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Abstract— Caching and multicasting are two promising meth-
ods to support massive content delivery in multi-tier wireless
networks. In this paper, we consider a random caching and
multicasting scheme with caching distributions in the two tiers
as design parameters, to achieve efficient content dissemination
in a two-tier large-scale cache-enabled wireless multicasting
network. First, we derive tractable expressions for the successful
transmission probabilities in the general region as well as the high
SNR and high user density region, respectively, utilizing tools
from stochastic geometry. Then, for the case of a single operator
for the two tiers, we formulate the optimal joint caching design
problem to maximize the successful transmission probability in
the asymptotic region, which is nonconvex in general. By using
the block successive approximate optimization technique, we
develop an iterative algorithm, which is shown to coverage to a
stationary point. Next, for the case of two different operators, one
for each tier, we formulate the competitive caching design game
where each tier maximizes its successful transmission probability
in the asymptotic region. We show that the game has a unique
Nash equilibrium (NE) and develop an iterative algorithm, which
is shown to converge to the NE under a mild condition. Finally,
by numerical simulations, we show that the proposed designs
achieve significant gains over existing schemes.

Index Terms— Cache, multicast, multi-tier wireless network,
stochastic geometry, optimization, game theory, Nash equilibrium

I. INTRODUCTION

The rapid proliferation of smart mobile devices has triggered
an unprecedented growth of the global mobile data traffic.
Multi-tier wireless networks have been proposed as an effec-
tive way to meet the dramatic traffic growth by deploying
different tiers of point of attachments (POAs), e.g., base
stations (BSs) or access points (APs) together, to provide better
time or frequency reuse. In general, there are two scenarios,
depending on whether different tiers are managed by the same
operator. One typical example for the scenario of the same
operator is deploying short range small-BSs together with
traditional macro-BSs, i.e., heterogeneous wireless networks
(Hetnets). One typical example for the scenario of different
operators is deploying IEEE 802.11 APs of different owners.
To further reduce the load of the core network, caching
at POAs in multi-tier wireless networks is recognized as a
promising approach.

A lot of literature considers optimal caching design in large-
scale cache-enabled Hetnets for the case of the same operator.
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For example, in [1] and [2], the authors focus on the maximiza-
tion of the probability that the signal-to-interference plus noise
ratio (SINR) of a typical user is above a threshold, which does
not reflect the resource sharing among users. In a special case
where all tiers have the same threshold, the problem is convex
and the optimal solution is obtained [1], [2]. In the general
case, the problem is nonconvex. [2] simplifies the nonconvex
problem to a convex one and uses the optimal solution to the
simplified convex problem as a sub-optimal solution to the
original nonconvex problem. In addition, some works consider
competitive caching design games among different POAs [3],
[4]. For instance, in [3], the authors consider an Exact Potential
Game among cache-enabled femto-BSs, prove the existence of
Nash equilibrium (NE) and propose a convergent algorithm to
obtain a NE. In [4], the authors consider a mean-field game
among cache-enabled small-BSs, and obtain the unique mean
field equilibrium.

On the other hand, enabling multicast service at POAs in
multi-tier wireless networks is an efficient way to deliver pop-
ular contents to multiple requesters simultaneously by effec-
tively utilizing the broadcast nature of the wireless medium. In
our previous work [5], we consider analysis and optimization
of a hybrid caching and multicasting design in a large-scale
cache-enabled Hetnet. The hybrid design requires the files
stored at macro-BSs and pico-BSs to be nonoverlapping and
the files stored at all macro-BSs to be identical. Thus, the
spatial file diversity provided by the hybrid caching design is
limited, which may cause network performance degradation
at some system parameters. Note that [1]-[4] do not consider
multicasting.

In summary, further studies are required to facilitate the
design of practical cache-enabled multi-tier wireless multicas-
ting networks for massive content dissemination. In this paper,
we consider a random caching and multicasting design with
caching distributions in the two tiers as the design parameters
to provide high spatial file diversity, utilizing tools from
stochastic geometry. Our main contributions are summarized
below. For the case of a single operator for the two tiers, we
formulate the optimal joint caching design problem to maxi-
mize the successful transmission probability in the asymptotic
region, which is a nonconvex problem in general. By using
the block successive approximate optimization technique [8],
we develop an iterative algorithm to obtain a stationary point.



Specifically, by carefully choosing an approximation function,
we obtain the closed-form optimal solution to the approximate
optimization problem in each iteration. For the case of two
different operators, one for each tier, we formulate the com-
petitive caching design game where each tier maximizes its
successful transmission probability in the asymptotic region.
We show that the game has a unique NE and develop an
iterative algorithm to obtain the NE. We also provide a
convergence condition for the iterative algorithm, which holds
in most practical scenarios. Finally, by numerical simulations,
we show that the proposed designs achieve significant gains
over existing schemes.

II. SYSTEM MODEL

A. Network Model and Performance Metric

We consider a general large-scale two-tier downlink network
consisting of two tiers of POAs, e.g., BSs or APs, as shown in
Fig. 1. The two tiers can be managed by a single operator (e.g.,
Hetnet with BSs being POAs) or by two different operators
(e.g., IEEE 802.11 APs of two owners).! The locations of
the POAs in tier 1 and tier 2 are spatially distributed as two
independent homogeneous Poisson point processes (PPPs) @4
and ®, with densities A1 and Ao, respectively. The locations of
the users are also distributed as an independent homogeneous
PPP ®, with density \,. Each POA in the jth tier has one
transmit antenna with transmission power P;, where j = 1, 2.
For notational convenience, we define oy £ % and oo £ %.
Each user has one receive antenna. All POAs are operating on
the same frequency band with a bandwidth W (Hz). Consider
a discrete-time system with time being slotted and study one
slot of the network. Both path loss and small-scale fading are
considered: for path loss, a transmitted signal from any tier
with distance D is attenuated by a factor D~“, where o > 2 is
the path loss exponent; for small-scale fading, Rayleigh fading
channels are adopted [6].

Let NV £ {1,2,---, N} denote the set of N files in the
two-tier network. For ease of illustration, assume that all files
have the same size. Each file is of certain popularity, which is
assumed to be identical among all users. Each user randomly
requests one file, which is file n € AN with probability

€ (0,1), where >\ a, = 1. Thus, the file popularity
distribution is given by a = (a,,),enr» Which is assumed to be
known apriori. In addition, without loss of generality (w.l.o.g.),
assume a; > ag > ... > an. The two-tier network consists
of cache-enabled POAs. In the jth tier, each POA is equipped
with a cache of size K; < N to store different popular files
out of N. We say every K different files form a combination.
Thus, there are in total I; = ( gj ) different combinations, each

with K; different files. Let Z; = {1,2,---, I,;} denote the set

I'The network model we considered in this paper is similar to that in [5]. But
here, we consider a random caching design which is more general and includes
the hybrid caching design in [5] as a special case. In addition, different from
[1], [2], we specify the random caching design by the caching probabilities of
file combinations, so as to investigate the file load distribution and the impact
of multicasting.
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Fig. 1. Network model. Each file n € N corresponds to a Voronoi
tessellation (in the same color as the file), determined by the locations
and transmission powers of all POAs storing this file.

of I; combinations, and let ./\/]7 denote the set of K files
contained in combination ¢ of tier j.

B. Caching

To provide high spatial file diversity, we consider a random
caching design where the caching distributions in the two tiers
may be different, as illustrated in Fig. 1. The probability that
combination 7 € Z; is stored in each POA of tier j is p;;,
where

0<pji<Li€Z;, Y pji=1 )

€L,
A random caching design in tier j is specified by the caching
distribution p; £ (pj,i)iez;- Let Z;,, denote the set of I, £

( I];[] ~') combinations containing file n. Let
Tin2 Y pjineN )
1€L5 n

denote the probability that file n is stored at a POA in the jth
tier. Therefore, the random caching design in the large-scale
cache-enabled two-tier network is fully specified by the design
parameters (p1, p2).

C. Multicasting

Consider a user requesting file n. If file n is not stored
in any tier, the user will not be served. Otherwise adopt the
following user association rules: 1) If file n is stored only in
the jth tier, the user is associated with the nearest POA in the
jth tier storing a combination ¢ € Z; ,; ii) If file n is stored
in both tiers, the user is associated with the POA which stores
file n and provides the maximum long-term average received
power (RP) (among all the POAs) [1], [2].

We consider multicasting in the large-scale cache-enabled
two-tier network. Consider a POA schedules to serve requests
for k different files. Then, it transmits each of the k files
only once to concurrently serve users requesting the same file,
at a rate 7 (bit/second) and over % of the total bandwidth
W using frequency division multiple access (FDMA). As a
matter of fact, both multicast and unicast may happen (with
different probabilities). Without loss of generality, as in [5], we
refer to this transmission as multicast. Note that, by avoiding
transmitting the same file multiple times to multiple users,
this content-centric multicast can improve the efficiency of
the utilization of the wireless medium and reduce the load of
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the wireless network, compared to the traditional connection-
based unicast [6]. From the above illustration, we can see that
the design parameters (p;, p2) affect the performance of the
random caching and multicasting design.

D. Performance Metric

In this paper, we study w.l.o.g. the performance of a typical
user ug, which is located at the origin. Suppose uy requests
file n. Let jo denote the index of the tier with which wug is
associated, and let j, denote the other tier. Let ¢y € ®;,
denote the index of the serving POA of ug. We denote D;

and hj o LN (0,1) as the distance and the small-scale
channel between POA ¢ € &; and wg, respectively. We
assume the complex additive white Gaussian noise of power
Ny (evaluated over the entire frequency band) at ug. When
ug requests file n and file n is transmitted by POA ¢, the
SINR of ug is given by (3) [5] at the top of this page. When
Tjn > 0, let Kj,,0 € {1,---,K,} denote the number of
different cached files requested by the users associated with
POA ¢y € ®;. Note that K ,, ¢ is a discrete random variable,
whose probability mass function (p.m.f.) depends on a, A,
and the design parameters (pi, p2).

The file can be decoded correctly at wug if the channel
capacity between POA ¢y and wug is greater than or equal
to 7. Requesters are mostly concerned about whether their
desired files can be successfully received. Therefore, we
adopt the probability that a randomly requested file by ug
is successfully transmitted, referred to as the successful trans-
mission probability, as the network performance metric [5].
Let A;,(pj, P ) denote the probability that uy requesting
file n is assomated with tier j. By total probability theorem,
the successful transmission probability under the considered
scheme is
(10)

q(P1,P2) = @1 (P1,P2) + @2 (P2, P1) ,

where g;(p;, pj) is given by (4) at the top of this page and
represents the probability that a randomly requested file by ug
is successfully transmitted from a POA in tier j, also referred
to as the successful transmission probability of tier j.

ITI. PERFORMANCE ANALYSIS
A. Performance Analysis in General Region

In this subsection, we analyze the successful transmission
probability ¢(p1, p2) in the general region. The user associa-
tion probability A4; ,,(p;, ;) and the cumulative distribution
function (c.d.f.) of SINR,, ¢ can be found in [1], [2]. In this
paper, we analyze the p.m.f. of file load K ,, o by generalizing
the method in [5], [6]. As in [5], [6], the dependence of the
p.m.f. of K;, ¢ and the c.df. of SINR,, ¢ is ignored. Then,
based on A4, ,,(p;, P ) c.df. of SINR,, ¢ and p.m.f. of K ,, o,
we can derive ¢ (pl, p2).

Theorem 1 (Performance): The successful transmission
probability is ¢ (p1,P2) = ¢1(P1,P2) + ¢2 (P2, P1), Where
4q;j (pj7pj') = Znej\[ an Y1ty Wj,n,k(pjvpf)fj,k(z} mT )
Here, wj nkx(P;j, P7) is given by (5) at the top of this page
with b; ,,, given by

—-3.5
Am A, A, (T T5 )

b’m A 1 J» Js 7,m 7 11

7 + 3.5\ (I

Ay (Tjom, T5,) 2 X 7 and Nj; ., =
N Ty ANTs (7 )

Nji \ {n}, and f; (T}, T5,,) is given by (6) with 6y,
025 and 03 ;1 glven by ), (8) and (9) at the top of thls
page. B (2,y,z f (1 —u)? 'du and B(z,y) £
fo u? 1 (1 - u) ' du denote the complementary incomplete
Beta function and the Beta function, respectively.

Due to page limitation, the proofs are omitted. Please refer to [7] for the
detailed proofs.



From Theorem 1, we can see that the impacts of the physical
layer parameters o, W, A1, Ao, Ay, %, % and the design
parameters (p1,p2) on ¢(p1,p2) are coupled in a complex

manner.

B. Performance Analysis in Asymptotic Region

Note that the gain of multicasting over unicasting increases
with user density [5]. In this subsection, to obtain design
insights into caching and multicasting, we analyze the asymp-
totic successful transmission probability in the high SNR and
high user density region. Let % — oo and % — 00
while fixing the power ratio, i.e., 01 (02). In addition, when
Ay — 00, Ko — Kj in distribution. From Theorem 1, we
have the following corollary.

Corollary 1 (Asymptotic Performance): When ]\% — 0
and A\, — 00,

4(P1,P2) = ¢1,00(T1, T2) + ¢2,00(T2, T1) £ goo(T1, T2),
(12)
where
anrfj n
Qj,00(T5, T5) = : .
j.00(T5, T5) %;/ 011, Tjon + 025,56, 5., + 031,
(13)

Here, Tj 5, is given by (2), and 01 1, 02 ;1 and 03 ; ;. are given
by (7), (8) and (9).

Note that the asymptotic successful transmission probabil-
ity in Corollary 1 and the performance metric in [1], [2]
have different meanings, although they share similar forms.
From Corollary 1, we can see that in the high SNR and
high user density region, the impact of the physical layer
parameters o, W, \; and o, captured by 6 ;, 02 ; x, and
03,5,k and the impact of the design parameters (pi,p2) on
doo (T1,T3) can be easily separated. In most practical cases,
01 k,,01, Kk, > 0. Thus, we consider 6; g,,01 x, > 0 in the
rest of the paper. Fig. 2 verifies Theorem 1 and Corollary 1,
and demonstrates the accuracy of the approximation adopted.
Fig. 2 also indicates that ¢, (T, T5) provides a simple and
good approximation for ¢ (p1, p2) in the high SNR (e.g., 1\% >
120 dB) and the high user density region (e.g., A, > 3x107°).

In the asymptotic region, from [5], we know that the
constraints on (p1,p2) in (1) and (2) can be equivalently
rewritten as (T'1, T2) € T; x T2, where 7; is defined as

AT [0S Tin<1neN,y T, =K,
neN

(14)

To obtain design insights into caching in large-scale multi-tier
wireless multicasting networks, in Section IV and Section V,
we focus on the joint and competitive caching designs in the
asymptotic region, respectively.

3Note that when A\, — oo (corresponding to the full file load case), g;
and g become functions of T'; and T2 instead of p; and p2.
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IV. JOINT CACHING DESIGN

In this section, we consider the case that the two tiers of
POAs are managed by a single operator, e.g., as in a Hetnet.
We first formulate the optimal joint caching design problem
to maximize the successful transmission probability in the
asymptotic region. Then, we develop an algorithm to obtain a
stationary point.

A. Optimization Problem Formulation

In this subsection, we formulate the optimal joint caching
design problem to maximize the successful transmission prob-
ability g (T, T2) by optimizing the caching distributions of
the two tiers, i.e., (T, Ts).

Problem 1 (Joint Caching Design):

x b T,.T 1
Goo = max doo (T1,T2) (19)
st. T; €7,

where ¢, (T1,T2) is given by (12) and 7; is given by (14).

Problem 1 maximizes a differentiable (nonconcave in gen-
eral) function over a convex set, and it is thus nonconvex
in general. Note that Problem 1 and Problem 0 in [2] are
mathematically equivalent, although this paper and [2] have
different scopes. In the following subsection, we propose
an efficient algorithm to solve Problem 1. In contrast, [2]
simplifies the nonconvex problem to a convex one, and uses
the optimal solution to the simplified problem as a sub-optimal
solution to the original problem, which does not provide
performance guarantee.

B. Algorithm Design

We can obtain a stationary point of Problem 1 using
the gradient projection method (GPM) with a diminishing
stepsize. However, the rate of convergence of GPM is strongly
dependent on the choices of stepsize. If it is chosen improperly,
it may take a large number of iterations for GPM to meet
some convergence criterion. To address this problem, in this
subsection we propose an iterative algorithm to obtain a
stationary point of Problem 1 more efficiently. Note that a
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stationary point is a point that satisfies the necessary optimality
conditions of a nonconvex optimization problem, and it is
the classic goal in the design of iterative algorithms for
nonconvex optimization problems. This algorithm is based
on the block successive upper-bound minimization algorithm
originally proposed in [8]. It alternatively updates T; and
T, by maximizing an approximate function of ¢o.(T1,T2),
which is successively refined so that eventually the iterative
algorithm can converge to a stationary point of Problem 1.
Specifically, at iteration ¢, we update the caching distribution
of the jth tier by maximizing the approximate function of
@0 (T1,T2) given the caching distribution of the jth tier, and
fix the caching distribution of the jth tier.
For notational convenience, we define

At iteration t, choose g;(T;, T:(t), T2(t)) to be an approxi-
mate function of Goo (T, T(t)), where g;(T;, T1(t), T2(t))
is given by (15) at the top of this page. Note that
the first concave component function of goo(T;, T3(1)),
ie., ¢joo(T;, T5(t)) is left unchanged, and only the sec-
ond nonconcave (actually convex) component function, i.e.,
47 0 (T5(t), T;) is linearized at T; = T;(t). This choice
of approximate function is beneficial from several aspects.
Firstly, it can guarantee the convergence of the algorithm to
a stationary point of Problem 1, which will be seen in Theo-
rem 2. Secondly, the partial concavity of the original objective
function is preserved as much as possible, and the resulting
algorithm typically converges much faster than GPM, where
all component functions are linearized and no partial concavity
is exploited. Thirdly, it yields a closed-form optimal solution
to the optimization problem at each iteration, which will be
explained in Lemma 1. Specifically, g;(T;, T1(t), T2(t)) is
strictly concave on 7; for any given (T (t), T2(t)) € T1 x Tz,
and satisfies* (16), (17) and (18) (shown at the top of this
page), where d = (d;,0) when j = 1, and d = (0,d;)

oo (T, T5) £ { (20)

4Note that the directional derivative of function r D — R,
where D is a convex set, at point x in direction d is defined by
r'(x;d) 2 lirai()nfw. In addition, in (18), the directional
derivative g/, (T, T1(t), T2(t); d;) is only with respect to T';. (17) is hold
since 45 00 ij., T;) is a convex function of T'; for any given ij- € '7;7

Algorithm 1 Stationary Point of Problem 1 Based on BSUM

1: Initialize ¢ = 1 and choose any T;(1) € 7; (e.g., Tjn(1) = % for
alneN), j=1,2.

: Compute j = ((t + 1) mod 2) + 1.

: For all n € N, compute T ,, (t + 1) according to Lemma 1.

:Foralln € N, set T (t+1) =T5 (1)

: Sett =1t-+1 and go to Step 2.

DA W

when j = 2. The conditions in (16) and (17) imply that
9;(T;, T1(t), T2(t)) is a tight lower bound of Goo (T, T5(t)).
The condition in (18) guarantees that the first order behavior
of g;(T;, T1(t), T2(t)) is the same as §oo (T, T5(?)) locally.
At each iteration ¢, we update the caching distribution of the
jth tier given the caching distribution of the jth tier by solving
the following problem, where j = ((¢ + 1) mod 2) + 1, and
fix the caching distribution of the jth tier.

Problem 2 (Optimization at Iteration t): For tier j = ((¢t+
1) mod 2) 4 1, we have

T;(t+ 1) = argmax g, (Tj, Tl(t),Tg(t))

st. T; €7,

where g; (T;, T1(t), T2(t)) is given by (15).

Problem 2 is a convex optimization problem and Slater’s
condition is satisfied, implying that strong duality holds.
Using KKT conditions, we can obtain the closed-form optimal
solution to Problem 2.

Lemma 1 (Optimal Solution to Problem 2): The optimal
solution to Problem 2 is given by (21) at the top of the
next page, where [z]* £ max{z,0} and v; is the Lagrange
multiplier that satisfies >\ Tjn(t +1) = Kj.

Note that ;' can be efficiently obtained by using bisection
search. The details are summarized in Algorithm 1. Based on
the conditions in (16), (17) and (18), we show the convergence
of Algorithm 1.

Theorem 2 (Convergence of Algorithm 1): The sequence
{qoc(T1(t), T2(t))} generated by Algorithm 1 is convergent,
and every limit point of {(Ty(t),T2(t))} is a stationary
point of Problem 1.

Different from GPM, Algorithm 1 does not rely on a step-
size. Thus, Algorithm 1 may have more robust convergence
performance than GPM, as we shall illustrate later in Fig. 3.
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V. COMPETITIVE CACHING DESIGN Algorithm 2 Nash Equlllbrlum of Game g
In this section, we study the scenario that the two tiers i Initialize # = 1 and choose any T;(1) € 7j (e.g.. Tjn(1) = - for

of POAs are managed by two different operators, e.g., IEEE
802.11 APs of two owners. The two different operators have
their own interests and thus cannot be jointly managed. Be-
sides, one operator may be sacrificed in order to achieve the
maximum total utility. Therefore, we propose a game theoretic
approach and adopt the NE as a desirable outcome. We first
formulate the competitive caching design for the two different
operators within the framework of game theory. Then, we
characterize a NE of the game and develop an algorithm to
obtain a NE.

A. Game Formulation

In this subsection, we formulate the competitive caching
design for two different operators within the framework of
game theory. We consider a strategic noncooperative game,
where the two operators are the players. The utility function
of player j is the successful transmission probability for tier
J, 1.e., ¢j00(Ty, T;). Each tier j competes against the other
tier j by choosing its caching distribution T'; (i.e., strategy or
action) in the set of admissible strategies 7; to maximize its
utility function, i.e., g; 0o (T;, ij).

Problem 3 (Competitive Caching Game): For all j = 1,2,
we have

max  gj,00(T;, T7)
J

st. T; €T,
where ¢; (T}, T5) is given by (13) and 7T;
Let G denote the game.
A solution, i.e., a NE, of game G is defined as follows.
Definition 1 (Nash Equilibrium of Game G): A (pure)
strategy profile (TI,T;) € T1 x T3 is a NE of game G if

i is given by (14).

@oo(T], T 2 ;e (T3, TD), VT, € T, j= 1,20 (23)

B. Algorithm Design
In this subsection, we first characterize a NE of game G.
Lemma 2 (NE of Game G): Game G has a unique NE
which is given by (22) at the top of this page, where u;- is the
Lagrange multiplier that satisties ) | _\- JTn = Kj.

Then, we develop an iterative algorithm to obtain the NE of
game G. It alternatively updates T; while T'5 is fixed and T

alneN), j=1,2.
: Compute j = ((t + 1) mod 2) + 1.
: Compute T (t + 1) = argmax gj, o0 (T]
T,ET;
: Sett =1t-+1 and go to Step 2.

W N

T;(t)).

TS

while T is fixed by solving the following problem at each
iteration ¢.

Problem 4 (Optimization at Iteration t): For player j
((t + 1) mod 2) + 1, we have

T;(t+1)= arngaX 45,0 (T, T;(t))
J
S.t. Tj S 7;

The optimal solutlon to Problem 4 has the same form
as (22) except that TJ ,, and TJr ,, are replaced by T ,(t + 1)
and T;yn(t), respectively. Based on the optimal solution to
Problem 4, at iteration ¢, we update the strategy of player
j = ((t+1) mod 2) + 1, and fix the strategy of player j.
The details for obtaining the NE of game G is summarized in
Algorithm 2.

Next, we provide a convergence condition for Algorithm 2.

Theorem 3 (Convergence of Algorithm 2): 1If

1 01 x,

max | 1, max { 1,

031K,

where 6; 1, 02 ;5 and 03 are given by (7), (8) and (9),
Algorithm 2 converges to the unique NE of game G for all
T;(1) € T;, j = 1,2, ie, (Ty(t), To(t)) — (TI,TL) as
t — oo, where (T1,T}) is given by Lemma 2.

Note that the convergence condition given in Theorem 3 can
be easily satisfied in most cases we are interested in, which
will be shown in Fig. 3.

VI. NUMERICAL RESULTS
In the simulation, we choose W = 20 x 10%, 7 = 4 x 104,
N =500, « = 4, \y = 5x 1077, Ay = 3 x 1075, and
P, — P, = 16dB. We assume that the popularity follows
Zipf distribution, i.e., a, = L Wn =, where v is the Zipf
exponent. First, we show the Convergence and complexity
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Fig. 3. Successful transmission probability versus number of itera-
tions at Ko = 35, K1 = 55, stepsize for GPM is €(t) = wﬁ we
choose the same initial point for all the algorithms shown in Fig. 3

of the proposed algorithms. Fig. 3 illustrates the successful
transmission probability versus the number of iterations. From
Fig. 3, we can observe that the rate of convergence of GPM is
strongly dependent on the choices of stepsize €(t¢). In addition,
Algorithm 1 and Algorithm 2 have more robust convergence
performance than GPM, as they do not rely on a stepsize.
Fig. 4 illustrates the computing time versus the cache size K
and the Zipf exponent . From Fig. 4, we can observe that
the computing times of all the algorithms do not change much
with the K; or v, and the computing times of the proposed
algorithms are shorter than that of Algorithm 2 in [5] which
is to obtain an asymptotically optimal hybrid caching design.
These observations demonstrate the advantage of the proposed
algorithms.

Next, we compare the successful transmission probabilities
of the proposed joint and competitive caching designs with
those of three baselines. Baseline 1 (most popular) refers to
the design in which each POA in tier j stores the K; most
popular files. Baseline 2 (i.i.d. file popularity) refers to the
design in which each POA in tier j randomly stores K files, in
an i.i.d. manner with file n being selected with probability a,,.
Baseline 3 (hybrid caching) refers to the hybrid caching design
obtained by Algrithm 2 in [5] (which is a feasible solution to
Problem 1). The three baseline schemes also adopt the same
multicasting scheme as in our design. Fig. 5 illustrates the
successful transmission probability versus the cache size K
and the Zipf exponent -, respectively. From Fig. 5, we can
observe that as K; and vy increases, the successful transmission
probability of each scheme increases. We can also observe that
the two proposed designs outperform all the three baseline
schemes. In addition, we can see that when K is large or
~ is large, the two proposed designs reduce to the most
popular caching design. When K is small or «y is small, the
two proposed designs perform similarly as the hybrid caching
design. These observations show that the two proposed designs
can well adapt to the changes of the system parameters and
can wisely utilize storage resources.

VII. CONCLUSION

In this paper, we considered a random caching and multicas-
ting scheme in a two-tier large-scale cache-enabled wireless
multicasting network, operated by a single operator or two
different operators. First, we formulated the optimal joint
caching design problem in the asymptotic region. We develop
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Fig. 4. Computing time versus the cache size or Zipf exponent
7 at stepsize for GPM is €(t) = 55555. For GPM, each point
corresponds to the minimum computing time by choosing the optimal
parameter ¢ € {500, 1000, 1500, 2000, 2500}.
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Fig. 5. Successful transmission probability versus the cache size or
Zipf exponent .

an iterative algorithm, which is shown to coverage to a
stationary point. Next, we formulated the competitive caching
design game in the asymptotic region, obtained the unique NE
of the game and developed an iterative algorithm, which is
shown to converge to the NE under a mild condition. Finally,
by numerical simulations, we showed that the two proposed
designs achieve significant gains over existing schemes.

REFERENCES

[1] K. Li, C. Yang, Z. Chen, and M. Tao, “Optimization and analysis of
probabilistic caching in n-tier heterogeneous networks,” arXiv preprint
arXiv:1612.04030, 2016.

[2] J. Wen, K. Huang, S. Yang, and V. O. Li, “Cache-enabled heterogeneous
cellular networks: Optimal tier-level content placement,” arXiv preprint
arXiv:1612.05506, 2016.

[3] Y. Tan, Y. Yuan, T. Yang, Y. Xu, and B. Hu, “Femtocaching in wireless

video networks: Distributed framework based on exact potential game,”

in Communications in China (ICCC), 2016 IEEE/CIC International

Conference on. 1EEE, 2016, pp. 1-6.

H. Kim, J. Park, M. Bennis, S.-L. Kim, and M. Debbah, “Ultra-dense edge

caching under spatio-temporal demand and network dynamics,” arXiv

preprint arXiv:1703.01038, 2017.

[5] Y. Cui and D. Jiang, “Analysis and optimization of caching and mul-

ticasting in large-scale cache-enabled heterogeneous wireless networks,”

IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 250-264, 2017.

S. Singh, H. S. Dhillon, and J. G. Andrews, “Offloading in heterogeneous

networks: modeling, analysis, and design insights,” IEEE Trans. Wireless

Commun., vol. 12, no. 5, pp. 2484-2497, March 2013.

[7] Z. Wang, Z. Cao, Y. Cui, and Y. Yang, “Joint and competitive caching de-
signs in large-scale multi-tier wireless multicasting networks,” 2017. [On-
line]. Available: http://iwct.sjtu.edu.cn/personal/yingcui/publicans.html.

[8] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis
of block successive minimization methods for nonsmooth optimization,”
SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126-1153, 2013.

[4

=

[6

=



