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Resum

Els sistemes RFID permeten la identificació ràpida i automàtica d’etiquetes RFID a
través d’un canal de comunicació sense fils. Aquestes etiquetes són dispositius amb
cert poder de còmput i amb capacitat d’emmagatzematge de informació. Es per
això que els objectes que porten una etiqueta RFID adherida permeten la lectura
d’una quantitat rica i variada de dades que els descriuen i caracteritzen, com per
exemple un codi únic d’identificació, el nom, el model o la data d’expiració. A més,
aquesta informació pot ser llegida sense la necessitat d’un contacte visual entre el
lector i l’etiqueta, la qual cosa agilita considerablement els processos d’inventariat,
identificació o control automàtic.

Perquè l’ús de la tecnologia RFID es generalitzi amb èxit, es convenient complir
amb diversos objectius: eficiència, seguretat i protecció de la privadesa. No obstant
això, el disseny de protocols d’identificació segurs, privats i escalables és un repte
difícil d’abordar ateses les restriccions computacionals de les etiquetes RFID i la
seva naturalesa sense fils. Es per aixó que, en la present tesi, partim de proto-
cols d’identificació segurs i privats, i mostrem com es pot aconseguir escalabilitat
mitjançant una arquitectura distribuïda i col·laborativa. D’aquesta manera, la se-
guretat i la privadesa s’aconsegueixen mitjançant el propi protocol d’identificació,
mentre que l’escalabilitat s’aconsegueix per mitjà de nous protocols col·laboratius
que consideren la posició espacial i temporal de les etiquetes RFID.

Independentment dels avenços en protocols d’identificació sense fils, existeixen
atacs que poden superar amb èxit qualsevol d’aquests protocols sense necessitat
de conèixer o descobrir claus secretes válides, ni de trobar vulnerabilitats a les se-
ves implantacions criptogràfiques. La idea d’aquests atacs, coneguts com atacs de
“repetidor”, consisteix en crear inadvertidament un pont de comunicació entre una
etiqueta legítima i un lector legítim. D’aquesta manera, l’adversari utilitza els drets
de l’etiqueta legítima per superar el protocol d’autentificació utilitzat pel lector.
Es important tenir en compte que, atesa la natura sense fils dels protocols RFID,
aquests tipus d’atacs representen una amenaça important a la seguretat en sistemes
RFID. En aquesta tesi proposem un nou protocol que, a més d’autentificació, realitza
una revisió de la distància a la qual es troben el lector i l’etiqueta. Aquests tipus de
protocols es coneixen com a protocols de fitació de distància, els quals no impedeixen
aquests tipus d’atacs, però sí que poden frustrar-los amb alta probabilitat.

Per últim, afrontem els problemes de privadesa associats amb la publicació de
informació recollida a través de sistemes RFID. En concret, ens concentrem en dades
de mobilitat, que també poden ser proporcionades per altres sistemes àmpliament
utilitzats tals com el sistema de posicionament global (GPS) i el sistema global de
comunicacions mòbils. La nostra solució es basa en la coneguda noció de k-anonimat,
obtingut mitjançant permutació i microagregació. Per a aquesta finalitat, definim
una nova funció de distància entre trajectòries amb la qual desenvolupen dos mètodes
diferents d’anonimització de trajectòries.
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Resumen

Los sistemas RFID permiten la identificación rápida y automática de etiquetas RFID
a través de un canal de comunicación inalámbrico. Dichas etiquetas son dispositivos
con cierto poder de cómputo y capacidad de almacenamiento de información. Es
por ello que los objetos que contienen una etiqueta RFID adherida permiten la
lectura de una cantidad rica y variada de datos que los describen y caracterizan,
por ejemplo, un código único de identificación, el nombre, el modelo o la fecha de
expiración. Además, esta información puede ser leída sin la necesidad de un contacto
visual entre el lector y la etiqueta, lo cual agiliza considerablemente los procesos de
inventariado, identificación, o control automático.

Para que el uso de la tecnología RFID se generalice con éxito, es conveniente
cumplir con varios objetivos: eficiencia, seguridad y protección de la privacidad. Sin
embargo, el diseño de protocolos de identificación seguros, privados, y escalables es
un reto difícil de abordar dada las restricciones computacionales de las etiquetas
RFID y su naturaleza inalámbrica. Es por ello que, en la presente tesis, partimos de
protocolos de identificación seguros y privados, y mostramos cómo se puede lograr
escalabilidad mediante una arquitectura distribuida y colaborativa. De este modo, la
seguridad y la privacidad se alcanzan mediante el propio protocolo de identificación,
mientras que la escalabilidad se logra por medio de novedosos métodos colaborativos
que consideran la posición espacial y temporal de las etiquetas RFID.

Independientemente de los avances en protocolos inalámbricos de identificación,
existen ataques que pueden superar exitosamente cualquiera de estos protocolos sin
necesidad de conocer o descubrir claves secretas válidas ni de encontrar vulnerabi-
lidades en sus implementaciones criptográficas. La idea de estos ataques, conocidos
como ataques de “repetidor”, consiste en crear inadvertidamente un puente de comu-
nicación entre una etiqueta legítima y un lector legítimo. De este modo, el adversa-
rio usa los derechos de la etiqueta legítima para pasar el protocolo de autenticación
usado por el lector. Nótese que, dada la naturaleza inalámbrica de los protocolos
RFID, este tipo de ataques representa una amenaza importante a la seguridad en
sistemas RFID. En esta tesis proponemos un nuevo protocolo que además de au-
tenticación realiza un chequeo de la distancia a la cual se encuentran el lector y
la etiqueta. Este tipo de protocolos se conocen como protocolos de acotación de
distancia, los cuales no impiden este tipo de ataques, pero sí pueden frustrarlos con
alta probabilidad.

Por último, afrontamos los problemas de privacidad asociados con la publicación
de información recogida a través de sistemas RFID. En particular, nos concentramos
en datos de movilidad que también pueden ser proporcionados por otros sistemas
ampliamente usados tales como el sistema de posicionamiento global (GPS) y el
sistema global de comunicaciones móviles. Nuestra solución se basa en la conocida
noción de k-anonimato, alcanzada mediante permutaciones y microagregación. Para
este fin, definimos una novedosa función de distancia entre trayectorias con la cual
desarrollamos dos métodos diferentes de anonimización de trayectorias.
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Abstract

Radio Frequency Identification (RFID) is a technology aimed at efficiently identi-
fying and tracking goods and assets. Such identification may be performed without
requiring line-of-sight alignment or physical contact between the RFID tag and the
RFID reader, whilst tracking is naturally achieved due to the short interrogation
field of RFID readers. That is why the reduction in price of the RFID tags has been
accompanied with an increasing attention paid to this technology. However, since
tags are resource-constrained devices sending identification data wirelessly, desig-
ning secure and private RFID identification protocols is a challenging task. This
scenario is even more complex when scalability must be met by those protocols.

Assuming the existence of a lightweight, secure, private and scalable RFID iden-
tification protocol, there exist other concerns surrounding the RFID technology.
Some of them arise from the technology itself, such as distance checking, but others
are related to the potential of RFID systems to gather huge amount of tracking
data. Publishing and mining such moving objects data is essential to improve effi-
ciency of supervisory control, assets management and localisation, transportation,
etc. However, obvious privacy threats arise if an individual can be linked with some
of those published trajectories.

The present dissertation contributes to the design of algorithms and protocols
aimed at dealing with the issues explained above. First, we propose a set of protocols
and heuristics based on a distributed architecture that improve the efficiency of
the identification process without compromising privacy or security. Moreover, we
present a novel distance-bounding protocol based on graphs that is extremely low-
resource consuming. Finally, we present two trajectory anonymization methods
aimed at preserving the individuals’ privacy when their trajectories are released.
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Chapter 1

Introduction

This chapter introduces the issues we are facing in this dissertation. In addition, it
briefly describes the solutions we propose to tackle those issues. Finally, the structure
and organisation of the present thesis are outlined.

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Motivation

Radio frequency identification (RFID) allows the simultaneous identification of mul-
tiple RFID tags. The identification process is performed over a wireless channel wit-
hout requiring line-of-sight alignment or physical contact between the RFID tags
and the RFID reader. These features together with others like low deployment
costs, being flexible and manageable, computational power, etc., are causing the
RFID technology to be preferred to traditional options (e.g. barcodes systems).
Indeed, nowadays several RFID systems are massively deployed worldwide, namely
for assets tracking (e.g. Air Canada decided to use this technology to control their
food trolleys so as to reduce more than $2 million in unexplained losses [?]), manu-
facturing (e.g. Boeing uses RFID to track parts as they arrive, and as they move
from one shop to another within their facilities, thus reducing errors and the need
for people to look for parts [?]), supply chain management (e.g. Paramount farms,
the largest producer of pistachio in the US, receives 50% of its production from a
network of about 400 partners; the shipments are processed by using RFID that re-
duces processing times to up to 60% [?]), retailing (e.g. Walmart started to explore
the RFID technology in 2003 and devoted at least three billion dollars to implement
it [?]), and for other applications such as payments, security and access control.

The RFID technology also has the capability of naturally collecting trajectories
of moving objects. Differently to other positioning systems like the GPS, RFID
systems do not continuously track a moving object. Instead, RFID readers located
at different waypoints create trajectories by identifying tags passing through those
waypoints. In this sense, the RFID technology can be considered a simple and
low-cost tracking system where complex trilateration and precisely timing of signals
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are not required. This type of coarse-grained tracking is particularly useful to im-
prove the quality of diagnostic processes and business decisions in the healthcare
industry [?], to monitor animal behaviour [?], to enhance bike races [?], to provide
location based services in indoor environments [?], etc.

However, all those potential benefits have been partially overshadowed by im-
portant security and privacy threats. RFID tags are resource-constrained devices
that respond to any reader interrogation through an insecure channel. This means
that both the data stored in the tags’ memory and the data transmitted to readers
cannot be protected by cryptographically strong primitives and/or large key sizes.
Instead, lightweight cryptography requiring no more than 3000 logic gates should be
used [?]. In this scenario, the privacy of tag bearers could be seriously compromised
by disclosing the individual’s locations or other sensitive information contained in
the RFID tag’s memory. Moreover, other security risks like tag impersonation and
counterfeiting increase due to the lack of randomness and computational power in
the tag’s side.

In recent years, several efforts have been made on designing secure and private
RFID identification protocols. Among those protocols, the Randomised Hash-Lock
Scheme [?] has been widely accepted due to its strong privacy and security proper-
ties, and its low computational requirements in the tag’s side, i.e. it only needs
a pseudo-random numbers generator and a one-way hash function. However, this
protocol is not scalable. This is particularly problematic if we consider that millions
or billions of tags should be managed by typical RFID applications (e.g. for supply
chain management or inventory control). That is why many other RFID identifica-
tion protocols have been proposed aimed at being secure and private, yet scalable.
Nevertheless, none of them has achieved those three goals at the same time [?],
especially when strong privacy definitions must be met. In the present dissertation,
we mainly focus on designing collaborative algorithms that improve the scalability
of the Randomised Hash-Lock Scheme [?]. The algorithms are collaborative in the
sense that several readers deployed in the system exchange information in order to
efficiently identify RFID tags. By doing so, our proposals are able to improve the
scalability, being as private and secure as the Randomised Hash-Lock Scheme [?],
though.

Regardless of the improvements on designing identification/authentication pro-
tocols, Desmedt, Goutier and Bengio [?] presented in CRYPTO’87 a novel attack
called mafia fraud that defeated any authentication protocol. In this attack, an ad-
versary succeeds by simply relying the messages between a legitimate reader and a
legitimate tag. Initially, the mafia fraud attack was thought to be rather unrealistic
because the legitimate prover should take part on the execution of the protocol.
However, the RFID technology clearly opens the door to this type of attack since
RFID tags answer to any reader’s interrogation without any awareness or agreement
of their holders. Other types of frauds are also applicable to RFID systems. Among
them, the distance fraud attack [?], in which a dishonest prover claims to be clo-
ser to the verifier than he really is, is very important. Both mafia and distance
frauds may be accomplished despite of the authentication protocol used by tags and
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readers. This means that even assuming secure, private, and scalable RFID identi-
fication/authentication protocols at the application layer, there exists the need for
designing protocols that thwart the mafia and distance fraud attacks. Among the
countermeasures against these attacks, distance bounding protocols based on the
measurement of the round trip time of exchanged messages [?, ?] are considered the
most suitable for RFID systems. We contribute by designing a novel distance boun-
ding protocol based on graphs that is highly resilient to mafia and distance fraud
attacks. Our protocol also deals with other RFID systems’s requirements such as
efficiency and low memory consumption.

Seemingly, an increasing number of articles are being written on RFID security
and privacy areas, namely ultralightweight protocols, distance-bounding protocols,
privacy-preserving lightweight protocols, cryptographically secure pseudo-random
numbers generators, cryptosystems based on elliptic curves, RFID privacy models,
zero-knowledge authentication protocols for RFID systems, ownership transfer pro-
tocols, among others [?]. All these efforts contribute to the establishment of a
technology that may help to do business as much as other revolutionary technolo-
gies like internet do. This means that, in the near future, billions of RFID tags will
send information to thousands of RFID readers so as to enrich our interaction with
the environment and make our processes more efficient and resilient. Therefore, gat-
hering huge databases of trajectories by using the potential of the RFID technology
to track moving objects will be a reality.

Analyzing this kind of databases can lead to useful and previously unknown kno-
wledge. However, even when tracking is performed by legitimate parties, the privacy
of individuals may be affected by the publication of such databases of trajectories.
Simple de-identification realised by removing identifying attributes is insufficient to
protect the privacy of individuals. Just knowing some locations visited by an indi-
vidual can help an adversary to identify the individual’s trajectory in the published
database. In this context, privacy preservation means that no sensitive location
ought to be linkable to an individual. The privacy threat grows if such a trajectory
is linked with sensitive personal data like, price of products, name of drugs, etc,
which are usually stored in the tags’ memory.

These privacy issues motivate our last research line in this thesis. We note that
the boom of the RFID technology strongly promotes the design of privacy-preserving
trajectory anonymisation methods. In this sense, we finally focus on mitigating the
privacy issues that may arise from the publication of databases of trajectories, rather
than on providing security and/or privacy to the RFID technology. In particular,
we propose a novel distance measure for trajectories which naturally considers both
spatial and temporal aspects of trajectories, is computable in polynomial time, and
can cluster trajectories not defined over the same time span. Mainly based on this
metric, we propose two methods for trajectory anonymisation which yield anonymi-
sed trajectories formed by fully accurate true original locations.
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1.2 Contributions

The main contributions of this dissertation are the following:

1. Efficient RFID identification protocol by means of collaborative re-
aders: Designing secure, private, and scalable, RFID identification protocols
in a multiple tags to one reader scenario is a challenge. However, in scenarios
where multiple readers are deployed in the system, scalability may be achieved
without compromising privacy or security. In particular, we consider a sce-
nario where readers should continuously monitor moving tags in the system.
Under such an assumption, we propose a scheme that has been proven to be
efficient in terms of both server and network overhead.

2. Predictive protocol for the scalable identification of RFID tags: We
improve the state-of-the-art of RFID identification schemes based on collabo-
rative readers by proposing a protocol that predicts future and past locations
of RFID tags. By doing so, readers are aware of which tags may be identi-
fied at some slot of time. Therefore, the identification process is considerably
improved.

3. A new distance-bounding protocol: RFID systems are specially suscepti-
ble to mafia and distance frauds. Among the countermeasures to thwart these
attacks, distance-bounding protocols are considered the most suitable soluti-
ons for RFID systems. We propose a novel distance-bounding protocol only
requiring a single hash computation and a linear amount of memory in the
tag’s side. Despite those limitations, our proposal is highly resilient to both
mafia and distance frauds.

4. Privacy-preserving publication of trajectories: It is hard to say how
much personal information and tracking data may be collected by RFID re-
aders in the near future. Nevertheless, trajectories are massively gathered
by GPS and/or GSM technologies, and apparently the RFID technology is
strongly supporting this massive collection of moving objects data. We focus
on designing trajectory anonymisation algorithms that may work over trajec-
tories not defined over the same time span. In particular, we propose two
algorithms based on microaggregation and permutation aimed at achieving
trajectory k-anonymity and location k-diversity. Both algorithms are based
on a novel distance measure that effectively considers both dimensions: space
and time.

1.3 Organisation

This thesis is organised as follows:

• Chapter 2 provides an overview of RFID systems and describes some challenges
that the RFID technology should address in order to be successfully deployed
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worldwide. Also, the controversy between privacy, security, and scalability in
RFID systems is discussed in detail. Other ramifications of RFID systems are
introduced as well, namely distance checking and trajectory anonymisation.

• Chapter 3 presents our first contributions to the scalability issue of RFID
identification protocols. In particular, it describes a protocol based on colla-
borative readers that outperforms previous proposals in terms of both number
of cryptographic operations and bandwidth usage.

• Chapter 4 introduces the concept of RFID identification protocols based on
location prediction. This new proposal is also based on collaborative readers,
but it is able to improve the identification process by predicting the next reader
that should identify a tag.

• Chapter 5 is devoted to the description of a novel distance-bounding protocol
based on graphs. The goal of this proposal is to reduce memory requirements
while still achieving high security properties regarding both distance and mafia
fraud. To do so, the concept of distance bounding protocols based on graphs
is introduced and defined.

• Chapter 6 presents our contributions to the anonymisation of moving objects
data. In particular, two anonymisation methods releasing trajectories that
contain true original locations are proposed. Both methods are able to effecti-
vely deal with trajectories not defined over the same time span thanks to a
novel distance measure presented in this chapter.

• Finally, Chapter 7 summarises our contributions and describes possible future
research lines.





Chapter 2

Background

This chapter briefly describes RFID systems, from the very beginning of the techno-
logy to the most recent applications and challenges. Among all the challenges, it
focuses on the security, privacy, and scalability issues of RFID systems, distance
checking, and the anonymisation of mobility data collected by either the RFID or
the GPS technologies. In addition, the main contributions aimed at facing all those
challenges are reviewed.
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2.1 A brief history of the RFID technology

The first RFID system dates from the Second World War [?]. In those days, radar
technology was used to detect approaching aircrafts by sending pulses of radio energy
and receiving the echoes generated by those aircrafts. However, visual contact was
the only way to identify an incoming plane as enemy or allied. The Germans sol-
ved this problem by rolling their aircrafts in response to a signal from the ground
radar station so as to change the radar reflection’s polarisation and thus, creating
a distinctive blip on the radars. In military terms, this is considered a huge advan-
tage over previous radar systems. Actually, some people believe that this ingenious



8 Chapter 2. Background

German military strategy could have helped the US army to prevent the attack on
Pearl Harbor.

Later, the British army introduced a more sophisticated system called Identify
Friend or Foe (IFF). Closer to current RFID systems, each plane was equipped with
a transponder that modulated back the radar signal, thereby allowing identification
of that aircraft as friendly. Due to its simplicity and resiliency, this technology is
still being used by the aviation industry to keep airplanes tracked. However, a not
friendly aircraft should be treated with care since there is no proof of it being an
enemy. Apparently, this inconvenience has been the cause of unfortunate accidents
(e.g. in 1983, the Soviet Union army shot down a Korean civilian airplane that was
confused with a spy plane [?]. Similarly, an Iranian civilian plane was shot down
in 1988 by the United States army, and all 290 passengers and crew were killed,
including 66 children [?]).

As advances in radio frequency communications systems and low-cost embed-
ded computers continued through the 1950s, 1960s, and 1970s, several technologies
related to radio waves were developed (e.g. the Electronic Article Surveillance ap-
plication (EAS) designed to prevent shoplifting from retail stores). Nevertheless,
the first patent for a passive, read-write RFID tag, was received by Mario Cardullo
in 1973. This is considered the first true ancestor of modern RFID as it was a
passive radio transponder with memory. Since then, RFID systems hardly seem
recognisable. Modern RFID tags may be similar in size to a grain of rice; may
have computational capabilities, Read Only Memory (ROM), Electrically Erasable
Programmable Read-Only Memory (EEPROM); may be active in the sense of using
batteries rather than RFID readers’ power, etc.

Consequently, over the years, the number of solutions based on RFID has con-
siderably grown. In fact, RFID systems are nowadays more related with business
than with the military industry. In the 1980s and 1990s, RFID applications emer-
ged in transport, access control, animal identification, tracking nuclear material and
trucks and electronic toll collection [?]. This trend is increasing exponentially in the
21st century due to tags’s price reduction [?] and RFID standardisation [?]; over 33
billion RFID tags were produced in 20101 and 2.31 and 2.88 billion tags were sold
in 2010 and 2011, respectively2.

2.1.1 RFID systems

An RFID system is supposed to identify and track objects by using radio waves.
Similar to other identification systems such as barcodes, fingerprints or eyes’ iris,
the reader (RFID reader) reads from some source of identification data (RFID tag).
Then, the identification data are usually processed by a data processing subsystem or
server. However, RFID systems outstand from other identification systems because

1According to a study of In-Stat (http://www.in-stat.com) - http://www.instat.com/press.
asp?Sku=IN0502115WT&ID=1545

2According to an extensive research by IDTechEx (http://www.idtechex.com/research/
reports/rfid_forecasts_players_and_opportunities_2011_2021_000250.asp)

http://www.in-stat.com
http://www.instat.com/press.asp?Sku=IN0502115WT&ID=1545
http://www.instat.com/press.asp?Sku=IN0502115WT&ID=1545
http://www.idtechex.com/research/reports/rfid_forecasts_players_and_opportunities_2011_2021_000250.asp
http://www.idtechex.com/research/reports/rfid_forecasts_players_and_opportunities_2011_2021_000250.asp
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they may be nearly as cheap as barcode systems, use a wireless channel like GPS or
GSM, and have some computational capabilities like magnetic cards. That is why
more and more attention has been paid to this technology in recent years.

In technical terms, an RFID system consists of three key elements:

• The RFID tag, or transponder, that contains information and identification
data.

• The RFID reader, or transceiver, that queries transponders for information
stored on them. This information can range from static identification numbers
to user or sensory data.

• The data processing subsystem or server, which processes the data obtained
from readers.

Intuitively, all objects to be identified shall be physically tagged with RFID tags.
Then, RFID readers should be strategically distributed to interrogate tags where
their data are required (e.g. a bicycle race timing system needs to place, at least, a
reader at the start line and another one at the finish line). Other properties, namely
readers’ interrogation field size, computation capabilities, and memory size of tags,
vary from application to application.

2.1.1.1 RFID tags

Typical transponders (trasnmitters/responders) or RFID tags (see examples in Fi-
gure 2.1), consist of integrated circuits connected to an antenna [?]. The memory
element serves as writable and non-writable data storage, which can range between
few bytes up to several kilobytes. Tags can be designed to be read-only, write-once,
read-many, or fully rewritable. Therefore, tag programming can take place at the
manufacturing level or at the application level. A tag can obtain power from the
signal received from the reader, or it can have its own internal source of power. The
way tags get their power generally defines their category:

• Passive tags use power provided by the reader by means of electromagnetic
waves. The lack of an onboard power supply means that the device can be
quite small and cheap.

• Semi-passive tags use a battery to run the microchip’s circuitry but com-
municate by harvesting power from the reader signal.

• Active tags have their own internal power source, usually a battery, which is
used to power the outgoing signal.

RFID tags may also be classified according to their processing power. A dumb
tag has no significant processing power, while smart tags have on-board processors
able to perform cryptographic operations [?]. Dumb tags are considered the heart
of RFID systems. Manufacturers and retailers claim that reducing tags’ cost is



10 Chapter 2. Background

Figure 2.1: Pictures of some types of RFID tags

indispensable for the success of RFID systems. In some cases, sending a unique
identifier would not necessarily be a problem. For instance, Canada, Israel, Japan,
Belgium and The Netherlands, among other countries, require owners of pets to
implant an RFID tag on their pets. These tags contain information that allow a
fast and efficient localisation of pet owners in case of loss of their pets. Since those
tags have a really short identification range and pets normally do not have enemies
aimed at counterfeiting their identities, dumb tags could be the most practical option
for this type of application. In turn, smart tags are used in those applications
requiring some level of security and/or privacy, namely for e-passports, supply chain
management or access control.

Considering that RFID systems rely on radio waves, tags operate in a well-
defined frequency. There are four main bands: low frequency (LF), high frequency
(HF), ultra-high frequency (UHF), and microwave. The exact frequency varies de-
pending on the application and the regulations in different countries. The frequency
bands and the most common RFID system frequencies are listed in Table 2.1.

2.1.1.2 RFID readers

Typical transceivers or RFID readers consist of a radio frequency module, a control
unit and a coupling element to interrogate RFID tags via radio frequency communi-
cation. Readers may issue two types of challenge: multicast and unicast. Multicast
challenges are addressed to all tags in the range of a reader whereas unicast chal-
lenges are addressed to specific tags. In order to keep readers as simple as possible,
they have, in general, an interface that allows them to forward the received data
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Frequency Band Operating
Range

Applications

125kHz to 134kHz
(LF)

≈ 0.5 Me-
ters

Access control and Animal identifica-
tion

13.56MHz (HF) ≈ 1 Meters Library books and Smart cards
860MHz to 930MHz
(UHF)

≈ 3 Meters Logistic and Parking access

2.4GHz (Microwave) ≈ 10 Meters Electronic toll collection and Airline
baggage tracking

Table 2.1: RFID frequency bands and characteristics.

to a data processing subsystem, back-end database or server. By doing so, readers
delegate most of the computational effort to other computationally more powerful
devices.

2.1.1.3 Data processing subsystem

The data processing subsystem or server is used to overcome the computational limi-
tations of tags and readers. On the one hand, tags may not be able to store in their
memory all the information required by readers. Thus, this information is usually
stored in indexed databases. On the other hand, aimed at reducing the cost of RFID
readers, cryptographic functions or processing data algorithms should rely on a data
processing subsystem or server. It should be remarked that a secure connection
between readers and back-end databases is generally assumed; anyway, secure com-
munication between two computationally powerful devices does not belong to the
problems addressed by the RFID technology. Refer to Figure 2.2 for a graphical
representation of the RFID components and their basic relations/connections.

2.1.2 RFID standards

Nowadays, most technologies we use are governed by standards. Basically, these
define the minimum requirements of some technology in order to achieve interope-
rability, which is particularly important in RFID systems. To illustrate the need for
interoperability in the RFID technology it is important to understand the problems
of supply chains. We may say that a supply chain management begins in a mine
or a farm and it ends on a recycling or garbage plant [?]. In between, the initial
material is modified or processed from stage to stage, it may change hands from one
owner to another, etc. In this globalised world, such material or item, presumably
attached to an RFID tag, could travel around the world more than most people in
their whole life (e.g. from manufacturers to warehouses, from warehouses to points
of sale, from points of sale to retailers, from retailers to customers, from customers
to customers or second-hand retailers, etc). This means that RFID tags should
be correctly read by everyone and everywhere, in the present and in the future,
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Figure 2.2: Basic components of an RFID system. From left to right: a back-end,
RFID readers, and RFID tags. The back-end uses databases to store identification
information. RFID readers are used to query RFID tags (that can take a variety of
embodiments), retrieve their information, and forward it to the back-end through a
wireless or wired channel.

and without any restricted access or implementation, i.e. RFID systems should be
interoperable.

Continuing the work of Auto-ID Labs [?], EPCGlobal is leading the development
of industry-driven standards for the Electronic Product Code (EPC) to support
the use of RFID systems [?]. Their task has been to specify frequencies, coupling
methods, types of keying and modulation, information storage capacity, and modes
of interoperability [?]. Table 2.2 shows the classification of RFID tags according to
the EPCGlobal organisation.

Class Description
Class 0 Passive, read-only.
Class 0+ Passive, write-once but using class 0 protocols.
Class I Passive, write-once.
Class II Passive, write-once with extras such as encryption.
Class III Rewritable, semi-passive, integrated sensors.
Class IV Rewritable, active, may communicate with other active tags.
Class V Rewritable, active, can power and read other tags.

Table 2.2: EPC global tag classes.

On the other hand, the International Organisation for Standardisation (ISO)
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has also created standards for RFID. Initially, there was some conflict between
EPCGlobal and ISO specially due to the air interface protocol. At EPCGlobal, the
ISO UHF protocol was thought to be too complex and costly. That is why they
developed their own UHF protocol. Finally, in 2004, EPCglobal developed a second-
generation protocol (Gen 2) aimed at creating a single, global standard that would
be closer to the ISO standards and lastly accepted by ISO. Undoubtedly, this new
generation has been the cornerstone of a massive deployment and global adoption
of the RFID technology.

2.1.3 Applications

RFID technology has been characterised by its growing popularity. Consequently,
a large and diverse number of RFID solutions are being used by more and more
business companies. Not surprisingly, national governments have also noticed the
benefits of RFID systems in their ordinary tasks, namely for passport control and
document tracking. Therefore, it is hard to say exactly how many RFID systems are
already deployed worldwide. However, it is clear that these systems are becoming
more popular with each passing day.

2.1.3.1 Identification

Since the very beginning of the RFID technology during the Second World War,
identification was its primary goal. Nowadays, the scenario is not so different; animal
identification, inventory systems, human implants for identification of patients and
drug control, are just a few examples of identification by radio frequency. Indeed,
other RFID’s features like tracking implicitly identify their targets, otherwise it
would not be possible to track them.

2.1.3.2 Tracking

There exist several scenarios in which RFID systems are the most suitable for
tracking (e.g. indoor environments or for animal surveillance). Also, in comparison
with other tracking systems like GPS or GSM, the RFID technology is considered
much less costly. That is why tracking, together with identification, is considered
one of the primary goals of RFID systems.

For tracking, tags operating at high frequency are usually required because they
have a larger reading range. Those types of tags are used for tracking in libraries
or bookstores, pallet tracking, building access control, airline baggage tracking, and
apparel and pharmaceutical items tracking (e.g. in February 2008, the Emirates
airline started a trial of RFID baggage tracking at London and Dubai airports [?];
in May 2007, Bear River Supply began to utilise ultrahigh-frequency identification
tags to help monitor their agricultural equipment [?]).
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2.1.3.3 Healthcare

The healthcare industry has been heavily investing in RFID. The healthcare supply
chain, prevention of drug counterfeiting or patient safety, are just some examples
of critical processes monitored by RFID. By doing so, patients of a hospital in
England might avoid exposure to diseases caused by infected equipment that was
not properly tracked and classified [?]. Furthermore, discarded drug packaging will
not be reusable by companies attempting to sell counterfeit pharmaceuticals, as
noted by Colombian pharmacy chain Medicarte [?]. Indeed, it is expected that
investments in RFID technology by the healthcare industry rise from 90$ million in
2006 to 2.1$ billion in 2016 [?].

2.1.3.4 Electronic passports

Electronic passports (e-passports) or passports with an embedded RFID tag have
been introduced in many countries, including Malaysia (1998), New Zealand (2005),
Belgium, The Netherlands (2005), Norway (November 2005), Ireland (2006), Japan
(2006), Pakistan, Germany, Portugal, Poland (2006), Spain (August 2006), The
United Kingdom, Australia and the United States (2007), Serbia (July 2008) and
Republic of Korea (August 2008). Contrary to most RFID applications, RFID tags
on passports are a sort of smart card rather than a low-cost tag. They are able to
execute computationally complex public key cryptosystems with large key size and
are tamper-proof. Also, plenty of information may be stored on the tag’s memory
such as, name, birthdate, biometric information, photo, etc. Such information may
be contrasted with the information available on paper, thereby reducing the risk
of passport forgery and fraud. However, several weaknesses have been found in e-
passports [?]. Especially disturbing are those that allow an adversary to effectively
clone an e-passport so that a reader cannot distinguish between a legitime and
a cloned passport [?, ?]. Anyway, governments claim that cloning is not a big
problem as the electronic information must match the physical characteristics of
users. Furthermore, a third generation of e-passports has been released in which, to
the best of our knowledge, no cloning attack has been reported yet.

2.1.3.5 Transportation payments

Public transportation payments with RFID cards is probably one of the first per-
ceptible contacts we have with this technology. By this solution neither we need to
have coins in our pockets nor the bus drivers need to regularly manage and change
cash. Hence, the bus drivers’ workload decreases, hence reducing the risk of a traffic
accident due to distractions and increasing the compliance with the schedule.

Conforming to the Calypso3 (RFID) international standard, several countries
in Europe and America use RFID passes for public transport systems. In Asia, in

3Calypso is the international electronic ticketing standard for microprocessor contactless smart-
cards. It ensures multi-sources of compatible products, and makes possible the inter-operability
between several transport operators in the same area.
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particulary Hong Kong, other type of RFID cards, called Octopus Cards, are also
being used for transport systems. Those cards also have grown to be similar to a
cash card, and they may still be used in vending machines, fast-food restaurants and
supermarkets. Many other public transport payments based on RFID exist (e.g. the
Moscow Metro pay system or the bike sharing system that prevents bicycle theft in
Barcelona).

2.1.4 RFID challenges

There are many challenges associated with the deployment of RFID systems (e.g.
false or missing reads due to radio wave corruption, scalability, security and pri-
vacy, antenna design, deployment cost, among others). However, there are other
challenges that may not seem so obvious. The introduction of a new order of things
might create a maelstrom of uncertainty. For many industries, RFID deployment
will change their business process, forcing new investment on personal training,
infrastructure, testing, etc. For example, the McCarran International Airport in
Las Vegas had to invest around 125, 000, 000$ to RFID-enable its baggage-tracking
system [?]. Therefore, companies are requiring to carefully evaluate the economic
viability of what may represent a big initial investment of money.

On the other hand, although an RFID system provides plenty of data essential
to control and understand business processes, applications like supply chain mana-
gement or real-time tracking may generate such a huge volume of information that
could not be handled by traditional transactional databases (e.g. it is predicted
that WalMart will generate over 7 terabytes of operational RFID data per day [?]).
Therefore, software architectures and back-end databases should be rethought for
the collection, correlation, filtering, and cleansing of RFID data.

Strongly related with technical and deployment details, three different challen-
ges, namely security, privacy and, scalability, are the main subject of discussion
in this dissertation. Almost every object is likely to be attached to an RFID tag.
Therefore, billions of tags will need to be managed efficiently and in a scalable way.
On the other hand, due to the wireless nature and the computational constraints of
RFID tags, guaranteeing the security of tags’ data and the privacy of tags’ bearers
is a challenging task. The privacy threats grow if we consider all personal data sur-
rounding the huge amount of information collected from tags. If such data are not
properly treated, sensitive information might be disclosed without the awareness of
RFID’s users. This means that the need for efficient and scalable privacy-preserving
methods for microdata and trajectories increases with the massive deployment of
RFID solutions.
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2.2 Security, privacy and scalability issues in RFID iden-
tification protocols

The rapid proliferation of RFID solutions strongly supports the vision of ubiquitous
computing, in which tags interacting with readers throughout our everyday life im-
prove our experiences with the environment. Consequently, in most applications,
readers must be able to identify one or several tags among a set of millions or billi-
ons. This scenario characterises an important property that an RFID identification
protocol should meet: scalability.

As for most identification systems, being secure and private are another two
mandatory properties of RFID systems. These two features are even more relevant
in the RFID context due to the insecure and easily accessible communication channel
between tags and readers. Generally speaking, security means that data stored in a
tag’s memory should be accessed only by authorised parties and that impersonating
or counterfeiting a tag may be achieved just with a negligible probability. On the
other hand, privacy-preservation may be defined as the ability of tags to generate
uncorrelated identification messages.

2.2.1 Security

RFID systems are subject to plenty of attacks, from attacks operating on the phy-
sical layer to attacks exploiting weaknesses on those protocols executed at the ap-
plication layer [?, ?, ?]. Physical attacks may be as simple as wrapping an RFID
tag in aluminum foil, which potentially causes denial of services (DoS) because re-
aders will be not able to communicate with such tag. Other physical attacks are
more sophisticated (e.g. jamming attacks that permanently damage radio devices
or side-channel attacks that obtain information from the physical implementation
of cryptosystems). However, in the present dissertation, we focus on adversaries
aimed at breaking the identification/authentication schemes by using theoretical
weaknesses of such algorithms. To do so, we assume that the adversary can observe,
block, modify, and inject messages in the communication between a tag and a rea-
der. Furthermore, as tags are not tamper-resistant, we assume an adversary able to
clone and tamper with any RFID tag.

The most relevant attack to RFID systems is the so-called spoofing or imperso-
nation attack. In this attack, an adversary is able to clone a tag without physically
replicating it. By doing so, the adversary gains the privileges of such tag, which is
considered an important security threat for almost every RFID applications. The
worst situation occurs when the adversary is able to break the cryptosystem used
during the authentication process (total break), i.e. the adversary gains knowledge
of the authentication protocols and the secrets. In other cases, the adversary does
not even need to spend too much time breaking the cryptographic protocol. Instead,
the adversary could impersonate a tag by replaying and/or manipulating some tag’s
responses recorded from past transactions (forgery). Although these attacks have
been successfully thwarted by lightweight and symmetric key cryptography suitable
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for low-cost RFID tags [?], there still exist open issues when privacy and scalability
must be also considered.

2.2.2 Privacy

There exist two main privacy concerns in RFID systems: information leakage and
traceability. Information leakage is potentially dangerous because tags may reveal
sensitive information about products (e.g. the name of drugs or the price of ex-
pensive products). Such data may be used for quick, easy, and low-cost profiling of
individuals, or even for industrial espionage. The basic idea to prevent information
leakage in RFID systems is to move all the tags’ data to one or several servers.
By doing so, only authorised parties may retrieve those data when required. Ho-
wever, this may not prevent traceability. For instance, a tag sending its unique
identifier does not reveal trivial information about the object to which is attached,
but it is traceable. To thwart traceability, readers and tags should exchange fresh
information at each identification so as to make the response of two different tags
indistinguishable.

The challenge is that indistinguishability is an application-dependent concept
where the abilities of adversaries, tag’s owners, physical constraints, etc, must be
taken into account in order to provide a fair privacy definition for RFID systems.
This is why different privacy models for RFID have been defined [?, ?, ?, ?, ?].
Among them, we recall two well-known notions of privacy proposed by Avoine in [?]:

Definition 1 (Universal untraceability). Universal untraceability is achieved when
any pair of tag’s responses, separated by a successfully identification with a legitimate
reader, cannot be correlated with high confidence by an adversary.

Definition 2 (Existential untraceability). Existential untraceability is achieved
when any pair of tag’s responses cannot be correlated with high confidence by an
adversary.

Intuitively, existential untraceability is stronger than universal untraceability.
Note that the latter ensures privacy against passive adversaries only. That is why
protocols that achieve universal untraceability are usually referred as passively pri-
vate, whilst those protocols achieving existential untraceability are referred as acti-
vely private [?].

There exist other notions of privacy in RFID systems like forward and backward
untraceability. Both notions rely on the fact that RFID tags are not tamper-resistant
and thus, an adversary may be able to get full access to the internal state of a tag.
Informally, backward and forward untraceability ensure that revealing the internal
state of a tag cannot help an adversary to identify previous or future transactions
of such tag. However, both are beyond the scope of this dissertation (interested
readers may refer to [?, ?, ?, ?, ?, ?, ?, ?, ?]).
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2.2.3 Why is secure, private, and scalable identification hard?

An RFID identification system where tags send their unique identifier in plain
text to readers is scalable (e.g. EPC Radio Frequency Identity Protocols Class-
1 Generation-2 UHF RFID [?, ?]). In some way, this is how the barcode systems
work. However, from the security point of view, it would be quite easy to counterfeit
an RFID tag just by building a device able to replay the unique identifier of this
tag, which was previously eavesdropped or maybe read from the tag’s embodiment.
Some RFID manufacturers argue that, in any case, counterfeiting an RFID tag is
much more difficult than counterfeiting a barcode label. Actually, this is true for
RFID tags intended as the replacement of barcode labels. But RFID systems aimed
at being an active part of the future of pervasive computing need anti-counterfeiting
measures; they need entity authentication [?].

Public key cryptography (PKC) is known to achieve private and scalable au-
thentication. Actually, most of the applications we use nowadays are protected by
PKCs, namely secure remote login (SSH), digital signatures, internet key exchange
(IKE), digital cash and secure transparent voting. That is why so many efforts have
been devoted to designing and implementing asymmetric cryptosystems such as El-
liptic Curve Cryptosystem (ECC) [?] and N-th Degree Truncated Polynomial Ring
(NTRU) [?], in RFID tags. However, they require a high number of logic gates to
be implemented in tags. Therefore, the price of tags will increase drastically to ac-
commodate those cryptosystems in RFID tags. Even though other proposals [?, ?]
reduce the number of required logic gates by performing some pre-computation and
storing partial results in tags, they increase the memory usage to around 1700 bits.
It is an open problem whether public key cryptography will be suitable for low-cost
RFID tags. Therefore, most RFID identification protocols are based on symmetric
key cryptography rather than on public key cryptography.

However, symmetric key cryptography does not satisfy all the requirements of
RFID systems because, in general, it draws scalability problems on the server’s side.
Since tags are not tamper-resistant, each tag must contain a unique and private key
with which encrypt its response. The paradox is that, in order to determine the tag’s
identity the server needs to decrypt the message using the tag’s key, but retrieving
the tag’s key is only possible when the server knows the tag’s identity. Consequently,
the server should perform an exhaustive search looking for the proper key to decrypt
the message. Several protocols overcome this scalability problem by performing an
update phase after the identification process (stateful protocols) [?, ?, ?, ?, ?, ?, ?, ?].
This means that the tag and the reader should share and synchronously update the
next identification message. However, it has been shown [?] that this synchronisation
process must be carefully designed in order to resist Denial of Services attacks. On
the other hand, the update phase is not only useless against active adversaries, but
also is rather inefficient on the tag’s side. Note that a write operation in a tag
may take roughly 16.7 milliseconds, while a read operation just needs around 0.007

milliseconds [?]. Indeed, writing in the tag’s memory is a time consuming operation;
roughly five times more time consuming than a classical AES-128 encryption, which
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needs around 2.8 milliseconds.
In conclusion, three main techniques have been proposed for the private iden-

tification of RFID tags: (i) Public key cryptosystems that are secure, private, and
scalable, but not suitable for low-cost tags. (ii) Stateful protocols which are scala-
ble, but they are not strong against active attacks and may be less efficient than
other symmetric key protocols due to the writing operation in the memory of the
tags. (iii) Stateless protocols based on symmetric key cryptography that could be
lightweight, private, and secure, but not scalable. As a result, designing lightweight,
secure, private, yet scalable, RFID identification protocols still is a challenging task.

2.2.4 Advances in RFID identification protocols

As stated in [?], a tag can be classified according to the operations it supports. High-
cost tags are those that support on-board conventional cryptography like symmetric
encryption and public key cryptography. In turn, simple tags are also considered
high-cost tags, but they only support random number generators and one-way hash
functions. Likewise, low-cost tags can be classified as lightweight tags or ultralight-
weight tags. Both are able to compute simple bitwise operations like XOR, AND,
OR, etc, but the former also support a random number generator (RNG) and sim-
ple functions like a cyclic redundancy code (CRC) checksum. Undoubtedly, low-cost
and simple tags, intended as the replacement of the barcode labels, represent the
greatest challenge in terms of security and privacy preservation.

2.2.4.1 Identification protocols for low-cost tags

Several efforts have been made in order to achieve some level of security in low-cost
tags [?, ?, ?]. One of the first proposals in this direction is due to Duc et al. [?].
They designed a protocol where messages are encrypted using a CRC-16 function
and randomised by an updating key process. Although this protocol is not resilient
to desynchronisation attacks [?], its main weakness lies in the linearity of the CRC-16
function. Indeed, Burmester and Medeiros [?] show how to successfully implement
an impersonation attack by eavesdropping only one session of the protocol. In the
same article, four protocols with different levels of privacy are proposed. The first
encrypts messages using the RNG defined in the EPCGlobal2 standard seeded with
a key shared by the tag and the reader. The security of this protocol is based on the
statistical behaviour of the RNG. However, the key is of size 16 bits; therefore, an
exhaustive search on all possible 216 key values can be enough to recover the key. On
the other hand, EPCGen2 does not specify any protection of the RNG against the
related-key attack, in which it is possible to find a correlation between a sequence of
outputs given by the RNG defined in the EPCGlobal2 [?]. Therefore, an adversary
could be able to disambiguate tags that respond with pseudonyms drawn from a
EPCGlobal2 RNG complaint. The solution proposed in [?] is to build a Pseudo
Random Function (PRF) from a RNG [?]. The new PRF has an input size of 32
bits and it is defined by recursively executing a RNG 16 times.



20 Chapter 2. Background

Other proposals do not even consider tags generating random numbers. In such
protocols, the randomness on the tag’s side is provided by readers. It should be
noted that, those protocols either do not provide anonymity or ensure privacy by
updating tags’ internal state. In 2006, the first three ultralightweight protocols were
proposed: M2AP [?], EMAP [?] and LMAP [?]. Although it was a step forward on
the security of low-cost tags, and many other ultralightweight protocols [?, ?, ?] have
been proposed so far, all of them have been proven to be insecure [?, ?, ?, ?, ?, ?].
According to Peris-Lopez et al. [?], the main weakness of these protocols is the
use of triangular functions like AND, XOR, etc. This problem was detected by
Chien [?] and he incorporated a left rotation operation (which is non triangular)
to his proposal named SASI. Nevertheless, the SASI protocol has other weaknesses
that can be found in [?, ?, ?, ?]. As a consequence, Peris-Lopez et al. designed the
Gossamer protocol [?] aimed at being more secure than previous ultralightweight
protocols, though more computationally expensive. In a similar line, Juels proposed
a protocol [?] where each tag has a list of one-time pads that together with the tag’s
keys identify the tag. The protocol is minimalist in the sense that involves only low-
cost operations like: rudimentary memory management, string comparisons, and a
basic XOR. However, the security of this protocol depends on the size of a list that
should be updated at each session.

A completely different approach to the security of RFID systems was proposed
by Juels in [?]. Juels adopts the human-to-computer authentication protocol de-
signed by Hopper and Blum (HB) [?], and shows it can be practical for low-cost
pervasive devices. HB is a probabilistic protocol consisting of several rounds (around
128 according to Hopper and Blum [?]). In each round, the verifier sends n bits of
challenge and the prover responds correctly to each bit with a probability greater
than 1/2. At the end of the protocol, the verifier decides whether the prover gave a
sufficient number of correct bits of response. The HB protocol can be also considered
an ultralightweight protocol. Later, Juels modified slightly the HB protocol propo-
sing a new protocol [?] (HB+) that claims to be secure against active adversaries.
Although HB+ is suitable for EPC-Gen 2 tags, it has a high false rejection rate (for
80 bits of security, the false rejection rate is estimated at 44% [?, ?]). Furthermore,
the communication overheads increase linearly with the security parameter, which
may be chosen around the 80 bits [?]. Another protocol based on an NP-complete
problem was proposed by Castelluccia and Soos [?] at RFIDSec’07. Their proto-
col (ProbIP) is based on the hardness of the boolean satisfiability problem (SAT),
which is proven to be in the NP class of complexity. However, the protocol is neither
private nor secure as was shown in [?].

A recent proposal [?] based on the hardness of the noisy polynomial interpolation
problem aims to be private and scalable. However, this protocol presents some
shortcomings: (i) it has been shown in [?] that the noisy polynomial interpolation
problem can be easier than expected, (ii) the server needs to solve mb polynomials
of degree k where m, b, and k, are predefined security parameters and, considering
that typical values for m and b are 16 and 8 respectively [?], then, the server
needs to solve around 128 polynomials which can be considered still too heavy, (iii)
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tags should be designed with about 10,000 gates more than regular tags capable of
hashing computation.

2.2.4.2 Identification protocols for simple tags

In general, lightweight RFID identification protocols use a pseudo random number
generator and a symmetric key cryptographic primitive on the tag’s side (e.g. a
hash function or some lightweight block cipher). In this vein, the first AES imple-
mentation devoted to RFID tags was proposed in 2004 [?, ?] (other cryptographic
primitives may be found in [?]). However, these implementations require no less
than 3400 logic gates, which is beyond the capabilities of extremely constrained de-
vices such as RFID tags [?]. That is why several other attempts have been made in
order to find cryptographic primitives designed specifically for low-cost RFID tags.
To the best of our knowledge, one of the most relevant block ciphers dedicated to
RFID tags is PRESENT [?, ?]. Surprisingly, PRESENT only requires between 1000
and 1600 logic gates depending on its variants. Undoubtedly, this improvement sup-
ports the rapid proliferation of RFID identification protocols based on symmetric
key cryptography. Nevertheless, even considering that those protocols are suitable
for very resource-constrained RFID tags, they should face the scalability issues inhe-
rent to these type of proposals. Next, we discuss some of those proposals according
to their time complexity on the server’s side.

2.2.4.3 Lightweight protocols with linear time complexity

The Improved Randomised Hash-lock Scheme [?, ?] is a popular RFID identification
protocol due to its strong privacy and security properties at a low cost; it only uses
a pseudo-random function generator and a hash function on the tag’s side. This
protocol works as follows. The reader sends a random nonce r1 to the tag. Upon
reception, the tag generates a nonce r2 and computes the response r = h(r1, r2, ID)

where ID is its identifier and h(...) is a one-way hash function. Finally, the reader
receives both the response r and the nonce r2, with which it performs an exhaustive
search on its database looking for an identifier IDi such that r = h(r1, r2, IDi).
Figure 2.3 shows a detailed description of this protocol. Although the improved
randomised hash-lock scheme [?, ?] is a private, and secure, RFID authentication
protocol, it is not acceptable when a large number of tags should be managed (e.g.
manufacturing processes). Note that this protocol performs an exhaustive search in
the database in order to identify a tag. That is why several other protocols based on
hash functions have been proposed in order to reduce this linear time complexity.

Another hash-based protocol was proposed by Ohkubo et al. [?]. This protocol
uses hash-chains in order to guarantee forward secrecy. However, a high memory
consumption and a linear time complexity O(N) are its main drawbacks. Although
Avoine et al. [?, ?] reduced this time complexity to O(N2/3) by applying a time-
memory trade-off, their improvement demands even more memory on the database
than the original protocol [?]. Another protocol based on hash-chains and resistant
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Reader (R) Tag (T)
Generates r1

r1−−−→
Generates r2

r←−−− r = (r2, h(r1||r2||IDT ))

Computes rTi
rTi = (r2, h(r1||r2||IDTi))

Identifies T as Ti when rTi = r

Figure 2.3: Scheme of the Improved Randomised Hash-locks Protocol

to denial-of-service attacks (DoS) is proposed in [?]. This protocol also achieves
forward secrecy, but it presents some privacy issues as shown in [?].

In order to increase efficiency and reduce resource requirements, some protocols
use a counter instead of a pseudo-random number generator on the tag’s side [?].
By this technique, tags may dedicate more logic gates to the encryption function
and privacy could be guaranteed without updating the key material. However, this
type of protocols may be vulnerable to impersonation attacks [?].

2.2.4.4 Lightweight protocols with logarithmic time complexity

When looking for scalability, the tree-based protocol proposed by Molnar and Wag-
ner [?] is considered a secure and highly scalable protocol. It achieves a time com-
plexity in the identification process of O(b logNb ) where N is the number of tags and
b is the branching factor of the tree used to store the tag’s identifiers. The idea is
that each tag in the system is represented by a unique path in the tree, which is
simply defined as a sequence of nodes. Then, each tag Ti contains a unique secret
key ki and also contains the keys of the nodes that represent its path in the tree;
see Figure 2.4.

k01 k11

k02 k12 k22 k32

Ti

k11 k22 ki

Figure 2.4: A tree of depth 3 and branching factor 2. The tag Ti is represented by
the path k11, k22 and by its unique and secret key ki.

Undoubtedly, the unique secret key of each tag is enough to identify it as the
improved randomised hash lock [?, ?] does. However, the tree-based protocol uses
the path’s keys in order to rapidly discard large sets of tags whose keys do not
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match the received response. It may do so because tags allow readers to check their
paths from the root to the leaf. Consequently, assuming that a reader knows a
sub-path that matches the tag’s response, it may discard all those tags that do not
match this sub-path. However, since tags share sub-paths and hence they share keys,
compromising some tags is enough to trace other tags in the system [?, ?]. Although
a trade-off between privacy and efficiency may be achieved considering the privacy
measure proposed in [?], the tree-based protocols are considered non-private.

There exist two other tree-based protocols aimed at resisting compromise [?,
?]. However, both use an update phase in order to change the tag’s keys in each
successful execution of the protocol. As shown below, protocols based on updating
the key material do not need complex structures, like trees, in order to be scalable.
Furthermore, as shown in [?], synchronising keys that are shared by several tags is
challenging.

2.2.4.5 Lightweight protocols with sub-linear time complexity

A similar idea to the tree-based protocols yields the group-based protocols [?]. In
these protocols each tag belongs to a group and has two keys: a group key (GK) and
an identification key (IDK). Once the tag receives a nonce r1 from the reader, it
generates another nonce r2 and sends back EGK(r1, r2, ID) and EIDK(r1, r2), where
E is a symmetric key encryption function and ID is the tag’s identifier. The server
iterates over all the group’s keys until the decryption of EGK(r1, r2, ID) succeeds.
If so, it recovers ID and then it just needs to check the decryption of EIDK(r1, r2).
The time complexity of this protocol is O(Nk ) where k is the number of tags in each
group. However, if a tag T is compromised by an attacker, she will be able to recover
the identity of every tag belonging to the group of T just by using the group key.

Another type of group-based protocol was proposed in [?]. However, this protocol
is different in the sense that a “meet-in-the-middle” strategy is used to efficiently
identify tags. By this strategy, they reduce the reader computation to O(

√
N logN),

which may be considered sub-linear. However, this protocol is not resistant to
compromising attacks either.

In the context of using multiple readers (connected to a centralised back-end),
Fouladgar and Afifi [?] point out that, in many applications, tags are usually queried
by the same set of readers. Therefore, they propose to cluster tags according to the
readers that identify them more often. This idea improves the group-based proposals
in the sense that tags are not randomly assigned to groups, but intelligently clustered
according to the spacial location of the readers that identify them. By doing so,
when a reader receives a tag’s response, it first performs a search in the group of tags
that it usually identifies. If it does not succeed, an exhaustive search is performed
over the whole set of tags’ identifiers. The problem of this proposal is that tags may
have a long life-cycle and move through a wide variety of readers. In this scenario,
the protocol could not scale as well as expected.
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2.2.4.6 Lightweight protocols with constant time complexity

Privacy-preserving RFID identification protocols with constant time complexity are
based, in general, on synchronisation between tags and readers. The idea is that
any response coming from a legitimate tag is somehow expected by the reader.
However, in order to preserve privacy, all the responses might be fresh at each
session. Therefore, at some point, tags should update their key material or renew
their next responses. At the same time, the reader must be sure whether and how
the tag updated its internal state. Otherwise, the reader should be provided with a
mechanism to identify legitimate tags even when their internal states are unknown
or unexpected [?]. Note that this desynchronisation between tags and readers could
easily occur due to communication failures or active attacks to the protocol.

The basic idea to keep a tag and a server synchronised is to design a mutual au-
thentication protocol so that both update the key material once they have mutually
authenticated [?, ?, ?, ?, ?, ?]. In any case, the server should keep the last correct
key used by every tag in order to resist desynchronisation attacks. The problem
with this approach is that tags are traceable in isolated environments, i.e. as long
as a tag has not been identified by a legitimate reader, it will send the same response
to any reader’s interrogation. Note that this type of protocols are passively private
only (see Definition 1).

To tackle this problem, some protocols consider the scalability and privacy issues
as a matter of agreement between tags and readers [?, ?]. This means that a reader
is able to identify a tag in constant time only if the reader was the last one who
interrogated such a tag. Otherwise, the tag’s response looks random for the reader
and thus the tag cannot be identified in constant time. Therefore, this type of
protocols is actively private (see Definition 2), but not unconditionally scalable.

Both passively and actively private approaches may be improved by pre-
computing more than one future tag’s responses [?]. Typically, in these approaches
tag’s responses are based on hash chains [?, ?]. Then, the server may efficiently
identify a tag because it had stored enough values of the hash chain used by this
tag. Therefore, by increasing memory requirements on the server, both privacy and
scalability may be improved. However, it should be noticed that the improvement
is achieved by demanding more of a resource that is already quite constrained in
tags and servers [?].

2.2.4.7 Identification protocols for high-cost tags

High-cost tags are similar to smart cards. They are far more expensive than low-
cost RFID tags, which could cost as little as 0.05$. Nevertheless, there exist some
applications requiring a high level of security and privacy in which high-cost tags
are not only appropriate, but recommended (e.g. passports or toll payment).

In such tags, there exists the possibility of implementing some public key cryp-
tosystems, especially those requiring less computational capabilities on tags, namely
elliptic curve cryptosystems (ECC) or lattice-based cryptosystems. A typical ECC
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implementation could need more than 30K logic gates [?], others are able to reduce
the computational requirements between 10K and 18K logic gates [?, ?], though.

In general, the reduction of computational requirements is achieved by optimi-
sing, manipulating, or removing some operations of the original proposal [?]. The
idea is to reduce as much as possible the computational requirements of public key
cryptosystems while guaranteing security and privacy. However, as shown in [?], the
task could be challenging. In a nutshell, they show that previous ECC proposals for
RFID systems [?, ?] may be vulnerable to tracking and impersonation attacks.

Other approaches perform some pre-computation in order to reduce the compu-
tational overhead on the tag’s side. In [?], Oren and Feldhofer improve Shamir’s
public key scheme [?] by replacing a 260-byte long pseudo-random sequence by a
reversible stream cipher of less than 300 bits. Another trade-off between efficiency
and memory is shown by Hoffstein et al. in [?]. They propose a lattice based
cryptosystem referred to as NTRU, which claims to be faster than ECC during the
signature and verification processes.

The well-known randomised Rabin encryption scheme has been also adapted
to fit the RFID requirements [?]. Even though this protocol initially had some
shortcomings, it was later improved in [?]. Finally, differently to classical public key
cryptosystems, a lightweight identification protocol requiring around 3000 logic gates
was proposed in [?]. This protocol uses some ECC elements to strengthen RFID
security. However, in order to decrease computational demands it does not provide
a trapdoor function as ECC cryptosystems generally do. This is why this approach
presents the same scalability problem of other symmetric key cryptosystems.

2.2.4.8 Other approaches

According to the EPC standard, each tag contains a KILL password. A reader
knowing the KILL password of a tag is able to disable this tag permanently. There-
fore, after the shipping check-out process tags could be “killed” in order to preserve
the privacy of their holders. Although this measure prevents privacy disclosure, it
may not be practical in the long-term because tags cannot be reused. That is why
Spiekermann and Berthold proposed a simple scheme so that users are able to disa-
ble/enable RFID tags when needed [?]. A more sophisticated, yet complex idea, is
proposed in [?]. When a tag enters the post-purchase phase, it supports the ability
to change into privacy mode. In this mode, tags only accept zero-knowledge proofs
from legitimate devices.

There exist other proposals relying on re-encryption in which tags offload most
of the computational effort during encryption to the readers or third devices [?,
?, ?]. Those proposals are somehow based on updating the key material in tags.
However, they use public key cryptography to re-encrypt the plaintext stored in
tags. Therefore, readers knowing the proper private key can obtain the plaintext
by decrypting only once, instead of several times as it is usually the case with
symmetric key cryptography. Other examples of proposals using a third device
are RFID guardian [?], RFID enhancer proxy [?], noisy tags [?] and the blocker
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tag [?, ?]. In addition to those proposals, there exist other proposals based on
assumptions not considered by most RFID solutions. In particular, implementation
of physically unclonable functions (PUF) in tags have been shown to be useful to
cope with the tampering issues of RFID tags [?, ?, ?].

2.3 Other issues in RFID systems

Tracking and identifying are the main goals of an RFID system. In consequence,
those challenges related to the identification process may seem much more relevant
than others. However, RFID systems should face many other challenges depending
on their application. For instance, RFID solutions for access control require tags to
be in the near proximity of readers. However, the RFID technology is not able to
measure the distance from readers to tags as the GPS technology can do. This clearly
opens the challenge of designing distance-bounding protocols dedicated to RFID
tags [?]. Furthermore, the proper use of RFID data still is an open issue. Thanks
to the RFID technology, the trajectories of individuals could be easily collected
and released by supermarkets, hospitals, or amusement parks. Therefore, efficient
trajectory anonymisation algorithms are a need for protecting the privacy of RFID
users.

2.3.1 Distance checking

In 1987, Desmedt, Goutier and Bengio [?] presented an attack that defeated any
authentication protocol. In this attack, called Mafia Fraud, the adversary passes
through the authentication process by simply relaying the messages between a le-
gitimate reader (the verifier) and a legitimate tag (the prover). In that way, she
does not need to modify or decrypt any exchanged data. Initially, this attack was
thought to be rather unrealistic because the prover should actively participate in
it. However, RFID tags respond to any reader request without any agreement or
awareness of their bearer, a feature that clearly opens the door to this type of attack.

Actually, there exist some proofs of concept showing the feasibility of the mafia
fraud. In 2005, Hancke showed that two colluders 50 meters apart can perform a
mafia fraud attack through a radio channel [?]. This is particulary dangerous be-
cause that distance is long enough to mount a mafia fraud attack in almost every
payment or access control systems. Not surprisingly, this attack has been success-
fully applied to other technologies [?, ?, ?, ?] namely, Bluetooth, contactless smart
card, and NFC.

Another attack based on cheating the distance between provers and verifiers was
introduced in 1993 by Brands and Chaum [?]. In this attack, named Distance Fraud,
a dishonest prover claims to be closer to the verifier than she really is. Figures 2.5
and 2.6 illustrate both mafia and distance fraud respectively. For both figures, the
circle represented the maximum distance at which a prover should be authenticated.
Formally, we may define both frauds as follows [?]:
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Definition 3 (Mafia fraud). A mafia fraud is an attack where an adversary passes
an authentication protocol by using a man-in-the-middle strategy between the reader
and an honest tag located outside the neighbourhood of the verifier.

Definition 4 (Distance fraud). A distance fraud is an attack where a dishonest and
lonely prover claims to be in the neighbourhood of the verifier when actually she is
not.

Reader

Adversary

Tag

Figure 2.5: Mafia fraud: an adversary
trying to be authenticated by applying a
man-in-the-middle attack.

Reader

Tag

Figure 2.6: Distance fraud: the prover
is farther from the verifier than it is ex-
pected.

2.3.1.1 RFID distance-bounding protocols

In 1993, Brands and Chaum [?] proposed a countermeasure that prevents such
attack by computing an upper bound of the distance between the reader and the
tag to authenticate: the distance-bounding protocol. By doing so, mafia and distance
frauds could not be completely prevented, but these protocols may effectively thwart
them. However, it was not until 2005 that the first distance-bounding protocol
dedicated to RFID came to the light [?]. The protocol is split in two phases: a
slow phase, in which reader and tag exchange two nonces, and carry on resource-
consuming operations; followed by a fast phase divided into n rounds where, in
each one, the reader measures the round trip time (RTT) of the challenge/response
process. Considering that radio waves cannot propagate faster than light, the reader
is able to bound the distance between itself and the tag. These communications also
provide an identity proof of the tag. Unfortunately, the adversary success probability
regarding mafia and distance frauds is (3/4)n while one may expect (1/2)n (the
adversary’s success probability at each round is expected to be 1

2). Since then,
several RFID distance-bounding protocols have been proposed in order to improve
the resistance to both frauds.
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Among all the RFID distance-bounding protocols, we differentiate two main
families. (i) Those requiring an additional slow phase after the fast phase. This
final phase may be used to sign the messages transmitted during the fast phase or
to check any other information. (ii) Those that, closer to the Hancke and Kuhn
proposal [?], end the protocol after the fast phase.

Brands and Chaum [?] proposed the first distance-bounding protocol relying on
a signature after the fast phase. In the first slow phase, the prover commits to the
verifier a sequence of n bits m1, · · · ,mn. Then, during the fast phase, the verifier
sends a challenge ci to the prover, who should reply with ri = ci ⊕mi. Also, the
prover concatenates and signs with his private key all the challenges and responses,
i.e. he sends to the verifier Signk(c1||r1|| · · · ||cn||rn). If some response ri delays
more than a threshold ∆t, the verifier assumes the prover is out its neighbourhood.
Finally, if the prover succeeds in all rounds, the verifier checks the received signature
in order to authenticate the prover. This protocol is considered strong in the sense
that both mafia and distance fraud attacks cannot succeed with probability higher
than

(
1
2

)n. However, in practice, the final signature represents an additional delay.
As stated in [?], as the authentication entirely relies on this phase, if the latter is
interrupted or not reached, then the whole process is lost. This simply means that
the distance-bounding protocol should be designed as simple as possible.

Anyway, there exist other distance-bounding protocols based on the Brands and
Chaum proposal [?, ?]. Since both distance and mafia fraud resistance cannot be
improved, those protocols aim at improving the resistance to a new type of fraud
called terrorist fraud [?], this type of fraud is out of the scope of this dissertation,
though.

Definition 5 (Terrorist fraud). A terrorist fraud is an attack where an adversary
defeats a distance bounding protocol using a man-in-the-middle strategy between the
reader and a dishonest tag located outside of the neighbourhood, such that the latter
actively helps the adversary to maximise her attack success probability, without giving
her any advantage for future attacks.

Among the protocols without a final slow phase, Avoine and Tchamkerten’s
protocol [?] is the most resilient to mafia and distance frauds. They introduced the
notion of distance-bounding protocols based on trees. The idea is that prover and
verifier agree on a decision tree of depth n, which contains in its nodes the correct
responses for any sequence of challenges c1, · · · , ci (1 ≤ i ≤ n). Since the values
of the nodes are randomly chosen at the beginning of the protocol, the probability
that two different sequences of challenges c1, · · · , ci and c̃1, · · · , c̃i contain the same
response is 1

2 . Intuitively, this property dramatically reduces the mafia and distance
fraud success probability. However, storing a tree of depth n is prohibitive for most
RFID tags.

In comparison with Avoine and Tchamkerten’s protocol [?], just Kim and
Avoine’s [?, ?] protocol achieves such a high resistance to mafia fraud. Further-
more, their protocol only requires 4n bits of memory on the tag’s side where n is
the number of rounds. In this protocol, the prover is armed with a mechanism
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to detect whether it is the target of a mafia fraud attack. Then, once the prover
detects the attack, it responds randomly to the subsequent rounds. Therefore, the
probability of success of the adversary considerably decreases. However, the more
efficient the mechanism, the weaker the protocol against a distance fraud attack. In
consequence, the Kim and Avoine’s protocol [?, ?] might not be appropriate when
both mafia and distance frauds need to be thwarted.

2.3.2 Trajectory anonymisation

The location of an individual can be determined by different techniques. Possibly,
the most conventional and ancestral of these techniques is the visual identification of
that individual in some place at some moment. Nowadays, this task is far easier since
there is no need for a person monitoring or harassing another person. Instead, several
technologies widely adopted worldwide can perform this task for us automatically
(e.g. surveillance cameras, credit card transactions, RFID identification, among
others). In addition, today’s pervasiveness of location-aware devices like mobile
phones and GPS receivers helps companies and governments to easily collect huge
amount of information about the movements of people.

Analysing and mining this type of information, also known as trajectories or
spatio-temporal data, might reveal new trends and previously unknown knowledge
to be used in traffic, sustainable mobility management, urban planning, supply
chain management, etc. By doing so, resources can be optimised and business and
government decisions can be solid and well-founded. As a result, it is considered
that both companies and citizens profit directly from the publication and analysis
of databases of trajectories. However, there are obvious threats to the privacy of
individuals if their trajectories are published in a way which allows re-identification
of the individual behind a trajectory.

A tentative solution to preserve the privacy of individuals is de-identification,
that is, removing all the identifying attributes of individuals. However, this is of-
ten insufficient to preserve privacy. Just knowing the times at which an individual
visited some locations could be enough to identify his trajectory in the published
database. As an example, let us consider a GPS application recording the trajecto-
ries of citizens. Daily routine indicates that an early morning trajectory is likely to
begin at the user’s home and end at the user’s workplace. Both informations toget-
her can be easily linked to a single user, whose identity might be obtained from an
external source of information like a telephone directory or a social network.

Estimating how much external information is available to an adversary is a chal-
lenging task [?]. Furthermore, the time information and its relation with the spatial
information gives a distinctive nature to the spatio-temporal data over the micro-
data, i.e. over records describing users’ data without a sequential order. That is
why traditional anonymisation and sanitisation methods for microdata [?] are not
suitable for spatio-temporal data and viceversa. Therefore, specific anonymisation
algorithms devoted to thwarting privacy attacks on published databases of trajec-
tories are increasingly needed.
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2.3.2.1 k-Anonymity and microaggregation

A lot of work has been done in anonymising microdata and relational/transactional
databases [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]; see also the recent survey [?]. A usual goal
in anonymisation is to achieve k-anonymity [?, ?], which is the “safety in numbers”
notion.

An anonymised microdata set is said to satisfy k-anonymity if each combination
of quasi-identifier attribute values is shared by at least k records. Therefore, this
property guarantees that an adversary is unable to identify the individual to whom
an anonymised record corresponds with probability higher than 1/k.

k-Anonymity cannot be directly achieved with spatio-temporal data, because
any point or time can be regarded as a quasi-identifier attribute [?]. Direct k-
anonymisation would require a set of original trajectories to be transformed into a
set of anonymised trajectories such that each of the latter is identical to at least
k−1 other anonymised trajectories. This would obviously cause a huge information
loss.

Generalisation was the computational approach originally proposed to achieve
k-anonymity [?, ?]. Later, Zhang et al. introduced the permutation-based appro-
ach [?], that has the advantage of not being constrained by domain generalisation
hierarchies. In [?] it was shown that k-anonymity could also be achieved through
microaggregation of quasi-identifiers. Microaggregation [?] works in two stages:

1. Clustering. The original records are partitioned into clusters based on some
similarity measure (some kind of distance) among the records with the re-
striction that each cluster must contain at least k records. Several micro-
aggregation heuristics are available in the literature, some yielding fixed-size
clusters all of size k, except perhaps one (e.g. the MDAV heuristic [?]), and
some yielding variable-size clusters, of sizes between k and 2k − 1 (e.g. µ-
Approx [?] or V-MDAV [?]).

2. Anonymisation. Each cluster is anonymised individually. Anonymisation of a
cluster may be based on an aggregation operator like the average [?] or the
median [?], which is used to compute the cluster centroid; each record in the
cluster is then replaced by the cluster centroid. Anonymisation of a cluster
can also be achieved by replacing the records in the cluster with synthetic
or partially synthetic data; this is called hybrid data microaggregation [?] or
condensation [?].

2.3.2.2 Clustering algorithms for trajectories

Just like in microdata records, suppressing direct identifiers from trajectories is not
enough for privacy [?]. Consequently, several anonymity notions and methods for
trajectories have been proposed [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. Among
those works, we next review the ones that try to achieve some notions of trajectory
k-anonymity. Other comparisons of several trajectory anonymisation methods can
be found in [?, ?].
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Abul, Bonchi and Nanni proposed a notion of trajectory k-anonymity assuming
uncertainty on the data provided by technologies like GPS [?, ?]. They also pro-
posed two methods to achieve privacy according to their notion of privacy. In the
original method –Never Walk Alone (NWA) [?]–, the set of trajectories is partiti-
oned into disjoint subsets in which trajectories begin and end at roughly the same
time; then trajectories within each set are clustered using the Euclidean distance.
In the follow-up method –Wait For Me (W4M) [?]–, the original trajectories are
clustered using the edit distance on real sequences (EDR) [?]. Both approaches
proceed by anonymising each cluster separately. Two trajectories T1 and T2 are said
to be co-localised with respect to δ in a certain time interval [t1, tn] if for each triple
(t, x1, y1) in T1 and each triple (t, x2, y2) in T2 with t ∈ [t1, tn], it holds that the
spatial Euclidean distance between both triples is not greater than δ. Anonymity
in this context means that each trajectory is co-localised with at least k − 1 other
trajectories ((k, δ)-anonymity). Anonymisation is achieved by spatial translation of
trajectories inside a cluster of at least k trajectories having the same time span. In
the special case when δ = 0, the method produces one centroid/average trajectory
that represents all trajectories in the cluster. Ad hoc preprocessing and outlier re-
moval facilitate the process. Utility is evaluated in terms of trajectory distortion
and impact on the results of range queries. The problem with the NWA method is
that partitioning the set of all trajectories into subsets sharing the same time span
may produce too many subsets with too few trajectories inside each of them; clearly,
a subset with less than k trajectories cannot be k-anonymised. Also, setting a value
for δ may be awkward in many applications (e.g. trajectories recorded using RFID
technology).

Another k-anonymity based notion for trajectories consisting of ranges of points
and ranges of times has been proposed in [?] and [?]. It uses clustering to minimise
the “log cost metric”, which measures the spatial and temporal translations with
user-provided weights. Minimising the log cost therefore maximises utility. The
clusters are anonymised by matching points of the trajectories and generalising
them into minimum bounding boxes. Unmatched points are suppressed and so are
some trajectories. The anonymised data are not released; instead, synthetic “atomic”
trajectories (having unit x-range, y-range and time range) are generated by sampling
the bounding boxes. This approach does not release standard trajectories but only
trajectories with unit ranges.

In [?], k-anonymity means that an original trajectory T is generalised into a
trajectory g(T ) (without the time information) in such a way that g(T ) is a sub-
trajectory of the generalisations of at least k−1 other original trajectories. Ignoring
the time information during anonymisation and complex plane tessellations used to
achieve the k-anonymity are the main drawbacks of this method. Utility is measured
by comparing clustering results.

[?] is another proposal for achieving k-anonymity of trajectories by means of ge-
neralisation. The difference lies in the way generalisation is performed: the authors
propose a technique called local enlargement, which guarantees that user locations
are enlarged just enough to reach k-anonymity, which improves utility of the ano-
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nymised trajectories.
The adapted k-anonymity notion for trajectories in [?] is stated in terms of

a bipartite attack graph relating original and anonymised trajectories such that
the graph is symmetric and the degree of each vertex representing an anonymised
trajectory is at least k. The quasi-identifiers used to define identities are the times
of the positions in a trajectory, and the anonymity is achieved by generalising points
of trajectories into areas on the grid. An information loss metric defined for such
areas is used to evaluate the utility of the anonymised data.

Some approaches assume that the data owner anonymising the database knows
exactly what the adversary’s knowledge is. If the adversary is assumed to know dif-
ferent parts of the trajectories, then those are removed from the published data [?].
However, this work only considers sequential place visitation without real time-
stamps. If the adversary is assumed to use some prediction of continuation of a
trajectory based on previous path and speed, then uncertainty-aware path cloa-
king [?, ?] can suppress these trajectories; this procedure, however, results in high
information loss.

Additional related work about anonymisation of spatio-temporal data can be
found in the literature about location privacy, focused on applications such as
privacy-aware location-based services (LBS) or privacy-aware monitoring of con-
tinuously moving objects. Location privacy in the LBS-setting was first proposed
in [?]. See [?, ?] for recent papers on location privacy, in which mobile objects protect
the privacy of their continuous movement. Location privacy is enforced on indivi-
dual sensitive locations or unlinked locations in an on-line mode; often, data are
anonymised on a per-request basis and in the context of obtaining a location-based
service. In this dissertation, we focus on off-line publishing of whole spatio-temporal
databases rather than protecting specific individuals from LBS providers or on-line
movement monitoring. In general, a solution to location privacy is not a solution
for publishing anonymised trajectories, and vice versa.



Chapter 3

Improving Scalability by Means of
Distributed Readers

This chapter describes our first RFID identification proposal, which is based on
collaborative readers. Its aim is to improve flexibility and efficiency.
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The idea of making tags and/or readers collaborate has been proposed and tes-
ted. With regard to tags, in [?] and [?] a distribution of tags is used to guide
mobile robots equipped with RFID readers and perform precise indoor positioning,
respectively. Also, in [?] tags cooperate in order to detect when and for how long
a tag has been tampered with. With regard to readers, to improve the scalability
of hash-based solutions without increasing the number of rounds of the protocol,
Solanas et al. proposed an approach that used collaborative readers deployed in a
grid structure [?]. Instead of having a centralised database with all the tag IDs,
each reader maintains a local database (e.g. in a local cache) in which it stores the
IDs of the tags located in its cover area and the ones in its adjacent neighbours’
area. By doing so, readers no longer need to check all possible IDs to identify a tag
but only a smaller subset of IDs in their local cache. Although the proposal in [?]
is a step forward in terms of scalability, it replicates too many tag IDs and imposes
several constraints to the system (e.g. readers must know the exact distance to the
tags and the reader distribution is very rigid). In [?], Ahamed, Rahman and Hoque
modified the proposal of Solanas et al. and proposed a more natural neighbourhood
structure using a hexagonal grid (cf. Figure 3.1). Note that this solution reduces
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Figure 3.1: Left: Scheme of nine collaborative readers using a squared grid neig-
hbourhood [?]. Right: Scheme of four readers using a hexagonal grid neighbour-
hood [?]. Dashed lines represent neighbourhood relations amongst readers.

the number of neighbours from nine (in the squared grid) to six (in the hexagonal
grid). However, this proposal has the same limitations of [?].

The idea of distributing tags amongst a number of readers placed in a grid or
in hexagonal cells might resemble the antenna structure of the well-known GSM
system for mobile communications. In fact, readers store information about tags
similarly to what visitor location registers (VLR) do with cell phones in GSM.
However, there are some fundamental differences that make this problem different
in the RFID context:

• In GSM, cell phones are active and they are responsible for the registration of
their ID in the VLR.

• Visitor location registers (generally) do not exchange information amongst
them. They mainly communicate with a centralised database known as the
home location register (HLR).

• A centralised database such as the HLR might not exist.

3.1 An efficient RFID identification protocol by means
of collaborative readers

Hash-based identification protocols for RFID tags have shown to be private and
secure but they require a significant computational effort on the readers’ side that is
generally overcome by using a centralised mainframe, which can lead to bottlenecks
and delays. Specifically, the number of operations performed by the mainframe to
identify a single tag is a function of the number of tags (n) in the system, i.e. f(n).
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An alternative to the centralised solution is the collaborative approach that was
first described in [?], whose main idea is to distribute the list of tag IDs amongst
all the readers in the system and allow them to identify tags within their cover
range without contacting a central mainframe. The solution proposed by Solanas
et al. improves the scalability of the system with regard to the centralised solution.
Ideally, if we consider a number of readers (m) and a number of tags (n), the number
of operations that must be performed by a reader to identify a tag is a function of
( nm), i.e. f( nm). Unfortunately, the protocol proposed by Solanas et al. requires the
readers to store the IDs of the tags controlled by neighbour readers and this leads
to a significant increase of redundant IDs. If we assume that the redundancy can be
expressed by a factor k, the number of operations that a reader performs to identify
a tag using the protocol described in [?] is f(k×nm ), where

f(
n

m
) < f(

k × n
m

) < f(n)

Our protocol leverages the idea of collaboration from [?], but implements a new
set of messages that permit the reduction of redundant information. Ideally, we
want k → 1. To do so, thanks to our protocol, readers can be initialised with a
parameter p ∈ [0, 1] that represents the probability for a reader to store tag IDs
from its neighbours. Note that when p = 0, the number of redundant IDs is zero
and we reach the optimal situation where the number of operations required to
identify a tag is f( nm).

In addition, network designers/engineers can balance the reader’s computational
cost and its bandwidth usage by tuning p. The smaller p the lower the number of
operations, but the bandwidth requirements are higher.

3.1.1 Brief recap of the “Original” protocol

The protocol described in [?], that we call “original”, was designed to allow multiple
readers to collaborate in order to exchange information about tags so as to im-
prove the scalability of the improved randomised hash-locks (IRHL) identification
procedure.

In the original protocol, each reader was responsible for a squared cell and they
were all distributed in a grid structure. Note that, using this distribution, the areas
covered by each reader were disjoint and, by construction, a tag in a given location
could only be queried by a single reader (this is an important difference with regard
to the protocol described in this chapter).

In the original protocol three main procedures/subprotocols were described:

1. Tag arrival protocol: This protocol is applied when a tag enters the system
through a System Access Point or SAP. A reader controlling this SAP identifies
the tag using IRHL and communicates to all its neighbours the ID of that tag.
Then if that tag moves to any of the cells controlled by these neighbours, they
will be able to identify it.
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2. Roaming protocol: This protocol is used when a tag changes its location from
a cell controlled by a reader to another cell. In this case, the reader controlling
the destination cell informs all its neighbours that he is the new owner of the
tag and forwards the ID information of the tag to all its neighbours. Also, the
previous owner sends a message to its neighbours so as to inform that it is no
longer the owner of the tag.

3. Departure protocol: This protocol is used when a tag leaves the system. In
this case a reader controlling a System Exit Point (SEP) simply forwards to
its neighbours the message of deleting that tag from their caches.

3.1.2 Assumptions and definitions

In our proposal, instead of using the concept of unshared cover area, as described
in [?], we use the more general concept of shared cover area.

Definition 6 (Unshared Cover Area (Au)). The unshared cover area of a reader R
is the set of locations controlled by R from which tags can communicate only with
R.

Definition 7 (Shared Cover Area (As)). The shared cover area of a reader R is the
set of locations from which tags in the system can communicate with R and possibly
with other readers.

From these definitions it can be derived that given two shared cover areas Asi
and Asj , A

s
i ∩Asj might be different from the ∅, whilst given two unshared cover areas

Aui and Auj , A
u
i ∩Auj is always ∅. Although this property of the unshared cover areas

might be theoretically useful, it is extremely hard to realise it in practise. Thus,
from now on, when we use the term cover area we will refer to the more realistic
concept of shared cover area described in Definition 7 and, for the sake of clarity,
we avoid using the superscript s.

Let Ai be the cover area of a reader Ri and let A be the area covered by all the
readers in the system. We assume that A ⊆ ⋃iAi, ∀i.

Considering our definition of shared cover area, we define the neighbourhood
relation as follows:

Definition 8 (Neighbourhood relation). Two readers Ri and Rj are neighbours if
their cover areas Ai and Aj are not disjoint, i.e. Ai ∩Aj 6= ∅.

Our notions of cover area and neighbourhood are more flexible and realistic than
those proposed in [?] and [?]. Also, they lead to a simple criterion for connecting
readers, i.e. only neighbour readers will share a communication link to exchange
protocol messages. We assume that each reader in the system is connected to its
neighbours (e.g. using WLAN + SSL) and maintains a local database with a list of
pairs (IDT , IDR), where IDT is the identifier of a given tag and IDR is the identifier
of the reader. We also assume that each tag is controlled by a single reader, which
is its owner.
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R1 R2

T 1

T 2

T 3

T 4

T 5

Figure 3.2: Graphical example of two readers R1, R2 and a moving tag T . The tag
T is captured in different positions at different instants T 1, T 2, T 3, T 4, and T 5 (T x

indicates the position of tag T at time x). The squares represent the unshared areas
of R1 and R2. The circles represent the shared areas of R1 and R2.

Note that by using the notion of shared cover areas the tags moving in a region
shared by two readers are controlled by only one of them. On the contrary, if
unshared cover areas are used, a tag moving from one unshared cover area to another
leads to the change of owner from one reader to another. In Figure 3.2, an example
of this behaviour is shown. If we use shared cover areas, the tag T is controlled
by R2 throughout its way. However, if we consider the notion of unshared cover
area, the tag T is controlled by R2 at locations (1), (3) and (5); and it is controlled
by R1 at locations (2) and (4). This unnecessary change of ownership requires
communication between readers and increases the bandwidth usage. Consequently,
using shared cover areas may decrease the utilised bandwidth.

3.1.3 Messages

In our protocol, readers use a number of messages to exchange information about
the ownership of tags and collaborate to identify them. Each message sent by a
source reader (RIDS

) to a destination reader (RIDD
) makes the latter perform an

action regarding a tag (IDT ) (cf. Figure 3.3 for a graphical scheme of the message
format and its flow). Depending on the message, the information sent about the tag
can be:

• The tag ID – (IDT ): If RIDS
can identify the tag because it has the required

information in its cache, it can send IDT to RIDD
. This might happen for

the following messages of the protocol: Delete, I am the owner, You are the
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Message
Operation Source Destination Tag
3 bits 32 bits 32 bits 128 bits

IDS IDD IDT

IDS IDD r,r1
Flow

RIDS
−−−−−−−−−−−−−−−−−−−−−−−−→
Message about the tag (IDT )

RIDD

RIDS
←−−−−−−−−−−−−−−−−−−−−−−−−

Information, ACK or NACK
RIDD

Figure 3.3: Message format and flow

owner, and Search messages.

• The response of the tag r = (r2, h(r1||r2||IDT )) and the challenge r1:
If RIDS

is not able to identify the tag, it sends to RIDD
the challenge r1 that

it sent to the tag and the answer r received from the tag. This happens for
the Identify message.

The messages of the protocol are explained in more detail below:
Delete - (IDT ) When RIDD

receives this message, it removes the identifier IDT

from its local cache.
I am the owner - (IDT ) When RIDD

receives this message, it realises that
RIDS

claims the ownership of the tag IDT . If RIDD
was the former owner, it sends

a Delete message to its neighbours, excepting RIDS
and its neighbours, to let them

know that it is no longer the owner of that tag. If RIDD
was not the former owner,

then it would generate a random number x ∈ [0, 1], and if x ≥ p it would update its
cache with the new ownership information.
You are the owner - (IDT ) When RIDD

receives this message, it takes control
over the tag IDT . It stores the new ownership information in its cache and sends an
I am the owner message to all its neighbours, so as to propagate the new ownership
information.

Identify - (r, r1) This message is sent by RIDS
when it is not able to determine

the ID of a tag (using the Hash Lock protocol). With this message, RIDS
asks RIDD

to identify the tag and return the ownership information stored in its cache. If RIDD

identifies the tag and finds its owner, it sends the ID of the owner back to RIDS
,

otherwise it responds with a NACK message.
Search - (IDT ) When RIDD

receives this message it checks whether the tag
IDT is in its cover area. If it finds the tag, it sends an ACK message back to RIDS

,
otherwise it responds with a NACK.
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Neighbours Tags in the cover

of R Reader R area of R

1 Challenge−−−−−−−−−→
Answer(TID1 )←−−−−−−−−−−−− 2

Answer(TID2 )←−−−−−−−−−−−−
. . .

3 Answer(TIDn )←−−−−−−−−−−−−
Identify tags

if OK → END

if KO
Identify(Tags)←−−−−−−−−−−−−

TagsInformation−−−−−−−−−−−−→
Analyse Info

if missing tags

→ Recovery/Alarm

if OK

4

Build list

Search(Tags)←−−−−−−−−−−− 5

TagsInformation−−−−−−−−−−−−→
Y ouAreTheOwner←−−−−−−−−−−−−

END

Figure 3.4: Scheme of the flow of the identification protocol

3.1.4 Protocol execution

Thanks to the probabilistic nature of our protocol, the number of IDs stored in the
local caches of the readers can be reduced with respect to the protocols presented in
[?] and [?]; however, the flow of messages is a bit more complex. The identification
protocol proposed in this chapter considers three main actors: (i) the tags in the
system, (ii) a reader, and (iii) the neighbours of that reader. The protocol depicted
in Figure 3.4 works as follows:

1. A reader (R) sends a challenge (r1) to the tags in its cover range.

2. All tags in the cover range of R answer the challenge.

3. For each tag (T ) responding to the challenge, R tries to identify it using the
hash-locks scheme [?] applied to its local cache.

(a) If it identifies the responding tag, the process finishes.

(b) Otherwise, R sends an Identify message to its neighbours and stores their
answers in its cache. If any of its neighbours identifies the tag, R executes
a recovery procedure described in the next section.
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4. Then, R builds a list (L) containing all the tags that it owns (i.e. which are
under its control) and that have not responded to the challenge (e.g. those
tags that have left its cover range).

5. For each tag T ∈ L, R sends a Search message to its neighbours. After recei-
ving the answers from its neighbours, R sends a You are the owner message
to the first neighbour that responded positively (i.e. ACK) to the search
message.

All the readers in the system periodically use this protocol. By doing so, all tags
can be controlled without the intervention of a centralised database. In addition,
due to the fact that readers only store information about the tags of their neighbours
with a given probability p, the number of redundant IDs is reduced with respect
to [?, ?] and, therefore, the computational effort performed by the readers is also
reduced.

3.1.5 Alarm/recovery protocol

When a reader is not able to identify a tag and its neighbours do not have informa-
tion about this tag either, one may be in two possible situations:

• An unauthorised tag has entered the system.

• A tag has been covered (so as to hide it from the readers) and uncovered in
a different location controlled by another reader whose neighbours have no
information about the tag.

When this situation arises, we propose two possible solutions:

• A centralised solution: This solution is based on maintaining a backup of all
tag’s IDs in a centralised server. Doing so, when neither a reader nor its neig-
hbours could identify a tag, that reader could request the identification of this
tag to the centralised server. Note that, this solution has a high computational
cost but does not create bottlenecks because the centralised server is supposed
to be used in exceptional cases only.

• A fully decentralised solution: In this case readers can iteratively query their
neighbours so as to find the previous owner of the tag in the system. First the
reader queries its adjacent neighbours (located at one hop), then it queries
the neighbours located at two hops, etc. This procedure finishes when the
tag ID is found or when all readers have been queried. In the first case, our
protocol keeps working normally, in the second case, an alarm is raised. This
procedure is depicted in Figure 3.5. Note that in the worst case, in which
all readers in the system were to be queried, the computational cost would
be linear in the number of tags n. Although the computational cost is high
and the communication overhead might be significant, this situation should
happen rarely; hence, it should not affect the overall efficiency of the proposed
protocol.
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T

Figure 3.5: A representation of cells covering the monitored area. An unidentified
tag is located in the central cell. The reader in that cell will iteratively query other
readers to identify T . Readers in lighter coloured cells are queried first.

3.1.6 The role of p

The number of operations performed in a reader to identify a tag is linear with the
number of tag IDs stored in its cache. A reader stores the IDs of the tags in its cover
area (for which it is responsible) – we say that that reader is the owner of those
tags. In addition, a reader may store the IDs of tags located in the cover area of its
neighbours. This way, if a tag moves from the cover area of one of its neighbours,
it can identify that tag without querying its neighbours.

Each reader is initialised with a parameter p. This parameter defines the proba-
bility for a given reader to store neighbour tag’s IDs in its cache. If p = 1 the reader
stores all the IDs of its neighbour tags, on the contrary if p = 0 the reader stores no
information about its neighbours’ tags. If p takes a value in (0, 1) the reader stores
a number of IDs proportional to that value. The main goal of p is to reduce the
number of redundant IDs stored in the cache of neighbour readers.

The number of IDs stored by a reader i (#IDi) can be computed as

#IDi = ni + pi

bi∑
j=1

nij

where ni is the number of tags owned by i, bi is the number of neighbours of reader
i, nij is the number of tags owned by the j-th neighbour of reader i, and pi is the
probability for the reader i to store IDs of tags owned by its neighbours. The total
number of IDs stored in the system (#ID) can be computed as

∑m
i=1 #IDi, where

m is the total number of readers.
In the example shown in Figure 3.6, it is apparent that, by reducing the value of p,

the number of IDs stored in the caches of the readers is also reduced. Consequently,
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2 2 2
2 2 2
2 2 2

p = 0

5 7 5
7 10 7
5 7 5

p = 0.5

8 12 8
12 18 12
8 12 8

p = 1

Figure 3.6: Number of IDs stored in the readers for different values of p considering
that each reader is the owner of 2 tags. The neighbourhood relations are the ones
described in Figure 3.1-left.

the number of operations required to identify a tag is also reduced and the whole
process of identifying tags scales better.

Note that the protocols described in [?] and [?] do no support the addition of
this probabilistic property. Thus, the main goal of the proposed protocol, explained
in the following sections, is to allow the use of the parameter p and, as a result, to
improve the scalability of the identification process on the readers’ side.

3.1.7 Our protocol in a centralised back-end

Although our protocol has been designed to work in a distributed way, it could
be “simulated” by a centralised database (i.e. a back-end) connected to a properly
distributed set of readers. By doing so, the back-end would be able to identify tags
and “logically” cluster them in regions (e.g. virtually covered by the readers). Thus,
intelligent search of a tag into these regions might be scalable in terms of computati-
onal cost. In addition, this approach averts the communication overhead associated
with the exchange of messages between readers because all the communication might
be “simulated” within the back-end.

The main problems of using this approach are: (i) using a single centralised
database leads to a single point of failure and, (ii) the communication of a single
back-end with a (possibly) large number of readers might create bottle-necks and
undesired delays.

It might be said that, depending on the special characteristics of the environment
in which the RFID system is to be deployed, engineers may decide whether to use
our protocol “simulated” within a back-end, or use it as a fully distributed non-
centralised protocol.

3.2 Experimental results and evaluation

We have developed a simulator to analyse the number of operations performed by
the collaborative readers during the execution of our probabilistic protocol, and
their bandwidth usage. The simulator allows the deployment of readers without
constraints. The number of readers, their cover range, their location, the number of
moving tags, and the scenario in which they move can be defined at the beginning
of the simulation.
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Figure 3.7: Graphical scheme of the simulated scenarios. (From left to right) Scena-
rio with narrow corridors, scenario with wide corridors, scenario with random large
obstacles, scenario with random small obstacles.

We have concentrated on simulations to analyse the theoretical properties of
our protocol and we have left for the future the implementation and testing of a
practical prototype. Although there are some limitations in the off-the-shelf RFID
tags, there exist some EPC UHF Gen 2 tags that can compute hash functions and
random numbers (using ARMADILLO [?]) and can be read at distances of up to 1
meter. Currently, newer versions with larger reading distances (i.e. 3 m) are under
development (cf. www.oridao.com).

With the aim to evaluate our probabilistic protocol, we compare it with the one
presented in [?], which is referred to hereafter as “original ”. Although our protocol
has no limitations related to the deployment and range of the readers, the original
protocol does have some. Consequently, we simulate the regular distribution of 24
readers (4× 6) depicted in Figure 3.8 that the original protocol can handle.

We have considered five different scenarios1: (i) An empty scenario in which
tags can freely move, (ii) a scenario with narrow corridors, (iii) a scenario with
wide corridors, (iv) a scenario with randomly placed large obstacles and, (v) a
scenario with randomly placed small obstacles (cf. Figure 3.8 for a screenshot of the
simulator and Figure 3.7 for a graphical scheme of the four non-empty scenarios).
For each scenario we have simulated the movement of 103 and 104 tags. We have
considered two different tag behaviours: (i) a random movement and, (ii) a semi-
directed movement: tags move half of the times randomly and half of the times
toward a far, randomly-selected point within the scenario. Each simulation has
been repeated 30 times for each value of p in (0, 1) with 0.1 increments. Globally a
total of 7200 simulations have been conducted: 2 types of movement × 5 different
scenarios × 12 protocols (11 different p + the original) × 30 repetitions × 2 different
tag populations (103, 104).

For each scenario, we have concentrated on analysing the computational cost
(in terms of number of operations performed by readers) and the bandwidth usage
(in terms of total number of bits sent). Figure 3.9 shows the results for the com-

1Some of these scenarios were already used in [?]

www.oridao.com
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Figure 3.8: Screenshot of the simulator. The cloud of red dots represents the tags
entering the system. Blue circles represent the shared cover area of the readers,
which are identified by a number. Thick black lines represent obstacles. Finally,
thin black lines represent the unshared cover areas that the protocol in [?] would
use.

putational cost and Figure 3.10 shows the results for the bandwidth usage. It can
be observed that our protocol has a significantly lower computation cost than the
original protocol. This is especially apparent when the probability p is low2.

Regarding the bandwidth usage, two different behaviours can be observed:

• With random movements: Tags change from a cell to another with low proba-
bility (in our protocol). Thus, the number of required messages to update the
state of the readers’ caches is smaller. In this situation our protocol is clearly
more efficient than the original one.

• With semi-directed movements: Tags follow a clear path and change from one
cell to another with a higher probability. In this case, our protocol requires
more messages (especially in the case of using a low p). Thus, in this situation
the original protocol is more efficient for smaller p.

In general, the computational cost is the main concern in RFID identification
protocols and, as we have shown above, our proposal clearly outperforms the original
protocol in this regard for all scenarios. Indeed, if bandwidth usage is not a concern
at all, our proposal with p = 0 is the optimal solution. However, our protocol
requires more bandwidth to improve the computational cost.

Capturing the trade-off between computational cost and bandwidth is not trivial.
Note that the computational cost and the bandwidth usage are measured in different
units. However, it is possible to define a measure in order to compare our proposal
with the original protocol in terms of both computational cost and bandwidth usage.

Definition 9 (Trade-off measure). Let α be a real value in the range [0..1]. Let c
and b be the computational cost and the bandwidth usage, respectively, of the original

2Note that when the probability p tends to 1, our protocol tends to resemble the original protocol
in terms of computational cost. However, it is still better in most cases.



3.2. Experimental results and evaluation 45

 600000

 700000

 800000

 900000

 1e+006

 1.1e+006

 1.2e+006

Original p=0 p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9 p=1

O
pe

ra
tio

ns

Protocols

Narrow Corridor
Random Large Obstacle

Empty
Wide Corridor

Random Small Obstacle

(a) Random movement - 103 tags

 6e+007

 7e+007

 8e+007

 9e+007

 1e+008

 1.1e+008

 1.2e+008

Original p=0 p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9 p=1

O
pe

ra
tio

ns

Protocols

Narrow Corridor
Random Large Obstacle

Empty
Wide Corridor

Random Small Obstacle

(b) Random movement - 104 tags

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+006

Original p=0 p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9 p=1

O
p

e
ra

ti
o

n
s

Protocols

Narrow Corridor
Random Large Obstacle

Empty
Random Small Obstacle

Wide Corridor

(c) Semi-directed movement - 103 tags

 3e+007

 4e+007

 5e+007

 6e+007

 7e+007

 8e+007

 9e+007

 1e+008

Original p=0 p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.7 p=0.8 p=0.9 p=1

O
pe

ra
tio

ns

Protocols

Narrow Corridor
Random Large Obstacle

Empty
Random Small Obstacle

Wide Corridor

(d) Semi-directed movement - 104 tags

Figure 3.9: Operations performed by the readers controlling 103 and 104 tags for dif-
ferent values of p in all scenarios and with two different movement patterns (random
and semi-directed). The lower the better.
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Figure 3.10: Total number of bits transmitted by the readers controlling 103 and
104 tags for different values of p in all scenarios and with two different movement
patterns (random and semi-directed). The lower the better.
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Figure 3.11: d(α, p) results for 104 tags and different values of p and α in the
scenarios with corridors. Values below zero indicate that our protocol is
better with respect to the “original” .

protocol for a given configuration3. Let cp and bp be the computational cost and the
bandwidth usage of our protocol using the same configuration and p the probability
value. Then, the trade-off measure that we propose is computed as follows:

d(α, p) =
((cp

c
− 1
)
× 100

)
× α+

((
bp
b
− 1

)
× 100

)
× (1− α)

Intuitively, the proposed trade-off measure d(α, p) represents the performance
of the original protocol with regard to our protocol using p as the probability value
and considering α the weight given to the computational cost and 1− α the weight
given to the bandwidth usage. Note that when α = 0 the bandwidth usage is the
only concern, whilst when α = 1 only the computational cost is considered.

Figures 3.11, 3.12 and 3.13 depict the performance of the original protocol with
regard to our protocol using the trade-off measure described above. At the bottom
of each figure there is a three-dimensional chart showing the values of d(α, p) for
each α ∈ {0, 0.1, · · · , 0.9, 1} and each p ∈ {0, 0.1, · · · , 0.9, 1}. Also, at the top left
side and at the top right side of the figure there are the projections of the three-
dimensional charts for the x-axis and y-axis, respectively. In the x-axis projection,
for each value of α the values of d(α, p), ∀p ∈ [0, 1], are shown, whilst in the y-axis
projection the plot of the linear functions d(α, p) with α fixed is shown.

It can be observed that our protocol outperforms the previous proposal in most
cases. When the movement of the tags is random, our protocol is always better
for all possible configurations. When the movement of the tags is semi-directed our
proposal is better in 81% of the cases. That leads to a global improvement in more
than 90% of all configurations.

3A configuration will be defined by the number of tags in the system, the number of readers
and their distribution, the scenario, etc.
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Figure 3.12: d(α, p) results for 104 tags and different values of p and α in the
empty scenario. Values below zero indicate that our protocol is better with
respect to the “original” .
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Figure 3.13: d(α, p) results for 104 tags and different values of p and α in the
scenarios with random obstacles. Values below zero indicate that our protocol
is better with respect to the “original” .
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3.3 Conclusions

In this chapter, we have presented an efficient communications protocol for collabo-
rative RFID readers to privately identify RFID tags. With the presented protocol,
the centralised management of tags can be avoided along with bottlenecks and un-
desired delays.

Our protocol is not a simple modification of previous proposals but a completely
different approach that clearly improves the efficiency and flexibility of the whole
system. In addition, due to the probabilistic nature of our protocol, the system
becomes very flexible, i.e. the relation between computational cost and communi-
cations overhead can be easily tuned by means of p. The simulation results confirm
that our protocol outperforms previous approaches like [?].

Although the presented protocol is an improvement, there are some open issues
that should be considered in the future, namely (i) study the effect of the number
of neighbours, (ii) propose methods to dynamically vary p so as to adapt it to the
movements of tags, (iii) propose hybrid methods that mix hash-based solutions and
tree-based solutions with collaborative readers, etc.





Chapter 4

Predictive Protocol for Scalable
Identification of RFID Tags

through Collaborative Readers

This chapter presents a natural improvement of previous RFID identification proto-
cols based on collaborative readers. The described protocol improves the identification
process be predicting the locations of the moving tags.
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Let us consider an RFID system intended for identification and tracking (e.g.
tracking of goods in a supply chain or luggage control in an airport). In such ap-
plications, several RFID readers are distributed over the system in order to identify
tags passing through the RFID reader positions [?, ?, ?, ?, ?, ?]. By doing so, it
is possible to obtain the trajectory of a tag by concatenating the reader’s positions
where the tag has been identified. Even in applications without tracking purposes, it
makes sense to distribute a set of readers covering strategic points or the whole mo-
nitored area [?] in order to identify the tags moving in it. Supermarkets with several
entry/exit doors or department stores are genuine examples of such applications.

Although there are several applications where many tags should be identified
using some readers, to the best of our knowledge, only two protocols [?, ?] ex-
ploiting this particular property have been proposed so far. The first of them [?]
introduced the idea of using multiple collaborative readers to make the identification
process scalable whilst maintaining the high level of privacy of the IRHL scheme [?].
Their proposal is aimed at efficiently identifying tags in applications where each tag
must be continuously monitored while it remains in the system. This implies that
readers must cover the whole system. Under this assumption, tags are constrained
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to move along neighbour readers1 and therefore, neighbour readers collaborate in
order to guarantee efficiency during the identification process. Efficiency is achieved
by means of the so-called reader’s cache, which is defined as a storage device where
a reader saves tag identification data2. The protocol reduces the size of the readers’
cache by considering that only the closest reader to some tag and its neighbours
must store the identification information of this tag. By reducing the size of the
cache the identification procedure becomes more efficient. Despite the benefits in
terms of computational cost provided by this protocol, assuming that readers are
able to compute their accurate distance to tags is a bit unrealistic.

On the other hand, in the context of using multiple readers (connected to a
centralised back-end), Fouladgar and Afifi [?] point out that, in many applications,
tags are usually queried by the same set of readers. Therefore, they propose to
cluster tags according to the readers that identify them more often. This idea
improves the group-based proposals in the sense that tags are not randomly assigned
to groups, but intelligently clustered according to the spatial location of the readers
that identify them. By doing so, when a reader receives a tag’s response, it first
performs a search on the group of tags that it usually identifies. If it does not
succeed, an exhaustive search is performed over the whole set of tag identifiers. The
problem of this proposal is that tags may have a long life-cycle and move through
a wide variety of readers. In this scenario, the protocol could scale as poorly as
previous protocols based on symmetric key cryptography [?].

We show that the scalability problems of some private protocols can be alleviated
not only distributing readers throughout the system, but also by exploiting the
spatial location of tags. Indeed, a tagged item usually follows a pre-established life-
cycle and then it could be intelligently identified according to its expected spatial
location. In this chapter, we propose an adaptive and distributed architecture aimed
at efficiently identifying RFID tags based on their expected spatial location. Unlike
previous proposals [?], our architecture is suitable for all possible scenarios and
adapts itself to the type of tag movement. We show empirical results based on
synthetic data confirming the superiority of our architecture with respect to previous
proposals [?] and [?].

4.1 Trajectory-based RFID identification protocol

In the Solanas et al. proposal [?], the readers’ cache contains identification data of
tags but it lacks information about the expected time at which the tags might next
be identified by a reader or where they were identified in the past. Assuming that it
is possible to approximately know the instant at which a tag will be identified by a
given reader, it is greatly beneficial to use this spatio-temporal information to speed
up the searching process in the readers’ cache. Therefore, we propose to structure

1Two readers are said to be neighbours if their cover areas are not disjoint.
2This cache can be either an external database securely connected to the reader or a database

internally managed by the reader itself.
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Cache of Reader 512
Previous Next First

ETA Tag ID Reader Reader Time
2011-07-28 11:31:38 90876534 1012 201 Yes
2011-07-28 11:41:33 10311299 1011 1201 No

· · · · · · · · · · · · · · ·
2011-07-30 22:01:08 21134211 1012 201 No

Table 4.1: Example of the cache of a reader.

the readers’ cache as an ordered list where the expected time of arrival (ETA) is the
ordering criterion.

Definition 10 (Cache). Given the set of tags T and readers R in the
system, the cache of a reader R ∈ R consists of a sequence of ordered
tuples

C(R) = < t1, ID1, R
ID1
prev, R

ID1
next, Y |N >, · · · ,

, · · · , < tN , IDN , R
IDN
prev , R

IDN
next , Y |N >

where the order is given by the timestamps t1 ≤ · · · ≤ tN . The tag
identifiers IDi ∈ T , ∀ 1 ≤ i ≤ N , and RIDi

prev ∈ R and RIDi
next ∈ R are

the reader that sent the IDi to R and the reader that will receive the
IDi from R, respectively. Y |N is used as a flag to show whether the tag
has been already identified by this reader.

From the above definition it can be observed that our protocol will use the spatial
information about the trajectory of the tags to predict which reader will be the next
reader to receive a given tag. Our protocol will also use the temporal information
of such trajectories to predict when a given tag will be read in the future by the
next reader. Table 4.1 is an example of the cache of a reader. In this example, the
reader R512 expects to receive the tag T90876534 from reader R1012 at time 2011-07-
28 11:31:38, and will forward the identification information to the next reader R201.
Also, it can be seen that the tag has not been identified by the reader yet.

By using this ordered cache, when a tag response arrives at a given timestamp
t, a reader is able to optimise the searching process in its cache by first considering
the tags that it expects to identify at a timestamp t′ close to t. Note that if the ETA
is accurate, the identification of tags might be very fast. The better the prediction,
the faster the identification process. In the worst case the computational cost is
O(n), where n is the number of identifiers in the cache of the reader.

4.1.1 Trajectory prediction algorithms

We propose to use trajectory predictors extensively so as to be able to inform readers
about which tags they will receive and when, before they actually receive them.
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However, when this prediction fails, we propose to use other predictors to find
the reader that might have the information about a tag. These latter predictors
consider the movement of all tags globally, i.e. they look for global trends instead
of predicting the moves of a single tag as does by the former predictors.

In general, a trajectory is understood as a timely ordered set of consecutive
points (P) defined in an n-dimensional space (S). However, due to the fact that
we can only control the location of the tags when they are detected by a reader, we
define our concept of trajectory as follows:

Definition 11 (Trajectory). Given a set of readers R and tags T . The
trajectory of a tag Ti ∈ T is defined as a sequence

Si =< t1, R1 >,< t2, R2 >, · · · , < ts(i), Rs(i) >

where s(i) is the size of the sequence, t1 < t2 < · · · < ts(i) are
timestamps and, Rj ∈ R ∀1 ≤ j ≤ s(i) are the readers that identified
the tag Ti at the timestamp tj.

When a tag arrives at the cover area of a reader, the reader tries to identify it
by applying the already explained IRHL protocol. During the identification process
two situations could arise:

1. Identification success: The reader finds the identification information of
the tag in its cache and can identify it. Then it has to decide to which reader
should this information be forwarded (see the example of Figure 4.1).

2. Identification failure: The cache of the reader does not contain the identifi-
cation information of the tag and the reader cannot identify it. The reader has
to decide which other reader to ask for help (see the example of Figure 4.2).

In the first case (identification success), after properly identifying a tag, the reader
will proceed by using a Next Reader Predictor (NRP) algorithm to determine which
reader will be the next one to which the tag will move. Once this next reader is
determined, the current reader sends the identification information of the tag to
that reader. An NRP can be defined as follows:

Definition 12 (Next Reader Predictor (NRP)). Let Ti be a tag of the
system and let Si =< t1, R1 >,< t2, R2 >, · · · , < tj , Rj > be its trajec-
tory. An NRP is a polynomial-time algorithm (let us call it Anext) that,
on input Ti and Si, outputs the pair < tj+1, Rj+1 >.

Anext(Ti, Si) −→< tj+1, Rj+1 >

This output pair means that it is expected that the tag Ti will be identified
at time tj+1 > tj by the reader Rj+1.
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Figure 4.1: Illustration of the identification success of the tag Ti by reader A. After
successfully identifying Ti, the reader A applies a Next Reader Predictor (NRP) to
predict the next reader (in this case, reader A decides that reader B is the best
candidate) and sends the Ti identification information to reader B. The reader
B stores the information about Ti in its cache so as to be able to identify it (if
necessary).

Note that the result of the NRP is correct only with a probability that highly
depends on the utilised algorithm and the degree of regularity of the movement of
tags 3. Thus, if the prediction is wrong, the reader which is currently identifying
the tag Ti will forward the identification information to a wrong reader. As a
consequence, when that tag reaches the next reader, the latter will not be able to
identify the tag (because the identification information will not be in its cache) and
will need the help of other readers to do so (this is the second case enumerated
above).

In the second case (Identification failure), when a reader cannot identify a tag,
it proceeds by using a Previous Reader Predictor (PRP) algorithm to identify the
reader that might have identified the tag previously and might have the identification
information of the tag. A PRP can be defined as follows:

3It is apparent that in a chaotic system where no regularities exist, the prediction of the next
move of a tag would be extremely inefficient.
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Figure 4.2: Illustration of the identification failure. Reader C tries to identify Ti
but it fails because it has not got the information in its cache. It uses a PRP to
decide which reader to ask for help (in this case C asks A).

Definition 13 (Previous Reader Predictor (PRP)). Let T =

{T1, · · · , TN} be the set of tags in the system and let S = {S1, · · · , SN}
be the set of trajectories of the tags in T until a given time t. Let T R ⊂ T
be the subset of tags known by reader R and let SR ⊂ S be the trajectories
of the subset of tags known by reader R. A PRP is a polynomial-time
algorithm (let us call it Aprev) that, on input a reader R and a set of
trajectories of tags SR, outputs the sequence of k readers R1, R2, · · · , Rk
that are candidates to be the previous reader that identified a tag:

Aprev(R,SR) −→< R1, R2, · · · , Rk >

Remark 1. The order of the sequence of candidate readers depends on
the specific implementation of the predictor. However, the following con-
dition must hold:

P (success|R1) ≥ P (success|R2) ≥ · · · ≥ P (success|Rk)

This means that R1 has more chances of being the actual previous reader
than R2, etc.
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Note that we have defined the theoretical concept of NRP and PRP algorithms.
However, the specific implementation of these algorithms would highly affect the
performance of the whole system. Further below, we will give details on the imple-
mentations that we have used for our experimental analysis.

4.1.2 Our protocol

We define our protocol as a distributed algorithm in the context of a set of collabora-
tive readers R that share identification information on a number of tags T . For the
sake of completeness, in addition to R, we consider a special reader OR that acts as
an oracle, i.e. it has the same role of classical back-ends that have the information
of all tags in the system. OR can identify any tag in T , hence no false negative
identifications occur. However, in our collaborative context, the oracle should be
understood as the “last resort” to identify a tag if all the other mechanisms fail 4,
because the computational cost associated to the identification of tags by the oracle
is very high.

Algorithm 1 shows a pseudocode description of our protocol and Figure 4.3
depicts the logical flow of the proposal. Our protocol works as follows. The reader
R, that receives an identification message from an unidentified tag T at time t, tries
to identify it by following the Improved Randomised Hash Lock Scheme (IRHL) [?, ?]
but using the identification information stored in its own cache only (lines 1 to 10
in Algorithm 1)). In order to perform this identification efficiently, the reader uses
the cache structure described above. First, it tries to identify T as one of the tags
that were expected to arrive at time t. If the tag is not identified amongst these
candidate tags, the reader tries with tags that were expected to arrive a bit later at
time t + 1 and a bit earlier at time t − 1, and so on. Searching in this way, if the
ETA of T was properly predicted and forwarded, T is identified almost instantly.
However, if the prediction was wrong, the reader R might need to search over all its
cache. If T is identified, R checks whether it is the first time that this tag enters
its interrogation zone, i.e. it is a “first time” tag. If it is, it calls the procedure
New_Tag(R, Ti, t, RTiprev, Si) and the identification finishes. If the tag is not a “first
time” tag, the identification procedure simply finishes.

If the identification information of T was not properly forwarded to R5, it will
search over all its cache and will not be able to identify T . In this situation, it has
to ask for help to the other collaborative readers that might have the information
it needs (lines 11 to 18 in Algorithm 1). To do so, R calls the PRP algorithm
Aprev(R,S) so as to obtain a list of readers that may have information about T .
For each reader R′ in the list returned by Aprev, the procedure Help_Identify (T ,R′)
is called. If this procedure succeeds in identifying T , the collaborative reader that

4Note that this situation might happen rarely and probably it would be caused by a communi-
cation failure amongst the collaborative readers or by an active attack. In normal conditions, the
oracle should not be used.

5Note that this might happen due to a wrong prediction of the next reader by the previous
reader.
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Figure 4.3: Conceptual logical flow of the protocol.

succeeds sends the tuple of its cache that contains the information about T , i.e. the
tuple < t′, Ti, RTiprev, R

T i
next >) is sent to R. By using the information in this tuple,

the identification process correctly finishes after calling the procedure New_Tag(R,
Ti, t, R′, Si).

Finally, if no reader R′ can identify T , R asks the oracle OR (lines 19 - 23
in Algorithm 1). If OR cannot identify T , the latter can be considered an illegiti-
mate tag6. Otherwise, R finishes successfully the identification process by calling
procedure New_Tag (R, T , t, OR, ∅).

The main protocol described in Algorithm 1 uses two procedures (New_Tag and
Help_Identify) to update the state of the caches of other collaborative readers and
to identify tags for which the identifying reader has no information.

The New_Tag procedure, described in Algorithm 2, is called when a reader R
determines that a newly identified tag, Ti, has entered its interrogation zone for the
first time, i.e. it is a “First time” tag, and thus, Ti’s trajectory must be updated.

6In this case, the proper actions are to be taken, namely raise an alarm, locate and eliminate
the tag, etc.
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Algorithm 1 Main protocol
1: Require: (i) A tag T to be identified by a reader R at time t; (ii) The set of

tags’ trajectories SR known by R; (iii) The cache of reader R, C(R).

- - Try to identify T using the local cache
2: for all t′ ∈ {t, t+ 1, t− 1, t+ 2, t− 2, · · · } do
3: for all Ti ∈ C(R) with ETA = t′ do
4: if T is identified as Ti then
5: if Ti is a “first time” tag then
6: Call New_Tag (R, Ti, t, RTiprev, Si)
7: end if
8: Return: (Tag identified correctly);
9: end if

10: end for
11: end for

- - Try to identify the tag with the help of other readers
12: for all R′ ∈< R1, R2, · · · , Rk >←− Aprev(R,SR) do
13: Call Help_Identify (T ,R′)
14: if R′ identifies T then
15: R receives < t′, Ti, RTiprev, R

Ti
next > from R′.

16: Call New_Tag (R, Ti, t, R′ and, Si).
17: Return: (Tag identified correctly);
18: end if
19: end for

- - (last resort) Ask the Oracle
20: if OR identifies T then
21: Call NewTag (R, T , t, OR, ∅).
22: Return: (Tag identified correctly);
23: end if
24: Return: Invalid tag T found

Algorithm 2 New_Tag
1: Require: (i) A reader R that has identified a tag Ti at time t; (ii) The reader
Riprev; (iii) The trajectory Si of Ti.

2: R asks RTiprev to remove Ti from its cache;
3: R predicts the next reader and ETA < ti, R

Ti
next >= Anext(Ti, Si);

4: R asks RTinext to insert the record < ti, Ti, R, null, Y > in its cache;
5: R removes the record about Ti from C(R) (if it exists);
6: R inserts the record < t, Ti, R

Ti
prev, R

Ti
next, N > into C(R);

7: R adds < t,R > to Ti’s trajectory (Si);
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In this case, R sends a message to the previous reader RTiprev that identified Ti so as
to let it remove the information it has about Ti7 (note that when RTipre = OR this
message is not sent). Then, R uses an NRP to determine the next reader that will be
visited by Ti and sends a message to it to let it insert the tuple < ti, Ti, R, null, Y >

in its cache (this way, when the tag reaches this reader, it will be able to identify it
efficiently). Finally, the record corresponding to Ti in C(R) is updated with proper
information about the next reader < t, Ti, R

Ti
prev, R

Ti
next, N >.

Algorithm 3 Help_Identify
1: Require: T a tag to be identified by a reader R;
2: Determine told the oldest timestamp in C(R);
3: for all t′ ∈ {told, told + 1, told + 2 · · · } do
4: for all Ti ∈ C(R) with ETA = t′ do
5: if T is identified as Ti then
6: R asks Riprev to remove the information of Ti from its cache;
7: Return: < t′, Ti, RTiprev, R

Ti
next >

8: end if
9: end for

10: end for
11: Return: < null > (Tag not identified)

The Help_Identify procedure, described in Algorithm 3, is called when a reader
R cannot identify a tag with the information stored in its cache. This procedure
is executed by the readers that collaborate with R. Due to the fact that these
collaborative readers might have seen the unknown tag quite in the past, they start
searching tuples in their caches whose timestamps are old. If a collaborative reader
R′ identifies T as Ti it sends a message to RTiprev in order to let it remove the
information on Ti from its cache. Finally, R′ returns the tuple about Ti stored in
its cache.

4.1.3 Practical implementation of the predictors

Previously, we have theoretically defined the concepts of Next Reader Predictor
(NRP) and Previous Reader Predictor (PRP). Below, we propose practical imple-
mentations for each of these predictors.

4.1.3.1 Next reader predictor

We propose to use a location prediction algorithm based on a Markov model [?]. A
Markov-based predictor of order k, O(k), is defined over the sequence of the last
k locations of a given moving entity. Let L = `1, · · · , `n be the location history of
a given entity and let L(i, j) = `i, · · · , `j be a subsequence of L. Let Xi be the

7This information is no longer necessary and removing it from the cache speeds up the identi-
fication procedure.
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random variable that represents a location at time t. Then, the Markov assumption
is that:

Pr(Xn+1 = x|X1 = `1, · · · , Xn = `n) =

Pr(Xn+1 = x|Xn−k+1 = `n−k+1, · · · , Xn = `n) (4.1)

And that for every i ∈ {1, 2, · · · , n− k}:

Pr(Xn+1 = x|Xn−k+1 = `n−k+1, · · · , Xn = `n) =

Pr(Xi+k = x|Xi−k = `n−k+1, · · · , Xi+k−1 = `n) (4.2)

Simply stated, Equation 4.1 says that the probability of being in a given loca-
tion depends on the previous k locations only, whilst Equation 4.2 says that this
probability is time independent. Therefore, this probability can be represented by
a transition matrix M labelled with all possible sequences of locations of size k:

Pr(Xn+1 = x|X1 = `1, · · · , Xn = `n) =

M(L(n− k + 1, n), L(n− k + 1, n)||x) (4.3)

And the value of M(a, b) may be estimated by

M(a, b) =
N(a, L)

N(b, L)
(4.4)

Where N(s1, s2) is the number of times the subsequence s1 occurs in the se-
quence s2.

In our protocol, locations are represented by the readers R and a next reader
predictor (NRP) is only used by readers R once they realise that a tag T is in their
interrogation zone. Thus, the last location of T is the current reader R, i.e. `n = R.
Therefore, we believe that a reader could be able to implement a Markov-based
predictor of order 1 or 2 using a reasonably small amount of memory. In addition,
counting the number of times that a tag is identified by a reader after having been
identified by another reader can be easily done when calling the New_Tag procedure
described in Algorithm 2. Our Markov-based predictor is computationally efficient.
It has a logarithmic computational cost with respect to the number of readers R.

Regarding the time prediction, we use a very simple approach. Let tm be the
average time in which a tag T is identified by two consecutive readers. Let t be the
current time in which T is identified by a reader. We estimate that the next reader
will identify T at time t+ tm. Note that the readers store, share and update tm. To
update the value of tm, the reader applies the following equation:

tm =
tm × (c− 1) + t− tlast

c
,

where c is the number of times that the tag has been identified and tlast is the last
time in which that tag was identified.
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4.1.3.2 Previous reader predictor

We propose the use of an heuristic to implement the previous reader predictor
(Aprev). In a nutshell, the proposed predictor works as follows: When a reader
Ri identifies a tag, it increments a counter G(Ri, Rj), where Rj is the last reader
that identified that tag. By doing so, when Aprev(Ri,SRi) is called, it outputs the
sequence,

R1, R2, · · · , Rk
such that

G(Ri, R1) ≥ G(Ri, R2) ≥ · · · ≥ G(Ri, Rk).

The computational cost of Aprev is logarithmic with respect to the number of
readers R. Note that there is no need for sorting the output list every time the
algorithm is called, i.e. this might lead to a computational complexityO(|A| log |A|).
On the contrary, the list could be stored already sorted and simply updated after
increasing the value of G(Ri, Rj) for any pair of readers Ri and Rj .

Note that the PRP is essentially a “global” predictor in the sense that it is based
on the information of the trajectories of multiple tags. Consequently, it can be seen
as a trend analyser (e.g. if most of the tags that are identified by a reader Ry move
to a reader Rx, when the reader Rx uses the PRP, the first result will be Ry). On
the contrary, the NRP previously described is essentially “local” in the sense that it
only depends on the information of a single tag.

4.2 Experimental results and evaluation

We split this experimental section in two subsections. The first is devoted to com-
paring our proposal with both the Solanas et al. [?] and the Fouladgar and Afifi [?]
proposals. The second subsection does not consider the Solanas et al. [?] proposal
anymore because it was designed over assumptions quite different from ours. In turn,
we show in this part of the experimental section how a good implementation of the
next reader predictor algorithm (Anext) improves the efficiency of the identification
process.

4.2.1 Experiments considering the Solanas et al. proposal

As we explain above, the Solanas et al. [?] proposal considers a scenario where
tags are continuously monitored by readers. To do so, readers must have a large
interrogation field so as to cover the whole scenario. Consequently, a tag is likely to
be identified several consecutive times by the same reader. Under this assumption, a
next reader predictor algorithm (Anext) does not make sense. Note thatAnext(Ti, Si)
will output, with high probability, the last reader of the trajectory Si because that
reader is likely to identify again Ti in the next slot of time. Then, in this first part
of the experiments, we remove Anext from our protocol and we recall this variant
as Partial-predictive. In turn, our proposal using both predictors is simply called
predictive and it will be evaluated in the second half of the experimental section.
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Figure 4.4: Open area completely covered by 96 readers

4.2.1.1 Scenarios

With the aim to overcome the limitation of obtaining real datasets of tag movement
in a fine-grained fashion as required in [?], we define two types of tag movements and
three different scenarios with which we evaluate and compare our partial-predictive
proposals with [?] and [?].

The first scenario is an open area (see Figure 4.4) where tags can freely move.
The area is completely covered by 96 readers uniformly distributed over the whole
area. By doing so, we meet the constraints of the Solanas et al. protocol w.r.t. the
distribution of readers [?].

The second and third scenarios are representations of the seven bridges of Kö-
nigsberg8. In these scenarios, people’s movements are constrained by the river and
thus, they can only use bridges in order to move to different sides of the city. Like
people, we assume that tags should not be on the river and we design the second
and third scenarios using two different distributions of readers. The second scenario
(see Figure 4.5) is a representation of the Königsberg city where 14 readers cover
the entire city. Note that this scenario also meets the constraints of the Solanas et
al. protocol w.r.t. the reader distribution [?]. Since covering a city by 14 RFID
readers can be not practical, we design a third scenario (see Figure 4.6) that only
differs from the previous one in the reading ranges and positions of the readers.
Notice that in the second scenario a tag can be monitored in every part of the city,

8The seven bridges of Königsberg is a notable historical problem in mathematics. In 1735,
Leonhard Euler proved that no Eulerian path existed for the Königsberg city. This result laid the
foundations of graph theory.
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Figure 4.5: Königsberg city representation where 14 readers cover the entire city.
Black blocks represent the river water and the seven bridges are represented by the
square spaces between black blocks.

Figure 4.6: Königsberg city representation where 14 readers are monitoring the two
ends of each bridge. Black blocks represent the river water and the seven bridges
are represented by the square spaces between black blocks.

while in the third scenario a tag can only be read when passing through a bridge.
However, due to the movement constraints in the city and the strategic position of
the readers, it is easy to know in which side of the city each tag is located. This is
a good example of how, by cleverly placing readers, it is possible to obtain accurate
trajectories of tags.

4.2.1.2 Movement of tags

In this stage of the experiments, we should generate fine-grained moving data as
required by [?]. To do so, we consider that tags move according to two types of
movement:

• Random movement. At each step, a tag chooses a random direction and
moves in this direction.

• Semi-directed movement. In this movement, a tag always has a target
point. Once the tag reaches its target, it changes the target point to a new
random and valid point in the scenario. Then, at each step, with probability
0.5 the tag chooses whether to move randomly or move in the target’s direction.

Between both movements, semi-directed movement can be considered closer to
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real movement patterns of people. However, unpredictable movement patterns can
be only evaluated using a random movement.

4.2.1.3 Simulations

In order to compare our partial-predictive proposal against the two previous propo-
sals [?, ?], we perform simulations on the three scenarios defined above. For each
scenario, different settings defined by the number of tags in the system and the type
of movement are used. A simulation process consists of 104 tags moving according
to some pattern (random or semi-directed) in one of the three scenarios. For each
simulation process, tags are identified using four different methods:

1. The Fouladgar et al. method [?] assuming that each tag is in the cache of only
one reader. We refer to this method as Fouladgar 1-1.

2. The Fouladgar et al. method [?] assuming that each tag may be in the cache
of several readers. The authors propose to store the tag data in the cache of
those readers that may read it most often. As this is not possible for the two
data sets considered in this work, we make the assumption that a tag will be
in the cache of the readers that have identified it previously. We refer to this
method as Fouladgar 1-M.

3. The Solanas et al. method [?]. We refer to this method as Solanas.

4. The previously mentioned partial-predictive proposal.

In order to give statistically sound results, each simulation process is executed
30 times and the average number of cryptographic operations performed by each
method is computed. Figure 4.7 and Figure 4.8 show the experimental results
obtained for 104 tags moving according to the random movement and the semi-
directed movement, respectively. In both figures, it can be observed that the Partial-
predictive proposal improves on the previous ones by more than 50%. This means
that, for any scenario and any type of movement, our partial-predictive proposal
needs, in the worst case, half the number of cryptographic operations executed by
previous proposals [?, ?].

The partial-predictive proposal performs better than previous ones mainly due
to three reasons: (i) after the identification of a tag, the reader saves in its own cache
the tag’s data in order to identify it faster in the future, (ii) the size of the caches
of readers is minimised in such a way that two readers never share tag information,
(iii) and when a reader can not identify a tag using its own cache, it is able to
heuristically (Aprev) find another reader that could identify this tag.

4.2.2 Experiments considering the Anext algorithms

In the second half of the experimental section, we consider coarse-grained datasets
of tag movement (data sets of trajectories), in the style of tracking data recorded
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Figure 4.7: Percentage of improvement of the partial-predictive proposal w.r.t. pre-
vious ones considering random movement and 104 tags
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Figure 4.8: Percentage of improvement of the partial-predictive proposal w.r.t. pre-
vious ones considering semi-directed movement and 104 tags

by RFID systems. A data set of trajectories contains a historical log with all the
identification events produced by readers during the identification of tagged objects
in a given scenario. Thus, with these data sets, it is possible to determine the
precise moment in which a tagged object was identified by a given reader in an exact
location. By using these data sets of trajectories, whether real or synthetic, we are
able to measure the performance of our proposal in terms of computational cost and
bandwidth usage, and compare it to others without the need for an expensive and
very time consuming implementation of real prototypes.

However, obtaining real data sets of trajectories of RFID tagged objects moving
through, for example, supply chains is very difficult, i.e. these data are generally
kept by private companies that are quite reluctant to share them. Hence, the use
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of synthetic data obtained by means of simulation is a common practice [?] [?] [?].
However, a synthetic data set might fall short of capturing the real complexity of the
motion of objects. With the aim to lessen this problem and in order to perform a
comprehensive comparison of our proposal with previous ones, we use two different
data sets of trajectories:

1. A synthetic data set generated by simulating the movement of tagged objects
in supply chains. This data set has been generated by using techniques pro-
posed in previous articles [?] [?] [?], which deal with moving objects in supply
chains.

2. A real data set consisting of a historical log of the movement of wireless cards
through several access points at Dartmouth College [?]. This real data set
of trajectories captures the movement of students in the Dartmouth College
when they connect to the wireless access points of the campus.

4.2.2.1 Generating the synthetic data set

As stated above, we generate a synthetic data set of moving objects in supply
chains. Similarly to [?], we consider several distribution centres or factories that may
exchange tagged products/items in both directions by means of input/output gates
(controlled by RFID readers). Once a distribution centre has M items in any of its
output gates, it sends these items to another randomly selected distribution centre.
Upon reception of a set of items by a distribution centre, these items are processed
according to the distribution centre policy. Like in previous models [?] [?] [?], the
distribution centre policy is defined by a graph. Locations where items arrive and
depart are the nodes of the graph, whilst the edges represent the possibility of moving
between locations. In particular, we define a random graph for each distribution
centre and random Poisson distributions to model the departure of items in each
location. By doing so, we simulate that items move in small groups or individually
inside each distribution centre whilst they move in large groups between distribution
centres. Note that this kind of movement is similar to the one given in [?] where
two types of data are considered: (i) groups of items (GData) and (ii) single items
(IData).

Similarly to [?], we define five distribution centres and twenty locations in each
of them. For each distribution centre we define a random graph using an Erdős-
Rényi model G(n, p) where n = 20 and p = 0.5. Also, we assign to each location
a Poisson distribution P (λ) where λ = 10. Finally, the minimum number of items
that are sent as a group between distribution centres is defined as M = 100.

In order to define the movement pattern of items we consider that they have
different probabilities to departure towards different locations. For each out-edge
of the graph, each item has a probability of taking this edge to leave. In our ex-
periments, we have defined that for every node having n out-edges, the sequence
of probability values assigned to these out-edges is a permutation of the sequence
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{12 , 1
22
, · · · , 1

2n−1 ,
1

2n−1 } (note that any other probability distribution could be defi-
ned.) Finally, considering all these settings, we generate a synthetic data set with
105 trajectories having an average length of 200 points.

4.2.2.2 Generating the real data set

Dartmouth College has 566 Cisco 802.11b access points installed to cover most of
its campus. The college has about 190 buildings with 115 subnets so that clients
roaming between buildings can change their IP addresses. This roaming information
is recorded in different files for different clients by using syslog events [?]. In total,
more than 14, 000 trajectories collected over almost 2 years can be found in this
data set.

For our experiments, we have selected the shortest 10, 000 trajectories of this
data set. This subset of trajectories is created by parsing all the files having less
than 46 Kb. We have selected the shortest trajectories because longer trajectories
have useless, larger gaps in the data, generally caused by power failures, access
points failures, or long periods of time in which clients were not in the campus.
Note that those big gaps should not appear in data sets of items moving through
supply chains because, in this scenario, items cannot be considered lost for a long
time. The trajectories of the resulting data set have an average length of 400 points.

4.2.2.3 Implementing predictors

In Section 4.1.3, we have defined an effective algorithm to predict the next location
of a moving object based on a Markov model. Also, we have shown that it is possible
to give an estimation of the time when an object should visit the next location.

In order to provide a better evaluation of our proposal, we have run experiments
using two different predictors:

1. A Markov-based predictor: The predictor described in Section 4.1.3 used to
estimate both the next location and the time when the object should visit that
location.

2. An Oracle predictor: A predictor that always correctly guesses the next loca-
tion and the time when the object should visit that location.

It should be emphasised that the Oracle predictor is only possible because we
know in advance the trajectories of the data sets, otherwise it is not possible to
create it. The Oracle predictor can be understood as the optimal predictor, i.e. an
upper bound in prediction accuracy.

The Markov-based predictor that we have implemented for our experiments gues-
ses correctly the next location and ETA of tags 41% of the times with synthetic data,
and 67% of the times with real data. The Oracle predictor has 100% of success for
both data sets.

As it has previously been stated, the performance of our protocol in terms of
computational cost and bandwidth usage strongly depends on the accuracy of the
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predictors. Although the obtained results outperform all previous proposals, there
is still room for improvement (e.g. by developing better predictors).

4.2.2.4 Performance of protocols

We will compare the performance of the following proposals:

1. The previously mentioned Fouladgar 1-1, Fouladgar 1-M, and Partial-
predictive proposals.

2. Our proposal using a Markov-based predictor. We refer to this proposal as
Predictive (Markov).

3. Our proposal using an Oracle predictor. We refer to this proposal as Pre-
dictive (Oracle).

From a scalability point of view, the number of cryptographic operations perfor-
med on the server side is the main concern. Consequently, most of the hash-based
protocols are not considered scalable. However, RFID protocols based on collabo-
ration between readers have less computational cost than hash-based protocols but
may require more bandwidth. Therefore, for all the studied protocols we compute
the number of cryptographic operations and, also, the number of messages sent
between readers.

With the aim to study both the computational cost and the bandwidth usage
simultaneously, we have defined a trade-off measure that for every protocol outputs
the percentage of closeness of the protocol to the optimal case; the higher (closer)
the better.

Definition 14 (Trade-off measure). Let P be the set of protocols under evaluation.
Let α be a real value in the range [0..1]. Let Pc and Pb be the number of cryptographic
operations and the number of sent messages of a given protocol P ∈ P. Let minc =

min(P ic), ∀ P i ∈ P, minb = min(P ib ), ∀ P i ∈ P, maxc = max(P ic), ∀ P i ∈ P,
and maxb = max(P ic), ∀ P i ∈ P. Then, the trade-off measure that we propose is
computed as follows:

d(α, P,P) =

(
maxc − Pc
maxc −minc

× 100

)
× α+

(
maxb − Pb
maxb −minb

× 100

)
× (1− α)

Using this measure, it is possible to globally analyse the performance of all
protocols at the same time. In addition, thanks to the use of α, it is simple to
weight the importance of either the computational cost or the bandwidth usage.
Thus, it can be easily observed which of the analysed protocols performs best in
given conditions.
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4.2.2.5 Experiments with the synthetic data set

Figure 4.9 depicts the number of cryptographic operations performed by each pro-
tocol over the synthetic data set. In the beginning of the simulation (in the start-up
phase) the “Predictive (Oracle)” and the “Predictive (Markov)” have a performance
similar to the “Partial predictive” protocol. However, after learning the movement
pattern of items, they immediately outperform the “Partial predictive” protocol.
It can also be observed that the predictive protocols and the “Partial predictive”
protocol are clearly superior to the “Fouladgar 1-1” and the “Fouladgar 1-M”, thus
confirming the results presented in the first part of the experimental section. Fi-
gure 4.10 shows the average number of cryptographic operations per identification.
From this figure, it is clear that our new proposals outperform the previous ones in
terms of computational cost and, by extension, they improve scalability also.

Figure 4.11 shows the number of messages sent by readers in the studied proto-
cols over the same data set, and Figure 4.12 depicts the number of those messages on
average. It can be observed in both figures that the “Fouladgar 1-M” method sends
fewer messages because it replicates the identification information of tags in several
readers, at the cost of a poor scalability. It is also clear that our new proposals
send a very similar number of messages to the “Fouladgar 1-M” proposal but they
perform significantly better in terms of scalability.

Using the trade-off measure described in Definition 14 we have compared all the
protocols considering different values of α (see Figure 4.13). It is apparent that the
protocol presented in this chapter (in its two variants) is the best for almost all
values of α. Only in the region of α values very close to 0 (meaning that only the
number of messages counts) our proposal is not the best. Hence, we can conclude
that our proposal is better than previous proposals for the analysed synthetic data
set.

4.2.2.6 Experiments with the real data set

In the case of the real data set, we consider the same measures described above,
i.e. the number of cryptographic operations, the number of sent messages, and the
trade-off measure. Figure 4.14 and Figure 4.16 show the number of cryptographic
operations and the number of sent messages for each protocol. Figure 4.15 and
Figure 4.17 show those values on average. Finally, Figure 4.18 depicts the closeness
of all protocols to the optimal case by using the trade-off measure described in
Definition 14.

The results are very similar to the ones obtained with synthetic data. Again,
our proposal outperforms all previous proposals. Note that the different shape of
Figures 8 and 10 with respect to Figures 13 and 15 is due to the very nature of the
analysed data (i.e. synthetic vs. real).



4.3. Conclusions 71

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000 10000

N
um

be
r 

O
f C

ry
pt

og
ra

ph
ic

 O
pe

ra
tio

ns

Time

Fouladgar 1-M

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000 10000

N
um

be
r 

O
f C

ry
pt

og
ra

ph
ic

 O
pe

ra
tio

ns

Time

Fouladgar 1-1

 0

 100

 200

 300

 400

 500

 600

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

N
um

be
r 

O
f C

ry
pt

og
ra

ph
ic

 O
pe

ra
tio

ns

Time

Predictive (Oracle)

 0

 200

 400

 600

 800

 1000

 1200

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000 10000

N
um

be
r 

O
f C

ry
pt

og
ra

ph
ic

 O
pe

ra
tio

ns

Time

Predictive (Markov)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000 10000

N
um

be
r 

O
f C

ry
pt

og
ra

ph
ic

 O
pe

ra
tio

ns

Time

Partial-predictive

Figure 4.9: Average number of cryptographic operations performed by each protocol
during the complete simulation with the synthetic data set (in red). The black line
represents the moving average of those values in subsets of 100 elements. The time
axis represents simulation steps.

4.3 Conclusions

In this chapter, we have presented a novel protocol that allows efficient identification
of RFID tags by means of a set of collaborative readers. Our proposal uses location
and time of arrival predictors to improve the efficiency of the widely accepted IRHL
scheme. We have shown that our protocol outperforms previous proposals in terms
of scalability whilst guaranteeing the same level of privacy and security.

From the experimental results obtained, we can conclude that our proposal could
be comparable to highly scalable protocols like the tree-based protocols. However,
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Figure 4.10: Average number of cryptographic operations per identification for the
simulation with the synthetic data set. (The lower the better)

we do not sacrifice any privacy to achieve this goal.
Usually, algorithms aimed at location prediction work well in some scenarios, but

their performance decreases in others. Although we have provided some practical
implementations for the predictors, the definition of our protocol is flexible enough
to accept the use of any location predictor. Due to the fact that the efficiency of our
proposal highly depends on the accuracy of the predictors, in the future we plan to
study and compare a variety of predictors in different scenarios.
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Figure 4.11: Average number of messages sent by each protocol during the complete
simulation with the synthetic data set (in red). The black line represents the mo-
ving average of those values in subsets of 100 elements. The time axis represents
simulation steps.



74
Chapter 4. Predictive Protocol for Scalable Identification of RFID

Tags through Collaborative Readers

 0

 10

 20

 30

 40

 50

 60
N

u
m

b
e

r 
O

f 
M

e
s
s
a

g
e

s

Protocols

Fouladgar 1−1
Fouladgar 1−M

Predictive (Oracle)
Predictive (Markov)

Partial−predictive

Figure 4.12: Average number of messages sent per identification with the synthetic
data set
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Figure 4.14: Average number of cryptographic operations performed by each proto-
col during the complete simulation with the real data set (in red). The black line
represents the moving average of those values in subsets of 1000 elements. The time
scale is in milliseconds.
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Figure 4.16: Average number of messages sent by each protocol during the complete
simulation with the real data set (in red). The black line represents the moving
average of those values in subsets of 1000 elements. The time scale is in milliseconds.
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Figure 4.17: Average number of messages sent per identification with the real data
set
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Chapter 5

The Poulidor Distance-bounding
Protocol

This chapter describes a novel distance-bounding protocol resistant to both mafia and
distance fraud. The experimental results show that this new proposal strikes a good
balance of memory usage, mafia fraud resistance, and distance fraud resistance.
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The most widespread and low-cost tags are passive, meaning that they do not
have their own power source, and are supplied by the electromagnetic field of a
reader. Although the capacities of such tags are quite limited, some of them benefit
from cryptographic building blocks and secure authentication protocols. Neverthe-
less, Desmedt, Goutier and Bengio [?] presented in 1987, an attack that defeated
any authentication protocol. In this attack, called mafia fraud, the adversary pas-
ses through the authentication process by simply relaying the messages between a
legitimate reader (the verifier) and a legitimate tag (the prover). Thus she does
not need to modify or decrypt any exchanged data. Later in 1993, Brands and
Chaum [?] proposed a countermeasure that prevents such attack by estimating the
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distance between the reader and the tag to be authenticated: the distance-bounding
protocol. They also introduced in [?] a new kind of attack, named distance fraud,
where a dishonest prover claims to be closer to the verifier than she really is.

Since then, many distance-bounding protocols have been proposed to thwart
these attacks. In 2005, Hancke and Kuhn [?] proposed the first distance-bounding
protocol dedicated for RFID. The protocol is considered simple in the sense that
it only requires an initial slow phase followed by a fast phase in order to perform
both authentication and distance checking. Unfortunately, the adversary success
probability regarding mafia and distance frauds is (3/4)n while one may expect
(1/2)n. As a result, many other protocols [?, ?, ?, ?, ?, ?] have been proposed
attempting to improve the Hancke and Kuhn proposal.

Amongst them, to the best of our knowledge, the Kim and Avoine protocol [?]
and the Avoine and Tchamkerten protocol [?] have the best resistance considering
only mafia fraud. However, the Kim and Avoine protocol [?] severely sacrifices the
distance fraud security, whereas the Avoine and Tchamkerten proposal [?] requires
an exponential amount of memory (2n+1−2 in its standard configuration) to achieve
such a high mafia fraud resistance. Neither the Hancke and Kuhn protocol nor the
two latter protocols achieve a good balance between memory, mafia fraud resistance
and distance fraud resistance.

In this chapter, we perform a detailed analysis of the mafia and distance fraud
resistance of the protocols [?] and [?]. Then, we introduce the concept of distance-
bounding protocols based on graphs, and we propose a new distance-bounding pro-
tocol based on a particular type of graph. Our goal is not to provide the best
protocol in terms of mafia fraud or distance fraud, but to design a protocol that
ensures a good trade-off between these concerns, while still using a linear amount
of memory with respect to the number of rounds. This means that our protocol is
never the best one when considering only one property, but is a good option when
considering the three properties altogether. This is why we name our protocol Pou-
lidor after a famous French bicycle racer known as The Eternal Second : never the
best in any race, but definitively the best on average.

5.1 Previous proposals

In terms of efficiency and resource consumption, our proposal is comparable to the
Hancke and Kuhn [?] and Kim and Avoine [?] protocols. Therefore, we explain
below those two proposals. We also detail the Avoine and Tchamkerten protocol [?]
because our aim is to be as resilient as this protocol to mafia and distance frauds.

5.1.1 Hancke and Kuhn’s protocol

Hancke and Kuhn’s protocol (HKP) [?], depicted in Figure 5.1, is a key-reference
protocol in terms of distance bounding devoted to RFID systems. HKP is a simple
and fast protocol, but it suffers from a high adversary success probability.
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Prover Verifier
slow phase

generates NP generates NV
NV←−−−−−−−−−−−−−−−−−
NP−−−−−−−−−−−−−−−−−→

H2n = H(x,NP , NV ) H2n = H(x,NP , NV )

R0 = H1 . . . Hn R0 = H1 . . . Hn

R1 = Hn+1 . . . H2n R1 = Hn+1 . . . H2n

fast phase
for i = 1 to n:

picks a bit ci
ci←−−−−−−−−−−−−−−−− starts timer

ri = Rcii
ri−−−−−−−−−−−−−−−−→ stops timer

Figure 5.1: Hancke and Kuhn’s protocol

5.1.1.1 Initialisation

The prover (P ) and the verifier (V ) share a secret x and agree on: (i) a security
parameter n, (ii) a public hash function H, whose output size is 2n, and (iii) a
certain timing bound ∆tmax.

5.1.1.2 Protocol

HKP consists of two phases: a slow one followed by a fast one. During the slow
phase V generates a random nonce NV and sends it to P . Reciprocally, P generates
NP and sends it to V . Both V and P compute H2n := H(x,NP , NV ). In what
follows, Hi (1 ≤ i ≤ 2n) denotes the i-th bit of H2n, and Hi . . . Hj (1 ≤ i < j ≤ 2n)
denotes the concatenation of the bits from Hi to Hj . Then V and P split H2n into
two registers of length n: R0 := H1 . . . Hn and R1 := Hn+1 . . . H2n. The fast phase
then consists of n rounds. In each of them, V picks a random bit ci (the challenge)
and sends it to P . The latter immediately answers ri := Rcii , the i-th bit of the
register Rci .

5.1.1.3 Verification

At the end of the fast phase, the verifier checks that the answers received from the
prover are correct and that ∆ti ≤ ∆tmax (1 ≤ i ≤ n) .

5.1.2 Kim and Avoine’s protocol

Kim and Avoine’s protocol (KAP) [?], represented in Figure 5.2, basically relies
on predefined challenges. Predefined challenges allow the prover to detect that an
attack occurs as follows: the prover and the verifier agree on some predefined 1-bit
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challenges; if the adversary sends in advance a challenge to the prover that is different
from the expected predefined challenge, then the prover detects the attack and since
then, it sends random responses to the adversary. The complete description of the
KAP protocol is provided below.

5.1.2.1 Initialisation

The prover (P) and the verifier (V) share a secret x and agree on: (i) a security
parameter n, (ii) a public hash function H, whose output size is 4n, and (iii) a
certain timing bound ∆tmax.

5.1.2.2 Protocol

As previously, V and P exchange nonces NV and NP . From these values they
compute H4n = H(x,NP , NV ), and split it in four registers. R0 := H1 . . . Hn and
R1 := Hn+1 . . . H2n are the potential responses. The register D := H3n+1 . . . H4n

contains the potential predefined challenges. Finally, the register T := H2n+1 . . . H3n

allows the verifier to decide whether a predefined challenge should be sent: in round
i, if Ti = 1 then a random challenge is sent; if Ti = 0 then the predefined challenge
Di is sent instead.

5.1.2.3 Verification

At the end of the fast phase, the verifier checks whether the answers received from
the prover are correct and that ∆ti ≤ ∆tmax (1 ≤ i ≤ n).

5.1.3 Avoine and Tchamkerten’s protocol

The Avoine and Tchamkerten’s protocol (ATP) [?] is slightly different from the
other existing distance bounding protocols. This protocol is also based on single bit
challenge/response exchanges. However, the authors propose the use of a decision
tree to set up the fast phase. Figure 5.3 depicts the protocol detailed below.

5.1.3.1 Initialisation

The prover and the verifier share a secret x, and they agree on: (i) two security
parameters n = αk and m, (ii) a pseudo-random function PRF whose output size
is at least m+ α(2k+1 − 2) bits, and (iii) a timing bound ∆tmax.

5.1.3.2 Protocol

The prover P and the verifier V generate two nonces NP and NV respectively. The
verifier sends his nonce to P . Upon reception, the latter computes PRF (x,NP , NV )

and sends [PRF (x,NP , NV )]m1 , the first m bits of PRF (x,NP , NV ), and P also
sends NP . These bits are used for the authentication.



5.1. Previous proposals 83

Prover Verifier
slow phase

generates NP generates NV
NV←−−−−−−−−−−−−−−−−−
NP−−−−−−−−−−−−−−−−−→

H4n = H(x,NP , NV ) H4n = H(x,NP , NV )

R0 = H1 . . . Hn R0 = H1 . . . Hn

R1 = Hn+1 . . . H2n R1 = Hn+1 . . . H2n

T = H2n+1 . . . H3n T = H2n+1 . . . H3n

D = H3n+1 . . . H4n D1 = H3n+1 . . . H4n

fast phase
for i = 1 to n:

picks a random bit si

ci =

{
si if Ti = 1

Di otherwise
ci←−−−−−−−−−−−−−−−− starts timer

if Ti = 1

ri = Rcii
otherwise:

ri =

{
R0
i if ci = Di

random otherwise
ri−−−−−−−−−−−−−−−−→ stops timer

Figure 5.2: Kim and Avoine’s protocol

P and V use the remaining α(2k+1 − 2) bits to label the nodes of α binary
decision trees of depth k. Each node of the trees1 is labeled by one bit from
[PRF (x,NP , NV )]

m+α(2k+1−2)
m+1 (the remaining bits) in a one-to-one way. These la-

bels represent the prover’s responses during the fast phase. The challenges are
represented by the edges of the trees; left and right edges are labeled with 0 and 1
respectively.

Afterwards, the fast phase begins, for 1 ≤ i ≤ α, and 1 ≤ j ≤ k, V picks a bit cij
at random, starts a timer and sends cij to P . The latter immediately answers a bit
rij = node(ci1, . . . c

i
j), i.e. the value of the node located in the i-th tree and reached

from the root by taking the sequence of decision bits ci1, . . . , cij . Once V receives P ’s
response, he stops his timer and computes ∆tij .

5.1.3.3 Verification

The verifier authenticates the prover if the m bits, sent during the slow phase, are
correct. The prover succeeds in the distance-bounding stage, if all his responses are

1Except the roots.
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Prover Verifier
slow phase

generates NP generates NV
NV←−−−−−−−−−−−−−−−−−

computes PRF (x,NP , NV )
NP , [PRF (x,NP ,NV )]m1−−−−−−−−−−−−−−−−−−→

computes PRF (x,NP , NV )

fast phase
for i = 1 to α:
for j = 1 to k:

picks a bit cij
cij←−−−−−−−−−−−−−−−−− starts timer

rij = node(ci1, . . . , c
i
j)

rij−−−−−−−−−−−−−−−−−→ stops timer

Figure 5.3: Avoine and Tchamkerten protocol

correct and if for all 1 ≤ i ≤ α and 1 ≤ j ≤ k, ∆tij ≤ ∆tmax.

5.2 Graph-based distance-bounding protocol

The ATP protocol [?] in its standard configuration (α = 1) relies on a binary tree.
The amount of memory needed to build this binary tree is exponential regarding
the number of rounds. Although the authors in [?] proposed to split the binary tree
in order to reduce the memory requirements, they pointed out that this procedure
leads to a significant decrease in the security level of the protocol. We go a step
forward and propose protocols based on graphs rather than trees. The graph-based
protocols, as presented below, provide a greater design flexibility, a high security
level and a low memory consumption.

5.2.1 Initialisation

5.2.1.1 Parameters

The prover P and the verifier V agree on four public parameters: (i) a security
parameter n that represents the number of rounds in the protocol, (ii) a timing
bound ∆tmax, (iii) a pseudo random function PRF whose output size is 4n bits,
and (iv) a directed graph G whose characteristics are discussed below. They also
agree on a shared secret x.



5.2. Graph-based distance-bounding protocol 85

5.2.1.2 Graph

To achieve n rounds, the proposed graph requires 2n nodes {q0, q1, . . . , q2n−1}, and
4n edges {s0, s1, · · · , s2n−1, `0, `1, · · · , `2n−1} such that si (0 ≤ i ≤ 2n−1) is an edge
from qi to q(i+1) mod 2n, and `i (0 ≤ i ≤ 2n− 1) is an edge from qi to q(i+2) mod 2n.
Figure 5.4 depicts the graph when n = 4.
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Figure 5.4: Graph when n = 4

5.2.2 Exchanges

As described below, the protocol is divided in two phases, a slow one and a fast one.
Figure 5.5 summarises the protocol.

Slow phase – P and V generate nonces NP and NV , respectively, and ex-
change them. From these values and the secret x, they compute H1|| . . . ||H4n =

PRF (x,NP , NV ) where Hi denotes the i-th bit of the output of PRF (x,NP , NV ).
The bitsH1, . . . ,H4n set up the graph G as follows: the first 2n bits are used to value
the nodes while the remaining bits are used to value the edges si (0 ≤ i ≤ 2n− 1);
finally, `i = si ⊕ 1 (0 ≤ i ≤ 2n− 1).

Fast phase – This phase consists of n stateful rounds numbered from 0 to n− 1.
In the i-th round P ’s state and V ’s state are represented by the nodes qpi and qvi
respectively: initially qp0 = qv0 = q0. Upon reception of the i-th challenge ci, P
moves to the node qpi to qpi+1 in the following way: qpi+1 = q(pi+1) mod 2n if si
is labeled with ci, otherwise qpi+1 = q(pi+2) mod 2n. Finally, the prover sends as
response ri the bit-value of the node qpi+1 . Upon reception of the prover’s answer
ri, the verifier stops his timer, and computes ∆ti, i.e. the round trip time spent
for this exchange. Besides, V moves to the node qvi+1 using the challenge ci (as the
prover did but from the node qvi) and checks if qvi+1 = ri.
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Prover Verifier
slow phase

generates NP generates NV
NV←−−−−−−−−−−−−−−−−
NP−−−−−−−−−−−−−−−−→

H1 . . . H4n = PRF (x,NP , NV ) H1 . . . H4n = PRF (x,NP , NV )

fills the graph: fills the graph:
for i = 0 to 2n− 1: for i = 0 to 2n− 1:

`i = Hi+2n+1

si = Hi+2n+1

qi = Hi+1


`i = Hi+2n+1

si = Hi+2n+1

qi = Hi+1

fast phase
for i = 0 to n− 1:

picks a bit ci
ci←−−−−−−−−−−−−−−− starts timer

moves from qpi to qpi+1

ri = qpi+1

ri−−−−−−−−−−−−−−−→ stops timer
moves from qvi to qvi+1

checks if ri = qvi+1

Figure 5.5: The new graph-based proposal
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5.2.3 Verification

The authentication succeeds if all the responses are correct, and each round is com-
pleted within the time bound ∆tmax.

5.3 Security analysis of the graph-based protocol

As stated in the introduction, mafia fraud and distance fraud are the two main
security concerns when considering distance bounding protocols. We analyse in this
section the graph-based protocol with respect to these frauds.

5.3.1 Mafia fraud

To analyse the mafia fraud we consider the adversary abilities complying with the
models provided in [?], [?] and [?]. Below, we define the head node and rephrase the
well-known pre-ask strategy (see for example [?]) with our terminology.

Definition 15 (Head node). Given a sequence of challenges {c1, c2, · · · , ci} (1 ≤
i ≤ n), the head node is the node that should be used by the prover to send the
response to the verifier according to this sequence of challenges. The head node is
denoted as Ω(c1, c2, · · · , ci).

Definition 16 (Pre-ask strategy). The pre-ask strategy begins at the end of the
slow phase and before the beginning of the fast phase. First, the adversary sends
a sequence of challenges {c̃1, c̃2, · · · , c̃n} to the prover and receives a sequence of
responses {Ω(c̃1),Ω(c̃1, c̃2), · · · ,Ω(c̃1, c̃2, · · · , c̃n)}.
Later, during the fast phase, the adversary tries to use the information obtained
from the prover in the best way. Let us consider {c1, c2, · · · ci} the challenges sent
by the verifier until the i-th round during the fast phase. If ∀j s.t. 1 ≤ j ≤ i, we
have cj = c̃j then the adversary sends as response Ω(c̃1, c̃2, · · · , c̃i). Otherwise she
sends as response the value Ω(c̃1, c̃2, · · · , c̃j) where j is selected according to some
rule that will be defined later.

Remark 2. Sending a combination of two or more values as response is completely
useless for the adversary because the nodes’ values in the graph are independent
from each other. Furthermore, in the graph-based protocol one node is never used
twice to send a response. Therefore, the adversary can neither obtain nor infer more
information than the one obtained from the prover. Finally, note that in the security
analysis of previous protocols [?], [?] and [?], the best adversary strategy is to pick
j = i for every round, i.e. the adversary sends exactly what she received from the
prover in the i-th round. However, as we explain below, in the graph-based protocol
it makes sense to send a value received in a different round.

While the challenges sent by the adversary match the challenges sent by the
verifier, the adversary is able to send the correct response. However, after the first
incorrect adversary challenge, she can no longer be convinced about the correctness
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of her response. Consequently, we analyse below the adversary success probability
when the adversary sends at least an incorrect challenge to the prover during the
pre-ask strategy.

Theorem 1. Let (c1, c2, · · · , ci) be the sequence of verifier challenges until the i-th
round, and let (c̃1, c̃2, · · · , c̃n) be the sequence of adversary challenges in the pre-ask
strategy. Let F be the random variable representing the first round in which ct 6= c̃t
(1 ≤ t ≤ n). Given Ω(c̃1, c̃2, · · · , c̃j), the adversary response in the i-th round for
some (1 ≤ j ≤ n), we have:

Pr(Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1, c2, · · · , ci)|F = t) =


1 if i < t and i = j,
1
2 if i < t and i 6= j,
1
2 if i ≥ t and j < t,

p(t) if i ≥ t and j ≥ t,

where p(t) = 1
2 + 1

2i+j−2t+2

∑k=2n−1
k=0

(
Ai−t[1, k]Aj−t[2, k] +Ai−t[2, k]Aj−t[1, k]

)
, and

A is the adjacency matrix of the graph which represents the graph-based protocol.

Proof. We analyse the problem by cases:

Case 1 (i < t and i = j). As i < t then ∀1 ≤ k ≤ i, c̃k = ck, therefore
Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1, c2, · · · , ci).

Case 2 (i < t and i 6= j). As i < t then Ω(c̃1, c̃2, · · · , c̃i) = qvi = Ω(c1, c2, · · · , ci).
On the other hand, as i 6= j then qvi and Ω(c̃1, c̃2, · · · , c̃j) are not the same node
in the graph. As the node values in the graph are independent, we conclude that,
Pr(Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1, c2, · · · , ci)) = 1

2 .

Case 3 (i ≥ t and j < t). This case is analog to Case 2.

Case 4 (i ≥ t and j ≥ t). Let be qvi = Ω(c1, c2, · · · , ci) and
qaj = Ω(c̃1, c̃2, · · · , c̃j), so:

Pr(Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1, c2, · · · , ci)) = Pr(qvi = qaj ) . (5.1)

Now, Pr(qvi = qaj ) = Pr(qvi = qaj |vi = aj) Pr(vi = aj) + Pr(qvi = qaj |vi 6=
aj) Pr(vi 6= aj) where Pr(qvi = qaj |vi = aj) = 1 by definition of the graph-based
protocol. On the other hand, Pr(qvi = qaj |vi 6= aj) = 1

2 because the node values are
selected at random in the protocol. Then

Pr(qvi = qaj ) =
1

2
+

Pr(vi = aj)

2
. (5.2)

As 0 ≤ vi, aj ≤ 2n− 1 then

Pr(vi = aj) =

k=2n−1∑
k=0

Pr(vi = k) Pr(aj = k) . (5.3)
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As ct 6= c̃t for the first time, then two equally probable cases occur: 1)
Ω(c1, · · · , ct) = qx and Ω(c̃1, · · · , c̃t) = qx+1, 2) Ω(c1, · · · , ct) = qx+1 and
Ω(c̃1, · · · , c̃t) = qx, where (0 ≤ x ≤ 2n − 1) and ∀x, x + 1 = (x + 1) mod 2n.
Using these two events in Equation 5.3 we obtain:

Pr(vi = aj) =
1

2

(
k=2n−1∑

k=0

Pr(vi = k|Ω(c1, · · · , ct) = qx) Pr(aj = k|Ω(c1, · · · , ct) = qx+1)

+

k=2n−1∑
k=0

Pr(vi = k|Ω(c1, · · · , ct) = qx+1) Pr(aj = k|Ω(c1, · · · , ct) = qx)

)
. (5.4)

As Ay[x, k] represents the number of walks of size y between nodes x and k, then
Pr(vi = k|Ω(c1, · · · , ct) = qx) = Ai−t[x,k]

2i−t and Pr(vi = k|Ω(c1, · · · , ct) = qx+1) =
Ai−t[x+1,k]

2i−t ; in the same way Pr(aj = k|Ω(c1, · · · , ct) = qx) = Aj−t[x,k]
2j−t and Pr(aj =

k|Ω(c1, · · · , ct) = qx+1) = Aj−t[x+1,k]
2j−t . Then using Equation 5.4:

Pr(vi = aj) =
1

2i+j−2t+2

k=2n−1∑
k=0

(
Ai−t[x, k]Aj−t[x+ 1, k] +Ai−t[x+ 1, k]Aj−t[x, k]

)
.

(5.5)
Given the graph characteristics, we have Ay[x, k] = Ay[(x − z) mod 2n, (k −

z) mod 2n] for any z ∈ N. Therefore, Ai−t[x, k] = Ai−t[1, (k − x + 1) mod 2n]

and Ai−t[x + 1, k] = Ai−t[2, (k − x + 1) mod 2n], in the same way, Aj−t[x, k] =

Aj−t[1, (k− x+ 1) mod 2n] and Aj−t[x+ 1, k] = Aj−t[2, (k− x+ 1) mod 2n]. So:

2n−1∑
k=0

(
Ai−t[x, k]Aj−t[x+ 1, k] +Ai−t[x+ 1, k]Aj−1[x, k]

)
=

2n−1∑
k=0

(
Ai−t[1, k]Aj−t[2, k] +Ai−t[2, k]Aj−t[1, k]

)
. (5.6)

Equations 5.1, 5.2, 5.5, and 5.6 yield the expected result.

Remark 3. Using Theorem 1, assuming c1 6= c̃1, for i = 1 we obtain that
Pr(Ω(c̃1, c̃2) = Ω(c1)) = 5

8 > Pr(Ω(c̃1, c̃2, · · · , c̃j) = Ω(c1)) for every j 6= 2. This
means that in this case it is better for the adversary to send the second response
of the prover (Ω(c̃1, c̃2)). These results only reinforce the ideas shown in Remark
2, that the best adversary strategy is not always to pick j = i in the graph-based
protocol.

Corollary 1. Given ri = Ω(c̃1, c̃2, · · · , c̃i) and c′i = Ω(c1, c2, · · · , ci) for every 1 ≤
i ≤ n, the best adversary success probability in the mafia fraud is:
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t=n∑
t=1

1

2t

(
i=n∏
i=t

max(Pr(r1 = c′i|F = t), · · · ,Pr(rn = c′i|F = t))

)
+

1

2n

where Pr(rj = c′i|F = t) is defined in Theorem 1.

Proof. The adversary success probability in the mafia fraud is:

t=n∑
t=1

(Pr(success|F = t) Pr(F = t)) + Pr(c1 = c̃1, c2 = c̃2, · · · , cn = c̃n) . (5.7)

As the challenges are selected at random, then:

Pr(F = t) = 1
2t .

Pr(c1 = c̃1, c2 = c̃2, · · · , cn = c̃n) = 1
2n .

(5.8)

Considering the pre-ask attack strategy in Definition 16:

Pr(success|F = t) =
i=n∏
i=t

max(Pr(r1 = c′i|F = t), · · · ,Pr(rn = c′i|F = t)) . (5.9)

Equations 5.7, 5.8, and 5.9 yield the expected result.

5.3.2 Distance fraud

The distance fraud analysis for most of the distance-bounding protocols is not a hard
task. However, for the ATP [?] protocol, to the best of our knowledge, nobody has
computed the distance fraud success probability. Unfortunately, in the graph-based
protocol which has some similarities with the ATP protocol, distance fraud analysis
is also not trivial. Then, in this chapter we provide an upper bound on the distance
fraud for a sub-family of the distance-bounding protocols, which will be useful for
the ATP protocol and for the graph-based protocol.

Definition 17 (Distance-bounding protocol sub-family). Let us consider P a dis-
tance bounding protocol. P belongs to the distance-bounding protocol sub-family if it
fulfills the following requirements:

• During the fast phase, in each round the verifier sends a bit as challenge and
the prover answers with a bit alike.

• There is no final phase.

• After the slow phase, it should be possible to build a function f : {0, 1}n →
{0, 1}n such that, given any sequence of challenges {c1, c2, · · · , cn}, then
f(c1, c2, · · · , cn) is the correct response sequence for the verifier. From now
on, we are going to call this function “prover function”.
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Definition 18 (Prover function pre-image). For a sequence y ∈ {0, 1}n and a prover
function f , the prover function pre-image is the set Iy = {x ∈ {0, 1}n|f(x) = y}.

Definition 19 (Adversary capability in the distance fraud attack). The adversary
capability in the distance fraud is twofold:

1. The adversary has access to the prover function.

2. The adversary can send in advance a sequence y ∈ {0, 1}n to the verifier,
trying to maximise Pr(f(c1, c2, · · · , cn) = y) where {c1, c2, · · · , cn} is a random
sequence of challenges.

Proposition 1. Let y be the sequence sent by the adversary in advance, then the
success probability in the distance fraud is |Iy |2n .

Undoubtedly, the best adversary strategy is to find and send a sequence y ∈
{0, 1}n such that for any sequence x ∈ {0, 1}n it holds that |Iy| ≥ |Ix|.

Theorem 2. Given x, y ∈ {0, 1}n two random sequences, and a prover function f ,
then, for any sequence z ∈ {0, 1}n such that Iz 6= ∅ we have:

Pr(x ∈ Iz) ≤
1
2n +

√
1

22n
− 4

2n + 4 Pr(f(x) = f(y))

2

Proof. Given that Iz 6= ∅, we have:

Pr(f(x) = f(y)) = Pr(f(x) = f(y)|y ∈ Iz) Pr(y ∈ Iz)
+ Pr(f(x) = f(y)|y /∈ Iz) Pr(y /∈ Iz) (5.10)

But, Pr(f(x) = f(y)|y ∈ Iz) = Pr(x ∈ Iz) = Pr(y ∈ Iz) because x and y are
random sequences. On the other hand, Pr(f(x) = f(y)|y /∈ Iz) ≥ 1

2n because of
the “prover function” definition. Therefore, using these results in Equation 5.10, we
obtain:

Pr(f(x) = f(y)) ≥ Pr(x ∈ Iz)2 +
1

2n
(1− Pr(x ∈ Iz)) . (5.11)

By calculating the discriminant of this quadratic inequality, and obtaining its
solutions, we conclude the proof. Note that, this quadratic inequality has real
solutions because Pr(f(x) = f(y)) ≥ 1

2n , and in this case, the discriminant value is
always positive.

Corollary 2. For every distance-bounding protocol that complies with Definition 17,
the adversary success probability in the distance fraud is upper-bounded by:

1
2n +

√
1

22n
− 4

2n + 4 Pr(f(x) = f(y))

2
.
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With this result, we are giving a way to compute an upper bound of a sub-family
of the distance-bounding protocols. We show below how to apply this result to the
graph-based protocol, and later we apply the same result to the ATP protocol.

Theorem 3. The distance fraud success probability for the graph-based protocol is
upper bounded by:

1
2n +

√
1

22n
− 4

2n + 4p

2

where

p =

i=n∏
i=1

(
1

2
+

1

22i+1

k=2n−1∑
k=0

(Ai[0, k])2

)
.

Proof. Let us consider two random sequences x = {x1, x2, · · · , xn} and y =

{y1, y2, · · · , yn}, then by the definition of the graph-based protocol and the defi-
nition of “Prover Function”:

Pr(f(x) = f(y)) =
i=n∏
i=1

Pr(Ω(x1, · · · , xi) = Ω(y1, · · · , yi)) . (5.12)

Let be qxi = Ω(x1, · · · , xi) and qyi = Ω(y1, · · · , yi), then, like in Theorem1, we
can obtain that

Pr(qxi = qyi) =
1

2
+

Pr(xi = yi)

2
(5.13)

and

Pr(xi = yi) =
k=2n−1∑
k=0

Pr(xi = k) Pr(yi = k) . (5.14)

Once again, as Ai[j, k] represents the number of walks of size i between the nodes
j and k, where A is the adjacency matrix of the graph, then Pr(xi = k) = Ai[0,k]

2i
=

Pr(yi = k). Therefore, using Equation 5.14:

Pr(xi = yi) =
k=2n−1∑
k=0

(
Ai[0, k]

2i

)2

. (5.15)

Equations 5.12, 5.13 and 5.15 yield

Pr(f(x) = f(y)) =

i=n∏
i=1

(
1

2
+

1

22i+1

k=2n−1∑
k=0

(Ai[0, k])2

)
. (5.16)

By applying Equation 5.16 to Corollary 2, considering that p = Pr(f(x) = f(y)),
we conclude the proof of this theorem.
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5.4 Experimental results and evaluation

We analyse mafia fraud resistance, distance fraud resistance and memory consump-
tion. Therefore, we need to measure the above features for each of the previous
protocols. We have detected that the mafia fraud success probability for the KAP
protocol provided in [?] is not correct. Also, as we previously said, the distance
fraud success probability of ATP was not presented in [?]. Therefore, we first pro-
vide both a correct calculation of the mafia fraud success probability of the KAP
protocol and an upper bound for the distance fraud success probability of the ATP
protocol.

5.4.1 Mafia fraud success probability for KAP

In the Kim and Avoine protocol, the adversary success probability in the mafia fraud
depends on the predefined challenges probability (pd). Define the following events:

• Li is the event “the adversary wins the i-th round”;

• Di is the event “the adversary is detected in the i-th round by the tag for the
first time”;

• Ni is the event “the adversary is detected by the tag in the i-th round”;

• N is the event “the adversary is never detected”.

The notation Ā denotes the complement of event A.
By the law of total probability:

P (success) =
i=n∑
i=1

Pr(success|Di) Pr(Di) + Pr(success|N) Pr(N) . (5.17)

Since Pr(Ni) = pd
2 ,

Pr(N) = (1− pd
2

)n . (5.18)

The probability of being detected in the i-th round for the first time is:

Pr(Di) =

j=i−1∏
j=1

Pr(N̄j) Pr(Ni) =

(
2− pd

2

)i−1 (pd
2

)
. (5.19)

On the other hand

Pr(success|Di) =

j=i−1∏
j=1

Pr(Lj |N̄j)

j=n∏
j=i

Pr(Lj |Nj) (5.20)

where Pr(Lj |Nj) = 1
2 , and
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Pr(Lj |N̄j) =
Pr(Lj ∩ N̄j)

Pr(N̄j)
(5.21)

where Pr(Lj ∩N̄j) = Pr(Lj ∩N̄j |pd)pd+Pr(Lj ∩N̄j |pr)pr. But Pr(Lj ∩N̄j |pd) =
1
2 , because the adversary must send the correct challenges cj in this round. And
Pr(Lj ∩ N̄j |pr) = 3

4 , because this is the same case as in the Hancke and Kuhn
protocol. Therefore, Pr(Lj ∩ N̄j) = 1

2pd+ 3
4pr = 3−pd

4 . Using this result in Equation
5.21 we obtain:

Pr(Lj |N̄j) =
3− pd
4− 2pd

. (5.22)

Using Equations 5.20 and 5.22 we obtain:

Pr(success|Di) =

(
3− pd
4− 2pd

)i−1(1

2

)n−i+1

, (5.23)

and
Pr(success|N) =

(
3− pd
4− 2pd

)n
. (5.24)

Using Equations 5.17, 5.18, 5.19, 5.23 and 5.24, we obtain the adversary success
probability for the mafia fraud in the Kim and Avoine protocol:

P (success) =
pd
2

i=n∑
i=1

(
3− pd

4

)i−1(1

2

)n−i+1

+

(
3− pd

4

)n
. (5.25)

5.4.2 Distance fraud success probability for ATP

To find an upper bound for the adversary success probability in the distance fraud
for the ATP protocol, we use the result of Theorem 3. Indeed, this protocol behaves
like the graph-based protocol. The only difference between them is that the ATP
protocol creates a full tree as a graph. Therefore, in the ATP protocol the distance
fraud success probability is upper bounded by:

1
2n +

√
1

22n
− 4

2n + 4p

2
,

where

p =
i=n∏
i=1

(
1

2
+

1

22i+1

k=2n−1∑
k=0

(Ai[0, k])2

)
.

To give a complete equation, we define Ai[0, k] for a tree. For this purpose,
we consider that the nodes in the tree are labeled between 0 and 2n − 1 using a
breadth-first algorithm. Then:

Ai[0, k] =


1 if 2i − 1 ≤ k < 2i+1 − 1,

0 otherwise.



5.4. Experimental results and evaluation 95

Table 5.1: Memory consumption, mafia fraud success probability and distance fraud
success probability for the HKP protocol, the KAP protocol, the ATP protocols
(ATP and ATP3), and the graph-based protocol (GRAPH).

Memory Mafia Fraud Distance Fraud
HKP 2n [?]

(
3
4

)n [?]
(
3
4

)n 2

KAP 4n [?] Section 5.4.1
(
3
4 + pd

4

)n [?]
ATP 2n+1 − 2 [?]

(
1
2

)n
(n2 + 1) [?] Section 5.4.2

ATP3 14n
3 [?]

(
1
2

)n (5
2

)n
3 [?] (0.3999)

n
3 3

GRAPH 4n Corollary 1 Theorem 3

Finally we obtain:

p =

i=n∏
i=1

(
1

2
+

1

2i+1

)
.

5.4.3 Comparison

Since memory is a scarce resource in RFID tags and thus it is one of the main
concerns in distance-bounding protocols, we relax the ATP protocol to operate with
linear memory. As noted in [?], reducing memory in the ATP protocol increases
the adversary success probability for both types of fraud. Hence, we pick α = n

3 ,
in which case the memory consumption equals 14n

3 ≈ 5n, while a sufficient security
is still ensured. Note that this memory consumption is in the range of the other
studied protocol. This instance of the ATP protocol is named “ATP3”.

Table 5.1 depicts the values of the three parameters for each protocol that we are
considering. In terms of memory, the Hancke and Kuhn protocol is, undoubtedly,
the best protocol. As can be seen in Figure 5.6, when considering only mafia fraud
resistance, the KAP and the ATP protocols are the best ones. Only in terms of
distance fraud, the lowest adversary success probability is reached by the ATP
protocol (see Figure 5.7).

However, our aim is to find the best protocol given a security level in terms
of mafia fraud and distance fraud. To that end, Figure 5.8 represents, for each
pair of mafia and distance fraud success probabilities, the protocol needing a lowest
number of rounds to reach these probabilities. As it can be seen in Figure 5.8,
the graph-based protocol is, in general, the best option when considering memory
consumption, distance, and mafia fraud at the same time. In particular, if one

2The distance fraud probability for the HKP protocol is computed using the distance fraud
probability for the KAP protocol. Note that the KAP protocol with pd = 0 and the HKP protocol
are the same.

3The distance fraud probability for the ATP3 protocol is an accurate value, not an upper bound
like in ATP or GRAPH. It was computed by brute force, i.e. for a given instance, we computed the
adversary success probability. Then, considering all possible instances we deduce the probability
in the average case.
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Figure 5.6: Adversary success probability in the mafia fraud against the GRAPH
protocol, the HKP protocol and the ATP3 protocol. The ATP protocol in its stan-
dard configuration is not represented in this chart because it has the same mafia
fraud probability as the KAP protocol.
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Figure 5.7: Adversary success probability in the distance fraud against the GRAPH
protocol, the HKP protocol, and the ATP protocols (ATP and ATP3). The KAP
protocol is not represented in this chart because it has the same distance fraud
probability as the HKP protocol in the best case.

requires low success probabilities for both mafia and distance fraud, we stress the
particularly good behaviour of the graph-based protocol. It should be remarked
that in some cases more than one protocol is optimal in terms of number of rounds;
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Figure 5.8: Best protocols in terms of number of rounds given different values of
mafia fraud probability and distance fraud probability. The considered protocols
are: the graph-based protocol (GRAPH), the Hancke and Kuhn protocol (HKP),
the Kim and Avoine protocol (KAP), and the Avoine and Tchamkerten protocol
(ATP3). The ATP protocol in its standard configuration is not considered in this
chart because we are comparing only protocols with linear memory consumption.

in this case, the best one in terms of memory is chosen.

5.5 Conclusions

In this chapter, we contribute to balancing mafia fraud resistance, distance fraud
resistance and memory consumption for distance-bounding protocols. In particular,
we provide a way to compute an upper bound on the distance-fraud probability,
which is useful for analysing previous protocols and designing future ones. In addi-
tion, we propose a new distance-bounding protocol, and we show that the achieved
security level is better than all previously published distance-bounding protocols
when considering mafia fraud, distance fraud and memory at the same time.

We do not only provide a simple, fast, and flexible protocol, but we also introduce
the graph-based protocol concept and several new open questions. An interesting
question is to know if there are graph-based protocols that behave still better than
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the one presented here. In particular, if the number of rounds is not a critical
parameter, prover and verifier may be allowed to increase the number of rounds
while keeping a 2n-node graph. This means that some nodes may be used twice. In
such a case, the security analysis provided in this chapter must be refined. On the
other hand, although a bound on the distance fraud success probability is provided,
calculating the exact probability of success is still cumbersome.



Chapter 6

Microaggregation- and
Permutation-Based

Anonymisation of Mobility Data

This chapter describes a novel distance measure between trajectories not necessarily
defined over the same time span. By using it, two permutation-based trajectory
anonymisation algorithms are proposed. Both algorithms preserve the true original
locations of trajectories and provide better utility properties than previous algorithms.
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Various technologies such as GPS, RFID, GSM, etc., can sense and track the
whereabouts of objects (cars, parcels, people, etc.). In addition, the current storage
capacities allow collecting such object movement data in huge spatio-temporal da-
tabases. Analysing this kind of databases containing the trajectories of objects can
lead to useful and previously unknown knowledge. Therefore, it is beneficial to
share and publish such databases and let the analysts derive useful knowledge from
them —knowledge that can be applied, for example, to intelligent transportation,
traffic monitoring, urban and road planning, supply chain management, sightseeing
improvement, etc.

However, the privacy of individuals may be affected by the publication or the
outsourcing of databases of trajectories. Several kinds of privacy threats exist.
Simple de-identification realised by removing identifying attributes is insufficient to
protect the privacy of individuals. The biggest threat with trajectories is the “sensi-
tive location disclosure”. In this scenario, knowing the times at which an individual
visited a few locations can help an adversary to identify the individual’s trajectory
in the published database, and therefore learn the individual’s other locations at
other times. Privacy preservation in this context means that no sensitive location
ought to be linkable to an individual.

The risk of sensitive location disclosure is also affected by how much the adver-
sary knows. The adversary may have access to auxiliary information [?], sometimes
called side knowledge, background knowledge or external knowledge. The adversary
can link such background knowledge obtained from other sources to information in
the published database. Estimating the amount and extent of auxiliary information
available to the adversary is a challenging task.

There are quite a few differences between spatio-temporal data and microdata,
i.e. records describing individuals in a standard database with no movement data.
One real difference becomes apparent when considering privacy. Unfortunately, the
traditional anonymisation and sanitisation methods for microdata [?] cannot be di-
rectly applied to spatio-temporal data without considerable expense in computation
time and information loss. Hence, there is a need for specific anonymisation met-
hods to thwart privacy attacks and therefore reduce privacy risks associated with
publishing trajectories.

Trajectories can be modeled and represented in many ways [?]. Without loss
of generality, we consider a trajectory to be a timestamped path in a plane. By
assuming movements on the surface of the Earth, the altitude of each location visited
by a trajectory stays implicit; it could be explicitly restored if the need arose. More
formally, let timestamped location be a triple (t, x, y) with t being a timestamp and
(x, y) a location in R2. Intuitively, the timestamped location denotes that at time t
an object is at location (x, y).

Definition 20 (Trajectory). A trajectory is an ordered set of timestamped locations

T = {(t1, x1, y1), . . . , (tn, xn, yn)} , (6.1)
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where ti < ti+1 for all 1 ≤ i < n.

Definition 21 (Sub-trajectory). A trajectory S = {(t′1, x′1, y′1), . . . , (t′m, x′m, y′m)}
is a sub-trajectory of T in Expression 6.1, denoted S � T , if there exist integers
1 ≤ i1 < . . . < im ≤ n such that (t′j , x

′
j , y
′
j) = (tij , xij , yij ) for all 1 ≤ j ≤ m.

Hereinafter, we will use triple as a synonym for timestamped location. When
there is no risk of ambiguity, we also say just “location” to denote a timestamped
location.

We present two heuristic methods for preserving the privacy of individuals when
releasing trajectories. Both of them exactly preserve original locations in the sense
that the anonymised trajectories contain no fake, perturbed or generalised trajec-
tories. The first heuristic is based on microaggregation [?] of trajectories and per-
mutation of locations. Microaggregation has been successfully used in microdata
anonymisation to achieve k-anonymity [?, ?, ?]. We use it here for trajectory k-
anonymity (whereby an adversary cannot decide which of k anonymised trajectories
corresponds to an original trajectory which she partly knows), first by grouping
the trajectories into clusters of size at least k based on their similarity and then
transforming via location permutation the trajectories inside each cluster to pre-
serve privacy. The second heuristic aims no longer at trajectory k-anonymity, but
at location k-diversity (whereby knowing a sub-trajectory S of a certain original
trajectory T allows an adversary to discover a location in T \ S with probability
no greater than 1/k); this second heuristic is based on location permutation and its
strong point is that it takes reachability constraints into account: movement bet-
ween locations must follow the edges of an underlying graph (e.g., urban pattern)
so that not all locations are reachable from any given location. Experimental results
show that achieving trajectory k-anonymity with reachability constraints may not
be possible without discarding a substantial fraction of locations, typically those
which are rather isolated. This is the motivation for our second heuristic: it still
considers reachability but it reduces the number of discarded locations by replacing
k-anonymity at the trajectory level by k-diversity at the location level.

For clustering purposes, we propose a new distance for trajectories which na-
turally considers both spatial and temporal coordinates. Our distance is able to
compare trajectories that are not defined over the same time span, without resor-
ting to time generalisation. Our distance function can compare trajectories that are
timewise overlapping only partially or not at all. It may seem at first sight that the
distance computation is exponential in terms of all considered trajectories, but we
show that it is in fact computable in polynomial time.

We present empirical results for the two proposed heuristics using synthetic
data and also real-life data. We theoretically and experimentally compare our first
heuristic with a recent trajectory anonymisation method called (k, δ)-anonymity [?]
also aimed at trajectory k-anonymity without reachability constraints. Theoretical
results show that the privacy preservation of our first method is the same as that of
(k, δ)-anonymity but dealing with trajectories not having the same time span. For
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the second heuristic involving reachability constraints, no comparable counterparts
seem to exist in the literature.

6.1 Trajectory similarity measures

Using microaggregation for trajectory k-anonymisation requires a distance function
to measure the similarity between trajectories. Such a distance function must con-
sider both space and time. Although most spatial distances can be extended into
spatio-temporal distances by adding a time co-ordinate to spatial points, it is not
obvious how to balance the weight of spatial and temporal dimensions. Furthermore,
not all similarity measures for trajectories are suitable for comparing trajectories for
anonymisation purposes. The requirement for anonymisation is not just similarity
regarding shape, but also spatial and temporal closeness. Some typical distances for
trajectories include the Euclidean distance, the Hausdorff distance [?], the Fréchet
distance [?], the turning point distance [?], and distances based on time series [?]
—e.g., dynamic time warping (DTW), short time series (STS)— and on edit dis-
tance [?] —e.g, edit distance with real penalty (ERP), longest common sub-sequence
(LCSS), and the edit distance on real sequences (EDR) discussed next.

The edit distance on real sequences (EDR) [?] is the number of insert, delete, or
replace operations that are needed to change one sequence into another. If P and
Q are two sequences of m and n triples, respectively, where each triple λ has three
attributes – x-position λ.x, y-position λ.y and time λ.t – the distance EDR(P,Q)

is defined as
max{m,n} if m = 0 or n = 0

min{match(p1, q1) + EDR(Rest(P ), Rest(Q)), otherwise
1 + EDR(Rest(P ), Q), 1 + EDR(P,Rest(Q))}

where p1 and q1 are the first elements of a given sequence, Rest(·) is a function that
returns the input sequence without the first element, and where match(p, q) := 0 if
p and q are “close”, that is, they satisfy either |p.x− q.x| ≤ ε and |p.y− q.y| ≤ ε for
some parameter ε [?] or |p.x−q.x| ≤ ∆.x, |p.y−q.y| ≤ ∆.y, and |p.t−q.t| ≤ ∆.t for
a triple of parameters ∆ [?]; otherwise, match(p, q) := 1. This definition of match
means that the cost for one insert, delete, or replace operation in EDR is 1 if p and
q are not “close”.

EDR has been used for anonymisation in [?]. However, the edit distance and
variations thereof are not suitable to guide clustering for anonymisation purposes.
Indeed, Figure 6.1 shows trajectories with different degrees of “closeness” to trajec-
tory A, but whose EDR distance from A is the same in all cases. When time-stamps
are considered, the situation is even worse.

In Section 6.3, we define a distance measure which is better suited for anonymi-
sation clustering: it can compare trajectories defined over different time spans and
even trajectories that are time-wise non-overlapping.
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Figure 6.1: Trajectories B,C,D,E are placed at varying “closeness” from A, yet
their EDR distance from A is 3 in all cases. We assume that the first point of A
matches the first point of each of B,C,D,E; also, second points are assumed to
match each other, and the same for third points.

6.2 Utility and privacy requirements

Every trajectory anonymisation algorithm must combine utility and privacy. Ho-
wever, utility and privacy are two largely antagonistic concepts. What is useful in
a set of trajectories is application-dependent, so for each utility feature probably a
different anonymisation algorithm is needed.

6.2.1 Desirable utility features

The utility features that are usually considered in trajectory anonymisation are:
(i) trajectory length preservation, (ii) trajectory shape preservation, (iii) trajectory
time preservation, and (iv) minimisation of the number of discarded locations. We
include two additional utility features that are particularly meaningful in urban
scenarios:

• Location preservation. This essentially means that no fake or inaccurate lo-
cations are used to replace original locations; otherwise put, locations in the
anonymised trajectories should be locations visited by the original trajecto-
ries, without any generalisation or accuracy loss. Preserving original locations
helps answering several queries that may not be responded by generalisation
methods [?] or some microaggregation methods [?, ?]: (i) what is the ranking
of original (non-removed) locations, from most visited to least visited?; (ii) in
which original (non-removed) locations did two or more mobile objects meet?,
etc. On the other hand, if trajectory anonymisation rests on replacing true
locations with fake locations, an adversary can distinguish the latter from the
former and discard fake locations. Hence, location preservation is desirable
for both utility and privacy reasons.
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• Reachability. In the second proposed heuristic, easy reachability between two
successive locations in each anonymised trajectory is enforced. This means
that the distance from the i-th location to the i+ 1-th location on an anony-
mised location following the underlying network of streets and/or roads should
be at most Rs, where Rs is a preset parameter. Like location preservation, this
is as good for utility as it is for privacy: if the adversary sees that reaching the
i+ 1-th location from the i-th one takes a long trip across streets and roads,
she will guess that the section between those two locations was not present in
any original trajectory.

6.2.2 Specific utility measures

Basic utility measures are the number of removed trajectories and the number of
removed locations, whether during pre-processing, clustering or cluster anonymisa-
tion.

The distortion of the trajectory shape is another utility measure, which can
be captured with the space distortion metric [?, Sec.VI.B]. This metric also allows
accumulating the total space distortion of all anonymised trajectories from original
ones.

Definition 22 (Space distortion metric [?]). The space distortion of an anonymised
trajectory T ? with respect to its original trajectory T at time t when T has triple
(t, x, y) and T ? has possible triple (t, x?, y?), is

SDt(T, T
?) =

{
∆((x, y), (x?, y?)) if (x?, y?) is defined at t
Ω otherwise

where ∆ is a distance (e.g. Euclidean), and Ω a constant that penalises for removed
locations. The space distortion of an anonymised trajectory T ? from its original T
is then

SD(T, T ?) =
∑
t∈TS

SDt(T, T
?) ,

where TS are all the timestamps where T is defined. In particular, if T is discarded
during anonymisation, T ? is empty, and so SD(T, T ?) = nΩ, where n = |TS| is the
number of locations of T . In this way, the space distortion of a set of trajectories T
from its anonymised set T ? is easily defined as

TotalSD(T , T ?) =
∑
T∈T

SD(T, T ?) ,

where T ? ∈ T ? (which may be empty) corresponds to T ∈ T .

Another way to measure utility is by comparing the results between queries per-
formed on both the original data set T and the anonymised data setT ?. Intuitively,
when results on both data sets are similar for a large and diverse number of queries,
the anonymised data set can be regarded as preserving the utility of the original
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data set. The challenge of this utility measure is the selection of queries, which is
usually application-dependent or even user-dependent, i.e. two different users are
likely to perform different queries on the same trajectory data set.

In [?] six types of spatio-temporal range queries were introduced, aimed at eva-
luating the relative position of a moving object with respect to a region R in a time
interval [tb, te]. We have used these queries in our experimental work, even though
they were designed for use on uncertain trajectories (see Definition 23) rather than
synthetic trajectories.

Definition 23 (Uncertain trajectory). Given a trajectory T and an uncertainty
space threshold σ, an uncertain trajectory U(T, σ) is defined as the pair < T, σ >,
where (t, x, y) ∈ U(T, σ) if and only if ∃x′, y′ such that (t, x′, y′) ∈ T and the Eucli-
dean distance between (x, y) and (x′, y′) is not greater than σ.

Definition 24 (Possible motion curve). A possible motion curve PMCT of an
uncertain trajectory U(T, σ) is an ordered set of timestamped locations

PMCT = {(t1, x1, y1), . . . , (tn, xn, yn)} , (6.2)

such that (ti, xi, yi) ∈ U(T, σ) for all 1 ≤ i ≤ n.

In short, a possible motion curve defines one of the possible trajectories that
an object moving along an uncertain trajectory could follow. Unlike in [?], our
anonymised trajectories are not uncertain; hence, we will only use the two spatio-
temporal range queries proposed in that paper that can be adapted to non-uncertain
trajectories:

• Sometime_Definitely_Inside(T , R, tb, te) is true if and only if there exists a
time t ∈ [tb, te] at which every possible motion curve PMCT of an uncertain
trajectory U(T, σ) is inside region R. For a non-uncertain T , the previous
condition can be adapted as: if and only if there exists a time t ∈ [tb, te] at
which T is inside R.

• Always_Definitely_Inside(T , R, tb, te) is true if and only if at every time
t ∈ [tb, te], every possible motion curve PMCT of an uncertain trajectory
U(T, σ) is inside region R. For a non-uncertain T , the previous condition
becomes: if and only if at every time t ∈ [tb, te], trajectory T is inside R.

6.2.3 Adversarial model and target privacy properties

In our adversarial model, the adversary has access to the published anonymised set of
trajectories T ?. Furthermore, the adversary also knows that every location λ ∈ T ?
must be in the original set of trajectories T . Note that this adversary’s knowledge
makes an important difference from previous adversarial models [?, ?, ?, ?], because
in our model the linkage of some location with some user reveals the exact location
of this user rather than a generalised or perturbed location.
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Further, the method used for transforming the original set of trajectories T into
T ? is assumed known by the adversary. However, this does not include the method
parameters or the seeds for pseudo-random number generators, which are considered
secret. Indeed, the two methods we are proposing rely on random permutations of
locations and random selection of trajectories during the clustering process, and such
randomness is in practice implemented using pseudo-random number generators. If
an adversary knew the seeds of the generators, she could easily reconstruct the
original trajectories from the anonymised trajectories.

Finally, the adversary also knows a sub-trajectory S of some original target
trajectory T ∈ T (S � T ) and knows that the anonymised version of T is in T ?.
As in previous works, we consider that every location in T is sensitive, i.e. for any
location, learning that a specific user visited it represents useful knowledge for the
adversary.

Then, we identify two attacks:

1. Find a trajectory T ? ∈ T ? that is the anonymised version of T .

2. Given a location λ 6∈ S, determine whether λ ∈ T .

If the adversary succeeds in the first attack of linking a trajectory T ? with the
target T , the second is not trivial, because in general the locations in T ? will not be
those in T , but it is indeed easier. This means that both attacks are not independent.
However, the second attack can trivially succeed even if the first attack does not: if
all anonymised trajectories cross the same location λ and λ 6∈ S, the attacker knows
that λ ∈ T . As we show below, both attacks are related to the two well-known
privacy notions of k-anonymity [?, ?] and `-diversity [?], respectively.

Definition 25 (Trajectory p-privacy). Let PrT ? [T |S] denote the probability of the
adversary’s correctly linking the anonymised trajectory T ? ∈ T ? with T given the
adversary’s knowledge S � T . Then, trajectory p-privacy is met when PrT ? [T |S] ≤
p for every trajectory T ∈ T and every subset S � T .

Definition 26 (Trajectory k-anonymity). Trajectory k-anonymity is achieved if and
only if trajectory 1

k -privacy is met.

Definition 27 (Location p-privacy). Let Prλ[T |S] denote the probability of the ad-
versary’s success in correctly determining a location λ ∈ T \S, given the adversary’s
knowledge S � T . Then, location p-privacy is met when Prλ[T |S] ≤ p for every
triple (T, S, λ) such that T ∈ T , S � T and λ 6∈ S.

Definition 28 (Location k-diversity). Location k-diversity is achieved if and only
if location 1

k -privacy is met.

6.2.4 Discussion on privacy models

Achieving straightforward trajectory k-anonymity, where each anonymised trajec-
tory would be identical to k−1 other anonymised trajectories, would in general cause
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a huge information loss. This is why some other trajectory k-anonymity definitions
under different assumptions have been proposed.

The (k, δ)-anonymity definition [?, ?] relies on the uncertainty inherent to tra-
jectory data recorded by technologies like GPS. However, it may be hardly applied
when accurate data sets of trajectories are needed. Furthermore, in order to achieve
(k, δ)-anonymity, the k identical anonymised trajectories should be defined roughly
in the same interval of time and they must contain the same number of locations.
Such constraints are indeed hard to meet.

According to our privacy model, trajectory k-anonymity is achieved when there
are at least k anonymised trajectories in T ? having an anonymised version of T as
a sub-trajectory. Although this definition ignores the time dimension, it does not
require the length of the k anonymised trajectories to be equal. However, suppose
that the adversary has a trajectory T consisting of only one location, an individual’s
home; whatever the anonymisation method, the anonymised version of T is likely
to be very similar to T . This means that there will be k anonymised trajectories
containing the single location of T . However, not all of these anonymised trajectories
start at the single location of T . Since an individual’s home is likely to be the first
location of any individual’s original trajectory, those anonymised trajectories that
do not start at the single location of T (just pass through it) can be filtered out by
an adversary and only the remaining trajectories are considered. The same filtering
process can be performed if the adversary knows locations where the individual has
never been. In this way, using side knowledge the adversary identifies less than
k anonymised trajectories compatible with the original trajectory T . Hence, this
definition may not actually guarantee k-anonymity in the sense of Definition 26.

In conclusion, different levels of privacy can be provided according to different
assumptions on the original data, the anonymised data, and the adversary’s capabi-
lities. We defined above trajectory p-privacy (Definition 25) and location p-privacy
(Definition 27) in order to capture two different privacy notions when the original
locations are preserved.

6.3 Distance between trajectories

Clustering trajectories requires defining a similarity measure —a distance between
two trajectories. Because trajectories are distributed over space and time, a distance
that considers both spatial and temporal aspects of trajectories is needed. Many
distance measures have been proposed in the past for both trajectories of moving
objects and for time series but most of them are ill-suited to compare trajectories
for anonymisation purposes. Therefore we define a new distance which can compare
trajectories that are only partially or not at all timewise overlapping. We believe this
is necessary to cluster trajectories for anonymisation. We need some preliminary
notions.
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6.3.1 Contemporary and synchronised trajectories

Definition 29 (p%-contemporary trajectories). Two trajectories

Ti = {(ti1, xi1, yi1), . . . , (tin, xin, yin)}

and
Tj = {(tj1, xj1, yj1), . . . , (tjm, xjm, yjm)}

are said to be p%-contemporary if

p = 100 ·min(
I

tin − ti1
,

I

tjm − tj1
)

with I = max(min(tin, t
j
m)−max(ti1, t

j
1), 0).

Intuitively, two trajectories are 100%-contemporary if and only if they start at
the same time and end at the same time; two trajectories are 0%-contemporary if
and only if they occur during non-overlapping time intervals. Denote the overlap
time of two trajectories Ti and Tj as ot(Ti, Tj).

Definition 30 (Synchronised trajectories). Given two p%-contemporary trajectories
Ti and Tj for some p > 0, both trajectories are said to be synchronised if they have
the same number of locations time-stamped within ot(Ti, Tj) and these correspond to
the same time-stamps. A set of trajectories is said to be synchronised if all pairs of
p%-contemporary trajectories in it are synchronised, where p > 0 may be different
for each pair.

If we assume that between two locations of a trajectory, the object is moving
along a straight line between the locations at a constant speed, then interpolating
new locations is straightforward. Trajectories can be then synchronised in the sense
that if one trajectory has a location at time t, then other trajectories defined at that
time will also have a (possibly interpolated) location at time t. This transforma-
tion guarantees that the set of new locations interpolated in order to synchronise
trajectories is of minimum cardinality. Algorithm 4 describes this process. The
time complexity of this algorithm is O(|TS|2) where |TS| is the number of different
time-stamps in the data set.

6.3.2 Definition and computation of the distance

Definition 31 (Distance between trajectories). Consider a set of synchronised tra-
jectories T = {T1, . . . , TN} where each trajectory is written as

Ti = {(ti1, xi1, yi1), . . . , (tini , x
i
ni , y

i
ni)} .

The distance between trajectories is defined as follows. If Ti, Tj ∈ T are p%-
contemporary with p > 0, then

d(Ti, Tj) =
1

p

√√√√ ∑
t`∈ot(Ti,Tj)

(xi` − x
j
`)

2 + (yi` − y
j
` )

2

|ot(Ti, Tj)|2
.
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Algorithm 4 Trajectory synchronisation
1: Require: T = {T1, . . . , TN} a set of trajectories to be synchronised, where each
Ti ∈ T is of the form:

Ti = {(ti1, xi1, yi1), . . . , (tini , x
i
ni , y

i
ni)};

2: Let TS = {tij | (tij , xij , yij) ∈ Ti : Ti ∈ T } be all time-stamps from all locations
of all trajectories;

3: for all Ti ∈ T do
4: for all ts ∈ TS with ti1 < ts < ti

ni do
5: if location having time-stamp ts is not in Ti then
6: insert new location in Ti having the time-stamp ts and coordinates inter-

polated from the two timewise-neighboring locations;
7: end if
8: end for
9: end for

If Ti, Tj ∈ T are 0%-contemporary but there is at least one subset of T

T k(ij) = {T ijk1 , T ijk2 , . . . , T ijk
nijk} ⊆ T

such that T ijk1 = Ti, T
ijk
nijk = Tj and T

ijk
` and T ijk`+1 are p`%-contemporary with p` > 0

for ` = 1 to nijk − 1, then

d(Ti, Tj) = min
T k(ij)

nijk−1∑
`=1

d(T ijk` , T ijk`+1)


Otherwise d(Ti, Tj) is not defined.

The computation of the distance between every pair of trajectories is not ex-
ponential as it could seem from the definition. Polynomial-time computation of a
distance graph containing the distances between all pairs of trajectories can be done
as follows.

Definition 32 (Distance graph). A distance graph is a weighted graph where

(i) nodes represent trajectories,
(ii) two nodes Ti and Tj are adjacent if the corresponding trajectories are p%-

contemporary for some p > 0, and
(iii) the weight of the edge (Ti, Tj) is the distance between the trajectories Ti and

Tj.

Now, given the distance graph for T = {T1, . . . , TN}, the distance d(Ti, Tj) for
two trajectories is easily computed as the minimum cost path between the nodes
Ti and Tj , if such path exists. The inability to compute the distance for all possi-
ble trajectories (the last case of Definition 31) naturally splits the distance graph
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into connected components. The connected component that has the majority of the
trajectories must be kept, while the remaining components represent outlier trajec-
tories that are discarded in order to preserve privacy. Finally, given the connected
component of the distance graph having the majority of the trajectories of T , the
distance d(Ti, Tj) for any two trajectories on this connected component is easily
computed as the minimum cost path between the nodes Ti and Tj . The minimum
cost path between every pair of nodes can be computed using the Floyd-Warshall
algorithm [?] with computational cost O(N3), i.e. in polynomial time.

6.3.3 Intuition and rationale of the distance

In order to deal with the time dimension, our distance measure applies a linear
penalty of 1

p to those trajectories that are p%-contemporary. This means that, the
closer in time are two trajectories, the shorter is our distance between both. It
should be remarked that we choose a linear penalty because the Euclidean distance
is also linear in terms of the spatial coordinates and the Euclidean distance is the
spatial distance measure we consider by default. Other distances and other penalties
might be chosen, e.g. 1

p2
.

A problem appears when considering 0%-contemporary trajectories. How can
two non-overlapping trajectories be penalised? A well-known strategy is to give
a weight to the time dimension and another weight to the spatial dimension. By
doing so, the time distance and the spatial distance can be computed separately,
and later be merged using their weights. However, determining proper values for
these weights is a challenging task.

Anyway, the following lemma guarantees that, whenever we consider two trajec-
tories at minimum distance for clustering, they do have some overlap.

Lemma 1. Any two trajectories in data set T at minimum distance are p%-
contemporary with p > 0.

Proof: Consider a trajectory Ti ∈ T and another trajectory Tj ∈ T at mini-
mum distance from Ti. Assume that Ti and Tj are not p%-contemporary with p > 0.
Then, since the distance between Ti and Tj is defined, according to Definition 31 a
subset of distinct trajectories T (ij) = {T ij1 , T ij2 , . . . , T ijnij} ⊆ T must exist such that
T ij1 = Ti, T

ij
nij = Tj and T ij` and T ij`+1 are p`%-contemporary with p` > 0 for ` = 1

to nij − 1, and

d(Ti, Tj) =

nij−1∑
`=1

d(T ij` , T
ij
`+1) .

Then d(Ti, Tj) > d(T ij` , T
ij
`+1) for all ` from 1 to nij − 1 (strict inequality holds

because all trajectories in T (ij) are distinct). Thus, we reach the contradiction that
d(Ti, Tj) is not minimum. Hence, the lemma must hold. �
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6.4 Anonymisation methods

We present two anonymisation methods, called SwapLocations and ReachLocations,
respectively, which yield anonymised trajectories consisting of true original locati-
ons. The first method is partially based on the microaggregation [?] of trajectories
and partially based on the permutation of locations. The second method is based
on the permutation of locations only. The main difference between the SwapTriples
method [?] and the two new methods we propose here is that the latter effectively
guarantees trajectory k-anonymity (SwapLocations) or location k-diversity (Rea-
chLocations). To that end, an original triple is discarded if it cannot be swapped
randomly with another triple drawn from a set of k − 1 other original triples.

Our two methods differ from each other in several aspects. The first method as-
sumes an unconstrained environment, while the second one considers an environment
with mobility constraints, like an underlying street or road network. SwapLocations
effectively achieves trajectory k-anonymity. ReachLocations provides higher utility
by design, but regarding privacy, it offers location k-diversity instead of trajectory
k-anonymity. A common feature of both methods is that locations in the resulting
anonymised trajectories are true, fully accurate original locations, i.e. no fake, ge-
neralised or perturbed locations are given in the anonymised data set of trajectories.

6.4.1 The SwapLocations method

Algorithm 5 describes the process followed by the SwapLocations method in order to
anonymise a set of trajectories. First, the set of trajectories is partitioned into several
clusters. Then, each cluster is anonymised using the SwapLocations function in
Algorithm 6. We should remark here that we only consider trajectories for which the
distance to other trajectories can be computed using the distance in Definition 31.
Otherwise said, given the distance graph G (Definition 32), our distance measure
can only be used within one of the connected components of G; obviously, we take
the trajectories in the largest connected component of G. It should also be remarked
that Algorithm 4 is only used to compute the distance between trajectories. Once
a cluster C is created, the anonymisation algorithm works over the original triples
of the trajectories in C, and not over the triples created during synchronisation.

We limit ourselves to clustering algorithms which try to minimise the sum of the
intra-cluster distances or approximate the minimum and such that the cardinality
of each cluster is k, with k an input parameter; if the number of trajectories is
not a multiple of k, one or more clusters must absorb the up to k − 1 remaining
trajectories, hence those clusters will have cardinalities between k + 1 and 2k −
1. This type of clustering is precisely the one used in microaggregation [?]. The
purpose of minimising the sum of the intra-cluster distances is to obtain clusters as
homogeneous as possible, so that the subsequent independent treatment of clusters
does not cause much information loss. The purpose of setting k as the cluster size
is to fulfill trajectory k-anonymity, as shown in Section 6.5.1. We might employ
any microaggregation heuristic for clustering purposes (see details in Section 6.4.3
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below).

Algorithm 5 Cluster-based trajectory anonymisation(T , Rt, Rs, k)
1: Require: (i) T = {T1, . . . , TN} a set of original trajectories such that d(Ti, Tj)

is defined for all Ti, Tj ∈ T , (ii) Rt a time threshold and Rs a space threshold,
both of them public;

2: Use any clustering algorithm to cluster the trajectories of T , while minimising
the sum of intra-cluster distances measured with the distance of Definition 31
and ensuring that minimum cluster size is k;

3: Let C1, C2, . . . , CnT be the resulting clusters;
4: for all clusters Ci do
5: C?i = SwapLocations(Ci, Rt, Rs); // Algorithm 6
6: end for
7: Let T ? = C?1 ∪ · · · ∪ C?nT be the set of anonymised trajectories.

The SwapLocations function (Algorithm 6) begins with a random trajectory T
in C. The function attempts to cluster each unswapped triple λ in T with another
k − 1 unswapped triples belonging to different trajectories such that: (i) the time-
stamps of these triples differ by no more than a time threshold Rt from the time-
stamp of λ; (ii) the spatial coordinates differ by no more than a space threshold
Rs. If no k − 1 suitable triples can be found that can be clustered with λ, then
λ is removed; otherwise, random swaps of triples are performed within the formed
cluster. Randomly swapping this cluster of triples guarantees that any of these
triples has the same probability of remaining in its original trajectory or becoming
a new triple in any of the other k−1 trajectories. Note that Algorithm 6 guarantees
that every triple λ of every trajectory T ∈ C will be swapped or removed.

The SwapLocations function specified by Algorithm 6 swaps entire triples, that
is, time and space coordinates. The following example illustrates the advantages of
swapping time together with space.

Example 1. Imagine John attended one day the political protests in Tahrir Square,
Cairo, Egypt, but he would not like his political views to become broadly known.
Assume John’s trajectory is anonymised and published. Assume further that an
adversary knows the precise time John left his hotel in the morning, say 6:36 AM
(e.g. because the adversary has bribed the hotel concierge into recording John’s
arrival and departure times). Now:

• If SwapLocations swapped only spatial coordinates, the adversary could re-
identify John’s trajectory as one starting with a triple (6:36 AM, x′h, y

′
h).

Furthermore, (x′h, y
′
h) must be a location within a distance Rs from the hotel

coordinates (xh, yh), although the adversary does not know the precise value
of Rs. The re-identified trajectory would contain all true timestamps of John’s
original trajectory (because they would not have been swapped), and spatial
coordinates within distance Rs of John’s really visited spatial coordinates.



6.4. Anonymisation methods 113

Algorithm 6 SwapLocations(C,Rt, Rs)
1: Require: (i) C a cluster of trajectories to be transformed, (ii) Rt a time thres-

hold and Rs a space threshold;
2: Mark all triples in trajectories in C as “unswapped”;
3: Let T be a random trajectory in C;
4: for all “unswapped” triples λ = (tλ, xλ, yλ) in T do
5: Let U = {λ}; // Initialise U with {λ}
6: for all trajectories T ′ in C with T ′ 6= T do
7: Look for an “unswapped” triple λ′ = (tλ′ , xλ′ , yλ′) in T ′ minimising the

intra-cluster distance in U ∪ {λ′} and such that:

|tλ′ − tλ| ≤ Rt

0 ≤
√

(xλ′ − xλ)2 + (yλ′ − yλ)2 ≤ Rs ;

8: if λ′ exists then
9: U ← U ∪ {λ′};

10: else
11: Remove λ from T ;
12: Go to line 6 in order to analyse the next triple λ;
13: end if
14: end for
15: Randomly swap all triples in U ;
16: Mark all triples in U as “swapped”;
17: end for
18: Remove all “unswapped” triples in C;
19: Return C

Hence, it would be easy to check whether John was near Tahrir Square during
that day. Without swapping times, privacy protection can only be obtained
by taking Rs large enough so that within distance Rs of the original locations
visited by John there are several semantically different spatial coordinates. To
explain what we mean by semantic difference, assume (x, y) is Tahrir Square
and the trajectory anonymiser guarantees that he has taken Rs large enough
so that (x, y) could be swapped with some spatial coordinates (x′, y′) off Tahrir
Square; even if (x′, y′) turned out to be still within Tahrir Square, John could
claim to have been off Tahrir Square; the adversary could not disprove such a
claim, because in fact (x, y) could be at a distance Rs from (x′, y′) and hence
outside the Square. However, a large Rs means a large total space distortion.

• If entire triples are swapped, as actually done by SwapLocations, the adver-
sary can indeed locate an anonymised trajectory containing (not necessarily
starting with) triple (6:36 AM, xh, yh). However, there is only a chance 1/k

that this triple was not swapped from another of the k − 1 original trajecto-
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ries with which John’s original trajectory was clustered. Similarly, the other
triples in the anonymised trajectory containing (6:36 AM, xh, yh) have also
most likely “landed” in that anonymised trajectory as a result of a swap with
some location in some of the k − 1 original trajectories clustered with John’s.
Hence, John’s trajectory is cloaked with k−1 other trajectories. We will prove
in Section 6.5.1 that this guarantees trajectory k-anonymity in the sense of
Definition 26. In particular, the triple (t, x, y) corresponding to John at Tahrir
Square will appear in one of the k anonymised trajectories, unless that triple
has been removed by the SwapLocations function because it was unswappable
(the smaller Rt and Rs, the more likely it is for the triple to be removed).

6.4.2 The ReachLocations method

The ReachLocations method, described in Algorithm 7, takes reachability con-
straints into account: from a given location, only those locations at a distance
below a threshold following a path in an underlying graph (e.g., urban pattern or
road network) are considered to be directly reachable. Enforcing such reachability
constraints while requiring full trajectory k-anonymity would result in a lot of ori-
ginal locations being discarded. To avoid this, trajectory k-anonymity is changed
by another useful privacy definition: location k-diversity.

Computationally, this means that trajectories are not microaggregated into clus-
ters of size k. Instead, each location is k-anonymised independently using the entire
set of locations of all trajectories. To do so, a cluster Cλ of “unswapped” locations
is created around a given location λ, i.e. λ ∈ Cλ. The cluster Cλ is constrained
as follows: (i) it must have the lowest intra-cluster distance among those clusters
of k “unswapped” locations that contain the location λ; (ii) it must have locations
belonging to k different trajectories; and (iii) it must contain only locations at a
path from λ at most Rs long and with time-stamps differing from tλ at most Rt.
Then, the spatial coordinates (xλ, yλ) are swapped with the spatial coordinates of
some random location in Cλ and both locations are marked as “swapped”. If no
cluster Cλ can be found, the location λ is removed from the data set and will not be
considered anymore in the subsequent anonymisation. This process continues until
no more “unswapped” locations appear in the data set.

It should be emphasised that, according to Algorithm 7, two successive locations
λij and λ

i
j+1 of an original trajectory Ti may be cloaked with respective sets of k−1

locations belonging to different sets of k− 1 original trajectories; for this reason we
cannot speak of trajectory k-anonymity, see the example below.

Example 2. Consider k−1 trajectories within city A, k−1 trajectories within city
B and one trajectory TAB crossing from A to B. When applying ReachLocations,
the initial locations of TAB are swapped with locations of trajectories within A,
whereas the final locations of TAB are swapped with locations of trajectories within
B. Imagine that an adversary knows a sub-trajectory S of TAB containing one
location λA in A and one location λB in B. Assume λA and λB are not removed by
ReachLocations anonymisation. Now, the adversary will know that the anonymised
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trajectory T ?AB corresponding to TAB is the only anonymised trajectory crossing
from A to B. Thus, there is no trajectory k-anonymity, even if the adversary will
be unable to determine the exact locations of TAB \ S, because each of them has
been swapped within a set of k locations.

Algorithm 7 swaps only spatial coordinates instead of full triples. We show in the
example below that this is enough for ReachLocations to achieve location k-diversity
(we have shown above that it cannot achieve trajectory k-anonymity anyway). If
swapping time coordinates is not beneficial in terms of privacy guarantees, they
should not be swapped, because the fact that anonymised trajectories preserve the
original sequence of time-stamps of original trajectories increases their utility.

Example 3. Let us resume Example 1, but now assume that ReachLocations is used
instead of SwapLocations to anonymise trajectories. In this case, the adversary will
find an anonymised trajectory starting with (6:36 AM,x′h,y

′
h). This anonymised

trajectory will contain all true timestamps of John’s original trajectory. However,
the spatial coordinates appearing in any location of this re-identified trajectory
are John’s original spatial coordinates with a probability at most 1/k. We will
prove in Section 6.5.2 below that this guarantees location k-diversity in the sense
of Definition 28. If we want to prevent the adversary from making sure that John
visited Tahrir Square, we should take Rs large enough (the discussion in Example 1
about the protection afforded by a large Rs when time is not swapped is valid here).

6.4.3 Complexity of SwapLocations and ReachLocations

We first give a complexity assessment of SwapLocations and ReachLocations assu-
ming that the distance graph mentioned in Section 6.3.2 has been precomputed and
is available. This is reasonable, because the distance graph needs to be computed
only once, while the anonymisation methods may need to be run several times (e.g.
with different parameters). Regarding SwapLocations, we have:

• Algorithm 5 can use any fixed-size microaggregation heuristic for clustering
(e.g. MDAV in [?]). Most microaggregation heuristics have quadratic com-
plexity, that is O(N2), where N is the number of trajectories.

• Algorithm 5 calls the procedure SwapLocations once for each resulting cluster,
that is, O(N/k) times.

• In the worst case, the complexity of procedure SwapLocations (Algorithm 6)
is proportional to the number of locations of the longest trajectory in C,
say O(nmax). For each location, a search of another location for swapping
is performed among the other k − 1 trajectories. The number of candidates
for swapping is O((k − 1)nmax). Hence, the complexity of SwapLocations is
O((k − 1)n2max).

• The total complexity of the method is thus

O(N2) +O(N/k) ·O((k − 1)n2max) = O(N2) +O(Nn2max) (6.3)
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Regarding the complexity of ReachLocations, we have

• Algorithm 7 has an external loop which is called N times, where N is the
number of trajectories in T . For each trajectory, a swap is attempted for each
of its unswapped locations. Hence the algorithm performs O(Nnmax) swaps,
where nmax is the number of locations in the longest trajectory.

• Each swap involves forming a cluster which k− 1 locations selected from TL,
which takes time proportional to the total number of locations in TL, that is,
O(Nnmax).

• Hence, the total complexity of the method is O(N2n2max).

By comparing the last expression and Expression 6.3, we see that both SwapLo-
cations and ReachLocations are quadratic inN and quadratic in nmax, but ReachLo-
cations is slower. Such complexity motivates the following two comments related to
scalability:

• If the number of trajectories N in the original data set is very large, quadratic
complexity may be very time consuming. In this case, a good strategy is to
use some blocking technique to split the original data set into several subsets
of trajectories, each of which should be anonymised separately.

• nmax being large may be less problematic than N being large, provided that
only a small fraction of trajectories have nmax or close to nmax locations. If
a lot of trajectories are very long, a good strategy would be to split each of
these into two or more trajectories and anonymise them independently.

Finally, in case we add the time complexity of the computation of the distance
graph mentioned in Section 6.3.2 (which is O(N3) using the Floyd-Warshall algo-
rithm), the time complexities of both SwapLocations and ReachLocations become
O(N3) +O(Nn2max) and O(N3) +O(N2n2max), respectively.

6.5 Privacy guarantees

6.5.1 Privacy guarantees of SwapLocations

The main difference between the SwapTriples method in [?] and the SwapLocations
method here is that, in the latter, no original location remains unswapped in an
anonymised trajectory.

Proposition 2. Let S � TS be the adversary’s knowledge of a target original trajec-
tory TS and λ1, λ2, · · · , λ|S| be all triples in S. For every trajectory Ti, the probability
that the triple λ in S appears in the anonymised version T ?i of Ti produced by Swap-
Locations is:

Pr(λ ∈ T ?i |λ ∈ S) =


1
k if TS and Ti lie in the same cluster

0 otherwise.
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Proof: By construction of Algorithm 6, if TS and Ti do not lie in the same
cluster, there is no possibility of swapping triples between them. Hence, in this case,
Pr(λ ∈ T ?i |λ ∈ S) = 0.

Let T1, T2, · · · , Tk ∈ T be k trajectories that are anonymised together in the same
cluster by the SwapLocations method. Without loss of generality, let us assume that
TS = T1. By construction of Algorithm 6, for every 1 ≤ i ≤ k, Pr(λ ∈ T ?i |λ ∈ T1)
is 0 if λ was removed, 1

k otherwise. Note that a swapping option is to swap a triple
with itself, that is, not to swap it. Since it does not make sense to consider removed
triples in S, we conclude that Pr(λj ∈ T ?i |λj ∈ T1) = 1

k , ∀1 ≤ j ≤ |S|, 1 ≤ i ≤ k

and, in consequence, Pr(λj ∈ T ?i |λj ∈ S) = 1
k , ∀1 ≤ j ≤ |S|, 1 ≤ i ≤ k. �

Theorem 4. The SwapLocations method achieves trajectory k-anonymity.

Proof: By Proposition 2, any sub-trajectory S′ � S � T1 has the same
probability of being a sub-trajectory of T ?1 than of being a sub-trajectory of any
of the k − 1 trajectories T ?2 , · · · , T ?k . Thus, given S, an adversary is not able to
link T1 with T ?1 with probability higher than 1

k . Therefore, SwapLocations satisfies
1
k -privacy according to Definition 25; according to Definition 26, it also satisfies
trajectory k-anonymity. �

6.5.2 Privacy guarantees of ReachLocations

We show below that ReachLocations provides location k-diversity.

Proposition 3. Any triple λ in an original trajectory T appears in the anonymised
trajectory T ? corresponding to T obtained with ReachLocations if and only if λ was
not removed and was swapped with itself, which happens with probability at most 1

k .

Proof: Let us prove the necessity implication. By construction of Algorithm 7,
any triple λ whose spatial coordinates (point) cannot be swapped within a cluster
C∪{λ} containing k different points belonging to k different trajectories is removed
and does not appear in the set of anonymised trajectories. Further, the only way
for a non-removed triple λ ∈ T to remain unaltered in T ? is precisely that its point
is swapped with itself, which happens with probability 1

k . Therefore, to remain
unaltered in T ?, a triple in T needs to avoid removal and to have its point swapped
with itself, which happens with probability at most 1

k .
Now let us prove the sufficiency implication. Assume that λ = (t, x, y) ∈ T

appears in T ? without having been swapped with itself. Then, by construction
of ReachLocations, λ ∈ T ? must have been formed as the result of swapping a
triple (t, x′, y′) ∈ T with a triple (t′, x, y) from another original trajectory, where
(x′, y′) 6= (x, y). Buth then T would contain two triples with the same time-stamp
t and different spatial locations, which is a contradiction. �

Theorem 5. The ReachLocations method achieves location k-diversity.

Proof: Assume the adversary knows a sub-trajectory S of an original trajec-
tory T . The sequence of time-stamps in S allows the adversary to re-identify the
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anonymised trajectory T ? corresponding to T (because the time-stamp sequence is
preserved). By Proposition 3, any triple λ ∈ T ? \S belongs to T \S with probability
at most 1

k . Now, consider a triple λ = (t, x, y) ∈ T ??\S, where T ?? is an anonymised
trajectory different from T ?. The probability that λ came to T ?? \ S from T \ S is
the probability that λ was swapped and swapping did not alter it. This probability
is zero, because swaps preserve time coordinates but take place only between triples
having different space coordinates. Hence, in terms of Definition 25, Prλ[T |S] ≤ 1

k

for every triple (T, S, λ) such that T ∈ T , S � T and λ 6∈ S. �
Note that the previous proof also implies that, even if a triple λ = (t, x, y) 6∈ S

is shared by M > 1 anonymised trajectories, the probability of λ ∈ T \ S remains
at most 1

k . What can be inferred by the adversary, however, is that M original tra-
jectories (in general not the ones corresponding to the M anonymised trajectories)
visited spatial coordinates (x, y) at possibly different times. Indeed, (t, x, y) can be
obtained by swapping (t′, x, y) and (t, x′, y′) for any t′ such that |t′ − t| ≤ Rt and
for any (x′, y′) 6= (x, y) at path distance at most Rs. If M is the total number of
anonymised trajectories, then the adversary can be sure that original trajectory T
visited spatial coordinates (x, y) at some time t′ such that |t′ − t| ≤ Rt. Such infe-
rence by the adversary does not violate location k-diversity: violation would require
guessing both the spatial and temporal coordinates of a triple in T \ S. Of course,
the time threshold Rt must be taken large enough so that the time coordinate t is
sufficiently protected.

6.6 Experimental results and evaluation

We implemented SwapLocations and ReachLocations. SwapLocations performs
clustering of trajectories using the partitioning step of the MDAV microaggrega-
tion heuristic [?]. We used two data sets in our experiments:

• Synthetic data set. We used the Brinkhoff’s generator [?] to generate 1,000
synthetic trajectories which altogether visit 45,505 locations in the German
city of Oldenburg. Synthetic trajectories generated with the Brinkhoff’s ge-
nerator have also been used in [?, ?, ?, ?]. We used this data set mainly for
comparing our methods with (k, δ)-anonymity [?]. The number of trajectories
being moderate, we were able to run in reasonable time the methods to be
compared with a large number of different parameter choices. Another advan-
tage is that the street graph of Oldenburg was available, which is necessary to
run ReachLocations. The downside of this data set having a moderate num-
ber of trajectories is that these are rather sparse, which causes the relative
distortion in the anonymised data set to be substantial, no matter the method
used. Anyway, this is not a serious problem to compare methods with each
other.

• Real-life data set. We also used a real-life data set of cab mobility traces that
were collected in the city of San Francisco [?]. This data set consists of 536
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files, each of them containing the GPS coordinates of a cab during a period
of time. After a filtering process, we obtained 4582 trajectories and 94 lo-
cations per trajectory on average. The advantage of this data set over the
synthetic one is that it contains a larger number of trajectories and that these
are real ones. Then, we show through a real example how appropriate is our
distance metric for trajectory clustering. Also, we present utility measures
on the SwapLocations method for this real-life data set using different space
thresholds. The weakness of this data set is that it cannot be used for Rea-
chLocations, because it does not include the underlying street graph of San
Francisco.

6.6.1 Results on synthetic data

For the sake of reproducibility, we indicate the parameters we used in Brinkhoff’s
generator to generate our Oldenburg synthetic data set: 6 moving object classes
and 3 external object classes; 10 moving objects and 1 external object generated
per timestamp; 100 timestamps; speed 250; and “probability” 1,000. This resulted
in 1,000 trajectories containing 45,405 locations. The maximum trajectory length
was 100 points, the average length was 45.4 locations, and the median length was
44 locations.

6.6.1.1 Implementation details of our methods

We have introduced a new distance measure between trajectories used by the Swap-
Locations proposal during the clustering process. As mentioned in Section 6.4.1
above, our distance function can only be used within one of the connected compo-
nents of the distance graph G. During the construction of the distance graph for the
synthetic data we found 11 connected components, 10 of them of size 1. Therefore,
we removed these 10 trajectories in order to obtain a new distance graph with just
one connected component. In this way, we preserved 99% percent of all trajectories
before the anonymisation process. The removed trajectories were in fact trajectories
of length one, i.e. with just one location in each one.

The SwapLocations method has been implemented using the following simple mi-
croaggregation method for trajectories: first, create clusters of size k with minimum
intra-cluster distance and then disperse the up to k − 1 unclustered trajectories to
existing clusters while minimising the intra-cluster distance. This algorithm incurs
no additional discarding of trajectories.

On the other hand, the ReachLocations method does not remove trajectories, un-
like the SwapLocations method. It does, however, remove non-swappable locations,
which causes the removal of any trajectory consisting of non-swappable locations
only.
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6.6.1.2 Implementing (k, δ)-anonymity for comparison with our method

We compared our proposals with (k, δ)-anonymity [?]. Since (k, δ)-anonymity only
works over trajectories having the same time span, first a pre-processing step to
partition the trajectories is needed. Superimposing the begin and end times of the
trajectories through reduction of the time coordinate modulo a parameter π does not
always yield at least k trajectories having the same time span; it may also happen
that a trajectory disappears because the new reduced end time lies before the new
reduced begin time.

We have used π = 3 which kept the maximum (and so discarded the minimum)
trajectories. From the 1,000 synthetic trajectories, 40 were discarded because the
end time was less than the begin time and 187 were discarded because there were
at most 4 trajectories having the same time span. In total, 227 (22.7%) trajecto-
ries were discarded just in the pre-processing step. The remaining 773 trajectories
were in 32 sets having the same time span, each set containing a minimum of 15
trajectories and 24 on average.

We performed (k, δ)-anonymisation for k = 2, 4, 6, 8, 10, and 15 and δ = 0,
1000, 2000, 3000, 4000 and 5000. Because of the pre-processing step, using a higher
k was impossible without causing a significant number of additional trajectories to
be discarded.

6.6.1.3 Utility comparison

The performance of our proposals strongly depends on the values of the time and
space threshold parameters, denoted as Rt and Rs, respectively. In practice, these
values must be chosen to maximise utility while affording sufficient privacy pro-
tection. Too large thresholds reduce utility (large space distortion if Rs is too high
and large time distortion is Rt is too high), but too small thresholds reduce utility
because of removal of many unswappable locations. As a rule of thumb, as illustra-
ted in Example 1, the space threshold Rs must be sufficiently large so that within
a radius Rs of any spatial location there are sufficiently distinct locations (e.g. if
(x, y) lies in Tahrir Square, Cairo, there should be points outside the Square within
a radius Rs of (x, y)).

In order to compute the total space distortion, a value for Ω must be chosen and
this can be a challenging task. Note that the value of Ω is application-dependent (e.g.
for applications where the distortion should measure the accuracy of trajectories Ω

should be zero so that only non-removed triples contribute to TotalSD, while for
applications that should avoid removing any triple Ω should be very high). For this
reason we propose to compare separately the following three utility properties: (i)
total space distortion; (ii) percentage of removed trajectories; and (iii) percentage
of removed locations. To do so, we set Ω = 0 when computing the total space
distortion. Consequently, the percentage of removed triples as well as the percentage
of removed trajectories are considered separately from the total space distortion.

It should be remarked that the computation of the total space distortion of
the ReachLocations method is done using the Euclidean distance between locations
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rather than the distance defined by the reachability constraints (distance on the
underlying network). Note that reachability constraints should be considered du-
ring the anonymisation process but not necessarily when computing the total space
distortion.

For successive anonymisations aimed at comparing the SwapLocations and Re-
achLocations methods with (k, δ)-anonymity, we set Rt and Rs in a way to obtain
roughly the same total space distortion values as in (k, δ)-anonymity (see Table 6.1)
with Ω = 0. The idea is that, after assuring that the three methods achieve roughly
the same total space distortion, we will be able to focus on other utility properties
like the percentage of removed trajectories and the percentage of removed locations.
It should be noted that our comparison is not entirely fair for any of the three met-
hods because all of them are aimed at achieving different privacy notions. However,
we believe that our results are indicative of the weaknesses and the strengths of our
proposals.

Table 6.1: Total space distortion (TotalSD) of (k, δ)-anonymity for several parameter
values (e6 stands for ×106)

δ \ k 2 4 6 8 10 15
0 48e6 93e6 120e6 143e6 165e6 199e6

1,000 19e6 60e6 86e6 109e6 131e6 165e6
2,000 4e6 32e6 56e6 78e6 99e6 133e6
3,000 .9e6 14e6 32e6 52e6 71e6 104e6
4,000 .2e6 5e6 16e6 32e6 48e6 79e6
5,000 .03e6 2e6 7e6 18e6 31e6 58e6

The above principle of equating the space distortions with (k, δ)-anonymity
yields a value for the space threshold Rs in each of SwapLocations and ReachLoca-
tions; however, it does not constrain the time threshold, which we set at Rt = 100.
Regarding Rs, we set it to achieve the total space distortions of (k, δ)-anonymity
for cluster size k = {2, 4, 6, 8, 10, 15} and

δ = {0, 1000, 2000, 3000, 4000, 5000}
(parameter values considered in Table 6.1). In order to find such space thresholds
efficiently, we assume that the total space distortions of our methods define a mo-
notonically increasing function of the space threshold, i.e. the higher the space
threshold, the higher the total space distortion. Under this assumption, we perform
a logarithmic search over the set of space thresholds defined by the interval [0, 106].
The reason behind defining the maximum value for the space threshold as 106 is
that it is high enough to achieve low numbers of removed trajectories. Indeed, as
shown in Figure 6.2, for both methods there exists a value Rscutoff < 106 such that,
for every space threshold Rs > Rscutoff , neither the total space distortion nor the
percentage of removed locations and removed trajectories significantly change. Ta-
ble 6.2 and Table 6.3 show the values of space thresholds used in each configuration
of (k, δ)-anonymity for SwapLocations and ReachLocations, respectively.
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Figure 6.2: Top, percentage of removed trajectories and locations with k = 10,
Rt = 100 and several values of Rs for SwapLocations (SL) and ReachLocations
(RL). Bottom, total space distortion with k = 10, Rt = 100 and several values of
Rs for SwapLocations and ReachLocations
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Table 6.2: Space thresholds used in SwapLocations to match the total space distor-
tion of each configuration of (k, δ)-anonymity

δ \ k 2 4 6 8 10 15
0 106 106 106 106 106 106

1,000 106 106 106 106 106 106

2,000 899 106 106 106 106 106

3,000 257 106 106 106 106 106

4,000 86 1390 106 106 106 106

5,000 19 681 2507 106 106 106

Table 6.3: Space thresholds used in ReachLocations to match the total space dis-
tortion of each configuration of (k, δ)-anonymity

δ \ k 2 4 6 8 10 15
0 499875 106 106 106 106 106

1,000 25090 106126 270157 106 106 106

2,000 4780 52468 93717 151915 249999 106

3,000 749 37124 64801 95585 132857 238884
4,000 136 25540 51089 73088 94465 152862
5,000 57 18059 39061 58584 79101 113280

As it can be seen in Tables 6.2 and 6.3, we use the maximum value (106) of the
space threshold for several configurations. This is because in those configurations
the total space distortion caused by the (k, δ)-anonymity could not be reached by our
methods no matter how much we increased the space threshold. Figure 6.3 explains
this behaviour by showing the values of total space distortion SwapLocations and
ReachLocations minus the total space distortion of (k, δ)-anonymity. With almost
every configuration, our methods have a total space distortion lower than the total
space distortion of (k, δ)-anonymity. In the case of SwapLocations, the total space
distortion is even much lower.

In general, SwapLocations does not reach high values of the total space distor-
tion because it removes more locations than ReachLocations in order to achieve
trajectory k-anonymity. Note that removing locations does not increase the total
space distortion because we are considering Ω = 0. Tables 6.4 and 6.5 show in detail
the percentage of removed trajectories and the percentage of removed locations for
different values of k = {2, 4, 6, 8, 10, 15} and δ = {0, 1000, 2000, 3000, 4000, 5000},
for SwapLocations and ReachLocations, respectively.

As it can be seen in Table 6.4, in general SwapLocations removes less trajec-
tories than (k, δ)-anonymity because SwapLocations can cluster non-overlapping
trajectories. Indeed, with (k, δ)-anonymity 227 trajectories were discarded in the
pre-processing step alone because their time span could not match the time span of
other trajectories, and additional outlier trajectories were discarded during cluste-
ring, up to a total 24% of discarded trajectories. However, SwapLocations removed
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.
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Table 6.4: Percentage of trajectories (columns labeled with T) and locations
(columns labeled L) removed by SwapLocations when using time threshold 100,
k = {2, 4, 6, 8, 10, 15} and space thresholds that match the space distortion caused
by (k, δ)-anonymity with the previous k’s and δ = {0, 1000, 2000, 3000, 4000, 5000}.
Percentages have been rounded to integers for compactness.

δ \ k 2 4 6 8 10 15

T L T L T L T L T L T L

0 0 34 0 58 0 69 1 75 0 79 0 84

1000 0 34 0 58 0 69 1 75 0 79 0 84

2000 4 45 0 58 0 69 1 75 0 79 0 84

3000 11 62 0 58 0 69 1 75 0 79 0 84

4000 19 68 5 66 0 69 1 75 0 79 0 84

5000 32 78 20 73 4 72 1 75 0 79 0 84

up to 84% of all locations in the worst cases and thus, it may not be suitable for ap-
plications where preserving the number of locations really matters. SwapLocations
removes any location whose swapping set U contains less than k locations, which is a
relatively frequent event when k trajectories with different lengths are clustered to-
gether. As the cluster size k increases, the length diversity tends to increase and the
removal percentage increases. A simple way around the location removal problem
is to create clusters that contain trajectories with roughly the same length, even
though this may result in a higher total space distortion; higher space distortion is
a natural consequence of clustering based on the trajectory length rather than the
trajectory distance.

Table 6.5 shows that ReachLocations removes few trajectories when δ is small
and k is large. The reason is that, for those parameterisations, (k, δ)-anonymity
introduces so much total space distortion that ReachLocations can afford taking the
maximum space threshold Rs = 106 without reaching that much distortion. Such
a high space threshold allows ReachLocations to easily swap spatial coordinates, so
that very few locations need to be removed. Furthermore, the trajectories output
by ReachLocations are consistent with the underlying city topology. As said above,
the only drawback of this method is that in general it does not provide trajectory
k-anonymity; rather, it provides location k-diversity.

6.6.1.4 Spatio-temporal range queries

As stated in Section 6.2.2, a typical use of trajectory data is to perform spatio-
temporal range queries on them. That is why we report empirical results when
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Table 6.5: Percentage of trajectories (columns labeled with T) and locations (co-
lumns labeled L) removed by ReachLocations when using time threshold 100,
k = {2, 4, 6, 8, 10, 15} and space thresholds that match the space distortion caused
by (k, δ)-anonymity with the previous k’s and δ = {0, 1000, 2000, 3000, 4000, 5000}.
Percentages have been rounded to integers for compactness.

δ \ k 2 4 6 8 10 15

T L T L T L T L T L T L

0 0 1 0 3 0 3 0 4 0 4 0 3

1000 0 2 0 3 0 3 0 4 0 5 0 3

2000 36 27 9 18 3 11 0 5 0 6 0 4

3000 74 38 33 39 18 28 6 21 2 13 0 7

4000 82 43 65 49 41 40 20 34 10 27 2 16

5000 84 60 84 53 60 52 40 44 27 35 10 27

performing the two query types described and motivated in Section 6.2.2: So-
metime_Definitely_Inside (SI) and Always_Definitely_Inside (AI). We accumulate
the number of trajectories in a set of trajectories T that satisfy the SI or AI range
queries using the SQL style code below.

• Query Q1(T , R, tb, te):

SELECT COUNT (*) FROM T WHERE SI(T .traj, R, tb, te)

• Query Q2(T , R, tb, te):

SELECT COUNT (*) FROM T WHERE AI(T .traj, R, tb, te)

Then, we define two different range query distortions:

• SID(T , T ?) = 1
|ξ|
∑
∀<R,tb,te>∈ξ

|Q1(T ,R,tb,te)−Q1(T ?,R,tb,te)|
max (Q1(T ,R,tb,te),Q1(T ?,R,tb,te))

where ξ is a set of
SI queries as defined in Section 6.2.2 (definition of SI adapted to non-uncertain
trajectories).

• AID(T , T ?) = 1
|ξ|
∑
∀<R,tb,te>∈ξ

|Q2(T ,R,tb,te)−Q2(T ?,R,tb,te)|
max (Q2(T ,R,tb,te),Q2(T ?,R,tb,te))

where ξ is a set
of AI queries as defined in Section 6.2.2 (definition of AI adapted to non-
uncertain trajectories).

For our experiments with the synthetic data set, we chose random time intervals
[tb, te] such that 0 ≤ te− tb ≤ 10. Also, we chose random uncertain trajectories with
a randomly chosen radius 0 ≤ σ ≤ 750 as regions R. Actually, 10 and 750 are, re-
spectively, roughly a quarter of the average duration and distance of all trajectories.
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Table 6.6: Range query distortion of SwapLocations compared to (k, δ)-anonymity
for SID (columns labeled with S) and AID (columns labeled with A) when using
k = {2, 4, 6, 8, 10, 15} and space thresholds that match the space distortion caused
by (k, δ)-anonymity with the previous k’s and δ = {0, 1000, 2000, 3000, 4000, 5000}.
In this table, a range query distortion x obtained with SwapLocations and a range
query distortion y obtained with (k, δ)-anonymity are represented as the integer
rounding of (y − x) ∗ 100. Hence, values in the table are positive if and only if
SwapLocations outperforms (k, δ)-anonymity.

δ \ k 2 4 6 8 10 15

S A S A S A S A S A S A

0 34 29 31 14 36 16 36 13 37 13 43 14

1000 24 20 24 8 28 10 27 8 28 9 41 14

2000 18 14 18 4 20 3 20 2 27 6 39 10

3000 8 3 11 −2 13 0 16 −1 21 4 36 10

4000 −6 −7 6 −6 9 −5 11 −4 17 2 30 5

5000 −22 −19 1 −9 3 −9 7 −7 14 −2 27 2

Note that we used uncertain trajectories only as regions R; however, the methods
we are considering in this chapter all release non-uncertain trajectories.

Armed with these settings, we ran 100, 000 times both queries Q1 and Q2 on
the original data set and the anonymised data sets provided by SwapLocations, Re-
achLocations, and (k, δ)-anonymity; that is, we took a set ξ with |ξ| = 100, 000.
The ideal range query distortion would be zero, which means that query Qi for
i ∈ 1, 2 yields the same result for both the original and the anonymised data sets;
in practice, zero distortion is hard to obtain. Therefore, in order to compare our
methods against (k, δ)-anonymity, we use the same parameters of the previous ex-
periments (Tables 6.1, 6.2, and 6.3). We show in Tables 6.6 and 6.7 a comparison
of SwapLocations, respectively ReachLocations, against (k, δ)-anonymity in terms
of SID and AID.

It can be seen from Table 6.6 that SwapLocations performs significantly better
than (k, δ)-anonymity for every cluster size and δ ≤ 3000. On the other hand,
Table 6.7 shows that ReachLocations outperforms (k, δ)-anonymity only for δ up
to roughly 2000. Not surprisingly, SwapLocations offers better performance than
ReachLocations, because the latter must deal with reachability constraints. It is
also remarkable that ReachLocations performs much better in terms of SID than in
terms of AID. The explanation is that, while (k, δ)-anonymity and SwapLocations
operate at the trajectory level, ReachLocations works at the location level.
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Table 6.7: Range query distortion of ReachLocations compared to (k, δ)-anonymity
for SID (columns labeled with S) and AID (columns labeled with A) when using
k = {2, 4, 6, 8, 10, 15} and space thresholds that match the space distortion caused
by (k, δ)-anonymity with the previous k’s and δ = {0, 1000, 2000, 3000, 4000, 5000}.
In this table, a range query distortion x obtained with ReachLocations and a range
query distortion y obtained with (k, δ)-anonymity are represented as the integer
rounding of (y − x) ∗ 100. Hence, values in the table are positive if and only if
ReachLocations outperforms (k, δ)-anonymity.

δ \ k 2 4 6 8 10 15

S A S A S A S A S A S A

0 34 25 28 12 33 10 32 5 31 5 37 6

1000 25 19 21 6 24 4 23 1 25 2 35 5

2000 10 10 8 −7 17 −3 19 −3 23 −3 33 4

3000 −4 2 0 −12 9 −12 13 −5 19 −4 29 1

4000 −11 −6 −6 −18 −2 −17 3 −16 13 −6 26 −3

5000 −14 −5 −10 −22 −8 −25 −4 −21 8 −14 20 −5

We conclude that, according to these experiments, our methods perform better
than (k, δ)-anonymity regarding range query distortion for values of δ up to 2000.
The performance for larger values of δ is less and less relevant: indeed, when δ →∞,
(k, δ)-anonymity means that no trajectory needs to be anonymised and hence the
anonymised trajectories are the same as the original ones.

6.6.2 Results on real-life data

The San Francisco cab data set [?] we used consists of several files each of them
containing the GPS information of a specific cab during May 2008. Each line within
a file contains the space coordinates (latitude and longitude) of the cab at a given
time. However, the mobility trace of a cab during an entire month can hardly be
considered a single trajectory. We used big time gaps between two consecutive
locations in a cab mobility trace to split that trace into several trajectories. All
trajectory visualisations shown in this Section were obtained using Google Earth.

For our experiments we considered just one day of the entire month given in the
real-life data set, but the empirical methodology described below could be extended
to several days. In particular, we chose the day between May 25 at 12:04 hours
and May 26 at 12:04 hours because during this 24-hour period there was the highest
concentration of locations in the data set. We also defined the maximum time gap in
a trajectory as 3 minutes; above 3 minutes, we assumed that the current trajectory
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ended and that the next location belonged to a different trajectory. This choice was
based on the average time gap between consecutive locations in the data set, which
was 88 seconds; hence, 3 minutes was roughly twice the average. In this way, we
obtained 4582 trajectories and 94 locations per trajectory on average.

The next step was to filter out trajectories with strange features (outliers). These
outliers could be detected based on several aspects like velocity, city topology, etc.
We focused on velocity and defined 240 km/h as the maximum speed that could
be reached by a cab. Consequently, the distance between two consecutive locations
could not be greater than 12 km because the maximum within-trajectory time gap
was 3 minutes. This allowed us to detect and remove trajectories containing obvi-
ously erroneous locations; Figure 6.4 shows one of these removed outliers where a
cab appeared to have jumped far into the sea probably due to some error in recor-
ding its GPS coordinates. Altogether, we removed 45 outlier trajectories and we
were left with a data set of 4547 trajectories with an average of 93 locations per
trajectory. Figure 6.5 shows the ten longest trajectories (in number of locations) in
the final data set that we used.

Figure 6.4: Example of an outlier trajec-
tory in the original real-life data set

Figure 6.5: Ten longest trajectories in the
filtered real-life data set

6.6.2.1 Experiments with the distance metric

We propose in this chapter a new distance metric designed specifically for clustering
trajectories. Our distance metric considers both space and time, dealing even with
non-overlapping or partially-overlapping trajectories. Contrary to the synthetic data
where 10 trajectories had to be removed because the distances to them could not
be computed, in this real-life data set our distance function could be computed for
every pair of trajectories.

Figure 6.6 shows two trajectories identified by our distance metric as the two
closest ones in the data set. The two cabs moved around a parking lot and therefore
stayed very close to one another in space. Also in time both trajectories were very
close: one of them was recorded between 12:00:49 hours and 13:50:47 hours, while
the other was recorded between 12:00:25 hours and 13:52:30 hours. Therefore, both
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trajectories were correctly identified by our distance metric as being close in time and
space; they could be clustered together with minimum utility loss for anonymisation
purposes.

Figure 6.6: The two closest trajectories in the real-life data set according to our
distance metric

To compare, Figure 6.7 shows two trajectories identified by the Euclidean dis-
tance as the two closest ones in the data set. These trajectories are located in a
parking lot inside San Francisco Airport and, spatially, they are closer than the two
trajectories shown in Figure 6.6. However, one of these trajectories was recorded
between 24:42:55 hours and 24:55:59 hours, while the other was recorded between
19:05:29 hours and 19:06:15 hours. Hence, they should not be in the same cluster,
because an adversary with time knowledge can easily distinguish them.

6.6.2.2 Experiments with the SwapLocations method

The ReachLocations method cannot be used when the graph of the city is not
provided. Hence, in the experiments with the San Francisco real data we just
considered the SwapLocations method. As in the experiments with synthetic data,
we set Ω = 0 during the computation of the total space distortion. Figure 6.8 shows
the values of total space distortion given by the SwapLocations for different space
thresholds and different cluster sizes.

Two other utility properties we are considering in this work are: percentage
of removed trajectories and percentage of removed locations. Table 6.8 shows the
values obtained with the SwapLocations method for both utility properties.

Finally, Table 6.9 reports the performance of SwapLocations regarding spatio-
temporal range queries. We picked random time intervals of length at most 20

minutes. Also, random uncertain trajectories with uncertainty threshold of size at
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Figure 6.7: The two closest trajectories in the real-life data set according to the
Euclidean distance
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Figure 6.8: Total space distortion (km) for SwapLocations using several different
space thresholds and cluster sizes on the real-life data set

most 7 km were chosen as the regions. Analogously to the experiments with the
synthetic data set, 20 and 7 are roughly a quarter of the average duration and
distance of all trajectories, respectively. It can be seen that the SwapLocations
method provides low range query distortion for every value of k when the space
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Table 6.8: Percentage of trajectories (columns labeled with T) and locations (co-
lumns labeled with L) removed by SwapLocations for several values of k and several
space thresholds Rs on the real-life data set. Percentages have been rounded to
integers for compactness.

Rs \ k 2 4 6 8 10 15

T L T L T L T L T L T L

1 23 43 40 64 49 71 58 74 62 77 71 81

2 19 29 34 47 42 54 50 58 54 60 50 66

4 14 17 27 29 35 35 40 40 45 41 54 49

8 9 10 19 19 25 25 31 29 34 31 42 38

16 5 7 11 16 17 22 20 27 23 30 32 38

32 1 7 2 15 3 22 4 27 5 30 8 38

64 0 6 0 15 0 22 0 27 0 30 0 38

128 0 6 0 15 0 22 0 27 0 30 0 38

threshold is small, i.e. when the total space distortion is also small. However,
the smaller the space threshold, the larger the number of removed trajectories and
locations (see Table 6.8). This illustrates the trade-off between the utility properties
considered.

6.7 Conclusions

In this chapter, we have presented two permutation-based heuristic methods to
anonymise trajectories with the common features that: (i) places and times in the
anonymised trajectories are true original places and times with full accuracy; (ii)
both methods can deal with trajectories with partial or no time overlap, thanks to
a new distance also introduced in this paper. The first method aims at trajectory
k-anonymity while the second method takes reachability constraints into account,
that is, it assumes a territory constrained by a network of streets or roads; to avoid
removing too many locations, the second method changes its privacy ambitions from
trajectory k-anonymity to location k-diversity.

Both methods use permutation of locations, and the first method uses also tra-
jectory microaggregation. There are few counterparts in the literature comparable
to the first method, and virtually none comparable to the second method. Experi-
mental results show that, for most parameter choices and for similar privacy levels,
our methods offer better utility than (k, δ)-anonymity.
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Table 6.9: Range query distortion caused by SwapLocations on the real-life data set
for SID (columns labeled with S) and AID (columns labeled with A), for several
values of k and several space thresholds Rs. In this table, a range query distortion
x is represented as the integer rounding of x ∗ 100 for compactness.

Rs \ k 2 4 6 8 10 15

S A S A S A S A S A S A

1 13 22 18 27 20 29 19 29 24 31 25 34

2 16 24 25 34 26 35 24 35 27 37 27 37

4 18 25 30 37 33 41 34 42 38 46 38 45

8 21 27 34 40 38 44 40 46 44 50 48 54

16 20 26 36 42 42 47 45 50 50 54 53 58

32 21 26 39 44 45 49 48 53 53 57 58 62

64 20 25 39 44 46 50 51 54 54 57 61 64

128 21 26 39 44 48 50 51 56 54 58 61 64
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Algorithm 7 ReachLocations(T , Rt, Rs, k)
1: Require: (i) T = {T1, . . . , TN} a set of original trajectories, (ii) G a graph

describing the paths between locations, (iii) Rt is a time threshold and Rs is a
space threshold, both of them public;

2: Let TL = {λij ∈ Ti : Ti ∈ T } contain all locations from all trajectories, where
λij = (tij , x

i
j , y

i
j) and the spatial coordinates (xij , y

i
j) are called a point;

3: Mark all locations in TL as “unswapped”;
4: Let T ? = ∅ be an empty set of anonymised trajectories;
5: while there exist trajectories in T do
6: Let Ti be a trajectory randomly chosen in T ;
7: for j = 1 to j = |Ti| do
8: if λij is “unswapped” then
9: Let Cij = {λ1, · · · , λk−1} be a cluster of locations in TL such that:

1. All locations in Cij are “unswapped”, with points different from
(xij , y

i
j) and no two equal points;

2. Points in Cij belong to trajectories in T \ {Ti} and no two points
belong to the same trajectory;

3. For any λ ∈ Cij , it holds that:

(a) |tλ − tij | ≤ Rt

(b) If j > 1 there is a path in G between (xij−1, y
i
j−1) and (xλ, yλ);

(c) If j < |Ti| there is a path in G between (xλ, yλ) and
(xij+1, y

i
j+1);

(d) The length of each path above is no more than Rs;

4. The sum of intra-cluster distances in Cij ∪ {λij} is minimum among
clusters of cardinality k − 1 meeting the previous conditions;

10: if such a cluster Cij does not exist then
11: Remove λij from Ti;
12: else
13: Mark λij as “swapped”;
14: With probability k−1

k :

1. Pick a random location λ ∈ Cij and mark it as “swapped”;

2. Swap the spatial coordinates (xij , y
i
j) of λij with the spatial coor-

dinates (xλ, yλ) of λ;

15: end if
16: end if
17: end for
18: T ? = T ? ∪ {Ti};
19: Remove Ti from T ;
20: end while
21: Return T ?.



Chapter 7

Conclusions

This chapter summarises the contributions of the present dissertation. In addition,
it sketches some lines for future work that arise from either partially reached goals
or expected improvements.
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In this thesis we have focussed on security, privacy, and scalability issues in
the RFID technology. We have considered RFID identification protocols based on
symmetric key cryptography, which seem to be the most suitable for low-cost RFID
tags. We have also dealt with the challenges behind measuring the distance between
tags and readers in order to improve the security of any RFID identification protocol.
Since the RFID technology is becoming more and more popular, we noticed that
there is an increasing need for new trajectory anonymisation algorithms. For this
reason, the last contribution in this dissertation is devoted to this subject.

7.1 Contributions

In more detail, our contributions are:

1. We have presented a communication-efficient protocol for collaborative RFID
readers to privately identify RFID tags. With the presented protocol, the
centralised management of tags can be avoided, along with bottlenecks and
undesired delays.

2. We have presented a novel protocol that uses location and time of arrival pre-
dictors to improve the efficiency of the widely accepted IRHL scheme. We have
shown that our protocol outperforms previous proposals in terms of scalability
whilst guaranteeing the same level of privacy and security.

3. We have contributed to the design of distance-bounding protocols by: (i)
providing a way to compute an upper bound on the distance-fraud probability,
which is useful for analysing previous protocols and designing future ones; (ii)
re-analysing the mafia fraud probability of the Kim and Avoine protocol [?];
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(iii) proposing a new distance-bounding protocol that strikes a better balance
than all previously published distance-bounding protocols between memory
consumption, distance fraud resistance, and mafia fraud resistance.

4. We have presented two permutation-based heuristic methods to anonymise
trajectories with the common features that: (i) places and times in the ano-
nymised trajectories are true original places and times with full accuracy; (ii)
both methods can deal with trajectories with partial or no time overlap, thanks
to a new distance also introduced in this dissertation. The first method aims at
trajectory k-anonymity while the second method takes reachability constraints
into account, that is, it assumes a territory constrained by a network of streets
or roads; to avoid removing too many locations, this second method changes
its privacy ambitions from trajectory k-anonymity to location k-diversity.

7.2 Publications

The main publications supporting the content of this thesis are the following:

• Rolando Trujillo-Rasua, Benjamin Martin, and Gildas Avoine. The Poulidor
distance-bounding protocol. In The 6th Workshop on RFID Security and
Privacy - RFIDSEC 2010, pages 239–257, 2010.

• Josep Domingo-Ferrer, Michal Sramka, and Rolando Trujillo-Rasua. Privacy-
preserving publication of trajectories using microaggregation. In Proceedings
of the SIGSPATIAL ACM GIS 2010 International Workshop on Security and
Privacy in GIS and LBS, SPRINGL 2010, San Jose, California, USA, 2 No-
vember 2010. ACM, pages 26–33, 2010.

• Rolando Trujillo-Rasua and Agusti Solanas. Efficient probabilistic communi-
cation protocol for the private identification of RFID tags by means of colla-
borative readers. Computer Networks, 55(15):3211–3223, 2011.

• Rolando Trujillo-Rasua and Agusti Solanas. Scalable trajectory-based proto-
col for RFID tags identification. In The IEEE International Conference on
RFID-Technologies and Applications - RFID-TA, pages 279–285, 2011.

• Josep Domingo-Ferrer and Rolando Trujillo-Rasua. Microaggregation- and
permutation-based anonymization of mobility data. Information Sciences, to
appear.

• Rolando Trujillo-Rasua, Agusti Solanas, Pablo A. Pérez-Martínez and Josep
Domingo-Ferrer. Predictive protocol for the scalable identification of RFID
tags through collaborative readers. Computers in Industry, to appear.

• Josep Domingo-Ferrer and Rolando Trujillo-Rasua. Anonymization of tra-
jectory data. 7th Joint UNECE/Eurostat Work Session on Statistical
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Data Confidentiality, Tarragona, Catalonia, 26-28 October 2011. Publis-
hed at http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/
ge.46/2011/32_Domingo-Trujillo.pdf.

Other publications co-authored by the candidate and related to RFID systems,
but not included in this thesis, are listed below:

• Albert Fernàndez-Mir, Rolando Trujillo-Rasua, Jordi Castellà-Roca and Josep
Domingo-Ferrer. Scalable RFID authentication protocol supporting ownership
transfer and controlled delegation. In The 7th Workshop on RFID Security
and Privacy - RFIDSEC 2011, Amherst, Massachusetts (USA), pages 147–
162, Jun 2011.

• Rolando Trujillo-Rasua, Antoni Martínez-Ballesté and Agusti Solanas. Re-
visión de protocolos para la identificación escalable, segura y privada en sis-
temas RFID. 5as Jornadas Científicas sobre RFID, Tarragona, Catalonia,
2011. Published at http://crises2-deim.urv.cat/articles/index/type/
conferences#672.

7.3 Future work

Next, we sketch possible lines for future work in the same order in which we have
presented our main contributions.

1. Our first proposal based on collaborative readers (see Chapter 3) opens at least
the following research issues: (i) study the effect of the number of neighbours,
(ii) propose methods to dynamically vary p so as to adapt it to tag movements,
(iii) propose hybrid methods that mix hash-based solutions and tree-based
solutions with collaborative readers.

2. In Chapter 4 we partially tackle the second issue explained above by propo-
sing some algorithms aimed at location prediction. However, those predictors
may work well in some scenarios, but their performance decreases in others.
Although we have provided some practical implementations for the predictors,
the definition of our protocol is flexible enough to accept the use of any lo-
cation predictor. Due to the fact that the efficiency of our proposal highly
depends on the accuracy of the predictors we plan to study and compare a
variety of predictors in different scenarios in the future.

3. Chapter 5 introduces the graph-based protocol concept, which in turn suggests
lines for further work. First of all, an interesting question is to know if there
are graph-based protocols that behave still better than the one presented here.
In particular, if the number of rounds is not a critical parameter, prover and
verifier may be allowed to increase the number of rounds while keeping a 2n-
node graph. This means that some nodes may be used twice. In such a case,

http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2011/32_Domingo-Trujillo.pdf
http://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2011/32_Domingo-Trujillo.pdf
http://crises2-deim.urv.cat/articles/index/type/conferences#672
http://crises2-deim.urv.cat/articles/index/type/conferences#672
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the security analysis provided in this paper must be refined. On the other
hand, although a bound on the distance fraud success probability is provided,
calculating the exact probability of success is still cumbersome.

4. Regarding trajectory anonymisation, the future work will be directed towards
designing trajectory anonymisation methods aimed at achieving trajectory p-
privacy (see Definition 25), but discarding less locations than the SwapLocati-
ons method. Also, finding trajectory anonymisation methods for constrained
territories with better utility than ReachLocations is an open challenge.
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