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a b s t r a c t 

Product Line Engineering is becoming a key practice in many software development environments where 

complex systems are developed for multiple customers with varying needs. In many business contexts, 

use cases are the main artifacts for communicating requirements among stakeholders. In such contexts, 

Product Line (PL) use cases capture variable and common requirements while use case-driven configura- 

tion generates Product Specific (PS) use cases for each new customer in a product family. In this paper, 

we propose, apply, and assess a change impact analysis approach for evolving configuration decisions in 

PL use case models. Our approach includes: (1) automated support to identify the impact of decision 

changes on prior and subsequent decisions in PL use case diagrams and (2) automated incremental re- 

generation of PS use case models from PL use case models and evolving configuration decisions. Our 

tool support is integrated with IBM Doors. Our approach has been evaluated in an industrial case study, 

which provides evidence that it is practical and beneficial to analyze the impact of decision changes and 

to incrementally regenerate PS use case models in industrial settings. 

© 2019 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Product Line Engineering (PLE) is becoming crucial in many do-

ains such as automotive and avionics where software systems are

etting more complex and developed for multiple customers with

arying needs. In such domains, many development contexts are

se case-driven and this strongly influences their requirements en-

ineering and system testing practices ( Nebut et al., 20 06a, 20 06b;

ang et al., 2015a, 2015b ). 

For example, IEE S.A. (in the following “IEE”) ( IEE, Interna-

ional Electronics & Engineering ), a leading supplier of embedded

oftware and hardware systems in the automotive domain, fol-

ows a use case-driven development process to develop automo-

ive sensing systems for multiple major car manufacturers world-

ide. To develop a new product in a new project, IEE analysts elicit

equirements as use case models from the initial customer. For

ach new customer of the product, IEE analysts clone the current

odels and identify differences to produce new use cases. With

uch practice, analysts loose track of commonalities and variabili-
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ies across products and they, together with the customer, need to

valuate the entire use cases. This practice is fully manual, error-

rone and time-consuming, which leads to ad-hoc change manage-

ent for requirements artifacts, e.g., use case diagrams and spec-

fications, in the context of product lines. Therefore, product line

odeling and configuration techniques are needed to automate the

euse of use case models in a product family. 

The need for supporting PLE in the context of use case-driven

evelopment has already been acknowledged and many product

ine use case modeling and configuration approaches have been

roposed in the literature (e.g., Eriksson et al., 2005; Eriksson

t al., 2004; Fantechi et al., 2004a; Fantechi et al., 2004b; Czar-

ecki and Antkiewicz, 2005; Alférez et al., 2009 ). Most of the ex-

sting approaches rely on feature modeling, including establish-

ng and maintaining traces between features and use case mod-

ls ( Sepulveda et al., 2016; Santos et al., 2015 ). The analysts should

apture variability information as features, and establish traces be-

ween feature and use case models to model variability in use

ases. For each new product in a product family, features should be

elected to make configuration decisions and automatically gener-

te use case models. In practice, many software development com-

anies find such additional traceability and modeling effort to be

mpractical. In addition, requirements evolution results in changes
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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in configuration decisions and variability information, e.g., a se-

lected variant use case being unselected for a product. It is critical

for the analysts to identify in advance the impact of such evolu-

tion for better decision-making during the configuration process.

For instance, impacted decisions, i.e., subsequent decisions to be

made and prior decisions cancelled or contradicting when a de-

cision changes, need to be identified to reconfigure the generated

use case models. 

To the best of our knowledge, there is no existing approach

that explicitly supports automated change management of prod-

uct line use cases for evolving configuration decisions. There are

approaches ( Thüm et al., 2009; Bürdek et al., 2015; Pleuss et al.,

2012; Heider et al., 2012b; Paskevicius et al., 2012 ) that study

the evolution of feature models in terms of identifying the im-

pact of feature changes on other features, but they do not address

the change impact on configuration decisions or on generated use

cases. 

In addition, existing configurators (e.g., Eriksson et al., 2005;

Fantechi et al., 2004b; Czarnecki and Antkiewicz, 2005 ) do not

support incremental reconfiguration of use case models, a capa-

bility that is essential in practice. For a variety of reasons, ana-

lysts manually assign traces from the configured use case models

to other software and hardware specifications as well as to the cus-

tomers’ requirements documents for external systems ( Ramesh and

Jarke, 2001 ). Evolving configuration decisions result in the recon-

figuration of Product Specific (PS) use case models. When the use

case models are reconfigured for all decisions, including unim-

pacted decisions, manually assigned traces are lost. The analysts

need to reassign all the traces after each reconfiguration. It is

therefore vital to enable the incremental reconfiguration of use

case models focusing only on changed decisions and their side-

effects. With such support, the analysts could then reassign traces

only for the parts of the reconfigured models impacted by decision

changes. 

In our previous work ( Hajri et al., 2015 ), we proposed and

assessed the Product Line Use case modeling Method (PUM) to

support variability modeling in Product Line (PL) use case dia-

grams and specifications, intentionally avoiding any reliance on

feature models and thus avoiding unnecessary modeling and trace-

ability overhead. PUM adopts the existing PL extensions of use

case diagrams in the work of Halmans and Pohl ( Halmans and

Pohl, 2003 ). In order to model variability in use case specifica-

tions, we introduced new product line extensions for the Restricted

Use Case Modeling method (RUCM) ( Yue et al., 2013 ). We devel-

oped a use case-driven configuration approach ( Hajri et al., 2016a,

2016b ) based on PUM. Our configuration approach supports guid-

ing stakeholders in making configuration decisions (e.g., checking

consistency of a decision with prior decisions) and automatically

generating PS use case models from the PL models and configura-

tion decisions. It is supported by a tool, PUMConf (Product line Use

case Model Configurator) ( Hajri et al., 2016b ). 

In this paper, we propose, apply and assess a change impact

analysis approach, based on our use case-driven modeling and con-

figuration techniques, to support the evolution of configuration

decisions. We do not address here evolving PL use case models,

which need to be treated in a separate approach. Change impact

analysis provides a sound basis to decide whether a change is ade-

quate, and to identify which decisions should be changed as a con-

sequence ( Passos et al., 2013 ). In our context, we aim to automate

the identification of decisions impacted by changes in configura-

tion decisions on PL use case models. Our approach supports three

activities. First, the analyst proposes a change but does not apply

it to the corresponding configuration decision. Second, the impact

of the proposed change on other configuration decisions for the PL

use case diagram are automatically identified. In the PL use case

diagram, variant use cases and variation points are connected to
ach other with some dependencies, i.e., require, conflict and in-

lude . In the case of a changed diagram decision contradicting prior

nd/or subsequent diagram decisions, such as a subsequent deci-

ion resulting in selecting variant use cases violating some depen-

ency constraints because of the new/changed decision, we auto-

atically detect and report them. To this end, we improved our

onsistency checking algorithm ( Hajri et al., 2016a ), which enables

easoning on subsequent decisions as part of our impact analysis

pproach. The analyst is informed about the change impact on de-

isions for the PL use case diagram. One crucial and innovative

spect is that our approach identifies not only the impacted de-

isions but also the cause of the impact, e.g., violation of depen-

ency constraints, changing decision restrictions, and contradicting

ecision restrictions. In practice, the reason of the impact is impor-

ant to help the analyst identify what further changes to make on

mpacted decisions. Using the output of our impact analysis, the

nalyst should decide whether the proposed change is to be ap-

lied to the corresponding decision. Third, the PS use case models

re incrementally regenerated only for the impacted decisions af-

er the analyst makes all the required changes. To do so, we im-

lemented a model differencing pipeline which identifies decision

hanges to be used in the reconfiguration of PS models. There are

wo sets of decisions: (i) the set of previously made decisions used

o initially generate the PS use case models and (ii) the set of de-

isions including decisions changed after the initial generation of

he PS models. Our approach compares the two sets to determine

or which decisions we need to incrementally regenerate the PS

odels. To support these activities, we extended PUMConf. 

This paper is an extension of our work published in REFSQ

017 ( Hajri et al., 2017b ). The published work reported on the in-

remental reconfiguration of PS use case models. In the current

aper, we introduce the automated impact analysis of decision

hanges on other decisions and we provide the details of the pro-

osed tool support, which is made publicly available. We also im-

rove the evaluation of our entire approach with a questionnaire

tudy and some structured interviews with experienced engineers

t IEE. To summarize, the contributions of this paper are: 

• A change impact analysis approach that informs the analysts

about the causes of change impacts on configuration decisions

in order to improve the decision-making process and to incre-

mentally reconfigure the generated PS use case models for the

impacted decisions only; 
• A publicly available tool integrated as a plug-in in IBM DOORS,

which automatically identifies the impact of configuration de-

cision changes and incrementally regenerates the PS use case

models; 
• An industrial case study demonstrating the applicability and

benefits of our change impact analysis approach. 

This paper is structured as follows. Section 2 provides the back-

round on PUM and PUMConf on which this paper builds the pro-

osed change impact analysis approach. Section 3 introduces the

ndustrial context of our case study to illustrate the practical moti-

ations for our approach. In Section 4 , we provide an overview of

he approach. Sections 5 and 6 provide the details of its core tech-

ical parts. In Section 7 , we present our tool while Section 8 re-

orts on an industrial case study, involving an embedded system

alled Smart Trunk Opener (STO). Section 9 discusses the related

ork. In Section 10 , we conclude the paper. 

. Background 

In this section we present the background regarding the elicita-

ion of PL use case models (see Section 2.1 ), and our configuration

pproach (see Section 2.2 ). 
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Fig. 1. Part of the Product Line use case diagram for STO. 
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In the rest of the paper, we use Smart Trunk Opener (STO) as

 case study, to motivate, illustrate and assess our approach. STO

s a real-time automotive embedded system developed by IEE. It

rovides automatic, hands-free access to a vehicle’s trunk, in com-

ination with a keyless entry system. In possession of the vehicle’s

lectronic remote control, the user moves her leg in a forward and

ackward direction at the vehicle’s rear bumper. STO recognizes

he movement and transmits a signal to the keyless entry system,

hich confirms that the user has the remote. This allows the trunk

ontroller to open the trunk automatically. 

.1. Elicitation of variability in PL use cases 

Elicitation of PL use case models is based on the Product line

se case modeling Method (PUM) ( Hajri et al., 2015 ). In this sec-

ion, we give a brief description of the PUM artifacts. 

.1.1. Use case diagram with PL extensions 

For use case diagrams, we employ the PL extensions proposed

y Halmans and Pohl (2003) and Buhne et al. (2003) since they

upport explicit representation of variants, variation points, and

heir dependencies (see Fig. 1 ). We do not introduce any further

xtensions. 

A use case is either Essential or Variant . Variant use cases are

istinguished from essential (mandatory) use cases, i.e., manda-

ory for all the products in a product family, by using the ‘Vari-

nt’ stereotype. A variation point given as a triangle is associated

o one, or more than one use case using the ‘include’ relation.

he mandatory variation points indicate where the customer has
o make a selection for a product (the black triangles in Fig. 1 ).

 ‘tree-like’ relation, containing a cardinality constraint, is used

o express relations between variants and variation points, which

re called variability relations . The relation uses a [min.max] no-

ation in which min and max define the minimum and maximum

umbers of variants that can be selected for the variation point.

 variability relation is optional where ( min = 0 ) or ( min > 0 and

ax < n ); n is the number of variants in a variation point. A vari-

bility relation is mandatory where ( min = max = n ). Optional and

andatory relations are depicted with light-grey and black filled

ircles, respectively (see Fig. 1 ). For instance, the ‘Provide System

ser Data’ essential use case has to support multiple methods of

roviding data where the methods of providing data via IEE QC

ode and Standard mode are mandatory. In addition, the customer

an select the method of providing data via diagnostic mode. In

TO, the customer may decide the system does not store the errors

etermined while the operating status is being identified (see the

Storing Error Status’ optional variation point in Fig. 1 ). The exten-

ions support the dependencies require and conflict among varia-

ion points and variant use cases ( Buhne et al., 2003 ). With require ,

he selection of the variant use case in ‘Storing Error Status’ implies

he selection of the variant use case in ‘Clearing Error Status’. 

Some further variability information is given in PL use case

pecifications. For instance, only PL use case specifications indicate

n which flows of events a variation point is included. 

.1.2. Restricted Use Case Modeling (RUCM) with PL extensions 

This section introduces the RUCM template and its PL exten-

ions which we proposed. RUCM provides restriction rules and
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Table 1 

Some STO use cases in the extended RUCM. 

1 USE CASE Recognize Gesture 

2 1.1 Basic Flow 

3 1. INCLUDE USE CASE Identify System Operating Status. 

4 2. The system VALIDATES THAT the operating status is valid. 

5 3. The system REQUESTS the move capacitance FROM the sensors. 

6 4. The system VALIDATES THAT the movement is a valid kick. 

7 5. The system SENDS the valid kick status TO the STO Controller. 

8 1.2 < OPTIONAL > Bounded Alternative Flow 

9 RFS 1–4 

10 1. IF voltage fluctuation is detected THEN 

11 2. RESUME STEP 1. 

12 3. ENDIF 

13 1.3 Specific Alternative Flow 

14 RFS 2 

15 1. ABORT. 

16 1.4 Specific Alternative Flow 

17 RFS 4 

18 1. The system increments the OveruseCounter by the increment step. 

19 2. ABORT. 

20 

21 USE CASE Identify System Operating Status 

22 1.1 Basic Flow 

23 1. The system VALIDATES THAT the watchdog reset is valid. 

24 2. The system VALIDATES THAT the RAM is valid. 

25 3. The system VALIDATES THAT the sensors are valid. 

26 4. The system VALIDATES THAT there is no error detected. 

27 1.4 Specific Alternative Flow 

28 RFS 4 

29 1. INCLUDE < VARIATION POINT: Storing Error Status > . 

30 2. ABORT. 

31 

32 USE CASE Provide System User Data 

33 1.1 Basic Flow 

34 1. The tester SENDS the system user data request TO the system. 

35 2. INCLUDE < VARIATION POINT : Method of Providing Data > . 

36 

37 < VARIANT > USE CASE Provide System User Data via Standard Mode 

38 1.1 Basic Flow 

39 V1. < OPTIONAL > The system SENDS calibration TO the tester. 

40 V2. < OPTIONAL > The system SENDS sensor data TO the tester. 

41 V3. < OPTIONAL > The system SENDS trace data TO the tester. 

42 V4. < OPTIONAL > The system SENDS error data TO the tester. 

43 V5. < OPTIONAL > The system SENDS error trace data TO the tester. 
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c  
keywords constraining the use of natural language ( Yue et al.,

2013 ). Since RUCM was not designed for PL modeling, we intro-

duced some PL extensions (see Table 1 ). In RUCM, use cases have

basic and alternative flows (Lines 2, 8, 13, 16, 22, 27, 33 and 38).

In Table 1 , we omit some alternative flows and basic information

such as actors and pre/post conditions. 

A basic flow describes a main successful path that satisfies

stakeholder interests (Lines 3–7, 23–26 and 39–43). It contains use

case steps and a postcondition. A step can be a system-actor in-

teraction: an actor sends a request or data to the system (Lines

34); the system replies to an actor with a result (Line 7). In addi-

tion, the system validates a request or data (Line 4), or it alters its

internal state (Line 18). The use case inclusion is given in a step

with the keyword ‘ INCLUDE USE CASE ’ (Line 3). The keywords are

in capital letters. ‘ VALIDATES THAT ’ (Line 4) indicates a condition

that must be true to take the next step, otherwise an alternative

flow is taken. 

An alternative flow describes other scenarios, both success and

failure. It always depends on a condition in a specific step of the

basic flow. RUCM has specific, bounded and global alternative flows.

A specific alternative flow refers to a step in the basic flow (Lines

13, 16, and 27). A bounded alternative flow refers to more than one

step in the basic flow (Line 8), while a global one refers to any step

in the basic flow. ‘ RFS ’ is used to refer to reference flow steps (Lines

9, 14, 17, and 28). Bounded and global alternative flows begin with

‘ IF .. THEN ’ for the conditions under which they are taken (Line 10).
pecific alternative flows do not necessarily begin with ‘ IF .. THEN ’

ince a guard condition is already indicated in their reference flow

teps (Line 4). 

Our extensions are (i) new keywords for modeling interactions

n embedded systems and (ii) new keywords for modeling variabil-

ty. The keywords ‘ SENDS .. TO ’ and ‘ REQUESTS .. FROM ’ are to dis-

inguish system-actor interactions (Lines 5, 7, 34, and 39–43). We

ntroduce the notion of variation point and variant use case, com-

lementary to the extensions in Section 2.1.1 , into RUCM. Variation

oints can be included in basic or alternative flows with the key-

ord ‘ INCLUDE < VARIATION POINT : ... > ’ (Lines 29 and 35). Variant

se cases are given with the keyword ‘ < VARIANT > ’ (Line 37). 

Some variability cannot be captured in PL diagrams due to the

equired level of granularity for product configuration. To model

uch variability, as part of our extensions, we introduce optional

teps, optional alternative flows and a variant order of steps. Op-

ional steps and alternative flows begin with ‘ < OPTIONAL > ’ (Lines

 and 39–43). ‘V’ is used before any step number to express variant

tep order (Lines 39–43). 

.1.3. Discussion 

Considerable research has already been devoted to docu-

enting variability in use cases. Many approaches propose using

ariability models, e.g., feature models, that are traced to use case

pecifications and diagrams ( Alferez et al., 2008; Eriksson et al.,

0 05, 20 09; Buhne et al., 20 06; Braganca and Machado, 2007;

riss et al., 1998 ). With the PL extensions, our method enables

nalysts to document variability directly in use case diagrams and

pecifications. This is a departure from the most common ap-

roach of having separate variability and use case models together

ith their trace links. 

Our decision was motivated by our discussions with IEE ana-

ysts and engineers. In the current practice at IEE, like in many

ther environments, there is no systematic way to model variabil-

ty information in use case diagrams and specifications. The IEE

nalysts write brief and informal notes attached to use case mod-

ls to indicate what may vary in the use cases. IEE is reluctant to

se feature models traced to use case models because of two main

ssues: (i) having feature models requires considerable additional

odeling artifacts of a very different nature and additional tools,

ith manual assignment of traces at a very low level of granular-

ty, e.g., sequences of use case steps; and (ii) they find it difficult to

witch from feature models to use cases and vice versa during the

ecision-making process. By documenting variability directly in use

ase models, the analysts could focus on one artifact at a time to

ake configuration decisions. In our meetings at IEE, the analysts

tated that the effort required to apply our PL extensions for mod-

ling variability information was reasonable ( Hajri et al., 2016a ).

hey considered the extensions to be simple enough to enable

ommunication between analysts and customers, but they also

entioned that training customers is necessary. Thus, the costs

nd benefits of the approach should be made clear to customers. 

The separation of variability and development models was

riginally motivated by the need to provide representations tar-

eting different stakeholders with distinct expertise and inter-

sts ( Pohl et al., 2005 ). However, based on our observations in

ractice, it is often not the case that people who need to read

ariability models don’t need to read development models, or vice-

ersa. These two groups are not mutually exclusive. Results in the

ase study and questionnaire study from our previous work ( Hajri

t al., 2015, 2016a ) suggest that the PL use case model extensions

e proposed were easy to read and used by automotive system

ngineers. 

We do not claim that our modeling method is generally supe-

ior to feature modeling, or that feature modeling should be dis-

arded. We only provide an alternative way to model variability
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Fig. 2. Generated product specific use case diagram. 
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n the context of use case-driven development, which may be

 preferred solution in certain contexts. Companies who already

dopted feature modeling in their practice most probably have a

ifferent perception. 

.2. Configuration of PS use case models 

PUMConf relies on variability information given in the PL use

ase models. The user selects (1) variant use cases in the PL dia-

ram and (2) optional use case elements in the PL specifications,

o generate the PS use case models. 

The user makes decisions for the variation points in Fig. 1 . A

ecision is about selecting, for the product, variant use cases in

he variation point. The user selects Store Error Status and Clear Er-

or Status in the variation points Storing Error Status and Clearing

rror Status , respectively. She unselects Clear Error Status via Diag-

ostic Mode in the variation point Method of Clearing Error Status ,

hile Clear Error Status via IEE QC Mode is automatically selected

ecause of the mandatory variability relation. The user unselects

rovide System User Data via Diagnostic Mode in the variation point

ethod of Providing Data . The PS diagram is automatically gener-

ted from the PL diagram and the diagram decisions (see Fig. 2

enerated from Fig. 1 ). 

The decision-making is an iterative process. We devised an al-

orithm to check the consistency of a decision with prior deci-

ions ( Hajri et al., 2016a ). In the case of contradicting configuration

ecisions, such as two decisions resulting in selecting variant use

ases violating some dependency constraints, the algorithm auto-

atically detects and reports them. The user must then backtrack

nd revise the decisions to resolve the contradictions. Assume that

he user first makes a decision in Clearing Error Status , which is

nselecting Clear Error Status . No contradiction is identified since

here is no prior decision. The user proceeds with Storing Error Sta-

us and selects Store Error Status . Our algorithm identifies a contra-

iction with the decision in Clearing Error Status since the selection

f Store Error Status implies the selection of Clear Error Status via

he requires dependency (see Fig. 1 ). The user is asked to resolve

he contradiction by updating one of the decisions for Storing Error

tatus and Clearing Error Status . The user selects Clear Error Status

o resolve the contradiction. 

Next, the user makes decisions for the PL specifications. In

able 1 , there are two variation points (Lines 29 and 35), one vari-

nt use case (Lines 37–43), five optional steps (Lines 39–43), one
ptional alternative flow (Lines 8–12), and one variant order group

Lines 39–43). The decisions for the variation points are already

ade in the PL diagram. The user selects only three optional steps

ith the order V3, V1 , and V5 . The optional alternative flow is un-

elected. 

The PS use case specifications are automatically generated from

he PL specifications, the diagram decisions and the specification

ecisions (see Table 2 generated from Table 1 ). For instance, based

n the diagram decision for Method of Providing Data in Fig. 1 ,

UMConf creates two include statements for Provide System User

ata via Standard Mode and via IEE QC Mode (Lines 31 and 34 in

able 2 ), a validation step (Line 30), and a specific alternative flow

here Provide System User Data via IEE QC Mode is included (Lines

2–35). The validation step checks if the precondition of Provide

ystem User Data via Standard Mode holds. If it holds, Provide Sys-

em User Data via Standard Mode is executed in the basic flow (Line

1). If not, Provide System User Data via IEE QC Mode is executed in

he alternative flow (Lines 32–35). The selected optional steps are

enerated with the decided order in the PS specifications (Lines

9–41). 

. Motivation and context 

Our change impact analysis approach is developed as an exten-

ion of our configurator, PUMConf, in the context of software sys-

ems configured for multiple customers with varying needs, and

eveloped according to a use case-driven process. In such a con-

ext, configuration decisions frequently change due to technological

evelopments and evolving business needs. A change impact anal-

sis approach is therefore needed for identifying other impacted

ecisions for the reconfiguration of PS models. 

Changes on configuration decisions may have impact on other

ecisions in various ways. For instance, in the PL diagram in Fig. 1 ,

he analyst changes the decision for the variation point Clear Er-

or Status in order to resolve the contradiction with the prior de-

ision for the variation point Store Error Status (see Section 2.2 ).

his is done by selecting the variant use case Clear Error Status ,

hich was previously unselected. This change has the following

onsequences: (i) the variation point Method of Clearing Error Status

hould now be considered in subsequent decisions; (ii) the variant

se case Clear Error Status via IEE QC Mode is automatically selected

ecause of the mandatory variability relation; (iii) the newly se-

ected use cases should be added to the PS use case diagram while
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Table 2 

Some of the generated product specific specifications. 

1 USE CASE Recognize Gesture 

2 1.1 Basic Flow 

3 1. INCLUDE USE CASE Identify System Operating Status. 

4 2. The system VALIDATES THAT the operating status is valid. 

5 3. The system REQUESTS the move capacitance FROM the sensors. 

6 4. The system VALIDATES THAT the movement is a valid kick. 

7 5. The system SENDS the valid kick status TO the STO Controller. 

8 1.2 Specific Alternative Flow 

9 RFS 2 

10 1. ABORT. 

11 1.3 Specific Alternative Flow 

12 RFS 4 

13 1. The system increments the OveruseCounter by the increment step. 

14 2. ABORT. 

15 

16 USE CASE Identify System Operating Status 

17 1.1 Basic Flow 

18 1. The system VALIDATES THAT the watchdog reset is valid. 

19 2. The system VALIDATES THAT the RAM is valid. 

20 3. The system VALIDATES THAT the sensors are valid. 

21 4. The system VALIDATES THAT there is no error detected. 

22 1.4 Specific Alternative Flow 

23 RFS 4 

24 1. INCLUDE USE CASE Store Error Status. 

25 2. ABORT. 

26 

27 USE CASE Provide System User Data 

28 1.1 Basic Flow 

29 1. The tester SENDS the system user data request TO the system. 

30 2. The system VALIDATES THAT ‘Precondition of Provide System User Data 

via Standard Mode’. 

31 3. INCLUDE USE CASE Provide System User Data via Standard Mode. 

32 1.2 Specific Alternative Flow 

33 RFS 2 

34 1. INCLUDE USE CASE Provide System User Data via IEE QC Mode. 

35 2. ABORT. 

36 

37 USE CASE Provide System User Data via Standard Mode 

38 1.1 Basic Flow 

39 1. The system SENDS the trace data TO the tester. 

40 2. The system SENDS the calibration data TO the tester. 

41 3. The system SENDS the error trace data TO the tester. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Part of an STO use case specification with trace links. 
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the corresponding use case specifications should be added to the

PS specifications; and (iv) new optional steps and alternative flows

are introduced for consideration if there is any in the added spec-

ifications. In some cases, subsequent decisions are also impacted

because of decision restrictions. Assume that the variant use case

Store Error Status in the variation point Storing Error Status is uns-

elected, and no decision has been made yet for the variation point

Clearing Error Status . When the analyst changes the decision by se-

lecting Store Error Status , the subsequent decision for the variation

point Clearing Error Status is restricted because Clear Error Status

should be selected in the subsequent decision to avoid further de-

cision contradictions. 

In practice, from a more general standpoint, the analysts should

be aware of the impacts of decision changes to possibly reconsider

some of them. After changing a decision, impact analysis support

is needed to guide subsequent decisions or to change prior deci-

sions. Within our context, we identify two challenges that need to

be considered in identifying the impact of decision changes and

supporting the reconfiguration of PS use case models: 

Challenge 1 : Identifying the cause of the impact of chang-

ing decisions for PL use case diagrams. Changes to configuration

decisions driven by the PL use case diagram have an impact on

prior decisions as well as on subsequent decisions to be made.

Change impacts can have a variety of causes, which the analyst

needs to take into account to decide whether the proposed change

is adequate and to identify what further changes are needed on

impacted decisions. For instance, a prior decision might be im-
acted because of the violation of some dependency constraints

i.e., requires and conflicts ). A subsequent decision for a variation

oint might be impacted because it has a new restriction to satisfy

he cardinality constraint of the variation point. Therefore, impact

nalysis should provide not only impacted decisions but also de-

ailed information about their causes. 

Challenge 2 : Incremental regeneration of PS use case models.

n practice, for a variety of reasons, the analysts manually assign

races from the PS use case models to other software and hardware

pecifications as well as to the customers’ requirements documents

or external systems ( Ramesh and Jarke, 2001 ). For instance, in or-

er to verify the interaction between the system and the external

ystems, IEE’s customers require that traces be assigned from the

S use case specifications to the related, external system require-

ents. Fig. 3 gives part of the basic flow of a PS use case speci-

cation in IBM DOORS with a trace to a customer’s requirements

pecification. 

Let us consider the trace in Fig. 3 , which is from the first step

f the basic flow to an external system requirement in the cus-

omer’s software requirements specification. This use case step de-

cribes the operating status request sent by the STO controller, i.e.,

n external system implemented by the customer, while the traced

xternal system requirement describes the condition in which the

TO controller sends this request to the system. When the PS

se case models are reconfigured for all the decisions, including

nimpacted decisions, manually assigned traces such as the one in

ig. 3 are lost. The analysts need to reassign all the traces after

ach reconfiguration. It is therefore vital to enable the incremental

egeneration of PS models by focusing only on impacted decisions.

s a result, the analysts would reassign traces only for the parts of

he PS use case models impacted by decision changes. 

In the remainder of this paper, we focus on how to best ad-

ress these challenges in a practical manner, in the context of use

ase-driven development, while relying on PUM for modeling PL

se case models, and on PUMConf for the configuration of PS use

ase models. 

. Overview of the approach 

The process in Fig. 4 presents an overview of our approach. In

tep 1, Propose a change for a decision , the analyst is asked to pro-

ose a change for a configuration decision made previously for the

L use case diagram. 

The configuration decision change proposed by the analyst is

ot actually applied to the corresponding decision yet. In Step 2,

dentify the change impact on other decisions , our approach auto-

atically identifies the impact of the proposed change on other

onfiguration decisions for the PL use case diagram. The analyst is

nformed about the impact of the decision change on prior and

ubsequent decisions, e.g., contradicting decisions and restricted

ubsequent decisions ( Challenge 1 ). 

The analyst evaluates the impacted decisions to decide whether

he proposed change is to be applied. In Step 3, Apply the proposed

hange , the analyst applies the proposed change to the correspond-

ng decision. Steps 1, 2, and 3 are iterative: the analyst proposes

nd applies changes until all the required changes are considered.

e discuss these three steps in Section 5 . 
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Table 3 

Change types for diagram decisions. 

Change types 

. Add a decision 

. Delete a decision 

. Update a decision 

- Select some unselected variant use case(s) 

- Unselect some selected variant use case(s) 

- Unselect some selected variant use case(s) and select some unselected variant use case(s) 

Fig. 4. Overview of the approach. 
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Table 4 

Example decisions for the PL use case diagram in Fig. 5 . 

Decision ID Explanation of the decision 

d1 Selecting UC1 and UC2 in VP1 

d2 Selecting UC9 and unselecting UC10 in VP4 

d3 Unselecting UC15 in VP6 

d2’ Selecting UC9 and UC10 in VP4 
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After the analyst applies all the required changes to the con-

guration decisions, in Step 4, Regenerate product specific use case

odels , the PS use case diagram and specifications are incremen-

ally and automatically regenerated for only the changed decisions

 Challenge 2 ). The details of the step are described in Section 6 . 

. Identification of change impact on decisions for PL use case 

iagrams 

Decision-making during product configuration is iterative. The

nalyst may update or delete some of the prior decisions while

ew decisions are being made for undecided variants. A diagram

ecision is about selecting, for the product, variant use cases in
he variation point. Table 3 lists the change types for diagram de-

isions. 

The first two change types in Table 3 are obvious manipula-

ions over the diagram decisions. The subtypes of ‘Update a De-

ision’ match the (un)selection of variant use cases in a variation

oint. 

When a change is introduced to a diagram decision, the ana-

yst needs to identify not only the impacted decisions but also the

eason of the impact, e.g., violation of dependency constraints, new

estrictions for subsequent decisions, and contradicting decision re-

trictions ( Challenge 1 ). 

Automated analysis for configuration support often relies on

ranslating models to propositional logic and using satisfiability

SAT) solvers ( Benavides et al., 2010; Mendonca et al., 2009 ). As

e discuss in Section 9 , employing SAT solvers can help identify

mpacted decisions but does not provide further explanations re-

arding the reason of the impact. However, this is critical for the

nalysts to make further decisions based on the change impact. To

his end, we devised a custom change impact analysis algorithm

hat identifies the impact of diagram decision changes on other di-

gram decisions and provide an explanation regarding the cause of

he impact. In the following, we explain the steps of the algorithm

ith an illustrative example depicted in Fig. 5 . The example is a

light adaptation of a piece of our industrial case study since we

eeded some additional modeling elements to illustrate the com-

lete set of features of the algorithm. Fig. 5 depicts an example PL

se case diagram including seven variation points, fourteen variant

se cases, and one essential use case. 

As an example, let us assume the analyst makes the decision

1 for VP1 , which is selecting UC1 and UC2 for the product. Fur-

her, the decisions d2 and d3 are made for VP4 and VP6 , which are

electing UC9 and unselecting UC10 in VP4 and unselecting UC15 in

P6 , respectively. Further, let us assume that the analyst proposes

o change d2 with d2 ′ by selecting unselected UC10 in VP4 (see

able 4 ). 

Fig. 6 describes the change impact analysis algorithm for dia-

ram decisions. The algorithm takes a set of prior decisions, a PL

se case diagram, and a decision change as input. It reports added

nd deleted contradicting prior decisions, added and deleted re-

trictions for subsequent decisions, and sets of added and deleted

ontradicting restrictions as output. 

The decision d , which precedes the decision change c , is a

uadruple of the variation point vp , the use case uc including

p , the set of selected variant use cases SUC in vp , and the set

f unselected variant use cases NSUC in vp (Line 6). The deci-

ion d ′ , which results from the change c , is given as a similar
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Fig. 5. An example product line use case diagram. 

Fig. 6. Change impact analysis algorithm for diagram decisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

w  

p  

s  

p  

d  

2  

c  

l  

d  

¬
 

C  

a  

t  

i  

u  

w  

(  

a  

U  

i  

f  

d  

(  

b  

t

 

f  

f  
quadruple (Line 7). For instance, in our example, d2 and d2 ′ are

( VP 4, null , { UC 9}, { UC 10}) and ( VP 4, null , { UC 9, UC 10}, ∅ ), respectively. 

We call check and infer functions with d and d ′ to identify the

impact of c (Lines 11–16). 

• checkPriorDecisionConsistency determines contradicting prior

decisions for variation points. Two or more diagram decisions

may contradict each other if they result in violating some vari-

ation point and variant dependency constraints (i.e., require and

conflict ); 
• inferDecisionRestrictions determines restrictions on the selec-

tion of variant use cases in undecided variation points. The ex-
isting decisions may entail (un)selection of some variant use

cases in subsequent decisions through the variation point and

variant dependencies; 
• checkDecisionRestrictions determines contradicting restrictions

for subsequent decisions. Two or more decision restrictions

may contradict each other if they result in violating some car-

dinality constraints or result in selecting and unselecting the

same variant use case. 

The algorithm of checkPriorDecisionConsistency was developed

s part of our configurator, PUMConf , described in our previous

ork ( Hajri et al., 2016a, 2016b ). The algorithm is based on map-

ing variation points, use cases and variant dependencies to propo-

itional logic formulas. For a given decision regarding a variation

oint, it only checks the satisfaction of the propositional formulas

erived from the dependencies of the variation point ( Hajri et al.,

016a ). For example, assume there are two conflicting variant use

ases Ua and Ub (i.e., Ua conflicts with Ub ). Ua and Ub are se-

ected in decisions Da and Db , respectively. Da and Db are contra-

icting because Ua and Ub cannot exist for the same product (i.e.,

( Ua ∧ Ub )). 

For changing d2 with d2 ′ in Fig. 5 , we call checkPriorDecision-

onsistency first with d2 ( DC = { d 1 , d 3 } and d = d 2 in Line 11),

nd then with d2 ′ ( DC = { d 1 , d 3 } and d = d 2 ′ in Line 12). For d2 ,

he function returns no contradicting prior decision. When UC10

s unselected in d2, UC11, UC12 and UC13 in VP5 are automatically

nselected because there is no other use case including VP5. UC13

hich is unselected in d2 requires UC15 which is unselected in d3

i.e., U13 → U15 ). Therefore, d2 and d3 are not contradicting. UC12

nd UC13 are automatically selected in d2 ′ because of selected

C10 and the mandatory variability relation in VP5. UC13 which

s selected in d2 ′ requires UC15 which is unselected in d3 . There-

ore, for d2 ′ , checkPriorDecisionConsistency returns d3 contradicting

2 ′ . The decision change introduces a new contradiction with d3

 CD 

′ \ CD = { d3 } in Line 17). No existing contradiction is removed

y the change ( CD \ CD 

′ = ∅ in Line 17). d3 is impacted since it con-

radicts d2 ′ after the change. 

As part of our impact analysis approach, the algorithm of in-

erDecisionRestrictions also relies on propositional logic mappings

or variation points, use cases and variant dependencies (see
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Table 5 

Restrictions inferred from the example decisions in 

Table 4 . 

Restriction ID Explanation of the restriction 

r1 UC6 in VP3 should not be selected 

r2 UC8 in VP3 should not be selected 

r3 UC14 in VP7 should not be selected 
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1 http://people.svv.lu/hajri/change _ impact/SupplementaryMaterial.pdf . 
ection 5.1 for the details of the algorithm). For a given decision

egarding a variation point, inferDecisionRestrictions infers restric-

ions for subsequent decisions by only checking the satisfaction of

he propositional logic formulas derived from the dependencies of

he variation point. Assume two variant use cases Ua and Ub in

ariation points Va and Vb with a requires relation (i.e., Ua requires

b ). Ua is selected in decision Da for Va while there is no deci-

ion yet for Vb . The subsequent decision for Vb is restricted as Ub

eeds to be selected to avoid a contradiction with Da because of

he requires relation (i.e., Ua → Ub ). 

For the input decisions d1, d2 and d3, inferDecisionRestrictions

eturns restriction r1 for UC6 in VP3 (Line 13). When UC1 is se-

ected in d1, UC4 is automatically selected because of the manda-

ory variability relation in VP2. UC4 conflicts with UC6 , and there is

o decision made for UC6 . The selection of UC4 restricts the subse-

uent decision for VP3 so that UC6 should not be selected to avoid

he contradiction with d1 (i.e., restriction r1 in Table 5 ). For d1, d2 ′ 
nd d3 , the function returns restrictions r1 for UC6 in VP3, r2 for

C8 in VP3 , and r3 for UC14 in VP7 (Line 14). UC12 in VP5 is auto-

atically selected in d2 ′ , and it conflicts with UC8 in VP3 for which

here is no decision made yet. The selection of UC12 restricts the

ubsequent decision for VP3 through the conflicts relation that UC8

hould not be selected (i.e., r2 in Table 5 ). The restriction for the

ubsequent decision for UC8 restricts the subsequent decision for

P7 through the requires relation (i.e., r3 in Table 5 ). If UC8 should

ot be selected, UC14 should also not be selected since it requires

C8 . The subsequent decisions for VP3 and VP7 are impacted by

he change because of the new restrictions ( R ′ \ R = { r 2 , r 3 } and

 \ R ′ = ∅ in Line 17). 

We devise the algorithm of checkDecisionRestrictions as part

f our change impact analysis approach (see Section 5.2 for the

etails of the algorithm). For a given set of decision restric-

ions, checkDecisionRestrictions identifies contradicting restrictions 

or subsequent decisions in terms of violating cardinality con-

traints and restricting the same variant use cases for being se-

ected and unselected. For example, assume there are two restric-

ions r1 and r2 which state the variant use cases Ua and Ub in the

ariation point V need to be selected, respectively. V has the [0..1]

ardinality constraint. r1 and r2 do not comply with this cardinal-

ty constraint. 

For the restrictions before the decision change in our example

i.e., r1 ), checkDecisionRestrictions does not return any contradicting

estriction (Line 15). r1 restricts the subsequent decision for VP3

o that UC6 should not be selected. There is no other restriction,

nd r1 complies with the cardinality constraint of VP3 (i.e., [2..3]).

or the restrictions after the change (i.e., r1, r2 and r3 ), the func-

ion returns {{ r1, r2 }}, i.e., the set of sets of contradicting restric-

ions. UC6 and UC8 in VP3 should not be selected according to r1

nd r2 , respectively. The cardinality constraint in VP3 requires at

east two of three variant use cases in VP3 to be selected. There-

ore, r1 and r2 cannot exist together because of the cardinality con-

traint. A new contradiction is introduced after the decision change

 CR ′ \ CR = {{ r 1 , r 2 } } and CR \ CR ′ = ∅ in Line 17). To resolve it, the

ecisions causing it need to be updated. r2 is inferred from d2 ′ 
hrough UC12 , while d1 results in r1 through UC4 . Therefore, d1 is

dentified as impacted. 
Changing d2 with d2 ′ impacts d1 for VP1, d3 for VP6 and the

ubsequent decisions for VP3 and VP7 . 

.1. Identification of subsequent decision restrictions 

Decision restrictions are inferred by mapping variation points,

se cases and variant dependencies to propositional logic formu-

as. We assume that a PL use case diagram PLD is defined as a set,

here each use case is a member of the set. The PL diagram con-

ists of n use cases P LD = { u 1 , . . . , u n } ; each use case u i in PLD is

epresented by a boolean variable with the same name. Boolean

ariable u i evaluates to true if use case u i is selected and false oth-

rwise. If there is no decision made yet for use case u i , variable u i 
s not valued ( unknown ). Please note that all essential use cases are

utomatically selected. 

Fig. 7 provides the corresponding propositional formulas for

ach pattern involving dependencies, variation points, and variant

se cases, where propositions capture logical relationships among

ariant use cases. For instance, according to the corresponding

ropositional formula in Fig. 7 (a), if use case UCA m 

is selected for

 product then this logically implies that use case UCB n is also se-

ected. Fig. 7 (c) depicts the mapping when there is a require depen-

ency between two variation points A and B . In such a case, if one

f the variant use cases in variation point A ( U CA 1 ∨ . . . ∨ U CA m 

)

s selected, then at least one of the variant use cases in variation

oint B ( → U CB 1 ∨ . . . ∨ U CB n ) should also be selected. 

Fig. 8 describes the algorithm for inferDecisionRestrictions . To il-

ustrate the algorithm, we rely on the example with the input de-

isions d1, d2 ′ and d3 in Fig. 5 . For each decision d in the set of

ecisions D , the algorithm calls some infer functions to identify the

ecision restrictions for subsequent decisions in which the propo-

itional logic formulas, derived from the dependencies to/from the

iagram elements decided in d , are satisfied (Lines 11, 12, 15, 18,

9 and 21). Each infer function in Fig. 8 infers restrictions for sub-

equent decisions using the propositional formulas in one or more

appings in Fig. 7 . 

• inferConflictingVP uses the formulas in Fig. 7 (d) and (g) to infer

decision restrictions for variation points and use cases conflict-

ing with selected variation point vp in decision d ; 
• inferConflictingUC uses the formulas in Fig. 7 (b) and (g) to infer

decision restrictions for variation points and variant use cases

conflicting with selected variant use case u in d ; 
• inferRequiringVP uses the formulas in Fig. 7 (c) and (e) to infer

decision restrictions for variation points and variant use cases

requiring unselected variation point vp in d ; 
• inferRequiredByVP uses the formulas in Fig. 7 (c) and (f) to infer

decision restrictions for variation points and variant use cases

required by selected variation point vp in d ; 
• inferRequiringUC uses the formulas in Fig. 7 (a) and (f) to infer

decision restrictions for variation points and variant use cases

requiring unselected variant use case u in d ; 
• inferRequiredByUC uses the formulas in Fig. 7 (a) and (e) to

infer decision restrictions for variation points and variant use

cases required by selected variant use case u in d . 

In Fig. 5 , inferConflictingUC infers r1 and r2 from UC4 , automat-

cally selected in d1 , and from UC12 , automatically selected in d2 ′ ,
espectively. The algorithm of inferConflictingUC is given in Fig. 9 .

or the rest of the infer functions, the reader is referred to Supple-

entary Material 1 . 

The algorithm of inferConflictingUC in Fig. 9 uses the formulas

n Fig. 7 (b) and (g) to restrict the subsequent decisions for variant

se cases and variation points that conflict with selected use case

http://people.svv.lu/hajri/change_impact/SupplementaryMaterial.pdf
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Fig. 7. Mapping from PL use case diagram to propositional logic. 
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Fig. 8. Algorithm for inferDecisionRestrictions . 
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Fig. 9. Algorithm for inferConflictingUC . 
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 . For instance, in Fig. 7 (b), when UCAm is selected, it checks if

here is any decision made for UCBn . If there is no decision for

CBn , the subsequent decision is restricted that UCBn should not

e selected. 

inferConflictingUC takes as input selected variant use case u , set

f decisions D , and PL use case diagram PLD , while it returns the

et of decision restrictions IR . A decision restriction is given as a

riple ( uc, vpo, b ) where uc is a variant use case, vpo is the varia-

ion point of uc and b is a boolean variable (Line 1 in Fig. 9 ). If the

estriction is about the whole variation point, not about a single

ariant use case in the variation point, uc becomes null. b indicates

hether the variant use case(s) should be selected or not. For in-

tance, ( null, Va, false ) states that none of the variant use cases in

ariation point Va should be selected, while ( UCA1, Va, true ) states

ariant use case UCA1 in Va should be selected. 

The algorithm starts with identifying the variant use cases con-

icting with the input selected variant use case u (see Fig. 7 (b)).

he conflicting variant use cases which have not been decided yet

hould be unselected in subsequent decisions (Line 8). The subse-

uent decisions should also be restricted for other undecided vari-

nt use cases and variation points which require those conflicting

se cases (Lines 9 and 10). When the conflicting variant use cases

re unselected because of the restriction, some variant use cases in

he variation points included by those conflicting use cases might

lso be automatically unselected, and therefore the corresponding

ubsequent decisions need to be restricted (Lines 11–17). In our ex-

mple, UC4 is selected in d1 (i.e., u = UC4 ), and only UC6 conflicts

ith UC4 (i.e., CUC = { UC6 } in Line 3). There is no decision made

or UC6 which should not be selected (i.e., r1 = ( UC6, VP3, false )

n Line 8). UC4 does not include any variation point where variant

se cases might be automatically unselected (i.e., AUC = ∅ in Line

2). As another input use case, UC12 is selected in d2 ′ (i.e., u =
C12 ), and only UC8 conflicts with UC12 (i.e., CUC = { UC8 } in Line

). There is no decision made for UC8 . Therefore, it should not be

elected in subsequent decisions (i.e., r2 = ( UC8, VP3, false ) in Line

). UC8 is required by UC14 in VP7 which has not been decided yet
see inferRequiringUC in Line 9). Another decision restriction r3 is

nferred for VP7 (i.e., ( UC14, VP7, false )). 

The algorithm also identifies the variation points conflicting

ith the input selected variant use case u (see Fig. 7 (g)). The vari-

nt use cases in the undecided conflicting variation points should

e unselected in the subsequent decisions (Line 23). The variant

se cases and variation points requiring those conflicting variation

oints or their variant use cases should also be unselected in the

ubsequent decisions (Lines 24–27). The subsequent decisions are

estricted for variant use cases which are automatically unselected

hen the variant use cases in the undecided conflicting variation

oints are unselected (Line 28–34). For the example in Fig. 5 , there

s no variation point conflicting with the input use cases. The algo-

ithm returns all the inferred restrictions (Line 37). 

.2. Identification of contradicting decision restrictions 

For a given set of decision restrictions, our approach identifies

i) restrictions violating cardinality constraints in variation points

nd (ii) contradicting restrictions regarding the selection and un-

election of the same variant use case. Assume we have two re-
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Fig. 10. Algorithm for checkDecisionRestrictions . 
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strictions rt1 and rt2 where rt1 = ( null, Va, false ) and rt2 = ( Ua, Va,

true ). rt1 and rt2 contradict each other because Ua in Va should be

selected according to rt2 while rt1 states all the variant use cases

in Va should be unselected. 

Fig. 10 describes the algorithm of checkDecisionRestrictions that

identifies contradicting restrictions. A contradiction is described as

a set of contradicting decisions. For each variation point p in the

PL diagram (Lines 3 and 4), the algorithm first checks if there

are multiple restrictions (Lines 10–12). A contradiction is identi-

fied for two restrictions requiring the selection and unselection of

the same variant use case (Lines 11 and 16). More than two restric-

tions result in a contradiction where a restriction requires at least

one variant use case in a variation point to be selected while each

variant use case in the same variation point is required to be un-

selected by yet another restriction (Line 22). Restrictions which do

not comply with cardinality constraints also contradict each other

(Line 25). We call two functions in Fig. 10 (Lines 22 and 25). 

• checkSeveralRestrictions returns a set of contradictions for re-

strictions in DR in which more than two restrictions for varia-

tion point p contradict each other; 
• checkCardinality returns a set of contradictions for restrictions

in DR which do not comply with the cardinality constraints in

variation point p . 

For example, checkDecisionRestrictions checks the example re-

strictions for each variation point in Fig. 5 where R = { r1, r2, r3 }

and PLD is Fig. 5 . Restrictions r1 and r2 apply to the subsequent de-

cision in VP3 while r3 restricts another subsequent decision in VP7.

r1 and r2 restrict the decision for different variant use cases in VP3

(i.e., r1.uc � = r2.uc in Line 10, r1.uc � = null in Line 13, and r2.uc � =
null in Line 13). UC6 and UC8 in VP3 should be unselected accord-

ing to r1 and r2 while the cardinality constraint requires at least

two of three variant use cases in VP3 to be selected (i.e., checkCar-
inality returns {{ r1, r2 }} in Line 25). r3 complies with the cardi-

ality constraint in VP7. checkDecisionRestrictions returns {{ r1, r2 }}

or the contradicting restrictions in Fig. 5 (Line 27). 

To summarize, here are the main building blocks of our change

mpact analysis algorithm: 

• We automatically select variant use cases via the include rela-

tions and the mandatory variability relations. For instance, UC4

is automatically selected via the include relation (i.e., UC1 in-

cludes VP2 ) and the mandatory variability relation (i.e., the re-

lation with the cardinality constraint ‘1..1’) when the user se-

lects UC1 . 
• We use the requires and conflicts relations to infer restrictions

on subsequent decisions. For instance, when UC4 is automati-

cally selected, the subsequent decision for VP3 is restricted to

UC6 being unselected because of the conflicts relation between

UC4 and UC6 . If the user selects UC14 , the subsequent decision

for VP3 is restricted to UC8 being selected because of the re-

quires relation between UC14 and UC8 . 
• Our approach does not have any limitation on the number of

navigation steps in the PL use case diagram since we have re-

cursion in the infer functions which traverse the graph of de-

pendencies we derive from the PL use case diagram. For in-

stance, the function inferConflictingUC in Fig. 9 has function calls

to infer further restrictions (Lines 9, 10, 15, 16, 24, 26, 32 and

33). We do not have any upper bound in our reasoning. Assume

there are variant use cases A, B, C and D where A requires B

conflicting with C required by D . When the user selects A , we

infer the restrictions that B should be selected, and C and D

should not be selected. 

. Incremental reconfiguration of PS use case models 

After all the decision changes are made, the PS use case models

eed to be incrementally reconfigured ( Challenge 2 ). The reconfig-

ration of PS models is implemented as a pipeline (see Fig. 11 ).

onfiguration decisions are captured in a decision model during

he decision-making process. The decision model conforms to a de-

ision metamodel, described in our prior work ( Hajri et al., 2015 ).

UMConf keeps two decision models, i.e., the decision model be-

ore changes ( M1 in Fig. 11 ) and the decision model after changes

 M2 in Fig. 11 ). Fig. 12 provides the decision metamodel and the

wo input decision models for the PL use case models in Fig. 1 and

able 1 . 

The pipeline takes the decision models, and the PS diagram and

pecifications as input. The PS models are reconfigured, as output,

ogether with an impact report, i.e., list of reconfigured parts of the

S models. The pipeline has three steps ( Fig. 11 ). 

In Step 1, Matching decision model elements , the structural differ-

ncing of M1 and M2 is done by looking for the correspondences

n M1 and M2 . To that end, we devise an algorithm that identifies

he matching model elements in M1 and M2 . The output of Step 1

s the corresponding elements, representing decisions for the same

ariations, in M1 and M2 ( Section 6.1 ). 

The decision metamodel in Fig. 12 (a) includes the main use case

lements for which the user makes decisions (i.e., variation point,

ptional step, optional alternative flow, and variant order). In a

ariation point, the user selects variant use cases to be included for

he product. For PL use case specifications, the user selects optional

teps and alternative flows to be included and determines the or-

er of steps (variant order). Therefore, the matching elements in

tep 1 are the pairs of variation points and use cases including

he variation points, the pairs of use cases and optional alterna-

ive flows in the use cases, and the triples of use cases, flows in

he use cases, and optional steps in the flows. 
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Fig. 11. Overview of the model differencing and regeneration pipeline. 
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In Step 2, Change calculation , decision-level changes are identi-

ed from the corresponding model elements (see Section 6.1 ). A

et of elements in M1 which does not have a corresponding set

f elements in M2 is considered to be a deleted decision, which

e refer to as DeleteDecision in the decision-level changes. Anal-

gously, a set of model elements in M2 which does not have a

orresponding set of elements in M1 is considered to be added

 AddDecision ). Each set of corresponding model elements with

on-identical attribute values (see the red-colored attributes in

ig. 12 (c)) is considered to be a decision-level change of the type

pdateDecision . Alternatively, we could record changes during the

ecision-making process. However, the user might make changes

ancelling previous changes or implying some further changes. In

uch a case, we would have to compute cancelled changes and in-

er new changes. To record these changes, the approach would also

ave to depend on IBM DOORS, in which it is integrated. We de-

igned an approach which is as independent as possible from any

equirements management tool. 

In Step 3, Regeneration of PS models , the PS use case diagram

nd specifications are regenerated only for the added, deleted and

pdated decisions (see Section 6.2 ). For instance, use cases selected

n the deleted decisions are removed from the PS use case models,

hile use cases selected in the added decisions are added in the

S models. 

.1. Model matching and change calculation 

We devise an algorithm (see Fig. 13 ) for the first two pipeline

teps, Matching decision model elements and Change calculation , in

ig. 11 . The algorithm calls some match functions (Lines 7–9 in

ig. 13 ) to identify the corresponding model elements, which rep-

esent decisions for the same variations, in the input decision mod-

ls. The match functions implement Step 1 in Fig. 11 . 

• matchDiagramDecisions returns the set of pairs ( variation

point, use case ) matching in the decision models ( M1 and M2 ),

which are capturing which variation points are included in the

use cases involved in diagram decisions; 
• matchFlowDecisions returns the set of pairs ( use case, optional

alternative flow ) matching in the input decision models ( M1 and

M2 ), which are capturing which optional alternative flows are

in the use cases involved in flow decisions; 
• matchStepDecisions returns the set of triples ( use case, flow,

step ) matching in the input decision models ( M1 and M2 ),

which are capturing which steps are in the flows of the use

cases involved in step decisions. 

The corresponding model elements in the decision models in

ig. 12 (b) and (c) are as follows (Lines 7–9 in Fig. 13 ): 

• For decisions in the variation points, 

U3 = { (B 6 , B 7) , (C 6 , C 7) } , 
• For decisions in the optional alternative flows, F 3 = ∅ , 
• For decisions in the use case steps, S3 = { (B 11 , B 12 , B 13) ,

(B 11 , B 12 , B 14) , (B 11 , B 12 , B 15) , (B 11 , B 12 , B 16) , (B 11 , B 12 , B 17) ,

(C 11 , C 12 , C 13) , (C 11 , C 12 , C 14) , (C 11 , C 12 , C 15) , (C 11 , C 12 , C 16) , 
(C 11 , C 12 , C 17) } . t
A variant use case in a variation point ( vp ) may include an-

ther variation point ( vp ′ ). Changing the decision for vp may im-

ly another decision to be added or deleted for vp ′ . As part of

tep 2, Change Calculation , the algorithm first identifies deleted

nd added diagram decisions by checking the pairs of variation

oints and use cases which exist only in one of the input decision

odels (( U1 \ U3 ) and ( U2 \ U3 ) in Lines 10–11). Similar checks are

one for flow and step decisions in the specifications (Lines 10–

1). For the decision models in Fig. 12 , there is no deleted or added

ecision ( ( U1 \ U3 = ∅ ) , ( U2 \ U3 = ∅ ) , ( F 1 \ F 3 = ∅ ) , ( F 2 \ F 3 = ∅ ) ,
( S1 \ S3 = ∅ ) , and ( S2 \ S3 = ∅ ) ). 

The matching pairs of variation points and their including use

ases represent decisions for the same variation point (( B6 , B7 ) and

 C6, C7 ) in Fig. 12 (b) and (c)). If the selected variant use cases for

he same variation point are not the same in M1 and M2 , the cor-

esponding decision in M1 is considered as updated in M2 (Lines

2–19). The variant use case Provide System User Data via Diagnostic

ode of the variation point Method of Providing Data is unselected

n M1 ( B6, B7 and B9 in Fig. 12 (b)), but selected in M2 ( C6, C7 and

9 in Fig. 12 (c)). The diagram decision for the pair ( B6, B7 ) in M1

s identified as updated (Line 17). To identify updated specification

ecisions, the algorithm compares decisions across M1 and M2 that

nvolve optional alternative flows, optional steps and steps with a

ariant order (Lines 22–24, 28–30 and 31–33). In our example, the

riples ( B11, B12, B14 ), ( B11, B12, B15 ), ( B11, B12, B16 ), and ( B11, B12,

17 ) in Fig. 12 represent updated decisions. 

.2. Regeneration of PS use case models 

After all the changes are calculated by matching the corre-

ponding model elements in the input decision models, the parts

f PS use case models affected by the changed decisions are auto-

atically regenerated (Step 3 in Fig. 11 ). 

Our approach first handles the diagram decision changes to re-

onfigure the PS use case diagram. For selected variant use cases

n the added diagram decisions (i.e., in the pairs ( vp, uc ) in ADD in

ine 36 in Fig. 13 ), we generate the corresponding use cases and

nclude relations in the PS diagram. For selected variant use cases

n deleted diagram decisions (i.e., in the pairs ( vp, uc ) in DELETE

n Line 36), we remove the corresponding use cases and include

elations from the PS diagram. If a selected variant use case is

nselected in an updated diagram decision (i.e., in the pairs ( vp,

c ) in UPDATE in Line 36), we remove the corresponding use case

rom the PS diagram. For unselected variant use cases which are

elected in the updated diagram decisions, the corresponding use

ases and include relations are added to the PS diagram. Fig. 14

ives the regenerated parts of the PS use case diagram in Fig. 2 for

1 and M2 in Fig. 12 . 

There is no added or deleted diagram decision in M1 and M2

n Fig. 12 . The decision for the variation point Method of Providing

ata (i.e., ( B 6, B 7) in UPDATE in Line 36) is updated by selecting

he variant use case Provide System User Data via Diagnostic Mode .

nly the corresponding use case and its include relation are added

o the PS use case diagram (red-colored in Fig. 14 ). 
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Fig. 12. (a) Decision metamodel, (b) Part of the example decision model before changes ( M1 ), and (c) Part of the example decision model after changes ( M2 ). (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Changes for diagram and specification decisions are used to re-

generate the PS specifications. For diagram decision changes, we

add or delete the corresponding use case specifications. Table 6

provides the regenerated parts of the PS specifications in Table 2 ,

for M1 and M2 in Fig. 12 . 

For the variation point Method of Providing Data included by the

use case Provide System User Data (i.e., ( B 6, B 7)), we have one up-

dated diagram decision in which the unselected use case Provide
ystem User Data via Diagnostic Mode is selected. The correspond-

ng use case specification is added (Lines 24–29 in Table 6 ). A new

pecific alternative flow is also generated for the inclusion of the

ewly selected use case in the specification of the use case Provide

ystem User Data (Lines 12–15, red-colored). 

The specification decision changes are about selecting optional

lternative flows, optional steps and steps with a variant order

e.g., the triples ( B11, B12, B14 ), ( B11, B12, B15 ), ( B11, B12, B16 ),
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Fig. 13. Algorithm for Steps 1 and 2 in Fig. 11 . 

Fig. 14. Regenerated product specific use case diagram. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Table 6 

Reconfigured Product Specific Specifications. 

1 USE CASE Provide System User Data
2 1.1 Basic Flow
3 1. The tester SENDS the user data request TO the system.
4 2. The system VALIDATES THAT ‘Precondition of Provide System User

Data via Standard Mode’.
5 3. INCLUDE USE CASE Provide System User Data via Standard Mode.
6 1.2 Specific Alternative Flow
7 RFS 2
8 1. IF ‘Precondition of Provide System User Data via IEE QC Mode’ holds

THEN
9 2. INCLUDE Provide System User Data via IEE QC Mode.
10 3. ABORT.
11 4. ENDIF
12 1.3 Specific Alternative Flow
13 RFS 2
14 1. INCLUDE USE CASE Provide System User Data via Diagnostic Mode.
15 2. ABORT.
16
17 USE CASE Provide System User Data via Standard Mode
18 1.1 Basic Flow

1. The system SENDS trace data TO the tester.
19 1. The system SENDS sensor data TO the tester.
20 2. The system SENDS calibration TO the tester.
21 3. The system SENDS error data TO the tester.
22 4. The system SENDS error trace data TO the tester.
23
24 USE CASE Provide System User Data via Diagnostic Mode
25 1.1 Basic Flow
26 1. The system SENDS the RAM data TO the tester.
27 2. The system SENDS the NVM data TO the tester.
28 3. The system SENDS the session response TO the tester.
29 4. The system SENDS the message length TO the tester.
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nd ( B11, B12, B17 ) in Fig. 12 (b)). The use case Provide System User

ata via Standard Mode has two new steps in Lines 19 and 21 in

able 6 (i.e., ( B11, B12, B14 ), and ( B11, B12, B16 ) in Fig. 12 (b)), while

ne of the steps (red-colored, strikethrough step) is removed (i.e.,

 B11, B12, B15 ) in Fig. 12 (b)). The step number of one of the steps

s changed (Line 22, blue-colored) due to the change in the order

f the steps with a variant order (i.e., ( B11, B12, B17 ) in Fig. 12 (b)). 

. Tool support 

We have implemented our change impact analysis approach

s an extension of PUMConf (Product line Use case Model Con-

gurator) ( Hajri et al., 2016b ). PUMConf has been developed as

n IBM DOORS Plug-in. Section 7.1 provides the layered architec-

ure of the tool while we describe the tool features with some

creenshots in Section 7.2 . For more details and accessing the tool,

ee: https://sites.google.com/site/pumconf/ . 

.1. Tool architecture 

Fig. 15 shows the tool architecture. It is composed of three lay-

rs ( Hajri et al., 2016a ): (i) the User Interface (UI) layer , (ii) the

pplication layer , and (iii) the Data layer . 

We briefly introduce each layer and explain the new and ex-

ended components, i.e., the gray boxes in Fig. 15 . 

User Interface (UI) layer. This layer supports creating and

iewing PL and PS artifacts, i.e., use case diagrams and speci-

cations. We employ IBM Doors ( http://www.ibm.com/software/

roducts/ca/en/ratidoor/ ) for use case specifications and Papyrus

 https://www.eclipse.org/papyrus/ ) for use case diagrams. 

Application layer. With the new and extended components,

his layer supports the main activities of our impact analysis ap-

roach in Fig. 4 : proposing a change, identifying the change impact

n other decisions, applying the proposed change , and regenerating PS

se case models . 

The Configurator component coordinates the other components

n the application layer. The Artifact Consistency Checker and Deci-

https://sites.google.com/site/pumconf/
http://www.ibm.com/software/products/ca/en/ratidoor/
https://www.eclipse.org/papyrus/
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Fig. 15. Layered architecture of PUMConf. 
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sion Consistency Checker components were introduced in previous

work ( Hajri et al., 2016a ). The Artifact Consistency Checker employs

Natural Language Processing (NLP) to check the consistency of the

PL use case diagram and the PL use case specifications complying

with the RUCM template. To perform NLP, our tool employs the

GATE workbench ( http://gate.ac.uk/ ), an open source NLP frame-

work. The Decision Consistency Checker is extended to support in-

ferring decision restrictions and checking their consistency as part

of our impact analysis approach. The PL-PS Transformer component

annotates the use case specifications using NLP to automatically

generate PS use case specifications. It is extended with the pipeline

in Fig. 11 to incrementally regenerate PS models. It uses scripts

written in the Doors eXtension Language (DXL) to automatically

(re)configure PS use case specifications. The DXL scripts are also

used to load the (re)configured use case specifications into Doors. 

We further implemented some new components: Change

Proposing and Propagation Engine and Impact Report Generator . The

Change Proposing and Propagation Engine supports proposing a de-

cision change and applying the proposed change while the Impact

Report Generator generates the impact analysis reports. 

Data layer. The PL and PS use case specifications are stored in

the native IBM DOORS format while the PL and PS use case dia-

grams are stored as UML models. The decision models are saved in

Ecore ( Eclipse EMF, 0 0 0 0 ). We generate the impact reports as html

pages. 

7.2. Tool features 

We describe the main features of our tool: proposing a decision

change, identifying the change impact on other decisions, applying the

proposed change , and incrementally reconfiguring PS use case models.

Proposing a change. This feature supports Step 1, Propose a

Change for a Decision , in Fig. 4 . Before applying the change, the

analyst proposes the decision change to determine the change im-

pact on other diagram decisions. In Fig. 16 , the analyst decides to

change the decision for the variation point VP4 ( Fig. 16 (a)) and pro-

poses selecting the unselected use case UC10 ( Fig. 16 (b)). 

Identifying the change impact on other decisions. For Step 2,

Identify the Change Impact on Other Decisions , in Fig. 4 , the tool au-

tomatically identifies the impact of the diagram decision changes

on prior and subsequent diagram decisions. Once the analyst pro-

poses the change, the tool provides an impact report documenting

the impacted decisions along with an explanation for such impact.
Fig. 17 shows the impact report for the example change in

ig. 5 , i.e., selecting the unselected UC10 in VP4 . We use various

olors, with a legend, on variant use cases and variation points

o explain the impacted decisions with the reason of the impact.

hen the analyst selects the unselected UC10, UC12 and UC13

re automatically selected (i.e., the orange variant use cases in

ig. 17 (b)). The prior decision for VP6 is impacted because UC15

hat is unselected is required by UC13 which was selected after the

hange (i.e., the green yellow variant use case in Fig. 17 (b)). The

ubsequent decisions for VP3 and VP7 are impacted because UC8

n VP3 and UC14 in VP7 are restricted by the changed decision (i.e.,

he red variant use cases in Fig. 17 (b)). The prior decision for VP1

s yet another impacted decision because of the cardinality con-

traint in VP3 (i.e., the violet cardinality constraint in Fig. 17 (b)).

he cardinality constraint can no longer be satisfied with the re-

triction for UC8 derived from the changed decision (i.e., the red

C8 in Fig. 17 (b)) and with the restriction for UC6 derived from

he prior decision for VP1 (i.e., the cyan UC6 in Fig. 17 (b)). 

Applying the proposed change. This feature supports Step 3,

pply the Proposed Change , in Fig. 4 . After evaluating the impact

f the proposed change, the analyst decides whether to apply the

roposed change on the corresponding decision. 

Incrementally reconfiguring PS use case models. This feature

upports Step 4, Regenerate Product Specific Use Case Models , in

ig. 4 . Once all the required changes are made, the tool automat-

cally and incrementally regenerates the PS models corresponding

o the changed decisions. 

. Evaluation 

In this section, we evaluate our change impact analysis ap-

roach via reporting on (i) the results of a questionnaire survey

t IEE aiming at investigating how the approach is perceived to

ddress the challenges listed in Section 3 ( Section 8.1 ), (ii) discus-

ions with the IEE engineers to gather qualitative insights into the

enefits and challenges of applying the approach in an industrial

etting ( Section 8.2 ), and (iii) an industrial case study, i.e., STO, to

emonstrate the feasibility of the incremental reconfiguration of PS

se case models ( Section 8.3 ) for a representative system. 

.1. Questionnaire study 

We conducted a questionnaire study to evaluate, based on the

iewpoints of experienced IEE engineers, how well our change im-

act analysis approach addresses the challenges that we reported

n Section 3 . The study is described and reported according to the

emplate provided by Wohlin et al. (2012) . 

.1.1. Planning and design 

To evaluate the output of our impact analysis approach in light

f the challenges we identified earlier, we had semi-structured in-

erviews with seven participants holding various roles at IEE: soft-

are development manager, software team leader, software engi-

eer, system engineer, hardware development engineer, and em-

edded software engineer. They all had substantial industry expe-

ience, ranging from seven to thirty years. All participants, except

he hardware development engineer, had previous experience with

se case-driven development and modeling. The interview was

receded by presentations illustrating the background approaches

i.e., the PL use case modeling method ( Hajri et al., 2015 ) and the

se case-driven configuration approach ( Hajri et al., 2016a )), our

hange impact analysis approach, a tool demo, and some detailed

xamples from STO. Interactive training sessions also took place

hich included questions posed to the participants about the ex-

mple models and ensured that participants had reached a min-

mal level of understanding. We then organized three hands-on

http://gate.ac.uk/
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Fig. 16. PUMConf’s user interface for proposing a diagram decision change. 

Fig. 17. PUMConf’s user interface for displaying the change impact of diagram decision changes on other diagram decisions. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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sessions in which the participants could apply the configuration

and the change impact analysis approaches in a realistic setting,

followed by the structured interviews and data collection. In the

first hands-on session, the participants were asked to make config-

uration decisions and resolve conflicting decisions using the guid-

ance provided by PUMConf to generate PS use case models from

the sample PL use case diagram and specifications. In the sec-

ond hands-on session, they used the impact analysis results pro-

vided by PUMConf to identify the impact of the proposed deci-

sion changes on prior and subsequent decisions in PL use case di-

agrams. In the third session, the participants used PUMConf to in-

crementally reconfigure PS use case models based on the changed

decisions. 

To capture the perception of the IEE engineers participating in

the interviews, regarding the potential benefits of our impact anal-

ysis approach and how it addresses the targeted challenges, we

handed out two questionnaires including questions to be answered

according to two Likert scales ( Oppenheim, 2005 ) (i.e., agreement

and probability). The questionnaires were structured for the par-

ticipants to assess both our configurator and our change impact

analysis approach in terms of adoption effort, correctness, compar-

ison with current practice, and tool support. The participants were

also encouraged to provide open, written comments. 

8.1.2. Results and analysis 

We solicited the opinions of the participants using two ques-

tionnaires named QA and QB (see Figs. 18 and 19 ). The objective of

the questionnaire QA was to evaluate our use case-driven config-

uration approach and its tool support. We needed to know how

well the participants understood and assessed the configuration

approach before receiving their feedback about our impact analysis

approach, which builds on it. Fig. 18 (a) and (b) depict the questions

in QA and the participants’ answers. The questions of QA were di-

vided into three parts: (1) configuration of PS use case diagrams

( QA 1, QA 2 and QA 3), (2) configuration of PS use case specifications

( QA 4 and QA 5), and (3) the overall configuration approach and its

tool support (from QA 6 to QA 11). 

All participants, except two, agreed that our configurator is ad-

equate and practical to capture configuration decisions for PS use

case models ( QA 1 and QA 4). Further, these participants expressed

their willingness to use our tool for automatically configuring PS

models in their projects ( QA 2 and QA 5). The two participants who

did not agree on QA 4 stated that they need to gather more experi-

ence on various product line projects to be able to provide a pre-

cise judgment about the configurator. We note that one of those

participants disagreed whereas the second one left the questions

(from QA 1 to QA 6) unanswered. The former was the HW engineer,

with no initial use case modeling experience, and the latter was

the system engineer. In short, these two participants were the ones

with the least software background. 

Regarding the questions that target the overall approach and its

tool support (from QA 6 to QA 11), the participants agreed that the

effort required to learn and apply our configurator is reasonable

( QA 7). Nevertheless, one participant stated that more training is re-

quired to be able to easily follow the configuration steps ( QA 6). All

participants except one were interested in using our configurator

for managing product lines. The remaining participant, who is a

software project manager and was the most experienced, thought

that our configurator brings added value only for projects which

include significant variability information, e.g., projects with more

than 50 variation points ( QA 8). Moreover, the participants agreed

that our configurator provides useful assistance for configuring PS

use case models, when compared to the current practice in their

projects ( QA 10), and ease communication between analysts and

stakeholders during configuration ( QA 9). 
The objective of the second questionnaire QB was to evaluate

ur change impact analysis approach. Fig. 19 (a) and (b) depicts the

uestions and answers for QB. QB is structured in four parts: (1)

dentifying the impact of decision changes on other diagram de-

isions (from QB 1 to QB 3), (2) incrementally reconfiguring PS use

ase diagrams ( QB 4 and QB 5), (3) incrementally reconfiguring PS

se case specifications ( QB 6 and QB 7), and (4) the overall impact

nalysis approach and its tool support (from QB 8 to QB 14). 

All participants, except one, agreed that (1) our approach is suf-

cient to determine and explain the impact of decision changes for

L use case diagrams ( QB 1) and (2) the impact report generated

fter the incremental reconfiguration is sufficient to capture the

hanged parts of the PS use case diagram ( QB 4). The participant

ho disagreed on QB 1 and QB 4 mentioned in his comments that

e lacks experience in use case-driven development and modeling

nd that he is not sufficiently familiar with the tool to provide a

recise answer. There was a strong consensus among participants

bout the value of adopting our change impact analysis approach

 QB 10 and QB 11) and about the benefits of using it to identify the

mpact of decision changes and to reconfigure PS models in their

rojects ( QB 5 and QB 7). The participants were very positive about

he approach in general and were enthusiastic about its capabil-

ties, and most particularly the impact analysis reports provided

y the tool. Nevertheless, they mentioned that the user interface

eeded to be more professional and ergonomic, which was not sur-

rising for a research prototype. This was the main reason for one

f the participants to disagree on QB 3, QB 12, and QB 14. 

.2. Discussions with the analysts and engineers 

The questionnaire study had open, written comments under

ach section, in which the participants could state their opinions in

 few sentences about how our impact analysis approach addresses

he challenges reported in Section 3 . As reported in Section 8.1 , the

articipants’ answers to the questions through Likert scales and

heir open comments indicate that they see high value in adopt-

ng the change impact analysis approach and its tool support in an

ndustrial setting in terms of (1) improving decision making pro-

ess, (2) increasing reuse, and (3) reducing manual effort during

econfiguration. In order to elaborate over the open comments in

he two questionnaires, we organized further discussions with the

articipants. Based on the initial comments, we identified two as-

ects to further discuss with the participants: industrial adoption

f the approach and its limitations. 

.2.1. Industrial adoption of the approach 

Our impact analysis approach is devised to support the

ecision-making process in the context of use case-driven config-

ration. Therefore, it needs to be adopted as part of our config-

ration approach. In the current practice at IEE, like many other

nvironments, there is no systematic way to (re)configure product-

pecific use case models and to identify the change impact for

volving decisions for use case models. Although IEE engineers

onsider that the effort required to learn and apply our configura-

ion and change impact analysis approach is reasonable, they also

tated that the costs and benefits of adopting it should be further

valuated. This is, however, a common and general challenge when

ntroducing new practices in software development. 

.2.2. Limitations of the approach 

Our change impact analysis approach and its tool support cur-

ently have some limitations. First, our approach supports only

volving configuration decisions. However, changes may also occur

n variability aspects of PL use case models. For instance, we may

ntroduce a new variation point in the PL use case diagram or we

an remove a variant use case for a given variation point. As stated
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Fig. 18. Responses to the questions related to the configuration approach. 
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Fig. 19. Responses to the questions related to the change impact analysis approach. 
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Table 7 

Product line use cases in the case study. 

# of use cases # of variation points # of basic flows # of alternative flows # of steps # of condition steps 

Essential UCs 11 6 11 57 192 57 

Variant UCs 13 1 13 131 417 130 

Total 24 7 24 188 609 187 
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y IEE engineers, it is important to evaluate the impact of PL use

ase model changes on configuration decisions and on PS use case

odels. Therefore, our approach needs to be extended for evolving

L use case models. Second, we implemented our approach as part

f a prototype tool, PUMConf. The tool has already received posi-

ive feedback from IEE engineers but they stated that it needs fur-

her improvements in terms of usability. To identify potential us-

bility improvements, we decided to conduct empirical and heuris-

ic evaluations ( Nielsen and Molich, 1990; Nielsen, 1994 ). With re-

ards to the empirical evaluation, we plan to perform a user study

ith IEE engineers, where we will record the end user interaction

ith the configurator. We plan to perform the heuristic evalua-

ion of the user interfaces according to certain rules, such as those

isted in typical guideline documents ( Smith and Mosier, 1986 ), by

sking users’ opinions about possible improvements of PUMConf’s

ser interfaces. 

.3. Industrial case study 

We report our findings about the feasibility of part of our im-

act analysis approach, i.e., incremental reconfiguration of PS use

ase models, and its tool support in an industrial context. In order

o experiment with our incremental reconfiguration approach in an

ndustrial project, we applied it to the functional requirements of

TO. 

.3.1. Goal 

Our goal was to assess, in an industrial context, the feasibility of

sing our approach. We assessed whether we could improve reuse

nd significantly reduce manual effort by preserving unimpacted

arts of PS use case models, when possible, and their manually

ssigned traces. 

.3.2. Study context 

STO was selected for the assessment of our approach since it

as a relatively new project at IEE with multiple potential cus-

omers requiring different features. IEE provided their initial STO

ocumentation, which contained a use case diagram, use case

pecifications, and supplementary requirements specifications de-

cribing non-functional requirements. To model the STO require-

ents according to our modeling method, PUM, we first examined

he initial STO documentation and then worked with IEE engineers

o build and iteratively refine our models ( Hajri et al., 2015 ) (see

able 7 ). Due to confidentiality concerns, we do not put the entire

ase study online. However, the reader can download the sanitized

xample models from the tool’s website ( https://sites.google.com/

ite/pumconf/download-installation/ ). 

.3.3. Results and analysis 

By using PUMConf, we, together with the IEE engineers, config-

red the PS use case models for four products selected among the

TO products IEE had already developed ( Hajri et al., 2016a ). The

EE engineers made decisions on the PL models using the guidance

rovided by PUMConf. Among the four products, we chose one

roduct to be used for reconfiguration of PS models (see Table 8 )

ecause it was the most recent one in the STO product family with

 properly documented change history. The IEE engineers identi-

ed 36 traces from the PS use case diagram and 278 traces from
he PS use case specifications that were directed to other software

nd hardware specifications as well as to the customers’ require-

ents documents for external systems (see Fig. 3 for an exam-

le trace). We considered eight change scenarios derived from the

hange history of the initial STO documentation for the selected

roduct (see Table 9 ). 

Some change scenarios contain individual decision changes

uch as selecting unselected use cases in a variation point, while

ome others contain a series of individual changes to be applied

equentially (see S2 and S4 ). For instance, S2 starts with unselect-

ng Clear Error Status in Fig. 1 , which automatically deletes the de-

ision for the variation point Method of Clearing Error Status and

mplies another decision change, i.e., unselecting Store Error Status .

Table 10 provides a summary of the reconfiguration of the PS

se case models for the change scenarios. After each change sce-

ario, we ran PUMConf and checked the preserved and deleted

races. As discussed, our approach preserves all the traces for the

nchanged parts of the PS models, while removing the traces for

he deleted parts of the PS models, which must be manually up-

ated. To assess the savings in traceability effort while reconfigur-

ng, we looked at the percentages of traces from the use case dia-

ram and the use case specifications that were preserved over all

hange scenarios. From Table 10 , we can see that between 73% and

00% (average ≈ 96%) of the use case diagram traces were pre-

erved. Similarly, for the use case specifications, trace reuse was

etween 82% and 100% (average ≈ 96%). We can therefore con-

lude that the proposed incremental reconfiguration of PS use case

odels leads to significant savings in traceability effort in the con-

ext of actual configuration decision changes. 

.4. Threats to validity 

The main threat to validity in our evaluation concerns the gen-

ralizability of the conclusions we derived from our industrial case

tudy and from the participants’ answers in our questionnaire

tudy. To mitigate this threat, we applied our approach to an in-

ustrial case study, i.e., STO from our industry partner, that in-

ludes nontrivial use cases in an application domain with many

otential customers and sources of variability. STO is a relatively

imple but typical automotive embedded system. It can be rea-

onably argued that more complex systems would require more

onfiguration support, not less. Further case studies are neverthe-

ess necessary for improving external validity. The fact that the re-

pondents to our questionnaire were selected to have diverse back-

rounds and the consistency observed across the answers we re-

eived provide confidence about the generalizability of our conclu-

ions among different project participants. A potential threat to in-

ernal validity is that the we have limited domain knowledge and

ere involved in the modeling and (re)configuration of the use

ase models we used in our evaluation. To minimize the risks of

istakes, we had many meetings and interviews with domain ex-

erts at IEE to verify the correctness and completeness of (1) our

L use case models, (2) the STO configurations, and (3) the output

f our change impact analysis approach. 

. Related work 

We cover the related work across four categories. 

https://sites.google.com/site/pumconf/download-installation/
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Table 8 

Configuration results for the selected product. 

Product # of Selected 

Variant Use Cases 

# of Selected 

Optional Steps 

# of Selected 

Optional Flows 

# of Decided 

Variant Order 

P1 6 1 0 0 

Table 9 

Decision change scenarios. 

ID Change Scenario Explanation 

S1 Update a diagram decision Unselecting selected use cases 

S2 Update and delete diagram decisions Unselecting selected use cases, removing other decisions 

S3 Update a diagram decision Selecting unselected use cases 

S4 Update and add diagram decisions Selecting unselected use cases, implying other decisions 

S5 Update a specification decision Selecting unselected optional steps 

S6 Update a diagram decision Selecting unselected use cases 

S7 Update a diagram decision Unselecting selected use cases 

S8 Update a specification decision Updating the order of optional steps 

Table 10 

Summary of the Reconfiguration of the PS Use Case Models for STO. 

Decision Change Scenarios
S1 S2 S3 S4 S5 S6 S7 S8

PS
 M

od
el

C
ha

ng
es # of Added UCs 0 0 1 4 0 1 0 0

# of Deleted UCs 1 4 0 0 0 0 1 0
# of Added UC Steps 0 0 53 140 3 85 0 0
# of Deleted UC Steps 53 140 0 0 0 0 103 0

T
ra

ce
s f

or
 th

e 
PS

 
U

se
 C

as
e 

D
ia

gr
am

# of Initial Traces 36 34 25 27 36 36 38 38
# of Deleted Traces 
During Reconfiguration 2 9 0 0 0 0 0 0

# of Manually Added 
Traces After 
Reconfiguration

0 0 2 9 0 2 0 0

# of Preserved Traces 34 25 25 27 36 36 38 38
% of Preserved Traces 94.4 73.5 100 100 100 100 100 100

T
ra

ce
s f

or
 th

e 
PS

 U
se

 
C

as
e

Sp
ec

ifi
ca

tio
ns

# of Initial Traces 278 265 218 231 278 287 298 278
# of Deleted Traces 
During Reconfiguration 13 47 0 0 0 0 20 0

# of Manually Added 
Traces After 
Reconfiguration

0 0 13 47 9 11 0 0

# of Preserved Traces 265 218 218 231 278 287 278 278
% of Preserved Traces 95.3 82.2 100 100 100 100 93.2 100
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Reasoning approaches for product lines. PL use case diagrams

and feature models have similar modeling constructs to represent

system variability in terms of variation points, variant cardinalities

and dependencies. In a literature review on automated analysis of

feature models ( Benavides et al., 2010 ), three types of analysis op-

erations on feature models are addressed: corrective explanations,

dependency analysis and valid partial configuration . Our change im-

pact analysis approach relies on a form of dependency analysis

to identify the impact of changing configuration decisions in PL

use case diagrams ( Challenge 1 ). The dependency analysis operation

takes a variability model (i.e., a feature model) and a partial config-

uration as input and returns a new configuration with the variants

(i.e., features) that should be selected and/or unselected as a result

of the dependency constraints ( Benavides et al., 2010 ). The FaMa

formaL frAMEwork (FLAME) proposed by Durán et al. (2017) spec-

ifies the semantics of the analysis operations, e.g., validity of a

product, the set of all valid products and validity of a configu-

ration, which can be employed not only for feature models, but

also for other variability modeling languages. However, in FLAME,

change impact analysis has not been considered as an analysis op-

eration with its semantics in the presence of evolving configuration

decisions. By using dependency constraints, in the context of PL

use case modeling, our approach identifies variant use cases that
hould be selected or unselected as a result of a configuration de-

ision change. 

Trinidad et al. (2008) and White et al. (2010, 2008) pro-

ide techniques to automatically propose decision changes when

 dependency constraint is violated by some configuration deci-

ions in a partial configuration. In contrast, our approach iden-

ifies (potential) violations of dependency constraints when the

nalyst proposes a configuration decision change. We can clas-

ify the automated support for the analysis operations according

o the logic paradigm it relies on: propositional logic ( Mannion,

002; Mannion and Camara, 2003; Batory, 2005 ), constraint pro-

ramming ( Benavides et al., 20 05b, 20 05a; Karatas et al., 2010 )

nd description logic ( Wang et al., 2005, 2007; Fan and Zhang,

006 ). Regarding propositional logic, a variability model is first

apped into a propositional formula in conjunctive normal form

CNF). A SAT solver takes the derived propositional formula and as-

umptions (configuration decisions) as input and determines if the

ormula is either satisfiable (SAT) or unsatisfiable (UNSAT). Tech-

iques such as HUMUS (High-level Union of Minimal Unsatisfiable

ets) ( Nöhrer et al., 2012; Nöhrer and Egyed, 2013 ) are used to

dentify the contradicting configuration decisions in the presence

f UNSAT. Although we map the PL use case diagram into proposi-

ional logic formulas, we do not employ any SAT solving technique.

nstead, for reasons explained below, we develop our own impact

nalysis algorithm in our use case-driven product line context (see

ection 5 ). When a change is introduced to a diagram decision,

ur algorithm checks the consistency of decisions to identify the

mpact on prior and subsequent decisions. A decision change can

iolate dependency constraints with prior decisions or restrict sub-

equent decisions. One important point is that our algorithm iden-

ifies not only the impacted decisions but also the cause of the

hange impact. In practice, the cause of the change impact is im-

ortant for the analysts to identify the further changes to be made

n impacted decisions. In contrast, when using SAT solvers, we

nly obtain as output, without any further explanation, decisions

ontradicting each other after the decision change ( Nöhrer et al.,

012; White et al., 2010 ). For instance, assume that the analyst un-

elects the selected variant use case Store Error Status while there

s no decision made yet for the variation point Clearing Error Status

n Fig. 1 . Our approach identifies that the subsequent decision for

learing Error Status is impacted because the decision restriction

reviously introduced through the require dependency becomes in-

alid after the change. 

One advantage of SAT solvers is that they are a mature technol-

gy that is able to deal with large-scale models ( Liang et al., 2015 ).

n a SAT solver-based approach, given a PL use case diagram, one

ropositional formula can be formed as a conjunction of formulas
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erived from each dependency in the diagram using the proposi-

ional logic mapping in Fig. 7 . Given such propositional formula

nd a set of variable assignments (decisions), a SAT solver can

etermine whether there is a value assignment to the remaining

ariables (undecided variation points) that will satisfy the pred-

cate ( Batory, 2005 ). In order to find out the decisions impacted

y a decision change, it would be necessary to run SAT multi-

le times, since configuration decisions before and after changes

ead to different variable assignments. In addition, every different

mpact may require different variable assignments and this might

e computationally demanding. We follow a different solution that

avigates the graph of dependencies and assigns values to boolean

xpressions while verifying conflicts. This is expected to be much

ess computationally demanding, especially when the size of the

raph to navigate is small. Based on our observations in practice,

L use case diagrams remain relatively limited in size and rarely

ontain more than a few dozen variant use cases, cardinality con-

traints and dependencies. Scalability is therefore not a significant

ssue for our approach. 

Impact analysis approaches for product lines. In the context

f product line engineering, most of the approaches in the liter-

ture focus on the evolution of variability models instead of the

volution of configuration decisions ( Botterweck and Pleuss, 2014 ).

hey predict the potential further changes in a PL model, e.g., a

eature model, when deciding about a change in the same model.

or instance, Thüm et al. (2009) present an algorithm to reason

bout feature model changes. The evolution of a feature model

s classified as refactoring (i.e., no new products are added), spe-

ialization (i.e., no new products are added and some existing

roducts removed), generalization (i.e., new products are added

nd no existing products removed), and arbitrary edits . The pre-

ented algorithm takes two versions of the same feature model

s input and automatically computes the change classification.

lves et al. (2006) provide a catalog of change operations (e.g.,

dd new alternative feature and replace mandatory feature ) for refac-

oring feature models. Paskevicius et al. (2012) employ a sim-

lar catalog of change operations to propagate a feature model

hange to other feature model elements through feature depen-

encies such as parent and child . Because the approach proposed

y Thüm et al. (2009) does not identify the change operations ap-

lied between two versions, Acher et al. (2012) build on it to iden-

ify the differences between feature models in terms of proposi-

ional formulas. It does so by comparing configuration spaces of

he feature models. Bürdek et al. (2015) propose a model differenc-

ng approach, which is similar to our model differencing pipeline

n Section 6 , to determine and document complex change opera-

ions between the feature model versions (i.e., feature models be-

ore and after changes). Our model differencing pipeline identifies

onfiguration decision changes, while their approach is used to de-

ermine changes between two feature models, not between two

onfigurations. 

Seidl et al. (2012) assume that there are mappings, pro-

ided by the analyst, from feature models to artifacts such as

ML class diagrams and source code. They propose a classifica-

ion of feature model changes that captures the impact of these

hanges on the feature model mappings and the mapped artifacts.

uinton et al. (2015) propose yet another approach to ensure con-

istency of feature models and their mapped artifacts when feature

odels evolve. Dintzner et al. (2014) compute the impact of a fea-

ure model change on the existing configurations of a product line

y using partial dependency information in feature models. Sim-

lar to Dintzner et al. (2014) , Heider et al. (2012b,a) propose an-

ther approach using regression testing to identify the impact of

ariability model changes on products. For a change in a variabil-

ty model of a product line, the approach identifies whether con-

guration decisions for the existing products need to be changed
s well. Then, it reconfigures all the products in the product line

or the impacted decisions. The approach also compares the recon-

gured products with the previous version to inform the analysts

bout the changed parts of the products. 

One of the main differences between our approach and all the

ther approaches given above is that the latter mainly focus on

hanges on feature models, not changes on configuration decisions,

hile our approach deals with configuration decision changes and

heir impact on other decisions in PL use case models ( Challenge

 ). We incrementally reconfigure PS use case models as a result of

volving configuration decisions ( Challenge 2 ) and do not address

volving PL models. White et al. (2014) propose an automated ap-

roach for deriving, on a feature model, a set of configurations

hat meet a series of requirements in a multi-step configuration

rocess. It is assumed that an initial configuration evolves to a

esired configuration where the analysts do not know the inter-

ediate configuration steps which involve configuration decision

hanges requiring multiple steps. The approach does not identify

he impact of decision changes but calculates subsequent decisions

o derive potential configuration paths between the initial and de-

ired configurations by mapping them to a Constraint Satisfaction

roblem (CSP). In contrast, our approach identifies the impact of

ecision changes on subsequent and prior decisions to reach the

esired configuration. It guides the analyst in addressing the cause

f the impact of decision changes and ensures that a valid config-

ration is reached. 

Another main difference is that our working context is spe-

ific to use case models with a specific product line modeling

ethod, i.e., PUM , which explicitly models variability information

n use case models, without any additional artifact such as feature

odels. The benefits of use case-driven configuration have been

cknowledged and there are approaches proposed in the litera-

ure ( Alves et al., 2010; Alférez et al., 2014; Rabiser et al., 2010 ).

owever, to the best of our knowledge, there is no work address-

ng the impact analysis of evolving configuration decisions in the

ontext of use case-driven configuration. Many configuration ap-

roaches ( Alférez et al., 2009; Zschaler et al., 2009; Czarnecki and

ntkiewicz, 2005; Eriksson et al., 2009, 2004 ) require that feature

odels be traced as an orthogonal model to development artifacts

uch as UML use case, activity and class diagrams. Alternatively, we

ould have developed our impact analysis approach using feature

odels traced to use case models. If impacted decisions on fea-

ure models can be identified, and there are trace links between

eature models and use cases, these trace links can be followed to

dentify impacted use cases. With such a solution, feature mod-

ling needs to be introduced into practice, including establishing

nd maintaining traces between feature models and use case spec-

fications and diagrams, as well as other artifacts. At IEE and in

any other development environments, such additional modeling

rtifacts and the associated traceability are often perceived as un-

cceptable overhead and a practical hindrance due to the introduc-

ion and support of additional tools ( Hajri et al., 2015 ). We do not

laim that our approach is generally superior to an approach using

eature modeling. However, our approach is likely to be preferred

n certain contexts where development is driven by use case mod-

ling. 

Impact analysis approaches for requirements models. There

re impact analysis approaches that address change propagation in

equirements, but not specifically in a product line context. Goknil

t al. (2014b, 2008a) and ten Hove et al. (2009) propose a change

mpact analysis approach which propagates changes in natural lan-

uage requirements to other requirements by using the formal se-

antics of requirements relations, e.g., ‘requires’, ‘refines’ and ‘con-

icts’ ( Goknil et al., 2011, 2008b, 2013 ). These requirements rela-

ions are used together with trace links between requirements and

rchitecture models to identify the impact of requirements changes
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on architecture models ( Goknil et al., 2014a, 2016b, 2016a ). When

requirements are expressed in models such as goal models, more

specialized dependency types can be used for impact analysis.

For instance, Cleland-Huang et al. (2005) use soft goal depen-

dencies to analyze how changes in functional requirements im-

pact non-functional requirements, while Amyot (2003) uses opera-

tionalization dependencies between use cases and goals to prop-

agate change between intentional and behavioral requirements.

Arora et al. (2015a,b) propose another approach for impact analy-

sis over Natural Language (NL) requirements by employing Natural

Language Processing (NLP) techniques including the use of syntac-

tic and semantic similarity measures. The approach uses similarity

measures to compute the change impact in terms of relatedness

between the changed requirement and other requirements in the

requirements document. Nejati et al. (2016) extend the approach

to propagate requirements changes to design models in SysML. Our

work was inspired from the above techniques in terms of using

requirements relations to propagate changes among diagram deci-

sions ( Challenge 1 ). Our approach does not address changes in nat-

ural language requirements, but deals with propagating decision

changes to other decisions through variation point-variant use case

dependencies in the context of use case-driven configuration. 

Incremental model generation approaches. Use case-driven

configuration approaches in the literature (e.g., Eriksson et al.,

20 05; Fantechi et al., 20 04b; Czarnecki and Antkiewicz, 2005;

Alférez et al., 2009 ) do not support incremental reconfiguration of

use cases for evolving configuration decisions ( Challenge 2 ). There

are also more general configuration approaches (e.g., Dhungana

et al., 2011; Rosa et al., 2009 ) that can be customized to configure

PS use case models. For instance, DOPLER ( Dhungana et al., 2011 )

supports capturing variability information as a variability model,

and modeling any type of artifact as asset models. Variability and

asset models are linked by using trace relations. The approach pro-

posed by Heider et al. (2012a,b) is an extension of DOPLER to iden-

tify the impact of changes of variability information on products.

It reconfigures all the products in the product line for the im-

pacted decisions. However, it focuses on changes in variability in-

formation, not changes in configuration decisions. It is also not in-

cremental, limiting its applicability, as the reconfiguration encom-

passes all the decisions, not only the affected ones. 

Considerable attention in the model-driven engineering re-

search community has been given to incremental model genera-

tion/transformation for model changes (e.g., Hearnden et al., 2006;

Kurtev et al., 2007; Jahann and Egyed, 2004; Giese and Wag-

ner, 2009; Xiong et al., 2007 ), and this line of work has inspired

initiatives in many software engineering domains. For instance,

Vogel et al. (2009) use incremental model transformation tech-

niques for synchronizing runtime models by integrating a general-

purpose model transformation engine into their runtime model-

ing environment. Epsilon ( Kolovos et al., 2006a, 2008, 2006b ) is a

model-driven development suite with a model transformation lan-

guage, which provides automated support for a number of addi-

tional tasks such as model differencing, mer ging, validation and

model-to-text transformation. Alternatively, we could also have

employed such a generic model transformation engine and lan-

guage to implement the incremental generation of PS use case

models. However, compared to model transformation languages, in

terms of loading, matching and editing text in natural language,

Java provides much more flexibility for handling plain text use

case specifications. As a result, we used Java to implement the

generation of PS use case models in our prior work ( Hajri et al.,

2016a ), and also to implement the incremental reconfiguration of

PS models as a model differencing and reconfiguration pipeline

(see Section 6 ). To the best of our knowledge, our approach is the

first to support incremental reconfiguration of PS use case models

for evolving decisions in a product family. 
0. Conclusion 

This paper presents a change impact analysis approach that

upports evolving configuration decisions in product-line (PL) use

ase models. It automatically identifies the impact of decision

hanges on other decisions in PL use case models, and incre-

entally reconfigures PS use case diagrams and specifications for

volving decisions. 

We aimed to improve the decision making process by inform-

ng the analyst about the impact of decision changes and to mini-

ize manual traceability effort by automatically but incrementally

econfiguring the PS use case models, that is to only modify the

ffected model parts given a decision change and thus preserve as

any traceability links as possible to other artifacts. 

Our change impact analysis approach is built on top of our pre-

ious work (i.e., Product line Use case Modeling method and the

roduct line Use case Model Configurator) and is supported by

 tool integrated into IBM DOORS. The key characteristics of our

ool are (1) the automated identification of the impact of decision

hanges and their associated causes on prior and subsequent deci-

ions in PL use case models, and (2) the automated incremental

econfiguration of PS models from PL models and evolving con-

guration decisions. We performed a case study in the context of

utomotive domain. The results from structured interviews and a

uestionnaire study with experienced engineers suggest that our

pproach is practical and beneficial to analyze the impact of deci-

ion changes and to incrementally reconfigure PS models in indus-

rial settings. 

At this current stage, our approach does not support the evo-

ution of PL use case models. We still need to address and man-

ge changes in variability aspects of PL models such as adding a

ew variation point in the PL use case diagram. This work is an

ntermediate step to achieve our long term objective ( Hajri, 2016;

ajri et al., 2017a ), i.e., change impact analysis and regression test

election in the context of use case-driven development and test-

ng. Our plan is to support change impact analysis for evolving PL

se case models to help analysts properly manage changes in such

odels. Additionally, we would like to provide an automated re-

ression test selection approach for system test cases derived from

se case models in product families. 
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