The latter only
exchange energywith the thermal reservoir at inverse temperatureβ.
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=ℓ ( ) ( )
( ) ( ) ( ) ( )

c0 0 0 1 , 127

E N N X

X

, ATP , ADP

which clearly corresponds to the three systemquantities, En,Nn, andXn, respectively. As far as the symmetries
are concerned, the intersection between its infinite-dimensional column vector space and its (infinite-
dimensional) kernel is one-dimensional, in agreement with the observation that all cycles { }cx are physically
dependent on one. In otherwords, there is an infinity of symmetries and all cycles carry the same cycle affinity

 b m m= -( ) ( )2 , 128ATP ADP

which is thus regarded as the fundamental one.
To illustrate our EP decomposition, we use ( )N , ATP as set of yf , while leaving {( ) ( ) ( )}E N X, , ADP , as yp.

Guided by equations (14) and (15), the potential reads

f w b= + ( )kX , 129n n n

where

w b bm- +≔ ( )S E N , 130n n n nADP

is theMassieu potential corresponding to the grand potential. The fundamental forces, equation (16), consist
solely of

 b m m= -( ) ( )( ) . 131N ,ATP ATP ADP

The EP along a stochastic trajectorywith autonomous protocol, equation (36), is

b m mS = - + DF[ ] ( ) [ ] [ ] ( )n n n , 132t t tATP ADP ATP

where

 ò òåt d t t t t t t= - + -
=-¥

¥
+ - + -[ ] ≔ ( ) [ ( ) ( ) ( ) ( )] ( )( )n Y J J J J Jd d 133t

t

e
N e

x

t

ATP
0

,ATP

0

4 4 7 7x x x x

is the total number of ATP moleculesflowing into the system, whileΦ is the stochasticMassieu potential related
to equation (129). Since there is only one fundamental force, the EP in terms of fundamental affinities reads
exactly as equation (132)

To illustrate the finite-time detailed FT, let us imagine a systemwith afinite number of positions
N=x 1, ..., x. The potential (129) thus defines a physical equilibrium state, equation (25), achievedwhen the

force is turned off: m m=ATP ADP. At time 0, the autonomous protocol with m m¹ATP ADP (butwith the same mADP

as at equilibrium) is activated and the systemmoves far from equilibrium.Notice that any change of mATP leaves
fn unaltered and the process can be stopped at any time.Hence, the probability of observing the intake of ATP

ATPmolecules up to time t satisfies




b m m
-

= -
( )

( )
{ ( ) } ( )P

P
exp , 134t

t

ATP

ATP
ATP ADP ATP

see equation (59).
To formulate a FTwhich explicitly counts the number of steps, we have tomake a step backward and regard

the conservative term bkl in the local detailed balance, equation (124), as an additional force contribution,
rather than as part of the potential one. Under this condition the EP can be recast into

 b m m bS = - + + DW[ ] ( ) [ ] [ ] [ ] ( )n n n nk , 135t t t tATP ADP ATP

where

wW = - ( )pln 136n n n

is the stochasticMassieu potential corresponding to equation (130), while

 -[ ] ≔ ( )n X X 137t n nt 0

the total distance traveled by themotor. If the system is initially prepared in the grandcanonical equilibrium state
—achieved by turning off both the external force k and the fundamental force ( )N ,ATP —the FT reads

 
 

 b m m b
- -

= - +
( )

( )
{ ( ) } ( )P

P
k

,

,
exp . 138t

t

ATP

ATP
ATP ADP ATP

Tightly coupledmodel.As an example of change of network topology,wenowconsider the tightly coupled
description inwhich the transitions { }5, 6, 7 are absent, and thenetwork becomes a one-dimensional chainof
states. Since there are no cycles thewhole row space of dY spans the conservation laws,which can thus bewritten as
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=ℓ ( ) ( )
( ) ( ) ( ) ( )

a1 0 0 0 , 139

E N N X, ATP , ADP
E

=ℓ ( ) ( )
( ) ( ) ( ) ( )

b0 1 0 0 , 139

E N N X, ATP , ADP

ATP

=ℓ ( ) ( )
( ) ( ) ( ) ( )

c0 0 1 0 , 139

E N N X, ATP , ADP
ADP

=ℓ ( ) ( )
( ) ( ) ( ) ( )

d0 0 0 1 . 139

E N N X, ATP , ADP
X

With respect to the previousmodel, the number of ATP and ADPmolecules are separately conserved quantities,
equations (139b) and (139c). The set of fundamental forces is emptywhile the potential reads

f b m m= - - - -( ) ( )S E N N kX , 140n n n n n nATP
ATP

ADP
ADP

thusmaking the dissipation equal to

S = DF[ ] [ ] ( )n n . 141t t

Therefore, the change of network topology achieved by removing transitions creating cycles, prevents the
reservoirs from creating forces. The potential will be thus describedwith themaximumamount of conserved
quantities, one for each y.

Alternative description.An alternative description of the chemomechanical process is obtainedwhen
periodic boundary conditions are imposed, figure 9.One additional cycle is created,

=

+
+
+
+
+
+
+

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
( )C

0 1
1 1
1 1
1 1
1 0
1 0
1 0

, 142

c a

1

2

3

4

5

6

7

see equation (125), and theM-matrix now reads

- -

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟≔ ( )

( )
( )
( )
( )

M

l

0 0
2 1
2 1

0

, 143

E

N

N

X

, ATP

, ADP

c a

As a consequence, the spatial conservation law, (127c), is lost and the nonequilibriumMassieu potential
becomes wn, equations (130) and (136). However, the set of fundamental forces gains one element,

Figure 9.Alternative description of the chemomechanical stepping process in figure 8. The kinetics and thermodynamics of the
internal transitions is unchanged, while the step transitions reset the internalmotor state.
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 b= ( )( ) k, 144X

which is conjugated to the traveled distance:

 ò òt d t t t t= -+ -[ ] ≔ ( ) [ ( ) ( )] ( )( )n Y J l J Jd d . 145t

t

e
X e

t

0 0

1 1x x

Hence, the expression of the EP and the formulation of the finite-time detailed FT read as in equations (135) and
(138), respectively.

In conclusion, the periodic boundary condition can be viewed as a change of network topology inwhich one
conservation law is lost and a fundamental force emerges.

6.4. Randomized grid
As afinal illustration, we consider a particle hopping between states positioned at the nodes of a two-
dimensional grid, = ( )n x z, for N= ¼x z, 1, , . The transitions along the edges are triggered by randomly
distributedwork reservoirs. Thismodel provides an example of systemswhich could not be analyzed
thermodynamically without resorting to our systematic procedure. It also shows howphysical topological
alterationsmay give rise to symmetry changes which in turn affects the thermodynamics.

The states are characterized by a spatial coordinate = +X a x a zn x z , and jumps are only allowed between
nearest neighbors:  x x 1or  z z 1. The system is isothermal and each transition is ruled by a force

b= -( )f kX r r, , which is initially drawn randomly from a set ofNr reservoirs. The dY -matrix relating transitions
to reservoirs is given by

d =
 = 

 = 

⎧
⎨⎪

⎩⎪
⟶
⟶ ( )Y

a e x x

a e z z

if 1

if 1
0 otherwise

, 146e
r

r

r
x

z

i.e. if e is triggered by thework reservoir r, then dYe
r is equal toax oraz depending on the direction of the

transition.
As an example, we consider the 3×3 grid coupled to 5 reservoirs depicted infigure 10.We omit to report

thematrices dY andC as they can be easily inferred form equation (146) and the picture, andmove on to theM-
matrix, which reads

=

-
- -
-

-
- -

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )

( )
( )
( )
( )
( )

M

a a a
a a a a

a
a

a a a a a

0
0
0 0 0

0 0 0
0

. 147

X

X

X

X

X

1 2 3 4

, 1

, 2

, 3

, 4

, 5

x x x

x z x z

z

z

z x x z x

Its one-dimensional cokernel is spanned by the vector

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1 1 1 148

X X X X X

X

, 1 , 2 , 3 , 4 , 5

which corresponds to the global conserved quantityXn. In contrast, its kernel is empty denoting the absence of
symmetries. Setting b- k1 as ‘potential’field, yp, the nonequilibriumpotential reads

Figure 10. Illustration of a 3×3 grid with nearest-neighbor transitions triggered by a reservoir chosen at random among five. The
color of each transition corresponds to a different reservoir: 1, yellow; 2, green; 3, purple; 4, blue; and 5, red.
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f b= ( )k X , 149n n1

while the fundamental forces are equal to

 b= - =( ) ( )( ) k k r, for 2, ..., 5. 150X r r, 1

The trajectory EP can be thus expressed as

å sS = + + DF
=

[ ] [ ] [ ] [ ] ( )n n n nv , 151t t
r

r t t
2

5

where

òb t t t- ¶t = t[ ] ≔ [ ( ) ( )]∣ ( )nv k X ad , 152t

t

n n n
0

1

òs b t t t t-[ ] ≔ [ ( ) ( )] ( ) ( )n k k I bd . 152r t

t

r r
0

1

In order to show the emergence of a symmetry following a change of physical topology, let us now assume
that = =a a ax z and carry on the same analysis as before. TheM-matrix nowbecomes,

=

-
-

-
-

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

( )
( )

( )
( )
( )

( )

153M
X

a a a
a a

a
a

a
, 4

0
0 0
0 0 0

0 0 0
0 0 0

.

X

X

X

X

, 1

, 2

, 3

, 5

1 2 3 4

whose kernel and cokernel are one and two-dimensional, respectively. The symmetries are given by

y = ( ) ( )0 1 0 1 , 154
1 2 3 4

and tell us that the second and fourth cycles are not physically independent, as they are coupled to the same
reservoirs and all displacements are the same. The basis of Mcoker ,

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )

a1 1 1 1 1 , 155

X X X X X

X

, 1 , 2 , 3 , 4 , 5

=ℓ ( ) ( )
( ) ( ) ( ) ( ) ( )

b0 0 1 0 1 155

X X X X X

V

, 1 , 2 , 3 , 4 , 5

identifies two state variables, thefirst of which is the global conserved quantity,Xn, whereas the second is

= ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

V a a a a a0 0 0 0 2 156n

0, 0 1, 0 0, 1 2, 0 1, 1 0, 2 2, 1 1, 2 2, 2

whose interpretation is not obvious. It arises from the fact that x- and z-transitions are indistinguishable and the
reservoirs 3 and 5 split the states into three groups, see figure 11, which are identified by different values ofVn,
equation (156).We can set ( )X , 1 and ( )X , 3 as the reservoirs of the set { }yp , according towhich theMassieu
potential of the state n reads

f b= + -[ ( ) ] ( )k X k k V . 157n n n1 3 1

Figure 11. Illustration of the randomized grid infigure 10 for = =a a ax z . The grid is split into three groups of states by the
transitions corresponding to the third (purple) andfifth (red) reservoir: {( ) ( ) ( ) ( )}0, 0 , 1, 0 , 0, 1 , 2, 0 , {( ) ( ) ( ) ( )}1, 1 , 0, 2 , 2, 1 , 1, 2 ,
and {( )}2, 2 .
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The number of fundamental forces is thus reduced,

 b b= - ( )( ) k k a, 158X,2 2 1

 b b= - ( )( ) k k b, 158X,4 4 1

 b b= - ( )( ) k k c. 158X,5 5 3

The EP can be easily written.
Thismodel exemplifies the emergence of nontrivial conservation lawswhose identification is not

straightforward, andmotivates the need for a systematic procedure capable of separating the conservative
contributions to the EP from the nonconservative ones.

7. Conclusions and perspectives

The central achievement of this paper is to show that the EP of an open systemdescribed by stochastic
thermodynamics is shaped by theway conserved quantities constrain the exchanges between the system and the
reservoirs. Some of these conserved quantities are the obvious oneswhich do not depend on the systemdetails
(e.g. energy, particle number). But we provide a systematic procedure to identify the nontrivial oneswhich
depend on the system topology. As a result, we can split the EP into three fundamental contributions, one solely
caused by the time-dependent drivings, another expressed as the change of a nonequilibriumMassieu potential,
and a third onewhich contains the fundamental set offlux and forces. Table 3 indicates which of these
contributions play a role in different known processes.We also showed how tomake use of this decomposition
to derive afinite-time detailed FT solely expressed in terms of physical quantities, as well as to asses the cost of
manipulating nonequilibrium states via time-dependent driving andnonconservative forces.

We believe that this work provides a comprehensive formulation of stochastic thermodynamics. Our
framework can be systematically used to study any specificmodel (aswe illustrated on several examples) and
demonstrates the crucial importance of conservation laws in thermodynamics, at, as well as out of, equilibrium.
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AppendixA. Proof of the one-to-one correspondence between fundamental forces and
fundamental affinities

Weneed to prove that that thematrix whose entries are h{ }M yf is nonsingular given the following hypotheses: (i)
the vectors labeled by ηwhose entries are h{ }M y , for N= ¼y 1, , y , are linearly independent; (ii)

+ =l
a

l
aℓ ℓM M 0y

y
y

y

f
f

p

p for allλ andα, where thematrix whose entries are lℓ{ }yf
is nonsingular. Let us now assume

by contradiction that h{ }M yf is singular, and let us denote by h{ }x the entries of a non-null vector such that
=h

hM x 0yf for all yf .We can thus construct a vector a{ }x having as entries corresponding to η, h{ }x , and zero for
the others.Hence, =a

aM x 0yf for all yf . From the equation in the second hypothesis, we get

+ = =l
a

a l
a

a l
h

hℓ ℓ ℓM x M x M x 0.y
y

y
y

y
y

p

p

f
f

p

p

Since thematrix whose entries are lℓ{ }yp
is nonsingular, wemust conclude that =h

hM x 0
yp for all yp, and thus

=h
hM x 0y for all y, in contradictionwith the hypothesis (i).

Appendix B. Proof of thefinite-time detailed FTs

Wenow give the proof of thefinite time detailed FTs (55) usingmoment generating functions. Alternatively, it
can be proved using the approach developed in [53]. For our purposes, we change our notation for a bracket
operatorial one.
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Let s( { })P n v, ,t yf
be the joint probability of observing a trajectory ending in the state n alongwhich the

driving contribution is vwhile theflowones are s{ }yf
. The above probabilities, one for each n, are stacked in the

ket s ñ∣ ( { })P v,t yf
. The time evolution of themoment generating function of the above probabilities,

ò x x s x x s sL ñ - - ñ∣ ( { }) ≔ { }∣ ( { }) ( )v v P v, d d exp , , B1t y
y

y
y

y t yd df

f

f
f

f f

is ruled by the biased stochastic dynamics

x x x x x xL ñ = L ñ∣ ( { }) ( { })∣ ( { }) ( )d , , , , B2t t y t y t yd d df f f

where the entries of the biased generator are given by

 åx x x d d d d d x f d= - + + ¶-( { }) { { } } ( )( ) ( ) ( )w Y, exp . B3nm t y
e

e
y

y y e n o e m o e n m m o e t m n m, d , , , , , d ,
f

f
f f

Because of the local detailed balance (13), the stochastic generator satisfies the following symmetry

   x x x x= --( { }) ( { }) ( ), , 1 , B4t y t t y t
T

d
1

df f

where the entries of t are given by

 f d≔ { } ( )exp . B5nm t m n m, ,

Also, the initial condition is given by the equilibriumdistribution (25), which reads

x xL ñ = ñ = ñ∣ ( { }) ∣ ∣ ( )p Z, 1 , B6y0 d eq 0 0
f i

where F≔ { }Z exp0 eqi
is the partition function. The ket ñ∣1 refers to the vector in the state spacewhose entries

are all equal to one.
In order to proceed further, it is convenient tofirst prove a preliminary result. Let us consider the generic

biased dynamics, e.g. equation (B2),

x x xL ñ = L ñ∣ ( ) ( )∣ ( ) ( )d , B7t t t t

whose initial condition is xL ñ = ñ∣ ( ) ∣ ( )p 00 . A formal solution of equation (B7) is x xL ñ = ñ∣ ( ) ( ) ∣ ( )p 0t t , where

the time-evolution operator reads   òx t x= t+ { }( ) ( )exp dt
t

0
, + being the time-ordering operator.We

clearly have   x x x=( ) ( ) ( )dt t t t . Let us now consider the following transformed evolution operator

   x x-˜ ( ) ≔ ( ) ( ), B8t t t
1

0

t being a generic invertible operator. Its dynamics is ruled by the following biased stochastic dynamics

              x x x x x x x= + = + º- - - -˜ ( ) ( ) ( ) { ( ) } ˜ ( ) ˜ ( ) ˜ ( ) ( )d d d d , B9t t t t t t t t t t t t t t t t t
1

0
1

0
1 1

which allows us to conclude that the transformed time-evolution operator is given by

  òx t x= t+ { }˜ ( ) ˜ ( ) ( )exp d . B10
t

0

From equations (B8)–(B10)wededuce that

        òx t x= +t t t t t t
-

+
- -{ }( ) [ ( ) ] ( )exp d d . B11t t

t
1

0
0

1 1

Wecan now come back to our specific biased stochastic dynamics (B2). Themoment generating function of
s( { })P v,t yf

is thus given by

 

  x x x x x x x xL = á L ñ = á ñ = -( { }) ∣ ( { }) ∣ ( { }) ∣ ( { })

( )

Z
Z

Z

Z
, 1 , 1 , 1 1 , 1 ,

B12

t y t y t y
t

t
t t y

t
d d d 0 0

1
d 0

0
f f f f

where  x x( { }),t yd f
is the time-evolution operator of the biased stochastic dynamics (B2). The requirement

imposed on pt—discussed in themain text—ensures that á ∣ Z1 t t with F≔ { }Z expt eqf
is the equilibrium

initial distribution of the backward process á ∣peqf
. Using the relation in equation (B11), the above term can be

rewritten as

     ò t x x= ¶ + DFt t t t t t+
- -{ }[ ( { }) ] { } ( )p exp d , 1 exp , B13

t

yeq
0

1 1
d eq

f f

whereDF º Z Zln teq 0. Since   f¶ = -¶t t t
- { }diag t n

1 thefirst term in square bracket can be added to the
diagonal entries of the second term, thus giving
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   ò t x x= - DFt t t+
-{ }[ ( { }) ] { } ( )p exp d 1, 1 exp . B14

t

yeq
0

1
d eq

f f

The symmetry (B4) allowus to recast the latter into

 ò t x x= - - DFt+ { }( { }) { } ( )p exp d 1, 1 1 exp . B15
t

yeq
0

T
d eq

f f

The crucial step comes aswe transform the integration variable from τ to t t= -† t . Accordingly, the time-
ordering operator, +, becomes an anti-time-ordering one -, while the diagonal entries of the biased
generator, equation (B3), become

 å

å

x x t d x f t

t d x f t

= - + ¶ -

= - - ¶ -

t t

t

- -( { }) ( ) [ ( )]

( ) [ ( )] ( )

†
( ) ( )

†

†
( )

†

† †

†

w t t

w t t

,

, B16

mm t y
e

e m o e t m

e
e m o e m

, d , d

, d

f

fromwhichwe conclude that

  x x x x x x= - -t t t- -( { }) ( { }) ≕ ( { }) ( )†† † †, , , . B17nm t y nm t y nm y, d , d , df f f

Above, x x
t

( { })†
† , yd f

is the biased generator of the dynamics subject to the time-reversed protocol, p†, i.e. the
dynamics of the backward process. Equation (B15) thus becomes

 ò t x x= - - DFt- { }( { }) { } ( )† †
†p exp d 1 , 1 1 exp . B18

t

yeq
0

T
d eq

f f

Upon a global transposition, we canwrite

 ò t x x= - - DF
t+ { }( { }) { } ( )† †

† p1 exp d 1 , 1 exp , B19
t

y
0

d eq eq
f f

wherewe also used the relationship between transposition and time-ordering
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inwhichAt is a generic operator. From the last expression, we readily obtain

 x x x x=á - - ñ DF = L - - DF∣ ( { })∣ { } ( { }) { } ( )† †p1 1 , 1 exp 1 , 1 exp , B21t y t yd eq eq d eq
f f f

where x xL ( { })† ,t yd f
is themoment generating function of s( { })†P v, yf

. Summarizing, we have the following
symmetry

x x x xL = L - - DF( { }) ( { }) { } ( )†, 1 , 1 exp , B22t y t yd d eq
f f

whose inverse Laplace transform gives the FT
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B.1. Fundamental cycles
Thefinite-time detailed FT forflow contributions along fundamental cycles, equation (61), follows the same
logic andmathematical steps described above. Themoment generating functionwhich nowmust be taken into
account is

ò x x g x x g gL ñ - - ñh
h

h
h

h h∣ ( { }) ≔ { }∣ ( { }) ( )v v P v, d d exp , , B24t td d

which is ruled by the biased generator whose entries are

 åx x x z d d d d x f d= - + + ¶h
h

h h -( { }) { { } } ( )( ) ( ) ( )w, exp . B25nm t
e

e e n o e m o e n m m o e t m n m, d , , , , , d ,

The symmetry of the latter generator—on top ofwhich the proof is constructed—is based on the expression of
the local detailed balance given in equation (13),

   x x x x= -h h
-( { }) ( { }) ( ), , 1 , B26t t t t

T
d

1
d

where the entries of t are given in equation (B5). Following the steps from equation (B12) to equation (B22),
with the above definitions and equations, equations (B24)–(B26), proves the FT in equation (61).
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