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Abstract

In the field of fagade engineering, structural silicone sealants have been used in adhesively
bonded connections since the 1960s. The low strength and stiffness of silicone rubber com-
pared to other types of adhesives are compensated by the excellent adhesion properties and
the good resistance against ageing and environmental influences, like UV radiation. Silicone
sealants show a pronounced nonlinear material behaviour. The applicable design concepts in
civil engineering propose simplified design equations, which are based on the assumption of
a linear material law. Due to the current state of knowledge and to compensate the simplified
model assumptions in the design concept, high reduction factors on the material strength
and many restrictions on applications are defined. In order to overcome these drawbacks,
the stress state within the sealant is increasingly described using the Finite Element Method.
Considering the results of these analysis, the assessment of both the complex stress states
with a suitable failure criterion and the influence of stress singularities on the failure behaviour
constitute inevitable questions.

The present work addresses these two questions. In the first step, the strain magnitude
has been determined as a suitable failure criterion for the defect-free bulk material of the
considered Dow Corning® 993 structural silicone sealant, subjected to a quasi-static loading.
The failure criterion has been calibrated using the results of uniaxial tension as well as circular
shear tests and validated with the results of compression tests. The strain magnitude is
a strain-based failure criterion, which can be seen as a measure for the distortion of the
molecular chains.

In a second step, the stress distribution of the single-lap shear joint has been investigated
in detail. For the assessment of the singular stresses and strains at the edge area of the
interface between the adhesive and the substrate, referred to as two-material wedge, the
so-called coupled stress and energy criterion, a concept of Finite Fracture Mechanics, was
extended to nonlinear elastic material behaviour. Based on results of conduced simple shear
tests on small bonded connections with varying adhesive thicknesses and overlap lengths,
the coupled criterion was used to predict the crack initiation loads and a good agreement
with the experimentally recorded values was obtained. Knowing the strength and the critical
energy release rate of the material, the crack initiation load and the corresponding crack
length are determined in the coupled criterion by solving an optimisation problem based on a
Finite Element Analysis. The stress partial criterion has been modified to consider the strain
magnitude as a failure criterion. In order to analyse the energy partial criterion, the critical
energy release rate of Dow Corning® 993 structural silicone sealant has been determined in
Double Cantilever Beam tests using the evaluation method based on the J-integral approach.
Furthermore, concepts of the Theory of Critical Distances were used to determine the failure
loads of the small scale tests. Unlike as for the notched circular shear tests and the tension
tests on small scale bonded connections, good predictions were found in the Finite Element
Analysis for the simple shear specimens, when a constant element size and formulation at
the vicinity of the two-material wedge were used. Similar results were obtained with the point
method and the control volume approach. These findings indicate that the characteristic
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material length for silicone rubber is not constant.

Keywords: Silicone, adhesively bonded connections, experimental investigations, Finite
Element Analysis, failure criterion of bulk material, critical energy release rate, Finite Fracture
Mechanics, Theory of Critical Distances.



Kurzfassung

Im Bereich Fassadenbau werden Silikone bereits seit den 1960er Jahren in geklebten
lastabtragenden Verbindungen eingesetzt. Die im Vergleich zu anderen Strukturklebstoffen
geringe Steifigkeit und Festigkeit werden durch die hervorragende Hafteigenschaften sowie
die gute Alterungs- und Witterungsbestandigkeit ausgeglichen. Silikone zeigen ein stark
nichtlineares Materialverhalten. Das anzuwendende Bemessungskonzept im Bauwesen
schlagt vereinfachte Bemessungsformeln vor, die auf der Annahme eines linear elastischen
Materialverhaltens beruhen. Aufgrund des aktuellen Wissensstands und zur Kompensa-
tion der vereinfachten Modellannahmen bei der Bemessung werden sehr hohe Abmin-
derungsfaktoren auf der Materialfestigkeit sowie Einschrankungen hinsichtlich der Nutzung
vorgeschrieben. Um diese Nachteile zu Gberwinden wird die Beanspruchung des Silikons
zunehmend mit der Finite Elemente Methode ermittelt. Die Bewertung sowohl der komplexen
Spannungszustande mittels eines geeigneten Versagenskriteriums als auch der Einfluss von
Singularitaten auf das Versagensverhalten stellen hinsichtlich der Ergebnisse einer solchen
Berechnung unausweichliche Fragestellungen dar.

Die vorliegende Arbeit behandelt diese beiden Fragen. In einem ersten Schritt wurde der
Dehnungsbetrag als geeignetes Versagenskriterium fiir das defektfreie Grundmaterial des
Zweikomponentensilikonklebstoffs Dow Corning® 993 unter quasi statischen Belastungen
ermittelt. Das Versagenskriterium wurde anhand der Ergebnisse von uniaxialen Zug- sowie
Kreisschubversuchen kalibriert und mit den Ergebnissen von Druckversuchen validiert. Der
Dehnungsbetrag ist ein dehnungsbasiertes Versagenskriterium, welches als ein MaB fir die
Verzerrung der Molekulketten gesehen werden kann.

In einem zweiten Schritt wurde die Spannungsverteilung in der einschnittig Gberlappten
schubbeanspruchten Klebeverbindung detailliert untersucht. Zur Bewertung der singularen
Spannungen und Dehnungen im Eckbereich der Grenzschicht zwischen Fligeteil und Kleb-
stoff, der sogenannten Bimaterialkerbe, wurde das gekoppelte Spannungs- und Energie-
kriterium, eine Methode der Finiten Bruchmechanik, auf nichtlinear elastisches Material-
verhalten erweitert. Auf der Grundlage der Ergebnisse von durchgefihrten Schubversuchen
an kleinen Bauteilproben mit unterschiedlichen Klebschichtdicken und Uberlappungslangen
wurde die Rissinitiierungslast mithilfe des gekoppelten Kriteriums ermittelt und eine gute
Ubereinstimmung mit den experimentellen Daten erzielt. Mit Kenntnis der Festigkeit und
der kritischen Energiefreisetzungsrate des Materials werden im Rahmen des gekoppelten
Kriteriums auf Grundlage von Finite Elemente Berechnungen in einem Optimierungsproblem
sowohl die Rissinitiierungslast als auch die entsprechende Risslange ermittelt. Das Span-
nungsteilkriterium wurde dabei auf ein dehnungsbasiertes Kriterium, den Dehnungsbetrag,
umformuliert. Zur Anwendung des Energiekriteriums wurden Double Cantilever Beam Ver-
suche am Dow Corning® 993 durchgefiihrt und die kritische Energiefreisetzungsrate mit der
J-Integral Methode ausgewertet. Darliber hinaus wurden Methoden der Theorie der kritischen
Distanzen zur Ermittlung der Rissinitiierungslast bei den Kleinteilversuchen herangezogen.
Anders als bei den gekerbten kreisférmigen Schubproben und den Zugproben an geklebten
Verbindungen konnte eine gute Ubereinstimmung mit den experimentellen Ergebnissen
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bei den Schubversuchen festgestellt werden, wenn in der Finite Elemente Simulation eine
konstante ElementgrdBe und Formulierung gewahlt wurden. Ahnliche Ergebnisse wurden
mit der Punktmethode und dem Ansatz eines Kontrollvolumens erzielt. Die Untersuchungen
zeigen, dass der charakteristische Langenparameter keine Materialkonstante ist.

Schlisselworter: Silikon, geklebte Verbindungen, experimentelle Untersuchungen, Fi-
nite Element Methode, Versagenskriterium des defektfreien Grundmaterials, kritische En-
ergiefreisetzungsrate, Finite Bruchmechanik, Theorie der kritischen Distanzen.
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Version abrégée

Dans le domaine de la construction de fagades, des silicones ont déja été utilisés comme
matériau de base pour la réalisation d’assemblages collés depuis les années 1960. La
résistance et la rigidité du silicone sont relativement faibles comparées a d’autres types
d’adhésifs, ce gap de performances étant compensé par une excellente adhésion et une
bonne résistance au vieillissement et aux impacts environnementaux. Le comportement
mécanique du silicone est fortement non linéaire. Les reglements de dimensionnement
en vigueur dans le domaine du génie civil proposent des équations simplifiées, qui sont
basées sur I'hypothése d’'un comportement linéaire du silicone. Du fait de I'état de I'art actuel,
soit la faible capacité a prédire de facon optimale le comportement de ce matériau et pour
compenser les hypothéses simplifiées qui sont a la base du concept de dimensionnement,
des facteurs de réduction élevés sur la résistance du silicone et des restrictions concernant
son utilisation sont prescrites. Afin de contourner ces défauts, I'étude de la distribution des
contraintes dans le silicone est de plus en plus faite par la méthode des éléments finis.
Concernant les résultats des simulations numériques, I'évaluation de I'état des contraintes
a I'aide d’un critére de rupture approprié et I'analyse de l'influence des singularités sur le
comportement de rupture constituent des questions incontournables.

Le présent travail traite ces deux questions. Dans une premiére étape, 'amplitude de la
déformation a été identifiée comme étant un critére de rupture approprié pour la matiére
brut et exempt de défauts du silicone structurel Dow Corning® 993 soumis a des charges
statiques. Le critere de rupture a été calibré avec les résultats d’essais sur des échantillons
en traction uniaxiale, ainsi que sur des échantillons circulaires en cisaillement et validé a
I'aide des résultats sur des essais de compression sur des échantillons. Lamplitude de la
déformation est un critére de rupture basé sur la déformation, cette derniere étant considérée
comme une mesure de la distorsion des chaines polymeéres.

Dans une deuxiéme étape, la distribution des contraintes dans un joint de recouvrement
en cisaillement a été analysée en détail. Pour I'évaluation des contraintes et des défor-
mations présentant un comportement singulier au coin libre de I'interface entre adhésif et
adhérent, appelé «entaille bi-matiere», le critére couplé, concept de la méthode connue sous
la désignation anglo-saxonne «Finite Fracture Mechanics», a été étendu au comportement
hyperélastique. Sur la base de tests de cisaillement sur de petits assemblages collés avec
différentes épaisseurs d’adhésif et longueurs de chevauchement, le critére couplé a été
utilisé pour prédire la charge a I'apparition de fissure et un bon accord avec les valeurs
enregistrées lors des tests a été trouvé. Connaissant la résistance et le taux critique de
restitution d’énergie de la matiere, la charge a I'apparition de fissure et la longueur correspon-
dante de la fissure initiée sont déterminées avec le critére couplé en résolvant un probleme
d’'optimisation basé sur une analyse des éléments finis. Le critére partiel des contraintes a
été modifié pour considérer I'amplitude de la déformation comme un critére de rupture. Afin
d’analyser le critére partiel énergétique, le taux critique de restitution d’énergie du silicone
structurel Dow Corning® 993 a été déterminée par les essais dits «Double Cantilever Beam
test» en utilisant la méthode d’évaluation basée sur I'approche du J-intégral. En outre, des
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concepts de la théorie des distances critiques ont été utilisés pour déterminer les charges
a I'apparition des fissures pour des essais a petite échelle. Contrairement aux essais sur
des échantillons circulaires entaillés en cisaillement et aux essais de tension sur les joints
adhésifs, de bonnes prédictions ont été trouvées pour les spécimens de cisaillement, lorsque
la taille et la formulation des éléments utilisées dans I'analyse par éléments finis ont été
choisies de fagon constante a proximité de la singularité. Des résultats similaires ont été
obtenus avec la méthode ponctuelle et 'approche du volume de contrble. Ces résultats
indiquent que la longueur caractéristique du silicone n’est pas constante.

Mots clés: Silicone, connections collées, études expérimentales, éléments finis, critere
de rupture, taux critique de restitution d’énergie, «Finite Fracture Mechanics», théorie des
distances critiques.



Kuerzfaassung

Am Beraich Fassadenbau gétt Silikon schonns séit den 1960er Joren an geklieften laaschtof-
droenden Verbindungen agesaat. Déi am Verglaich zu aneren Kollen geréng Steifegkeet an
Festegkeet ginn duerch déi exzellent Adhasiounseegeschaften souwéi déi gudd Alterungs-
an Witterungsbestandegkeet ausgeglach. Silikon weist e staark netlineart Materialverhalen
op. Dat z’applizéiernd Bemiessungskonzept am Bauwiesen proposeéiert vereinfacht Bemiess-
sungsformeln, déi e linear elastescht Materialverhalen unhuelen. Opgrond vum aktuellen
Wéssensstand an fir déi vereinfacht Hypothesen vum Bemiessungskonzept ze kompen-
séieren ginn héich Ofminderungsfaktoren op der Materialfestegkeet an Aschrankungen hisi-
ichtlech der Notzung virgeschriwwen. Fir déi Nodeeler z'iwwerwannen gétt d’'Beusprochung
vum Silikon émmer méi heefeg mat der Finite Elemente Method erméttelt. D’Bewaertung
souwuel vun de komplexen Spannungszoustdnn mat engem géeegenten Versoenskritar
wei och den Afloss vun Singularitéiten op d’Versoensverhalen stellen hisiichtlech vun den
Resultater vun esou enger Berechnung onauswaichlech Froen duer.

Déi virleiend Aarbecht behandelt dés zwou Froen. An engem éischten Schrétt gouf den
Dehnungsbetraag als e géeegenten Versoenskritar fir dat defektfrait Grondmaterial vum
Zweekomponentensilikon Dow Corning® 993 énner quasi stateschen Belaaschtungen ermét-
telt. De Versoenskritar gouf op der Basis vun Versich un eenaxeschen Zug- an kreesférmegen
Schubprouwen kalibréiert an mat den Resultater vun Drockversich validéiert. Den Dehnungs-
betraag ass en dehnungsbaséierte Versoenskritér, dat als eng Mooss fir d’Verzerrung vun
den Molekillketten kann gesinn ginn.

An engem zweete Schrétt gouf d’Spannungsverdeelung an enger eenschnétteg iwwerlap-
peten schubbeusprochten geklieften Verbindung am Detail énnersicht. Fir d’Evaluatioun
vun den singuldren Spannungen an Dehnungen um fraien Enn vun der Grenzflach téschent
dem Flgedeel an dem Koll, dem sougenannten Bimaterialkrack, gouf den gekoppelten
Spannungs- an Energiekritdr, e Konzept aus der Finiten Brochmechanik, erfollegraich op
netlinear elastescht Material erweidert. Op der Grondlag vun duerchgefouerten Schub-
versich u kléngen Baudeelprouwen mat énnerschiddlechen Schichtdéckten vum Koll an
énnerschiddlechen Iwwerlappungsléangten gouf d’Réssinitiéierungslaascht mat dem gekop-
pelten Kritar erméttelt an en gudden Accord mat den experimentellen Miessdonnéeén erzielt.
Mat der Kenntnes vun der Festegkeet an der kritescher Energiefraisetzungsrat ginn am
Kader vum gekoppelten Kritar op Basis vun Finite Elemente Berechnungen an engem Opti-
miséierungsproblem souwuel d’'Réssinitiéierunglaascht wéi och d’Léngt vum entspriechenden
Réss erméttelt. De Spannungsdeelkritar gouf dobai an en dehnungsbaséierten Kritar émfor-
muléiert. Fir den Energiekritdr kénnen z’applizéieren, goufen Double Cantilever Beam Versich
um Dow Corning® 993 duerchgefouert an d’kritesch Energiefraisetzungsrat mat der J-integral
Method ausgewdert. Doriwwer eraus goufen Methoden vun der Theorie vun den kriteschen
Distanzen fir d’Erméttlung vun der Réssinitiéierungslaascht bei den klengen Baudeelprouwen
applizéiert. Anescht wéi bei den kreesférmegen Schubprouwen mat engem Krack an den
Zugversich un den geklieften Prouven konnt e gudden Accord mat den experimentellen
Resultater bei den Schubversich festgestallt ginn, wann an der Finite Element Simulatioun

Xi



Kuerzfaassung

eng konstant Elementgréisst an eng konstant Elementformuléierung gewielt goufen. Ahnlech
Resultater goufen mat der Punktmethod an dem Usaatz vun engem Kontrollvolumen erzilt.
D’Enquéte huet gewisen, dat den charakteristeschen Langtenparamter fir de Silikon keng
Materialkonstant ass.

Schlésselwieder: Silikon, geklieft Verbindungen, experimentell Enquéten, Finite Element
Method, Versoenskritdr vum defektfrait Grondmaterial, kritesch Energiefraisetzungsrat, Finite
Brochmechanik, Theorie vun den kritischen Distanzen.

Xii



Contents

List of Figures xvii
List of Tables XXi
Nomenclature XXiii
1 Introduction 1
1.1 Motivation . . . . . . . 1
1.2 Objectives . . . . . . . . e 2
1.3 Contents and structure of thethesis . . . . . . ... ... ... ... ..... 3

2 State of the art 5
3 Fundamentals 11
3.1 Material properties of silicone . . . . . . . . .. .. .. ... . L. 11
3.2 Structural Sealant Glazing Applications . . . . ... ... ... ... ... .. 14
3.2.1 Glassanditsconnections . . . . . ... ... .. ... ......... 14

3.2.2 |Insulationglassunits . . . .. .. .. L L Lo 14

3.2.3 Structural applications of siliconesealants . . . . . ... ........ 16

3.24 Currentresearchwork . . . . . . . . . ... ... ... ... 17

3.2.5 Normative background - ETAG 002 and ASTM C1401 . . . ... . .. 19

3.3 Modelling of siliconesealants . . . . ... ... ... ... ........... 23
3.3.1 Basics of continuum mechanics . . . .. ... ... ... ....... 23

3.3.2 Definition of true and engineering strains . . . . . ... ... ... .. 29

3.3.3 Selected material law and chosen assumptions . . . . . . .. ... .. 31

3.3.4 Finite ElementMethod . . . . . .. ... ... .. ... . 32

3.3.5 Singularities in a Finite Element Analysis . . . . . ... ... ... .. 34

3.4 Failurecriteria . . . . . . . . . 35
3.4.1 Objectives of failure criteriaand concepts . . . . . ... ... ... .. 35

3.4.2 Typesoffracture . . . . . . . . . . . . ... ... 36

3.4.3 Stress-basedcriteria . . . . . .. .. L Lo 37

3.4.4 Strain-basedcriteria . . . . .. ... ... 38

3.4.5 Energy-basedcriteria . . . . ... ... L 38

3.5 Considerations on the stress field in a single-lap shear joint . . . . .. .. .. 39
3.5.1 Analytical models - Volkersen and Allman solution . . . .. ... ... 39

3.5.2 Stress singularities at single-lap shearjoints . . . . . .. ... ... .. 45

3.5.3 Description of the stress singularity for a two-material wedge . . . . . . 46

3.5.4 Advanced numerical modelling . . . . . . .. .. ... ... 51

3.6 Basicsonfracture mechanics . . . . . . .. .. ... . oL 53
3.6.1 Griffithcriterion . . . . . . . . .. .. .. 53

3.6.2 J-integral . . . . ... 54

3.7 Finite Fracture Mechanics . . . . . . . . . . ... . oL 55
3.7.1 The coupled stress and energy criterion by Leguillon . . . . . . . . .. 55

3.7.2 lllustratingexample . . . . . . . . .. L 57

Xiii



Contents

3.8 Theory of Critical Distances . . . . . . . . . . . .. ... ... ... ...... 59
3.8.1 Point method, line method and imaginary crack method . . .. .. .. 59
3.8.2 Controlvolume approach . . . . . ... ... ... ... ........ 61

3.9 Determination of the critical energy releaserate . . . . . . . . ... ... ... 62
3.9.1 Double CantileverBeamtest . . . ... ... ... ... ... .. ... 62
3.9.2 Method based on linear elastic fracture mechanics . . . . . .. .. .. 62
3.9.3 Method based on nonlinear elastic fracture mechanics . . . . . .. .. 63

4 Experimental investigations and Finite Element simulations 67

4.1 Standard experimental investigations on bulk material . . . . .. .. .. ... 67

411 Uniaxialtensiletests. . . . . . . . . ... ... .. ... ... ..., 67
i Specimens andtestsetup . ... .. ... ... ....... 67
i Testresults . . . .. . .. . .. .. . ... .. 69
iii Numerical simulation . . . .. ... ... .. .. ....... 70
4.1.2 Uniaxial compressiontests . . . . .. .. .. ... ... ... ..., . 71
i Specimens andtestsetup . ... ... ... ... .. .... 72
ii Testresults . . . ... ... . ... ... 75

iii Analytical solution for the strain distribution of a solid under
COMPIeSSION . . . . . o v v et e e e e e 79
iv Numerical simulation . . . .. .. ... ... ......... 81

4.2 Experimental investigations on adhesively bonded connections . . . . . . .. 83

421 Simplesheartests. . . .. . ... ... .. .. ... .. 83
i Specimens and investigated parameters . . . . . . ... ... 83
ii Test setup and measurement equipment. . . . . . . . .. .. 85
iii Testresults . . . ... ... .. .. ... 87
iv Identification of the crack initiationload . . . . ... ... .. 90
v Numerical simulation . . . . ... ... ... .. ....... 92
Vi Investigation of the displacement field at the surface of the
sealant . . . . . ... 93
422 Circularsheartests . . .. .. .. .. .. ... ... .. ... ..., 96
i Specimens andtestsetup . . .. ... ... ... ... ... 97
ii Testresults . . . ... .. .. ... .. 101
iii Numerical simulation . . . .. ... .. ... ......... 103
423 Tensiontests. . . . . . . . . . . ... 105
i Specimens andtestsetup . . ... ... ... ... ... 105
i Testresults . . . ... .. . .. .. ... ... 106
iii Numerical simulation . . . . . ... .. ... .. ....... 107

4.3 Fracture mechanicstests . . . . . . . . .. ..o L o 109

4.3.1 DCB tests on Dow Corning® 993 structural silicone sealant. . . . . . . 109

i Specimens andtestsetup . . ... ... ... ... ... 109

ii Testresults and evaluation . . . .. .. .. .. ... ..... 111

iii Numerical simulation of the DCBtest . ... ... ... ... 115

iv Determination of the critical energy releaserate . . . . . . . . 116

5 Identification of a failure criterion for silicone bulk material 121

5.1 Introduction . . . . . .. 121
5.1.1 Methodology . . . . . . . . . . 121
5.1.2 Preliminary considerations . . . . ... ... ... ... . ... ... 121

5.2 Calibration of a failure criterion . . . . . . . . .. ... ... ... .. ... 123

5.3 Validation of the proposed failure criterion . . . . . . .. . ... ... .. ... 126

Xiv



Contents

5.4 Summary . . ... e 128

6 Failure load discussion of bonded connections 129
6.1 Introduction . . . . . . . . . . .. 129
6.2 Analyticalmodels . . . . . .. .. ... . 130
6.2.1 Failure load prediction according ETAG 002 (2012) . . . . . . . .. .. 130

6.2.2 Failure load prediction according Allman . . . . . . . .. .. ... ... 131

6.3 Finite Fracture Mechanics . . . . . . . . . . . .. ..o 132
6.3.1 Introduction . . . . . . . ... 132

6.3.2 Basic assumptions and numericalmodel . . . . . .. . ... ... ... 132

6.3.3 Results . . . . . . . . . 133

6.3.4 Summaryandoutlook . . . . ... oL o 134

6.4 Theory of Critical Distances . . . . . . . . . ... ... .. ... ... ..... 135
6.4.1 Choosing a constant element size and formulation . . . ... ... .. 135

6.4.2 Controlvolume . . . . . . .. ... L 142

6.4.3 Pointmethod. . . . . . .. .. ... .. 144

6.5 Summary . .. ... 147

7 Conclusions and recommendations 149
7.1 Conclusions . . . . . . . L 149
7.2 Recommendations . . . . .. .. .. . ... .. 151
7.3 Outlook and further researchrequired . . . . . . .. .. .. ... ... .... 152
Bibliography 155
Appendices 165
A Test data 167
A1 Compressiontests. . . . . . . . . . ... 167
A2 Simplesheartests. . . . . . . . . . . 170
A21 Testseries2015 . . . . . . . . . . ... 170

A22 Testseries2016 . . . . . . . . . . . . 173

A3 Circularsheartests . . . . . . . . . . . ... 175

B Details about the test series 177
B.1 Production of the specimens . . . . . .. ... ... ... ... ... ... 177
B.1.1 Preliminaryremarks . . . . . . . .. .. ... o 177

B.1.2 Tensilespecimens . . . . . . . . . . . .. 177

B.1.3 Compression specimens . . . . . . . . . . ... e 178

B.1.4 Simple sheartestspecimens . . . . . . .. .. ... ... ....... 178

B.1.5 Circular sheartest specimens . . . . . .. ... ... ... ...... 179

B.1.6 Tensiletestspecimens . . . ... ... ... ... ... .. ... .. 179

B.1.7 Double Cantilever Beam test specimens . . . . . . .. ... ... ... 180

B.2 Failure of the simple sheartestspecimens . . . . . . .. .. .. .. ...... 181

XV






List of Figures

1.1 Examples of Structural Sealant Glazing systems . . . . ... ... ... ... 1
1.2 Structure ofthethesis . . . . . . . . . . .. .. ... ... L. 3
3.1 Characterisation of the adhesives according to their molecular structure . . . . 11
3.2 Example of a two-sided structural glazing system . . . . .. .. .. ... ... 15
3.3 Example of a small insulationglassunit . . . . . ... ... ... ... .... 15
3.4 I1GU with structural edge bond and adhesive connection to the building . . . . 16
3.5 SSG fagade of arestaurantin Austria . . . .. ... ... .. ... ... 16
3.6 SSG fagade of the Zeppelin University in Friedrichshafen, Germany . . . . . . 17
3.7 Adhesive point fittings using silicone adhesives . . . . . . ... ... ... .. 17
3.8 Steel to glass adhesive connections with complex geometries . . . . . . . .. 18
3.9 Lsshapedconnection . . . . . . . . . ... L 18
3.10 Steel to glass compositebeam . . . . . . . ... ... L L L L. 18
3.11 Differenttypes of SSGS . . . . . . . . . .. Lo 19
3.12 Specimen detailed by the ETAG 002 . . . . . . . .. .. .. ... ... .... 20
3.13 Deformation of a body from the reference in the current configuration . . . . . 24
3.14 Free-body principle on a solid under loads in its deformed configuration . . . . 26
3.15 Difference between true strains and engineering strains . . . . . . .. .. .. 29
3.16 Overview of concepts to assess failure . . . . . . .. ... ... ... ..... 35
3.17 Single lap-shearjoint . . . . . . ... .. ... 39
3.18 Stress distribution along the interface of a single-lap shear joint . . . . . . .. 42
3.19 Boundary conditions for the single-lap shearjoint . . . . . ... .. ... ... 43
3.20 Shear stress distribution and comparison with the Volkersen solution . . . . . 44
3.21 Shear stress distribution for the stresses at the interface of the soft adhesive . 44
3.22 Peel stress distribution for the stresses at the interface of the soft adhesive . . 45
3.28 Singularities in a single-lap shearjoint . . . . . . .. ... ... .. oL 46
3.24 Two-materialwedge . . . . . . . . . . . 47
3.25 Focussed mesh used in the FE model of the single-lap shear joint . . . . . . . 48
3.26 Double logarithmic plot of the stress distribution for the single-lap shear joint

at the vicinity of the singularpoint . . . . . . .. .. .. .. ... ... .. 48
3.27 Numerical model for the mesh study for a single-lap shear joint assuming a

hyperelastic material . . . . . ... .. .. . 49
3.28 Mesh study on the stresses and strains for a single-lap shear joint assuming a

hyperelastic material . . . . . . .. .. ... oo 50
3.29 Crack definition and crack openingmodes . . . . . . . . ... ... ... ... 53
3.30 Definition of a path around a notch for the evaluation of the J-integral . . . . . 54
3.31 Examples illustrating the coupled stress and energy criterion . . . . . . . . .. 56
3.32 Single-lap shear joint under appliedloads . . . . .. ... .. ... ...... 57
3.33 lllustration of the evaluation of the coupled criterion . . . . . . . .. ... ... 58
3.34 Methods from Theory of Critical Distances . . . . . . . .. ... ... ..... 60
3.35 Representation of the ductile failure process by cohesive modelling . . . . . . 62

3.36 Definition of the quantities for the evaluation of the Double Cantilever Beam test 64

XVii



List of Figures

4.1 Uniaxial tensile test specimen . . . . . . . . ... o o o oL 67
4.2 Testsetup and measurementmethod . . . . . . ... ... oL 68
4.3 Average engineering strain rate measured in the uniaxial tensile test . . . . . 69
4.4 Results of the uniaxial tensiontests . . . . .. ... ... ... ... ... .. 70
4.5 Failure pattern of the uniaxial tensile test specimens . . . . . ... ... ... 71
4.6 Numerical model of the uniaxial tensiontest . . . . . . .. .. ... ... ... 71
4.7 Compressiontestspecimen . . . . ... . ... ... ..o 72
4.8 Compressiontestsetup . . . . . . . . . .. L 73
4.9 Measuring the heigth of a compression test specimen . . . . . . . ... ... 74
4.10 Comparison of the slopes at the origin of the engineering stress-strain curves

in tension and compression . . . . . ..o e 75
4.11 Results of the compression test series UC-DC-17-1 . . . . . .. ... ... .. 76
4.12 Engineering compression stress-straincurve . . . . . ... ..o oL 76
4.13 Remaining compression strain . . . . . . . .. ... o L o o L. 77
4.14 Shape of a compression test specimen . . . . . . .. ... oL 78
4.15 Remaining compression strain measured after6 months . . . . . . . . . . .. 78
4.16 Initial and deformed shaped of a cylinder under uniform compression . . . . . 79
4.17 Finite Element model of the compression test specimen . . . . . .. .. ... 81
4.18 Engineering stress-strain curves from FEA for different friction coefficients . . 82
4.19 Plot of the first principal strain calculated using a Finite Element Analysis . . . 82
4.20 Definition of the dimensions of the simple shear specimensused . . .. ... 83
4.21 Boundary conditions of the simple sheartests . . . . . . ... ... ... ... 83
4.22 Production of the specimens for the sheartests . . . . . ... ... ... ... 84
4.23 Test setup of the simple sheartests . . . . ... ... ... ... ....... 85
4.24 3D Digital Image Correlation System used for the simple shear tests . . . . . 86
4.25 Engineering stress-strain curves of the considered test series . . . . . . . .. 87
4.26 Engineering shear stresses and strains at failure . . . . . .. ... ... ... 89
4.27 Typical failure pattern of a simple shear specimen . . . . . .. ... ... ... 89
4.28 Detailed evaluation of the test specimen 100-24-05 . . . . . . .. .. .. ... 90
4.29 Detailed evaluation of the test specimen 50-12-03 . . . . ... ... .. ... 91
4.30 Boundary conditions assumed in the numerical simulation of the simple shear

tests . . . e 92
4.31 Experimentally obtained engineering shear stress-strain curve and numerical

simulation of the 100-6 specimen . . . . . . . . . . . . ... ... ... ... 93
4.32 Region of measured surface displacements usingDIC . . . . . ... ... .. 94
4.33 Plot of the deformation u, . . . . . . . . . . .. . ... .. 94
4.34 Plot of the deformationw, . . . . . .. ... ... ............... 95
4.35 Plot of the deformationw, . . . . . . . . . . . . . .. ... ... ... 96
4.36 Selected specimens for the circular shear tests on bonded connections with

silicone . . . . . L 97
4.37 Specimen used for the circular shear test on a bonded connection with silicone 97
4.38 Components of the specimens of the circular sheartests . . . . ... .. ... 98
4.39 Assembly of a specimenwith2cuts . . .. ... ... . ... ......... 98
4.40 Test setup of the circular sheartests . . . . ... ... ... ... ... .... 99
4.41 Relationship between the measured tangential displacement and the angle of

torsion . . .. 100
4.42 Small section of the adhesive joint . . . . . . ... .. ... oo 100
4.43 Results of the circular sheartests . . . . . ... ... ... ... ....... 101
4.44 Evaluation of the failure loads of the circular sheartests . . . ... ... ... 102
4.45 Typical failure pattern of a circular shear test specimen . . . . . . .. .. ... 102

XViii



List of Figures

4.46 Detailed view on the failure pattern of a circular shear test specimen . . . . . 103
4.47 Behaviour of the faces of the cut in the circular sheartest . . . ... ... .. 103
4.48 Boundary conditions of the numerical simulation of the circular shear test . . . 104
4.49 Comparison of the test results with the Finite Element Analysis . . . . . . .. 104
4.50 Standard H-specimen as detailed by ETAG002 . . . . . . ... ... ..... 105
4.51 Test setup and boundary conditions of the tensile tests on H-specimens . . . . 105
4.52 Results of the ETAG 002 tensiontests . . . . . . .. ... ... ... ..... 106
4.53 Cohesive failure of a ETAG 002 specimen intension . .. ... ... .. ... 107
4.54 Failure initiation of the H-specimens intension . . . . .. .. ... ... ... 107
4.55 Numerical model of the H-specimen under atensileload . . . . . .. ... .. 108
4.56 Comparison of the test results with the Finite Element Analysis . . . . . . .. 108
4.57 Double Cantilever Beam tests on silicone elastomer . . . . .. ... ... .. 109
4.58 Dimensions of the Double Cantilever Beam specimens . . . . . . .. ... .. 109
4.59 Manufacturing process of the Double Cantilever Beam specimens . . . . . . . 110
4.60 Quality of the produced DCB specimens . . . . . . . . .. .. ... ...... 110
4.61 Double Cantilever Beamtestsetup . . . . . . . ... ... . ... ... .... 111
4.62 J-integral plotted against the crack opening displacement for the Double Can-
tileverBeamtests . . . . . . . . .. 112
4.63 Traction-separation law for the Double Cantilever Beamtests . . .. ... .. 113
4.64 Failure process and failure pattern of a specimen . . . . . . . ... ... ... 114
4.65 Typical failure pattern of a DCB specimen . . . . . . . ... ... .. ..... 114
4.66 Finite Element model of the Double Cantilever Beam test on silicone . . . . . 115
4.67 Simulation of the force-displacement behaviour of the DCBtests . . . . . . . . 116
4.68 Extrapolation of the descending branch of the traction-separation law . . . . . 117
5.1 Finite Element mesh for the uniaxial tensile test specimen . . . . . . . .. .. 122
5.2 Finite Element mesh for the circular shear test specimen . . . . . . .. .. .. 122
5.3 Finite Element mesh for the compression test specimen . . . . . ... .. .. 122
5.4 Plot of the strain magnitude for the uniaxial tensile test specimen at the average
failureload . . . . . . . . . . e 123
5.5 Plot of the strain magnitude for the circular shear test specimen at the average
failureload . . . . . . . . . e 124
5.6 Comparison of the results regarding different failure criteria . . . . . . .. .. 125
5.7 Plot of the strain magnitude for the compression test specimen at failure initiation126
5.8 Maximum value of the strain magnitude in the compression test specimen . . 127
5.9 Representation of the strain magnitude as a failure surface in the space of true
principal strains . . . . ... 127

6.1 Results of the failure load prediction using the design concept given in ETAG

002 (2012) . . . . . e 130
6.2 Results of the failure load prediction using the Allman solution . . . . . . . .. 131
6.3 Numerical models of the simple shear test specimen for the coupled criterion . 133
6.4 Results of the failure load prediction using Finite Fracture Mechanics . . . . . 134
6.5 Location of the element’s nodes and integration points . . . . . . .. ... .. 135
6.6 Plot of the strain magnitude in the simple shear specimen . . . . . .. .. .. 136
6.7 Maximum value of the strain magnitude in the simple shear specimen . . . . . 137
6.8 Plot of the strain magnitude in the notched circular shear specimen . . . . . . 137

6.9 Maximum value of the strain magnitude in the notched circular shear specimen138
6.10 Plot of the strain magnitude in the tensile specimen as detailed in ETAG 002 . 139
6.11 Maximum value of the strain magnitude in the tensile specimen . . . . . . .. 139

XiX



List of Figures

XX

6.12 Plot of the strain magnitude in the DCB specimen . . . . . . .. .. ... ... 140
6.13 Maximum value of the strain magnitude in the DCB specimen . . . . . . . .. 140
6.14 Failure load prediction using the Theory of Critical Distances . . . . . . .. .. 141
6.15 Numerical model for the simple shear specimens with a defined control volume 142
6.16 Calibration of the radius of the control volume . . . . . . . ... .. ... ... 143
6.17 Failure load prediction using the control volume approach . . . . ... .. .. 144
6.18 Numerical model for the failure load prediction using the point method . . . . . 145
6.19 Distribution of the strain magnitude in the 50-12 specimen for the failure load
applied . . . .. 145
6.20 Failure load prediction using the pointmethod . . . . . . . ... .. ... ... 146
A.1 Compression test data, series UC-DC-17-1 . . . . . . . ... ... ... ... 167
A.2 Compression test data, specimen UC-DC-17-21 . . . .. ... ... ... .. 168
A.3 Compression test data, specimen UC-DC-17-2.2 . . . .. .. ... ... ... 168
A.4 Compression test data, specimen UC-DC-17-23 . . ... ... ... ... .. 169
A.5 Compression test data, series UC-DC-17-3 . . . . . . . . ... ... ... .. 169
A.6 Simple shear test data, series 100-6,2015 . . . . .. ... ... ... .... 170
A.7 Simple shear test data, series 100-12,2015 . . . . . . .. .. ... ... ... 171
A.8 Simple shear test data, series 100-24,2015 . . . . . . . . .. ... ... ... 171
A.9 Simple shear test data, series 200-12,2015 . . . . . . .. .. ... ... ... 172
A.10 Simple shear test data, series 200-24,2015 . . . . . . . .. ... .. .. ... 172
A.11 Simple shear test data, series 50-12,2016 . . . . . . .. ... ... ... .. 173
A.12 Simple shear test data, series 100-6,2016 . . . . . . .. .. ... ... ... 173
A.13 Simple shear test data, series 100-12,2016 . . . . . . . . .. ... ... ... 174
A.14 Simple shear test data, series 100-24,2016 . . . . . . . . . . .. . ... ... 174
A.15 Circular shear testdata, series T-NC . . . . . . . . . . . . . ... ... .... 175
A.16 Circular shear test data, series T-2C . . . . . . .. . ... . ... ... .... 175



List of Tables

3.1
3.2
3.3
3.4

41
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2

B.1
B.2
B.3

B.4

B.5
B.6
B.7
B.8

Straintensors . . . . . .. 25
Different definitions for stresstensors . . . . . . . ... . ... ... ..... 26
Strain energy potentials for modelling hyperelastic material behaviour . . . . . 29
Elastic constants and dimensions of the single-lap shear joint . . . . .. ... 39
Stresses and strains at failure for the uniaxial tensiletest . . . . . . ... ... 70
Conducted compressiontestsseries . . . . . . . .. .. ... ... .. ..., 73
Investigated parameters, designation and number of specimens . . . . . . .. 84
Stresses and strains at failure of the simple shear testseries . . . . . . .. .. 88
Results of the DCB-12testseries . . . . . . . . . . .. . . ... .. ..... 116
Results of the DCB-6 test series extrapolating the traction-separation law . . . 117
Results of the DCB-12 test series extrapolating the traction-separation law . . 118
Results of the DCB tests using the FEAmethod . . . . . . ... .. ... ... 119
Summary of the parameters determined using the DCBtests. . . . . . . . .. 119
Mesh study on the stresses and strains . . . . . . ... ... .. ....... 123
Comparison of the failure criteria considering the tensile and circular shear

SPECIMENS . . . . .« o o i e e e e e e 125
Details about the production of the tensile specimens . . . . . . ... ... .. 177
Details about the production of the compression test specimens . . . . . . . . 178
Details about the production of the simple shear test specimens - test series

2015 . . e 178
Details about the production of the simple shear test specimens - test series

2016 . . . e 179
Details about the production of the circular shear test specimens . . . . . .. 179
Details about the production of the DCB test specimens - series 2016 . . . . . 180
Details about the production of the DCB test specimens - series 2016-2 . . . . 180
Location of crack initiation for the simple shear and tensile test series . . . . . 181

XXi






Nomenclature

Abbreviations

2D
3D
ASTM
BEM
cf.
CZM
DC
DCB
DIC
DOF
e.g.
ETAG
FDM
FEM
FFM
i.e.
IGU
N/A
PE
PIB
PTFE
SSG
Std. dev.
TCD
TSSA
XFEM

Symbols

Two-dimensional

Three-dimensional

American Society for Testing and Materials
Boundary Element Method

"confer" - compare with

Cohesive Zone Modelling

Dow Corning®

Double Cantilever Beam

Digital Image Correlation

Degree of freedom

"exempli gratia" - example given
European Technical Application Guideline
Finite Difference Method

Finite Element Method

Finite Fracture Mechanics

"id est" - in other words / that is
Insulation glass unit

Not available

Polyethylene

Polyisobutylene

Polytetrafluoroethylene

Structural Sealant Glazing

Standard deviation

Theory of critical distances

Transparent Structural Silicone Adhesive
Extended Finite Element Method

Mathematical operators

det (+)
tr (+)
()"
()"
()

Determinant of a matrix

Trace of a matrix

Transpose of a matrix

Inverse of the transpose of a matrix
Time derivative

Inner scalar product

XXili



Nomenclature

Greek letters

Q;
aMD
BmD

Ye
Ye

Aa
AA
Admax
Atmin

Ecorr
€e
€e,UC
Ee,UT
Ee,x
Eeyy
€e,z
Ee,l
Eij
EM
Eraw
&r,UC
€e,UC
€e,UT
EuT

R

XXiv

Coefficient of Ogden hyperelastic material law

Coefficient of Drass hyperelastic material law

Coefficient of Drass hyperelastic material law

Path

Engineering shear strain

Engineering shear strain rate

Change, difference

Crack length

Crack surface

Upper bound for the crack length

Lower bound for the crack length

Strain offset

Change of height

Change of length of a material line

Differential thermal expansion

Separation

Separation at crack propagation

Starting point for extrapolation of the crack opening displacement
Maximum crack opening displacement

Coefficient of Drass hyperelastic material law

Infinitesimal strain tensor

True or logarithmic strain

First or maximum principal strain (true strain)

Second or mid principal strain (true strain)

Third or minimum principal strain (true strain)

True or logarithmic strain in x-direction

True or logarithmic strain in y-direction

True or logarithmic strain in z-direction

Corrected engineering compression strain

Engineering strain

Engineering strain in compression

Engineering strain in uniaxial tension

Engineering strain in x-direction

Engineering strain in y-direction

Engineering strain in z-direction

Engineering strain longitudinal in uniaxial tension
Components of the true strain tensor

Strain magnitude

Engineering compression strain calculated from the raw test data
Remaining engineering compression strain after unloading
Engineering strain rate in load direction for the compression test
Engineering strain rate in load direction for the uniaxial tension test
Uniaxial tensile strength (true strain)

Relative ordinate

Angle, or ordinate of a polar coordinate system

Angle characterising the two-material-wedge

Rotation of the adherends at the loading point

Order of a singularity



Nomenclature

OAL,y

Principal stretch in i-direction, i = 1,2, 3

Limit extension in Arruda-Boyce hyperelastic material law
Uniaxial tensile stretch in direction of principal stretch
Equivalent uniaxial tensile stretch in direction of principal stretch
Friction coefficient or coefficient of Arruda-Boyce material law
Coefficient of Ogden hyperelastic material law

Poisson ratio

Poisson ratio of the adhesive layer

Poisson ratio of the adherend

Relative ordinate

Potential

Density

Stress tensor

True stress

First or maximum principal stress (true stress)

Second or mid principal stress (true stress)

Third or minimum principal stress (true stress)

Design value of the tensile strength according to ETAG 002 for long term loads
Stresses in overlap direction according to the Allman model
Peel stresses direction according to the Allman model
Tensile strength

Design value of the tensile strength according to ETAG 002
Acting tensile stress according to ETAG 002

Engineering stress

Components of the true stress tensor

Isochoric stress

True stress for Line Method

Mode | strength in the traction-separation law

Von Mises equivalent stress

Stress at a two-material wedge

True stress for Point Method

Uniaxial compression strength (true stress)

Uniaxial tensile strength (true stress)

Shear stress

Design value of the shear strength according to ETAG 002 for long term loads
Shear stresses according to the Allman model

Design value of the shear strength according to ETAG 002
Average shear stress or engineering shear stress

Acting shear stress according to ETAG 002

Shear stress at a two-material wedge

Shear stress according to Volkersen

Stress functions in the Allman model

Angle

Vector field linking reference and current configuration
Coefficient of Drass hyperelastic material law

Coefficient defined for the Allman equation

Coefficient defined for the Volkersen equation

Set

XXV



Nomenclature

Latin letters

a Euler-Almansi strain tensor
a Crack length
A Cross-sectional area
b Left Cauchy-Green tensor
B Body in the current configuration
By Body in its reference configuration
C Right Cauchy-Green tensor
C Compliance
C; Coefficients of Arruda-Boyce hyperelastic material law
C; Coefficients of Dias hyperelastic material laws
Cij Coefficients of polynomial hyperelastic material laws
da Infinitesimal surface element
dC Change in compliance
de Infinitesimal amount of true strain
dl Infinitesimal amount of length change of a material line
ds Infinitesimal element of path
du Deformation of the infinitesimal line element dx
duc Diameter of the compression test specimen
duc,o Initial diameter of the compression test specimen
do Infinitesimal angle
dx Infinitesimal line element
e Silicone thickness
E Green-Lagrange strain tensor
E Young’s modulus
LB, Young’'s modulus of the adhesive layer
€; Unit basis vectors of the current configuration
EZ« Unit basis vectors of the reference configuration
E; Young’'s modulus of the adherend
F Deformation gradient
F Deviatoric part of the deformation gradient
F Force
f Body force
) Function

o Function describing a stress field
Frea Load

Failure load

Energy release rate

Critical energy release rate

Incremental energy release rate
Adhesive’s shear modulus

Weight of a glass pane

Displacement gradient

Free edge stress intensity factor

Silicone bite

Critical free edge stress intensity factor
Free edge stress intensity factors ¢+ = 1..2
Free edge stress intensity factors for a given load
Height of the compression test specimen

§$EEEE§@Q'$Q$
> 5

>
a
Q

XXVi



Nomenclature

huco Initial height of the compression test specimen
Length of the vertical silicone bead

Index

Unit tensor

Given value for the first invariant of the left Cauchy-Green tensor
i invariant, i = 1,2, 3

Index

J-integral or determinate of the deformation gradient
Critical value for the J-integral

Limit extension in Gent material law

Critical energy release rate

Length parameter for the Theory of Critical Distances
Length in the deformed configuration

Initial or undeformed length

Smaller dimension of a rectangular glass pane

adh Adhesive overlap length

Larger dimension of a rectangular glass pane
Material index

Moment

Normal vector

Origin of the current configuration

Origin of the reference configuration

Hydrostatic pressure

Surface load

Material point of a body in its current configuration
Material point of a body in its reference configuration
15t Piola-Kirchhoff stress tensor

27d Pjoja-Kirchhoff stress tensor

Acting surface load

Length of the position vector in a polar coordinate system, radius
R Rotational tensor

Te Radius of the control volume

S TERNSSST SN S

DU QOO M IS

TEy

s Deviatoric stress tensor

t Force vector

t Time or thickness

T Traction vector

T Traction

ta Adhesive layer thickness

ts Adherend thickness

U Displacement vector

U Displacement

U Right stretch tensor

U Displacement vector

Uy Displacement in z-direction
Uy Displacement in y-direction
Uy Displacement in z-direction
1% Left stretch tensor

%4 Volume

Ve Control volume

VUC Loading speed for the compression test

XXVii



Nomenclature

XXViii

Volume of the compression test specimen

Initial volume of the compression test specimen

Crack opening displacement

Strain energy potential

Strain energy density averaged within a control volume

Strain energy density averaged within a control volume at failure
Deviatoric part of the strain energy potential

Volumetric part of the strain energy potential

Position vector referring to a material point in its undeformed state
Position vector referring to a material point in its deformed state
x-coordinate (abscissa)

Abscissa of point j in its reference configuration

Abscissa of point j

y-coordinate (ordinate)

Ordinate of point j in its reference configuration

Ordinate of point j

z-coordinate



1 Introduction

1.1 Motivation

In construction industry, silicones have already been used for more than half a century. Due
to their high elasticity and good resistance against environmental impacts, silicones were first
employed as sealants, such as in fagade engineering. In the 1960s, large curtain wall systems
became popular in the United States. The glass panes used were clamped at the top and
bottom edge. The size of the glass elements was limited and thick glass panes were required
to avoid excessive deflections under wind and gravity loads. In parallel, silicone weather
seals exhibited excellent adhesion properties on glass and a good resistance against UV
radiation. From these considerations, the idea was arising to structurally bond vertical glass
fins with silicone sealants as bracing elements to the glass panes and the first adhesively
bonded connection of glass panes with silicone was realised (Klosowski and Wolf, 2016). An
example of this so-called fotal vision system, dating back from 1964, is shown in figure 1.1a.

g, B
(a) Total vision system, picture from Klosowski and Wolf (b) Burj Khalifa, picture from Dow
Corning Corporation (2011a)

Figure 1.1: Examples of Structural Sealant Glazing systems

In the following years, silicones have also been successfully used in two and later in four-sided
applications, where the glass pane was bonded to the metallic substructure. An example
of such an application is shown in figure 1.1b. In the field of fagade applications, adhesive
connections show a number of advantages, starting at the large bonding area, which creates
a uniform load transfer and thus reduces stress concentrations in the adherends. In addition,
with no mechanical components penetrating the building skin, an architectural attractive, easy
to maintain and energetically optimised fagade is obtained.

Regarding the verification of the load bearing capacity of structurally bonded glass com-
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ponents, the design guidelines ETAG 002 (2012) and ASTM C1401 (2002) define design
equations, which are based on simplified assumptions, such as a linear elastic material
behaviour. Since the material behaviour and the required structural modelling are not fully
understood, high design factors on the material strength and restrictions in use, such as
regarding the dead load transfer, are defined.

Silicone exhibits a nonlinear elastic and quasi-incompressible material behaviour. Due to the
high deformations which can occur in the adhesive joint, bonded connections are increasingly
analysed with the Finite Element Method, a numerical approximation tool, with the sealant
being typically modelled with solid elements. The results of these numerical simulations
need to be assessed regarding two issues. First of all, the three-dimensional stress states
need to be compared with the strength values, which are generally determined in simple
uniaxial material tests. This comparison is usually done assuming a suitable failure crite-
rion. For silicone sealants, only a few works deal with the definition of a failure criterion for
bulk material. Apart from the definition of a failure criterion, stress singularities can arise
in the numerical simulation, which cause the stresses in the vicinity of the singularity to
become dependent on the chosen size of the Finite Element used. Therefore, the results
of these stresses and strains become into a certain extend arbitrary and need to be assessed.

In the present work, the definition of a failure criterion for silicone bulk material and the
assessment of the stresses in the vicinity of a singularity, the two-material wedge, for
standard linear bonded connections are addressed. In a first part, failure of the defect-free
bulk material is investigated based on simple characteristic stress states with the objective
to identify a suitable failure criterion for simple linearly bonded joints. In the second part of
this thesis, different methods, based on Finite Fracture Mechanics and the Theory of Critical
Distances are considered to describe failure initiation in the vicinity of the two-material wedge.

1.2 Objectives

For the verification of the load bearing capacity of adhesively bonded connections with
silicone, the load or displacement at which failure occurs, needs to be determined. Due to the
highly nonlinear material behaviour of the structural sealant, these structures are increasingly
analysed using the Finite Element Method. Both the complex three-dimensional stress state
and the non-converging stresses in the vicinity of a singularity need to be assessed. The
present work focus on these two aspects.

In a first step, failure of defect-free bulk material is analysed. A failure criterion allows to
compare complex stress states, which can be found in structural elements, with results from
simple material tests, as the uniaxial tensile strength. With the two fundamental stress states
uniaxial tension and shear, a suitable failure criterion is identified for a quasi-static loading
under laboratory conditions. The proposed failure criterion is validated using the results of
compression tests. The knowledge of a failure criterion is a fundamental requirement to
understand the failure behaviour of a material.

In the second step, the stresses in the vicinity of the edge region of the interface between the
adhesive and the adherend are analysed. Due to the sharp change of the elastic constants
and the geometry, the stress field at this so-called two-material wedge is singular. As a
consequence, the stresses become dependent on the chosen size of the Finite Elements
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and therefore into some extend arbitrary. Methods from Finite Fracture Mechanics and the
Theory of Critical Distances are presented and implemented to predict the failure loads and
displacements of small scale tests on bonded connections, which exhibit a stress singularity.

1.3 Contents and structure of the thesis

Proposal of a Failure Criterion of Adhesively Bonded Connections with Silicone

Chapter 1: Introduction, Motivation, Objectives

Chapter 2: State of the art

\ 4

Chapter 3: Fundamentals

y
Chapter 4: Experimental investigations and Finite Element simulations

Failure of bulk material Failure regarding the two-material wedge
4.1 Standard tests 4.2 Tests on bonded connections ) Fractutrssrtnechanlcs
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Chapter 5:
Failure criterion of bulk material: &y = 1.6
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Chapter 6: Failure load prediction,
Finite Fracture Mechanics,
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\ 4

Chapter 7:
Conclusion and Outlook

Figure 1.2: Structure of the thesis

The structure of the thesis is shown in figure 1.2. After a short introduction in chapter 1,
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the state of the art in the field of the failure load analysis of adhesively bonded connections
is given in chapter 2. This chapter focus on the different aspects discussed in the thesis and
summarises in a concise way important findings and recent developments.

Chapter 3 introduces the relevant concepts used in the thesis, starting at the material
properties of cross-linked silicones and the basic equations from continuum mechanics.
The Finite Element Method is briefly presented with a focus on singularities. In addition,
various simple failure criteria from literature are given. The stress field in the vicinity of
the two-material wedge is discussed in section 3.5. Some analytical solutions, like the
Volkersen equation, are shown and their limitations discussed. The singular behaviour of the
stress field at the corner edge of the interface between the adhesive and the adherend is
illustrated with own examples. Finally, methods to assess the stresses in the vicinity of the
two-material wedge are presented. Apart from Finite Fracture Mechanics and the Theory of
Critical Distances, advanced numerical modelling techniques are briefly introduced.

In the following, a differentiation between failure of the defect-free bulk material and failure
regarding the two-material wedge is made. Both cases have been investigated for one
temperature.

For the failure of defect-free bulk material, test results of standard experimental inves-
tigations, i.e. tension and compression tests are given in section 4.1. In addition, the
test results of circular shear specimens with a continuous joint, presented in section 4.2
were used to calibrate the failure criterion for silicone bulk material, which is proposed in
chapter 5 and which focus on linearly bonded joints.

Failure regarding the two-material wedge is analysed on the basis of the tests on bonded
connections, described in section 4.2. Since the failure load prediction based on Finite
Fracture Mechanics requires the knowledge of the critical energy release rate, Double Can-
tilever Beam tests, described in section 4.3, were performed. With these results, the tests
documented in section 4.2 were analysed. The results of this failure load discussion are
given in chapter 6.

Chapter 7 summarises the main conclusions and gives an outlook on further research
work.
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Silicone was developed in the early 20™ century by the US chemist Kipping, when he per-
formed experiments on silicone-oxygen chemical bonds (Reller et al., 2000). Kipping did not
recognise the huge field of applications of this new material. After the successful development
of the methods for a production of silicone in an industrial scale in the 1940s, companies like
Dow Corning or Wacker were founded (Thomas, 2010). The production process of silicone is
described in detail in Schliebs and Ackermann (1987) and Ackermann and Damrath (1989).
Silicone is a rubber-like material, composed of cross-linked molecular chains. The chemical
backbone of the molecular chains are silicon-oxygen bonds. Amongst others, due to the
high strength of this bond, silicone exhibits a very good resistance against environmental
influences, like UV-radiation and ageing. In addition, it shows excellent adhesion on many
materials, especially glass. The material properties are subject in a number of publications,
e.g. Gutowski et al. (1993) (adhesion), Beers and Klosowski (1990), De Buyl (2001), Wolf
and Cleland-Host (2004) and Habenicht (2009). Due to their exceptional properties, silicones
are used in many industrial fields. A good overview on the different applications of silicone is
given in Andriot et al. (2007).

In construction industry, crosslinked silicones were first employed as sealants because of
their high elasticity and excellent ageing resistance. Only after the development of silicones
with higher strength, they have been used in load bearing connections (Tock et al., 1988). In
1965, glass fins were structurally bonded with silicone as bracing elements on glass panes.
In the 1970s, glass panes have been adhesively bonded on the building’s substructure (Clift
et al., 2014). Since the 1990s, silicone is increasingly used for fagcade applications in regions
with high seismic activity or wind loads (Dow Corning Corporation, 2006). Apart from these
applications, innovative adhesive connections are subject to recent research activities, like in
Dias (2013), where silicone was used as shear connector in steel to glass composite beams,
or concerning the geometry of the bondline as investigated in Hagl (2006), Hagl (2008a),
Richter et al. (2014) and Scherer (2014). Apart from facade engineering, the strength of
adhesively bonded connections with silicones has also been investigated in Banea and
da Silva (2010) for aerospace applications.

The mechanical material behaviour of crosslinked silicones has been investigated in
a number of research works, e.g. Hagl (2006), Brendler and Haufe (2007), Dias (2013),
Staudt (2013) and Scherer (2014). Considering typical applications with simple geome-
tries, silicone is generally described with a nonlinear elastic, so-called hyperelastic, material
behaviour assuming nearly or full incompressibility. Hyperelastic material laws generally
describe a functional expression for the strain energy density using the invariants of the
deformation gradient. Marckmann and Verron (2006) give a good overview on the large
number of hyperelastic material laws. The simplest functional expressions are given by
Neo-Hooke and Mooney-Rivlin, which are both phenomenological models. There are as
well micro-mechanically based models, like Arruda-Boyce and the Extended-Tube model, or
models, using experimental data without a definition of a functional expression, like the model
according to Marlow (2003). Although silicones are not fully incompressible (e.g. Wolf and
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Descamps (2002) and Dias (2013)), a Poisson ratio of 0.5 is assumed for many applications
(e.g. Hagl (2016)).

For the verification of the load bearing capacity of a structure, the acting stress state
needs to be compared to an upper limit, which is generally determined in a simple material
test, like the uniaxial tension test (Mang and Hofstetter, 2013). In order to allow for this
comparison, the stress states need to be transformed into a scalar value. This is usually done
assuming a failure criterion. According to Nait-Abdelaziz et al. (2012), the failure assessment
can be done following three different concepts. In a first approach, the material is assumed
to be defect-free and the stress state can be assessed with a classic failure criterion, like
Rankine for brittle materials or von Mises as yield criterion for ductile materials. In a fracture
mechanics approach, the presence of a pre-crack is assumed. Finally, failure can also be
covered by the constitutive modelling of the material in a damage mechanics approach.

Failure of rubber-like material is often associated with internal growth of voids or cavities. A
first work on the so-called cavitation was presented by Gent and Lindley (1959). Butt bonded
specimens with different adhesive layer thicknesses under tensile forces were considered.
A threshold value for cavitation was determined and experimentally validated. Cavitation
however was only observed for specimens with high hydrostatic tensile stresses. Similar
results were found in Ait-Hocine et al. (2011), where only the specimens with thin adhesive
layers exhibited the typical failure pattern observed with cavitation. Research is currently per-
formed on silicone adhesive in point-wise connections, e.g. Dispersyn et al. (2014) and Drass
and Schneider (2016). For the failure of rubber-like material with a dominant dependence
on deviatoric stresses, Kawabata (1973) proposed a principal stretch criterion, which was
validated on plane stress specimens. In Zine et al. (2011), the maximum principal strain was
referred to as a typical failure criterion for rubber. Apart from this, the strain magnitude was
proposed in Molls (2013). Failure of silicone sealants in bonded connections with complex
geometry was investigated in Hagl (2009) and Scherer (2014). Hagl (2009) considered the
distribution of first principal stresses and in Scherer (2014), the strain energy density was
identified as a possible failure criterion, but further research was recommended to confirm
this finding.

Apart from a failure criterion on bulk material, the critical energy release rate is an essential
parameter for the assessment of fracture mechanics problems. For the determination of the
critical energy release rate of an adhesive, the Double Cantilever Beam test is often used.
The evaluation of this test can be done following two concepts, one based on linear elastic
fracture mechanics using the Irwin-Kies equation (Blackman et al., 1991) and one based on
the J-integral (Li and Ward, 1989). The method based on linear elastic fracture mechanics
works with the compliance of the adherends with a restriction of the material behaviour of
both substrate and adhesive to linear elastic. The second method, which was developed to
determine the post peak tensile behaviour of concrete in tension, is based on the J-integral
(cf. (Rice, 1968)) to determine the critical energy release rate of the material and can be
used with non-linear elastic materials. The Double Cantilever Beam test is typically used
for thin adhesive layers and stiff adhesives (e.g. Biel (2005)). Only a few works deal with
thick adhesive layers with soft material properties, e.g. Biel et al. (2012a) and Campilho et al.
(2015). In Banea et al. (2010), Double Cantilever Beam tests on a thin silicone adhesive
layer were performed to quantify the temperature dependence of the adhesive’s cohesive
properties.



In fagade engineering, for the design of bonded connections, the so-called structural sealant
glazing kits, guidelines like the ETAG 002 (2012) in Europe or the ASTM C1401 (2002)
in the United States define the requirements and design equations. For both guidelines,
only silicone sealants are allowed to be used and the design equations are based on similar
assumptions, like a uniform stress distribution within the sealant, a linear elastic material
behaviour and a simplified load distribution. As a result of these simplifications, high re-
duction factors on the material strength and restrictions in use are defined. The accurate
determination of the acting stresses and the detailed knowledge about the failure mechanism
are inevitable to calculate the failure probability of a given structure.

In order to overcome the restrictions defined in the design guidelines, the Finite Element
Method is increasingly used to describe the stress and strain distributions taking account
of the nonlinear material behaviour of the silicone sealant. The Finite Element Method is a
numerical approximation tool to solve partial differential equations. The designation Finite
Element Method has been introduced by Clough in the 1960s (Klein, 2007). The Finite Ele-
ment Method is a numerical approximation tool, which is based on the principle of partitioning
a given structure in small parts, the so-called Finite Elements. The elements are defined by
their nodes and each node has a defined number of degrees of freedom. Consequently, a
whole structure can be described with a delimited number of degrees of freedom (Da Silva
and Campilho, 2012). Due to the continuous development of the method and the availability
of ever more powerful hardware, the Finite Element Method has become a standard tool
for the prediction of the behaviour of complex structures for which no closed-form analytical
solutions are available.

The stiffness of an adhesively bonded connection with silicone can be accurately pre-
dicted using a nonlinear Finite Element Analysis, as shown in Brendler and Haufe (2007),
Dias (2013), Scherer (2014) and Descamps et al. (2017). These works mainly cover the
prediction of the stiffness of the bonded connections, but do not analyse in detail the stress
or strain distributions at failure initiation. Dias (2013) and Staudt (2013) highlight the ob-
servation that the stresses at the interface between the adhesive layer and the substrate
depend on the chosen size of the Finite Elements. According to Alfredsson (2003), the
full potential of adhesively bonded joints cannot be used because of the lack of reliable
methods for the strength prediction. The lack of a reliable failure criterion for the use in the
numerical simulation of adhesively bonded joints is also discussed in Banea and da Silva
(2009). Cilift et al. (2014) compares in a Finite Element Analysis the first principal stress
distribution in a small scale specimen under the nominal strength as defined by the standard
with the stresses in a structural component in order to optimise the shape of the adhesive joint.

There are a number of analytical solutions for adhesively bonded connections. In auto-
motive and aeronautic industry, adhesively bonded connections, especially loaded in shear,
constitute an important joining technology. According to Habenicht (2009), compared to butt
bonded connections, lap shear joints show the advantage that both adhesive and adherends
can be economically used. Da Silva et al. (2009a) give an overview on closed-form solutions
for the stress distribution in the adhesive for single-lap shear joints. The earliest work was
done by Volkersen (1938), originally intended to describe the force distribution in riveted
joints. The Volkersen equation only considers shear stresses. Apart from the constant shear
stress due to the applied load, the deformation of the adherends is taken into account as
well. Additional closed-form solutions were proposed by Goland and Reissner (1944), as
well as by Hart-Smith (1973). These equations also take into account for the rotation of
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the adherends. Most of these analytical solutions are restricted to linear elastic material
behaviour. In Da Silva et al. (2009a), additional equations are presented, which deal with
elastic-plastic material behaviour. Recently, a new general computational framework for
the analysis of ductile adhesives was proposed in Stein et al. (2017b). Non-linear elastic
material behaviour has not been considered yet. Moreover, the equations generally fail in the
stress-free edge condition. Allman (1977) proposes a solution, which predicts zero shear
stresses at the corner edge of the interface. A common point for many of the analytical
solutions is the assumption of a constant stress distribution over the adhesive thickness, as
only very thin adhesive layers are considered. This assumption corresponds to considering
the stresses in the adhesive layer at mid-height (WeiBgraeber, 2014).

The previously described non-converging behaviour of the stresses in the numerical simula-
tion (cf. Dias (2013) and Staudt (2013)) is due to the stress singularity of the two-material
wedge (WeiBgraeber, 2014). In the framework of the elasticity theory, stress singularities
describe stresses with infinitely high values. A classic example are the stresses at the tip of
a sharp crack (Gross and Seelig, 2011). The stress singularity at the two-material wedge
is subject to a number of publications. Bogy (1968) and Hein and Erdogan (1971) give the
theoretical background for the description of the stresses at the two-material wedge. Penado
(2000) considers the stress singularity in the context of an adhesively bonded connection.
Chen et al. (2011) classify the singularities, which arise at the corner edge of a bonded
connection, by distinguishing between strong and weak singularities. In Gleich (2002), the
so-called adhesive thickness effect was investigated. The adhesive thickness effect de-
scribes that starting from an optimal bondline thickness, the strength of a bonded connection
decreases for an increasing adhesive layer thickness. Most stress-based failure criteria fail in
the prediction of the adhesive thickness effect. Gleich (2002) however did not consider the
average stresses at the mid-height of the adhesive layer, but the stresses at the interface.
Considering these stresses and adopting concepts from linear elastic fracture mechanics,
Gleich (2002) predicted the failure load of shear loaded bonded connection and a good
agreement was obtained. The adhesive thickness effect has also been investigated in Banea
et al. (2015) for a two-component polyurethane adhesive. Although the failure load was
influenced by the adhesive thickness, the overall stiffness was constant.

For the prediction of crack onset at a weak singularity, like the two-material wedge,
concepts from classic fracture mechanics cannot be used, since the energy release rate
evaluated locally at the singular point gives zero for weak singularities like a notch (WeiB-
graeber, 2014). For the prediction of crack onset at a weak singularity, different methods
can be used. Taylor (2008) gives an overview on methods, which are generically referred
to as the Theory of Critical Distances. A common point of these theories is the usage of a
length scale parameter, which is considered as a material constant. Concepts assuming
a characteristic length scale parameter have been proposed first by Neuber (1936) and
Whitney and Nuismer (1974). In the framework of a Finite Element Analysis, the advantage
of these methods consists in evaluating the stresses at a certain distance from the notch tip,
where the stresses give convergent results when a reasonably refined mesh is employed.
In Waddoups et al. (1971), a crack with a constant length is assumed at a weak singularity,
thus enabling the use of classic fracture mechanics concepts. In Schaaf et al. (2015), the
strain energy density was averaged in a certain control volume, which was calibrated using
experimental data. An engineering approach, which is used in the context of the Theory of
Critical Distances consists in selecting a constant element size and element formulation in
the numerical simulation. Although the Theory of Critical Distances accurately predicts crack



onset at weak singularities for a given configuration, the material length parameter is missing
a physical basis (Taylor, 2008) and is often found to depend on the geometry or loading
(Chaves et al., 2014). For the concept of Fracture Mechanics, crack onset is a continuous
process. Hashin (1996) proposes the concept of Finite Fracture Mechanics in which, the
crack onset is considered as a fracture event with development of a crack with a finite length
(WeiBgraeber et al., 2016). In Taylor (2008), Finite Fracture Mechanics is considered as the
theoretical basis for the Theory of Critical Distances. Apart from this, advanced numerical
modelling techniques, as the Extended Finite Element Method or Cohesive Zone Modelling,
have been reviewed in Da Silva and Ochsner (2008). These methods are promising tools to
predict crack propagation.

In the field of Finite Fracture Mechanics, a criterion for the onset of a crack at a weak
singularity, referred to as the coupled stress and energy criterion, has been proposed
by Leguillon (2002). A crack in the vicinity of a weak singularity will develop, if two partial
criteria are simultaneously satisfied. The coupled criterion has been successfully employed in
WeiBgraeber (2014) to calculate the failure load of single-lap shear joints with an epoxy-based
adhesive. The coupled criterion is an optimisation problem, since the crack initiation load
and the initiated crack length are both unknown. The stress partial criterion gives an upper
boundary for the crack length, as the crack length is limited to the region, where the acting
stresses exceed the material strength. The energy criterion gives a lower boundary, as
only cracks can develop, which release enough energy for their creation. Regarding the
coupled criterion, there is no inherent limitation to linear elastic material (Leguillon, 2002). In
order to employ the coupled criterion, the critical energy release rate and the strength of the
considered material have to be known.

The material behaviour of silicone has been extensively investigated. Adhesively bonded
connections with silicone are increasingly numerically reproduced using the Finite Element
Method in an attempt to overcome the restrictions defined by the technical applications
guidelines and to generate a better understanding of the material. Although the material
behaviour of the silicone sealant can be accurately simulated, there are still aspects, which
require additional research work, starting at the definition of a failure criterion for bulk material.
In addition, stress singularities, which arise at discontinuities as sharp edges, hamper the
assessment of these stress peaks. The present work focus on these two aspects.






3 Fundamentals

3.1 Material properties of silicone

The classification of adhesives can be done according to their chemical basis, their molecular
structure or their evolution reaction. Considering the chemical basis, silicone neither belongs
to the group of adhesives with an organic carbon based structure nor to the group of inorganic
chemicals. Silicone elastomer exhibits an organic-like structure but the molecular chain is
based on the inorganic components silicon and oxygen, which form the molecular backbone
(Habenicht, 2009).

Concerning the molecular structure of polymers, thermoplastics, thermosets and elastomers
are generally distinguished, as shown in figure 3.1. Thermoplastics are composed of linear
or branched molecules, which have no connection points between each other. Therefore,
thermoplastics liquefy at high temperatures. Thermosets are composed of densely linked
molecules. Thermosets are hard and brittle, even at high temperatures. Finally, elastomers
show widely-meshed connections of the molecules (Habenicht, 2009).

Polymers

Thermoplastics Thermosets Elastomers

Figure 3.1: Characterisation of the adhesives according to their molecular structure
(Habenicht, 2009)

The evolution reaction is another criterion for the characterisation of polymers. During the
evolution reaction of polymerizates, several monomers containing double or triple bonds
connect to each other by splitting up a double or triple bond. In a second step, the split bond
can connect to another split bond thus creating a new single bond. For polyadducts, no
double or triple bonds are split. Two and more monomers are able to connect because of
hydrogen atoms leaving the monomer. The monomer with the free valence electron can form
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a simple connection with another monomer having as well one free valence electron. The
same holds true for polycondensates, but unlike for polyadducts, by-products, like water or
alcohol, are created. Silicone elastomer can be classified in the group of polyadducts and
polycondensates depending on the type of silicone considered (Habenicht, 2009).

Silicone is a synthetic rubber-like material having the structure of an elastomer, as it is com-
posed of molecular chains with widely-meshed cross-linkings. As aforementioned, it is based
on a silicon-oxygen molecular chain. Regarding the curing process, two types of silicones are
distinguished. The curing process denotes the process during which the cross-links between
the molecules are created. The curing process of one component silicones mostly needs air
moisture. Therefore, this type of silicone is not suited for joints with large bite, as the curing
process would require a long time. Amongst the one component silicones, there are neutral
and acid curing systems. For these systems, different by-products are created during the
curing process. For the two component silicones, a differentiation between condensation
cure and addition cure silicones is made. The first ones produce by-products leading to
some shrinkage. The curing process however is less vulnerable regarding the environmental
conditions than for addition cure silicones (Habenicht, 2009), (Brockmann et al., 2005). The
mechanical properties of both are similar (Ackermann and Damrath, 1989). There are a
number of additional curing processes possible for silicones, which will not be further exposed
here. Apart from silicones behaving like rubber-like materials, different formulations, like gels
or liquids, exist. The length of the molecular chains and the density of cross-links are different
for these products (Kurzweil and Scheipers, 2012).

The raw materials for silicone are quartz sand, coal, methane and salt. First of all, the quartz
sand is reduced to silicon using coal and the salt is dissociated in sodium and chlorine in an
electrolysis. In a second step, chlorine and methane form methyl chloride. Methyl chloride,
silicon and water are the base components of silicone (Reller et al., 2000). These materials
react in several steps in the presence of catalysts (Beers and Klosowski, 1990).

Apart from the polymer, reinforcing and non-reinforcing fillers are added to the elastomer.
Reinforcing fillers lead to interactions between the polymer chain and the filler, thus increasing
the strength by a factor of 10 to 30. Adding a filler has the same effect than increasing the
density of cross-linking, as additional links between filler and filler or filler and polymer chains
are formed. Examples of reinforcing fillers are pyrogenic and precipitated silica (Domining-
haus et al., 2008). Furthermore, non-reinforcing fillers are used as an in-fill for bulking up
(Ackermann and Damrath, 1989). Apart from those fillers, only a few additives are used when
compared to other elastomers, because of the exceptional properties of silicone (Wacker
Chemie AG, 2007).

Silicone elastomers can experience large deformations without failure. This behaviour can
be observed from very low temperatures to their decomposition temperature (Eyerer et al.,
2008). The glass transition temperature, i.e. the temperature at which the material behaviour
changes from rubber-like to brittle, can be at -120°C for some silicone elastomers. Further-
more, silicone has stable properties and keeps its rubber-like behaviour for temperatures
up to 200°C. The very strong silicon-oxygen molecular chain, which is moreover screened
by nonpolar methyl-groups, is the reason for this exceptional behaviour (Habenicht, 2009).
In addition to the stable rubber-like properties in the significant temperature range for civil
engineering applications, silicone shows a pronounced resistance against ageing, weather
impact and solar radiation. The reason for this is again the stable molecular chain, which has
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only single bonds (Beers and Klosowski, 1990). Silicone is resistant against weak acids and
basic solutions. In case of fire impact, a layer of silicon oxide is formed on the surface, which
protects the material underneath (Schliebs and Ackermann, 1987). In addition, silicones
show a very good wettability and excellent adhesion properties on many materials, especially
on glass, due to silicone’s chemical resemblance to glass (both are basically composed of
silicon and oxygen) (Gutowski et al., 1993). Silicone can enter a chemical compound with
glass (Hagl, 2006).

Elastomers generally show nonlinear material behaviour. The material properties can no
longer be described by the linear elasticity, except for small deformations. Instead the nonlin-
ear elasticity or hyperelasticity, which is introduced in section 3.3.1, is applied. Apart from the
physical nonlinearities, geometric nonlinearities must be considered as well, due to the soft
material behaviour and the large deformations that occur. Hyperelasticity can be described
as an entropy-elastic material behaviour (Bormann, 2005). The entropy is a measure for
the internal disorder. When a strain is applied to an elastomer, the molecules will become
aligned. This constitutes a state of lower entropy than the initial tangled configuration. When
unloading the elastomer, the molecules will return into their tangled configuration, which
is a more favourable energetic state. According to the entropy-elastic model, the distance
between two adjacent atoms is constant, the deformation is mainly due to the displacement
of the whole molecular chain (Rinnbauer, 2006).

Apart from a highly nonlinear elastic material behaviour, silicone sealants also exhibit time
dependent material behaviour, like creep and relaxation, as well as a strain rate dependency.
These phenomena have been considered in Dias (2013) and Staudt (2013). Rubber-like
materials show in addition a so-called stress-softening effect, called Mullins effect (Mullins,
1948). The Mullins effect is a change of the mechanical properties after the first stretching of
the material with the unloading path being softer than the initial loading path. When stretching
the material again, the reloading path is between the unloading and initial loading path or
coincident with the unloading path for the ideal Mullins effect. Most of the softening occurs
after the first unloading, reaching a stable material response, if fatigue is disregarded. If the
material is extended beyond the preloaded range, the stress-strain curve will follow the initial
stiffness or virgin curve.

The Mullins effect (Mullins, 1948) has already been investigated for some decades, but no
consensus has been found yet for the underlying physical mechanism. Initially, the stress-
softening effect was referred to the presence of fillers. For an applied stretch, the bonds to
the polymeric matrix fail thus leading to a softer material behaviour. Other interpretations
assume bond rupture of molecules or molecular slippage. Finally, the rearrangement of
molecules and the change in the density of entanglement of the molecules is supposed to
cause the Mullins effect. Assuming these mechanics, a thermal exposure of the material
could lead to a new entanglement of the molecular chains and thus to a recovery of the initial
stiffness. Experimental investigations have shown a limited recovery for samples exposed to
high temperatures or solvents. A detailed review of the Mullins effect is given in Diani et al.
(2009). For silicone materials, the stress-softening effect was investigated in Machado et al.
(2010) and Dias (2013).
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3.2 Structural Sealant Glazing Applications

3.2.1 Glass and its connections

Glass has been used increasingly over the past decades in fagade applications in order to cre-
ate both an architectural attractive fagade and a highly transparent building skin, allowing for
the usage of natural illumination in the building (Overend et al., 2011), (Tibolt and Odenbreit,
2014). Since glass is a brittle material (Schneider et al., 2016), the question of its connection
to the mostly metallic substructure becomes crucial. Three types of connections are possible:
mechanical, adhesive or a combination of both (Dias, 2013). For mechanical connections,
glass can be linearly supported or point-wise by bolted (Dispersyn et al., 2014) or clamped
connections (Drass et al., 2016). Whereas linear connections reduce the transparency of
the building and promote thermal bridges (De Buyl, 2001), bolted connections significantly
weaken the glass pane as boreholes are drilled. This treatment creates scratches and
flaws, which reduce the strength of glass (Schneider et al., 2012). Moreover the loads are
transferred on a very small area between the bolt and the borehole (Dispersyn et al., 2014).

Glass can also be adhesively bonded to the building’s substructure. Although other adhe-
sives like polyurethanes, which are used in automotive industry, have higher strength and
stiffness (Richter et al., 2014), only soft silicone structural sealants can be used for fagade
applications, as prescribed by ETAG 002 (2012) and discussed later. For adhesively bonded
connections, linear and point-wise applications of the sealant can be envisaged. Especially
for linear applications, the main advantage of bonded connections is the uniform load transfer
due to the large bonding area and the capability of the adhesive to compensate differences
in thermal or structural movements of the adherends. In addition, silicones can absorb a
significant amount of energy, which is important for regions with high seismic activity or high
wind loads. Finally, the smooth building skin, with no mechanical fixation devices penetrating
the building skin, is both energy efficient and architectural attractive (Descamps et al., 1996),
(De Buyl, 2001), (Ihara et al., 2014).

Due to restrictions in current regulations, a combination of mechanical and adhesive connec-
tions is often used, as in the building shown in figure 3.2. For this building, two sides have
been conventionally (mechanically) glazed and the two other sides with structural silicone.
Depending on the country, applications with all four edges adhesively bonded can also be
found (Descamps et al., 1996).

3.2.2 Insulation glass units

Extensive curtain walls are used to benefit from natural light, thus reducing the need for
artificial lighting. To ensure the thermal performance of the building, insulation glass units
(IGU), shown in figure 3.3, are used. Insulating glass units are composed of two or more
similar or dissimilar glass panes. The distance between the panes is kept constant at their
edges. The separated space is called cavity and the connection between the glass panes
edge bond. The edge bond has a structural function as it connects the two glass panes and
it guarantees the tightness of the cavity. The cavity is an enclosed unit and filled with air or
special gases. The thermal performance of the IGU depends on the width of the cavity. To
increase the thermal insulation performance of the assembly, inert gas can be used instead of
air in the cavity. In order to reduce the heat transfer due to radiation, low emissivity coatings
are applied on the glass panes (Sedlacek et al., 1999).
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3.2 Structural Sealant Glazing Applications

Figure 3.2: Example of a two-sided structural glazing system: Kastor (middle) and Pollux
tower (right) in Frankfurt/Main (Germany), picture from Dow Corning Corporation (2010a)

~ Glas panes

/

Cavi
v Spacer

/ Primary seal:

Polyisobutylene

Desiccant

Secondary seal:
_____ .. Silicone

(a) Small insulation glass unit (b) Section A-A

Figure 3.3: Example of a small insulation glass unit

A typical assembly is composed of two glass panes separated by an aluminium, galvanised
steel or plastic spacer. The spacer is bonded on the glass panes with polyisobutylene (PIB),
which is used due to its low permeability of water and its high elasticity. The spacer is
a perforated hollow section filled with a desiccant to absorb any humidity, which diffuses
through the edge bond, in order to prevent fogging. The assembly spacer and PIB is called
primary seal, responsible for the tightness of the cavity. Furthermore, a second edge seal is
applied. For this, polysulfide, polyurethane or silicone elastomer is used. This seal is called
secondary seal. It has a structural function (Sedlacek et al., 1999).
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3.2.3 Structural applications of silicone sealants

As mentioned before, silicone sealants can be used to adhesively bond glass to the metallic
structure of a building. Figure 3.4 shows a typical example of a structural edge bond, which
transfers wind loads. The insulation glass unit itself is as well adhesively bonded to the
substructure. For this example, the dead load is mechanically transferred to the building’s
structure.

Insulation glass unit

_/ Structural silicone

Substructure

Structural edge bond
(silicone sealant)

Spacer

Setting block

Weather seal

Figure 3.4: IGU with structural edge bond and adhesive connection to the building

Figure 3.5 shows a restaurant in Austria with a structural sealant glazing (SSG) facade. The
facade is composed of a triple IGU (3 glass panes and 2 cavities), which is four-sided bonded
to the substructure with Dow Corning® 993 structural silicone. The fagade is inclined to
the outside with an angle of 8 degrees. Retaining devices reduce the danger in case of
an adhesive bond failure and the dead loads are transferred mechanically to the building’s
substructure (Wolf, 2010), (Weller et al., 2011).

Figure 3.5: SSG fagade of a restaurant in Austria, picture from Wolf (2010)

Figure 3.6 shows a second example of a SSG fagade. The fagade of the Zeppelin University
in Friedrichshafen (Germany) is a double skin fagade with mechanically fastened IGUs as
inner skin and a SSG fagade as outer skin. The outer skin is a laminated glass, which is
four-sided structurally bonded with Dow Corning® 993 structural sealant to the substructure.
A special approval from the upper construction authority was required for this project as the
dead load is not mechanically transferred to the substructure (Dow Corning Corporation,

2010Db).
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3.2 Structural Sealant Glazing Applications

Figure 3.6: SSG fagade of the Zeppelin University in Friedrichshafen, Germany, picture from
Dow Corning Corporation (2010b)

3.2.4 Current research work

Apart from the above mentioned applications of structural silicone adhesives, there is a
number of research projects dealing with innovative connection types. To increase the trans-
parency of the fagade while avoiding the inconveniences of drilled-through bolts, adhesively
bonded point-fixings, as shown in figure 3.7, are subject to research activities. While in Hagl
(2006) the standard black structural silicone adhesive (Dow Corning® 993) was investigated,
Drass et al. (2016) worked with Dow Corning® TSSA (Transparent Structural Silicone Ad-
hesive), a thin transparent structural silicone adhesive with higher strength and stiffness
compared to the standard formulations. This adhesive however is only available as thin
sheets, which are curing under pressure and heat (Dow Corning Corporation, 2013).

Glass

@ 50-70 mm

Silicone

Point fitting

(a) DC 993 (Hagl, (b) TSSA (Dias, 2013) (c) Side view
2006)

Figure 3.7: Adhesive point fittings using silicone adhesives

Other researchers deal with linear or point-wise joints of more complex geometries (e.g.
Hagl (2008a) or Richter et al. (2014)), as shown in figures 3.8 and 3.9. The U-type bonding
shown in figure 3.8b has been used in the Herz-Jesu church in Munich, Germany, to connect
horizontal and vertical glass fins with steel stringers. These steel stringers were fixed to the
fagade stringers using bolts (Hagl, 2008b).

At the University of Luxembourg, steel to glass composite beams using Dow Corning® 993
structural silicone adhesive have been developed and tested in 4-point bending (see figure
3.10). The shear connection between the steel beam and the glass pane has been realised
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Applied force Applied force Applied force

Silicone Silicone Silicone

Safety glass Safety glass Safety glass

(a) L-type (b) U-type (c) T-type

Figure 3.8: Steel to glass adhesive connections with complex geometries (Hagl, 2007)

Glass

Silicone

Steel

Figure 3.9: L-shaped connection (Richter et al., 2014)

using the previously mentioned structural silicone adhesive. The tests have been numerically
reproduced and a hyperelastic material law has been developed for the silicone adhesive
(Dias, 2013).

Figure 3.10: Steel to glass composite beam, developed and tested at the University of
Luxembourg, picture from Dias (2013)
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3.2 Structural Sealant Glazing Applications

3.2.5 Normative background - ETAG 002 and ASTM C1401

In Europe, design guidelines for Structural Sealant Glazing Systems are defined in the
European Technical Approval Guideline ETAG 002 (2012). In the United States, the American
Society for Testing and Materials (ASTM) published as well a "Standard Guide for Structural
Sealant Glazing", labelled ASTM C1401 (2002). The current section will explain the design
concept of these standards and focus on their limitations and assumptions.

European Technical Approval Guideline ETAG 002

ETAG 002 (2012) covers fagades with glazing at an angle between vertical and 7° above
horizontal. Glass, either uncoated or with hard inorganic (pyrolytic) coatings, anodised
aluminium or stainless steel can be used as substrate with special requirements defined for
glass with organic coatings, aluminium with a coating other than anodising or thermal breaks
used in SSG framing systems. Due to their exceptional adhesion performance and durability,
only silicone adhesives are authorised to be used as structural sealants. The 4 types of
structural glazing systems, shown in figure 3.11, are defined in ETAG 002 (2012), depending
on the support of the dead load and on the presence of mechanical retaining devices. For
type |1, the dead load is transferred mechanically to the substructure. Moreover, retaining
devices are used to reduce the danger in case of a failure of the adhesive. Type Il is similar
to type I, except that no retaining devices are used. For type lll, all loads including dead
load are transferred by the adhesive. Retaining devices however reduce the danger in case
of bond failure. For type IV, all actions are transmitted through the adhesive. No retaining
devices are used.

/I

Retaining device to
reduce danger in Type | Type Il

case of bond failure

Mechanical self weight support

Retaining device to

reduce danger in
case of bond failure

Type I Type IV

Structural sealant support frame

Figure 3.11: Different types of Structural Sealant Glazing Systems (ETAG 002, 2012)

Due to the state of current understanding, several restrictions are defined. The structural
bond must be in the form of a linear silicone bead. Discontinuities in the structural bond are
allowed, but no edge is allowed to be free, except if it is mechanically fastened. The structural
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sealant must to be factory applied and adhesion of the sealant on more than two surfaces is
not allowed. The adhesion of the secondary seal on the edge bond spacer is not considered
as contributing towards three-side adhesion in this context. For insulation glass units with
a mechanically fastened interior pane and only the exterior pane structurally bonded, the
present specifications do not apply. Type Il and IV are only applicable for monolithic glass.
For IGU and laminated glass, each pane of glass must be supported.

ETAG 002 defines experimental methods to assess the applicability of a given silicone based
adhesive for usage in a structural sealant glazing system. Testing methods for the mechanical
properties and performance of the adhesive are detailed. The material properties and the
material performance have to be determined both in tension and shear immediately after the
curing period and after artificial ageing. The specimen detailed by the ETAG 002 is shown in
figure 3.12. Testing procedures regarding various physical properties (gas inclusion, elastic
recovery, shrinkage, tear resistance, mechanical fatigue, UV resistance, elastic (Young’s)
modulus, creep) are defined as well. Considering long-term loads, the design values of
the tensile and shear strength are reduced by a factor of 10. ETAG 002 requires a minimal
thickness of the structural sealant e of 6 mm and a bite dimension h. between 6 and 20 mm.
The definition of bite (effective structural contact dimension) and thickness of the structural
sealant are given in figure 3.12.

40 50

Adherend
Adhesive

Bite h, Thickness e o
M Units in [mm].

Figure 3.12: Specimen detailed by ETAG 002 (2012)

ETAG 002 foresees two methods of calculation. Apart from the design formulas presented
below, a method of calculation "based on simulation test or results of research" can be envis-
aged (ETAG 002, 2012). The design formulas are based on two fundamental assumptions,
beginning at a trapezoidal surface load distribution and a uniform distribution of the stresses
within the sealant. For supported systems, the bite can be calculated as

~
o
s
fon
~
)
e
fon

(3.1)

In equation 3.1, [, is the shorter dimension of a rectangular glass pane, h. the bite, pq the
acting surface load and o4.5 the engineering tensile strength as defined in ETAG 002 (2012).
For supported systems, the required thickness of the structural sealant depends on the
differential thermal expansion Al of the assembly with the shear stress given as

E Al E Al
= th < Tdes = €= t
3e 3 Tdes

> 6mm. (3.2)

TE
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In equation 3.2, E is Young’'s modulus of the sealant. The adhesive bite dimension should not
be smaller than the adhesive thickness and not larger than 3 times the adhesive thickness.
For unsupported systems, the same equations apply, but for the thickness, shear stresses

GPane
T = < T .

from the dead load must be considered only for the vertical silicone beads. In equation 3.3,
Gpane is the weight of the glass pane, h, the length of the vertical silicone beads and 7, the
design shear stress for long term loads. The tensile strength o4 is the ratio of maximum
applied force and the initial cross sectional area, as determined on the H-specimen shown in
figure 3.12. An analogous procedure on the same specimen is described to determine the
shear strength 74.s. The design values for both stresses are obtained, taking the 5% fractile
of the obtained test results and dividing it with a design factor of 6. For long term loads, the
design stresses g4es and 74es are divided in addition with a factor of 10.

American Society for Testing and Materials ASTM C1401-02

The ASTM C1401 (2002) focusses on bonded connections, which have a slope of not more
than 15° from vertical. Only silicone adhesives are accepted for use in structural sealant
applications. A differentiation between structural loads and movements is made. Structural
loads are dead loads, wind, snow, life (maintenance) and seismic loads as well as missile
impact. The application of a structural sealant for unsupported systems must be approved
by the manufacturer. However, the value for the dead load stress is limited to 7 kPa. Move-
ments from building motion, thermal movements, deflections of the supporting frame, creep,
shrinkage and seismic movements have to be considered. The uncertainty over the long-term
durability and the compatibility with other materials, such as setting blocks or gaskets, are
taken into account. Moreover, bonded connections are considered less redundant than a
mechanically attached system.

ASTM C1401 (2002) basically considers two systems: two- and four-sided SSG systems. For
the two-sided systems, the structural sealant is applied at two opposite sides of a panel, the
other sides are mechanically fastened. These systems are suited both for construction-site
or shop glazing. Four-sided SSG systems are very energy efficient, as no metal parts are
exposed to the outer building surface. Moreover, there are no components, which overcome
the plane of the glass and thus acting like a dam, which collects dirt. However, four-sided
systems exhibit a higher risk than two-sided SSG systems. Four-sided SSG systems are only
applicable to shop glazed systems. For the metal framing system, only aluminium, steel and
stainless steel should be used. For the glass pane, monolithic, insulating and strengthened
glass are allowed. If laminated glass is used, compatibility tests are required. For coated
glass, adhesion tests must be performed. Apart from glass, many other materials can be
used in structural sealant application. Amongst them, stainless steel is a very good adherend,
because of its good corrosion resistance (ASTM C1401, 2002).

Only silicone elastomer fulfils the requirements for structural sealant glazing use. ASTM
C1401 (2002) defines a minimum tensile strength of 0.345 MPa after exposure to several
conditions, like heat, water immersion and weather impact. The test specimen is detailed
in ASTM C1135. It is similar to the specimen detailed by ETAG 002 (2012), which is shown
in figure 3.12. A transparent structural sealant is not recommended. Pigments should be
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added to block UV radiation affecting the adhesion performance of the adhesive-adherend
interface. Single component and multicomponent silicones can be used. For compatibility
reasons, non-structural weather sealants should as well be silicone sealants.

ASTM C1401 (2002) defines design factors according to the principle "the less engineering
knowledge available and the higher the degree of risk, the larger the design factor”. As
aforementioned, the minimum tensile strength is set to 0.345 MPa. The maximum design
strength however is set to 0.139 MPa, which gives a design factor of 2.5. Bite and thickness
are defined in the same way as in ETAG 002 (2012). A minimum value of 5 mm is required
for the adhesive thickness of shop glazed assemblies and 6 mm for construction site glazed
facades. ASTM C1401 (2002) differentiates between primary loads, like wind and secondary
loads, like differential thermal and building movement or dead load and seismic events.

For the structural sealant joint design, ASTM C1401 (2002) proposes several design methods.
The trapezoidal method is based on the assumption that a glass panel deflects in tributary
areas under a load normal to the panel. It is a method for the primary load transfer, the
maximum value occurring at the centre point of the glass pane’s short dimension. This
method corresponds to the equation given in ETAG 002 (2012) and discussed in the previous
section. The rigid plate method assumes the glass pane to be rigid and the stresses

la lb Pd
=—— < 3.4
OE ) (la+lb) he = Odes (3.4)
as uniformly distributed. In equation 3.4, o is the acting stress, pq the acting surface load,
h. the adhesive bite and og4.s the design value of the tensile strength. [, and [}, are the
dimensions of the rectangular glass pane.

The Finite Element Method can, similarly as in ETAG 002 (2012), be used to calculate the
stress distribution (normal and shear stresses) occurring under primary and secondary loads.
The Finite Element Method allows to take into account physical and geometrical nonlinearities.
As primary and secondary loads can occur simultaneously, their combined effect should
be evaluated. Generally speaking, the secondary loads should not cause more than an
additional stress of 0.021 MPa to 0.035 MPa. Moreover, the sum of tensile and shear stresses
should not exceed 0.139 MPa. Alternatively, the effect of combined loads can be assessed
with the elliptical interaction equation

2 2
(@)+<m>21 (3.5)
Odes Tdes

In equation 3.5, og is the acting tensile stress, 75 the acting shear stress, o4 the design
value for the tensile strength and 74 the design value for the shear strength. The same
formula applied for long term loads by using the respective long term strengths. The maximum
value for the dead load stress must be limited from 7 kPa to 3.5kPa. The transfer of dead
loads must be approved by the manufacturer. Dead loads of insulating glass panels are
usually transferred by setting blocks, but the edge bond can also be designed for a dead load
transfer, following

GPane (36)

= < .
B 0 he (latlp) =
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3.3 Modelling of silicone sealants

In equation 3.6, 7 is the acting shear stress, Gp.,. the dead load of the glass pane, h. the
adhesive bite, [, the pane’s shorter dimension, [}, the pane’s larger dimension and 7, the
design value of the shear strength for long term loads.

The calculation of the stresses induced by a differential thermal movement depends on
the type of structural sealant glazing system considered. Depending on the location of an
adhesive joint undergoing a differential thermal movement, tensile, shear or compressive
stresses can be caused. The acting stresses are determined from the stress-strain graph,
knowing the value for the differential movement. It should be limited to 0.139 MPa for tension.
When shear stresses are induced, the acting shear stress can be obtained from the stress-
strain graph in shear, knowing the induced shear angle, or from the tension stress-strain
graph, if no values for shear are available. The combined action of these stresses as well as
the interaction with other loads should be considered.

3.3 Modelling of silicone sealants

3.3.1 Basics of continuum mechanics

In the present section, the basic concepts of continuum mechanics are introduced. Since
silicone elastomer exhibits a nonlinear elastic material behaviour, this section focuses on
hyperelastic material laws. Hyperelastic material laws are mostly based on a strain energy
potential. Some commercial Finite Element software codes offer in addition a material
model, which uses experimental data directly without an explicit definition of a strain energy
potential to determine the material's response (e.g. Marlow (2003)). A basic assumption of
hyperelastic, i.e. nonlinear elastic theory is that the current stress state is only dependent on
the current deformation. Time and load history dependencies are not considered (Altenbach,
2012). In the following, most equations are based on the publication of Dorfmann (2009).

Kinematics

Generally speaking, a body can be represented as a set of material points, which can be
considered in a three dimensional Euclidian space. Considering a body (shown in figure
3.13) in its undeformed configuration (reference configuration) By and in its deformed state
B, the boundaries of these bodies in the two states are denoted 9B and 0B respectively.
The coordinate system of the reference configuration is given by the origin O and the base
vectors Ey, Es, E5. The coordinate system of the deformed state is defined by the origin o
and the base vectors €1, €3, €3. A point Py of the body in the reference configuration can thus
be described by a vector X and the point P its deformed state by a vector Z.

There is a vector field x that describes the deformation of the body. This vector field is a
one-to-one invertible orientation preserving mapping. The vector field is independent of the
deformation history (Altenbach, 2012).

T=x (X) and X =y (Z). (3.7)

The deformation gradient F' is a measure of the deformation of the body. It is a tensor, which
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Figure 3.13: Deformation of a body from the reference in the current configuration (Dorfmann,
2009)

maps the reference and current configuration. It is defined as

F:QQ:fLQ€+@:I+§i:I+H. (3.8)
X 09X 0x

In equation 3.8, H is the displacement gradient and I the unit tensor. Physically, the
deformation gradient F' transforms a line segment dX from the reference configuration to the
deformed configuration dZ. According to the polar decomposition theorem, the deformation
gradient can be decomposed into a proper orthogonal tensor and a symmetric tensor

F=RU=VR. (3.9)

R is the rotational tensor, U is the right stretch tensor and V' the left stretch tensor. Physically,
these tensors represent a pure stretch of the body without rotation. Considering the equation
above, it can be seen that the body can first be turned into the current configuration and
then be stretched or it can be stretched in the reference configuration and then turned. The
deformation gradient is defined in both the reference and current configuration and is not
necessarily symmetric. Moreover, it contains both a stretch and rotation part. The left and
right Cauchy-Green tensors describe deformations without being influenced by a pure rotation.
Moreover, they are only defined in one basis, either the reference configuration for the right
Cauchy-Green tensor C or the current configuration for the left Cauchy-Green tensor b.

C=F"F=U"U=U?

3.10
b=FF =vVi=V2 (3.10)
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The invariants of both tensors are equal as they only depend on the principal stretches \;,

I(b) = I,(C) =tr(C) = N + M\ + )%,

1
I(b) = I,(C)= 3 [(6(C)) = tr(C?)] = AT X3+ AT AF + A3 A3, (3.11)
I3(b) = I3(C) =det C = J* =\ A3 \2,

J is the determinate of the deformation gradient and is a measure of the volume change. If
an incompressible material is considered, J = 1. When considering compressible material
behaviour, the deformation gradient can be split into a deviatoric and volumetric component,

F = (J1/3 I) 7. (3.12)

In equation 3.12, J/3 I is the volumetric part (I is the unity tensor) and F the deviatoric part.
The same method applies to the left and right Cauchy-Green tensor. Further strain tensors
are defined in table 3.1. The infinitesimal strain tensor is considered, if the displacement
gradient is small, i.e. if the difference between the reference and the current configuration
can be neglected.

Table 3.1: Strain tensors

Strain tensor Definition
Green-Lagrange strain tensor E = 3 <U2 —I
Euler-Almansi strain tensor a=3 (I —b!
Infinitesimal strain tensor €= % (H + HT)

Stress tensors

Consider a body under given loads in equilibrium in its deformed configuration, as shown in
figure 3.14. When this body is cut into two pieces, these pieces are no longer in equilibrium.
According to Cauchy’s stress principle, equilibrium will be fulfilled when assuming the exis-
tence of a vector of internal forces acting on the cutting plane. For a given normal vector 7,
the stress vector t is given by

t=0o" 7, (3.13)
where o is the Cauchy stress tensor, a second order tensor, which is defined in the current
configuration. Considering equilibrium of moments, it can be shown that the Cauchy stress
tensor is symmetric.

There are more stress tensors, like the nominal stress tenor and the Piola-Kirchhoff tensor.

Table 3.2 summarises the stress tensors with their definitions, their properties and their work
conjugate.
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B,0B

Figure 3.14: Free-body principle on a solid under loads in its deformed configuration

Table 3.2: Different definitions for stress tensors

Stress tensor Equation Properties Work conjugate
Cauchy stress ten- o Current configuration, Euler-Almansi
sor symmetric

1%t Piola-Kirchhoff P, =J o F~T not symmetric Deformation
stress tensor gradient

2nd Pjoja-Kirchhoff Py =J F~ ! o F~T Reference configura- Green-

stress tensor tion, symmetric Lagrange

Equation of equilibrium

Considering body forces f defined per unit mass and acting throughout the body (e.g.
gravitational forces), equilibrium in the deformed configuration requires that both the sum of
all body forces and the sum of surface tractions vanish, i.e.

/Igpfdv+/(93fda:6. (3.14)

In equation 3.14, p is the density of the material of the body, fthe body forces per volume dv
and ¢ the surface tractions per area da. Considering equation 3.13, the equilibrium equation
can be written as a function of the Cauchy stress tensor,

/Bpfdv+/aBaT fida = 0. (3.15)

Finally, using the divergence theorem, equation 3.15 can be rewritten in its local form,

divo +pf =0. (3.16)
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Boundary conditions

The general field equations are completed by boundary conditions, which are applied to the
considered body (Altenbach, 2012). Three types of boundary conditions can be distinguished:

* prescribed surface displacements,
* prescribed surface forces and
» a combination of the prescribed surface loads and displacements.

For a number of problems, analytical solutions for the stress distribution or the displacements
can be found, especially if symmetry or plane strain and plane stress conditions are assumed.

Constitutive equations

For a hyperelastic material, it is postulated that a Helmholtz free-energy function W, defined
per unit volume exists. If W is a function of the deformation gradient or some other strain
tensors, it is referred to as strain energy function (Holzapfel, 1996). For homogeneous
materials, the strain energy potential only depends on the deformation gradient,

W =W (F). (3.17)

The relation between the Cauchy-stress tensor and the strain energy potential is given by

oW
-1
o=J F T (3.18)

For isotropic materials, the strain energy potential can also be expressed as functions of the
invariants of the left or right Cauchy-Green tensors.

W =W (I(C), I2(C), I3(C)) = W (11(b)I2(b), I5(b)) . (3.19)

For this case, the Cauchy stress tensor can be written as follows

oW oW oW oW
—9 J! I - 2]. 2
o=2J {13 oL I+ (811 + 35 1) b o, b (3.20)

Incompressible hyperelasticity

When an incompressible material behaviour is considered, the above shown equations
simplify considering that the ratio of current volume to initial volume, defined by J gives

J:det(F):/\l )\2 )\3:1. (3.21)

Therefore, the third invariant of the left and right Cauchy-Green tensors gives

I3(C) = I3(b) = J*> = 1. (3.22)
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The strain energy potential can now be written independently of the third invariant. In order to
account for the hydrostatic pressure, the following expression is postulated

W=W(@F)—pJ—1). (3.23)

In equation 3.23, p is the hydrostatic pressure, known as the undetermined Lagrange multiplier.
The hydrostatic pressure cannot be determined by the constitutive equation, it has to be
found through consideration of equilibrium or the boundary conditions. The Cauchy stress
tensor reduces to

ow  ow ow
— — v _pl. .24
o=2 <8Il + oL, Il> b oL, b*—plI (3.24)

Compressible hyperelasticity

For the consideration of compressible hyperelasticity, the strain energy potential can be split
into volumetric and deviatoric part

W = Waev + Wiol. (3.25)

Again, the strain energy potential can be expressed in terms of the invariants of the left or
right Cauchy-Green tensor if isotropic material behaviour is considered. As introduced before,
a multiplicative split of the invariants of the left or right Cauchy-Green tensor is performed.

Strain energy potentials

Up to this point, the strain energy potential was not described in detail. For rubber-like
materials, a number of strain energy potentials are available. There are two main categories
of material laws: micro-mechanically based and phenomenological models. Moreover, some
material laws are only based on the first invariant of the left Cauchy-Green tensor, whereas
others also take into account the second invariant. A good overview of hyperelastic material
laws is given in Marckmann and Verron (2006).

Table 3.3 gives the functional expression of some material models, which are generally
available in commercial Finite Element software codes. For the basic Neo-Hookean model,
the parameter 'y corresponds to half of the initial shear modulus of the material. The
Yeoh model additionally takes into account terms of higher order and the Mooney-Riviin
model the influence of the second invariant. These models are phenomenological and their
coefficients are typically determined in a curve fitting process using experimental test results
of characteristic stress states (uniaxial tension, pure shear, etc.). The curve fitting process is
based on a least square optimisation algorithm to determine the set of coefficients, which
best reproduces the experimental data (Dassault Systémes, 2014).

The models of Gent and Arruda-Boyce include a limiter for the extensibility of the molecular
chains of the considered material (Marckmann and Verron, 2006). For silicone adhesives, a
phenomenological material law based on the first and second invariant has been developed
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Table 3.3: Strain energy potentials for modelling hyperelastic material behaviour

Strain energy  Parameters Deviatoric part
potential
Neo-Hooke ClO W = 010 (Il — 3)
Mooney-Riviin ~ Ci; W =120 Cij (It — 3)' (I — 3)
Yeoh CiO W = Z?:l CiO (Il - 3)1'
Ogden i, O W= 8 (AT + AT+ A5 = 3)
Gent 1t Jm W = —£J,In [1 - fljﬂ
Arruda-Boyce 1, Ci, Am W=u¥>, % (Ii — 3Y)
Dias ci W=c (I} =3)+c (I} —3)* +c3 (I — 3) +
_ C4 + C4
I>s—3+cs cs
_ (I,—1) (In—3)
Drass amp; Bup; Xmp, o W= OéMD+511wD (I1—-3) + XMD+5§4D (I2—3)
eq
Marlow Test data W = fOAUT ! Oe (€e) dee, S€€ equation 3.36

in Dias (2013) and more recently for transparent structural silicone adhesive by Drass et al.
(2017b). There are also material laws, which are not based on a functional expression of the
strain energy density (e.g. Marlow (2003)). More details are given in section 3.3.3.

3.3.2 Definition of true and engineering strains

Silicone sealants exhibit large deformations. Therefore, true strains and engineering strains
as well as true stresses (Cauchy) and engineering stresses are discussed in this section.

(a) Engineering strains (b) True strains

Figure 3.15: Difference between true strains and engineering strains
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Consider the one-dimensional line element shown in figure 3.15a with an initial length [
under a tensile force F' and the infinitesimal segment with a length dx. Due to the force F/,
the material segment exhibits a change of length du. The engineering strain is defined as the
ratio of the change of length over the initial length (Altenbach, 2012) with

d
Ee = au & du = g, dx. (3.26)
dx
For the determination of the total elongation Al of the material line, the changes in length of
each segment are summarised

lo
Al = /du :/ €e d. (3.27)
0

If the cross section stiffness is constant (constant cross sectional area and Young’s modulus),
then the strain ¢, is constant along the ordinate x and equation 3.27 simplifies to

lo Al
Al = &, dr = ce lg & €6 = —. (3.28)

0 lo
An inconvenience of the engineering strains is that for large deformations, the sum of
engineering strains of two consecutively applied length changes does not equal the strain of
the total applied elongation. Therefore, it can be useful to define an additional measure for
strains (Altenbach, 2012). Consider the line element in figure 3.15b with an initial length [y
under a tensile force F. An infinitesimal amount of true strain de is defined as the ratio of an

infinitesimal length change dl over the current length [,

dl
de = T (3.29)
The total amount of true strain for a finite elongation Al of the material line is obtained by
integration of equation 3.29,

Ldl l
e= | —==lnl—Inlg=In— =InA. (3.30)
lo 1 lo

True strains are also called Hencky strains or logarithmic strains, which becomes evident
regarding their definition. In equation 3.30, X is referred to as stretch. Finally, considering
3.30, a relationship between true and engineering strains can be found,

) lo+ Al
e=Iln—=1In =
lo lo

1+ e (3.31)

In an analogous way, a difference can be made between true and engineering stresses. True
stress is the ratio between the acting force on the area of a cutting plane in the deformed
configuration (Cauchy stress), whereas for engineering stresses, the acting force is divided by
the area of the cutting plane in the undeformed or reference configuration (2. Piola-Kirchhoff
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stress). The difference between true and engineering or nominal stresses is negligible for
small strains. The relation between true and engineering stresses in the one-dimensional
tension bar is given in Schneider et al. (2016) as

o=0c (14¢e01)*. (3.32)

In equation 3.32, o are true stresses, o, engineering stresses, ¢, 1 the longitudinal engineering
strain and v is the actual Poisson ratio. Considering a one-dimensional bar loaded in tension,
equation 3.32 allows to determine the distribution of true stresses in the bar, provided that the
strain distribution and the value of Poisson’s ratio of the material are known. If Poisson’s ratio
is assumed as v = (.5 for quasi-incompressible materials, equation 3.32 can be simplified to

Oiso = Oe (1 + Ee,l) y (333)

with o5, referred to as isochoric stress.

3.3.3 Selected material law and chosen assumptions

In Finite Element Analysis, the nonlinear elastic material behaviour of silicone sealants is
generally reproduced assuming hyperelastic material laws (e.g. Dias (2013)). In this section,
the chosen material law for the considered Dow Corning® 993 structural silicone sealant
(Dow Corning Corporation, 2001) is presented and the basic assumptions are discussed.

First of all, the considered silicone material is assumed to be fully incompressible, since
the bulk modulus is much higher (factor 600) than the shear modulus of the sealant (Dias,
2013). Wolf and Descamps (2002) have shown with ultrasonic measurements that Poisson’s
ratio of silicones are close to 0.5. Values between 0.4957 and 0.4979 have been found for
different sealants. In addition, as mainly linear silicone beads are considered, the deviatoric
part of the stress tensor is judged dominant. Apart from the assumption of incompressibility,
a quasi-static loading is assumed and the initial stiffness is considered regarding the Mullins
effect.

In section 3.3.1, different strain energy potentials have been introduced. They have all
been based on a functional expression using the invariants of the left Cauchy-Green strain
tensor. Investigations in Staudt (2013) have shown that the response function gives a good
agreement between the conducted shear tests and their numerical simulation. The response
function or Marlow hyperelastic material law is not based on a functional expression for the
strain energy density. The material behaviour is assumed to depend only on the first invariant
of the left Cauchy-Green tensor. With this assumption, the material response can directly
be derived from uniaxial tensile test data. In the following, a simplified analysis is given to
explain the continuum mechanics basis of the Marlow model. The experimental data consists
in uniaxial tensile stress-strain curves from section 4.1.1.

An incompressible material point under a given deformation state is considered. Knowing
that for incompressible material behaviour, A1 Ao A3 = 1, the first invariant of the left Cauchy-
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Green tensor gives

L) =M +N+N=XN+N\+ =1. (3.34)

(A1 A2)?

In equation 3.34, I; (b) is the first invariant of the left Cauchy-Green tensor and \; are the
stretches in the three directions of the Euclidean space. With this given value for the first
invariant fl, an equivalent stretch Ay for a material point in uniaxial tension, i.e. Ao = A3,
can be found, which leads to the same value of the first invariant

- 2 -
I = yp + Sor = Mo — I Aur +2=0. (3.35)

It can be shown that the third order equation given in equation 3.35 has exactly one root
AU > 1. This root corresponds to the equivalent uniaxial stretch, which leads to the
same value of the first invariant of the left Cauchy-Green tensor I; compared to the initially
given deformation state. With this equivalent stretch, the experimental data can be used to
determine numerically the strain energy density with

w(f) = /OA%QT_1 7o (c6) dee. (3.36)

In equation 3.36, W is the strain energy density of the material point considered, o, the
experimental engineering stress and ¢, the corresponding engineering strains.

3.3.4 Finite Element Method

The Finite Element Method (FEM) is a numerical approximation method to solve partial
differential equations. In this section, the basic concepts of this method are presented. The
designation "Finite Element Method" was first introduced by Clough in 1960, describing the
essence of this method, which consists in dividing the continuum in small partitions, the
so-called Finite Elements (Zienkiewicz and Taylor, 2000). The continuous development of the
method and the availability of more and more powerful computers in the past years allowed
the Finite Element Method to become a powerful predictive tool for complex engineering pro-
cesses. Modelling of complex experiments and nonlinear problems, for which no closed-form
solutions exist, can be handled. Several types of nonlinearities can be included in an analysis,
beginning with geometrical (large displacements but small strains) and physical (nonlinear
material response) nonlinearities. Furthermore finite deformations with large strains, stability
problems and nonlinear boundary conditions can be treated in many commercial Finite
Element software codes (Ogden, 2005).

As already mentioned before, the essence of the Finite Element Method consists in a dis-
cretisation of the continuum in various sub-domains, called elements. These elements are
defined by nodes. Each node has a limited number of degrees of freedom. Therefore, the
continuum can be represented by a finite number of degrees of freedom (DOF). DOF are
independent quantities, which determine the spatial variation of a field. The number of DOF
of a given structure depends on the number of elements, the number of nodes per element
and the number of DOF per node. The arrangement of the Finite Elements is called mesh.
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The FEM allows to determine an approximate numerical solution for a given field problem, in
which the spatial distribution of a given variable (e.g. displacements in elasticity problems)
has to be determined. For elasticity problems in a displacement-based formulation, the DOF
are displacements, whose values are calculated at the nodes by solving a system of algebraic
equations. Within an element, the distribution of the considered variable is interpolated from
the values at the nodes. For high order elements, additional nodes are placed between the
edges of an element allowing for a more accurate distribution of the field quantity without
changing the size of the finite element. For the determination of the spatial distribution of
the variable within the continuum, the weighted residual method is used to find the solution
for the governing differential equations (e.g. equilibrium of stresses in elasticity problems).
The variational method consists in finding a minimum for the functional used and respecting
internal compatibility and boundary conditions. In elasticity problems, the functional used
is the total potential energy (Cook et al., 2002). Furthermore, for elasticity problems, the
described optimisation problem leads to a system of equations of the form force = stiffness
x deformation (Klein, 2007). This equation is solved for the unknown deformation vector,
which contains the displacements of the nodes. Some of these displacements can already
be known by applied boundary conditions. The initial partial differential equation (equilibrium
condition in elasticity) is replaced by a system of linear algebraic equations (Klein, 2007).
The force vector is generally known and composed of the external loads. Finally, the stiffness
matrix includes the properties of the elements. A numerical integration procedure is used
for the determination of the stiffness matrix. The accuracy of the stresses is limited by both
the mesh refinement and the degree of the Ansatz function used. From the deformations of
nodes, the stresses and strains are calculated at the integration points, the so-called Gauss
points, and extrapolated to the nodes and if necessary averaged with the values of the nodes
of neighbouring elements.

The elements used can be characterised by 5 aspects: family, degrees of freedom (DOF),
number of nodes, formulation and integration. Continuum, shell, beam, rigid or connector
elements are commonly used element families. For the modelling process, the choice of
the appropriate element family depends on many parameters, as the idealisation of the
reproduced "real" structure or the problem classification. The degrees of freedom (DOF) are
fundamental variables of the analysis. Basically, they denote translations and rotations of
the nodes. The number of nodes and the order of interpolation are additional characterising
values. For elements, which only have nodes at their corners, the displacements at any other
point are obtained by a linear interpolation of the values at the corners. These elements are
called first-order or linear elements. Elements, which have additional nodes between the
corners use a quadratic interpolation. They are called second order or quadratic elements.
The formulation of the elements refers to the mathematical theory used. Two formulations are
used: the Eulerian and Lagrangian method. The Eulerian method is used in fluid dynamics
problems. For this method, elements are fixed in space and material flows through them. On
the contrary, for the Lagrangian formulation, the deformation of a material point is described.
This formulation is used in stress/displacement based problems. When considering nearly or
fully incompressible material behaviour, elements with a hybrid formulation must be used. In
elasticity problems, the finite elements used generally have displacement degrees of freedom.
If an incompressible material behaviour is assumed using these elements, an arbitrary
hydrostatic pressure can be added without influencing the displacements. On the other hand,
for nearly incompressible material behaviour, the results of the hydrostatic pressure are very
sensitive towards small changes of the displacements, as they are found within the round-off
error. Hybrid elements can be used to overcome these issues. These elements have a mixed
formulation, i.e. they have, apart from the displacements, additional degrees of freedom,
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such as the hydrostatic pressure. The hydrostatic pressure is coupled with the displacement
solution using compatibility condition and the constitutive theory. Concerning the integration,
the numerical technique of the Gaussian quadrature is used for most elements. The material
response is evaluated at each integration point. A reduced integration is available (Dassault
Systemes, 2014), which means that less integration points are employed.

3.3.5 Singularities in a Finite Element Analysis

The Finite Element Method has become a powerful tool to analyse complex stress states.
Since it is a numerical approximation method, it is important to check if sufficiently accurate
stresses are obtained from such an analysis. It is essential to know, if the results for stresses
in a given model are converging or not and if they converge to a sufficiently accurate approxi-
mation of the stresses in the real structure (Zienkiewicz and Taylor, 2000).

If the model exhibits a stress singularity, the values of the diverging stresses increase for an
increasing mesh density. The numerical results thus depend on the arbitrary choice of the
structure’s discretisation (Gleich, 2002). According to Sinclair (2004), "stress singularities are
not of the real world. Nonetheless, they can be a real fact of a stress analysis". The challenge
consists in the identification of singular points. Either, the model is improved in a way that the
singularity vanishes or the results have to be interpreted and assessed for singularities that
persist.

For problems in elasticity, singularities at concentrated loads and singularities away from
concentrated loads can be distinguished. Singularities at concentrated loads can arise if a
load or support condition is defined on an infinitesimal small area, like for a point or line load
on solid elements. These singularities are also called singular loads. Singularities away from
concentrated loads arise from discontinuities in the model, like sharp edges (re-entrant cor-
ner), wedges or cracks and an offset in the elastic constants between two or more materials.
These discontinuities show stress concentrations, which are potential sources of fatigue or
failure, even if the stress singularities, which are results of the elastic analysis, are physically
unrealistic (Sinclair, 2004).

Stress singularities can lead to major problems in the assessment of the results computed in
a Finite Element analysis. A decreasing element size or increasing order of integration of the
elements will cause the integration points to move towards the origin of the singularity, thus
increasing the stress values. Thus, for the same element size, the higher order element will
give a higher peak value. There are special elements, so-called Barsoum elements, which
are able to represent singularities, but only for singularities such as cracks. In the case of
notches, these elements are not helpful since the order of singularity of a crack is different
from that of a wedge (WeiBgraeber and Becker, 2013). For an elastic-plastic material law,
the stress singularity disappears, as yielding occurs, but a strain singularity remains (Gleich,
2002).
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3.4 Failure criteria

3.4.1 Objectives of failure criteria and concepts

For a structural engineer, the key task consists in the verification of the load bearing capacity
of a structure. For this verification, the acting stress state in the structure is compared to an
allowable upper limit, the material strength. As discussed in section 3.1, silicone sealants
exhibit a pronounced nonlinear material behaviour and experience large deformations. In or-
der to capture these physical and geometrical nonlinearities, the stresses in silicone sealants
are often analysed using a Finite Element Analysis. As the result of these analysis are
generally triaxial stress states (Stommel and Korte, 2011) and as the material strength is
often determined in uniaxial tensile tests on dog bone specimens due to their simplicity
(Mang and Hofstetter, 2013), a method is needed to compare the complex stress state with
the results obtained from the simple material tests. Alternatively, the ultimate load bearing
capacity can be assessed with component tests. These component tests however are time
consuming and thus expensive.

According to Nait-Abdelaziz et al. (2012) and Banea and da Silva (2009), the assessment of
complex stress states can be performed following the three concepts given in figure 3.16. In a
first method, a perfect bulk material without defects or flaws is assumed. The complex stress
state is assessed using a fracture criterion, which is based on a mathematical function using
as input mechanical quantities, like stresses or strains, as determined on the perfect flawless
material. On the other hand, a fracture mechanics approach assumes the existence of a
pre-crack. Fracture mechanics concepts are used to evaluate the crack propagation. Finally,
due to the availability of more and more powerful computers and the continuous development
of numerical methods, the failure point is included in the constitutive material laws and
the failure process is thus modelled in the numerical simulation in a damage mechanics
approach. In Grandcoin et al. (2014), a micro-mechanically based constitutive damage model
of a silica-filled silicone rubber was formulated to assess fatigue. Damage initiation of this
model is based on the decohesion between filler and polymeric matrix.

Failure assessment based on

failure fracture damage
criterion mechanics mechanics

=l

Figure 3.16: Overview of concepts to assess failure

In the following investigations, simple failure criteria on defect-free rubber-like bulk material are
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investigated for the case of a static loading with the assumptions given in section 3.3.3. For
failure criteria based on the assumption of a flawless bulk material, three different concepts
can be adopted: stress-, strain- or energy-based formulations. Whereas stress-based criteria
take into account the hydrostatic stress state, which can be relevant for rubber-like materials
(Ayoub et al., 2010), strain-based criteria use displacements as directly measurable values
(Zine et al., 2006).

3.4.2 Types of fracture

The present section gives a short overview about the definitions of the term brittle in the
context of elastomer failure. Generally speaking, the fracture process is considered as
completed, if crack growth comes to an end or if there is a complete break-through of the
body with a distinction between brittle and ductile failure (Gross and Seelig, 2011).

In the field of elasticity, brittleness is defined as the opposite of plasticity. Brittle materials
exhibit very small deformations before rupture, as opposed to ductile materials, which show
large deformations prior to failure (e.g. Thrower (1986), Habenicht (2009)). In addition,
failure of brittle materials is governed by the acting normal stresses, as described in Beer
et al. (2009) in the context of tensile specimens. The same approach is adopted in the field
of structural sealant glazing systems. Here, the term brittle is defined as the opposite of
elasticity (AAMA, 2014), which is defined as the ability of a material to take extension and
compression. Thus, a brittle material behaviour is related as well to small deformations.

Gross and Seelig (2011) consider the occurring plastic deformations to define brittle or ductile
failure. For ductile fracture, large inelastic deformations are observed prior to failure and
brittle failure is characterised by the absence of a significant amount of plastic deformation
prior to failure.

For polymers, the question about brittle or ductile failure is often answered with a visual
assessment of the fracture surfaces, but no quantitative measure is given for brittleness
(Brostow and Lobland, 2010). In Trapper and Volokh (2008), cracks in rubber were inves-
tigated and brittleness was defined as the ratio of the shear modulus to the average bond
energy. Furthermore, brittle materials were found more sensitive to cracks than soft materials.
This finding was explained with the large deformations, soft materials can undergo.

For soft and highly deformable elastomers, Williams (1984) reported about brittle-like fracture
behaviour. In a similar way, Boué et al. (2015) described the failure behaviour of highly
deformable materials, like elastomers, as brittle, since they show only very small inelastic
deformations. In these cases, the bulk dissipation can be neglected, i.e. the material remains
elastic, even at high strains. Finally, Brighenti et al. (2017) presented investigations on a
hyperelastic silicone polymer. Pre-cracked specimens were tested in tension. The crack tip
was found to blunt due to the high deformations of the material, but the observed failure
mechanism was described as brittle with instantaneous rupture of the specimens.

Concluding, the question of brittle or ductile failure can either be assessed considering the
deformations of a material or considering the amount of inelastic deformation prior to failure.
In this context, it is noticed that brittle or ductile behaviour is not a pure material property,
but also depends on the stress state, the temperature or the loading rate (Gross and Seelig,
2011). Regarding the influence of the stress state, a hydrostatic stress state, which causes
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an elastic deformation for many plastically deformable materials, can lead to brittle failure
of the material, i.e. showing small amount of inelastic deformations. Apart from the stress
state, many materials behave brittle at sufficiently low temperatures, i.e. below the transition
temperature. The same effect can be observed when the loading rate is sufficiently high.

3.4.3 Stress-based criteria

The well-known and simple principal stress hypothesis has been introduced by Rankine,
Lamé and Navier. It is generally used for brittle materials, like glass. Failure is observed,
when either the maximum principal stress exceeds the tensile strength or when the minimum
principal stress exceeds the compression strength (Gross and Seelig, 2011),

o1 = oyt V 03 = oycC- (3.37)

In equation 3.37, o is the maximum principal stress, oy the tensile strength, o3 the minimum
principal stress and oyc the compression strength. As failure of polymers in compression is
considered as unlikely, the second condition in equation 3.37 is often omitted.

The failure process of quasi-incompressible rubber-like materials is often related to an
internal creation and growth of voids and cavities. The phenomenon of void nucleation,
called cavitation, can be related on a macroscopic scale to a significant change of slope in
the stress-strain diagram (Gent and Lindley, 1959). Cavitation is observed for specimens
exhibiting high values of hydrostatic tension. These stresses can be found in so-called
pancake specimens under tensile forces. Pancake specimens are butt bonded cylinders with
small adhesive thickness compared to the cylinder’s diameter, or cylinders bonded on flat
surfaces (Drass and Schneider, 2016). The influence of the adhesive thickness on cavitation
has been investigated in Ait-Hocine et al. (2011) on a filled rubber, similarly as in Gent
and Lindley (1959). In both investigations, the fracture pattern of the specimens with small
thickness clearly showed small bubbles coming from cavitation. Furthermore, a significant
change of slope in the stress-strain diagram was observed for these specimens. For the
thick adhesive layers, no change of slope in the stress-strain diagram was observed and the
failure pattern did not show small air bubbles. The failure process of these specimens was
controlled by crack propagation. The threshold value for void nucleation

=—1 <-F 3.38

P 3 [ (o) 5 (3.38)
was derived and validated on pancake specimens in Gent and Lindley (1959) for a Neo-
Hookean material. In equation 3.38, p is the hydrostatic pressure, I; (o) the first invariant
of the Cauchy stress tensor and E Young’s modulus of the considered sealant at small strains.

The von Mises criterion was originally developed as a yield criterion for ductile materials,
like steel. This criterion does not take into account the hydrostatic stress state (Gross and
Mendelson, 1970). But as discussed previously, the failure of rubber-like material depends
on the hydrostatic stress state (Gent and Lindley, 1959). As the von Mises criterion is
implemented in many commercial Finite Element software codes, it is often accepted to
assess failure of polymers (Kolupaev et al., 2003). The von Mises stress is given as

OMises = \/ 3 I (3) (3.39)
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In equation 3.39, oises IS the equivalent stress according to von Mises, I (s) the second
invariant of the deviatoric stress tensor s, which is defined as: s = o — p I, where pis the
hydrostatic pressure and I the unit tensor.

3.4.4 Strain-based criteria

A criterion, similar to the Rankine maximum principal stress criterion is available for strains.
The maximum principal strain hypothesis was introduced by Saint-Venant and Bach. Failure
occurs if the maximum principal strain

€1 = EUT (3.40)

exceeds an upper limit (Gross and Seelig, 2011). In equation 3.40, ¢; is the first principal
strain and ey the ultimate strain. For rubbers, the maximum principal strain criterion has
been used by Kawabata (1973) and validated performing tests on rubber sheets. The maxi-
mum principal strain is amongst others widely used in fatigue life analysis of rubber (Zine
et al.,, 2011).

The maximum principal strain only considers one component of the three dimensional
principal strain tensor. The strain magnitude can be physically seen as a measure for the
stretch of the molecular chains (Molls, 2013), with

em = (/€ + &3+ 3. (3.41)

In equation 3.41, e is the strain magnitude and ¢; are the three principal true strains. The
strain magnitude is used with true strains. The strain magnitude has been employed in
Molls (2013) to assess failure in elastomeric parts in technical applications. In the space of
true principal strains, equation 3.41 describes a sphere with the centre at the origin of the
coordinate system.

3.4.5 Energy-based criteria

In addition to the maximum principal strain criterion, the strain energy density, referred to as
the failure criterion according to Beltrami (1889) (Lazzarin and Berto, 2005), is as well widely
used to assess fatigue of rubber-like material (Zine et al., 2011). Since the constitutive laws
for rubber-like materials are generally based on a functional expression for the strain energy
density, it can also be used a limiter to reproduce the failure process in numerical simulations
(Volokh, 2010).

The strain energy density approach has been identified in Scherer (2014) as a potential
failure criterion for silicone sealant. However, additional investigations were recommended to
validate this failure criterion.
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3.5 Considerations on the stress field in a single-lap shear joint

In this section, a literature review on single-lap shear joints is given. Single lap shear joints
are used in many industrial applications, like aerospace industry. The literature review focus
on the stress distribution in the adhesive and examples are given to illustrate the different
aspects discussed. In contrast to civil engineering, a thin adhesive layer thickness and
stiff adhesives are generally used. As the analytical solutions discussed in the following
usually deal with linear elastic and stiff adhesives, two cases are considered. A linear elastic
adhesive is considered in a thin lap shear joint, as well as the soft silicone adhesive in form of
a thick silicone bead as used in the specimen detailed by ETAG 002 (2012). Special attention
will be put on the singularities, which can be found at the corner edges of the adhesive.
Several assessment techniques are introduced and discussed.

3.5.1 Analytical models - Volkersen and Allman solution

In the current section, some analytical solutions for the stress distribution in a single-lap shear
joint are presented and their results are compared to the stress distributions obtained from a
Finite Element Analysis. For simplicity, the same thickness is defined for both adherends.
Furthermore, a linear elastic material behaviour is assumed for the adherends and the
adhesive. In the following, two cases are distinguished, starting with a thin and stiff adhesive
and in a second step, with rigid adherends and a thick and soft adhesive layer. Figure 3.17
shows the considered single-lap shear joint and table 3.4 gives the elastic constants and
dimensions of the bonded connection.

Adherend: Eg,vs

L. ladh N

Figure 3.17: Single lap-shear joint

Table 3.4: Elastic constants and dimensions of the single-lap shear joint

Nomenclature Stiff adhesive  Soft adhesive

ts Adherend thickness 5mm 5mm

ta Adhesive thickness 1mm 12mm

Es  Adherend Young’s modulus 70000 MPa 70000 MPa
FE. Adhesive Young's modulus 1000 MPa 2.4 MPa

Vs Adherend Poisson ratio 0.34 0.34
Va Adhesive Poisson ratio 0.35 0.5

F Applied force 480N 480N
he Adhesive width 12mm 12mm
l.an  Adhesive overlap length 50mm 50mm

The simplest form of the shear stress distribution in the single-lap shear joint assumes a
constant shear stress over the adhesive thickness and overlap length. It can be physically
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interpreted as an average or engineering shear stress. Equation 3.42 gives the expression
for the average shear stress (Da Silva et al., 2009a)

_F
B hc ladh .

Te (3.42)

In equation 3.42, 7. is the average shear stress, F' the applied force, h. the adhesive width
(bite) and [,qn the adhesive overlap length.

The earliest closed form solution for the shear stress distribution was given by Volkersen
(1938). Compared to the concept of average stresses, given in equation 3.42, the Volkersen
solution is based on a concept of differential shear, where the adherends are considered
elastic, not rigid. The additional differential shear deformation, which causes additional shear
stresses in the adhesive, is taken into account in the Volkersen solution. The Volkersen
equation only considers shear stresses, assuming a simple shear stress state. The shear
stresses are constant through the thickness of the adhesive. Bending of the adherends due to
the eccentric loading situation is not considered (WeiBgraeber and Becker, 2013). Equation
3.43 gives the Volkersen equation for a symmetric single-lap shear joint as

F  wyk cosh(wyk &) .. 1 i 1
_ ths <&=-"—<and
W — 9 Gailgdh.
VK Es ts ta

In equation 3.43, Ty is the shear stress according to Volkersen, & the relative ordinate, Fg
Young’'s modulus of the adherend and G, the shear modulus of the adhesive.

The Volkersen equation was published in 1938 and originally used for the calculation of the
force distribution in the bolts of riveted joints (Volkersen, 1938). Since then, many closed
form solutions were found, including effects like the bending of the adherends, or considering
elastic-plastic material behaviour for the adhesive, e.g. Hart-Smith (1973). These solutions
usually take into account peel stresses as well, like the solution of Goland and Reissner
(1944), which considers the opening stress in the joint. Peel stresses are the stresses
perpendicular to the plane of the adhesive layer, which are caused by the eccentricity of the
applied tensile force (Allman, 1977). More analytical solutions can be found in Da Silva et al.
(2009a) and Da Silva et al. (2009b) as well as in Gleich (2002).

A basic property of the analytical models is their so-called weak interface formulation with
adherends considered as beams and the adhesive as smeared springs. The condition of
traction free surfaces in the adhesive is generally not fulfilled (WeiBgraeber et al., 2014). As
mentioned before, only average stresses are considered over the height of the adhesive and
almost all solutions predict the maximum stress to occur at the edge of the adhesive area,
which violates the shear stress-free condition. This is a result of ignoring the normal stresses
in the adhesive (Gleich, 2002).

The analytical solution of Allman fulfils the free edge condition. The general form of Allman’s
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solution is given in equation 3.44 (Allman, 1977) with the components

oALz =0 normal stress,
1 dd, F
- — shear stress and
tn dr 1 b (3.44)
te  d2®;  d’D,
n +
2t, ' dx? dx?

TAL,xzy =

OALy = — peel stress.

In equation 3.44, n = 2 y /15 is the relative ordinate normal to the interface. ®; (x) and @2 ()
are two unknown stress functions. These stress functions are determined by minimizing the
strain energy. Due to the complexity of the stress functions, only the special case of rigid
adherends is considered here. This case corresponds to bonded connections with silicone,
as the elastic modulus of glass or aluminium is much higher than the elastic modulus of the
sealant. For this case, the distribution of the stress components are given as

oALz =0 normal stress,
7F L~ laan/2 WAL eZoan/27) shear stress and
7' prng
AL R L ladn/2 war, — 1 (3.45)
Ft, w?
OALy = 2 CAL e~war(l/2-2) peel stress.

4 he (ladn/2 war, — 1)

M)I/QI

a

In equation 3.45, 0 < & < laan/2 and war, = & (

A major limitation of the analytical models is the basic assumption of constant shear stress
distributions over the adhesive thickness. This assumption is commonly used as mainly
very thin adhesive layers are investigated. From the analytical models, an increase of the
adhesive’s thickness leads to a decrease of the stresses and thus to a higher load bearing
capacity. Experimental investigations however show that the load bearing capacity decreases
for an increasing adhesive layer thickness. This phenomenon is called adhesive thickness
effect. Considering the average shear and peel stress distributions, the adhesive thickness
effect cannot be explained. However, taking into account the stresses at the interface of the
adhesive, shear and peel stresses are found to increase for an increasing thickness, thus
leading to a decreased load bearing capacity, as observed in the tests (Gleich, 2002). A
consideration of the stresses at the interface of the adhesive seems essential, as the most
common type of failure is cohesive failure close to the bondline interfaces (WeiBgraeber and
Becker, 2013). As mentioned before, the middle layer of the adhesive is typically modelled.
As the adhesive is represented as smeared springs, the two-dimensional elastic continuum
is not fully represented. Therefore, these weak interface solutions do not represent stress
singularities at the bi-material points, thus predicting finite stresses instead of infinite stresses
(WeiBgraeber et al., 2014).

The adhesive thickness effect was investigated in Banea et al. (2015) and Campilho et al.
(2015). Potential interpretations were given for the decreasing adhesive strength with in-
creasing thickness. The presence of defects were judged more likely in thick adhesive layers.
Another explanation states that yielding of an adhesive can develop faster in a thick joint.
Gleich (2002) refers to the stress distribution with increasing stresses at the interface for
a higher thickness. Finally, due to the increasing distance between the applied forces with
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an increasing adhesive layer thickness, the acting bending moment increases as well. For
silicone sealants, single-lap shear joint tests have been performed in Banea and da Silva
(2010) on a one-component room temperature vulcanising silicone adhesive. The failure
load was found to increase with increasing adhesive thickness. A silicone sealant with a
shear modulus around 0.6 MPa was tested in shear in a single-lap shear joint. Specimen
with a bondline thickness of 0.5 mm and 1 mm were produced and tested. The width of the
specimens was approximately 25 mm. In chapter 4.2.1, bonded connections with silicone
sealant were tested in simple shear and the strength was found to decrease with increasing
adhesive thickness. Layers from 6 to 24 mm were tested. In this context, it should be noted
that an optimum bondline thickness can be identified for adhesive layers, such as in Gleich
(2002), where the strength of the single-lap shear joint was found to increase with decreasing
adhesive thickness up to a certain point at which, the strength decreased again. Finally, in
WeiBgraeber (2014), the adhesive thickness effect was related to the energy release rate. A
higher amount of strain energy, which can be released in case of crack onset, is stored in
thick adhesive layers for the same applied load compared to thin layers.
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Figure 3.18: Stress distribution along the interface of a single-lap shear joint. Volkersen and
Allman solution considered.

To illustrate the previously given equations, the shear and peel stress distributions are given
for both cases of the stiff and soft connection defined in table 3.4. Figure 3.18 displays the
shear stress distribution according to Volkersen for the stiff connection and both shear and
peel stresses according to Allman for the soft connection. In addition, the engineering shear
stresses following equation 3.42 are given. The ratio between the shear stresses and the
average shear stress as well as the ratio between the peel stress and the acting tensile stress
(F'/(hc ts)) are plotted against the overlap length. The Volkersen model predicts stress peaks
at the free edges of the adhesive joint, which are due to the elastic adherends. The Allman
model satisfies the stress free edge condition. Therefore, the constant shear stress in the
middle area is higher in order to satisfy global equilibrium.
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3.5 Considerations on the stress field in a single-lap shear joint

In a second step, the stress distributions obtained from the previously presented analytical
solutions are compared with the stress distributions from a Finite Element Analysis. Special
attention will be devoted to the convergence behaviour of the stresses at the edge area of the
adhesive. The assumed boundary conditions of the numerical model are given in figure 3.19.
The upper and lower supports in y-direction were used to avoid rotation of the adherends
thus better fulfilling the boundary conditions assumed by Volkersen. The commercial Finite
Element software code ABAQUS® (Dassault Systémes, 2014) was used for the numerical
simulation of the single-lap shear joint. The dimensions and elastic constants are given
in table 3.4. 8-node biquadratic plane strain quadrilateral elements were selected in the
geometric linear analysis. For the simulation of the bonded connection with the stiff adhesive,
three different element sizes were considered: 0.5 mm, 0.1 mm and 0.01 mm.

Y ¥ YWY Y. Y

Figure 3.19: Boundary conditions for the single-lap shear joint

A A A A A A

Figure 3.20 shows the result for the stress distribution at the interface between the stiff
adhesive and the adherend (values for —25 < z < 0) and at the centreline of the adhesive
(values for 0 < x < 25). The shear stress distribution was determined using ABAQUS®
(Dassault Systemes, 2014) for the three aforementioned element sizes. Furthermore, the
stress distribution obtained from the Volkersen equation is plotted. A good correlation be-
tween the Volkersen equation and the numerical simulation is found for both centreline and
interface path. For the centreline path, the shear stresses tend to zero at the edge areas,
thus fulfilling the stress free edge condition. For the interface path in the numerical simulation,
stress peaks appear with increasing values for a decreasing element size, thus indicating the
singular behaviour of the edge area.

Figure 3.20 shows the convergence of the different stress components. Both the centreline
and the interface between adherend and adhesive are considered. The centreline values are
dashed. The stress components of the interface do not converge for a refined mesh, whereas
the centreline values converge, even when a coarse mesh of 0.5 mm (which corresponds to
2 elements over the adhesive thickness) is used. This behaviour was as well observed in
WeiBgraeber et al. (2014), where the stresses at the mid-plane of the adhesive were selected
for further investigations. In general, taking the stress values at the centreline is the most
common way to handle the singularity at the interface.
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Figure 3.20: Shear stress distribution at the interface (left) between the stiff adhesive and
adherend and the centreline (right) - comparison between Volkersen and FEA
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Figure 3.21: Shear stress distribution for the stresses at the interface of the soft adhesive -
comparison between the values from FEA, the Volkersen equation and the Allman equation
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3.5 Considerations on the stress field in a single-lap shear joint
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Figure 3.22: Peel stress distribution for the stresses at the interface of the soft adhesive -
comparison between the values from FEA and the Allman equation

Figure 3.21 shows the shear stress distribution for the soft adhesive as defined in table
3.4. The values obtained from the linear analysis using the commercial Finite Element
software code ABAQUS® (Dassault Systémes, 2014) (linear elastic material law, plane strain
conditions, CPE8H quadratic elements with hybrid formulation due to the incompressible
material behaviour) were compared with the analytical solutions of Volkersen and Allman.
A good agreement was found except at the edge areas, where stress peaks appear in the
numerical simulation. For a soft adhesive, the stress distribution according to Volkersen
corresponds to a constant value, like the average shear stress.

Figure 3.22 shows the peel stress distribution obtained from the numerical simulation and
from the Allman solution. It shows very good correlation with the numerical simulation, except
for the peak value at the corner edges. Moreover, the analytical solution only predicts positive
peel stresses.

3.5.2 Stress singularities at single-lap shear joints

In the previous section, the stresses at the interface between adhesive and adherend were
found not to converge to a constant value, when the Finite Element mesh is refined. This
indicates the presence of a singular point. Stress singularities exist at the bi-material interface
in bonded joints due to the sharp change of the geometry and the material properties (Gleich,
2002). According to Chen et al. (2011), the singularity problem at the interface corner in
adhesive joints in Finite Element Analysis is mentioned, but often ignored.

The presence of stress singularities at the edge areas of bonded connections is subject
of a number of publications. The stress singularity at the two-material wedge has been
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weak medium strong
strong medium medium
I I I
(a) No fillet (b) 45°fillet (c) Full 45°fillet

Figure 3.23: Singularities in a single-lap shear joint - consideration of different fillets, from
Chen et al. (2011)

investigated by Bogy (1968) and the highest stress concentrations were found for the combi-
nation between a soft and a stiff material. Similar results were obtained in Hein and Erdogan
(1971), where a more general overview on singularities in two-material wedges was given. In
Altus et al. (1986), the question of assessing the stresses in vicinity of the singularity was
addressed. The singularity was explained with geometrical and material discontinuities. Since
the stresses could not be properly assessed, a failure envelope in terms of allowable defor-
mations was envisaged and finally, a failure envelope, based on the strains in the substrates
next to the two-material wedge, was proposed. Reedy (1993) considered a two-material
wedge under normal and shear loading. Penado (2000) performed an analysis of singular
regions in bonded connection, for which stress intensity factors were given for different joint
configurations. Similar investigations were presented in Wang and Rose (2000). Chen et al.
(2011) proposed a classification of the singularities, which is shown in figure 3.23. Finally
Van Tooren and Krakers (2006) propose a stress singularity approach for material failure
prediction for bonded connections.

In Cognard and Créac’hcadec (2009), the presence of stress singularities was explained as
well by the sharp change of material properties and geometry. Experimental investigations
and numerical analysis were performed on single-lap shear joint specimens with an epoxy-
based adhesive. To obtain a more homogeneous stress state and to avoid the influence
of edge effects, the geometry of the single-lap shear joint was modified. A Finite Element
Analysis was performed to verify the influence of the proposed changes. Fillets in both
adhesive and adherends were introduced, leading to a complex geometry of both substrate
and adhesive layer.

3.5.3 Description of the stress singularity for a two-material wedge

Due to the singular behaviour of the stresses at the edge of the interface of bonded connec-
tions, the stress values obtained from a Finite Element Analysis are highly mesh dependent.
Therefore, the peak values obtained from the numerical analysis are arbitrary into some
extend. The stress state in the vicinity of a crack can be analytically described using a fracture
mechanics approach. The edge point of the interface between adhesive and adherend can
be seen as a two-material wedge. Figure 3.24 shows a two-material wedge.

The stress field around the two-material wedge can be described using a series expansion
(Williams, 1952). In this series expansion, the first term is singular and dominant in the
vicinity of the crack. Therefore, the stress field can be described with good accuracy at the
vicinity of the crack, when only this singular term is considered. For larger distances from
the singularity, more terms have to be taken into account in order to describe the stress field.
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3.5 Considerations on the stress field in a single-lap shear joint

Material 1

9

Stress free surfaces
Bonded surface

Material 2

Figure 3.24: Two-material wedge, from Gleich (2002) - the polar coordinate system with its
origin at the tip of the wedge is shown in the figure

These additional terms are no longer singular (WeiBgraeber and Becker, 2013). The stresses
in the vicinity of the singular point can be accurately described with

oy = Hr XL f (A 0). (3.46)

In equation 3.46, m is the material index (m = 1,2), H is the free edge stress intensity factor,

5 (X, 19) are known angular functions describing the stress field and A is order or strength
of the singularity. The order of the singularity describes the shape of the stress field and
the stress intensity factor its magnitude. r and «J are polar coordinates having their origin at
the singularity. The free edge stress intensity factor H depends on the geometry, the elastic
constants of the materials and the applied load. The order of the singularity depends on the
angles 1, and v, as well as the elastic constants of the materials involved. The order of
the singularity is independent of the loading conditions. Only the first singular term of the
stress function is shown, thus reducing the validity of equation 3.46 on the region close to the
singular point.

Focussing on one material and combining the stress intensity factor with the known angular
functions describing the stress field, equation 3.46 can be rewritten as

o5t (r)=Hy ™' peel stresses and 0a7)
6 (r) = Hy ™' shear stresses. '
Applying the logarithm on both sides of equation 3.47 gives
log [0%21 (r)} =log (Hy) + (A —1)log(r) peel stresses and
(3.48)

—

log 725" (7“)} =log (H2) + (A —1)log(r)  shear stresses.

Considering equation 3.48, it can be concluded that both the stress intensity factors and

the order of the singularity can be evaluated from a logarithmic plot of the stress distribution
on a path on the interface, which can be obtained from a Finite Element Analysis. In order
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to capture the singularity, a very fine mesh is required. Due to the basic assumption that
equation 3.46 is only valid in the vicinity of the singularity, only the region close to the
singularity must be considered. For the stress plot, this means that only the linear part of the
curve is to be considered.

Using a linear elastic material

The order of the singularity depends on the stiffness ratio of the adherends and the adhesive.
For the configuration of a rigid adherend and a soft adhesive, an order of singularity of
A = 0.7 is given in WeiBgraeber and Becker (2013). To illustrate this, the single-lap shear
joint presented in section 3.5.1 is modelled in a plane strain linear Finite Element Analysis
using the elastic constants and dimensions defined for the case "soft adhesive" in table 3.4.
Figure 3.25 displays the focussed mesh used with a minimum element size at the corner
edge point of 0.5 um.

Figure 3.25: Focussed mesh used in the FE model of the single-lap shear joint
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Figure 3.26: Double logarithmic plot of the stress distribution in the soft adhesive for the
single-lap shear joint at the vicinity of the singular point - linear regression indicated
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3.5 Considerations on the stress field in a single-lap shear joint

Figure 3.26 shows the result of this simulation. A double logarithmic diagram gives the
stress distribution plotted against the interface paths. As explained in section 3.5.3, the
slope of the line corresponds to the order of the singularity A — 1. In the case of figure 3.26,
A — 1 = —0.4, which means A = 0.6. This result shows good agreement with the values
given in WeiBBgraeber and Becker (2013).

Using a soft hyperelastic material

Up to this point, the stresses have been determined assuming a linear elastic material law
with the elastic constants given in table 3.4. In the second example presented below, the
Marlow hyperelastic material law, described in section 3.3.3, calibrated on uniaxial tension
test data on Dow Corning® 993 structural silicone sealant (Dow Corning Corporation, 2001),
was used to describe the adhesive layer. The geometry of the lap shear joint and the elastic
constants of the adherends are given in table 3.4. The boundary conditions shown in figure
3.19 were chosen as in the preceding example. The stresses and strains were determined in
a nonlinear Finite Element Analysis using the commercial software code ABAQUS® (Dassault
Systémes, 2014). 2D plane strain conditions were assumed and quadratic, fully integrated
hybrid elements were chosen due to the incompressible material behaviour of the adhesive.

(a) 0.5 mm element size at the corner edge (b) 1 mm element size at the corner edge

Figure 3.27: Numerical model for the mesh study on the stresses and strains for a single-lap
shear joint assuming a hyperelastic material

In order to visualise the influence of the chosen element dimensions on the results, the values
for the first principal stress and the first principal strain were determined for 5 different element
edge dimensions: 0.1 mm, 0.5mm, 1 mm, 2mm and 3 mm. For computational efficiency, a
fine mesh was only inserted at the area in the vicinity of the two-material wedge, as shown in
figure 3.27a.

The results of the mesh study on the first principal stress and strain at the notch tip of the
two-material wedge are shown in figure 3.28. The results were evaluated at the nodes. The
non-converging behaviour is clearly observable both for stresses and strains.

Stress intensity factor

A design approach for adhesively bonded connections based on a stress intensity factor has
been proposed by Gleich (2002), considering a linear elastic material behaviour. In the design
process, the stress intensity factor, determined at the two-material wedge using a Finite
Element Analysis, is compared to a critical stress intensity factor, which is considered as a
material property. According to Gleich (2002), both the stress intensity factor and the order
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Figure 3.28: Mesh study on the stresses and strains for a single-lap shear joint assuming a
hyperelastic material

of the singularity are convergent values, provided that a reasonably refined mesh is used.
This method has already been applied by Groth (1988), but considering only peel stresses.
Failure of bonded connections with large overlap lengths was well predicted, in contrast to
small overlap lengths, for which shear stresses were supposed to be dominant (Gleich, 2002).
In the work of Gleich (2002), the above mentioned design approach was used for single-lap
shear joints. Peel and shear stresses were investigated separately for the prediction of the
failure load and fair results were obtained. The procedure is based on two fundamental
assumptions. The critical stress intensity factor at the corner edge was considered to be
independent of the bondline thickness and a linear relationship was supposed between the
failure load and the free edge stress intensity factor

H
E, = Frpa EEA. (3.49)
C

In equation 3.49, F), is the predicted failure load, Frga the load for a given bonded connection
leading to the free edge stress intensity factor Hrga and H, critical stress intensity factor.
In contrast to the analytical approaches, like the Volkersen equation, the stress intensity
approach takes into account the stress state at the interface, where crack onset is observed.
Gleich (2002) investigated thin adhesively bonded connections loaded in shear and an
optimum bondline thickness was identified, which was as well approved by tests. Similar
investigations using a stress intensity factor were performed in Berto (2015) on the stress
distribution in the vicinity of a V-notch for an incompressible Mooney-Riviin hyperelastic
material.
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3.5 Considerations on the stress field in a single-lap shear joint

3.5.4 Advanced numerical modelling

Cohesive zone modelling

In the numerical simulation of adhesively bonded connections, Cohesive Zone Modelling -
CZM can be used to reproduce the progressive damage and failure of an interface or a region.
According to Campilho et al. (2012), CZM modelling describes the elastic behaviour, the
damage initiation and the propagation of a crack on a given path in a bulk material or at an
interface between two materials. The basic concepts of CZM were proposed independently
by Dugdale (1960) and Barenblatt (1962). The description of this behaviour is based on the
relation between stresses and the relative displacement of a defined interface. A Cohesive
Zone Model can be used in a continuum based Finite Element simulation. In Campilho et al.
(2012), the CZM was investigated in the context of a Finite Element Analysis and the results
on a single-lap shear joint were found to be mesh independent. In the field of adhesively
bonded connections, two approaches are currently adopted, depending on the nature of the
problem. In a local approach, the behaviour of the interface between adhesive and adherend
(with zero thickness) is simulated, whereas in a continuum approach, the whole adhesive is
replaced by a layer of cohesive elements. The latter method is adopted for adhesive joints
with small adhesive layer thickness.

A cohesive element can either connect two coincident nodes (in the local approach) or two
distant nodes (in the continuum approach). The mechanical behaviour is defined using
so-called traction-separation laws (cf. section 3.9), which define the stress components
(three modes according to fracture mechanics approach cf. figure 3.29) as a function of
the displacement between the two interfaces. The traction-separation law contains three
characteristic parts: elastic behaviour until damage initiation, damage evolution and complete
failure (Da Silva and Campilho, 2012). Different shapes of the cohesive laws are available in
commercial Finite Element software codes, like ABAQUS® (Dassault Systémes, 2014).

Cohesive Zone Modelling is often used for thin adhesive layers and stiff adhesives. In Piculin
et al. (2016), this concept has been employed in the context of bonded connections between
timber frames and glass panes. The epoxy-based adhesive with a layer thickness of 3mm
and Young’s modulus (at the origin of the stress-strain curve) of 10 MPa was modelled with
a linear visco-hyperelastic compressible material law. The interface behaviour between
adhesive and adherend was numerically reproduced with cohesive elements, since adhesive
failure of the epoxy was observed in the tests.

In contrast to the epoxy-based adhesive, cohesive failure (i.e. rupture within the adhesive
layer) was observed in different tests (tension, shear) of adhesively bonded connections with
silicone, e.g. Hagl (2007), Dias (2013) and chapter 4.

Extended Finite Element Method

The Extended Finite Element Method - XFEM is another advanced numerical modelling tool,
which has been used in Campilho et al. (2011) for the simulation of adhesively bonded con-
nections. It is an extension of the Finite Element Method, based on the concept of partitioning
elements. Damage initiation is generally based on the bulk strength of the material and failure
on strains. Crack onset and crack growth are independent of the chosen mesh, as elements
can be split in two parts due to enrichment functions for the nodal displacements. Unlike for
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CZM, a crack can grow in an arbitrary direction. Furthermore, no remeshing is required after
an onset of a crack. XFEM is available in commercial Finite Element software codes, like
ABAQUS® (Dassault Systémes, 2014).

For the elements, enrichment functions are defined, which allow for the representation of
the displacement jump between two initially coincident nodes, which are separated by the
onset of the newly created crack or the propagation of an existing crack (Campilho et al.,
2011). As implemented in ABAQUS® (Dassault Systémes, 2014), crack propagation will
occur perpendicular to the direction of maximum principal stress or strain. Crack propagation
is supposed to be relatively mesh independent, when the crack initiation is based on an
energetic criterion. In Campilho et al. (2011), single and double-lap shear joints with a brittle
adhesive have been numerically reproduced. The results however were found to be mesh
dependent and a crack propagation starting at the adhesive interface and running into the
adherend was observed. The latter problem has been fixed recently by Stein et al. (2017a).

Boundary Element Method

The Boundary Element Method is an efficient tool to describe stress fields in regions of large
stress gradients. In Gaul and Fiedler (2013), a general description is given and in Vable
(2008), the application of the BEM in the field of adhesively bonded connections is discussed.
Although the BEM exhibits a number of advantages compared to the widely used Finite
Element Method, only very few applications of the BEM in the field of adhesive joints are
available (cf. Da Silva and Campilho (2012)).

Gaul and Fiedler (2013) explain the major differences between the Finite Element and the
Boundary Element Method. For the FEM, the continuum is divided into small partitions,
the Finite Elements. For the BEM, only the boundary is divided into small partitions. As a
consequence, the dimension of the problem is reduced by one dimension. For example, a 2D
plate is represented with 1D line elements at the boundaries. As the stresses are computed
at the boundary and not at the integration points, as for the FEM, large stress gradients in the
vicinity of a crack can be accurately represented.

According to Vable (2008), the BEM is not straightforward to implement. Moreover, the
reduced size of the stiffness matrix due to the small number of elements compared to the
FEM is partially compensated by its complexity. As a consequence, some highly efficient
equation solvers cannot be used.

Finite Difference Method

The Finite Difference Method - FDM is a numerical technique to approximate the solution
of differential equations. Unlike as for the Finite Element Method, a given structure is not
subdivided in elements, which are delimited by nodes, but in a uniform grid of points. The
results in terms of stresses are obtained in these points. Whereas in the FEM, the values
computed at the integration points are extrapolated and averaged between neighbouring
nodes, the results of the grid points are not averaged. According to Da Silva and Campilho
(2012), the FDM is mainly used for very simple geometries, for complex geometries and
nonlinear material behaviour, a Finite Element Analysis is generally preferred.
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3.6 Basics on fracture mechanics

3.6.1 Griffith criterion

In section 3.5.2, the singular behaviour of the stresses at the corner edge of the single-lap
shear joint specimen has been discussed. The corner edge exhibits a discontinuity regarding
both the material properties and the geometry. It has been referred to as a two-material
wedge. The two-material wedge can be seen as a special case of the bi-material crack, i.e. a
crack going through the interface of two materials. According to Gross and Seelig (2011), a
crack is a cut in a body, as shown in figure 3.29a. The boundaries of the crack are called
crack surfaces. The crack surfaces are assumed to be traction-free. The crack ends at the
so-called crack front or crack tip (in 2D considerations).

Crack front

Crack surface

(a) Definition of a crack in a body

=

(b) Mode | (c) Mode I (d) Mode llI

Figure 3.29: Crack definition and crack opening modes, from Gross and Seelig (2011)

For cracks, the three deformation modes, shown in figure 3.29, are generally distinguished.
Mode | describes a crack opening, which is symmetric to the x — z plane. Mode Il describes
a crack opening, where the crack surfaces are deformed in a direction normal to the crack
front. Finally, mode Il describes a crack opening, where the crack surfaces deform in a
direction tangential to the crack front.

For a given structure exhibiting a crack, the crucial question consists in assessing, whether
the crack propagates under given loads and boundary conditions or not. This assessment
is performed with methods from fracture mechanics. A criterion for crack propagation was
developed by Griffith (1921). It states that crack can only grow, if the energy released by the
propagation of the crack is sufficient to create the new surfaces. The "force" required to allow
for crack propagation is referred to as critical energy release rate. The criterion according to
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Griffith can be written as

AIlI
= lim —— > G.. 3.50
G= Jm —Aaz% (3.50)
In equation 3.50, G is the energy release rate, A A the newly created crack surface, All the
change of potential energy due to the onset of the new crack surface A A and G, the critical

energy release rate.

For weak singularities such as notches, the concepts from fracture mechanics, e.g. classic
Griffith energy criterion, cannot be used without the assumption of a pre-existing crack or
flaw (WeiBgraeber, 2014). The differential energy release rate G can be calculated with the
virtual crack closure integral. The virtual crack closure integral denotes the energy required to
close a virtual crack. It is the product of the stress field at the vicinity of the notch tip with the
displacement of the virtual crack faces, integrated over the whole crack surface. Evaluating
the integral shows that the differential energy release rate G vanishes at weak singularities,
where A > 1/2, i.e. for notches. This would mean, that a notch can resist infinitely high loads,
which is in contradiction with test results.

3.6.2 J-integral

Apart from stress intensity factors or the concept of energy release rate as proposed by
Griffith (1921), Rice (1968) introduced a path independent contour integral, the so-called
J-integral. In contrast to the previously mentioned concepts, the use of the J-integral is not
restricted to elastic material behaviour. The J-integral is a path independent contour integral
surrounding a singularity. Typically, contour integrals are employed when the exact shape of
a field quantity cannot be determined in the vicinity of a singular point. The contour integral is
computed using the far field values, which can be accurately determined.
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Figure 3.30: Definition of a path around a notch for the evaluation of the J-integral, from Rice
(1968)

Figure 3.30 shows a two-dimensional body with a notch. A path I, surrounding the notch,
is defined. The normal vector 7i is defined on the path I'. According to Rice (1968), the
J-integral is defined as

J:/ (Wdy—f- a“ds) (3.51)
T ox

In equation 3.51, I'" a path surrounding the notch tip, W is the strain energy density, T the
traction vector defined according to the outward normal 72, « the displacement vector and ds
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an element of the path I". For linear elastic materials, the J-integral is equivalent to the stress
intensity factors concept. For cracks in elastic materials, the value of the J-integral equals the
energy release rate as defined by Griffith (1921).

3.7 Finite Fracture Mechanics

3.7.1 The coupled stress and energy criterion by Leguillon

For weak singularities such as notches, the classic fracture mechanics approach cannot be
used to assess crack initiation. In order to allow for an assessment for these kind of notches,
Leguillon (2002) proposed a hybrid criterion, which is based on both a stress criterion and
on an energy criterion. The fundamental difference regarding Griffith’s approach is that an
onset of a crack with finite length is considered, instead of a continuous crack growth (cf.
Hashin (1996)). Therefore, the method is referred to as Finite Fracture Mechanics. Crack
initiation with a length Aa (respectively with the surface A A for 3D problems) is assumed, if
both criteria are simultaneously fulfilled for the same crack length. The fracture mechanics
or energy criterion gives a lower bound of possible crack lengths and the stress criterion an
upper boundary for crack lengths. Since both the crack length and the crack initiation load
are unknown, the coupled criterion is an optimisation problem.

For the energy or fracture mechanics criterion, the potential energy in the body is considered
for the state without crack and after the initiation of a crack with the finite length Aa following
the concept of Griffith (see equation 3.50). According to Leguillon (2002), the fracture
mechanics criterion, or energy criterion, can be written as

All

A4 = Ye (3.52)

In equation 3.52, All is the change in potential energy of the system, A A is the created crack
surface and G, the critical energy release rate. As explained in section 3.6.1, the fracture
energy per unit surface vanishes if AA — 0.

The stress criterion corresponds to a comparison between the acting stresses and the bulk
material strength on the area of the newly created crack, i.e.

o > oc. (3.53)

In equation 3.53, ¢ is the acting stress and o. the material strength. The stress criterion
claims that a crack with the length Aa or the surface A A can develop, if the acting equivalent
stress exceeds the bulk material strength over the whole area of the crack surface. In Leguil-
lon (2002), stresses are considered, but in general, any suitable failure criterion could be
used, such as strains or the strain energy density. Consequently, in order to use the coupled
criterion, the critical energy release rate and the failure criterion of the considered material
must be known.

In order to illustrate the necessity of both criteria, two examples, from Leguillon (2002), as
shown in figure 3.31, are investigated. In a continuum mechanics approach for the notched
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bar under a tensile force, the stresses are found to be infinitely high at the notch tip. Therefore,
the bar fails for an infinitely small load, which contradicts observations from material tests.
The stress criterion alone is therefore not sufficient to explain the failure process observed
in this case. On the other hand, when a straight bar of a material with Young’'s modulus
E, a cross sectional area A and a length [y, subjected to a tensile force I is assumed, the
energy criterion alone is not sufficient to predict failure. For this example, the fracture energy
is evaluated as

2

1 o
—All=1I=-Aly —. 3.54

5 Al (3.54)
In equation 3.54, o is the tensile stress in the bar. II is the product of the strain energy
potential of the bar with the volume V' of the considered bar. At failure, the initiated crack
surface equals the total surface of the cross section. Thus, the change in potential energy

corresponds to the potential energy stored in the bar before complete failure.
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(a) Notched bar under tensile force (b) Defect-free bar under tensile force

Figure 3.31: Examples illustrating the coupled stress and energy criterion

Assuming that failure occurs, when the energy criterion given in equation 3.52 is fulfilled,
inserting equation 3.54 in equation 3.52 gives

1 (')'2 2Egc
—Aly —= > G, > .
g Al 29e=0o2y/—

(3.55)

Consequently, regarding equation 3.55, a sufficiently long bar already fails at low applied
tensile stresses. In that case, the stress criterion is needed to compute the real failure load.

The coupled stress and energy criterion has been applied in WeiBgraeber (2014) to predict the
failure in adhesively bonded single-lap shear joints. For the stress partial criterion, Rankine’s
failure hypothesis was employed, as the investigated adhesive exhibited a brittle material
behaviour. The fracture mechanics criterion was evaluated using the incremental or average
energy release rate, which is defined as

_ 1 ad . AI

With equation 3.56, the coupled stress-energy criterion can be rewritten as

floij(x)) > 00 VoeQ(AA) A G >G.. (3.57)

56



3.7 Finite Fracture Mechanics

In equation 3.57, f is an equivalent stress depending on the chosen failure criterion, x is a
point in the Euclidian space and (). is the surface of the crack AA. The coupled criterion
of equation 3.57 is satisfied, if both partial criteria are simultaneously fulfilled for the same
crack length. The equivalent stress (e.g. von Mises stress for steel or the first principal stress
for glass) must be higher than the material strength for all points on the crack surface (or
crack edge for 2D considerations) with length Aa. In addition, the average energy release
rate must be higher than the critical energy release rate for the crack of the length Aa or the
surface A A, in order to allow for the initiation of a crack. Consequently, the load at crack
initiation and the crack length are unknown at the beginning.

A similar criterion was proposed by Cornetti et al. (2006). In contrast to equation 3.57, the
averaged equivalent stress over the crack length Aa is considered,

1 AA _
x5 | feu@dizo. veen(ad) A Gz (3.58)

The stress criterion gives an upper boundary for the possible crack surface A A, as a crack
can only appear on the surface on which the acting stress exceeds the material resistance.
Longer cracks are only possible if the load is increased and thus the acting stress exceeds
the strength of the material over a larger area. In other words, only cracks smaller than
AA are possible. On the other hand, the energy criterion gives a lower boundary for the
crack length, as only cracks longer than the lower boundary release enough energy for crack
initiation. The solution of the optimisation problem is found, when the upper boundary meets
the lower one.

3.7.2 lllustrating example

In order to illustrate the optimisation problem of the coupled criterion, the following example
of a single-lap shear joint, shown in figure 3.32 and taken from WeiBgraeber (2014), is
presented. The single-lap shear joint is considered in a two-dimensional analysis. For
simplicity reasons, only interface cracks are considered, i.e. ¢ = 0, in figure 3.32. The crack
surface A A simplifies to h. Aa with k., the width (bite) of the adhesive joint.

«—

Figure 3.32: Single-lap shear joint under applied loads

For the given example, the stress distribution is plotted in figure 3.33 against the interface
path = shown in figure 3.32 for the three load levels: (1) Applied force smaller than the
crack initiation load (figure 3.33b), (2) applied force equals the crack initiation load (figure
3.33a) and (3) applied force exceeding the crack initiation load (figure 3.33c). Apart from the
stresses, the incremental energy release rate is plotted against the developed crack length
Aa in dashed lines for the three load cases.

Consider figure 3.33b for the given load case (1). The predicted crack lengths for both criteria
correspond to the distances between the notch tip and the intersection point, where the

57



3 Fundamentals

acting stresses f (o;;) meet the bulk material strength o, respectively where the incremental
energy release rate G meets the critical energy release rate G.. The predicted crack length
from the stress criterion Aam.x, Which corresponds to the upper limit for possible cracks, is
smaller than the predicted crack length Aanin from the energy criterion. Therefore, the given
load is too small for crack initiation. The energy released by a crack with the length Aamax
is not sufficiently high for crack initiation, as the incremental energy release rate for a crack
with a length Aanay is smaller than the critical energy release rate of the material. If the load
corresponds to the failure load, both crack lengths are equal as shown in figure 3.33a. The
last case, which is shown in figure 3.33c, corresponds to the case where the applied force
exceeds the failure load. Here, both criteria are fulfilled, the crack length predicted by the
stress criterion releases enough energy for crack initiation. However, crack initiation would
also be possible for a smaller load level.

floi),G Legend:
A
G f (oi;) Failure criterion
(stress or strain based)
g Incremental energy release rate
G N~ T Ge Critical energy release rate
O¢ Strength of the bulk material
x Path starting at the singularity
o7 — — DR — - Aa Finite crack length
/ \ Aamin  Lower boundary for Aa
/ v f (oi5) Aamax  Upper boundary for Aa

Aamin = Aamax X, Aa

(a) Applied force equals the crack initiation load

f(0i),G
A

Ge|-

O 7-—>

Aamax Aamin X, Aa Aamin Aamax X; Aa

(b) Applied force below the crack initiation load (c) Applied force exceeding the crack initiation load

Figure 3.33: lllustration of the evaluation of the coupled criterion
The curve for the incremental energy release rate exhibits a monotonically increasing be-
haviour. This behaviour has been chosen for clarity reasons. In WeiB3graeber (2014), the

influence of a non-monotonic behaviour for the incremental energy release rate is discussed.
A non-monotonic behaviour of the incremental energy release rate leads to ranges of possible
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crack lengths and allows for crack arrest after crack initiation.

The concepts of Finite Fracture Mechanics, which have been presented in this section, avoid
the question of the mesh dependency observed in a Finite Element Analysis in the vicinity
of the two-material wedge, as the stresses or strains are not considered at the origin of
the singularity, but in a certain distance away. Therefore, the results obtained from the
numerical simulation give convergent values, provided that a sufficiently refined mesh has
been selected. The energy partial criterion is much less affected from the stress singularity
as it is based on the global behaviour of the specimen. An inconvenience of the method
proposed by Leguillon (2002) is the high computational effort required. Since both crack
length and orientation are unknown, a number of Finite Element calculations is needed, as
well as a refined mesh to capture the stress distribution in the vicinity of the notch in an
accurate way, unless closed-form solutions are available.

3.8 Theory of Critical Distances

3.8.1 Point method, line method and imaginary crack method

The name Theory of Critical Distances (TCD) has been introduced by Taylor (2008). It
includes methods, which predict the effect of notches. These methods work with a charac-
teristic length parameter, which is considered as a material constant. According to Taylor
(2008), four different methods can be distinguished: the point method, the line method (both
as proposed by Whitney and Nuismer (1974)), the imaginary crack method (cf. Waddoups
et al. (1971)) and the Finite Fracture Mechanics - FFM. The FFM has already been introduced
in the previous section. In Taylor (2008), FFM is considered as a potential scientific basis
for the Theory of Critical Distances, which was referred to as an approximation of the Finite
Fracture Mechanics approach.

A first approach working with a length parameter to predict the effect of notches was already
introduced by Neuber (1936). Sharp notches in linear elastic materials were investigated
and the stress intensity factor was found to depend not only on the shape of the notch, but
also on an elementary particle. This elementary particle was considered as new material
constant, which quantifies the notch sensitivity of the material. Following this concept, a large
number of different structural components has been analysed in Neuber (1958), including
the effect of yielding of metallic materials.

A simple engineering approach for the prediction of the uniaxial tensile strength of laminated
composites containing stress concentrations has been proposed by Whitney and Nuismer
(1974). The concept was based on the two parameters unnotched tensile strength of the
laminate and a characteristic dimension. This dimension was considered as a material
property. Two concepts have been proposed. According to Whitney and Nuismer (1974),
failure occurs, when the acting stresses exceed the strength over a certain distance (point
method). Alternatively, failure occurs, when the acting stress averaged over a given distance
exceed the strength of the bulk material (line method). In order to illustrate these methods,
the example of a body with a round notch under an arbitrary load is given in figure 3.34. The
stress distribution is plotted over a horizontal path starting from the root of the notch. For the
point method, the stresses are evaluated at a distance L /2 from the notch tip. For the line
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method, the stresses are averaged over the distance 2 L from the notch tip,

1 2L
OLM — ﬁ /0 g (T‘) dr. (3.59)

In equation 3.59, o1, is the stress evaluated according to the line method. In this example,
stresses are considered, but the method is not restrained to stresses.

OPM [~=====--—%

e

Figure 3.34: Methods from Theory of Critical Distances - point method, line method and
imaginary crack method, from Taylor (2013)

The imaginary crack method, as proposed by Waddoups et al. (1971), assumes the presence
of a sharp crack with the length L at the tip of the considered notch. With this assumed
crack, concepts from fracture mechanics can be used to determine the load at which crack
propagation will occur (cf. Griffith). A commonly used value for the length scale is the
so-called Irwin-length, which was originally defined to describe the size of a plastic zone at
the crack tip (WeiBgraeber, 2014). The Irwin-length is given as

=t <K>2 (3.60)

T \ Oc

In equation 3.60, L is the characteristic length scale, K. fracture toughness of the considered
material and o. the tensile strength of the material. For some materials, the parameter
L is related to a microstructural dimension, like the grain size of steel. For many other
cases, the physical relation between the characteristic length and material properties remains
unclear (WeiB3graeber, 2014). In many cases, the characteristic length has to be determined
empirically.

Although the length parameter is considered as a material property in the framework of
the TCD, there are a number of works, which observe some variations. Pipes et al. (1979)
considered the two-parameter methods (characteristic dimension and unnotched tensile
strength) proposed by Whitney and Nuismer (1974) and Waddoups et al. (1971), which
assume that the characteristic dimension is a material constant. They showed that this
assumption is invalid and proposed a three-parameter model to evaluate the notched strength
of composite materials. Awerbuch and Madhukar (1985) reviewed a large set of experimental
data dealing with the notched strength of composite materials and several failure models. For
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the two-parameter models proposed by Waddoups et al. (1971) and Whitney and Nuismer
(1974), it was concluded that the constant characteristic dimension strongly depends on the
laminate configuration investigated. For one specific configuration, the models were found to
give good results. Comparable results were found in Tan (1987) for the fracture strength of
composite laminates with elliptical holes.

The previously described point and line method are very straightforward to use in the post-
processing of a Finite Element Analysis. According to WeiBBgraeber (2014), the TCD is
implicitly used in some engineering applications, when the element size is kept constant in
the vicinity of the notch. This requires the chosen Finite Element mesh to be calibrated for
each numerical analysis using experimental data. Another method to avoid the singularity,
which is discussed in Gleich (2002), consists in considering the stress values at a small
distance from the interface corner, such as the third node from the singular point. This method
however also requires a constant element size and a calibration using experimental data, as
mentioned before.

3.8.2 Control volume approach

For the line method, the stresses are averaged over a path of a length of 2 L, where L is the
length scale parameter. This approach can also be extended to a three-dimensional stress
analysis, in which the acting stresses, strains or strain energy are averaged within a volume,
called control volume.

This control volume approach was used in Schaaf et al. (2015) for the life estimation of a
short fibre reinforced polymer. The strain energy density was used as failure criterion for the
material and was averaged within the structural or control volume. Failure in terms of crack
onset at a notch occurred, when the average strain density in the control volume reached a
critical value. The control volume was defined through a radius, which was considered as
material property.

The same approach was used in Berto (2015). The fracture assessment was based on the
local strain energy density averaged over a spherical control volume with a given radius,
which was considered as a characteristic parameter of the material. The fracture behaviour
of notched plates of natural rubber was predicted in a Finite Element Analysis assuming a
Mooney-Rivlin incompressible material law and good agreement was found with the experi-
mental data. A focussed mesh was used at the notch tip. Since the strain energy density
was averaged over a finite volume, the results found did not depend on the chosen size of
the Finite Elements, provided that a reasonably refined mesh was built.

The control volume approach was reviewed and extended in the work of Schaaf et al. (2015)
and implemented using a Finite Element Analysis. Instead of defining a constant volume
with a fixed radius, the so-called Vyg-concept was adopted. Vyg is the volume, in which the
stresses are higher than 90% of the maximum stress at the notch tip. The basic idea is, that
the smaller the highly stresses volume, the lower the failure probability of the considered
notch. In Schaaf et al. (2015), this concept was combined with the control volume approach.
Instead of averaging the strain energy density over a spherical control volume, the strain
energy density was averaged over the Vg4-volume. The threshold value was lowered to 64%
to reduce the requirement for a refined mesh.
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3.9 Determination of the critical energy release rate

3.9.1 Double Cantilever Beam test

The objective of a Double Cantilever Beam test is the determination of the cohesive proper-
ties, like the cohesive law and the critical energy release rate of an adhesive. Two different
approaches can be used to evaluate the DCB test. The first approach is based on linear
elastic fracture mechanics and considers the compliance of the adherends (Blackman et al.,
1991). The second methods works with the J-integral, thus allowing for nonlinear elastic
behaviour of the adhesive.

Generally speaking, cohesive laws give the relationship between the stresses across the
interface zone and the separation distance of the crack faces, prior to the real crack opening
(Li and Ward, 1989). The stresses decrease to zero for a critical local displacement, which
corresponds to the actual crack initiation (Sorensen and Jacobsen, 2003). Figure 3.35 shows
the representation of cohesive behaviour and two possible shapes for the cohesive law, the
so-called traction-separation law. A typical application of cohesive zone modelling are thin
adhesively bonded connections, where the adhesive layer is replaced with cohesive elements
instead of solid elements representing the bulk material (Da Silva and Campilho, 2012).
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Figure 3.35: Representation of the ductile failure process by cohesive modelling, picture
taken from Cornec et al. (2003)

3.9.2 Method based on linear elastic fracture mechanics

As mentioned before, if the adhesive and the adherends show a linear elastic behaviour,
methods from linear elastic fracture mechanics can be used to determine the critical energy
release rate of the adhesive. In Blackman et al. (1991), several of these methods are
presented, beginning at the "area" method, for which the energy release rate G is calculated
from the change of potential (area under the load-displacement curve) AII for a given
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increase of the crack length Aa, with

All

G = he Aa’

(3.61)

In equation 3.61, h. is the specimen width. Another method is based on the Irwin-Kies
equation, in which the fracture energy is evaluated from the change of compliance of the
specimens with increasing crack length. In this case, the energy release rate

_ P dc
"~ 2he da

g (3.62)

is given as a function of the applied load F' and the measured compliance C'. The compliance
can also be determined analytically from the simple beam theory. Correction factors are given
in Blackman et al. (1991), which take into account the low shear modulus of the adhesive as
well as effects arising from the large deflections of the beams.

3.9.3 Method based on nonlinear elastic fracture mechanics

Apart from the restriction of linear elastic material behaviour, the second disadvantage of
the compliance method is the accurate measurement of the crack propagation (Biel, 2005).
Therefore, a second method, based on the path independent J-integral, introduced by Rice
(1968), was developed by Anthony and Paris (1988) to experimentally determine the post
peak tensile behaviour of cementitious composites. A compact tension specimen was used
for the experimental investigations. The J-integral can be evaluated for a path in the cohesive
zone, given as

Oc
J. = /O o (8) do. (3.63)

In equation 3.63, ¢ is the stress acting normal to the crack face, labelled as T in figure 3.35,
J. is the critical value of the J-integral at crack onset and é. is the displacement at which
the traction vanishes, i.e. the displacement at which the crack is fully developed. In Leffler
et al. (2007), the fracture energy J. is considered as a material property. In an analogous
way as described in section 3.6.1 for linear elastic materials, if the energy released by crack
propagation exceeds the critical energy release rate, the crack will be able to propagate.
According to Rice (1968), the J-integral can also interpreted as

Al

(3.64)
In equation 3.64, All is the change in potential energy due to the change of the crack surface
AA. Since the accurate measurement of the crack propagation is very challenging, Li and
Ward (1989) used pre-notched specimens with different notch lengths. For the evaluation,
the differences in the potential energy AII (area under the force-deformation curve) were
considered for a given displacement uw. The J-integral in this case is given as

(3.65)
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In equation 3.65, Aa is the difference of the length of the pre-notches. Knowing J(u), the
traction o can be obtained by differentiating equation 3.63. In Olsson and Stigh (1989), a
closed form solution based on the application of the Euler-Bernoulli beam theory for the
adherends was given for the evaluation of the DCB specimen loaded under a force by
solving an inverse problem between the crack opening displacement and the applied force.
Andersson and Stigh (2004) gives

dJ Fo
o (w) = diuw) with J = 2=—.

(3.66)

In equation 3.66, F' is the applied force, ¥} the rotation of the loading point and w the
crack opening displacement, as shown as well in figure 3.36. Sorensen and Jacobsen
(2003) proposed a double cantilever beam specimen with a bending moment applied on the
boundaries. For this loading, the J-integral can be determined in closed form. Alternatively, in
the case of an applied force at the boundaries, the rotation of the load application point has to
be measured. A detailed derivation of equation 3.66 is given in Andersson and Stigh (2004),
where Double Cantilever Beam tests were conducted on thin adhesive layers (0.2 mm). The
evaluation of the Double Cantilever Beam test using the J-integral concept allows to take into
account nonlinear material behaviour, but a basic assumption is the elastic material behaviour
of both adhesive and adherends.

Figure 3.36: Definition of the quantities for the evaluation of the Double Cantilever Beam test

As shown in equation 3.63, the traction-separation law can be calculated by differentiation of
the product of the experimentally record force with the rotation angle of the load application
point. As a differentiation of experimentally recorded data can lead to important scattering,
the values of the J-integral versus the crack opening displacement obtained from the ex-
perimental investigations (equation 3.66) are approximated by a Prony series (e.g. Leffler
et al. (2007)). The critical energy release rate G, is defined as the value obtained for the
deformation, for which the traction o drops to zero. This corresponds to a maximum in the
J-integral versus crack opening displacement curve. In the actual evaluation process, the
value of 5% of the maximum traction is taken as a threshold for the determination of the
critical energy release rate (e.g. Marzi et al. (2011)).

The presented J-integral based evaluation has been employed in a number of research
projects, focussing initially on thin and stiff adhesives. In Biel (2005), the influence of the
specimen geometry and the loading rate was investigated on a thin layer of an epoxy resin
(Young’s modulus of 2900 MPa) using the J-integral approach. Whereas the adhesive layer
thickness was constant (0.2 mm), different geometries and cross sections were selected for
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the adherends. No influence was found on the cohesive properties as long as no plastic
deformation of the adherends occurred. The critical energy release rate was found to increase
with an increasing loading rate.

A comparison between the method based on linear elastic fracture mechanics and the
J-integral approach for the evaluation of the cohesive properties of an epoxy adhesive is
presented in Biel et al. (2012a). A stiff epoxy adhesive with a nominal thickness of 1 mm
was tested, as well as a soft polyurethane based adhesive with a nominal thickness of 3 mm.
Both adhesives were evaluated using the two methods. Whereas a good agreement between
the two methods was found for the thin adhesive, the differences found were larger for the
polyurethane adhesive. This result showed well that the method based on linear fracture
mechanics was invalid for the nonlinear material behaviour of polyurethane.

The influence of the layer thickness on the cohesive properties of a stiff epoxy adhesive was
investigated in Marzi et al. (2011). Different layer thickness from 0.2 mm-4 mm have been
tested. An unstable crack growth was observed with the most flexible adhesive layer, i.e.
the adhesive with 4 mm layer thickness. These curves were cut at the first sign of instability.
Unstable crack growth means that the fracture energy is not fully consumed at the crack tip
before the crack propagates. This leads to lower fracture energies, but the difference is not
expected to be large. The specimens used were not pre-cut, neither using a razor blade nor
a sharp PTFE inlay, since crack onset at the interface of the adherend was judged of larger
engineering interest as crack propagation. The test results of the different DCB test were
compared to specimens produced from bulk material, i.e. without adherends. The critical
energy release rate was found to be strongly dependent on the adhesive thickness. A plateau
was reached for 1 mm, after which the values were decreasing again. Unlike for the thick
adhesive layers, the results between the linear elastic fracture mechanics and the J-integral
approach do not differ for thin adhesive layers. It is assumed that thick adhesive layers violate
the assumption of a rigid adhesive in the linear elastic fracture mechanics approach. The
results for the critical energy release rate of the bulk specimens were found to be significantly
higher. It is assumed that this is due to the different stress conditions in the specimens.
Whereas a plane stress condition dominates in the bulk specimen, the DCB specimen rather
shows a plane strain condition.

The effect of the adhesive thickness on the cohesive properties was investigated in Banea
et al. (2015) as well for a two-component structural polyurethane adhesive with Young’s
modulus of 2530 MPa. The layer thickness was varied from 0.2 mm to 2 mm. The evaluation
has been done using the J-integral approach. The critical energy release rate was found to
increase with the layer thickness, as opposed to the lap shear strength. For the thick layers,
the increase of the critical energy release rate was less pronounced. It is assumed that the
values reach a constant plateau corresponding to the critical energy release rate of bulk
material. Unlike as in Marzi et al. (2011), a sharp pre-crack was inserted at mid-thickness
in the adhesive using a razor blade. Similar investigations were carried out by Campilho
et al. (2015). A polyurethane-based adhesive (Young’s modulus of approximately 500 MPa)
was tested with DCB specimens of different adhesive layers (from 0.1 to 2mm). The critical
energy release rate in peel was found to increase almost linearly with the adhesive thickness.

The effect of the lateral free edges was investigated in Biel et al. (2012b) for a thick poly-
urethane based adhesive (Young’s modulus 31.9 MPa) with a constant layer thickness of
3 mm. Three different joint widths have been tested: 10.6 mm, 25.6 mm and 40.6 mm. The
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fracture energy was found to be almost independent of the joint width with values of 11.8 kN/m
for the narrow specimens to 12.9 kN/m for the large specimens. Concerning the maximum
traction, it has been found to increase with the joint width (from 5 MPa to 7 MPa).

In Banea et al. (2010), DCB tests have been performed on a thin (adhesive layer thickness of
1 mm) room temperature moisture curing silicone at different temperatures. The adhesive
engineering tensile strength showed a value of 2.6 MPa at 400% elongation. A pre-crack
has been inserted in the adhesive layer at mid-thickness and the tests have been evaluated
using the J-integral concept. It has been found that the cohesive properties were temper-
ature dependent. At 100 °C, the peak stress decreased with an increasing crack opening
displacement compared to the results at room temperature. At 200 °C, both the peak stress
value and the crack opening displacement were found to be significantly lower than at room
temperature. At room temperature a value of 2.73 kJ/m? was found for the mode | critical
energy release rate with a maximum cohesive strength of 2.08 MPa at an end-opening of
2.12mm.
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4 Experimental investigations and Finite
Element simulations

4.1 Standard experimental investigations on bulk material

4.1.1 Uniaxial tensile tests

Uniaxial tensile tests on Dow Corning® 993 structural silicone sealant (Dow Corning Corpo-
ration, 2001) are presented. These tests have been subject to the master thesis of Staudt
(2013) and some results have been published in Staudt et al. (2017). In the original work,
several parameters of influence were investigated. Here, only the tensile stress and strain at
failure for a quasi-static loading are considered. In addition, the uniaxial stress-strain curve is
used to characterise the selected hyperelastic material model of the sealant.

i Specimens and test setup

In order to evaluate the material properties in uniaxial tension of a material, so-called dumbbell
or dog-bone shaped specimens, are typically used. For the silicone sealant, specimens
according to ASTM D412 (2013) have been produced in two steps. After a sheet of nominal
thickness of 2 mm was poured on a polyethylene foil, the specimens were stored for one
week, before the final samples were punched out using an appropriated punching tool. The
specimens were stored in controlled conditions after the production. The geometry of the
specimens is shown in figure 4.1a.
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(a) Dimensions in mm of the tensile test specimen

(b) Picture of the tensile test specimen

Figure 4.1: Uniaxial tensile test specimen according to ASTM D412 (2013)

In total, a number of 5 specimens was tested for the considered test series at low velocities.
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Details about the manufacturing process can be found in annex B. The material behaviour is
assumed to be homogeneous, isotropic and independent regarding the manufacturing and
curing conditions.

The tests have been performed using a tensile testing machine with electronic drive and a
capacity of 50 kN, shown in figure 4.2a, in an air-conditioned laboratory with 23 °C and 50 %
relative humidity. Due to the soft material and the small cross sectional area, only small
forces were expected. Therefore, an additional external load cell with a maximum capacity of
500 N was used, in order to record values with high accuracy. The loading rate was set to
6 mm/min.

A
(X02:Y0,2) (X2;y2)
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(a) 50 kN Zwick tensile testing machine (b) Video-extensometry

Figure 4.2: Test setup and measurement method

The deformations of the region with parallel edges of the specimens were measured locally
on the surface using video-extensometry. For the video-extensometry, the deformations of
red marks, which are shown on the dumbbell specimens (see figure 4.1b), were measured
by analysing each frame of the video file with a Matlab® script. In this script, for each
video frame, the parts of the picture, which fulfil a given condition concerning the colour, as
"red" for example, are selected. For each set of red pixels, the centre is determined and
its position within the considered picture is saved. This method is visualised in figure 4.2b
and the algorithm is described in detail in Franz (2015). Finally, with the assumption of a
homogeneous strain distribution within the region with parallel edges, the engineering strains
are calculated for each time step using

A _ _
€el = —l = L=lo = 27401 _ 1 (4.1)
lo lo Y0,2 — Yo,1

and the obtained strain channel was synchronised with the force channel from the load cell. In
equation 4.1, €. is the longitudinal engineering strain at the considered time step, [, the initial
distance between the two red marks for the unloaded configuration, [ the distance between
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the two red marks for the deformed shape and y; the ordinate of the red point’s (j) centre at
the respective time step. The initial ordinates of the undeformed points are denoted by yq ;.
The red points had a diameter of 2 mm and a thickness of less than 0.5 mm. One-component
neutral curing silicone sealant with red colour was used for this purpose, since no other
material adhered on the silicone specimens and was able to perform engineering strains
larger than 200 %. Due to their low thickness and the soft material behaviour of the sealant
used, the influence of these red marks on the stress-strain behaviour was judged negligible.

The engineering strain, measured locally using video-extensometry, is given in figure 4.3.
An almost linear curve can be observed. One representative specimen was selected. The
engineering strain rate is obtained by evaluating the slope of the curve, which is a linear
function of the time.
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Figure 4.3: Average engineering strain rate measured in the uniaxial tensile test

ii Test results

Figure 4.4 shows the engineering stress-strain relationship of the test specimens and the
numerically obtained stress-strain curve, which will be detailed in the following section. A
very low scattering regarding the stress-strain curve was obtained. The specimens failed
after showing a uniform extension without visible local necking of the material at high strains.
As displayed in figure 4.5, failure occurred in the region of parallel edges without being
influenced by the location of the red marks. The specimens recovered their initial shape. No
significant remaining deformation was recorded. The crack surfaces did not show any air
voids or defects.

The stresses and strains at failure recorded in the uniaxial tensile tests are given in table 4.1.
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Figure 4.4: Results of the uniaxial tension tests

The values of the engineering stresses and strains at failure are listed for the 5 specimens
tested.

Table 4.1: Stresses and strains at failure for the uniaxial tensile test

Specimen Engineering stress  Engineering strain ~ True strain
[MPa] [] []
Specimen 1 2.321 2.869 1.353
Specimen 2 2.227 2.686 1.304
Specimen 3 2.235 2.709 1.311
Specimen 4 2.116 2.696 1.307
Specimen 5 1.973 2.470 1.244
Mean 2174 2.686 1.304
Standard deviation 0.134 0.142 0.039

iii Numerical simulation

The engineering stress-strain curve in tension has been selected to characterise the Marlow
(2003) hyperelastic material law. In order to verify the numerical model, the uniaxial tensile
tests have been reproduced using the commercial Finite Element software code ABAQUS®
(Dassault Systémes, 2014). The silicone sealant was modelled using the Marlow hyperelastic
material law, as detailed in section 3.3.3. 20 node fully integrated hybrid solid elements
(C3D20H) were used in the geometrical nonlinear analysis. Convergent results were obtained
even for a coarse mesh.
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Figure 4.6: Numerical model of the uniaxial tension test

For the numerical model, only the region with parallel edges was modelled since the defor-
mations have been measured in this area. Symmetry in all directions was used as shown in
figure 4.6. An excellent agreement between the numerical and the experimental stress-strain
curves was obtained (figure 4.4), since the experimental stress-strain relation in uniaxial
tension was used to characterise the material law. With the uniform loading and boundary

conditions, a Finite Element model consisting of only one element would have been sufficient
as well.

4.1.2 Uniaxial compression tests

Uniaxial compression tests were carried out on Dow Corning® 993 structural silicone sealant,
in order to obtain the material response and the failure load in uniaxial compression. The
selected specimens consisted of small silicone cylinders, according to ISO 7743 (2008).
Unlike as for the tensile and shear specimens, a remaining deformation was measured after
unloading the compression test specimens. This remaining deformation even occurs for small
applied deformations. Failure in terms of rupture of the test specimens was only observed for
deformations, which are much higher than the deformations at failure onset. The permanent
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deformation is assumed to be associated with damage of the material. Therefore, the failure
initiation point is referred to as the load or displacement, for which the amount of remaining
or plastic deformation significantly increases.

i Specimens and test setup

As mentioned before, the specimens consist of small silicone cylinders (shown in figure
4.7b) with a diameter of 12mm and a height of 12mm. The silicone sealant used was
Dow Corning® 993 structural silicone adhesive (Dow Corning Corporation, 2001). The
adhesive has been poured using a professional mixing plant. After pouring of the silicone, the
specimens have been stored at ambient conditions at the manufacturer. Detailed information
about the boundary conditions of the manufacturing process can be found in annex B. For
the pouring of the sealant, a mould, shown in figure 4.7a, made of polytetrafluoroethylene
(PTFE), has been manufactured. It is composed of a block of PTFE with the cavities for
the specimens and a cover with holes for pouring the silicone. The same manufacturing
process, but with different geometry has already been presented in Dias (2013). The material
behaviour of the specimens is assumed to be homogeneous, isotropic and independent
regarding the manufacturing conditions.

(a) PTFE mould used (b) Compression test specimen

Figure 4.7: Compression test specimen

A 10kN hydraulic tensile testing machine was used in a displacement controlled mode. The
test setup consisted of two thick polished plates, as shown in figure 4.8a. A load cell was
inserted between the upper plate and the transversal beam of the test frame. The relative
displacement between the two compression plates was measured, using two linear inductive
displacement transducers, fixed on the upper plate with magnetic stands, as shown in figure
4.8b. The tests have been carried out under ambient conditions. Due to the interdisciplinary
use of the laboratory, the conditions could not be maintained at a constant level. Since these
variations were small and since the sealant exhibits stable properties over a wide temperature
range, the effect of these conditions was judged negligible.

Preliminary tests have shown that friction between the compression plates and the specimen
can be reduced using lubricant, but not be fully eliminated. As a lubricant is supposed to
affect the recorded load-displacement behaviour, it was not used for the tests. The loading
speed was not chosen in accordance with ISO 7743 (2008). It was determined in a way to
obtain the same average engineering strain rate in load direction, as for the uniaxial tensile
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(a) Compression test setup (b) Detailed view on the compression test setup

Figure 4.8: Compression test setup

test. Thus,

vuc = €e,uc huc = €e,ur huc. (4.2)

In equation 4.2, vyc is the average loading rate in uniaxial compression, €. yT the strain rate
measured in the uniaxial tensile tests and hyc the thickness of the compression specimen.
With a strain rate of 0.002 s™', measured in the uniaxial tensile tests (cf. figure 4.3), a loading
rate of 1.44 mm/min is obtained for the compression test. The determination of the loading
rate according to the principle of constant energy input, described in Scherer (2014) and
applied in Drass et al. (2016), was not used, since a very small value was obtained for the
loading rate, leading to tests of about 1 hour.

Table 4.2: Conducted compression tests series

Test series Test routine

UC-DC-17-1.11t0 1.3 Load specimen in displacement control to 90% engineering
compression strain.

UC-DC-17-2.1 t0 2.3 Load specimen in displacement control to 90% engineering
compression strain in steps of 10 %. Unloading after each
step and measuring of the remaining height.

UC-DC-17-3.1t0 3.5 Load specimen in displacement control to 5% engineering
compression strain, unload and reload to a defined strain.

Three different test series have been conducted. Table 4.2 gives an overview on the defined
test routines. In series 1 (3 specimens), the specimens have been loaded in displacement
control until 90% applied engineering compression strain in one step. As mentioned before,
the rupture of the specimens was not used as a failure initiation point, but the load at which a
remaining deformation strongly increased. In order to determine this point, the specimens of
series 2 (3 specimens) were loaded (in displacement control) in steps of 10% engineering
compression strain. After each load step, the specimens were unloaded and their dimensions
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Figure 4.9: Measuring the height of a compression test specimen

immediately measured using the thickness gauge shown in figure 4.9a. Finally, in test series
3 (5 specimens), the specimens were loaded in displacement control to a defined level of
compression strain. The remaining compression strain has been measured as well for these
specimens.

The definition of zero displacement is not straightforward, since imperfections lead to some
difficulties in the interpretation of the test start. In fact, it is not possible to precisely adjust the
tensile testing machine to a level, where the gap between the machine and the specimen is
closed, but no force on the specimen is applied. Figure 4.10 shows the stress-strain curve in
compression for very low strains.

In figure 4.10, the curve starts almost horizontally, which shows that a displacement of the
machine is performed without being in contact with the material. Once the gap between the
rigid plate and the specimen is completely closed, the force increases significantly. In order
to define a suitable correction procedure for the stress-strain data, the slope of the curve at
the origin is considered. For the tensile and compression curves, the slopes of the curves
at the origin must be equal. From this consideration, the compression curve is translated
horizontally up to the point, where the tangent at the origin of the tensile part is coincident
with the tangent at the origin of the compression part. In other words, the strain is modified as

Ecorr = Eraw + AE. (43)
In equation 4.3, ..+ is the corrected strain, e, the strain calculated from the raw data

and Ac¢ the defined offset. The stresses remain unchanged. The strains .o, > 0 are not
considered for further analysis. The part of the compression curve, where the slope changes
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Figure 4.10: Comparison of the slopes at the origin of the engineering stress-strain curves in
tension and compression

from almost horizontal to the real material response might be replaced by a linear connection
with the origin.

ii Test results

The engineering stress-strain curves in compression of the test series UC-DC-17-1 are
displayed in figure 4.11. The curves exhibit the typical asymptotic behaviour for strains
approaching 100% engineering compression strain. The specimens were loaded up to 90%
engineering compression strain. No failure in terms of rupture of the specimens was observed
at this point.

Figure 4.12 gives the engineering stress-strain relationship for the specimen UC-DC-17-2.2,
which was loaded in steps of 10% engineering compression strain. Additionally, the curve
for a specimen loaded to 90% engineering compression strain in one step (referred to as
"compression test") is given in the same diagram. The specimen, which was unloaded for
multiple times, clearly shows the Mullins effect, discussed in section 3.1. Once the specimen
is compressed beyond the preloaded range, it follows the initial or virgin curve. For clarity
reasons, the unloading paths are not displayed. The complete set of test data can be found
in annex A.

After each load step, the specimens were unloaded and the dimensions measured, as
described in the previous paragraph. Special focus was put on the specimens’ height. For
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Figure 4.11: Results of the compression test series UC-DC-17-1
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Figure 4.12: Engineering compression stress-strain curve

each load step, the remaining engineering compression strain, which is defined as
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has been determined. In equation 4.4, ¢, y is the remaining engineering compression strain
at a given applied compression strain, hyc o the initial height of the specimen and hyc the
residual height of the specimen after unloading.

In figure 4.13, the remaining compression strain is plotted against the applied compression
strain. Even for small applied deformations, a remaining deformation is recorded. This
observation is attributed to the Mullins effect. In Dorfmann and Ogden (2003), a particle-
reinforced rubber was investigated regarding the Mullins effect. A residual strain was detected,
which linearly increased with the applied tensile elongation. For the investigated structural
silicone sealant, the curves of remaining strain versus applied compression strain exhibit
a linear behaviour up to an applied engineering compression strain of 60%. The linear
regression of the curves between 0% and 60% applied compression strains was plotted and
a very good coefficient of determination of more than 98% was found. Starting from 60%
imposed engineering compression strain, the remaining deformation was found to strongly
increase. However, no failure in terms of visible cracks was observed. This strong increase of
the remaining deformation of the specimens is interpreted as an onset of significant internal
damage, occurring in parallel to the observed residual deformation due to the Mullins effect.
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Figure 4.13: Remaining compression strain

Figure 4.14 shows a specimen before, during the test between the two compression plates
and after unloading. The restrained lateral dilatation due to friction is clearly visible in figure
4.14b. The unloaded specimen has no longer a cylindrical shape, but the shape of a wine
barrel, as the diameter of at mid-height is larger than the diameter at the top and bottom
face (see figure 4.14c). Some specimens were cut along the vertical axis to check if cracks
or cavities have developed, but no visible signs have been detected. Figure 4.14d shows
specimen UC-DC-17-2.3 (loaded up to -85.9% engineering strain). The cut surface is smooth
and free of visible defects.
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(a) Before test - initial (b) During test - (c) After test (d) Cut specimen
shape deformed shape

Figure 4.14: Shape of a compression test specimen

In order to check if the remaining deformation recovers after a certain time, the heights of
the specimens of the test series UC-DC-17-2 and UC-DC-17-3 were measured once again
6 months after the test. Figure 4.15 shows the records of these measurements. The initial
height of the unloaded specimens, the remaining height immediately after the test and after 6
months of storage at ambient conditions are given. At the horizontal axis of figure 4.15, the
applied engineering compression strain is displayed.
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Test specimen (Applied engineering compression strain)

Figure 4.15: Remaining compression strain measured after 6 months

Only small recovery of the remaining deformation was recorded. For the specimens loaded
up to 70% engineering compression strain, the residual height increased by less than 0.2%,
compared to the measurement performed immediately after the test. For the specimens
loaded beyond 80% engineering compression strain, the recovery was more pronounced,
the residual height increased by 1.3% to 8.5% compared to the measurement, carried out
immediately after the test. However, although the values for the residual strain slightly change
considering the measurements carried out 6 months after the tests, the significant increase
of the residual deformation, displayed in figure 4.13, can still be observed at 60% applied
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engineering compression strain.

iii Analytical solution for the strain distribution of a solid under compression

In this section, the analytical solution for the strain distribution in a cylindrical solid, subjected
to uniaxial compression is given. The material of the solid is assumed isotropic, fully elastic
and incompressible. The boundary conditions are given in figure 4.16. The vertical deforma-
tion of the solid is supposed to be uniform. The solid is free to deform in horizontal directions,
no restraining force as friction is considered. The considered solid in its initial and deformed
shape is shown in figure 4.16.

duci N

dUC,O >

Yy

Figure 4.16: Initial and deformed shaped of a cylinder under uniform compression

The volumes of the solids in the initial shape (Viyc,o = 7/4 d%c,o huc,o) and in the deformed

shape (Vyc = 7/4 d%c huc) are considered. Since the material is assumed incompressible
(v = 0.5), the volume of the cylinder stays constant. The deformed height of the solid is given
as

huc = huco + Ahvuc = huc,o + huco - €e,: = huco - (1 +€e.2) - (4.5)

In equation 4.5, Ahyc is the change of height of the cylinder between its initial and deformed
shape and ¢, . is the engineering compression strain in vertical direction. Considering the
equal volumes in the initial and deformed states and using equation 4.5 gives

dFc 0 d?
1 huco = %C huco (1+¢€cz)

[ 1 (4.6)
= dyc =dy .
@01 + Ee,z

The strains in x and y directions are equal due to the cylindrical shape of the solid. Consider-
ing the change of diameter and equation 4.6 gives

dyc — ducy 1
Eex = Eeyy doco T4 oo (4.7)
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For the evaluation of the strain magnitude (cf. equation 3.41 in section 3.4.4), the analytical
expressions for the engineering strains have to be converted in true strains according equation
3.31. For the vertical strains

Ah
E g
" hucyo
[ AR
e, =1In +1
| huc,o “s)
- huc — huco + hucyo '
=1In +1
I hvuc,o
=1In fua
| huc,o

and for the horizontal strains

1
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[ 1
—1+1
|V 1+ ce:
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LV huc
The strains ¢;, €, €. are at the same time the principal strains. Therefore, the strain
magnitude can be computed as

em = \/e2 + 3+ &3
= /€2 + el + €2
=4/2e2+¢€2

2 2 (4.10)
=42 |In huc + (In hua
' huc huc,o
2
N (hUCO> I (e
2 huc huc,o

The relation given in equation 4.10 will be used in chapter 5.

2
+
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iv Numerical simulation

The compression tests have been numerically reproduced using the commercial Finite
Element software code ABAQUS® (Dassault Systémes, 2014) in order to check, if the chosen
material law, which was characterised using tensile test data, was able to describe the
behaviour in compression. Moreover, the distribution of internal stresses and strains are
investigated in chapter 5. The silicone sealant was modelled using the Marlow hyperelastic
material law with the assumption of incompressible material behaviour, as described in section
3.3.3. The Finite Element model is shown in figure 4.17. 2D quadratic fully integrated hybrid
CAXB8H elements were used in the nonlinear axisymmetric analysis. In addition, symmetry in
vertical direction was assumed. The compression plate was modelled as well and a reference
point was connected with the plate using a kinematic coupling. Boundary conditions for the
plate were defined on the reference point.

Figure 4.17: Finite Element model of the compression test specimen

Since large deformation were expected and as the lateral dilatation was restrained due to
friction, the finite element at the corner between horizontal and lateral surface would be highly
distorted, thus leading to an abort of the analysis. This effect was investigated in detail in
the master thesis of Schwind (2016). Using a triangular mesh with special orientation or
using a round were proposed as possible solutions to avoid excessive mesh distortion. For
the simulation of the compression test, a rounding of 0.25 mm was inserted in the model. A
preliminary numerical study showed that the size of the rounding had only minor influence on
the results regarding the global force deformation behaviour. In the same way, a preliminary
mesh study showed that the results concerning force deformation gave convergent results for
the selected element size.

The friction formulation in tangential direction was penalty-based with the definition of a
friction coefficient. In normal direction, hard contact was assumed. The friction coefficient u
was chosen between 0.05 and 0.2. In addition, frictionless and bonded behaviour between
the bodies were considered. Figure 4.18 shows the comparison between the experimentally
recorded engineering stress-strain curves and the results of the numerical simulation using
different friction coefficients. A good agreement was found, especially for small strains. For
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larger strains, a friction coefficient of 0.1 described well the experimentally recorded behaviour.

Engineering compression strain [-]
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Figure 4.18: Engineering stress-strain curves from FEA for different friction coefficients

The distribution of the first principal strain is shown in figure 4.19 for an applied engineering
compression strain of 60%. It is clearly visible that the lateral surfaces touch the compression
plate. The maximum value for the first principal strain was found in the centre of the specimen.
In figure 4.19, only one fourth of the specimen is shown due to symmetry boundary conditions
in horizontal and vertical directions.
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Figure 4.19: Plot of the first principal strain calculated using a Finite Element Analysis
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4.2 Experimental investigations on adhesively bonded
connections

4.2.1 Simple shear tests

Simple shear tests on bonded connections with Dow Corning 993® structural silicone sealant
(Dow Corning Corporation, 2001) have been conducted to determine the influence of the
adhesive thickness as well as the overlap length on the failure initiation load and on the
force-deformation behaviour. Specimens similar to those detailed in ETAG 002 (2012) were
used for these tests. Some results of this section have been published in Staudt et al. (2016).

i Specimens and investigated parameters

For the shear tests, specimens analogous to those defined in ETAG 002 (2012) and shown in
figure 4.20 were chosen. These specimens consist of a linear and rectangular silicone bead
between two adherends. Unlike prescribed by ETAG 002 (2012), steel adherends were used
to allow a comparison with push out tests conducted in Dias (2013).

Adherend

|ad

he Adhesive

Figure 4.20: Definition of the dimensions of the simple shear specimens used - i, is the bite
or width, l,4n the length and e the thickness of the adhesive.

The definitions of length, thickness and width (or bite) are given in figure 4.20. The standard
specimen as foreseen by ETAG 002 (2012) has an overlap length of 50 mm, an adhesive
thickness of 12mm and a bite of 12 mm. Apart from this geometry, specimens with half and
double thickness (i.e. 6 mm and 24 mm) as well as specimens with a length of 100 mm and
200 mm were tested in addition. All the specimens show a constant bite dimension of 12 mm.

Figure 4.21: Boundary conditions of the simple shear tests

The specimens were loaded in displacement control, i.e. a constantly increasing shear
displacement was applied with the boundary conditions according to figure 4.21. As a simple
shear test is performed, the distance between the adherends is kept constant. Table 4.3
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summarises the chosen parameter of influence in a test matrix. Two test series have been
conducted. In 2015, specimens with 100 and 200 mm overlap length have been tested and in
2016, additional specimens with 100 mm overlap length and specimen with 50 mm overlap
length.

Table 4.3: Investigated parameters, designation and number of specimens

Thickness e Overlap length [,4n

50 mm 100 mm 200 mm
6 mm - 100-6: 10 -
12mm 50-12: 5 100-12: 14 200-12: 5
24 mm - 100-24: 10 200-24: 5

Nomenclature: [overlap length-thickness]: number of specimens tested

As mentioned before, the adherends were made of steel parts, which were sandblasted
and ground. After these steps and close to the pouring of the silicone, the adherends were
carefully cleaned using an appropriated solvent (Dow Corning® R40) and a primer (Dow
Corning® 1200 OS) was applied with the two clothes method (cf. Dow Corning Corporation
(2011b)). The silicone was poured within 3 hours after cleaning the adherends and applying
the primer, thus respecting the requirements set by the silicone manufacturer (Dow Corning
Corporation, 2011b).

Closing part

Adherend

Silicone sealant

PE mould

Pouring direction —#

Figure 4.22: Production of the specimens for the shear tests

In the next step, the adherends were separated using a mould of polyethylene material as
illustrated in figure 4.22. The adherends and the mould were fixed together with screws. The
two components of the silicone sealant were mixed with a two component mixing plant. After
the pouring of the silicone, the specimens were stored for 4 weeks at ambient temperature
and humidity. In Staudt et al. (2016), results of 50-6 and 50-12 test series have been shown
for which a different mould has been used. These specimens exhibited some flaws and
defects. Therefore, in the following, these specimens are not taken into consideration for the
failure load analysis.

Details about the manufacturing process can be found in annex B. In Comyn et al. (2002),
the kinetics of cure and the crosslink density of a one-component silicone sealant have been
investigated. The value of Young’s modulus and the crosslink density were found to vary
with the distance to the air surface. In the present investigations, the material behaviour is
assumed to be homogeneous with a uniform distribution of the crosslink density and the

84
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stiffness. Furthermore, the material is supposed to be isotropic and independent regarding
the manufacturing conditions.

ii Test setup and measurement equipment

The test setup, which is shown in figure 4.23, was manufactured at the metalworking shop of
the University of Luxembourg. It is composed of two parallel plates, with the left plate fixed to
the 10 kN hydraulic jack and the right plate to the cross beam of the testing frame.

Fixed part
Position sensor

Fixation of position senor

Marker for video extensometry

PTFE washer

"left plate" (moving)

Lateral guidance

Speckle pattern for DIC

Fixation of the specimen

Specimen

E/ "right plate” (fixed)
Load cell
Hydraulic jack
(a) Test setup (b) Schematic view of the test setup

Figure 4.23: Test setup of the simple shear tests

In order to guarantee the boundary condition simple shear shown in figure 4.21, a lateral
guidance consisting of a threaded rod was used. The right plate was equipped with a threaded
hole and the left one with a slot. Nuts were placed at both sides of the moving plate. In order
to avoid friction, washers made of PTFE were used in combination with grease. Prior and
after each test series, the friction of the test setup was evaluated by running an empty test, i.e.
without specimen, while measuring the force. A friction force less than 10 N was recorded,
even when a horizontal force was manually applied on the moving plate. The condition of
parallel movement of the two plates was checked using video-extensometry (see section
4.1.1 for further information on the method). A maximum lateral displacement of less than
0.1 mm was found for the tests.
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4 Experimental investigations and Finite Element simulations

The specimens were fixed on the plates using screws and nuts. The tests were carried out at
ambient temperature. The loading rate was determined applying the principle of constant
energy input, described in Scherer (2014). According to this, the shear displacement velocity
can be determined as

dyve 1ldu 4 .
o= —- = - - = — = V3T 4.11
i dt e dt e 3 €eut ( )

In equation 4.11, 7, is the engineering shear strain, ¢ the testing time, u the imposed
displacement and e the thickness of the specimen. Taking into account the tensile tests at low
velocity (cf. figure 4.3), a value of 1 mm/min was found for the 6 mm thickness specimens of

the shear tests. According to equation 4.11, 2 mm/min are obtained for the 12 mm specimens
and 4 mm/min for the 24 mm specimens.

.
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(a) Test setup used for the simple shear tests (b) Speckle pattern

Figure 4.24: 3D Digital Image Correlation System used for the simple shear tests

Concerning the measurement equipment, a 5kN load cell was added between the hydraulic
jack and the left plate. A displacement transducer was used to record the relative displace-
ment between the two plates. In addition, a 3D Digital Image Correlation System consisting
of two cameras was used to measure the deformations locally on the surface of the sealant.
The measurement could not be performed continuously, i.e. recording one image per second
for example, but for discrete steps. The cameras were placed in front of the specimen, in
a way that both cameras captured the surface of interest, at which the deformations were
evaluated. Figure 4.24 shows the test setup with the cameras. In addition, a strong light
source was placed in front of the specimen. Prior to the measuring process, the cameras
were calibrated using a chequered pattern. The relative position of the two cameras and
the conversion factor from image to world units was determined with the calibration. The
deformations at the surface of the specimens were measured by following the displacements
of a characteristic speckle pattern on the surface of the specimens. In order to guarantee an
accurate measurement, an arbitrary and stochastic black-white speckle pattern was applied
on the surface of the specimens. The speckle pattern is shown as well in figure 4.24 and in
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figure 4.23 for the area of interest. The speckle pattern should have a good contrast and a
single speckle should be a bit larger than one pixel of the recorded image to obtain a good
resolution. The speckle pattern was created using Gouache paint, mixed with water and
applied using a toothbrush.

iii Test results

In total, two test series over two years have been performed. For each series, force-
displacement curves were recorded for every specimen. In addition, some tests were
recorded using a camera with high resolution. With these video-files, the displacement of the
specimen, at which the first significant crack appeared, could be determined. For the second
test series, a digital image correlation system was used to measure the displacements on a
local scale.
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Figure 4.25: Engineering stress-strain curves of the considered test series - one average
curve is shown per series.

The results of the shear tests are shown in figure 4.25, in form of engineering stress-strain
curves for the first test series in 2015. The engineering shear stress is the recorded force
divided by the initial cross sectional area (product of bite and overlap length) and the en-
gineering shear strain is the ratio of applied displacement over adhesive thickness. For
each specimen, the actual dimensions were measured before the test. In figure 4.25, an
average curve is shown for each test series. The number of specimens for each series is
given in table 4.3. The scattering of the results is in the order of magnitude of 5%-10%. The
specimens tested in 2016 showed comparable behaviour. The engineering stress-strain
curves in figure 4.25 are plotted until the average failure strain and failure stress observed for
the respective series. All test data is given in appendix A. The failure point was defined as the
appearance of a significant crack, which can be captured as a change of the slope or an off-
set of the force-deformation curve. The identification of the failure point will be discussed later.
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4 Experimental investigations and Finite Element simulations

As the experimental curves in figure 4.25 are coincident, it is concluded that the stress-strain
relationship of the specimens is independent of the chosen overlap length and adhesive layer
thickness, except for the failure point, which will be discussed later. The engineering shear
stress strain relationship exhibits a pronounced nonlinear behaviour in the range of small
deformations, followed by a linear behaviour for moderate to large strains.

The engineering shear stresses at failure are given in figure 4.26a and the corresponding
engineering shear strains in figure 4.26b. The average value of all conducted tests and the
standard deviation are shown for each geometry, with the number of specimens given in table
4.3. In addition, the average values for the engineering shear stresses and strains at failure
of all conducted test series are summarised in table 4.4. The engineering failure stresses and
strains are not influenced by the adhesive overlap length. However, the engineering shear
stresses and strains at failure decrease with increasing adhesive thickness. This finding
is referred to as adhesive thickness effect, which has been discussed in section 3.5. The
failure initiation was located close to the corner edge of the interface between adhesive and
adherend.

Table 4.4: Stresses and strains at failure of the simple shear test series
Test series 2015

Test series  Number of Eng. shear stress Std. dev. Eng. shear strain  Std. dev

specimens [MPa] [MPa] [-] [-]
100-6 5 0.876 0.125 1.413 0.249
100-12 6 0.800 0.098 1.302 0.188
100-24 5 0.580 0.098 0.924 0.144
200-12 5 0.830 0.060 1.308 0.089
200-24 5 0.570 0.151 0.868 0.222
Test series 2016
50-12 5 0.855 0.153 1.308 0.212
100-6 5 0.951 0.071 1.497 0.089
100-12 8 0.873 0.125 1.348 0.184
100-24 5 0.635 0.150 1.010 0.210
Average over all specimens
100-6 10 0.914 0.104 1.455 0.182
50-12 5 0.855 0.153 1.308 0.212
100-12 14 0.841 0.116 1.328 0.180
200-12 5 0.830 0.060 1.308 0.089
100-24 10 0.608 0.123 0.967 0.176
200-24 5 0.570 0.151 0.868 0.222
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Figure 4.26: Engineering shear stresses and strains at failure

The failure pattern of a representative specimen (test series 100-12) is displayed in figure
4.27. The typical saw-tooth pattern was found with pure cohesive failure. Again, no voids or
cavities are visible on the crack surfaces.

Figure 4.27: Typical failure pattern of a simple shear specimen
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iv Identification of the crack initiation load

In this paragraph, the failure process is considered in detail and the failure point is defined.
In order to define the failure load, two specimens showing a typical failure process were
analysed. Failure is defined as the appearance of a significant crack, which can be identified

in the stress-strain-diagram as a change of slope or an offset in the curve.

Engineering shear stress [MPa]

Engineering stress-strain curve for the 100-24-05 specimen and average curve for the 100-24 test series. The
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Figure 4.29: Detailed evaluation of the test specimen 50-12-03

In figure 4.28, the stress-strain relationship for the specimen 100-24-05 and the average
curve for that series are given. Moreover, 5 points are selected with the corresponding video
frames shown in figure 4.28 a) to e). For point a), no failure is observed. In point b), an offset
in the stress-strain curve was recorded and a crack opening can be observed in figure 4.28
b) at the corner edge of the bonded connection. The transferred load increases after this
offset in the engineering stress-strain curve. At point c), both the applied force and the crack
length increased. At point d), a second crack at the opposite corner edge developed and
force finally decreased. At the final point €), the specimen is close to complete failure. The
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force did not drop to zero due to friction between the crack faces.

For the second example, shown in figure 4.29 b), a small crack was already visible for small
displacements. However, the actual failure of this specimen was identified at the point of
the stress-strain diagram in figure 4.29a, at which the slope of the stress-strain curve has
changed. The extrapolation of the original stiffness of the curve is plotted as a dotted line.

It has been illustrated in this paragraph considering two representative specimens, that the
failure initiation of the investigated bonded connections tested in simple shear correlates
with an offset or a change of slope in the recorded stress-strain relationship and that this
corresponds to the appearance of a first significant crack. After the initiation of failure, the
applied load can still be increased as shown in these two examples. Generally speaking, the
maximum load is 5%-25% higher than the failure load.

v Numerical simulation

The simple shear tests have been numerically simulated in order to check, if the chosen
material law is able to reproduce the material behaviour observed in the shear tests. In
addition, the numerical models are investigated in more detail in chapter 6. For the numerical
simulation, the commercial Finite Element software code ABAQUS® (Dassault Systémes,
2014) was employed. The Marlow hyperelastic material law was used to describe the sealant.
Details about the material law employed can be found in section 3.3.3. 20-node quadratic
fully integrated brick elements with hybrid formulation due to the incompressible material
behaviour of the adhesive were chosen in the geometrical nonlinear analysis. A mesh size of
1 mm was selected, giving convergent results regarding the force-deformation behaviour. The
boundary conditions are given in figure 4.30. Symmetry in bite direction was assumed and
the adherends were not modelled since they are rigid compared to the soft silicone sealant.

Figure 4.30: Boundary conditions assumed in the numerical simulation of the simple shear
tests. The adherends were not modelled as they are rigid compared to the sealant.

A comparison between the experimentally obtained stress-strain curve and the numerical
simulation is shown in figure 4.31. A very good agreement is obtained between the test
results and their numerical simulation. Engineering shear stress-strain curves are shown.
Since the stress-strain curves for the different test series are coincident, the results are shown
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Figure 4.31: Experimentally obtained engineering shear stress-strain curve and numerical
simulation of the 100-6 specimen

in an exemplary way for only one geometry.

Further results of numerical investigations were presented in Staudt et al. (2016). The
stress distribution has been found to be independent of the overlap length. For a given
imposed engineering shear strain and the same overlap length, the stresses obtained at
the corner edge of the interface between adherends and adhesive were found to increase
with the adhesive thickness. It was concluded, that the results of the Finite Element analysis
qualitatively well describe the experimentally observed adhesive thickness effect. In sections
6.3 and 6.4.1, it will be shown that the FEA can also quantitatively describe the adhesive
thickness effect.

vi Investigation of the displacement field at the surface of the sealant

In the previous paragraph, the global stress-strain behaviour of the simple shear tests was
numerically reproduced. In this section, the local deformations at the corner edge, which
have been determined using the digital image correlation system, are compared with the
results of the previously described Finite Element Analysis. The region of measured surface
displacements is given in figure 4.32. An applied displacement of u, = 3 mm was considered
for a specimen of the 50-12 test series and a specimen of the 100-12 test series. In order to
obtain a high resolution, only a limited section of the specimens was considered.
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Figure 4.32: Region of measured surface displacements using DIC
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Figure 4.33: Plot of the deformation u, for an applied deformation of v, = 3mm, z is the
load direction.
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In the following, specimens 100-12-03 and 50-12-02 are compared for the same imposed
displacement of 3mm. In addition, the deformations measured in the tests on the surface of
the sealant are compared with the results from the non-liner Finite Element Analysis, which
was described in the previous chapter.
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Figure 4.34: Plot of the deformation w,, for an applied deformation of u, = 3mm, y is the
direction of thickness.

Figure 4.33 shows the displacement in z-direction. The chosen coordinate system is given
in figure 4.32. z is the overlap direction, i.e. the direction of the applied displacement. The
deformations perpendicular to the overlap direction (y-direction) are shown in figure 4.34.
Finally, the out-of-plane deformations (z-direction) are given in figure 4.35. In these figures,
subfigures (a) give the experimentally obtained values for the specimen 50-12-02 and (b) the
values for the specimen 100-12-03. In subfigures (c) and (d), the respective results of the
Finite Element Analysis are plotted.

A very good agreement in all considered directions is obtained, both qualitatively and quanti-
tatively, between the experimentally measured deformations and the numerically predicted
ones. Moreover, the displacement field at the corner edge is the same for different adhesive
overlap lengths. This finding validates the working hypothesis formulated in Staudt et al.
(2016) according to which the stress field at the corner edge is independent of the adhesive
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overlap length for the considered geometries. The experimentally obtained deformation
plots exhibit some defects, which correspond to areas, where the speckle pattern from the
reference configuration could not be retrieved in the deformed shape. This is due to regions
of speckle pattern, which were badly sized or which did not exhibit enough contrast.
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Figure 4.35: Plot of the deformation u, for an applied deformation of u, = 3 mm, z is the bite
direction.

4.2.2 Circular shear tests

Circular shear tests on bonded connection with Dow Corning® 993 structural silicone adhesive
(Dow Corning Corporation, 2001) have been performed using two different types of specimens.
For the first type, a continuous silicone bead was produced in order to investigate the material
behaviour and the failure initiation of bulk material without being influenced by a significant
singularity. The second type has a disrupted joint exhibiting the two-material wedge at the
corner edge of the interface as shown in figure 4.36. The results of the specimens with
continuous joints have already been published in Staudt et al. (2017). The basic idea of the
circular shear test was to eliminate the corner edge areas of the standard H-shaped specimen
as detailed in ETAG 002 (2012) by making the bonded connection circular. To obtain a shear
loading, a torsional moment was applied on the circular bonded connection. Specimens
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for circular shear tests can either be butt bonded or overlapping (Habenicht, 2009). In the
present investigation, specimens with overlapping adherends, also known as tubular lap joints
(cf. Adams and Peppiatt (1977) or Chen and Cheng (1992)) were used. The selected type
of specimen is shown in figure 4.36. Inserting a fillet is another method to reduce the effect
of the two-material wedge. This method has been applied in Cognard and Créac’hcadec
(2009), where an improved thick adherend shear test was proposed. The complex adhesive
geometry required to reduce the influence of the singularity is a disadvantage of this method.

Torsional moment
Quter adherend Quter adherend
Inner adherend Inner adherend Inner adherend

Silicone

7"

* Quter adherend

(a) Specimen (b) Cut A-A continuous joint (c) Cut A-A disrupted joint

Figure 4.36: Selected specimens for the circular shear tests on bonded connections with
silicone

i Specimens and test setup

As mentioned before, specimens with cuts and specimens with continuous silicone bead
have been used, with a number of 5 specimens produced for each type. The cross-section of
a specimen is shown in figure 4.37.

~ @ 156 mm I
Silicone sealant ) ’ @ 140 mm |
Applied moment ) :
of torsion |
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AT Inner adherend |
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= Silicone I
Inner adherend Setting block |
AP,
Outer adherend PTFE spacer |
|
I
|‘ Outer adherend 170 mm|
(a) Butt bonded adherends (b) Overlapping adherends

Figure 4.37: Specimen used for the circular shear test on a bonded connection with silicone
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(a) Components of the specimen without cut (b) Components of the specimen with cuts

Figure 4.38: Components of the specimens of the circular shear tests

(a) Outer adherend (b) Outer adherend with setting block

(c) PTFE ring added (d) Inner adherend and PTFE spacer for the cuts
added

Figure 4.39: Assembly of a specimen with 2 cuts
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The specimens are composed of two bowls, with one bowl placed into the other and bonded
together with Dow Corning® 993 structural silicone adhesive (Dow Corning Corporation,
2001). The inner adherend has a diameter of 140 mm and is placed on a plastic setting
block, which is placed inside the outer adherend, to avoid a dead load transfer through the
adhesive. Between the setting block and the silicone bead, a PTFE ring was inserted to
avoid adherence on three sides. PTFE was not used for the setting block because of its
pronounced visco-elastic behaviour. For the specimens with cuts, two 3mm PTFE plates
were placed between the inner and outer ring. Two notches were milled at the inner side
of the outer adherend and at the outer side of the inner adherend to create a guidance for
the PTFE plates. The installed PTFE plates are shown in figure 4.39d. Once the sealant
had cured, the plate were removed, thus creating the edge areas subject to the present
investigations.

The adherends were made out of aluminium. Before the sealing of the specimens with
silicone, the parts were carefully cleaned with a solvent (Dow Corning® R40) and prepared
to the pouring of the silicone with an appropriated primer (Dow Corning® 1200 OS) (Dow
Corning Corporation, 2011b). The silicone was poured using a professional mixing device.
After the sealing, the specimens have been stored at controlled conditions. Details about the
cure conditions can be found in annex B. Figure 4.38 shows the components of the speci-
mens. The manufacturing process is illustrated in figure 4.39. Although the manufacturing
conditions differ from those of the simple shear tests, for which the surface in contact with
air was considerably smaller, the material behaviour is assumed to be independent of the
manufacturing conditions.

| T T[N . AT — -

(b) Installation of the specimen inside the
torsion testing machine

(a) Torsion testing machine (c) Displacement transducers used

Figure 4.40: Test setup of the circular shear tests at TU Darmstadt

The test series have been performed using a tension-torsion testing machine with a maximum
capacity of 4000 Nm in an air conditioned environment with 20°C and 50% relative humidity.
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The testing machine is shown in figure 4.40a. Two adapters, consisting each one of a disk
welded to a steel cylinder, were produced to clamp the specimens in the testing machine. The
adapters were fixed to the specimens with screws. The cylindrical parts of the adapter were
inserted in the clamp of the testing machine and fixed with screws as well. Two adapters, one
for the top and one for the bottom side, were used. The connection detail is shown in figure
4.40b. Figure 4.40c shows the fixation devices, produced for the displacement transducers.

The applied torsional moment was measured using the load cell of the testing device. In
addition, two displacement transducers were used to measure the angle of torsion and the
relative axial displacement between the adherends. This displacement transducer was fixed
in tangential direction of the specimen. Knowing the exact position from the displacement
transducer to the centre of the specimen and measuring the relative displacement between
the two adherends, the angle can be calculated using simple trigopnometrical equations (see
figure 4.41). The results of this measurement were in very good agreement with the travel
recorded by the testing machine. A second displacement transducer was fixed in vertical
direction to measure the vertical relative displacement between the two substrates.

Deformed shape of the Specimen .

inner adherend
Measured } T~a

displacement |

R

|
Initial position of

the inner adhereng7‘ T T T T T

Position sensor /[

Figure 4.41: Relationship between the measured tangential displacement and the angle of
torsion

The loading rate has been determined following the principle of constant energy input. A
loading rate of 1.5°/min was determined. The test program was chosen to avoid any normal
force in vertical direction.

For the failure load prediction in chapter 6, the shear stress distribution within the adhesive in
the circular shear specimen is investigated. A small section of the circular silicone bead is
considered in figure 4.42. From equilibrium, the applied moment of torsion can be computed
as given in equation 4.12. The shear stresses are assumed constant in bite direction (h.).
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Figure 4.42: Small section of the
adhesive joint
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ii Test results

The torsional moment versus the angle of torsion for the two conducted test series is plotted
in figure 4.43. The average curve is shown for each series. For the series without cuts
(labelled T-NC), 5 specimens have been tested. For the series with two cuts (labelled T-2C)
only 4 specimens were tested due to a problem encountered while testing one specimen.
The scattering of the results is in the order of 10%. The specimens with 2 cuts show a lower
stiffness than the specimens with continuous silicone bead.
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Figure 4.43: Results of the circular shear tests

Regarding the vertical displacement transducer, which was used to monitor the axial displace-
ment, a maximum axial separation of 0.5 mm was found with an average value of 0.22 mm
for all the tests. A maximum axial compression displacement of 0.1 mm was found with an
average of 0.02 mm for all the specimens. Due to the small values, these displacements
were neglected for the numerical analysis, which is discussed later.

The moment of torsion and the angle of torsion at failure initiation are given in figure 4.44.
The identification of failure initiation was performed in the same way as discussed in section
4.2.1. A specimen has reached its failure point, if an offset or a significant change of slope is
visible in its force-deformation curve. Considering figure 4.44, it can be concluded that the
difference in the load bearing capacity between the specimens with cuts and without cuts is
within the range of scattering. Whereas the average values for the angle of torsion at failure
is almost equal, there is a small difference in the applied moment of torsion. It should be
recalled here, that the total load transferring area of the specimens with cuts is smaller than
for the specimens without cuts due to the presence of these cuts.

Considering the failure mechanism, for both series, 100% cohesive failure was observed. The
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Figure 4.44: Evaluation of the failure loads of the circular shear tests - average value and
standard deviation are displayed

failure pattern is shown in figure 4.45. It shows the typical sawtooth-shaped cohesive pattern
of the adhesive layer. No permanent deformation after failure was observed. A detailed
view on the crack surfaces of a representative specimen is given in figure 4.46. No voids or
cavities are visible.

(a) Cohesively failed specimen (b) Detailed view

Figure 4.45: Typical failure pattern of a circular shear test specimen

For the notched circular shear specimen, the silicone bead was disrupted. Prior to the pouring
of the sealant, a small piece of PTFE with a thickness of 3 mm and covering the whole cross-
section of the adhesive joint, was inserted to create the corner edges, similar to those found
at the simple shear specimens. During the test, it was observed that for a certain applied
rotation, the faces of the inserted gap came into contact. Figure 4.47 shows a picture of
the specimen T-2C-05, for which the gap almost vanished and the corresponding numerical
simulation. Details about the numerical model used are given below. The deformation
of the sealant in bite direction is qualitatively well reproduced in the numerical simulation.
The circular shear tests were performed to investigate the influence of the corner edge on
the failure behaviour of the adhesive joint. The above mentioned observations should be
considered for the following investigations.
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Figure 4.47: Behaviour of the faces of the cut in the circular shear test - U3 is in z-direction

iii Numerical simulation

The circular shear tests have been numerically reproduced using the commercial Finite
Element software code ABAQUS®(Dassault Systémes, 2014). The results of these simu-
lations will be investigated in more detail in chapters 5 and 6. For the silicone sealant, the
Marlow hyperelastic material law has been used, as described in section 3.3.3. Symmetry
in bite direction was used and the adherends were represented with analytically rigid shells
bonded to the sealant with a tie constraint. 2 reference points have been defined to apply the
boundary conditions for the adherends. The boundary conditions are given in figure 4.48.

The inner rigid shell was fully fixed at its reference point and the rotation was applied on the
outer rigid shell. 20-node quadratic, fully integrated hybrid solid elements (C3D20H) have
been used to represent the sealant. A preliminary mesh study showed that the results for
the force-deformation behaviour give convergent results for a reasonably refined mesh with
2mm element size.
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Figure 4.48: Boundary conditions of the numerical simulation of the circular shear test
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Figure 4.49: Comparison of the test results with the Finite Element Analysis

A comparison between the experimentally recorded moment-rotation curves and the numeri-
cal simulation for the two series is given in figure 4.49. A good agreement is obtained between
the test data and the Finite Element Analysis. The nonlinear behaviour of the experimental
curve is well represented. Since failure is not covered by the constitutive law, the numerical
results do not cover the failure process. For both models, almost no difference can be seen
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between the curves of the specimens with and cuts without cuts.

4.2.3 Tension tests

Tension tests on H-shaped specimens according to ETAG 002 (2012) have been performed
on Dow Corning® 993 structural silicone sealant (Dow Corning Corporation, 2001). The
objective of these tensile tests is to validate the chosen material law. Moreover, failure of
these specimens will be investigated in chapter 6.

i Specimens and test setup

The specimen used is shown in figure 4.50. The dimensions of the silicone bead were
selected according to the specifications given in ETAG 002 (2012) with an adhesive overlap
length of I,q, = 50 mm, an adhesive layer thickness of ¢ = 12 mm and a bite of h. = 12 mm.
The adherends were made of anodized aluminium. The material behaviour is supposed to be
homogeneous, isotropic and independent of the curing conditions. A number of 6 specimens
was tested.

(a) H-shaped specimen (b) Picture of a tensile specimen

Figure 4.50: Standard H-specimen as detailed by ETAG 002 (2012)
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(a) Boundary conditions of the tension test (b) Test setup of the ETAG tension test

Figure 4.51: Test setup and boundary conditions of the tensile tests on H-specimens
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The tests were performed at ambient conditions (23 °C temperature and 50 % relative hu-
midity). A tensile testing machine with a maximum capacity of 50 kN was used for the tests.
A constant loading rate of 5 mm/min was applied, following the specifications according to
ETAG 002 (2012). The tests were run in displacement control. The deformations were
measured using video-extensometry, which has been detailed in section 4.1.1. Figure 4.51
illustrates the boundary conditions of the test and shows the white marks used for the evalua-
tion of the displacements. The test setup is displayed in figure 4.51. Two specimens were
not immediately loaded to failure, but to approximately 50 % of ultimate displacement, then
unloaded to 10 % and reloaded to failure. The objective of this test procedure was to visualise
the Mullin’s effect.

ii Test results

The test results are given in figure 4.52. A quite low scattering of the results can be observed,
especially for small deformations. For two specimens, a lower stiffness was recorded. As
already described in Staudt (2013), an almost ideal Mullins effect can be observed with an
almost coincident unloading and reloading path and a force-deformation curve, which follows
the initial curve beyond the preloaded range.
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Figure 4.52: Results of the ETAG 002 tension tests, loading rate of 5 mm/min

A typical failure pattern is shown in figure 4.53. 100% cohesive failure was observed for all
the specimens. No voids or cavities could be observed at the crack surfaces. The location of
failure initiation is illustrated in figure 4.54. It is located at the corner edge of the interface
between the adhesive and the adherend, where an inhomogeneous deformation due to the
restrained lateral contraction can clearly be observed. For one specimen, the failure initiation
point was not visible on the recorded video, but the failure pattern showed that the failure
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Figure 4.53: Cohesive failure of a H-specimen in tension (specimen ETAG-T-UA-03)

surface is located close to the interface, when considering the edge areas. An average failure
displacement of 8.28 mm with a standard deviation of 0.66 mm was recorded.
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(d) ETAG-T-UA-04 (e) ETAG-T-TM-UA-01 (f) ETAG-T-TM-UA-02

Figure 4.54: Failure initiation of the H-specimens in tension

iii Numerical simulation

The tensile tests on the H-specimens were numerically reproduced using the commercial
Finite Element software code ABAQUS® (Dassault Systémes, 2014). The results of the
numerical model were compared with the test data and the results will be further investigated
in chapter 6. 20-node quadratic fully integrated brick elements with hybrid formulation due
to the incompressible material behaviour of the adhesive were chosen in the geometrical
nonlinear analysis. The Marlow hyperelastic material law was used to represent the sealant.
Details about the material law are discussed in section 3.3.3. An element size of 1 mm
was chosen for the mesh. A preliminary mesh study showed that the results concerning
force-deformation were convergent for this mesh size. The adherends were not modelled
since they are rigid compared to the sealant and the failure of the adhesive was cohesive.
One fourth of the specimen was modelled due to symmetry in all bite and overlap direction.
The boundary conditions are displayed in figure 4.55.
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Figure 4.55: Numerical model of the H-specimen under a tensile load

In figure 4.56, the results of the numerical simulation regarding force-deformation are given.
A good agreement between the experimental curve and the numerical simulation can be
observed, especially for small to moderate deformations. For large deformations, the forces
are underestimated for a given displacement.
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Figure 4.56: Comparison of the test results with the Finite Element Analysis
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4.3 Fracture mechanics tests

4.3.1 DCB tests on Dow Corning® 993 structural silicone sealant

Double cantilever Beam (DCB) tests have been performed on Dow Corning 993® structural
silicone adhesive (Dow Corning Corporation, 2001). The objective of these tests was the
determination of the critical energy release rate for the silicone sealant considered.

i Specimens and test setup

The geometry and loading conditions are given in figure 4.57. Two different adhesive
thicknesses were tested, one thick silicone bead with a thickness of e = 12mm (series
DCB-12) and a thin silicone bead with a thickness of e = 6 mm (series DCB-6). A total
number of 7 specimens has been tested for both series. The adherends were made of high
strength aluminium in order to avoid a plastic deformation of the adherends.

Figure 4.57: Double Cantilever Beam tests on silicone elastomer

200

Silicone, bite h, = 25 mm

o Aluminium, width h, = 25 mm
All dimensions in [mm] Pre-crack, Aa = 3 mm

Figure 4.58: Dimensions of the Double Cantilever Beam specimens (drawing not to scale)
The objective of the DCB tests was to determine the critical energy release rate of the silicone

sealant. Therefore, in order to avoid that the failure process is initiated at the interface
between adhesive and adherend, where the lateral contraction of the sealant is retained due
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to the high stiffness of the adherends, a pre-crack with a length Aa of 3 mm was created in
the specimens with a razor blade. The crack was located at the half adhesive thickness. The
crack length was the same for both test series.

For the manufacturing process, the aluminium adherends were placed on a plate of polyethy-
lene material. At the beginning and at the end of the adhesive joint, a polyethylene spacer
was used to adjust the nominal thickness of the sealant. Adherends and spacers were fixed
using screw clamps. In addition, screw clamps have been used to avoid slipping on the
ground plate. Before assembling the different parts, the adherends were carefully cleaned
with Dow Corning® R40 solvent and Dow Corning® 1200 OS primer was used prior to the
pouring of Dow Corning® 993 structural silicone sealant (Dow Corning Corporation, 2001),
which was done using a professional mixing plant under controlled conditions. Details about
the storage conditions can be found in annex B. The material properties are assumed to be
homogeneous, isotropic and independent of the manufacturing conditions. The parts used
for the manufacturing process and the produced specimens are shown in figure 4.59.

(a) Parts for the manufacturing of the specimens (b) Manufactured specimens

Figure 4.59: Manufacturing process of the Double Cantilever Beam specimens

Due to the manufacturing process, which consisted in pouring the silicone from the top in bite
direction, air pockets were found on some specimens. For most of them, the air pockets were
not critical, as they were located sufficiently far away from the region of interest. Specimen
DCB-12-01 should not be evaluated since the air pocket was close to the beginning of the
adhesive joint. Figure 4.60 shows specimen DCB-12-01 and a specimen with high quality.

(a) Specimen DCB-12-01 with bad quality (b) Specimen with good quality
Figure 4.60: Quality of the produced DCB specimens
The Double Cantilever Beam tests have been performed using the tensile testing machine

shown in figure 4.57. The specimens were loaded in tension with the tensile force applied in
y-direction at the extremities of the specimens, as displayed in figure 4.57. The two cantilever
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arms of the specimens were fixed in a device with unrestrained rotation about the specimens’
z-axis.

The forces were recorded using a load cell and the rotation of the two loading points were
measured using inclinometers. For the measurement of the crack opening displacement, a
speckle pattern has been applied on the specimens as shown in figure 4.61b. With these
speckle pattern, the displacements were recorded using a digital image correlation system.
Before the tests, the specimens’ dimensions were measured. The tests have been carried
out in ambient conditions and in displacement control. A constant loading rate of 3 mm/min
has been applied for the 12 mm specimens and a loading rate of 1.5 mm/min for the 6 mm
specimens.

(a) Tensile testing machine with load cell (c) Failure pattern of a DCB-6 specimen

Figure 4.61: Double Cantilever Beam test setup

ii Test results and evaluation

In this paragraph, the results of the Double Cantilever Beam tests are shown. In figure
4.62a, the J-integral is plotted against the crack opening displacement, i.e. the displacement
measured on the adherends above the initial position of the crack tip using the digital image
correlation system. The curves are almost linear. Figure 4.62b shows the J-integral plotted
against the crack opening displacement for the 6 mm specimens. After an initial nonlinear
part, the curves flattened. Measurements beyond 9 mm were not possible since the traced
speckle pattern was moving out of the video frame.

The traction is potted against the crack opening displacement for the 6 mm specimens in
figure 4.63a. These curves have been obtained applying equation 3.66 on the experimental
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Figure 4.62: J-integral plotted against the crack opening displacement for the Double

Cantilever Beam tests

112



4.3 Fracture mechanics tests

21 T T T
]| ==——=DCB-6-01 =————DCB-6-02
]| =—DCB-6-03 DCB-6-04
18 ]| =—DCB-6-05 DCB-6-06 / J
i DCB-6-07
15 - / [
= ] — il
o 1.2 ' I —
s ] /[_
e 1 —
2 09 /\/\/
5 7]
o
= ]
0.3 1 AN ~\
0 1 2 3 4 5 6 7 8 9
Crack opening displacement [mm]
(a) Traction-separation law for the Double Cantilever Beam tests with 6 mm adhesive thickness
2.1
1| ——DCB-12-02 ——DCB-12-03 I
- DCB-12-04 ———DCB-12-05
1.8 H DCB-12-06 DCB-12-07 1_/
15 -
g 12
= i
< ]
2 09 e ———
g = ~ |
E p
= ] N _
0.6 / \r7_ 1
] §< |/ \
] =]
o\*/;

0 1 2 3 4 5 6 7 8 9
Crack opening displacement [mm)]

(b) Traction-separation law for the Double Cantilever Beam tests with 12 mm adhesive thickness

Figure 4.63: Traction-separation law for the Double Cantilever Beam tests

curves displayed in figure 4.62. The experimental curves have been approximated using a
polynomial function of degree 6. Unlike as for the curves of the DCB-12 specimens, the val-
ues for the traction did not decrease to zero. Therefore, it is not a priori possible to determine
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the critical energy release rate regarding this data. The evaluation will be further discussed in
paragraph iv. Similar behaviour was observed for some specimens of the DCB-12 test series,
but less pronounced. For these specimens, the evaluation has been carried out up to a point
for which the stresses decrease below 5% of the maximum value or up to a point, at which
the curve starts to show unstable behaviour.

The behaviour observed for the thin adhesive layers can be linked to unstable crack growth.
In Leffler et al. (2007), unstable crack propagation was observed for a thin epoxy-based
adhesive tested in shear. The unstable crack growth was explained with an insufficient
initial crack length. Another explanatory approach is given in Biel and Stigh (2017). A
thin incompressible adhesive tape has been investigated in a DCB test with transparent
polymethlymethacrylate adherends in order to visualise the effects, which take place in
the adhesive. Nucleation and growth of cavities have been observed in the adhesive. Af-
ter the first peak stress in the traction-separation law, the decreasing curve is due to the
growth of the cavities. A second stress peak was observed prior to final decrease of the
traction-separation curve, which was related to the breakage of the walls between the cavities.

The failure pattern of a representative specimen is shown in figure 4.64. The typical sawtooth
shaped failure pattern can be observed. Figure 4.65 shows the failure surfaces for a
representative specimen. As for the previously described tests, no voids or cavities were
detected.

(a) Crack opening (b) Failure pattern

Figure 4.64: Failure process and failure pattern of specimen DCB-12-03

Figure 4.65: Typical failure pattern of a DCB specimen. The pre-crack corresponds to the
smooth surface at the right-hand side of the photo.
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iii Numerical simulation of the DCB test

The performed DCB tests have been numerically simulated using the commercial Finite
Element software code ABAQUS® (Dassault Systémes, 2014). Apart from the assessment
of the material law to reproduce the behaviour of the specimen, the Finite Element Analysis
was used to localise the displacement, at which the inserted crack started to propagate.
A geometrical nonlinear analysis has been performed assuming a linear elastic material
behaviour for the aluminium adherends and an incompressible hyperelastic material law
for the silicone adhesive layer (model according to Marlow (2003)). Figure 4.66 shows the
numerical model. Symmetries in global Y and Z directions have been used.

..

Figure 4.66: Finite Element model of the Double Cantilever Beam test on silicone

For both adhesive and adherends, second order fully integrated solid elements have been
selected with hybrid formulation, due to the incompressible material behaviour of the silicone
sealant. An element size of 1 mm has been defined in the vicinity of the inserted crack. For
the remaining parts, a mesh size of 2.5t0 5 mm has been chosen for computational efficiency
and since the results in terms of global force-crack opening displacement behaviour showed
convergent behaviour for a rather coarse mesh. The symmetry boundary condition in Y
direction has been applied on the whole surface on the symmetry plane except for the area
of the initial crack.

The results of the numerical simulation in terms of force-displacement are given in figure
4.67 for both test series DCB-6 and DCB-12. The measured force is plotted against the
crack opening displacement, which was tracked using the digital image correlation system as
described in the paragraph i. Concerning the experimental data, one average curve is plotted
per test series. For the DCB-6 test series, a very good agreement between the experimental
data and the numerical simulation was obtained up to a crack opening displacement of
2.5mm. A good agreement up to 6 mm crack opening displacement was found as well for the
DCB-12 test series. Since the crack onset and propagation are not covered by the numerical
simulation, the numerically reproduced curve deviated from the experimental results at crack
propagation.
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Figure 4.67: Simulation of the force-displacement behaviour of the DCB tests

iv Determination of the critical energy release rate

The critical energy release rate was calculated applying equation 3.63 to the experimentally
obtained traction-separation laws, shown in figure 4.63. The numerical integration was
carried out up to the crack opening displacement, for which the traction has decreased to
zero or for which the traction-separation law exhibits unstable behaviour. The onset of this
behaviour was taken as a limit for the computation of the critical energy release rate. Table
4.5 summarises the obtained values. The specimens of the test series DCB-6 have not been
evaluated using this method since the discussed unstable behaviour already occurred for
high traction values.

Table 4.5: Results of the DCB-12 test series

Specimen Ge [kd/IM?]  Omax [MPa]  dmax [Mm]  Unstable behaviour?
DCB-12-01 2.56 0.73 5.19 yes
DCB-12-02 3.72 0.88 6.00 no
DCB-12-03 3.56 0.90 5.24 yes
DCB-12-04 3.40 0.90 4.94 yes
DCB-12-05 3.65 0.88 5.72 yes
DCB-12-06 4.77 0.91 6.78 yes
DCB-12-07 4.96 0.93 6.68 yes
Average (01-05) 3.38 0.86 5.42 -
Std. dev. 0.48 0.07 0.43 -
Average (02-07) 4.01 0.90 5.89 -
Std. dev. 0.67 0.02 0.75 -
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Method based on linear extrapolation

In order to determine the critical energy release rate of the test specimens of the DCB-6
series, the descending branch of the traction-separation law was linearly extrapolated. The
evaluation of a typical specimen is shown in figure 4.68. The traction-separation law, which
was determined from the experimental data, is shown for the specimen DCB-6-01. Starting
from the crack opening displacement d..¢, unstable behaviour was detected. The descending
branch of the curve was extrapolated considering the slope of the section between 2.75 mm
and 3.5 mm crack opening displacement. The results for each specimen of the test series
DCB-6 and DCB-12 using the extrapolation method for the determination of the critical energy
release rate are given in table 4.6 for the DCB-6 series and table 4.7 for the DCB-12 test
series.
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Figure 4.68: Extrapolation of the descending branch of the traction-separation law

Table 4.6: Results of the DCB-6 test series extrapolating the traction-separation law

Specimen G, [kJ/M?]  Omax [MPA]  Sext [MM]  Gmax [MM]

DCB-6-01 4.54 1.26 3.47 5.2
DCB-6-02 4.98 1.29 3.79 5.2
DCB-6-03 4.06 1.35 3.00 4.1
DCB-6-04 5.33 1.27 4.73 54
DCB-6-05 5.50 1.35 4.25 5.5
DCB-6-06 5.73 1.28 4.64 5.8
DCB-6-07 4.42 1.35 3.33 4.6
Average 4.94 1.31 3.89 5.1
Std. dev. 0.62 0.04 0.67 0.6
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Table 4.7: Results of the DCB-12 test series extrapolating the traction-separation law

Specimen Ge [kd/M?]  Omax [MPA]  ext [MM]  Smax [MM]
DCB-12-01 2.55 0.73 4.95 5.2
DCB-12-02 3.72 0.88 6.00 6.0
DCB-12-03 3.61 0.90 4.39 5.6
DCB-12-04 3.62 0.90 4.94 5.8
DCB-12-05 3.64 0.88 5.60 5.7
DCB-12-06 4.74 0.91 6.43 7.0
DCB-12-07 4.99 0.93 6.54 7.0
Average (02-07) 4.06 0.90 5.65 6.2
Std. dev. 0.63 0.02 0.85 0.7

Method based on Finite Element Analysis

The evaluation procedure described in section 3.9.3 is based on the idea illustrated in figure
3.35. The region in the vicinity of a crack is represented as a cohesive layer with the mechani-
cal behaviour being defined in the traction-separation law. Prior to the onset of a crack, which
can be seen as a rupture of material, the cohesive layer exhibits some damage initiation. This
damage initiation is characterised by decreasing values in the traction-separation law. In the
case of the test series DCB-6 however, the initially inserted crack grows before the traction
decreases to zero. The key question therefore is to localise the onset of the crack, in order to
determine the work performed by the material, before the crack propagates.

This question of fracture initiation of adhesive joints has been discussed by Dean et al. (2004),
where failure of bonded connections with a rubber-toughened glassy polymer was investi-
gated. The failure point was identified as the position of the force-deformation curve, where
the numerically predicted values start to differ from the measured curves. Failure initiation
was assumed as the reason for this observed deviation. This deviation was supposed to
result from failure initiation due to crack onset. For this procedure, the accurate prediction of
the material behaviour is a fundamental requirement.

Considering figure 4.67, the point, where the numerically predicted values start to differ from
the experimentally recorded data is found at 6 mm for the DCB-12 test series. Considering
figure 4.63b, this value is in good agreement with the crack opening displacement at crack
onset. Applying this method to the DCB-6 test series, the crack initiation can be identified at
a crack opening displacement of 2.5 mm. Recalling equation 3.63, the critical energy release
rate can be determined as

dc
T :/ o(8)ds  with & = 2.5mm. (4.13)
0

The results applying the FEA method are given in table 4.8.
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Table 4.8: Results of the DCB tests using the FEA method

Test series DCB-6 Test series DCB-12
Specimen G, [kJ/M?]  Omax [MPa]  Ge [kJ/M?]  omax [MPa]
01 2.72 1.26 N/A N/A
02 2.80 1.29 3.72 0.88
03 2.90 1.35 4.01 0.90
04 2.75 1.27 4.10 0.90
05 2.90 1.35 3.69 0.88
06 2.50 1.28 4.31 0.91
07 2.50 1.35 4.41 0.93
Average 2.72 1.31 4.04 0.90
Std. dev. 0.17 0.04 0.29 0.02

Summary of the results

Table 4.9 summarises the results obtained for the critical energy release rate G., the mode |
strength omax and the maximum crack opening displacement d,,.x using the above discussed
evaluation methods.

Table 4.9: Summary of the parameters determined using the DCB tests

Specimen Ge [kI/M?]  omax [MPa]  diyax [Mm]
"Classic method"

DCB-6 evaluation not possible

DCB-12 4.01+0.67 0.904+0.02 5.89+0.75
Method using linear extrapolation

DCB-6 4.94+0.62 1.314+0.04 5.1+0.6
DCB-12 4.06+0.63 0.9040.02 6.2+0.7
Method using Finite Element Analysis

DCB-6 2.72+0.17 1.31£0.04 2.5
DCB-12 4.04+0.29 0.9040.02 6.0

The critical energy release rate of Dow Corning® 993 structural silicone sealant has been
determined in Double Cantilever Beam tests investigating two adhesive layers. The J-integral
approach has been used to determine the cohesive properties (traction-separation law) and
the critical energy release rate of the adhesive. Unlike as for the test series with an adhesive
thickness of 12 mm, the traction-separation law determined for the thin adhesive layer with
a thickness of 6 mm didn’t allow for a direct calculation of the critical energy release rate.
Therefore, two different engineering approaches have been used, one consisting in a linear
extrapolation of the traction-separation law and one based on a Finite Element Analysis. For
the method based on linear extrapolation, the critical energy release rate is found to decrease
with the layer thickness. This finding is not in line with the behaviour observed for other types
of adhesives and thus judged implausible. The method based on a Finite Element Analysis
gives plausible results and the order of magnitude found is similar to DCB tests carried out
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4 Experimental investigations and Finite Element simulations

on a one-component room temperature vulcanising silicone, which was investigated in Banea
et al. (2010).
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5 Identification of a failure criterion for
silicone bulk material

5.1 Introduction

5.1.1 Methodology

In this section, the failure criteria, which have been introduced in section 3.4, are investi-
gated. In a first step, the tensile and circular shear tests were considered. These tests have
been numerically reproduced using a commercial Finite Element software code. A good
agreement has been found between the experimentally recorded and numerically reproduced
force-deformation curves (cf. section 4.1.1 for the uniaxial tensile tests and section 4.2.2
for the circular shear tests). In this section, the loads or displacements at crack initiation
were applied on the numerical models and the stress or strain distributions in the silicone
sealant were investigated regarding the different failure criteria introduced in section 3.4. The
numerical model of the uniaxial tension test was taken as a reference and was compared
with the results of the unnotched circular shear test.

In a second step, the proposed failure criterion was validated using the compression test
data. Since only tension, shear and compression test data were considered in the framework
of this thesis, the proposed failure criterion has limited validity. On the one hand, bonded
connections with high amount of hydrostatic tensile stresses, as found in thin butt bonded
cylinders under axial tension, cannot be assessed assuming an incompressible material law.
Moreover, failure of these configurations is governed by the so-called cavitation. On the other
hand, complex geometries should not be assessed either, since no biaxial test data has been
used to calibrate the failure criterion. The proposed failure criterion can be used for bonded
connections with silicone in form of a linear bead, as found in fagade applications, which
were shown in section 3.2.

5.1.2 Preliminary considerations

As the failure criterion uses the results of numerical models, a fundamental requirement
consists in two aspects. First of all, the behaviour of the considered components must be
accurately reproduced. This has been checked for the tension, shear and compression
specimens in the corresponding sections. A good agreement has been found between the
experimentally recorded and the numerically reproduced global force-deformation behaviour.
Moreover, convergence of the stresses and strains is essential for their assessment with
a failure criterion. If the values of the acting stresses and strains depend on the chosen
discretisation of the component, these values become into some extend arbitrary. The
failure load prediction in case of non-converging stresses, as observed for the simple shear
specimens, will be subject of chapter 6.
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5 Identification of a failure criterion for silicone bulk material
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Figure 5.1: Finite element mesh for the uniaxial tensile test specimen

(a) Coarse mesh (b) Medium mesh (c) Fine mesh

Figure 5.2: Finite element mesh for the circular shear test specimen
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Figure 5.3: Finite element mesh for the compression test specimen

In order to check the convergence of the results of the numerical simulations in terms
of stresses and strains for the tensile, shear and compression specimens, three different
numerical models have been built for each specimen. The investigated Finite Element models
are visualised in figure 5.1, figure 5.2 and figure 5.3. A coarse, medium and fine mesh
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5.2 Calibration of a failure criterion

were investigated for each specimen. The results are summarised in table 5.1. The values
of the principal stress o; and the strain magnitude €)1 are given for three different mesh
sizes. A good convergence was found for the stresses and strains. For the compression test
specimen, the numerical model assuming a friction coefficient of 1 = 0.1, which exhibited
good agreement with the experimental data, was considered.

Table 5.1: Mesh study on the stresses and strains

Test Number of elements o7 [MPa] ey [-]
Tension 51 8.290 1.607
396 8.290 1.607

3168 8.290 1.607

Circular shear 466 5.300 1.634
3714 5.376 1.634

12528 5.407 1.640

Compression 2103 1.328 1.730
(v =0.1) 3611 1.328 1.730
8368 1.330 1.731

In section 3.4, different failure criteria have been introduced. A differentiation was made
between stress-, strain- and energy-based criteria. For the stress-based criteria, the maximum
principal stress (Rankine) criterion and the von Mises equivalent stress have been considered.
For the strain-based criteria, the maximum principal strain criterion and the strain magnitude
were investigated. Finally, the strain energy density was selected amongst the group of the
energy-based failure criteria.

5.2 Calibration of a failure criterion

The tensile tests have been numerically reproduced as described in detail in section 4.1.1.
Three load levels have been investigated: the average failure load, the average failure load
with the standard deviation subtracted and added. For these load levels, the selected failure
criteria were evaluated using the results of the conducted Finite Element Analysis.

Strain magnitude

(Avg: 75%)
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Figure 5.4: Plot of the strain magnitude for the uniaxial tensile test specimen at the average
failure load

The distribution of the strain magnitude for the uniaxial tensile test, subjected to its exper-
imentally determined average value for the failure strain, is given in figure 5.4. A uniform
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5 Identification of a failure criterion for silicone bulk material

distribution is obtained in the reproduced area of parallel edges. As mentioned in section
4.1.1, failure was observed in this region.

In the second step, the same procedure was applied for the circular shear tests on the un-
notched specimens. Neither the notched circular specimens, nor the simple shear specimens
have been considered, as they exhibit a stress singularity, thus not fulfilling the second re-
quirement about converging stresses and strain, discussed in section 5.1.2. Moreover, crack
onset was observed at the singularity for the simple shear specimens. For the unnotched
circular shear specimens, the numerical model described in section 4.2.2 was employed and
the resulting stress, strain and strain energy distributions have been investigated for the three
previously described load levels (average failure load applied, failure load with added and
subtracted standard deviation). Figure 5.5 shows the distribution of the strain magnitude
for the circular shear test with the average failure rotation applied. The maximum value for
the strain magnitude appears at the inner adherend. The same is true for the stress- and
energy-based criteria. The value of the strain magnitude at the outer substrate is 20% lower
than the maximum value.

Strain magnitude
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Figure 5.5: Plot of the strain magnitude for the circular shear test specimen at the average
failure load

Table 5.2 summarises the values obtained for the different equivalent stresses and strains
considering the stress and strain distributions of the tensile and circular shear specimens at
their respective failure loads. Apart from the values at the average failure loads, the failure
loads with the standard deviation added (referred to as Max.) and subtracted (referred to as
Min.) are given as well. The values listed in table 5.2 are plotted in figure 5.6. The relative
strength given on the vertical axis is the ratio of the obtained equivalent stress, strain or
energy, found for the applied failure load in tension or shear, divided by the value obtained in
the tensile test for its failure load. Consequently, as the uniaxial tensile test is the reference,
its relative strength is 1 for each failure criterion.
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5.2 Calibration of a failure criterion

Table 5.2: Comparison of the failure criteria considering the tensile and circular shear

specimens
Uniaxial tension Circular shear
Failure criterion Min.  Average Max. Min. Average Max.
Hydrostatic pressure  [MPa] -2.76 -2.67 -2.62 -143  -1.07 -0.79
Rankine [MPa] 7.86 8.02 8.29 3.16 4.14 5.38
von Mises [MPa] 7.86 8.02 8.29 3.58 4.66 5.94
Strain energy density [N/mm] 3.32 3.41 3.49 1.43 1.94 2.57
Max. principal strain [-] 1.29 1.3 1.32 0.92 1.04 1.15
Strain magnitude [-] 1.58 1.59 1.61 1.31 1.47 1.63
1.2
1 B Uniaxial tension @ Circular shear

Relative strength [-]

Hyd. Rankine SED von Mises  Max. princ. Strain
pressure strain magnitude

Failure criterion

Figure 5.6: Comparison of the results regarding different failure criteria

At their respective failure loads, the values found for the hydrostatic pressure, the maximum
principal stress, the strain energy density and the equivalent stress according to von Mises
show poor agreement between the tensile and circular shear specimens. The threshold
values at failure initiation regarding these failure criteria are significantly lower in the circular
shear specimen, compared to the tensile test specimen. A different situation can be observed
for the strain-based failure criteria. The values obtained for the maximum principal strain
are in a comparable order of magnitude comparing the two considered stress states. Finally,
at their respective failure displacements, the values for the strain magnitude found in the
tensile and circular shear numerical models show a good agreement. Therefore, the strain
magnitude will be investigated in more detail in the following sections.
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5 Identification of a failure criterion for silicone bulk material

5.3 Validation of the proposed failure criterion

The previous section has shown that the strain magnitude is a suitable failure criterion for the
silicone bulk material considering tension and shear stress states. In this section, the failure
criterion is validated using the compression test data. In section 4.1.2, the failure point for
compression has been identified as the load level, for which the residual deformation strongly
increased. This strong increase was referred to internal damage of the material and has been
experimentally recorded at 60% applied engineering compression strain.

The compression test specimen has been numerically reproduced taking into account for
the friction occurring between the specimen and the compression plates (cf. section 4.1.2).
Good agreement was obtained between the experimental stress-strain curves and their
numerical simulation. The obtained distribution of the strain magnitude for the compression
test specimen is given in figure 5.7 for an applied engineering compression strain of 60%,
which was identified as the threshold level for damage onset. Figure 5.7 shows that due to
friction, the lateral surface comes into contact with the compression plates. In order to avoid
excessive mesh distortion at the edge, a rounding of 0.25 mm was inserted. The maximum
values for the strain magnitude are found at the centre of the specimen. It is pointed out that
only one fourth of the specimen’s section is shown, since a 2D axisymmetric analysis was
performed with symmetry in vertical direction assumed.

Strain magnitude
(Avg: 75%)
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Figure 5.7: Plot of the strain magnitude for the compression test specimen at failure initiation

In figure 5.8, the maximum value for the strain magnitude in the compression specimen is
plotted against the applied engineering compression strain. Since the influence of friction
cannot be clearly assessed, the curves for different friction coefficients are given. Considering
the results for a friction coefficient of u = 0.1, which gave a good estimation of the force-
deformation behaviour, a maximum strain magnitude of e,y = 1.5 has been obtained for an
engineering compression strain ¢, yc = —0.6. The location of the maximum value of the
strain magnitude is in the centre of the compression test specimen, as shown in figure 5.7.
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5.3 Validation of the proposed failure criterion
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Figure 5.8: Maximum value of the strain magnitude in the compression test specimen

The strain magnitude is a failure criterion based on true (logarithmic) strains. Physically, it
can be seen as a measure for the stretch of the molecular chains. Considering equation 3.41,
it describes a sphere centred at the origin of the space of true principal strains, as shown in
figure 5.9. Unlike as for the maximum principal strain criterion, the contribution of all strain
components are taken into account. Thus, failure does not only occur, when the material is
stretched in tension, but also when it is highly compressed.

€3

Figure 5.9: Representation of the strain magnitude as a failure surface in the space of true
principal strains
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5 Identification of a failure criterion for silicone bulk material

5.4 Summary

Failure of bulk material has been investigated considering the experimental results obtained
for the tests described in chapter 4.1 (uniaxial tension and compression) as well as the
unnotched circular shear tests described in section 4.2.2. With the nonlinear numerical
simulations of the tensile and circular shear tests, the strain magnitude has been identified as
a suitable failure criterion for these tests. The proposed failure criterion has been validated
with the results of the compression tests. In fact, for the identified failure initiation point at 60%
engineering compression strain, a value for the strain magnitude close to )y = 1.6, which
was calibrated in the uniaxial tensile test, has been obtained in the centre of the compression
specimen using a Finite Element Analysis.

The proposed failure criterion has been validated on bulk material with no stress singularities.
Therefore, neither the simple shear, nor the notched circular shear, nor the tensile tests on
the H-shaped specimens, have been considered. In addition, as only tension, compression
and shear were investigated assuming incompressible hyperelastic material behaviour, the
proposed failure criterion should not be used for silicone bonded connections with high
amount of hydrostatic tensile stresses, as found in butt bonded cylinders with small adhesive
layer thickness or for complex geometries.
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6 Failure load discussion of bonded
connections

6.1 Introduction

In chapter 5, failure of defect-free bulk material has been investigated and the strain magnitude
has been identified as a suitable strain-based failure criterion. The performed investigations
were based on Finite Element Analysis and the stress solutions gave convergent results,
which was considered as a fundamental requirement for assessing the different characteristic
stress states. This convergent behaviour is no longer given, when bonded connections
with edge areas are considered. Due to the sharp change of the geometry and the elastic
constants, a singularity is found, the so-called two-material wedge. When the stress or strain
distributions are analysed with the Finite Element Method, the values of stresses or strains
depend on the size of the elements and on their formulation. A direct assessment of the
stresses is therefore not possible. The stress distribution in bonded connections has been
intensively discussed in section 3.5. Methods have been presented, which take into account
for the stress singularity at the interface between adhesive and substrate.

In this chapter, the test results given in chapter 4.2 are investigated regarding the failure
initiation. The performed investigations are based on Finite Element models, which have been
presented in the respective sections, describing the numerical simulation of the considered
test series. The simple shear tests, the notched circular shear test and the tension test
according to ETAG 002 (2012) have been considered for the subsequent investigations.

In section 6.2, the load bearing capacity of the different tests is predicted using the design
equations given in ETAG 002 (2012) and using the analytical solution for the shear and peel
stress distributions in single-lap shear joints proposed by Allman (1977).

In section 6.3, a concept from Finite Fracture Mechanics has been applied on the simple
shear test data. The so-called coupled stress and energy criterion, proposed by Leguillon
(2002) and successfully employed by WeiBgraeber (2014) to predict crack initiation of single-
lap shear joints with linear elastic adhesive, has been extended to nonlinear elastic material
behaviour.

Section 6.4 gives some results using the Theory of Critical Distances, following three different
approaches: choosing a constant element size and formulation for the description of the
stresses in the vicinity of the notch, averaging the strain energy density in a control volume
around the notch and evaluating the stresses or strains at a certain distance from the
singularity.
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6 Failure load discussion of bonded connections

6.2 Analytical models

6.2.1 Failure load prediction according ETAG 002 (2012)

The design concept according to ETAG 002 (2012) has been presented in section 3.2.5. It is
based on the assumption of a uniform stress distribution inside the sealant. In this section,
the set of test data is analysed following the design approach given in ETAG 002 (2012).
For the engineering shear strength 745 and tensile strength o4es, the engineering stresses
of the 50-12 specimen in simple shear and tension are taken respectively. Considering
table 4.4, 14.s = 0.855MPa and from section 4.2.3, 04es = 1.150 MPa. In contrast to ETAG
002 (2012), T4¢s and o4es are not fractile values divided by a design factor, but average values.

According to ETAG 002 (2012), the acting shear stress is independent of the adhesive overlap
length and thickness. Therefore, for all the simple shear test series, the predicted engineering
shear stress at failure equals 74.s. The same is true for the circular shear specimen. Figure
6.1 summarises the failure load prediction for the different test series. Very good agreement
is found for the simple shear test series with 12 mm adhesive thickness, since the shear
strength was calibrated using this test series and since failure does not depend on the
overlap length for the considered dimensions. Very good agreement can also be found for
the ETAG-Tension series, since the strength was calibrated using this test data.

18 1| ®mTEST ®mETAG 002
16 |

1.4 3

Engineering stress [MPa]

Figure 6.1: Results of the failure load prediction using the design concept given in ETAG 002
(2012)

The design equations proposed by ETAG 002 (2012) or ASTM C1401 (2002) only consider
average shear stresses, which can be observed in the plane at mid-height of the adhesive
joint. The failure process however is dominated by the two-material wedge, which is located
at the interface between adhesive and adherend. Therefore, the design approach cannot
reproduce the adhesive thickness effect, which has been experimentally observed.
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6.2 Analytical models

6.2.2 Failure load prediction according Allman

In section 3.5.1, the stress distribution in a single-lap shear joint proposed by Allman (1977)
has been presented. Unlike as for the Volkersen equation, the stress distribution according to
Allman fulfils the stress-free edge condition. As only single-lap shear joints are covered by
the analytical approach, this section focus on the simple shear test series. The equations for
the stress distribution in the single-lap shear joint for the Allman approach are given in section
3.5.1, equation 3.45. The adherends have been assumed as rigid and the sealant as incom-
pressible. The Volkersen equation has not been considered subsequently, since it predicts
a constant shear stress distribution for the combination of rigid adherends with a soft adhesive.

According to the Allman equation, the maximum stress values are found for the peel stresses
at the free edge of the adhesive interface. Regarding the peel strength, the 100-12 test series
is taken as a reference with the adhesive assumed as incompressible and the adherends as
rigid compared to the sealant. Figure 6.2 gives the summary of the failure load prediction
according to the Allman solution.
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Figure 6.2: Results of the failure load prediction using the Allman solution

Considering the results given in figure 6.2, the failure loads are found to decrease with the
adhesive thickness. This trend is observed as well in the tests, but to a much larger extend.
Concerning the adhesive overlap length, the failure engineering shear stresses are found
to increase slightly. This trend however has not been observed in the tests. Although the
Allman equations consider the peel stresses at the interface, they cannot reproduce the
experimentally observed findings.
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6 Failure load discussion of bonded connections

6.3 Finite Fracture Mechanics

6.3.1 Introduction

The simple shear tests have been numerically reproduced and the concepts described in
section 3.7 have been employed to predict the crack onset, referred to as failure initiation
points, which were experimentally determined and presented in section 4.2.1. The results
given in this section have been presented at the 14" International Conference on Fracture on
Rhodos in 2017 (Rosendahl et al., 2017).

The coupled criterion has been described in section 3.7. It is based on two partial criteria
- the stress criterion and the energy criterion. For a given structure, the applied load or
displacement at crack onset and the initiated crack length are unknown. If the acting stresses
exceed the strength of the bulk material over the whole area of the predicted crack and if
this crack releases enough energy for its onset (i.e. if the incremental energy release rate
exceeds the critical energy release rate of the material), the two partial criteria are fulfilled and
the load at crack onset is found. As mentioned in section 3.7, this leads to an optimisation
problem, in which the load at crack onset and the crack length need to be determined. In
order to solve this problem, the strength of the bulk material and the critical energy release
rate must be known.

6.3.2 Basic assumptions and numerical model

In the original work of Leguillon (2002), a stress failure criterion was adopted to assess
whether the strength of the bulk material was exceeded. In WeiBgraeber (2014), the maximum
principal stress was selected to evaluate the stress criterion for the single-lap shear joint
connection investigated. In the following, the stress criterion is modified to a strain-based
criterion. As shown in section 5, the strain magnitude, defined as

em = (/€7 + €3 + €3, (6.1)

with €1, €9, €3 the three true principal strains, has been identified as a suitable failure cri-
terion for the silicone bulk material. Apart from the strain magnitude, the mode | strength,
as determined in the DCB tests in section 4.3, has been selected as well in preliminary studies.

Apart from the failure criterion, the critical energy release rate must be known to assess the
energy partial criterion. For the subsequent analysis, the critical energy release rate, as
determined in section 4.3 for the specimens with an adhesive layer thickness of 12 mm, has
been adopted.

The simple shear tests, presented in section 4.2.1 have been numerically reproduced in a
nonlinear 2D Finite Element analysis, using the commercial Finite Element software code
ABAQUS® (Dassault Systémes, 2014). Bonded connections are often modelled assuming
plane strain conditions (e.g. Da Silva and Campilho (2012)), since the thickness is small
compared to the bite dimension. Typically, for these assemblies, the adhesive thickness is
much smaller than the bite dimension. For the investigated bonded connections with silicone
however, the bite dimension is in the same order of magnitude than the thickness. Therefore,
plane stress conditions were assumed.

132



6.3 Finite Fracture Mechanics
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Figure 6.3: Numerical models of the simple shear test specimen for the coupled criterion

The silicone sealant was modelled assuming an incompressible material behaviour with the
hyperelastic material law according to Marlow (2003). The stress-strain curve of the uniaxial
tensile tests presented in section 4.1.1 was used to characterise the chosen material law.
The boundary conditions of the specimens are given in figure 6.3. Simple shear conditions
were assumed, since the distance between the adherends was kept constant during the tests.
The adherends have been assumed as rigid.

For the evaluation of the stress partial criterion, the model given in figure 6.3a was employed.
The stresses or strains were evaluated on the horizontal interface path indicated. For the
energy partial criterion, the numerical model shown in figure 6.3b was employed. Straight
interface cracks were investigated. For a given applied load, the energy release rate was
determined considering the difference of potential energies prior and after initiation of a crack
with finite length Aa.

Concerning the critical energy release rate, the values given in table 4.5 (Average 01-05)
have been employed. For the failure criterion, the mode | strength determined from the DCB
test was used in first step as a stress-based failure criterion (independently of the findings
of chapter 5). In a second step, the strain magnitude was adopted as a strain-based failure
criterion.

6.3.3 Results

The results of the evaluation of the crack initiation loads of the simple shear tests using the
coupled criterion are given in figure 6.4. The experimentally recorded engineering shear
stress at crack initiation (cf. section 4.2.1) are compared with the results from the coupled
criterion. As aforementioned, two different failure criteria were adopted, one stress-based, the
mode | strength as determined in the DCB test and the strain magnitude as a strain-based
failure criterion for silicone bulk material.

A good agreement was found between the experimental data and the predictions made using
the coupled criterion, especially for the specimens with a layer thickness of 12 mm, since the
critical energy release rate was determined on specimens with this adhesive layer thickness.
For the specimens with 6 mm layer thickness, the crack initiation load is overestimated. The
results of section 4.3 showed that the critical energy release rate of the thin specimens (6 mm
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6 Failure load discussion of bonded connections

layer thickness) were considerably lower. Consequently, the energy criterion is fulfilled for
smaller cracks or at a lower load level. The difference observed for the specimens with
24 mm layer thickness could be due to the presence of defects. The number of defects in
thick adhesive joints is generally estimated higher than in thin layers, as discussed in section
3.5.1.
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Figure 6.4: Results of the failure load prediction using Finite Fracture Mechanics. The
standard deviation is shown for the test results

Concerning the results assuming the strain magnitude as a failure criterion, the predicted
finite crack length at crack onset was found almost constant with a value of 2.5 mm for all the
considered specimens.

6.3.4 Summary and outlook

In the present investigations, the coupled stress and energy criterion, initially developed by
Leguillon (2002) and applied for the failure load prediction of adhesively bonded joints with
linear elastic material behaviour by WeiB3graeber and Becker (2013), has been applied for
the first time on hyperelastic materials. Furthermore, a strain-based failure criterion was
employed instead of a stress-based one. With the two material parameters strength and
critical energy release rate of the silicone bulk material, the adhesive thickness effect was well
predicted, based on a physically sound model. For the investigated simple shear geometries,
a constant crack length was found.

In a next step, the circular shear tests will be analysed with the coupled criterion. For these
specimens, the difference between the notched and unnotched specimens was very small.
This means that the notched specimens failed, when the bulk strength has been reached in
the bulk material. Regarding the two-material wedge, the stress criterion is largely fulfilled.
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6.4 Theory of Critical Distances

However, if failure does not occur, the energy criterion cannot be met. A predominant mode Il
could be a possible explanation for this behaviour.

6.4 Theory of Critical Distances

6.4.1 Choosing a constant element size and formulation

In a first approach, a very simple procedure has been employed to predict the failure loads
or displacements for the different test series. As described in section 3.8 in the framework
of the Theory of Critical Distances, a constant element size and element formulation has
been used to represent the sealant in the vicinity of the respective notch. The simple shear
tests with different adhesive layer thicknesses, the notched circular shear test, the tensile
test on the H-specimens as detailed in ETAG 002 (2012) and the DCB test specimens have
been numerically reproduced using the commercial Finite Element software code ABAQUS®
(Dassault Systémes, 2014). Details about the different numerical models can be found in the
respective sections. For all these models, the same element type, a second order, hybrid and
fully integrated solid element (C3D20H), has been chosen. The size of the elements in these
numerical models was fixed to 1 mm in the vicinity of the notch. The following investigations
focus on the distribution of the strain magnitude, since it has been identified as a suitable
failure criterion in chapter 5.

In the first step, the numerical model of the simple shear specimen with 12 mm layer thickness
was considered at the crack initiation displacement with the above mentioned element size
and formulation. At the experimentally determined crack initiation displacement, a value
for the strain magnitude of ey = 1.6 was found at the two-material wedge. This value is
considered as a threshold value and corresponds to the bulk material strength. However, for
a different element size, a different threshold value would be obtained.
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Figure 6.5: Location of the element’s nodes and integration points

Figure 6.5 shows schematically the location of the nodes and integration points of a second
order element, like C3D20H. The element is composed of 20 nodes and 27 integration
points, where the stresses and strains are actually computed. The values at the nodes are
extrapolated and averaged with the values of neighbouring nodes. If the notch tip is located at
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point A in figure 6.5, the distance r for an element with equal corner length [ can be computed

. . . . . 1 2
knowing the location of the integration points as r = 5 /3 (1 - \/0.6) . Consequently, for

an element size of 1 mm, a distance » = 0.195 mm is obtained. This distance is considered
as the characteristic material dimension for the silicone sealant. Since the stress values
are most accurate at the integration points, the strain magnitude is evaluated as well on
the integration point, which is closest to the notch tip. Considering the values of the strain
magnitude at the integration point corresponds to the point method as described in section
3.8. Taking into consideration the values at the integration point for a 1 mm second order fully
integrated element, the length scale parameter L gives 0.39 mm. Again, the same numerical
model of the simple shear specimen with 12 mm adhesive thickness has been considered
with the experimentally determined crack initiation displacement applied. For the integration
point closest to the maximum nodal value of the strain magnitude, a threshold value for the
strain magnitude of )y = 1.45 was obtained.

Simple shear specimen

Figure 6.6 shows the plot of the strain magnitude for the applied failure displacement of the
simple shear test series 50-12. Two areas showing high values of the strain magnitude can
be identified. The first area is located in a region of highly distorted elements, which are
compressed against the adherend. As the results of these highly distorted elements are
questionable, the region at the lower corner edge has been considered for evaluating the
strain magnitude.

Strain magnitude
(Avg: 75%)

High mesh distortion at adherend

Max. strain magnitude

Figure 6.6: Plot of the strain magnitude in the simple shear specimen

The maximum value of the strain magnitude (at the bottom corner edge) is plotted against
the applied engineering shear strain in figure 6.7 for the three considered adhesive layers.
Both the values at the element’s node and the corresponding integration point are given. For
each layer thickness, the intersection of the material strength with the calibrated threshold
values gives the predicted crack initiation strain. For the selected element size of 1 mm, the
threshold value for the strain magnitude was found 1.6 for the nodal solution and 1.45, when
the values at the integration point were considered. Figure 6.7 shows that the engineering
shear strain obtained at the intersection of the threshold value with the strain magnitude
decreases with increasing layer thickness. The values, shown in figure 6.14, are in a very
good agreement with the experimentally recorded crack initiation strains.
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Figure 6.7: Maximum value of the strain magnitude in the simple shear specimen for a given
applied engineering shear strain

Notched circular shear specimen

In the second step, the notched circular shear specimen has been numerically reproduced
using the above mentioned element size and formulation, as well as adopting the threshold
values for the strain magnitude at crack initiation, as calibrated on the simple shear specimen
with an adhesive thickness of 12 mm. Figure 6.8 shows the distribution of the strain magnitude,
when the threshold value is obtained.

Strain magnitude
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Figure 6.8: Plot of the strain magnitude in the notched circular shear specimen (only a part of
the specimen is shown)

The maximum values for the strain magnitude at the element node and the integration point
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are plotted against the applied torsional rotation in figure 6.9. Again, the intersection of
the strain magnitude with the threshold value gives the predicted crack initiation rotation.
The rotations recorded for a maximum strain magnitude of 1.6 at the node and of 1.45 at
the integration point are given in figure 6.14. For this case, the strain magnitude is a very
conservative approach, since the failure load is largely underestimated.
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Figure 6.9: Maximum value of the strain magnitude in the notched circular shear specimen
for a given applied rotation

Tensile specimen according ETAG 002 (2012)

After consideration of shear loaded bonded connection, the H-shaped tensile specimen
according to ETAG 002 (2012) was investigated regarding the strain magnitude distribution.
Figure 6.10 gives the distribution of the strain magnitude in the tensile specimen. At the
interface between substrate and adhesive, three highly stressed regions could be identified,
referred to as "FRONT", "CORNER" and "MIDDLE". Considering the values of the strain
magnitude at these three locations, as shown in figure 6.11, the "MIDDLE" region gave the
highest values. However, in section 4.2.3, figure 4.54, failure initiation was observed along
the short edge. The values at the different locations are in the same order of magnitude, but
due to the manufacturing process, the short edge exhibits more defects than the centre area
of the long edge.

The failure load prediction is given in figure 6.14. The failure displacement corresponds to the
displacement for which, a maximum nodal value for the strain magnitude of 1.6 was reached
in the "MIDDLE" region. The same procedure was performed for the value at the integration
point with a threshold value of 1.45. Unlike for the circular shear specimen, the failure load is
overestimated.
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Figure 6.10: Plot of the strain magnitude in the tensile specimen as detailed in ETAG 002
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Figure 6.11: Maximum value of the strain magnitude in the tensile specimen according to
ETAG 002 (2012) at different locations for a given applied displacement

Double Cantilever Beam specimen

Finally, the Double Cantilever Beam specimen is considered. In section 4.3, crack onset,
i.e. macroscopic failure initiation, has been identified as the point at which the numeri-
cal prediction starts to deviate from the experimentally obtained force-deformation curve.
In the following, the distributions of the strain magnitude at these points has been investigated.

Figure 6.12 gives the distribution of the strain magnitude for the DCB-6 specimen at its crack
propagation displacement. The maximum values were found at the crack tip. Figure 6.13
gives the maximum values of the strain magnitude for both specimens and both evaluation
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Strain magnitude
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Figure 6.12: Plot of the strain magnitude in the DCB specimen (only a part of the specimen in
the vicinity of the initial crack is shown)
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Figure 6.13: Maximum value of the strain magnitude in the DCB specimen for a given crack

opening displacement

locations (nodal and integration point) as a function of the crack opening displacement. Again,
the failure load prediction is given in figure 6.14 and a good agreement was found compared
to the experimental data.

Summary

A comparison of the predicted crack initiation displacements with the experimentally deter-
mined values is given in figure 6.14. For clarity reasons, engineering failure strains have
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been plotted, i.e. the recorded displacements have been divided by the respective adhesive
thicknesses. The predicted values were determined using the C3D20H element, a second-
order fully integrated hybrid solid element, in the commercial Finite Element software code
ABAQUS® (Dassault Systémes, 2014). A common element size of 1 mm at the critical points
(in the vicinity of the considered notch) has been chosen. For the experimental data, the
average values of each considered test series are given, including the standard deviation.
For the DCB specimen, no standard deviation is given, since the failure point could not be
experimentally identified.
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Figure 6.14: Failure load prediction using the Theory of Critical Distances - the standard
deviation is shown for the test data

For the simple shear specimens, the predicted failure displacements are in a good agreement
with the experimental data. The strains have been determined at the same distance from
the origin of the singularity, since a common element size and formulation has been used.
Whereas the crack initiation displacement of the notched circular shear specimen has been
underestimated, the crack initiation displacement of the H-shaped tensile specimen was
overestimated. For the DCB specimens, good agreement was found again.

The advantage of the adopted design procedure is its simplicity. If the global force-deformation
behaviour is accurately reproduced, the stresses or strains can directly be determined in a
simple post-processing, provided that a calibrated mesh (element formulation and element
size) was used. A drawback of the method is that it fails in the failure load prediction for the
tensile and the notched circular shear specimens. Nevertheless, this consideration can give
a first order of magnitude for the stress state in the adhesive. The singularities are taken into
account with this approach.

Regarding figure 6.14, there is no significant difference between the predictions of the crack
initiation loads using the nodal values or the values at the integration point. Depending on
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the Finite Element software code used, nodal values are more convenient to evaluate. The
values at the integration points however are more accurate, since they are not extrapolated
or averaged with values from neighbouring elements.

6.4.2 Control volume

The control volume approach has been successfully employed in Berto (2015) to assess
fracture of cracked components made of an incompressible hyperelastic material. The
proposed method consisted in averaging the strain energy density within a control volume,
defined in the vicinity of a singular point. In a first step, the size of the control volume needs to
be calibrated using two different test specimens. Berto (2015) showed with a mesh sensitivity
study that the value of the strain energy density averaged over the control volume, yield
convergent results even when a coarse mesh was used.

Calibration of the control volume

For the calibration of the control volume size and the value of the strain energy density at
failure, the simple shear test series 100-6 and 100-12 were considered. Details about the
numerical models, the chosen element types, the boundary conditions and the analysis
settings can be found in section 4.2.1. Figure 6.15 displays the numerical model of the 100-
12 specimen with the defined cylindrical control volume enclosing the two-material wedge.
For both test specimens, the respective failure displacements were applied as a boundary
condition and the average strain energy densities were evaluated for both specimens as a
function of the control volume’s radius.

Figure 6.15: Numerical model for the simple shear specimens with a defined control volume

A small mesh sensitivity study was performed on the 50-12 specimen loaded in simple shear.
For a given control volume and the failure load applied, two different mesh configurations
were investigated. With the number of elements increased by a factor of 4, the strain energy
density averaged within the control volume exhibited a change of 0.1%. Figure 6.16 shows
the average strain energy density plotted against the radius of the control volume for the two
considered test series at their respective failure loads. For a radius of 6 mm, the average
strain energy density at failure W, is equal for both specimens, with W, = 0.61 N/mm.
Consequently, this radius was selected for the subsequent investigations.
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Figure 6.16: Calibration of the radius of the control volume - S.E.D. is the strain energy
density.

Evaluation of the failure load

The control volume approach has been used to assess failure of the experimental data
basis on bonded connections. For each test specimen, a control volume with the previously
calibrated radius has been inserted in the respective numerical model and the average strain
energy density has been evaluated as

— 1
W=— [ wWav. (6.2)
Ve Jv.

In equation 6.2, W is the strain energy density averaged within a control volume with a radius
r. and a volume V. The cylindrical control volume is givenas V., = 1/8 « r? he. h¢ is the
bite of the adhesive joint.

Figure 6.17 summarises the results for the failure load prediction on the selected test series.
For the experimental results, the standard deviation is given. The control volume approach
based on the strain energy density can reproduce the adhesive thickness effect. For the
simple shear specimens with 6 mm and 12 mm adhesive thickness, very good agreement is
found as the control volume has been calibrated using these test series. The load bearing
capacity of the notched circular shear specimen is largely underestimated, whereas the
failure load for the H-shaped specimen under tension is overestimated.

Consequently, the results of the failure load prediction using the control volume approach are
in line with the previous method consisting in choosing a constant element size and formula-
tion for all numerical models. Both methods rely on the local stress and strain distributions,
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Figure 6.17: Failure load prediction using the control volume approach

which are dominated by the singularity of the two-material wedge. Both methods can repro-
duced the adhesive thickness effect, underestimate the failure load for the notched circular
shear specimens and overestimate the failure load for the H-shaped tensile specimens.

6.4.3 Point method

Preliminary considerations

In section 6.3, the coupled stress and energy criterion, proposed by Leguillon (2002), has
been used for the failure load prediction of the simple shear specimens. Good agreement
was obtained with the experimental data. The initiated crack length has been found to be
almost independent on the investigated geometries. A value of Aa = 2.5 mm has been found.
Consequently, the design approach can be simplified. Knowing the length of the finite crack,
the coupled criterion can be reduced to the evaluation of the stress partial criteria. The crack
length can thus be seen as the characteristic length parameter, which has been discussed in
the framework of the Theory of Critical Distances.

Experimental database and numerical models

The simple shear tests, the notched circular shear test and the H-shaped tensile tests have
been numerically reproduced. For computational efficiency, a quite coarse mesh of 1.5mm
element edge size has been chosen. In the vicinity of the corner edge, a part with a refined
mesh of 1/8 mm has been connected to the coarse part with a tie constraint. Figure 6.18
shows the numerical model for the 50-12 specimen and the path at which the strain magnitude
distribution has been evaluated.
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Figure 6.18: Numerical model for the failure load prediction using the point method
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Figure 6.19: Distribution of the strain magnitude in the 50-12 specimen for the failure load
applied

In figure 6.19, the strain magnitude distribution is plotted against the centreline path on the
level of the interface layer (cf. figure 6.18). A path along the edge in overlap direction has
not been considered, since the stresses are mesh dependent there as well. Details about
the Finite Element models and the analysis settings can be found in the respective sections
about the numerical simulations of the tests.

Figure 6.19 shows that the strain magnitude is far below the critical value of 1.6 at the end
of a finite crack with a length of 2.5 mm. Since this crack length has been determined using
a 2D plane stress model, the 50-12 test series is used to determine a new crack length.
Again, it is assumed that the crack length is constant. From figure 6.19, a crack length of
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0.23mm is found. In the following, the strain magnitude is considered at the centre of the
interface between the adhesive and the adherend at a distance of 0.23 mm from the origin of
the two-material wedge.

Failure load evaluation

Figure 6.20 shows the results for the failure load prediction using the point method with
a distance of 0.23 mm from the origin of the singularity. As already observed previously,
the failure load predictions of the simple shear specimens are in good agreement with the
experimental data. The load bearing capacity of the notched circular shear specimen is
underestimated, whereas the load bearing capacity of the tensile specimen according to
ETAG 002 (2012) is overestimated.

1| WMTEST mPoint method
2.5 T

15 ]

Engineering shear strain [-]

0.5 1

0

Figure 6.20: Failure load prediction using the point method

The failure load prediction given in this section is based on the results of the Finite Frac-
ture Mechanics approach, the coupled stress and energy criterion. For the simple shear
specimens, which have been investigated in the section 6.3, the finite crack length has been
found to be a constant value. Assuming that this crack length is a material parameter, the
energy partial criterion can be omitted and the stress partial criterion reduces to evaluating
the stresses (or more generally the failure criterion) at the tip of an imaginary crack with
constant length.

From the consideration of the 50-12 specimen, it has been found that the strain magnitude at
a distance of 2.5 mm is much lower than the critical value for failure of bulk material. There-
fore, the distance has been adapted to fit the experimentally recorded failure displacement of
the 50-12 specimen and a value of 0.23 mm has been found. The difference can be explained
by the different assumptions for the model. In section 6.3, a 2D plane stress model has been
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assumed, whereas the present results are based on a 3D model.

The point method fails in predicting the notched circular shear test data and the results of
the tension test on H-specimen. Consequently, the crack length cannot be considered as a
constant value. Considering the notched circular shear test, the failure load is comparable to
the failure load of the unnotched, i.e. the bulk material. This means that the stress partial
criterion is fulfilled, but the energy partial criterion is not fulfilled and that failure occurs, when
the strain magnitude in the bulk material exceed the critical value.

6.5 Summary

The failure load prediction of a set of experimental data on bonded connections presented
in chapter 4.2 has been investigated using various approaches. The design concept given
by ETAG 002 (2012) has failed in reproducing the adhesive thickness effect, as it does not
consider the stresses at the interface, where failure initiation actually takes place, but average
stresses at the adhesive mid-height. The analytical solution according to Allman (1977)
predicted qualitatively the influence of the adhesive thickness on the failure load, but it also
failed in the quantitative prediction.

The simple shear test data has been analysed using concepts from Finite Fracture Mechanics.
The so-called coupled stress and energy criterion, originally proposed by Leguillon (2002) and
applied for single-lap shear joints with linear elastic adhesive by WeiBgraeber (2014), was
successfully extended to nonlinear elastic materials. With the strain-based failure criterion
derived in chapter 5 and the critical energy release rate, determined using Double Cantilever
Beam specimens in section 4.3, the crack initiation loads of the simple shear test series
were predicted in good agreement with the experimental results. Furthermore, the crack
length was found to have constant value. Finite Fracture Mechanics has thus proven to
be an adequate tool to describe failure initiation with regard to the two-material wedge and
has a strong physical basis. Up to this moment, only two-dimensional models have been
investigated. In addition, further investigation, e.g. on the notched circular shear specimen,
need to be performed to validate the proposed method.

The coupled stress and energy criterion is an optimisation problem and thus needs some
computational effort. Therefore, methods from the Theory of Critical Distances have been
considered based on Finite Element Analysis to assess failure of the adhesively bonded
connections. In a first approach, since the stresses and strains depend on the Finite Element
mesh used, the same element size and formulation has been chosen to describe the silicone
in the vicinity of the notch. This method is very easy to implement and gives good results for
the simple shear specimens, but fails in predicting the circular shear and tensile specimens.
Similar results were obtained, when the strain energy density has been averaged within a
control volume. Since the results from the Finite Fracture Mechanics approach predicted
a constant crack length, the strain magnitude was, in a third approach, evaluated at the
distance of the crack length away from the singularity. Similar results were found as for
the two proceeding methods. Consequently, a constant crack length cannot be assumed.
Especially regarding the notched circular shear specimens, which exhibited almost the same
failure load as for the unnotched specimens, it is assumed that the energy partial criterion is
not fulfilled for the small crack lengths as determined previously.
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7.1 Conclusions

The present work focus on two aspects concerning the failure analysis of adhesively bonded
connections with silicone described using the Finite Element Method. Apart from the defini-
tion of a failure criterion for defect-free silicone bulk material, the failure initiation in bonded
connections was investigated in detail.

Experimental investigations:

In order to analyse failure of bulk material, standard experimental investigations on bulk ma-
terial, uniaxial tension and compression tests, have been performed on silicone bulk material.
The uniaxial tensile test data has been chosen subsequently for the characterisation of the
chosen nonlinear elastic material law. Although no real macroscopic failure was observed for
the compression specimens, the consideration of the inelastic deformations gave a strong
evidence on significant damage onset in the material.

Apart from the standard experimental investigations, tests on bonded connections were
performed to create an experimental database for the failure load analysis of adhesive joints.
Simple shear, circular shear and tensile tests on small-scale bonded connections have been
carried out. The simple shear specimens clearly exhibited the adhesive thickness effect, i.e.
a decreasing strength with increasing layer thickness. The failure initiation was analysed in
detail and it was located at the edge area. For the circular shear specimens, two types of
specimens were produced, one type with a circular continuous silicone bead and one type
with inserted cuts to investigate the influence of the edge area on the load bearing capacity.
The circular shear specimens with continuous silicone bead have been used to assess failure
of bulk material, as the adhesive was less influenced by edge effects, compared to the simple
shear specimens. Despite the absence of the edge area, the failure loads and displacements
were almost identical for both series.

Finally, since the edge area of bonded connections can be seen as a two-material wedge,
the fracture mechanics properties, namely the mode | cohesive properties and the mode |
critical energy release rate have been investigated in Double Cantilever Beam tests. The
J-integral method has been used to determine the fracture mechanics parameters and an
engineering approach based on a Finite Element Analysis has been developed to determine
the critical energy release rate of the adhesive.

In the experimental investigations, the silicone sealant exhibited a brittle failure behaviour,
following the definition given in Gross and Seelig (2011) and discussed in section 3.4.2. Crack
initiation occurred without any visible sign of preannouncement, like necking. In contrast to
brittle materials, like glass, crack initiation was observed at very large deformations. Except
for the uniaxial compression test specimens, elastic behaviour with no significant remaining
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deformations after failure was observed for the investigated specimens. For all tests on
bonded connections, 100% cohesive failure was observed.

The previously described tests have been numerically simulated using the Finite Element
Method. The highly nonlinear material behaviour has been described with the hyperelastic
material law according to Marlow (2003). The material behaviour has been assumed as
incompressible in the geometrical nonlinear analysis. Very good agreement was found with
the experimental data, since the stress distributions of the investigated structural components,
mainly linear silicone beads, were dominated by deviatoric stresses.

Failure of bulk material:

The strain magnitude has been identified as a suitable failure criterion for the defect-free bulk
material. The strain magnitude can be seen as a sphere in the space of true principal strains.
The criterion has been calibrated on the uniaxial tension tests and the circular shear tests with
continuous silicone bead. The compression test results have been used to confirm the chosen
failure criterion. Strain-based failure criteria are often assumed for rubber-like materials, but
mainly focussing on the maximum principal strain criterion. The strain magnitude additionally
incorporates the second and third principal strains, imposed to the material. Physically, the
strain magnitude can be seen as a measure for the distortion of the material.

Failure of rubber-like material is often associated with cavitation. For thin adhesive layers
under tensile forces, a stress state close to hydrostatic tension is observed, which leads to the
onset of small cavities. Cavitation leads to a characteristic failure pattern in which, the small
bubbles are clearly distinguishable. The fracture behaviour of the specimens considered in
this work however was not governed by cavitation.

Stress peak:

Bonded connections with silicone are increasingly analysed using the Finite Element Method.
In the case of bonded connections however, certain regions, especially at the interface
between the adhesive and the substrate, exhibit high stresses and strains, which depend
on the size and formulation of the Finite Elements used. Consequently, the stresses and
strains in that region are into some extend arbitrary. The mesh dependence of these stresses
is due to a singularity. In the case of the edge area of the interface of bonded connections,
the stress singularity is referred to as two-material wedge. Considering analytical models,
like Volkersen or Goland-Reissner, the stress singularities are not covered, as these models
generally describe average stresses, which occur in the centreline of the adhesive layer.

Failure load prediction:

The failure load prediction of bonded connections has been performed following three dif-
ferent concepts. In a first step, the design equations according to ETAG 002 (2012) and
the analytical solution according to Allman (1977) were analysed. Whereas the adhesive
thickness effect was not covered by the design equations defined in the current standards,
the effect was qualitatively, but not quantitatively reproduced by the Allman solution.

In a next step, the coupled stress and energy criterion, originally proposed by Leguillon (2002)
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and applied to adhesively bonded connections with a linear elastic adhesive by WeiBgraeber
(2014), was extended for the first time to nonlinear elastic materials. The coupled criterion is
a crack initiation criterion for weak singularities such as notches. It is an optimisation problem,
which consists in determining the crack initiation load and the length of the initiated crack.
Crack onset is not considered as a continuous process, but in discrete steps with the onset
of crack with finite length. The coupled stress and energy criterion is a concept from Finite
Fracture Mechanics. The criterion is based on a stress criterion, which gives an upper bound
for the crack length and a fracture mechanics criterion, which gives a lower bound for the
crack length. The crack initiation load is determined, if both criteria are met for the same
crack length. Very good agreement between the experimental data of the simple shear tests
and the Finite Fracture Mechanics approach has been found. The model investigated was
based on a 2D plane stress model with the strain magnitude as failure criterion and the critical
energy release rate, as determined in the DCB test. The crack length was found independent
of the geometry of the simple shear specimens. The coupled stress and energy criterion is
a physically sound model, which does not evaluate the stresses or strains at the origin of
the singularity, but at a certain distance, where the results of a Finite Element Analysis give
convergent values, provided that a reasonably refined mesh is used.

Finally, concepts of the Theory of Critical Distances have been applied on the test data
base. When describing the sealant with the same element size and formulation for all the
models, a good agreement is found for simple shear tests, but the failure loads of the notched
circular shear tests are underestimated and those of the tension test on H-shaped specimens
overestimated. Similar results were found when the strain energy density was averaged
within a control volume. Since the crack length in the Finite Fracture Mechanics approach
was constant, the method can be simplified to evaluating the stresses or strains at the
distance of the crack length away from the singularity. However, similar results were found
as for the method with the constant element size, indicating that the crack length cannot be
considered as a characteristic length, as it is assumed in the framework of the Theory of
Critical Distances.

7.2 Recommendations

One of the starting points of this research work has been the occurrence of stress peaks
in the Finite Element numerical simulation. It has been shown that these stresses arise
from a singularity, which is due to the two-material wedge. Although infinite stresses, as
predicted by the theory of elasticity, do not exist in reality, these regions are highly stressed
areas, where failure is prone to occur. Therefore, the local stress concentrations should not
be neglected. In addition, in order to guarantee a certain comparability between different
structural components, the element size and the element formulation should be chosen
consistently between different models. The simple shear test data provide an easy and
clear test result, which can be used to "calibrate" a Finite Element mesh in the vicinity of a
singular point. Finally, an accurate reproduction of the material behaviour of the sealant is a
fundamental requirement.

In the field of Finite Fracture Mechanics, promising results have been generated. The failure
loads of the simple shear specimens have been successfully predicted with a model, based
on only two essential parameters of the bulk material: material strength and critical energy
release rate. Further research work is currently done, analysing additional specimens. The
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results of this research could lead to some engineering approach for the use in design offices.

A number of tests has been performed in this research project. A failure criterion has
been identified for the bulk material. It is recommended to perform additional tests on
specimens, like biaxial tests, to confirm the results of this work. Moreover, a number of
interesting observations have been documented. Analysing these observations regarding the
microstructure of the material (polymer chains and filler) would promote the understanding of
silicone.

7.3 Outlook and further research required

In this research work, the strain magnitude has been identified as a suitable failure criterion
for silicone adhesives. Since the failure criterion has only been determined using three
different characteristic stress states, additional tests, like biaxial tension tests, e.g. bulge test
as performed in Drass et al. (2017a), or pure shear tests, should be carried out to confirm the
presented research results.

Regarding the critical energy release rate of the material, the DCB tests have shown some
drawbacks. Although the results are in line with published test results on a different silicone
sealant, additional tests on a different specimen or with optimised boundary conditions
(increase of the initial crack length) could be useful to confirm the results generated within
this project.

Finite Fracture Mechanics has proven being a suitable tool to assess failure initiation, taking
into account the stress peak at the two-material wedge. In the framework of this project,
only a first set of simulations was performed on simple shear test data. Therefore, additional
models, e.g. on the notched circular shear test, are currently developed to validate the
method using additional test data. With this powerful and physically sound method, the large
database, which is available on the standard H-specimen, as defined by ETAG 002 (2012),
can be thoroughly investigated regarding the influence of parameters, like temperature, water,
or UV radiation. For this however, the bulk strength and the critical energy release rate
should be determined under the influence of water, temperature and UV radiation as well.
Up to now, the strength of these specimens were quantified with engineering stresses or
strains, knowing that these engineering values were strongly depending on the geometry.
The coupled criterion however, is based on the material constants strength and critical energy
release rate.

The coupled stress and energy criterion is an optimisation problem. In order to determine the
failure load, a number of Finite Element models needs to be solved, since both the failure load
and the crack length are unknown. Regarding the use of this method in engineering offices,
some simplifications could be implemented to reduce the computational effort. In addition,
the method should be applied on three-dimensional models, which cannot be approximated
by plane stress or plane strain conditions.

Failure initiation of adhesively bonded connections under quasi-static loading has been
investigated in this research project. Since the material behaviour of silicone sealants is time
and load-history dependent, these two parameter of influence should be considered as well
in future research works. Here again, the promising results of Finite Fracture Mechanics
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7.3 Outlook and further research required

could be used to evaluate failure on the standard H-specimen, provided that the influence
of time and load history on the bulk strength and critical energy release rate is known. The
visco-elastic behaviour as well as fatigue also need to be better understood in the vision of
omitting the mechanical load transfer devices, which are currently prescribed.

The performed tests were based on the assumption that the material properties, i.e. the
distributions of the crosslink density and Young’s modulus, are homogeneous and indepen-
dent regarding the manufacturing conditions, like the geometry of the mould used or the
demoulding time. Considering these assumptions, further research works should investigate
the influence of the cure conditions and clarify, if the assumption of homogeneous material
properties is valid.
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A Test data

A.1 Compression tests
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Figure A.1: Compression test data, series UC-DC-17-1

-1 -0.8 -0.6 -0.4 -0.2 0
—t - 0
| -10
20 _
©
a
30 3
?
40 O
»
50 O
60 O
=
e
——UuC-DC-17-1.1 | | - 70 4
——uc-DC-17-1.2 || - -80
——uC-DC-17-1.3 || T T T -90
' ' T -100

167



A Test data
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Figure A.2: Compression test data, specimen UC-DC-17-2.1
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Figure A.3: Compression test data, specimen UC-DC-17-2.2
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A.1 Compression tests
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Figure A.4: Compression test data, specimen UC-DC-17-2.3
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Figure A.5: Compression test data, series UC-DC-17-3
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A Test data

A.2 Simple shear tests

A.2.1 Test series 2015
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Figure A.6: Simple shear test data, series 100-6, 2015



A.2 Simple shear tests
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Figure A.8: Simple shear test data, series 100-24, 2015
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Figure A.9: Simple shear test data, series 200-12, 2015
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Figure A.10: Simple shear test data, series 200-24, 2015




A.2 Simple shear tests

A.2.2 Test series 2016
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Figure A.11: Simple shear test data, series 50-12, 2016
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Figure A.12: Simple shear test data, series 100-6, 2016
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A Test data
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Figure A.13: Simple shear test data, series 100-12, 2016
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Figure A.14: Simple shear test data, series 100-24, 2016




A.3 Circular shear tests

A.3 Circular shear tests
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B Details about the test series

B.1 Production of the specimens

B.1.1 Preliminary remarks

In the present chapter, details about the manufacturing process are listed in a condensed
way. This includes information about the mixing process, the cure conditions and time, the
demoulding time and the tooling.

B.1.2 Tensile specimens

Table B.1: Details about the production of the tensile specimens

Specimen: Uniaxial tensile specimens
Series: Z.AG.6
Production date: 26.07.2013

Location:

Mixing process:

Assessment of mixing quality:
Tooling:

Mould:

Cure conditions:

Cure time at manufacturer:
Demoulding date:

Testing date:

Storage conditions prior to test:

European headquarters of the Dow Corning Company
in Seneffe (Belgium)

Professional two parts mixing machine

Two plates test

Surface modelling with a dry spatula

Poured on a PE foil

Controlled condition, 23°C, 50% relative humidity
14 days

06.08.2013

Period from 26.08. to 06.09.2013

Ambient conditions
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B Details about the test series

B.1.3 Compression specimens

Table B.2: Details about the production of the compression test specimens

Specimen:
Series:

Compression test specimens
UC-DC-17-1t0 3

Production date:
Location:

Mixing process:

Assessment of mixing quality:
Tooling:

Mould:

Cure conditions:

Cure time at manufacturer:
Demoulding date:

Testing date:

Storage conditions prior to test:

27.01.2017

Hunsrlcker Glasveredelung Wagner in Kirchberg,

Germany

Professional two parts mixing machine
Two plates test

Poured in a closed PTFE mould
Ambient conditions

7 days

07.02.2017

Period from 27.02. to 03.03.2017
Ambient conditions

B.1.4 Simple shear test specimens

Table B.3: Details about the production of the simple shear test specimens - test series 2015

Specimen:
Series:

Simple shear test specimens
Test series 2015

Production date:
Location:

Mixing process:

Assessment of mixing quality:
Tooling:

Mould:

Cure conditions:

Cure time at manufacturer:
Demoulding date:

Testing date:

Storage conditions prior to test:

06.10.2015

Hunsricker Glasveredelung Wagner in Kirchberg,

Germany

Professional two parts mixing machine
Two plates test

Surface modelling with a dry spatula
U-shaped PE mould

Ambient conditions

3 days

14.10.2015

Period from 02.11. to 06.11.2015
Ambient conditions
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B.1 Production of the specimens

Table B.4: Details about the production of the simple shear test specimens - test series 2016

Specimen: Simple shear test specimens

Series: Test series 2016

Production date: 24.03.2016

Location: Hunsrlcker Glasveredelung Wagner in Kirchberg,
Germany

Mixing process: Professional two parts mixing machine

Assessment of mixing quality: ~ Two plates test

Tooling: Surface modelling with a dry spatula

Mould: U-shaped PE mould

Cure conditions: Ambient conditions

Cure time at manufacturer: 15 days

Demoulding date: 10.04.2016

Testing date: Period from 13.05. to 31.05.2016

Storage conditions prior to test:  Ambient conditions

B.1.5 Circular shear test specimens

Table B.5: Details about the production of the circular shear test specimens

Specimen: Circular shear test specimens

Series: T-NC and T-2C

Production date: 19.05.2016

Location: Hunsricker Glasveredelung Wagner in Kirchberg,
Germany

Mixing process: Professional two parts mixing machine

Assessment of mixing quality: ~ Two plates test

Tooling: Surface modelling with a dry spatula

Mould: One surface in bite direction in contact with air
Second surface in contact with PTFE ring

Cure conditions: Ambient conditions

Cure time at manufacturer: 15 days

Demoulding date: -

Testing date: 15.09. and 16.09.2016

Storage conditions prior to test:  Ambient conditions

B.1.6 Tensile test specimens

The H-shaped tensile test specimens have been produced under the same conditions as the
dog-bone shaped tensile specimen. A U-shaped PTFE mould has been used.
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B Details about the test series

B.1.7 Double Cantilever Beam test specimens

Table B.6: Details about the production of the DCB test specimens - series 2016

Specimen: DCB test specimens

Series: DCB-12-01..05

Production date: 24.03.2016

Location: Hunsrlcker Glasveredelung Wagner in Kirchberg,
Germany

Mixing process:

Assessment of mixing quality:
Tooling:

Mould:

Cure conditions:

Cure time at manufacturer:
Demoulding date:

Testing date:

Storage conditions prior to test:

Professional two parts mixing machine

Two plates test

Surface modelling with a dry spatula

One surface in bite direction in contact with air
Second surface in contact with PE plate
Ambient conditions

15 days

11.04.2016

21.04.2016

Ambient conditions

Table B.7: Details about the production of the DCB test specimens - series 2016-2

Specimen:
Series:

DCB test specimens
DCB-12-06..07, DCB-6.01..07

Production date:
Location:

Mixing process:

Assessment of mixing quality:
Tooling:

Mould:

Cure conditions:

Cure time at manufacturer:
Demoulding date:

Testing date:

Storage conditions prior to test:

19.05.2016

Hunsrlcker Glasveredelung Wagner in Kirchberg,
Germany

Professional two parts mixing machine

Two plates test

Surface modelling with a dry spatula

One surface in bite direction in contact with air
Second surface in contact with PE plate
Ambient conditions

15 days

06.06.2016

09.09.2016

Ambient conditions
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B.2 Failure of the simple shear test specimens

B.2 Failure of the simple shear test specimens

In this section, the locations of crack initiation of the different simple shear test specimens
are given. Two locations are differentiated: area from which the silicone was poured (during
curing in contact with the air), labelled AIR and the closed surface at the opposite side,
labelled PE, since it was in contact with the polymer. It should be noted that the identification
of the location of failure initiation could not be identified for all specimens.

Table B.8: Location of crack initiation for the simple shear and tensile test series

Test series:  Number of specimens with Number of specimens with
crack initiation at AIR side  crack initiation at PE side

Simple shear tests

100-6 2 3

100-12 1 7

100-24 2 3

200-12 2 3

200-24 2 3
Tension tests on H-shaped specimens

ETAG-T 1 5 (PTFE side)
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