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ABSTRACT. Let L/K be a finite Galois extension of number fields, and let G be a
finitely generated subgroup of K×. We study the natural density of the set of primes
of K having some prescribed Frobenius symbol in Gal(L/K), and for which the
reduction of G has multiplicative order with some prescribed `-adic valuation for
finitely many prime numbers `. This extends in several directions results by Moree
and Sury (2009) and by Chinen and Tamura (2012), and has to be compared with the
very general result of Ziegler (2006).

1. INTRODUCTION

Consider a Lucas sequence ak+bk where a, b ∈ Z. A prime divisor for the sequence is
a prime number that divides at least one term in the sequence. Apart from some trivial
cases, counting the prime divisors for the above sequence means counting the prime
numbers p such that the multiplicative order of a/b modulo p is even (we may count
instead the reductions for which the order is odd). The set of prime divisors admits
a natural density, which has been computed by Hasse [3, 4]. There are many related
questions, see for example the survey by Moree [5].

The following refined question has also been considered: if L/Q is a finite Galois ex-
tension and c is a conjugacy class in Gal(L/Q), how many prime numbers p (unrami-
fied in L) are prime divisors for a given Lucas sequence and also fulfill the condition
FrobL/Q(p) ⊆ c for their Frobenius symbol? If L is either quadratic or cyclotomic, the
corresponding density has been worked out by Chinen and Tamura [1] and by Moree
and Sury [6].

We work in much greater generality. Indeed, we let L/K be any finite Galois extension
of number fields and let c be a conjugacy-stable subset of the Galois group Gal(L/K).
We also work with any finitely generated subgroup G of K×. We test coprimality
of the order with respect to finitely many prime numbers ` and in fact we can also
arbitrarily prescribe the `-adic valuation of the order.

Up to excluding finitely many primes p of K, we may assume that p is unramified in
L and that the reduction of G modulo p is well-defined.
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For simplicity, we now fix one prime number ` and count the primes p of K that
satisfy the following two conditions: firstly, for the Frobenius symbol we must have
FrobL/K(p) ⊆ c; secondly, the order of the group (G mod p) must be coprime to `.
Since G only affects the second condition, we may assume w.l.o.g. that G is torsion-
free and non-trivial. The general result involves cyclotomic and Kummer extensions
(we refer to Section 2 for the definitions and the notation) and it is as follows:

Theorem 1. Let K be a number field, and fix some non-trivial, finitely generated and
torsion-free subgroup G of K×. Let L be a finite Galois extension of K, and fix some
conjugacy-stable subset c of Gal(L/K). Let ` be a prime number.
The set of primes p of K satisfying FrobL/K(p) ⊆ c and ` - ord(G mod p) admits a
natural density, which is given by

(1) densK(G, c, `) =
∞∑
n=0

( c(n, n)

[L(n, n) : K]
− c(n+ 1, n)

[L(n+ 1, n) : K]

)
,

where we set K(m,n) := K(`−m1, `−nG) and L(m,n) := L · K(m,n), and where
c(m,n) is the number of elements in c that are the identity on L ∩K(m,n).

In the special case c = Gal(L/K), the condition on the Frobenius symbol is trivial
and we become the density considered by Debry and Perucca in [2], namely

(2) densK(G, `) =
∞∑
n=0

( 1

[K(n, n) : K]
− 1

[K(n+ 1, n) : K]

)
.

We also extend Theorem 1 by requiring coprimality of the order with respect to finitely
many prime numbers i.e. the order of the reduction of G must be coprime to some
given integer m > 1. We call the corresponding density densK(G, c,m). The dens-
ity densK(G,m) without the condition on the Frobenius symbol has been considered
in [7]. We prove in general that densK(G, c,m) is an explicitly computable rational
number, see Theorem 17. Finally, rather than considering only the case of valuation 0,
for each prime divisor ` of m we may arbitrarily prescribe the `-adic valuation of the
order of the reduction of G, see Theorem 18.

We conclude by justifying our work in view of the elegant and very general result of
Ziegler [8, Theorem 1]. The advantages of our approach are that we work uncondition-
ally, we consider a finitely generated group of any rank, and we show that the density
is computable and it is a rational number.

Acknowledgements: The author sincerely thanks Pieter Moree for inviting her to visit
the MPIM Bonn in April 2017 and for suggesting the problem which has been solved
in this paper.
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2. PRELIMINARIES

The Frobenius symbol: If L/K is a finite Galois extension of number fields, we
define the Frobenius symbol FrobL/K(p) of a prime p of K that does not ramify in
L. Write OK and OL for the ring of integers of K and L respectively. The Frobenius
symbol of p is the conjugacy class in Gal(L/K) consisting of those σ satisfying the
following condition: there exists some prime q of L lying over p such that for all
α ∈ OL we have

σ(α) ≡ α#(OK/pOK)(mod q) .

The m-adic valuation (and tuples): We let m > 1 be a square-free integer and we
consider its prime factorization m = `1 · · · `f . Set I = {1, . . . , f}. We define the
m-adic valuation as the f -tuple of the `i-adic valuations where i ∈ I .

If n is a non-negative integer, to ease notation we also write n for the f -tuple with all
entries equal to n.

Let A,B be f -tuples. We write A 6 B if each entry of A is smaller than or equal to
the corresponding entry of B. We write A < B if A 6 B and A 6= B hold.

Let A be any f -tuple of non-negative integers, and write Ai for the i-th entry of A. We
define

mA :=
∏
i∈I

`Ai
i .

Torsion and Kummer extensions: Let K be a number field. If n is a positive integer,
the n-th cyclotomic extension of K will be denoted by K(n−11). If G is a finitely
generated subgroup of K× we consider the Kummer extension K(n−1G), which is the
smallest extension of K over which all n-th roots of G (namely all algebraic numbers
x such that xn ∈ G) are defined. When we are interested in powers of some fixed
prime number `, we use the following compact notation:

K(m,n) := K(`−m1, `−nG) .

The union of these fields is usually denoted by K(`−∞G). We will work with some
positive square-free number m > 1 and then consider K(m−∞G) i.e. the compositum
of the fields K(`−∞G) for ` varying among the prime divisors of m.

Lemma 2. Let K ′/K be a finite Galois extension of number fields. Let S (resp. S ′)
be a set of primes of K (resp. K ′) admitting a Dirichlet density. If S consists only of
primes splitting completely in K ′, and if S ′ is the set of primes of K ′ lying above the
primes in S, then we have densK(S) = [K ′ : K]−1 · densK′(S ′).

Proof. This fact is well known, see e.g. [7, Proposition 1] for a proof. �
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3. THE DENSITY AS AN INFINITE SUM

Theorem 3. Let K be a number field, and fix some non-trivial, finitely generated
and torsion-free subgroup G of K×. Let L be a finite Galois extension of K, and
fix some conjugacy-stable subset c of Gal(L/K). Let m be the product of f distinct
prime numbers. The set of primes p of K satisfying FrobL/K(p) ⊆ c and such that
ord(G mod p) is coprime to m admits a natural density, which is given by

(3) densK(G, c,m) =
∑
A

densK(G, c,m,A)

whereA varies over the f -tuples of non-negative integers and where densK(G, c,m,A)
is the natural density of the set of primes p of K that split completely in K(m−AG),
do not split completely in K(m−B1) for any B > A, and satisfy FrobL/K(p) ⊆ c.

Proof. Up to excluding finitely many primes ofK, we may suppose them to be unrami-
fied in L and in K(m−∞G). The natural density densK(G, c,m,A) is well-defined by
the Chebotarev Density Theorem. The set of primes considered for densK(G, c,m) is
the disjoint union over A of those considered for densK(G, c,m,A), see [7, Theorem
9]. The natural density densK(G, c,m) then exists because the tail of the sum is con-
tained in the set of primes splitting completely in K(m−nG) for some n > 1, and this
set has a natural density going to zero for n going to infinity. �

Proof of Theorem 1. By Theorem 3 we only need evaluating densK(G, c, n) i.e. con-
sider the set of primes ofK that split completely inK(n, n), do not split inK(n+1, n)
and satisfy the condition on the Frobenius symbol. We first count the primes p of K
whose Frobenius symbol is in c and split completely in K(n, n) and then remove
those whose Frobenius symbol is in c and split completely in K(n + 1, n). Let
N ∈ {n, n + 1}. By the Chebotarev Density Theorem, we only have to evaluate
the relative size of the conjugacy-stable subset of Gal(L(N, n)/K) consisting of those
elements that map to c in Gal(L/K) and map to the identity on K(N, n). The fields
L and K(N, n) are linearly disjoint over their intersection and their compositum is
L(N, n). Up to considering a factor [L(N, n) : L]−1 it is then equivalent to compute
the relative size of the conjugacy class in Gal(L/K) consisting of those elements in
c that are the identity on L ∩ K(N, n). The latter is c(N, n)/[L : K] and we con-
clude. �

4. GENERAL REMARKS

We keep the notation of Theorem 3 and investigate densK(G, c,m). Recall that we
write densK(G,m) for the density analogous to densK(G, c,m) where we neglect the
condition on the Frobenius symbol.

Lemma 4. The following assertions hold:
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(a): We may replace the field L by L′ and c by c′, where L′/L is any finite Galois
extension and c′ is the preimage of c in Gal(L′/K) because we have

densK(G, c,m) = densK(G, c
′,m) .

(b): We may partition c into sets which are the union of conjugacy classes and
add together the densities calculated with respect to each element in the parti-
tion.

(c): If two conjugacy-stable subsets c and c′ give a partition of Gal(L/K) then
we may compute densK(G, c,m) from densK(G, c

′,m).
(d): We may reduce w.l.o.g. to the following special case: for every Galois subex-

tension F/K of L/K either all elements of c are the identity on F , or none is
(which possibility applies depends on F ).

Proof. (a) The Frobenius symbol w.r.t L/K lies in c if and only if the Frobenius sym-
bol w.r.t L′/K lies in c′. (b) Obvious. (c) We have

densK(G, c,m) = densK(G,m)− densK(G, c
′,m)

where densK(G,m) is the density without considering the Frobenius condition, which
can be explicitly computed by the results in [7]. (d) The kernel of the quotient map
Gal(L/K) → Gal(F/K) and its complement induce a partition on c, and we may
apply (b). Since L/K has only finitely many Galois subextensions, we may repeat this
procedure and get the assertion for every F . �

Remark 5. We may always reduce to the case L ⊂ K(m−∞G) by combining Lemma
4(b) with the following result.

Proposition 6. Let L′ = L∩K(m−∞G) and let c′ be the projection of c in Gal(L′/K).

(a): If each element in c′ has the same amount of preimages in c, then we have

(4) densK(G, c,m) =
#c

#c′ · [L : L′]
· densK(G, c′,m) .

In particular, if c is the inverse image of c′ in Gal(L/K), then we have

(5) densK(G, c,m) = densK(G, c
′,m) .

(b): We may partition c into conjugacy classes for which part (a) applies, and
whose images in Gal(L′/K) give a partition of c′.

Proof. (a) Call c′′ ⊇ c the inverse image of c′ in Gal(L/K). By Lemma 4(a) we have
to prove

densK(G, c,m) =
#c

#c′′
· densK(G, c′′,m) .
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By Theorem 3 it then suffices to fix any f -tuple A of nonnegative integers and show
that

densK(G, c,m,A) =
#c

#c′′
· densK(G, c′′,m,A)

holds. Whether a prime of K has to be counted or not for these two densities only de-
pends on its Frobenius class in the extension L(m−A+1G)/K, therefore we may apply
the Chebotarev Density Theorem to this finite Galois extension. By the assumption on
c′, the sizes of the conjugacy-stable sets corresponding to the two densities have ratio
#c/#c′′, and we conclude. (b) It suffices to remark that two elements of Gal(L/K)
having the same restriction to L′ are mapped under conjugation to two elements with
the same property. �

The following corollary deals with the generic case, in which the extensions L and
K(m−∞G) are linearly disjoint. The condition on the Frobenius symbol provides the
term #c

[L:K]
and the condition on the order gives the remaining term (the two conditions

are here independent).

Corollary 7. If L ∩K(m−∞G) = K, then we have

(6) densK(G, c,m) =
#c

[L : K]
· densK(G,m) .

Proof. This is Proposition 6(a) where we set L′ = K. �

Lemma 8. We may reduce w.l.o.g. to the special case K = K(m−11) (because if ` is
a prime divisor of m we may either recover densK(G, c,m) from the analogue density
computed over K(`−11) or we may replace m by m

`
). In particular, if ` varies over the

prime divisors ofm, we may reduce w.l.o.g. to the case where the extensionsK(`−∞G)
are linearly disjoint over K.

Proof. By Lemma 4(a) we may suppose that L contains K(m−11). By Lemma 4(d),
for each prime divisor ` of m we may suppose that either c ⊆ Gal(L/K(`−11)) or that
c ∩Gal(L/K(`−11)) = ∅. In the first case we have

densK(G, c,m) = [K(`−11) : K]−1 · densK(`−11)(G, c,m)

by Lemma 2. In the second case the coprimality condition w.r.t. ` is trivial (being
a consequence of the condition on the Frobenius symbol) so we may replace m by
m
`

. For the second assertion notice that the Galois group of K(`−∞G) over K is a
pro-`-group if K = K(m−11). �

5. EXAMPLES AND SPECIAL CASES

Proposition 9 (Intermediate Galois groups; the identity). Suppose that c = Gal(L/K ′)
holds for some intermediate extension K ⊆ K ′ ⊆ L which is Galois over K. Then we
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have

(7) densK(G, c,m) =
1

[K ′ : K]
· densK′(G,m) ,

In particular, we have:

(8) densK(G, {idL},m) =
1

[L : K]
· densL(G,m) .

Proof. We are interested in the primes p ofK that split completely inK ′ and for which
the order of (G mod p) is coprime to m. This amounts to counting the primes q of K ′

such that the order of (G mod q) is coprime to m. Finally, we can apply Lemma 2.
The second assertion is the special case K ′ = L. �

Remark 10 (Abelian extensions). If the extension L/K is abelian, then by Lemma
4(b) we may suppose that c consists of one element. More generally, we may consider
c = {σ} for any σ in the center of Gal(L/K). By Proposition 9 we may suppose that
σ is not the identity.

Remark 11 (Quadratic extensions). If L/K is a quadratic extension, there are three
possibilities for c:

(1) If c = Gal(L/K), then we have densK(G, c,m) = densK(G,m).

(2) If c = {idL}, Proposition 9 gives densK(G, c,m) = 1
2
densL(G,m).

(3) If c = Gal(L/K) \ {idL}, then Lemma 4(c) and the previous assertions give

densK(G, c,m) = densK(G,m)− 1

2
densL(G,m) .

Remark 12 (Cyclotomic extensions). If L/K is a cyclotomic extension, i.e. if L =
K(n−11) for some n > 1, then in particular we have an abelian Galois extension.
We may then suppose by Lemma 4(b) and Proposition 9 that c = {σ} where σ is
not the identity: if ζn is a primitive n-th root of unity, we have σ(ζn) = ζsn for some
integer 1 6 s < n coprime to n. Thus the condition on the Frobenius symbol means
considering the primes of K lying above the prime numbers congruent to s modulo n.

Proposition 13 (Trivial coprimality condition). Let ` vary over the prime divisors of
m. If, for every `, no element of c is the identity on L ∩K(`−11), then we have:

(9) densK(G, c,m) =
#c

[L : K]
.

Proof. The primes p of K satisfying FrobL/K(p) ⊆ c are such that ` does not divide
the order of the multiplicative group of the residue field at p. In particular, the order
of (G mod p) is coprime to `. The assertion is then a consequence of the Chebotarev
Density Theorem. �
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We now investigate the formula of Theorem 1 by choosing the fieldL and the conjugacy-
stable set c in different ways with respect to the involved cyclotomic/Kummer exten-
sions. Remark that the summands of (1) are non-negative.

Example 14. Let ` be a prime number. Taking L = K(`−t1) and c = {idL} for some
integer t > 1 gives a density D(t) := densK(G, c, `) which is non-increasing with t,
and that eventually is decreasing with t. We can write

(10) D(t) =
∞∑
n=t

( 1

[L(n, n) : K]
− 1

[L(n+ 1, n) : K]

)
.

Set ` = 3. Let us fix K such that K ∩Q(3−∞1) = Q, and choose G of positive rank r
such that K(3−∞G) has maximal degree over K(3−∞1). Notice that this choice of K
and G corresponds to the generic case. We then have

D(t) =
∞∑
n=t

1

2 · 3(n−1)+nr
− 1

2 · 3n+nr
=
∞∑
n=t

3−n(r+1) =
1

3(t−1)(r+1)(3r+1 − 1)
.

Clearly we could have done similar calculations for a different choice of `.

Example 15. Let ` be a prime number, and consider L = K(`−t1) for some t > 1.
Since the Galois extension L/K is abelian (and because of the previous example) we
may fix without loss of generality some integer 0 6 s 6 t − 1 and consider c = {σ},
where σ fixes all `s-th roots of unity and does not fix the primitive `s+1-th roots of
unity. We write D(t, s) := densK(G, c, `). The only contribution to the density in (1)
is the summand n = s. In the generic case, for G of rank r we obtain

(11) D(t, s) =
1

[L(s, s) : K]
=

1

[K(`−t1) : K] · `rs
.

For ` = 3, K = Q and s = t− 1 the formula gives the density 1
2
· 3−(r+1)s.

6. ON THE COMPUTABILITY OF THE DENSITY

We keep the notation of Theorem 3 and investigate the computability and the rational-
ity of the density densK(G, c,m). We write densK(G,m) if we neglect the condition
on the Frobenius symbol.

• By Remark 5 we may suppose L ⊆ K(m−∞G).

•We assume w.l.o.g. the uniformity on the subfields provided by Lemma 4(d).

• By Lemma 8 we may suppose that K = K(m−11) and hence that for ` varying in
the prime divisors of m the extensions K(`−∞G) are linearly disjoint over K.
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Definition (free primes, bounded primes): Let us fix a conjugacy-stable subset of
the Galois group Gal(L/K), and some square-free integer m > 2. We call a prime
divisor ` of m free if all elements of c are the identity on L ∩K(`−∞G), and bounded
otherwise. We write m = mB ·mF where mB is the product of the bounded primes
and mF the product of the free primes. By definition, there is some positive integer n0

(which we call the bound) such that for all bounded primes ` all elements of c are not
the identity on L ∩K(`−n0G).

• By Lemma 2 for each free prime ` we may extend the base field to L∩K(`−∞G) i.e.
suppose that K = L∩K(`−∞G). Then the free primes do not appear in the Frobenius
symbol condition.

From Theorem 3 we know

(12) densK(G, c,m) =
∑
A

densK(G, c,m,A) .

We write A = (X, Y ) by sorting the indexes for the bounded primes and for the free
primes respectively.

• We may suppose A 6= Y because if A = Y then we have densK(G, c,m) =
densK(G,m) and the latter density is rational and computable by the results in [2, 7].

•We may suppose A 6= X because if A = X then the density reduces to a finite sum
of computable rational numbers. Indeed, we have densK(G, c,m,A) = 0 if A 6 n0

does not hold and hence (12) becomes

densK(G, c,m) =
∑
A6n0

densK(G, c,m,A) .

•We may then suppose that the decomposition A = (X, Y ) is non-trivial.

As an aside remark, notice that by [7, Corollary 12] the density densK(G,mF ) is the
product of densK(G, `) where ` varies over the prime divisors of mF .

Theorem 16. With the above restrictions (all of which were made without loss of gen-
erality) we can write

(13) densK(G, c,m) =
( ∑

X6n0

densK(G, c,mB, X)
)
· densK(G,mF ) .
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Proof. Consider the notation introduced in this section. If A = (X, Y ) and X 6 n0

does not hold, then we have densK(G, c,m,A) = 0. Thus (12) becomes

(14) densK(G, c,m) =
∑
X6n0

∑
Y

densK(G, c,m, (X, Y )) .

Fix A = (X, Y ) and work in F = L(m−A+1G), which is the compositum of the
extensions F1 = L(m

−(X+1)
B G) and F2 = K(m

−(Y+1)
F G). By the restrictions that we

made, the fields F1 and F2 are linearly disjoint over K.

The density densK(G, c,m, (X, Y )) can be computed by the Chebotarev Density The-
orem because it corresponds to some conjugacy-stable subset cA of Gal(F/K). We
can write cA = cA,X × cA,Y by identifying Gal(F/K) and Gal(F1/K)×Gal(F2/K).

Considering cA,Y in Gal(F2/K) gives densK(G,mF , Y ) because by our restrictions
the original condition on the Frobenius symbol does not affect the free primes. Con-
sidering cA,X in Gal(F1/K) gives densK(G, c,mB, X). We then deduce

densK(G, c,m) =
∑
X6n0

densK(G, c,mB, X) ·
∑
Y

densK(G,mF , Y ) ,

which gives the statement. �

We also have the following result:

Theorem 17. The density densK(G, c,m) is a computable rational number.

Proof. The finite sum in (13) is computable and gives a rational number because each
summand has these properties. The density densK(G,mF ) is an explicitly comput-
able rational number by the results in [2, 7] because there is no Frobenius condition
involved in the density. �

Theorem 18. Let m > 1 be a square-free integer. Consider the set of primes p of K
such that the multiplicative order of (G mod p) has some prescribedm-adic valuation
and such that p has some prescribed Frobenius symbol in L/K. The natural density of
this set is well-defined, and it is a computable rational number.

Proof. We have already proven the theorem for the special case where the m-adic
valuation is the tuple 0 because that means requiring the order of (G mod p) to be
coprime to m. If V is some m-adic valuation, then we can apply the statement for the
above known case to mVG and obtain that the multiplicative order of (G mod p) has
m-adic valuation at most V . We may then conclude with the help of the inclusion-
exclusion principle. �
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