
PhD-FSTC-2018-01

Faculté des Sciences, de la Technologie et de la Communication

DISSERTATION

Defense held on 11/01/2018 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG
EN INFORMATIQUE

by

Daoyuan LI
Born on August 5th, 1987 in Hubei, China

T R A N S F O R M I N G T I M E S E R I E S
F O R

E F F I C I E N T A N D A C C U R AT E C L A S S I F I C AT I O N

Dissertation defense committee

Dr. Jacques Klein, Chairman
Senior Research Scientist, Université du Luxembourg

Dr. Tegawendé F. Bissyandé, Vice Chairman
Research Scientist, Université du Luxembourg

Dr. Yves Le Traon, Dissertation Supervisor
Professor, Université du Luxembourg

Dr. Jessica Lin

Associate Professor, George Mason University

Dr. Matthieu Geist

Professor, Université de Lorraine

A B S T R A C T

Time series data refer to sequences of data that are ordered either temporally, spa-
tially or in another defined order. They can be frequently found in a variety of
domains, including financial data analysis, medical and health monitoring and
industrial automation applications. Due to their abundance and wide application
scenarios, there has been an increasing need for efficient machine learning algo-
rithms to extract information and build knowledge from these data. One of the
major tasks in time series mining is time series classification (TSC), which consists
of applying a learning algorithm on labeled data to train a model that will then be
used to predict the classes of samples from an unlabeled data set. Due to the se-
quential characteristic of time series data, state-of-the-art classification algorithms
(such as SVM and Random Forest) that performs well for generic data are usually
not suitable for TSC. In order to improve the performance of TSC tasks, this disser-
tation proposes different methods to transform time series data for a better feature
extraction process as well as novel algorithms to achieve better classification per-
formance in terms of computation efficiency and classification accuracy.

In the first part of this dissertation, we conduct a large scale empirical study
that takes advantage of discrete wavelet transform (DWT) for time series dimen-
sionality reduction. We first transform real-valued time series data using different
families of DWT. Then we apply dynamic time warping (DTW)-based 1NN clas-
sification on 39 datasets and find out that existing DWT-based lossy compression
approaches can help to overcome the challenges of storage and computation time.
Furthermore, we provide assurances to practitioners by empirically showing, with
various datasets and with several DWT approaches, that TSC algorithms yield
similar accuracy on both compressed (i.e., approximated) and raw time series data.
We also show that, in some datasets, wavelets may actually help in reducing noisy
variations which deteriorate the performance of TSC tasks. In a few cases, we note
that the residual details/noises from compression are more useful for recognizing
data patterns.

In the second part, we propose a language model-based approach for TSC
named Domain Series Corpus (DSCo), in order to take advantage of mature tech-
niques from both time series mining and Natural Language Processing (NLP) com-
munities. After transforming real-valued time series into texts using Symbolic Ag-
gregate approXimation (SAX), we build per-class language models (unigrams and
bigrams) from these symbolized text corpora. To classify unlabeled samples, we
compute the fitness of each symbolized sample against all per-class models and
choose the class represented by the model with the best fitness score. Through
extensive experiments on an open dataset archive, we demonstrate that DSCo per-
forms similarly to approaches working with original uncompressed numeric data.
We further propose DSCo-NG to improve the computation efficiency and classifi-

i

cation accuracy of DSCo. In contrast to DSCo where we try to find the best way
to recursively segment time series, DSCo-NG breaks time series into smaller seg-
ments of the same size, this simplification also leads to simplified language model
inference in the training phase and slightly higher classification accuracy.

The third part of this dissertation presents a multiscale visibility graph represen-
tation for time series as well as feature extraction methods for TSC, so that both
global and local features are fully extracted from time series data. Unlike tradi-
tional TSC approaches that seek to find global similarities in time series databases
(e.g., 1NN-DTW) or methods specializing in locating local patterns/subsequences
(e.g., shapelets), we extract solely statistical features from graphs that are generated
from time series. Specifically, we augment time series by means of their multiscale
approximations, which are further transformed into a set of visibility graphs. Af-
ter extracting probability distributions of small motifs, density, assortativity, etc.,
these features are used for building highly accurate classification models using
generic classifiers (e.g., Support Vector Machine and eXtreme Gradient Boosting).
Based on extensive experiments on a large number of open datasets and compar-
ison with five state-of-the-art TSC algorithms, our approach is shown to be both
accurate and efficient: it is more accurate than Learning Shapelets and at the same
time faster than Fast Shapelets.

Finally, we list a few industrial applications that relevant to our research work,
including Non-Intrusive Load Monitoring as well as anomaly detection and visu-
alization by means for hierarchical clustering for time series data.

In summary, this dissertation explores different possibilities to improve the effi-
ciency and accuracy of TSC algorithms. To that end, we employ a range of tech-
niques including wavelet transforms, symbolic approximations, language models
and graph mining algorithms. We experiment and evaluate our approaches using
publicly available time series datasets. Comparison with the state-of-the-art shows
that the approaches developed in this dissertation perform well, and contribute to
advance the field of TSC.

ii

To my family.

A C K N O W L E D G M E N T S

First and foremost, I would like to thank my dissertation advisor Prof. Dr. Yves
Le Traon for his continuous support during my doctoral study. He has offered not
only full support but also the maximum freedom, so that I can conduct research
and explorations in topics I am interested in.

My sincere gratitude also goes to my daily advisors Dr. Jacques Klein and Dr.
Tegawendé F. Bissyandé for their guidance and encouragement. Their support has
saved me from having an abysmal time and made the completion of this disserta-
tion all possible (instead of dropping out in the middle).

I am grateful for the jury members for their interest in this dissertation and
taking their valuable time to evaluate this dissertation. In addition, many people
have provided insightful comments for my Ph.D. work. Especially, I would like to
acknowledge Prof. Dr. Karl Aberer from EPFL, Prof. Dr. Eamonn Keogh from UCR
and Prof. Dr. Jessica Lin from GMU for their helpful suggestions on my previous
work on which this dissertation is built.

My special thanks go to Dr. Anne-Marie Solvi, Paul Schummer and colleagues
from Paul Wurth Geprolux S.A.. I have had a wonderful time working on the
smart buildings and PWBox project with them.

Finally, I could not have gone so far (or even started in the first place) without
my beloved wife and my parents in my back. They are the sunshine in my life and
their support has always been warm and unreserved. I cannot imagine surviving
this journey without their support.

Daoyuan Li
Luxembourg
January 11, 2018

v

C O N T E N T S

acronyms xi
list of algorithms xiii
list of tables xv
list of figures xix

I overview 1

1 introduction 3

1.1 Motivation . 3

1.2 Challenges . 5

1.3 Contributions . 6

1.4 Organization of this Dissertation . 8

II time series 9

2 background 11

2.1 Time Series . 11

2.2 Distance Measures . 12

2.3 Symbolic Representation of Time Series 15

3 state-of-the-art 19

3.1 Generic Classification Algorithms . 19

3.1.1 kNN . 19

3.1.2 Support Vector Machine . 20

3.1.3 Decision Trees . 20

3.1.4 Ensemble Methods . 21

3.1.5 Neural Networks . 22

3.2 Time Series Classifiers . 22

3.2.1 Similarity-based Nearest Neighbor 23

3.2.2 Bag-of-Patterns . 23

3.2.3 SAX-VSM . 24

3.2.4 Representative Pattern Mining 24

3.2.5 BOSS . 25

3.2.6 Shapelets . 25

3.2.7 Logical Shapelets . 26

3.2.8 Learning Shapelets . 26

3.2.9 Shapelet Transform . 26

3.2.10 Fast Shapelets . 26

3.2.11 Collective of Transformation-based Ensembles 27

3.3 Datasets . 27

3.4 Parameters and Hyper-parameters . 28

3.4.1 Cross Validation . 30

3.4.2 Tuning Hyper-Parameters . 30

vii

viii contents

III transforming time series for tsc 33

4 discrete wavelet transform for dimensionality reduction 35

4.1 Introduction . 35

4.2 Discrete Wavelet Transform . 37

4.3 Related Work . 39

4.4 Experimental Study . 40

4.4.1 Setup and Datasets . 40

4.4.2 TSC with Wavelet Transformed Data 41

4.4.3 TSC with Residual Details . 43

4.4.4 Multi-Level Wavelet Transformation 45

4.4.5 Using the UCR suite for TSC and Significance Test 47

4.5 The Smoothing Effect of Wavelets . 47

4.6 Conclusions and Future Work . 50

5 domain series corpora 53

5.1 Introduction . 53

5.2 Background and Key Intuition . 55

5.2.1 Language Modeling . 55

5.3 Domain Series Corpora for TSC . 56

5.3.1 Data Representation as Texts 56

5.3.2 Language Model Inference . 56

5.3.3 Classification . 58

5.4 Evaluation . 59

5.4.1 Reducing Data using SAX . 60

5.4.2 Implementation and Setup . 61

5.4.3 Comparison of Classification Performance 62

5.4.4 Time and Space Complexity . 65

5.4.5 Limitations . 66

5.5 Improving DSCo . 66

5.5.1 Compressing Time Series into Texts 67

5.5.2 Extracting Language Models 67

5.5.3 Classifying Unlabeled Instances 68

5.5.4 Time and Space Complexity . 68

5.6 Experimental Evaluation of DSCo-NG 69

5.6.1 Implementation and Setup . 69

5.6.2 Parameter Optimization . 69

5.6.3 Comparison of Classification Performance 70

5.7 Related Work . 73

5.8 Conclusions and Future Work . 75

6 multiscale visibility graph 77

6.1 Introduction . 77

6.2 Background . 80

6.2.1 Visibility Graph . 81

6.2.2 Graph Classification with Deep Neural Networks 83

6.2.3 Graph Features . 84

6.3 Multiscale Visibility Graph . 88

6.3.1 Feature Extraction . 90

contents ix

6.3.2 Classification . 91

6.4 Evaluation . 91

6.4.1 Datasets . 91

6.4.2 Validating Heuristics . 92

6.4.3 Stacked Generalization . 96

6.4.4 Accuracy Benchmarking . 99

6.4.5 Efficiency . 101

6.4.6 Case Studies . 102

6.4.7 Discussions . 106

6.5 Related Work . 106

6.6 Conclusions and Future Work . 107

IV applications 111

7 profiling household appliances 113

7.1 Introduction . 113

7.2 Related work . 115

7.3 Empirical evaluation . 116

7.3.1 Evaluation against normalized datasets 116

7.3.2 Evaluation against real-world readings 117

7.3.3 Combining appliance consumption readings 118

7.4 Discussions . 120

7.5 Conclusions and Future Work . 120

8 sensing by proxy of indoor temperature movements 123

8.1 Introduction . 123

8.2 Background . 125

8.3 Related Work . 126

8.4 Methodology . 127

8.4.1 Data Collection and Processing 127

8.4.2 Baseline Establishment and Validation 128

8.5 Experimental Evaluation . 129

8.5.1 Experiment Subject and Data Collection 129

8.5.2 Inferring Indoor Environment 131

8.5.3 Towards Inferring Occupant Activities 134

8.5.4 Discussion . 135

8.6 Conclusion and Future Work . 137

V summary 139

9 conclusions 141

9.1 Conclusions . 141

9.2 Future Work . 142

bibliography 145

A C R O N Y M S

1NN Nearest Neighbor Classification

AdaBoost Adaptive Boosting

ARFF Attribute-Relation File Format

ARIMA AutoRegressive Integrated Moving Average

aSAX adaptive SAX

BECM Building Energy and Comfort Management

BoP Bag-of-Patterns

BOSS Bag-of-SFA-Symbols

BoW Bag-of-Words

CART Classification and Regression Trees

CNN Convolutional Neural Networks

COTE Collective of Transformation-based Ensembles

CV Cross Validation

DFT Discrete Fourier Transform

DM Data Mining

DSCo Domain Series Corpus

DSCo-NG Next Generation Domain Series Corpus

DTW Dynamic Time Warping

DWT Discrete Wavelet Transform

ECG Electrocardiogram

EDR Edit Distance on Real sequence

ED Euclidean Distance

EEG Electroencephalogram

FS Fast Shapelets

FSM Finite State Machine

HIVE-COTE Hierarchical Vote Collective of Transformation-based Ensembles

HPC High Performance Computing

HVAC Heating, Ventilation and Air Conditioning

HVG Horizontal Visibility Graph

IoT Internet of Things

iSAX indexable SAX

kNN k Nearest Neighbors

LM Language Model

xi

xii contents

LOOCV Leave-One-Out Cross Validation

LSTM Long Short-Term Memory

MJC Minimum Jump Cost

MPD Motif Probability Distribution

MVG Multiscale Visibility Graph

ML Machine Learning

MLP Multi-Layer Perceptron

NLP Natural Language Processing

NILM Non-Intrusive Load Monitoring

NN Neural Networks

PAA Piecewise Aggregate Approximation

PLR Piecewise Linear Representation

PIP Perceptually Important Points

PCA Principal Component Analysis

PGD Parallel Parameterized Graphlet Decomposition

ResNet Residual Networks

RF Random Forest

RNN Recurrent Neural Networks

RPM Representative Pattern Mining

SAX Symbolic Aggregate approXimation

SFA Symbolic Fourier Approximation

SGD Stochastic Gradient Descent

ST Shapelet Transform

SVM Support Vector Machine

TF-IDF Term-Frequency Inverse Document Frequency

TSBF Time Series Bag-of-Features

TSC Time Series Classification

TWED Time Warp Edit Distance

UVG Uniscale Visibility Graph

VG Visibility Graph

WVG Weighted Visibility Graph

XGBoost eXtreme Gradient Boosting

L I S T O F A L G O R I T H M S

5.1 Extract words from a string (S) using a sliding window (of length l). 57

5.2 Build language models (LMs) from a list (SL) of (string, label) pairs. 58

5.3 Given language models, find the best way (with the maximum prob-
ability) to segment a string (S). 59

5.4 Build language models (LMs) from a list (SL) of (string, label) pairs. 67

6.1 Building time series MVGs and extracting features from them. . . . 90

6.2 Algorithm for creating an ensemble classifiers using stacked gener-
alization. 98

xiii

L I S T O F TA B L E S

Table 3.1 Characteristics of datasets in Newly Added Datasets of the
UCR archive. 29

Table 4.1 Classification accuracy with FastDTW based 1NN, using
Symlets 20 multi-level decomposition. 46

Table 5.1 Classification accuracy comparison between the best perfor-
mance of DSCo and 1NN with SAX distance, where |α| is
the alphabet size when best performance is achieved. 63

Table 6.1 Converting time series into WVGs and using ResNet for
classification: classification accuracy compared to 1NN with
Euclidean distance and 1NN with DTW. 84

Table 6.2 Computation time of finding motifs from an undirected
graph with 1000 nodes and 1300 edges using GTrieScanner. 84

Table 6.3 All graph motifs up to size 4. Note that connected graphs
may contain disconnected motifs. 85

Table 6.4 Error rates of classifying 39 UCR datasets compared with
1NN-Euclidean and 1NN-DTW. Different heuristic combi-
nations are taken into account. Bold-faced values indicate
lowest error rates (including ties) for specific datasets in all
experiments. 93

Table 6.5 Classification error rates compared with five benchmark ap-
proaches and running time statistics (in seconds). 99

Table 7.1 Characteristics of appliance electricity usage data from the
UCR archive and classification accuracy comparison be-
tween the performance of 1NN with Euclidean and DTW
distance and our approach. Best classification accuracy re-
sults are highlighted in bold font. 116

Table 7.2 Confusion matrix from ten-fold cross-validation experiment
on the most recorded appliances. 117

Table 7.3 Classification results for ten-fold cross-validation between
two appliance energy consumption combinations. Columns
P, R and F stand for Precision, Recall and F-Measure respec-
tively. 119

xv

L I S T O F F I G U R E S

Figure 2.1 Example of time series alignment with the Euclidean distance. 13

Figure 2.2 Example of time series alignment with DTW distance. . . . 13

Figure 2.3 An example to illustrate DTW’s phase issue. 15

Figure 2.4 Illustrative time series samples from the BirdChicken dataset. 15

Figure 2.5 PAA representations of two time series samples where di-
mension is reduced from 512 to 8 (n = 512 and s = 8). . . . 16

Figure 2.6 SAX representations of two time series samples with an al-
phabet size of four. 16

Figure 4.1 Wavelet functions of Haar, Daubechies 20 and Symlets 20. . 38

Figure 4.2 Example of Haar transform: the original signal, the Haar
approximation and the residual details. 39

Figure 4.3 Classification accuracy with FastDTW based 1NN, using
original and DWT transformed/compressed data. 42

Figure 4.4 Rank of classification accuracy by approximation of differ-
ent wavelet transformation. 43

Figure 4.5 Classification accuracy with FastDTW based 1NN, using
original data and residual details from DWT transform. . . 44

Figure 4.6 Rank of classification accuracy by residual details from dif-
ferent wavelet transformation. 45

Figure 4.7 Critical difference diagram for classification using raw and
transformed data using different families of DWT. 47

Figure 4.8 Classification accuracy with UCRSuite DTW-based 1NN,
using raw, Haar transformed and moving average
smoothened data. 49

Figure 4.9 Critical difference diagram for classification using raw and
transformed data using different families of DWT and ex-
plicit smoothing techniques. 50

Figure 5.1 Process for building language models in DSCo. 57

Figure 5.2 Illustration of DSCo’s classification process. 58

Figure 5.3 1NN classification accuracy comparison between DTW
(dashed) and SAX (solid) distance. 61

Figure 5.4 DSCo’s classification accuracy with different parameter set-
tings: short segments (dashed-dotted lines), long segments
(dashed lines) and combined (solid lines). 62

Figure 5.5 Overall accuracy comparison between 1NN with DTW dis-
tance and DSCo. 64

Figure 5.6 For the ECG5000 dataset, classification accuracy remains the
same after pruning up to 95.8% bigrams. 65

Figure 5.7 3D surface plots of classification accuracy with different pa-
rameters, darker blue indicates higher accuracy. 71

xvii

xviii List of Figures

Figure 5.8 Overall accuracy comparison between 1NN with DTW dis-
tance, DSCo and DSCo-NG. 72

Figure 5.9 All instances of two classes (1 and 5) from InsectWingbeat-
Sound’s training set. 73

Figure 5.10 First 100 instances of two classes (-1 and 1) from FordA’s
training set. 74

Figure 6.1 An example of converting time series to visibility graph and
horizontal visibility graph. 82

Figure 6.2 Time series instances from different classes of
ElectricDevices are transformed into VGs and whose
matrices are plotted as images. 83

Figure 6.3 Motif distribution of artificially generated data by [Xu et al.,
2008]. (A) Periodic flow. (B) Chaotic flow. (C) Periodic flow
with Gaussian noise. 86

Figure 6.4 Boxplots of all motif probability distribution of different
classes from the ArrowHead Dataset’s training set. 87

Figure 6.5 Boxplots of connected and disconnected motif probabil-
ity distribution of different classes from the ArrowHead
Dataset’s training set. 87

Figure 6.6 Comparison of classification error rates: using MPDs with
or without other graph features. 94

Figure 6.7 Comparison of classification error rates: using HVGs, VGs
or combining two together (denoted as UVG here). 95

Figure 6.8 Comparison of UVG, AMVG and MVG’s error rates. 96

Figure 6.9 Critical difference diagram comparison of RF, SVM and XG-
Boost. 97

Figure 6.10 Critical difference diagram comparison of stacking single
family of classifiers versus all families of classifiers. 98

Figure 6.11 Comparison of classification accuracy with five state-of-the-
art approaches in the form of scatter plots. 100

Figure 6.12 Runtime comparison between FS and MVG. 102

Figure 6.13 Samples from the Meat test dataset. 103

Figure 6.14 Scatter matrix of ten most important features for Meat’s test
dataset. Different point colors indicate different classes and
the diagonal shows the Gaussian kernel density estimation
for each feature. 104

Figure 6.15 Samples from the Worms’ test dataset. 108

Figure 6.16 Scatter matrix of ten most important features for Worms’ test
dataset. Different point colors indicate different classes and
the diagonal shows the Gaussian kernel density estimation
for each feature. 109

Figure 7.1 Electricity consumption patterns of ten most recorded ap-
pliances from 27 households surveyed in the HEUS project. 117

Figure 8.1 Example dendrogram from hierarchical clustering, using
daily stock price variations from January 2012 to January
2016. 125

List of Figures xix

Figure 8.2 Overview of data collection and management process. . . . 130

Figure 8.3 Simplified floor plan (top) and temperature readings during
a course of around five months (bottom). 130

Figure 8.4 Distance matrix of temperature movements with Euclidean
distance (left) and agglomerative clustering clustergram of
temperature readings for six rooms with Ward (right). . . . 132

Figure 8.5 Error rate regarding the amount of data used for agglomer-
ative clustering. 132

Figure 8.6 Agglomerative clustering on temperature movements of 20

classrooms. 134

Figure 8.7 Simplified floor plan with coloring scheme from agglomer-
ative clustering results. 134

Figure 8.8 Clustering accuracy (number of correctly clustered rooms
divided by total rooms on each floor) among different floors. 135

Figure 8.9 Agglomerative clustering on temperature movements of 20

rooms with different functionality. 136

Part I

O V E RV I E W

1
I N T R O D U C T I O N

There will come a time when you
believe everything is finished; that
will be the beginning.

Louis L’Amour
Lonely on the Mountain

1.1 motivation

Traditionally, time series data are a class of temporal objects or observations that
are ordered chronologically. They can be frequently found in a variety of domains,
including financial data analysis [Flanagan and Lacasa, 2016], medical and health
monitoring [Wong et al., 2014; Samiee et al., 2015], industrial automation applica-
tions [Wang et al., 2016a]. In the financial domain, transactions of a stock, currency
or commodity forms the fluctuation of one financial instrument; and these fluctu-
ations can naturally be modeled as time series. Typical medical applications of
time series analysis include monitoring analysis, and diagnosis of bio-signals such
as electrocardiograms (ECG) and electroencephalograms (EEG). Moreover, in re-
cent years, there has been a rapid development and adoption of the Internet of
Things (IoT) concept. As a result, with a large amount of heterogeneous sensors
deployed to monitor every aspect of our surrounding environments and industrial
production lines, a huge amount of time series data are being generated everyday.

More recently, the research community as well as practitioners have seen a great
increase of interests modeling non-temporal observations as time series. It has
been shown to be feasible to conduct video retrieval, image retrieval, handwriting
recognition and text mining tasks by transforming various types of data into time
series [Ratanamahatana and Keogh, 2004] and approximating these tasks with
specific time series mining techniques. For instance, Chen et al. [2014] have de-
signed sensors to capture the incidental flight sound of insects and extract time
series features from them in order to classify different types of insects. Besides, it
seems feasible to model software systems as time series take advantage of time se-
ries classification (TSC) techniques for malware detection and classification [Kang
et al., 2016; Wojnowicz et al., 2017].

Given a large corpus of time series data – either strictly temporal or simply se-
quential, extracting useful knowledge from such data is a popular research topic
but remains a challenging one. These tasks are often referred to as time series

3

4 introduction

mining or time series analysis. Due to the abundance of time series data and the
ever-increasing interests in them, a great amount of research and development
attempts have been ignited. This momentum has in turn resulted in a wealth of
techniques in the literature. As a sub-domain in the field of generic data mining
(DM), tasks in time series mining resemble those of generic DM approaches. Gen-
erally, time series mining tasks fall into one of the following categories [Esling and
Agon, 2012]:

(a) Classification. The classification task seeks to learn from a labeled training
set and tries to assign labels to each series of a testing set. Clearly, classifi-
cation consists of learning the distinctive features that distinguish one class
of instances to another; then this extracted knowledge can be applied to in-
stances without explicit labels. It is a typical data mining task and maybe one
of the most frequently applied time series tasks. Applications of TSC include
handwriting recognition and gesture recognition, as well as other generic
pattern recognition tasks.

(b) Clustering. Clustering is the process of assign time series instances into
groups, called clusters, in a dataset so that the intra-cluster similarity of dif-
ferent instances are maximized and the inter-cluster dissimilarity of groups
are maximized. Clustering is a type of unsupervised learning process since
time series instances do not need to be labeled beforehand. Time series clus-
tering applications often relates to exploratory tasks that help users to re-
organize time series datasets and finding potential patterns as well as anoma-
lies [Liao, 2005].

(c) Motif discovery. Motif discovery tries to find from a long time series all the
subsequences that appears recurrently. Unlike clustering that groups simi-
lar instances into one cluster, motif discovery first extracts possible subse-
quences from a single time series instance and then looks for similar or iden-
tical subsequences occurred repeatedly. Its applications are mainly related to
those investing the internal characteristics of long series.

(d) Prediction/Forecasting. Given the historical values of a time series, it is desir-
able to predict the next following values. This is especially beneficial in the
financial (e.g., stock price prediction) and industrial (e.g., trajectory analysis
and prediction) domain. Time series prediction are commonly implemented
via the means of curve fitting and the use of autoregressive integrated mov-
ing average (ARIMA) models [Zhang, 2003].

(e) Outlier detection. There can be different lines of research in outlier detec-
tion of time series data. The first focuses on the detection of abnormal sub-
sequences in a series, which are often conducted with statistic models com-
bined with ARIMA models. Another line involves taking advantage of clus-
tering techniques to locate peer instances are are different from the majority
of instances. Typical applications of outlier detection are fraud and intrusion
detection [Zhong et al., 2007].

1.2 challenges 5

(f) Query by Content. This problem is also known as indexing time series from
a database. Query by content involves locating the most similar time series
in a database according to a given input of time series instance. The main
challenge of this task is to define the similarity between two instances. While
researchers have proposed many similarity measures, Dynamic Time Warp-
ing (DTW) [Berndt and Clifford, 1994] has proven to be one of the most
effective similarity measures for time series [Xi et al., 2006].

Obviously, it is impractical to cover all the time series mining aspects in this
dissertation. Instead, this dissertation focuses mainly on time series classification
due to its wide application scenarios, including speech recognition, handwriting
recognition, image classification, non-intrusive load monitoring and so on.

1.2 challenges

Time series data exists in numerous application domains within our daily life. Es-
pecially, as the concept of pervasive computing and Internet of Things (IoT) slowly
becomes reality, time series data are generated at an industry scale. For instance,
the BLUED non-intrusive load monitoring dataset [Anderson et al., 2012] has been
collected from a single household for one week, recording voltage and current
measurements with a sampling rate of 12 kHz, leading to a total of tens of billions
of time series readings and making it difficult to learn meaningful patterns in real-
time. Another power company in the US records a trillion data points every four
months; and in astronomy satellites may collect one trillion data points of starlight
curves every single day [Rakthanmanon et al., 2012]. Other domains where time
series are prevalent include financial applications (e.g. currency exchanges and
stock prices), environment monitoring (e.g. weather forecast and disaster monitor-
ing), medical and health care (e.g. electrocardiograms a.k.a. ECGs).

Besides its abundance characteristics, time series data are known for its ex-
tremely high dimensionality, i.e., when mapping a time series instance to an n-
dimensional space, the number of features or the dimensionality is often very
high. This makes general-purpose machine learning algorithms fail or underper-
form. As a result, in order to learn meaningful knowledge from time series data,
efficient machine learning algorithms for time series are desired.

Finally, unlike generic data types where features are more often independent of
each other, time series data are intrinsically characterized as sequential. It is thus
especially important to taken into account both the local features (i.e., details in spe-
cific subsequence characteristics) as well as the global features (i.e., overall curve
shapes) when conducting time series mining tasks. To date, how to efficiently and
accurately extract meaningful features in time series remains a challenging task.

Due to the abundance of time series data, their high dimensionality and intrin-
sic sequential characteristics, efficiently mining useful knowledge from time series
is still a challenging task. Thanks to recent advances in modern hardware architec-

6 introduction

tures as well as software algorithms, we seek to explore possibilities that are rarely
attempted before and address these challenges.

1.3 contributions

The main contributions of this dissertation are listed as follows:

(a) We conduct a large scale empirical study that takes advantage of discrete
wavelet transform (DWT) for time series dimensionality reduction. We first
transform real-valued time series data using different families of DWT. Then
we apply dynamic time warping (DTW)-based 1NN classification on 39

datasets and find out that existing DWT-based lossy compression approaches
can help to overcome the challenges of storage and computation time. Fur-
thermore, we provide assurances to practitioners by empirically showing,
with various datasets and with several DWT approaches that TSC algorithms
yield similar accuracy on both compressed (i.e., approximated) and raw time
series data. We also show that, in some datasets, wavelets may actually help
in reducing noisy variations which deteriorate the performance of mining
tasks. In a few cases, we note that the residual details/noises from compres-
sion are more useful for recognizing data patterns.

(b) We propose a language model-based approach for TSC named Domain Se-
ries Corpus (DSCo). After transforming real-valued time series into texts us-
ing Symbolic Aggregate approXimation (SAX). Then we build per-class lan-
guage models (unigrams and bigrams) from these symbolized text corpora.
To classify unlabeled samples, we compute the fitness of each symbolized
sample against all per-class models and choose the class represented by the
model with the best fitness score. Our work innovatively takes advantage
of mature techniques from both time series mining and NLP communities.
Through extensive experiments on an open dataset archive, we demonstrate
that DSCo performs similarly to approaches working with original uncom-
pressed numeric data. We further propose DSCo-NG to improve the compu-
tation efficiency and classification accuracy of DSCo. Unlike in DSCo where
we try to find the best way to recursively segment time series, DSCo-NG
breaks time series into smaller segments of the same size, this simplification
of the classification process also leads to simplified language model inference
in the training phase and slightly higher classification accuracy.

(c) We present a multiscale visibility graph representation for time series as
well as feature extraction methods for time series classification (TSC). Un-
like traditional TSC approaches that seek to find global similarities in time
series databases (e.g., Nearest Neighbor with Dynamic Time Warping dis-
tance) or methods specializing in locating local patterns/subsequences (e.g.,
shapelets), we extract solely statistical features from graphs that are gener-
ated from time series. Specifically, we augment time series by means of their
multiscale approximations, which are further transformed into a set of visi-

1.3 contributions 7

bility graphs. After extracting probability distributions of small motifs, den-
sity, assortativity, etc., these features are used for building highly accurate
classification models using generic classifiers (e.g., Support Vector Machine
and eXtreme Gradient Boosting). Thanks to the way how we transform time
series into graphs and extract features from them, we are able to capture both
global and local features from time series. Based on extensive experiments
on a large number of open datasets and comparison with five state-of-the-art
TSC algorithms, our approach is shown to be both accurate and efficient: it
is more accurate than Learning Shapelets and at the same time faster than
Fast Shapelets.

Besides, we also list a few industrial applications that relevant to our research
work towards the end of this dissertation, including Non-Intrusive Load Moni-
toring as well as anomaly detection and visualization by means of hierarchical
clustering for time series data. Overall, this dissertation explores different possi-
bilities to improve the efficiency and accuracy of TSC algorithms. To that end we
employ a range of techniques including wavelet transforms, symbolic approxima-
tions, language models and graph mining algorithms. We experiment and evaluate
our approaches using publicly available time series datasets. Comparison with the
state-of-the-art shows that the approaches developed in this dissertation perform
well, and contribute to advance the field of TSC.

The research work we have performed during the course of the PhD program
has lead to the following publications:

- [Li et al., 2016c] D. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon. Time Series
Classification with Discrete Wavelet Transformed Data: Insights from an Em-
pirical Study. In The 28th International Conference on Software Engineering
and Knowledge Engineering (SEKE 2016), pages 273–278, July 2016.

- [Li et al., 2016b] D. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon. Time Series
Classification with Discrete Wavelet Transformed Data. In International Jour-
nal of Software Engineering and Knowledge Engineering, volume 26, pages
1361–1377. World Scientific, November & December 2016.

- [Li et al., 2016d] D. Li, T. F. Bissyandé, S. Kubler, J. Klein, and Y. Le Traon. Pro-
filing Household Appliance Electricity Usage with N-Gram Language Mod-
eling. In The 2016 IEEE International Conference on Industrial Technology
(ICIT 2016), pages 604–609. IEEE, March 2016.

- [Li et al., 2016e] D. Li, L. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon. DSCo:
A Language Modeling Approach for Time Series Classification. In P. Perner,
editor, Machine Learning and Data Mining in Pattern Recognition: 12th In-
ternational Conference, MLDM 2016, New York, NY, USA, pages 294–310.
Springer International Publishing, July 2016.

- [Li et al., 2016a] D. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon. DSCo-NG:
A Practical Language Modeling Approach for Time Series Classification. In
The 15th International Symposium on Intelligent Data Analysis (IDA 2016),
October 2016.

8 introduction

- [Li et al., 2017] D. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon. Sensing by
Proxy in Buildings with Agglomerative Clustering of Indoor Temperature
Movements. In The 32nd ACM Symposium on Applied Computing (SAC
2017), pages 477–484, April 2017.

- [Li et al., 2018] D. Li, J. Lin, T. F. Bissyandé, J. Klein, and Y. Le Traon. Ex-
tracting Statistical Graph Features for Accurate and Efficient Time Series
Classification. In The 21st International Conference on Extending Database
Technology (EDBT), March (To Appear) 2018.

1.4 organization of this dissertation

The structure of this dissertation is organized as follows. We lay down the foun-
dations of this dissertation by introducing the related background in Chapter 2

and state-of-the-art in Chapter 3. Next, we explore different approaches for im-
proving the efficiency and accuracy of TSC tasks. Specially, we conduct studies on
taking advantage of Discrete Wavelet Transform (DWT) for time series dimension-
ality reduction in Chapter 4. In Chapter 5, we employ symbolic representations
for time series and building per-class language models for classification. And in
Chapter 6, we bring up a graph-based TSC approach that extracts features from
multiscale time series visibility graphs so that such unordered features can be fed
into generic classifiers (such as RF, SVM and XGBoost) for accurate classification.
We also introduce the applications of TSC (in Chapter 7) in the domain of Non-
Intrusive Load Monitoring (NILM) and time series clustering (in Chapter 8) for
anomaly and indoor activity detection. Finally, we conclude this dissertation in
Chapter 9 with directions for future work. For the sake of readability, each chapter
of this dissertation is structured to be as independent as possible, so that read-
ers can directly dive into chapters that interest them most without the need of
consulting other chapters.

Part II

T I M E S E R I E S

2
B A C K G R O U N D

You’d better have a firm foundation
when you go out into the world.
There’s no telling what you’ll run
into.

Ann B. Ross
Miss Julia to the Rescue

Outline

In this chapter, we introduce the core ideas and definitions for time series min-
ing and especially for time series classification. Specifically, we give the commonly
accepted definitions for time series and its related operations including dimension-
ality reduction and distance calculation. We also introduce the concept of symbolic
representation including SAX and related techniques.

2.1 time series

Traditionally, time series refer to a sequence of numbers that are chronologically
ordered:

Definition 2.1 (Time series with time stamps)
A traditional time series sample or instance T is a temporally ordered sequence of n real-
valued variables, i.e., T = ((t1, v1), ..., (tn, vn)), vi ∈ R,∀i, j such that i < j, ti < tj.

In the data mining community, however, time series have a much broader scope
and do not associate strictly with timestamps:

Definition 2.2 (Generic time series discussed in this dissertation)
A time series sample or instance T is an ordered sequence of n real-valued variables, i.e.,
T = (v1, ..., vn), vi ∈ R.

If we consider each point in a time series as a feature, then time series data
usually have a lot of features. When considering these features as a vector in an
n-dimensional space, time series data are often high dimensional.

Definition 2.3 (Time series dimensionality)
The dimensionality of a time series sample T is the length of T , denoted by |T |.

11

12 background

Due to difficulties to conduct data mining tasks on high dimensional data, it is
frequently required to reduce the dimensionality of time series in order to improve
computation efficiency:
Definition 2.4 (Time series dimensionality reduction)
Given a time series T = (v1, ..., vn), an approximated representation of T , T ′ is another
time series sample such that |T ′|� |T |.

The research community has proposed a number of dimensionality reduc-
tion techniques for time series, including sampling [Åström, 1969], Piecewise
Linear Representation (PLR) [Keogh, 1997], Piecewise Aggregate Approximation
(PAA) [Keogh and Pazzani, 2000] and so on. Among them PAA is probably one
of the simplest and most widely approaches. PAA can reduce the time series
T = (v1, ..., vn) from n dimensions to s dimensions by dividing the data into s
segments of equal size. The data reduction representation is then a vector of the
mean values of the data readings per segment [Keogh and Pazzani, 2000; Lin et al.,
2007]. Let T̄ = (v̄1, ..., v̄s) be this vector where each v̄i is computed by equation 2.1.

v̄i =
s

n

n
s i∑

k=n
s (i−1)+1

vk (2.1)

Definition 2.5 (Multivariate time series)
A Multivariate time series is a set of more than one time series (variables) that share the
same time range.

2.2 distance measures

One of the core routines in many time series mining tasks – e.g., in distance-based
classification and clustering – involves evaluating the dissimilarity or similarity of
two time series:
Definition 2.6 (Time series dissimilarity metric)
The dissimilarity measure D(X, Y) of two time series samples X and Y is the distance of
two time series. This distance is nonnegative, i.e., D(X, Y) > 0. If this measure satisfies
the additional symmetry property D(X, Y) = D(Y,X) and triangle inequality D(X,Z) 6
D(X, Y) +D(Y,Z), the distance measure is considered to be a metric. Time series metrics
are beneficial for indexing and querying a time series database.

There are a number of dissimilarity measures and metrics for time series, two
of the most frequently used measures in the research community are Euclidean
distance and DTW distance. The Euclidean distance is defined in Equation 2.2. As
illustrated in Figure 2.1, the Euclidean distance maintains a one-to-one mapping
of all the points in two series. The gray dotted lines indicating the point mappings
are all vertical.

DEuclidean(X, Y) =
√∑

(Xi − Yi)2 (1 6 i 6 |X| = |Y|) (2.2)

2.2 distance measures 13

0 50 100 150 200 250

-2

-1

0

1

2

-2

-1

0

1

Euclidean

Figure 2.1: Example of time series alignment with the Euclidean distance.

On the other hand, the DTW distance tries to find the best mapping of points in
two series using the dynamic programming paradigm, so that the minimum dis-
tance between these two series is achieved. The paradigm is called “time warping”
since the time axis of series can be expanded or compressed in order to ensure
the minimum distance. Figure 2.2 illustrates the alignment of different points. As
shown, an ith point in X can be mapped to a jth point (it is possible that i 6= j), or
one point in X may even be mapped to multiple points in Y.

0 50 100 150 200 250

0

1

2 0

1

DTW

-2

-1

-2

-1

Figure 2.2: Example of time series alignment with DTW distance.

Formally, the DTW distance of two time series can be defined as in Equation 2.3,
i.e., the distance of X and Y is the final result of comparing till the end of each

14 background

time series, given the pre-condition specified in Equation 2.4 and the recursive
computational process in Equation 2.5.

DDTW(X, Y) = DDTW(Xm, Yn) (m = |X| and n = |Y|) (2.3)

DDTW(X1, Y1) = |X1 − Y1| (2.4)

DDTW(Xi, Yj) = |Xi − Yj|+min

DDTW(Xi−1, Yj)

DDTW(Xi−1, Yj−1)

DDTW(Xi, Yj−1)

(1 < i 6 |X| and 1 < j 6 |Y|) (2.5)

It is obvious that DTW has a computation complexity of O(mn), wherem and n
are the dimensionality of two time series instances. In order to speed up the com-
putation, lower bounding techniques have been proposed. One of the most widely
used lower bounding algorithms is LBKeogh [Keogh and Ratanamahatana, 2005;
Rakthanmanon et al., 2012]. As defined in Equation 2.6, the LBKeogh algorithm
limits the scope of the best match point within the upper and lower bounds.

LBKeogh(X, Y) =
|X|∑
i=1

(Xi −Ui)

2 if Xi > Ui

(Xi − Li)
2 if Xi < Li

0 otherwise

(2.6)

Specifically, the upper and lower bound of time series Y with the warping win-
dow size of r are defined in Equation 2.7 and Equation 2.8. Essentially, the upper
and lower bound at a specific time step is the minimal and maximal values of a
series within r steps.

Ui(r) = max(Yi−r, ...,Yi+r) (r < i 6 |Y|− r) (2.7)

Li(r) = min(Yi−r, ...,Yi+r) (r < i 6 |Y|− r) (2.8)

Research has shown that with LBKeogh, the computational complexity can be
approximately lowered to O(n) [Smith and Craven, 2008]. One issue with DTW
and its lower bounding techniques, however, is that the family of DTW algorithms
focuse on finding global similarities, i.e., the overall curve shape of two time series
in the time dimension. As a result, it requires applications to specify a proper
warping window size or to properly align data samples. Figure 2.3 shows an ex-
ample where DTW fails to identify two different subsequences cropped from the

2.3 symbolic representation of time series 15

same parent-curve due to different data alignment, i.e., a phase shift. Specifically,
plots b and c are segments in a with the same length. However, the DTW distance
between b and c is 8.37 (warping window size 5), larger than the DTW distance
between b and d or c and d, where the distances are both 4.47. In this specific case,
all test samples resembling the overall shape of b or c may be mistakenly labeled
as class d, leading to poor classification accuracy.

0 50 100 150 200 250
2

1

0

1

2 (a)

(b) (c)

(b)

(c)

0 10 20 30 40

(d)

Figure 2.3: An example to illustrate DTW’s phase issue.

2.3 symbolic representation of time series

In the literature of time series data mining, real valued data are sometimes trans-
formed into symbolic representations, so as to potentially benefit from the enor-
mous wealth of data structures and algorithms made available by the text process-
ing and bioinformatics communities. Besides, symbolic representation approaches
make it easier to solve problems in a streamed manner [Lin et al., 2007]. Finally,
many algorithms target discrete data represented by strings over floating point
numbers.

Consider the case of two samples from the BirdChicken [Chen et al., 2015]
dataset illustrated in Figure 2.4, where bird/chicken images have been trans-
formed into time series (illustrated in gray curves). By observing the readings in
different segments of the time series and which segment succeeds another, one can
immediately summarize the characteristics of each class. For computers, however,
it can be fairly difficult to acquire such knowledge.

0 100 200 300 400 500
2.5

0.0

2.5 Bird

0 100 200 300 400 500
2.5

0.0

2.5 Chicken

Figure 2.4: Illustrative time series samples from the BirdChicken dataset.

In order to improve computation efficiency and remove potential noises from
time series, it is common practice to conduct dimensionality reduction. Figure 2.5

16 background

illustrates the effect of PAA – one of the most widely applied time series dimen-
sionality reduction approaches as defined in euqation 2.1 – corresponding to the
readings in Figure 2.4.

0 100 200 300 400 500
2.5

0.0

2.5 Bird

0 100 200 300 400 500
2.5

0.0

2.5 Chicken

Figure 2.5: PAA representations of two time series samples where dimension is reduced
from 512 to 8 (n = 512 and s = 8).

Although very simple, the PAA dimensionality reduction can greatly reduce the
dimensionality of time series data. In order to benefit from the plethora of algo-
rithms that exist in the NLP field, we can transform the PAA representation into a
more symbolic representation with alphabets. To that end, the Symbolic Aggregate
approXimation (SAX) [Lin et al., 2003, 2007] have been proposed. SAX was initially
brought up to transform real valued time series data into a sequence of alphabets,
i.e., a string. It has then been proven especially efficient for motif (repeated pat-
terns) discovery tasks. For example, it is advantageous to use SAX in order to find
variable-length motifs [Li and Lin, 2010; Senin et al., 2014]. Figure 2.6 illustrates the
SAX representations of samples from the two classes in the BirdChicken dataset.

0 100 200 300 400 500
2.5

0.0

2.5

b b
d

b a
d

b a

Bird

0 100 200 300 400 500
2.5

0.0

2.5

b b a
d b

d
a

d
Chicken

Figure 2.6: SAX representations of two time series samples with an alphabet size of four.

Essentially, SAX assumes a normal probability distribution of time series values
and tries to divide the area under the probability distribution curve into smaller
areas of equal size. Each of these small areas can then be mapped to a single alpha-
bet so that each area represents an equiprobable interval. For simplicity, the bound-
aries of these areas can be precomputed and provided as a lookup table (e.g., [Lin
et al., 2007] provides a look up table for alphabet size from 3 to 10). For instance,
for SAX alphabet of 4, the boundaries (denoted as β) are β = (−0.67, 0, 0.67). As a
result, transforming raw time series into SAX strings can be extremely efficient.

After transforming real-valued time series data into symbolic strings, one might
wonder how to evaluate the similarity of two time series. To that end, a SAX dis-
tance measure has been proposed resembling the Euclidean distance. We denote

2.3 symbolic representation of time series 17

the PAA representation of two time series X and Y respectively as X̂ and Ŷ, and the
corresponding SAX strings as X̄ and Ȳ, then D(X, Y) ≈ DPAA(X̂, Ŷ) ≈ DSAX(X̄, Ȳ):

DPAA(X̂, Ŷ) =

√
|X|

|X̂|

√√√√√ |X̂|∑
i=1

(X̂i − Ŷi)2 (2.9)

DSAX(X̄, Ȳ) =

√
|X|

|X̄|

√√√√ |X̄|∑
i=1

dist(X̄i − Ȳi)2 (2.10)

The dist function again can be precomputed and defined as a lookup table,
where dist(i, j) is defined as:

dist(i, j) =

{
0 if |i− j| 6 1

βmax(i,j)−1 −βmin(i,j) otherwise
(2.11)

More recently, other symbolic representation methods and improvements have
been proposed. For instance, indexable SAX (iSAX) [Shieh and Keogh, 2008] is a
superset of SAX with support for time series indexing and fast similarity search.
Besides, adaptive SAX (aSAX) [Pham et al., 2010] tries to combine and the k-means
algorithm to optimize the performance of SAX on datasets that are not strictly
Gaussian-distributed. Finally, Symbolic Fourier Approximation (SFA) [Schäfer and
Högqvist, 2012] takes advantage of Discrete Fourier Transform (DFT) instead of
PAA for approximation and employs a novel discretization technique named mul-
tiple coefficient binning to improve pruning of the search space during time series
queries.

3
S TAT E - O F - T H E - A RT

For the man who studies to gain
insight, books and studies are
merely rungs of the ladder on which
he climbs to the summit of
knowledge. As soon as a rung has
raised him up one step, he leaves it
behind.

Arthur Schopenhauer
The World as Will and Representation

Outline

This chapter briefly surveys the most relevant classification algorithms as well as
datasets for benchmarking TSC approaches. Specifically, we introduce both generic
classification algorithms (e.g., kNN, SVM, RF and XGBoost) and classifiers specific
to time series (e.g., SAX-VSM, BOSS and COTE). Datasets used in this dissertation
are mainly from the UCR time series classification archive.

3.1 generic classification algorithms

Classification in data mining refers to a type of supervised machine learning task
that involves extracting useful information from a set of labeled data (the training
set) and apply such information to predict the labels of data that are not labeled.
It is similar to regression tasks, with the exception that the labels are categorical
in classification tasks. As one of the most important machine learning tasks, a
plethora of algorithms have been proposed. In this section we only survey the
most important or relevant classifiers to time series mining.

3.1.1 kNN

Given an unlabeled instance and a training set consisting of m samples, kNN tries
to find k samples – nearest neighbors – from these samples that closest with the
unlabeled instance based on a distance measure, e.g., Euclidean. Once the nearest-
neighbor set is obtained, the testing instance is assigned the label of the majority
class of its nearest neighbors. kNN is a type of instance-based learning method, i.e.,

19

20 state-of-the-art

it compare instances to instances instead of learning an abstract models from the
training set. It is considered to be an extremely popular algorithm in data mining
due to its simplicity [Wu et al., 2008].

kNN’s main advantage is its simplicity: it is extremely easy to understand and to
implement. But it has some very obvious drawbacks including its inability to scale
with large training datasets, since each sample in the test set has to compare with
every sample in the training set. Besides, kNN does not explicitly model anything
from the training set, and although it may find the most similar objects to the
testing instance, it has difficulty providing extra insights (abstracted knowledge)
about the data. As a result, kNN is a lazy machine learning algorithm.

3.1.2 Support Vector Machine

The core of Support Vector Machine (SVM) is finding a hyperplane that best sep-
arates data points from different classes. With 2-dimensional data, the separating
plane can be simply a line; when generalizing to n-dimensional data, the hyper-
plane will be a plane that has n − 1 dimensions. To find the hyperplane, SVM
needs to define what is the best way to separate data from different classes: gener-
ally it is defined as the plane that maximizes the margin of the points that has the
smallest margin to this plane, i.e., the points that are closest to the plane.

SVM is known for its effectiveness with high dimensional data and especially,
it can remain effective even if the dimensionality is greater than the number of
samples. It is also memory efficient, since SVM uses a subset of training points
in the support vectors. Finally, SVM is very easy to extend by means of choosing
predefined kernel methods or customizing one. Thanks to these advantages, SVM
is very frequently used in practice.

3.1.3 Decision Trees

Decision trees are one of the most straightforward classification approaches that
resemble how human beings learn and think. They try to establish a set of rules
that best separate data from different classes. Each non-leaf node in the tree is as-
sociated with a feature test also known as a split, since data are split into different
subsets according to their corresponding values on the feature test. Generally, de-
cision trees are very easy to understand and interpret since they can be visualized
in a simple flowchart form. They are also capable of handling missing values and
do not require prior imputation.

Depending on how decision trees are developed, there are a range of similar al-
gorithms. For example, ID3 tries to find for each node the categorical feature that
yields the largest information gain for the target classes. C4.5 builds on ID3 and
converts the output of ID3into sets of if-then rules. Then the accuracy of each rule
is evaluated to determine the order they will be applied. Also, CART (Classifica-

3.1 generic classification algorithms 21

tion and Regression Trees) is very similar to C4.5 but constructs binary trees using
the feature and threshold that yield the largest information gain at each node. It
also adds support for regression and does not compute rule sets.

Although a effective and popular classifier, decision trees tend to overfit on data
with a large number of features. As a result, it is common practice to conduct
principal component analysis (PCA) on high dimensional features. A well known
decision tree-based ensemble approach – rotation forest [Rodriguez et al., 2006] –
develops a number of trees and to grow each tree, it takes advantage of PCA on a
random subset of the input features.

3.1.4 Ensemble Methods

In order to improve the generalization ability and classification accuracy of classi-
fiers, ensemble methods are brought up. Essentially, ensemble methods train a set
of classifiers instead of only one and refer to the collective results during classifica-
tion. In general, there are two major ways to build ensemble models, i.e., through
boosting or bootstrap aggregating often abbreviated as bagging.

The idea behind boosting is quite simple: a set of classifiers are built sequentially,
with the later classifiers focusing more on the mistakes of earlier classifiers. This
process can be considered as a evolution of the same classifier within a limited
amount of cycles. Although boosting can make weak classifiers stronger, they are
also more likely to overfit the training data. AdaBoost [Freund and Schapire, 1995]
is a popular approach that falls in this category.

Bagging, on the other hand, works by initially assigning each model in the en-
semble vote with a equal weight. Subsequently, a subset of the training set is
randomly drawn and this subset of data is used to train different models inde-
pendently in parallel. After repeating this process a number of times and every
model in the ensemble are trained, during classification each base classifier’s out-
put is collected and undergone a voting and the winner label is produced as the
final prediction. Bagging can often yield better accuracy as well as generalization
capability. Another benefit of bagging is that they are inherently favorable to par-
allelism, and the training speed can be easily accelerated using parallel computing
environments. Random Forest (RF) [Breiman, 2001] is a popular representative of
bagging ensemble.

Fernández-Delgado et al. [2014] have conducted an extensive empirical evalua-
tion of 179 classifiers from 17 different families, and found out that RF achieved the
best overall accuracy based on the UCI machine learning classification database.
Following RF, SVM with Gaussian kernel also performs reasonably well. Overall,
RF and SVM are the bests classification families.

Very recently, eXtreme Gradient Boosting (XGBoost) [Chen and Guestrin, 2016]
has been proposed and gained a great momentum in adoption in the DM com-

22 state-of-the-art

munity and especially in Kaggle1 competitions: a majority of winning solutions in
Kaggle have used XGBoost. XGBoost can achieve extremely high classification per-
formance thanks to a few improvements on the state-of-the-art approaches. First
of all, it utilizes a regularized objective function that leads to better parallelism as
well as selection of models with simple and predictive functions. Besides, it em-
ploys a shrinkage technique [Friedman, 2002] in order to reduce the influence of
each individual tree and leave space for future trees to improve the model. Finally,
XGBoost borrows the column (feature) subsampling technique from RF to combat
overfitting issues.

3.1.5 Neural Networks

Neural Networks (NNs) are inspired by the biological structure of neural networks
in our brains. The basis construction unit of NNs is called a cell, which takes a
number of inputs from other cells and outputs a single signal that may be attached
to another cell. Even if a cell may only be able to model simple signals like linear
regression, when many cells are combined into a single structure, they can be used
for modeling complex signals.

As hardware platforms develop rapidly, researchers are able to create extremely
complex models consisting of many cells organized in different layers. Depend-
ing on how NNs are constructed, there can be many types of them. Promising
ones include recurrent neural networks (RNNs) and convolutional neural net-
works (CNNs). RNNs allows loops in their cells, so that information may persist
in such cells. One prominent type of RNN is called Long Short-Term Memory
(LSTM), whose recurrent components do not use activation functions, so that it
can remembers values for either long or short time periods. LSTM networks are
inherently favorable to sequential and it performs extremely well for speech recog-
nition [Graves et al., 2013] tasks. Compared to RNNs that are suitable for mining
of sequential data, CNNs are generally a good fit for image recognition tasks. For
instance, deep residual networks (ResNets) [He et al., 2016] have become the state-
of-the-art approach for image recognition.

Although proven to produce highly accurate classification results, NNs and
especially deep NNs replies heavily on the underlying hardware platform: us-
ing GPUs can be magnitudes faster than using CPUs but they can still be time-
consuming to train. Furthermore, they are known for overfitting issues and are in
general best suitable for extremely large datasets.

3.2 time series classifiers

Time series classification (TSC) is a subclass of generic classification in machine
learning that involves learning from existing labelled time series instances (train-
ing set) and applying the learned knowledge to assign labels to instances from

1 https://www.kaggle.com/

https://www.kaggle.com/

3.2 time series classifiers 23

a testing dataset, where instance classes or labels are often unknown (either this
information does not exist or has been intentionally hidden from the classification
process).

Definition 3.1 (Labelled time series dataset)
A labelled time series dataset D is an unordered collection of time series along with their
corresponding labels or classes, i.e., D = {(T1, lT1

), ..., (Tn, lTn
)}. The size of D is the

number of time series samples in D, i.e., |D| = n.

TSC tasks are especially common in application domains such as image and
speech recognition (e.g., for recognizing spoken words), medical diagnosis (e.g.,
for detecting the type of a heart disease in an ECG signal), gesture detection, and
so on. Due to its numerous application scenarios, many techniques have been pro-
posed for TSC, including k-Nearest Neighbors, shapelets [Ye and Keogh, 2009],
and bag-of-features [Baydogan et al., 2013]. Among them, the Nearest Neighbor
(1NN) approach has been proven to work exceptionally well, especially when us-
ing DTW [Batista et al., 2011] for computing the distance metrics between a pair
of time series samples.

3.2.1 Similarity-based Nearest Neighbor

The Nearest Neighbor (1NN) classification is a special case of the more general
k-Nearest Neighbors algorithm (kNN) where k is set to one. Underlying, kNN
needs a distance measure to find the nearest neighbors. Traditionally, Euclidean
and DTW are the preferred measure. For instance, Batista et al. [2011] claim that
DTW-based 1NN is extremely difficult to beat. Other distance measures such as
Time Warp Edit Distance (TWED) [Marteau, 2009], Edit Distance on Real sequence
(EDR) [Chen et al., 2005] and Minimum Jump Cost (MJC) [Serra and Arcos, 2012]
can also lead to accurate 1NN classification. For example, Serra and Arcos [2014]
have empirically shown with 45 publicly-available datasets that DTW, EDR and
MJC can yield accuracy scores that are not statistically significant.

3.2.2 Bag-of-Patterns

There can be a few drawbacks for instance-based classification algorithms, one
of the most important issue probably lies in scalability. That is, when the size of
training datasets grows, it becomes increasingly inefficient to find similar instances
as the algorithms needs to scan every instance within the training set. Further-
more, they are often not adaptive to very long time series. As a result, it is more
appropriate to consider the overall statistical features. The bag-of-patterns (BoP)
approach [Lin et al., 2012] borrows the bag-of-words methods from the NLP com-
munity and adopts a histogram-based representation for time series data. Specifi-
cally, BoP first transforms real-valued time series into SAX strings, and then uses
a sliding window to scan the strings and curate a set of unique words . Word
frequencies are counted and saved in a matrix, which is used to compute the

24 state-of-the-art

similarity between different time series. BOP can produce very good results even
if time series in a dataset are not properly aligned. Time series Bag-of-Features
(TSBF) [Baydogan et al., 2013] is similar approach to BoP, but it considers both
fixed- and variable-length words as well as shape-based features such as the slope
and variance.

3.2.3 SAX-VSM

Aiming for providing an interpretable time series classification algorithm that typ-
ical 1NN classifier lacks, Senin and Malinchik [2013] propose SAX-VSM as an
alternative to 1NN that provides a superior interpretability and a low computa-
tional complexity in classification. Similar to BoP, SAX-VSM also takes advantage
of SAX to transform time series data into symbolic strings and use the sliding
window technique to convert the strings into a set of words, which is represented
by the bag-of-words model. Unlike BoP that assigns each word in the model the
same weight, SAX-VSM instead adopts a term-frequency inverse document fre-
quency (TF-IDF) paradigm to reduce the impact of too frequent patterns in time
series. During the training phase, SAX-VSM builds TF-IDF bags for all classes; and
during classification, cosine similarity is used for evaluating the similarity to the
class vector and assigning labels.

Thanks to the different weights assigned to words in SAX-VSM, it is able to find
out the weight of any arbitrary selected subsequence. SAX-VSM also provides a
visualization tool resembling a heatmap that can provide users with an immediate
insight into the layout of the more defining characteristics of subsequences in each
class.

3.2.4 Representative Pattern Mining

Another recent TSC approach based on SAX is Representative Pattern Mining
(RPM) [Wang et al., 2016b]. After discretization of time series into symbolic rep-
resentations, RPM takes advantage of grammatical inference techniques to auto-
matically finds recurrent and correlated patterns of variable lengths. This pool of
patterns shared by many instances in a class is further refined so that the most
representative patterns that capture the properties of a specific class are selected.
Thanks to the SAX discretization method, RPM demonstrates excellent perfor-
mance on real-world medical time series that are inherently noisy. Furthermore,
RPM can be robust on shifted data, since its feature extraction process is rotation
invariant.

3.2 time series classifiers 25

3.2.5 BOSS

It is obvious that several of the aforementioned classifiers transform time series
into symbolic strings using SAX. After inventing SFA for symbolic representation
of time series, Schäfer [2015] proposes a classification method named Bag-of-SFA-
Symbols (BOSS) that is similar to the bag-of-words approach. Since SFA is noise
tolerant and invariant to phase shifts, offsets, amplitudes and occlusions, BOSS
can be applied to noisy data while achieving good classification results. It is also
computationally efficient due to the use of hashing techniques to evaluate the
similarity of SFA words. Intuitively, two time series are considered similar in the
BOSS distance if they share the same set of SFA words. Using the BOSS distance
measure, 1NN can be used to classify unlabeled datasets.

One challenge with BOSS is to choose the appropriate parameters, i.e., the alpha-
bet size and sliding window length. To achieve optimal classification accuracy, it
is advised to use the BOSS ensemble method, which consists of a number of basic
BOSS classifiers with different parameter combinations. During the training phase,
different weights are calculated and assigned to the set of classifiers. When these
weights are optimized during training, they are used in to accurately predict the
labels of test dataset.

3.2.6 Shapelets

Besides instance-based and symbolic transform-based TSC approaches, another
line of research tries to find out the most discriminative features called
shapelets [Ye and Keogh, 2009] per time series class and take advantage of this
feature for classification. Specifically, shapelets are subsequences of time series
that are representative of a class. Technically, the retrieval of shapelets is done by
optimizing the information gain (the increase of entropy) of dividing time series
data into subsequences and choosing the best candidates extracted from the series
segments.

Grabocka et al. [2014] propose a new mathematical formalization of the
shapelets discovery algorithm by means of a classification objective function and
a tailored stochastic gradient learning algorithm. This approach enables learning
near-optimal shapelets without trying out a large number of candidates.

Similar to SAX-VSM, shapelets can also produce interpretable classification re-
sults by means of matching a shapelet with the testing instance. One drawback
with this approach lies in its computation complexity. Although subsequence dis-
tance early abandoning and admissible entropy pruning techniques have been
proposed, the running time for shapelet discovery algorithm is O(n2m3) [Rak-
thanmanon and Keogh, 2013], where n is the size of the training dataset, and m is
the length of the time series instances.

26 state-of-the-art

3.2.7 Logical Shapelets

Due to the computation complexity of shapelet discovery, finding shapelets are in
practice done offline. Logical Shapelets [Mueen et al., 2011] improves the efficiency
of shapelets discovery based on intelligent caching and reuse of computations as
well as admissible pruning of the search space.

3.2.8 Learning Shapelets

Contrary to the procedure of the original shaplet discovery where a shapelet is
found through exhaustive or optimized search, Learning Shapelets (LS) [Grabocka
et al., 2014] proposes a new mathematical formalization of the task and defines an
objective function, so that optimization methods such as stochastic gradient de-
scent (SGD) maybe applied to minimize the loss function and find near-to-optimal
shapelets without the need to evaluate a large pool of shapelet candidates.

In addition, since LS defines a distance between a shaplet and a time series, it
can find the score of each shapelet independently and then sort them, so that the
k-most discriminative shapelets can be found during the optimization process.

3.2.9 Shapelet Transform

The original shapelets algorithm tries to find the most representative time se-
ries subsequences for all classes in the training dataset and use these shapelets
to match unlabeled time series data, forming a decision tree-like classification
paradigm. The classification accuracy can be further improved by extracting top-k
shapelets per class in the training set to avoid overfitting. To that end, Shapelet
Transform (ST) [Lines et al., 2012; Hills et al., 2014] is proposed to find k shapelets
from each class and use them to transform datasets by calculating the distances
from a series to each shapelet.

After shapelet transforming time series datasets, generic classification algo-
rithms can be used utilized. The authors have experimented with different clas-
sifiers and found out that SVM can produce best classification accuracy. Since find-
ing shaplets of a single length costs O(n2m3) computation, finding k shapelets is
even more time consuming. As a result, ST’s high computation complexity can be
a real obstacle for practical use.

3.2.10 Fast Shapelets

In order to improve the computation efficiency of the shaplets algorithm, Rak-
thanmanon and Keogh [2013] propose a heuristic-based approach named Fast
Shapelets (FS). Although it is an approximate algorithm and is not guaranteed

3.3 datasets 27

to return the same shapelets as the original algorithm, it can decrease the complex-
ity of the shaplet discovery algorithm down to O(nm2). In order to achieve this,
FS carries out a range of optimizations including: 1) mapping the real-valued high
dimensional time series data into discrete and low dimensional symbolic represen-
tations using SAX; 2) using random masking to project SAX words from a high
dimension to a lower dimension to reduce false dismissals, which are caused by
the fact that two time series that differ a tiny margin may produce different SAX
words; and 3) taking advantage of similarity hashing to find and count similar
words.

3.2.11 Collective of Transformation-based Ensembles

In order to further improve the classification accuracy of TSC algorithms, Bagnall
et al. [2015] introduce an ensemble algorithm named Collective of Transformation-
based Ensembles (COTE) – an ensemble of 35 different classifiers. It is based on
two concepts that 1) transforming time series data into an alternative data space
can ease the process of finding discriminatory features and 2) improved accuracy
can be achieved through simple ensemble methods even with a single data rep-
resentation. COTE has proven to be more accurate than all others thanks to the
different underlying time series representations as well as the combination effect
of various classifiers. This approach, however, has a very high computation com-
plexity, which limits its applications in practice.

The authors of COTE also claim that COTE can be more accurate than deep
learning methods such as convolutional neural networks (CNN) [Lines et al., 2016].
Besides, they continue to propose Hierarchical Vote Collective of Transformation-
based Ensembles (HIVE-COTE), which incorporates three new classifiers, i.e., an
interval based ensemble named Time Series Forest (TSF) [Deng et al., 2013]), a
dictionary ensemble (BOSS) [Schäfer, 2015] and a spectral component named Ran-
dom Interval Features (RIF). Besides, HIVE-COTE proposes a modular hierarchi-
cal structure with a probabilistic voting scheme that can be tuned during cross-
validation. HIVE-COTE appears to be significantly more accurate than its prede-
cessor, making it on of the most accurate TSC algorithms. However, it also suffers
from the same complexity issue similar to its predecessor.

3.3 datasets

Although time series data are widely available, clearly labelled time series datasets
that are perfect for classification tasks are difficult to come by. The UCI Machine
Learning Repository2 provides various datasets donated by the research commu-
nity and industry. Time series datasets are also amiable in the UCI repository, but
different datasets come with different formats and it takes a lot of efforts to pre-
process these datasets into formats that can be consumed by TSC algorithms.

2 https://archive.ics.uci.edu/ml/datasets.html

https://archive.ics.uci.edu/ml/datasets.html

28 state-of-the-art

The UCR time series classification archive3 [Chen et al., 2015], on the other hand,
offers a relatively uniform file format as well as class labels. Datasets contained
in this archive are popular within the TSC community and has become the de
facto dataset archive for TSC, thus allowing for a reliable comparison baseline.
Besides, the archive includes error rates for DTW- and Euclidean-based 1NN clas-
sification as a performance benchmark for TSC. The UCR archive is composed of
two sub-archives: Pre_Summer_2015_Datasets and Newly Added Datasets which
include datasets from various fields, ranging from electrocardiograms (ECG) to
intra-species image recognition data. We tested on the latter (which contains 39

different datasets) because its file format and internal data structures are consis-
tent, making it possible to conduct batch processing in a content-agnostic manner.
Furthermore, both sub-archives have similar dataset diversity and some datasets
for specific domains (for example, ECG data) appear in both sub-archives. Gener-
ally, datasets in the Newly Added Datasets contain more time series samples than
datasets in the Pre_Summer_2015_Datasets. Finally, the UCR archive provides a
predefined train/test split, so that different TSC algorithms can be benchmarked
with exactly the same data. As shown in 3.1, these 39 datasets have various num-
ber of classes from 2 to 60 and different number of training and testing instances
from 20 to 8,926, with time series lengths varying from 80 to 2,079.

Finally, the UEA and UCR Time Series Classification Repository4 [Bagnall et al.,
2016] contains similar datasets to the UCR archive, with the exception that all the
datasets are in Attribute-Relation File Format (ARFF), which is the default input
file format for the well-known Java machine learning framework Weka [Frank
et al., 2009]. Note that although names of the datasets used in this repository may
be exactly the same with the UCR archive, the similarity of their contents is not
guaranteed. In fact, the training and testing datasets may have been swapped for a
number of datasets. An obvious example is the FordA dataset, where in the UCR
archive the training dataset and testing set are of size 1320 and 3601 respectively,
while in the UEA & UCR repository the training set has 3601 samples and the
testing test has 1320.

To increase the reproducibility of our work, we detail which datasets have been
used for each of our experiments. Furthermore, parameters of different algorithms
can have a big impact on the final performance, as a result, we discuss about the
parameters and hyper-parameters in the next section.

3.4 parameters and hyper-parameters

Although it is desirable that DM algorithms should have as few parameters as pos-
sible [Keogh et al., 2004] in order to improve the generalization and reproducibility
of these algorithms, in reality very few algorithms are parameter-free. Take SAX
for example, at least two algorithms must be set, i.e., the alphabet size and the PAA

3 http://www.cs.ucr.edu/~eamonn/time_series_data/
4 http://timeseriesclassification.com/dataset.php

http://www.cs.ucr.edu/~eamonn/time_series_data/
http://timeseriesclassification.com/dataset.php

3.4 parameters and hyper-parameters 29

Table 3.1: Characteristics of datasets in Newly Added Datasets of the UCR archive.

Dataset Name #Classes #Training #Testing Length

1 ArrowHead 3 36 175 251

2 BeetleFly 2 20 20 512

3 BirdChicken 2 20 20 512

4 Computers 2 250 250 720

5 DistalPhalanxOutlineAgeGroup 3 139 400 80

6 DistalPhalanxOutlineCorrect 2 276 600 80

7 DistalPhalanxTW 6 139 400 80

8 ECG5000 5 500 4500 140

9 Earthquakes 2 139 322 512

10 ElectricDevices 7 8926 7711 96

11 FordA 2 1320 3601 500

12 FordB 2 810 3636 500

13 Ham 2 109 105 431

14 HandOutlines 2 370 1000 2709

15 Herring 2 64 64 512

16 InsectWingbeatSound 11 220 1980 256

17 LargeKitchenAppliances 3 375 375 720

18 Meat 3 60 60 448

19 MiddlePhalanxOutlineAgeGroup 3 154 400 80

20 MiddlePhalanxOutlineCorrect 2 291 600 80

21 MiddlePhalanxTW 6 154 399 80

22 PhalangesOutlinesCorrect 2 1800 858 80

23 Phoneme 39 214 1896 1024

24 ProximalPhalanxOutlineAgeGroup 3 400 205 80

25 ProximalPhalanxOutlineCorrect 2 600 291 80

26 ProximalPhalanxTW 6 205 400 80

27 RefrigerationDevices 3 375 375 720

28 ScreenType 3 375 375 720

29 ShapeletSim 2 20 180 500

30 ShapesAll 60 600 600 512

31 SmallKitchenAppliances 3 375 375 720

32 Strawberry 2 370 613 235

33 ToeSegmentation1 2 40 228 277

34 ToeSegmentation2 2 36 130 343

35 UWaveGestureLibraryAll 8 896 3582 945

36 Wine 2 57 54 234

37 WordSynonyms 25 267 638 270

38 Worms 5 77 181 900

39 WormsTwoClass 2 77 181 900

window size. It is possible that assigning a different set of parameters can lead to
very different final classification results for algorithms built on top of SAX.

30 state-of-the-art

ML and DM algorithms can have not only parameters, but also hyper-
parameters. Generally, the former refers to the configuration variables that are
internal to a model, and such variables can be obtained or estimated from the
data. A simple example is the number of classes parameter in many classifiers.
One user may explicitly set such a parameter, although it is not common practice
– the classifier should be able to infer such information from the training data.
Other common parameters include weights in NNs and support vectors in SVMs.
On the other hand, hyper-parameters are external to the model and these values
cannot be estimated from the data. As a result, they are often set using heuristics.
For instance, the k in kNN classifier can be considered as a hyper-parameter, since
“there is no analytical formula available to calculate an appropriate value“ [Kuhn
and Johnson, 2013]. Another example of hyper-parameters is the learning rate pa-
rameter persisting in many classifiers such as NNs and XGBoost.

3.4.1 Cross Validation

Learning the parameters for a classifier and finding its best hyper-parameters often
involves validating such a classifier to reduce overfitting and improve generaliza-
tion. This process is often known as model validation, where a model in “tested“
with validation data, which are selected from the training set but have not been
fitted to the model. To best take advantage of the training dataset, it is common
practice to conduct cross validation (CV).

One round of CV partitions the training dataset into a subset for training the
classifier and other subset for validation. CV can be either exhaustive or non-
exhaustive. In an exhaustive CV, for example, the leave-one-out CV (LOOCV), a
single instance is used for validation in each CV round. Since every instance in
the training dataset is validated in LOOCV, there has to be n rounds of LOOCV,
where n is the size of the training dataset. Obviously, LOOCV (and exhaustive
CV in general) can be time-consuming. In an non-exhaustive CV, e.g., the k-fold
CV, one k-th of training dataset is used for validation while the rest is used for
training. A k-fold CV always go through k rounds and the validation results are
then aggregated for evaluation.

3.4.2 Tuning Hyper-Parameters

One traditional way of tuning hyper-parameters is grid search [Hsu et al., 2003],
which is an exhaustive searching through a subset of the hyper-parameter space
for a model. This subset is often manually designated. A grid search process
is often optimized following a performance metric – e.g., accuracy score or en-
tropy – that can be obtained through CV. Being exhaustive, grid search can be
time-consuming. As a result, non-exhaustive search methods such as random
search [Schrack and Choit, 1976] can be used to speed up the process.

3.4 parameters and hyper-parameters 31

Grid search can be helpful in cases where hyper-parameters are discrete. But
when hyper-parameters are continuous and their spaces become high dimensional,
exhaustive search may be infeasible. In this case other optimization methods
Bayesian optimization [Martinez-Cantin, 2014] can be more practical. For instance,
Auto-WEKA [Kotthoff et al., 2016] leverages Bayesian optimization for model se-
lection as well as hyper-parameter tuning for classifiers in Weka.

Part III

T R A N S F O R M I N G T I M E S E R I E S F O R T S C

4
D I S C R E T E WAV E L E T T R A N S F O R M F O R D I M E N S I O N A L I T Y
R E D U C T I O N

Less is more.

Robert Browning
The Faultless Painter

Outline

We take advantage of DWT for time series dimensionality reduction, so that
distance-based TSC approaches can be tuned more efficiently. We have experi-
mented a large number of DWT approaches from different families and found out
the most suitable approach for DTW distance-based 1NN. After conducting TSC
on compression residuals from wavelet transform, we have also found out that
such residuals can be helpful for classification tasks.

4.1 introduction

Time series data exists in numerous application domains within our daily life. Es-
pecially, as the concept of pervasive computing and Internet of Things (IoT) slowly
becomes reality, time series data are generated at industry scale. For instance, the
BLUED non-intrusive load monitoring dataset [Anderson et al., 2012] has been
collected from a single household for one week, recording voltage and current
measurements with a sampling rate of 12 kHz, leading to a total of tens of billions
of time series readings and making it difficult to learn meaningful patterns in real-
time. Another power company in the US records a trillion data points every four
months; and in astronomy satellites may collect one trillion data points of starlight
curves every single day [Rakthanmanon et al., 2012]. Other domains where time
series are prevalent include financial applications (e.g. currency exchanges and
stock prices), environment monitoring (e.g. weather forecast and disaster moni-
toring), medical and health care (e.g. electrocardiograms a.k.a. ECGs). Besides its
abundance characteristics, time series data are known for its extremely high di-
mensionality, often making general-purpose machine learning algorithms fail or
underperform. As a result, in order to learn meaningful knowledge from time
series data, efficient machine learning algorithms for time series are desired.

Extracting useful knowledge from time series data – a.k.a. time series min-
ing [Fu, 2011] – is now popular but remains a challenging research topic. In par-
ticular, time series classification (TSC) attracts significant interest among the re-

35

36 discrete wavelet transform for dimensionality reduction

searchers and industry practitioners. TSC approaches often implement supervised
learning techniques to classify unknown time series instances based on knowledge
gained from existing labeled ones. Due to the abundance and intrinsic high dimen-
sionality of time series data, computing resources such as storage, CPU and mem-
ory have become critical bottlenecks in the exploitation of time series. To address
these challenges, the research community has proposed efficient dimensionality re-
duction [Wang and Megalooikonomou, 2008] and representation mechanisms such
as SAX [Lin et al., 2007] and Discrete Wavelet Transforms (DWT). DWT is very pop-
ular among both researchers and industry practitioners. In general, wavelets are
mathematical functions that process raw data to only keep meaningful oscillations
in data values. The earliest wavelet was brought up by Haar in 1909, but has un-
dergone great development especially since Ingrid Daubechies [Daubechies, 1988]
proved the existence of wavelet families with compact support over an interval [Co-
hen et al., 1993] and orthogonal translates [Daubechies, 1993]. Wavelets compres-
sion techniques have since then been extensively used in image compression and
are part of the JPEG 2000 standard [Taubman and Marcellin, 2002]. Wavelet trans-
forms have also been extensively used in medical data analysis including ECG
diagnosis [Addison, 2005] and ultrasound image processing [Pizurica et al., 2006].
More recently, researchers have applied wavelet transforms in the field of Non-
Intrusive Load Monitoring (NILM) [Duarte et al., 2012; Gray and Morsi, 2015].

Although wavelets are popular in the research community, the literature lacks
a large scale empirical study on the impact of wavelet transformation on the per-
formance of time series mining approaches. In this chapter, which extends our
previous work [Li et al., 2016c], we seek to investigate this impact on a baseline
state-of-the-art time series classification approach. To that end, we compare the
classification accuracy of raw uncompressed time series data against transformed
data using DWT, including both wavelet approximations and the details, i.e., the
residuals or noises that are often thrown away during the lossy compression pro-
cesses. In this way, we are able to separate time series’ global features from lo-
cal defining subsequences. Furthermore, through extensive significance tests, we
prove that wavelets can perform better than explicit smoothing techniques in TSC
tasks.

In this study, we extensively test how discrete wavelet transforms impact TSC
accuracy and computational efficiency using 39 openly accessible datasets. Our
study suggests that DWT can indeed be useful in time series classification tasks:

- Wavelet transforms can be used to reduce dimensionality of time series data,
while at the same time achieving similar classification accuracy compared
to using the original uncompressed data. In fact, we demonstrate that time
series dimensionality may be reduced by around 90% while still achieving
good classification accuracy.

- Wavelets can be used to reduce noises in time series data, so that better clas-
sification performance can be achieved after conducting wavelet transform
on the original uncompressed data.

4.2 discrete wavelet transform 37

- Wavelets implicitly smoothens time series data, and they can be slightly more
effective for time series classification compared to explicit smoothing tech-
niques.

- We have further found that, surprisingly, for a few datasets, classification
using the compression residual details can be even more effective than using
either the original data or the wavelet approximation. This finding suggests
that there are specific datasets which are more distinguishable using local
features instead of global ones.

The remainder of this chapter is organized as follows. We introduce the nec-
essary background information in Section 4.2 and related work in Section 4.3.
We present experimental details and results in Section 4.4 and study the implicit
smoothing effect of wavelets in Section 4.5, before concluding the chapter and
outlining future work in Section 4.6.

4.2 discrete wavelet transform

In this section, we present the necessary background to facilitate understanding of
this chapter. Specifically, we show how DWT works and especially how DWT can
be applied to time series dimensionality reduction.

Wavelets are mathematical functions that resemble the shape of wave oscilla-
tions, with the constraint for waves to start at 0 and then oscillate to 0 in the end.
Mathematically, wavelets are described using two types of functions: the wavelet
function (the mother function denoted with ψ(t)) and the scaling function (the
father function denoted with φ(t)) [Amolins et al., 2007]. These functions have to
satisfy the following conditions:

||ψ(t)||2 =

∫
|ψ(t)|2dt <∞ (4.1)

∫
|ψ(t)|dt <∞ (4.2)

∫
ψ(t)dt = 0 (4.3)

∫
φ(t)dt = 1 (4.4)

The earliest and simplest wavelet function is Haar, whose wavelet function and
scaling function are defined as follows:

ψHaar(t) =

−1 1/2 6 t < 1,

1 0 6 t < 1/2,

0 otherwise.

38 discrete wavelet transform for dimensionality reduction

φHaar(t) =

1 0 < t < 1,

0 otherwise.

As illustrated in Figure 4.1, the Haar wavelet is not a very smooth one, that is, it
has a low regularity. Other more sophisticated wavelets – for instance, Daubechies
20 and Symlets 20 – have a higher regularity and thus are able to represent signals
more accurately.

0 0.5 1

-1.5

-1

-0.5

0

0.5

1

1.5
Haar

0 20 40

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Daubechies 20

0 20 40

-1.5

-1

-0.5

0

0.5

1
Symlets 20

Figure 4.1: Wavelet functions of Haar, Daubechies 20 and Symlets 20.

In practice, the Haar transform is performed as follows. Given a series T =

t1, ..., tn, the Haar transform outputs two series: the approximation A and the
details D, where for 1 6 i 6 n

2 ,

Ai =
t2i−1 + t2i√

2
(4.5)

Di =
t2i−1 − t2i√

2
(4.6)

It is clear that the approximations capture the overall shape – the global features
– of the original series, while the details are the variances – local features – in time
series. Figure 4.2 demonstrates an example of single level, one dimensional Haar
transform. As shown, the original signal on the top has been compressed to half
of the original size (figure in the middle, note the x-axis label) and the amplitude
has been scaled up despite that the overall signal shape is not changed. Note also
the grayed area in the signal, it is clear that the approximation becomes smoother
after transformation, and that the details shown in the bottom have been dropped.
Note also that the approximation becomes smoother, i.e., after residual details are
removed, the data points in the time series approximation do not tend to change
drastically over time when comparing with the original time series. We will study
the smoothing effect of Wavelets later in Section 4.5.

4.3 related work 39

0 50 100 150 200 250
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

0 20 40 60 80 100 120
3
2
1
0
1
2
3

0 20 40 60 80 100 120
0.15
0.10
0.05
0.00
0.05
0.10
0.15

Figure 4.2: Example of Haar transform: the original signal, the Haar approximation and
the residual details.

4.3 related work

Thanks to wavelets’ wide application domains [Leung et al., 1998], there has been
research investigating their performance in various domains. However, to the best
of our knowledge, impact of different DWT techniques on TSC has not been done
in a generic manner. As a result, in this section we enumerate relevant work to
ours in the domains of medical applications, image compression, NILM, and so
on.

Addison [Addison, 2005] has conducted a review of both continuous wavelet
transform (CWT) and discrete wavelet transform (DWT) on ECG data, concluding
that DWT is practically easy to use, while CWT – being more complex and difficult
to tune parameters – is able to keep a high resolution in the time-frequency plane,
which can result in more accurate identification of components. Another study
in wavelet applications in the medical field was done by Pizurica et. al. [Pizurica
et al., 2006], where the authors reviewed the performance of wavelet denoising
specifically in MRI and brain imaging. Amolins et. al. [Amolins et al., 2007] has
compared wavelet transforms’ performance in image fusion against standard fu-
sion techniques including Intensity-Hue-Saturation (IHS) and principal compo-
nent analysis (PCA), and found out that even the simplest wavelet-based scheme
outperforms IHS and PCA.

Zhu et. al. [Zhu et al., 2009] claim that wavelets are superior to Fourier methods
in the field of tool condition monitoring in terms of signal denoising and feature
extraction. To disaggregate electric signals, Duarte et. al. [Duarte et al., 2012] take
advantage of CWT in order to extract features from voltage transients and use
the extracted features for classification. Gray et. al. [Gray and Morsi, 2015] use
wavelet-based classification for NILM and claim that “symlets behave in an iden-
tical manner as their less symmetric Daubechies representation”. And as our em-

40 discrete wavelet transform for dimensionality reduction

pirical study shall demonstrate in the next section, Symlets can actually perform
significantly better than Daubechies.

Chan et. al. [Chan et al., 2003] have proposed using Haar for more efficient sim-
ilarity search, but have not considered other wavelet families. Finally, this work
was partly inspired by our previous work, where we have taken advantage of SAX
to transform/compress time series data and then build per-class language mod-
els to profile household electric appliances [Li et al., 2016d] and conduct general-
purpose time series classification [Li et al., 2016e,a]. When classifying, we compare
time series against models instead of known samples. Especially, we have used
SAX to conduct dimensionality reduction before converting real-valued time se-
ries into strings of alphabets. And our empirical experiments have suggested that
dimensionality reduction can be pushed more using DWT, thus we provide such
results in this study.

4.4 experimental study

In this section, we present our experimental setup and the collected results. In or-
der to facilitate reproducibility, we opt to experiment on publicly available datasets,
and further open source our own implementation1.

4.4.1 Setup and Datasets

The goal of our study is to investigate how wavelet transformed data may impact
TSC performance. Therefore, we do not intend to compare the performance of
different classifiers and similarity metrics (which have been empirically studied
in [Serra and Arcos, 2014]). We rely in our study on the most frequently used
classification method: Nearest Neighbor Classification (1NN) with DTW distance.
In this study we choose to calculate the classification performance first in Sec-
tion 4.4.2, Section 4.4.3 and Section 4.4.4 using FastDTW [Salvador and Chan,
2007], which is a DTW approximation with linear time complexity, and then extend
the experiments using an exact DTW implementation named UCRSuite [Rakthan-
manon et al., 2012] in Section 4.4.5.

The datasets that we have experimented on are from the UCR Time Series Classi-
fication Archive [Chen et al., 2015], which contains datasets from various domains
ranging from electricity readings and medical signals such as Electrocardiographs
(ECGs) to image recognition data. We have specifically chosen to use the Newly
Added Datasets, which contains 39 separate datasets from various domains, with
all these datasets sharing a unified file format and internal representation struc-
ture, which is convenient for batch processing. The UCR archive provides both
the datasets and the ground-truth, i.e., the correct label of each testing instance.
Table 3.1 summarizes the characteristics of these 39 datasets. These characteristics
include the number of classes in the training and testing sets, how many instances

1 https://github.com/serval-snt-uni-lu/wavelets-tsc

4.4 experimental study 41

are there in training and testing sets respectively, and finally the lengths (dimen-
sionality) of time series samples. As shown, this archive comes with predefined
training and testing sets, which makes it easier for researchers to compare results
in an uniformed manner. However, we are not aware of more detailed informa-
tion about each dataset such as the sampling frequency and original amplitude,
making it difficult for us to draw conclusions about domain-specific tasks.

Besides, it is obvious that several datasets are large in size, for instance, to clas-
sify all 7, 711 testing instances using 1NN in ElectricDevices (#10), there will be
7, 711 ∗ 8, 926 = 68, 828, 386 pairwise comparisons, making the classification pro-
cess extremely time consuming. Due to the large amount of computation tasks,
we have split the test datasets in order to parallelize computation. All the classifi-
cation tasks are conducted on an HPC platform [Varrette et al., 2014].

4.4.2 TSC with Wavelet Transformed Data

As a first step, we seek to investigate how DWT compressed data will impact clas-
sification accuracy compared with using raw uncompressed data. Here we trans-
form all the 39 datasets using wavelets from seven well-known families, choosing
the single wavelet with the highest regularity from each family. Concretely, the
wavelets are: Haar, Daubechies 20, Symlets 20, Coiflets 5, Biorthogonal 6.8, Reverse
biorthogonal 6.8 and Discrete Meyer with finite impulse response (FIR) approxi-
mation. In this step, all time series – both training instances and testing instances
– from each dataset are processed using single level, one dimensional DWT. After
transformation, the size of compressed data is reduced by half from the original
series. Then, we use FastDTW-based 1NN to classify all the testing instances in
each dataset. Thanks to the O(n) time complexity of FastDTW, reducing time se-
ries sizes by half means reducing classification time by half. And for DTW with
O(n2) complexity, classification time can be reduced by 75%.

4
2

d
i
s

c
r

e
t

e
w

a
v

e
l

e
t

t
r

a
n

s
f

o
r

m
f

o
r

d
i
m

e
n

s
i
o

n
a

l
i
t

y
r

e
d

u
c

t
i
o

n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Dataset

0

20

40

60

80

100

A
cc

u
ra

cy
 (

p
e
rc

e
n
ta

g
e
)

Raw haar db20 sym20 coif5 bior6.8 rbio6.8 dmey

Figure 4.3: Classification accuracy with FastDTW based 1NN, using original and DWT transformed/compressed data.

4.4 experimental study 43

Figure 4.3 presents the classification accuracy of each wavelet transformed
dataset together with that of the original data. We note that, while the compres-
sion yields smaller datasets and leads to faster classification, it does not impact the
classification accuracy in most cases. Furthermore, in the case of several datasets,
the classification accuracy has actually been improved on compressed data. These
observations suggest that wavelet transformations are indeed relevant means for
noise reduction in TSC tasks.

Raw haar db20 sym20 coif5 bior6.8rbio6.8 dmey
1

2

3

4

5

6

7

8

Ra
nk

Figure 4.4: Rank of classification accuracy by approximation of different wavelet transfor-
mation.

To further investigate which wavelet family performs better globally, we rank
each wavelet family’s classification performance per dataset and draw a boxplot
chart of these rankings. As shown in Figure 4.4, in general wavelet transform
data performs better compared with the original data, thanks to wavelets’ noise
reduction functionality. Regarding the performance of individual wavelets, Sym-
lets 20 generally outperforms the rest, including classification using original data.
And much to our surprise, Daubechies 20 in general performs the worst among
all tested wavelets, indicating that the most smooth wavelet may not be the most
suitable wavelet for TSC.

4.4.3 TSC with Residual Details

It is intuitive that when using wavelet transformation, the approximation of orig-
inal data keeps more relevant information than the residual details. However, in
the next experiments, we demonstrate that the residual details may be also useful
for TSC and that in some scenarios the noises are more discriminative features than
the approximations. To prove this seemingly counter-intuitive point, we follow the
same procedures as Section 4.4.2 to compress all datasets, while instead of keep-
ing the approximations, here we drop all of them and consider the residual details,
i.e., the noises. Again, to be fair, we compare the classification accuracies using the
noises against that using the original raw data.

4
4

d
i
s

c
r

e
t

e
w

a
v

e
l

e
t

t
r

a
n

s
f

o
r

m
f

o
r

d
i
m

e
n

s
i
o

n
a

l
i
t

y
r

e
d

u
c

t
i
o

n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Dataset

0

20

40

60

80

100

A
cc

u
ra

cy
 (

p
e
rc

e
n
ta

g
e
)

Raw haar db20 sym20 coif5 bior6.8 rbio6.8 dmey

Figure 4.5: Classification accuracy with FastDTW based 1NN, using original data and residual details from DWT transform.

4.4 experimental study 45

Figure 4.5 presents the classification accuracies using only the residual details.
As shown, although the classification accuracies are generally lower when classi-
fying using only the residuals, they are still surprisingly high in many cases. Espe-
cially, for several datasets, classification accuracy using only residuals are similar
or higher than using the raw data. Next, we try to rank how discriminative the
residuals from each wavelet family are. The boxplot shown in Figure 4.6 suggests
that residuals produced by Haar are most discriminative, being almost as good as
the original data. Symlets 20, on the other hand, falls on the other extreme. These
two observations are in accordance with the finding in Section 4.4.2, suggesting
that Symlets 20 is good at keeping globally relevant information during transfor-
mation. This observation suggests that residuals from DWT compression can also
be useful, since these details contain local features that are potentially discrimina-
tive.

Raw haar db20 sym20 coif5 bior6.8rbio6.8 dmey
1

2

3

4

5

6

7

8

Ra
nk

Figure 4.6: Rank of classification accuracy by residual details from different wavelet trans-
formation.

As a result, we believe that both the approximation and details transformed
from the original data are important, due to the fact that the transforms extract
two independent discriminative features. While some datasets are more distin-
guishable using global features, others are more so using local defining features.

4.4.4 Multi-Level Wavelet Transformation

So far we have only tested the performance of single level wavelet transforma-
tion. Since it is possible to conduct wavelet transformation in multiple levels, we
seek to investigate how TSC performance can be affected when transforming data
through multiple levels. To be specific, based on the good results in previous sec-
tions, we transform all datasets with Symlets 20 from level 2 till the maximum
level as permitted by the wavelet transform library2. That is, due to different time
series lengths, even level 2 transformation is not possible for short time series,
while longer time series may be processed using level 6 Symlets 20 decomposi-
tion. In Table 4.1 we present both the percentage of dimension/size reduction (R)

2 PyWavelets – Discrete Wavelet Transform in Python (http://www.pybytes.com/pywavelets/)

http://www.pybytes.com/pywavelets/

46 discrete wavelet transform for dimensionality reduction

and the corresponding classification accuracy (A) in each level. Note that not all
datasets support at least level 2 decomposition due to short lengths, as a result,
these datasets are omitted in this table.

Table 4.1: Classification accuracy with FastDTW based 1NN, using Symlets 20 multi-level
decomposition.

Raw Level 2 Level 3 Level 4 Level 5 Level 6

R A R A R A R A R A

1 69.7 63.3 78.3

2 80.0 69.3 65.0 80.9 65.0

3 65.0 69.3 70.0 80.9 80.0

4 58.8 71.0 58.4 82.8 55.2 88.8 50.0

8 71.7 69.3 78.6 80.9 69.9

11 57.7 69.2 56.5 80.8 59.7

12 53.8 69.2 55.9 80.8 62.0

13 60.0 68.2 65.7 79.6 53.3

14 74.7 73.9 80.0 86.3 79.9 92.4 79.0 95.5 71.1 97.0 70.7

15 45.3 69.3 53.1 80.9 50.0

16 41.0 63.7 44.1

17 61.1 71.0 64.0 82.8 63.2 88.8 64.3

18 86.7 68.5 93.3 79.9 93.3

23 9.9 72.2 12.3 84.2 12.4 90.2 11.0

27 45.9 71.0 45.3 82.8 41.9 88.8 39.2

28 36.5 71.0 36.8 82.8 38.4 88.8 40.0

29 54.4 69.2 55.0 80.8 51.7

30 56.2 69.3 72.7 80.9 72.2

31 50.7 71.0 61.9 82.8 65.9 88.8 67.5

32 91.8 62.6 91.7

33 58.3 64.6 68.0

34 79.2 66.5 81.5 77.6 77.7

35 93.1 72.0 92.4 83.9 93.2 89.9 91.5

36 64.8 62.8 55.6

37 37.5 64.4 61.3

38 29.3 71.8 35.9 83.8 45.3 89.8 47.0

39 54.7 71.8 60.2 83.8 64.6 89.8 65.7

As shown in Table 4.1, although many datasets are compressed by 80% to 90%
in size, the classification accuracy using these reduced data can still outperform
those using original compressed data. As a result, we think it is safe to claim that
multi level wavelet transformation are indeed helpful for TSC tasks when it comes
to classifying long time series. Note especially the HandOutlines (#14) dataset, due
to its extremely high dimensionality, we are able to compress them by up to 97%
of the original size, while still obtaining remarkably high classification accuracy.
Since FastDWT normally has a time complexity of O(n), this indicates huge time
savings in the classification process.

4.5 the smoothing effect of wavelets 47

4.4.5 Using the UCR suite for TSC and Significance Test

Since the distance measure we have used – FastDTW – is approximate [Li et al.,
2016c], we extend our evaluation using an exact distance measure named UCR-
Suite [Rakthanmanon et al., 2012], in order to get a more accurate view of DWT’s
performance in terms of noise reduction when it comes to classification. Note that
since UCRSuite requires a DTW warping window size to be configured when cal-
culating time series distances, we have tried all possible warping window size
specified as a percentage (0%, 1%, 2%, ..., 99%) of lengths of corresponding time
series samples and select the best classification accuracy.

Besides using a more accurate distance measure, we also seek to find out if one
wavelet family indeed significantly outperforms another. To that end we conduct a
Nemenyi test [Nemenyi, 1962], which is a post-hoc test that takes pairwise tests of
performance and decides if these groups are statitically similar. Figure 4.7 shows
the test result in the form of a critical difference diagram, where average ranks of
all examined approaches are presented and bold lines (insignificance lines) indi-
cate groups of approaches which are not significantly different. As shown, using
a more accurate DTW distance implementation shows similar results, indeed indi-
cating that wavelets can be very useful for dimensionality reduction in TSC tasks.
Especially, we note that performances of Haar, Reverse biorthogonal 6.8, Symlets 20,
Biorthogonal 6.8 and Coiflets 5 are not significantly different than using uncom-
pressed raw data. Furthermore, it is consistant with our previous experiments that
Daubechies 20 and Discrete Meyer with finite impulse response (FIR) approximation do
not perform as well as the other wavelets.

12345678

dmey
db20
raw

coif5 bior6.8
sym20
rbio6.8
haar

CD = 1.68 α=0.05

Figure 4.7: Critical difference diagram for classification using raw and transformed data
using different families of DWT.

4.5 the smoothing effect of wavelets

We could see clearly from Figure 4.2 that the Haar Wavelet approximation com-
pression smoothens the overall curve while removing the details. In this section,
we try to understand if the good performances of DWT on time series data is
due to the implicit smoothing effect. One of the simplest explicit smoothing tech-

48 discrete wavelet transform for dimensionality reduction

niques is probably simple moving average, which is calculated by computing the
unweighted mean over a specific number of time periods. Similar to Haar as spec-
ified in Eq. 4.5, simple moving average can be defined mathematically in Eq. 4.7:

SMAi =

∑m
j=1 tm∗i+j

m
(4.7)

where 2 6 m < n
m is the number of data points to average on.

4.
5

t
h

e
s

m
o

o
t

h
i
n

g
e

f
f

e
c

t
o

f
w

a
v

e
l

e
t

s
4

9

Ar
ro

wH
ea

d
Be

et
le

Fl
y

Bi
rd

Ch
ic

ke
n

Co
mp

ut
er

s

Di
st

al
Ph

al
an

xO
ut

li
ne

Ag
eG

ro
up

Di
st

al
Ph

al
an

xO
ut

li
ne

Co
rr

ec
t

Di
st

al
Ph

al
an

xT
W

Ea
rt

hq
ua

ke
s

EC
G5

00
0

El
ec

tr
ic

De
vi

ce
s

Fo
rd

A
Fo

rd
B
Ha

m

Ha
nd

Ou
tl

in
es

He
rr

in
g

In
se

ct
Wi

ng
be

at
So

un
d

La
rg

eK
it

ch
en

Ap
pl

ia
nc

es
Me

at

Mi
dd

le
Ph

al
an

xO
ut

li
ne

Ag
eG

ro
up

Mi
dd

le
Ph

al
an

xO
ut

li
ne

Co
rr

ec
t

Mi
dd

le
Ph

al
an

xT
W

Ph
al

an
ge

sO
ut

li
ne

sC
or

re
ct

Ph
on

em
e

Pr
ox

im
al

Ph
al

an
xO

ut
li

ne
Ag

eG
ro

up

Pr
ox

im
al

Ph
al

an
xO

ut
li

ne
Co

rr
ec

t

Pr
ox

im
al

Ph
al

an
xT

W

Re
fr

ig
er

at
io

nD
ev

ic
es

Sc
re

en
Ty

pe

Sh
ap

el
et

Si
m

Sh
ap

es
Al

l

Sm
al

lK
it

ch
en

Ap
pl

ia
nc

es

St
ra

wb
er

ry

To
eS

eg
me

nt
at

io
n1

To
eS

eg
me

nt
at

io
n2

UW
av

eG
es

tu
re

Li
br

ar
yA

ll
Wi

ne

Wo
rd

Sy
no

ny
ms

Wo
rm

s

Wo
rm

sT
wo

Cl
as

s

Dataset

0

20

40

60

80

100

Ac
cu
ra
cy

raw moving haar

Figure 4.8: Classification accuracy with UCRSuite DTW-based 1NN, using raw, Haar transformed and moving average smoothened data.

50 discrete wavelet transform for dimensionality reduction

Due to their similarity, we first compare the performance of Haar against raw
and moving average smoothened data. Figure 4.8 illustrates the classification
across 39 datasets used in the previous section. As shown, in some datasets Haar
outperforms moving average (e.g., ArrowHead and BeetleFly), while in some oth-
ers Haar underperforms (e.g., ProximalPhalanxTW and ShapeletSim). To answer
the question whether wavelet transforms statistically outperform smoothing tech-
niques, we need to run another significance test. To that end we compare DWT
with explicit smoothing techniques, including moving average smoothing, local
regression with 1st degree polynomial model (lowess) and second degree polyno-
mial model (loess) as well as their robust versions (rlowess and rloess respectively),
and finally the Savitzky-Golay filter (sgolay). These techniques are frequently used
in real-world scenarios and are available from MATLAB®. Figure 4.9 illustrates
the significance test. We can see that overall wavelets perform better than explicit
smoothing techniques. Especially, simple moving average smoothing helps but not
in significant terms. Besides, Haar, Reverse biorthogonal 6.8, Symlets 20, Biorthogonal
6.8 and Coiflets 5 slightly outperforms moving average, indicating wavelets’ supe-
riority in general purpose time series data smoothing and noise reduction.

1234567891011121314

rloess
rlowess

dmey
loess
db20

sgolay
lowess raw

moving
coif5
sym20
bior6.8
rbio6.8
haar

CD = 3.18 α=0.05

Figure 4.9: Critical difference diagram for classification using raw and transformed data
using different families of DWT and explicit smoothing techniques.

4.6 conclusions and future work

Discrete Wavelet Transform techniques have matured in the past decades to deliver
high data compression rates. Applied to time series data, existing DWT-based
lossy compression approaches help to overcome the challenges of storage and
computation time. In this chapter, we provide assurances to practitioners by em-
pirically showing with various datasets and with several DWT approaches that
time series classification yields similar accuracy on both compressed (i.e., approx-
imated) and raw time series data. We also show that, in some datasets, wavelets
may actually help in reducing noisy variations which deteriorate the performance
of mining tasks. In a few cases, we note that the residual details/noises from com-
pression are more useful for recognizing data patterns.

4.6 conclusions and future work 51

In future work, we plan to extensively investigate the characteristics of time
series datasets, in order to empirically correlate successful wavelets techniques
per application domains. Dataset characterizations will also help identify which
types of time series data can benefit from the use of residual details instead of the
approximation data.

5
D O M A I N S E R I E S C O R P O R A

For last year’s words belong to last
year’s language.

T. S. Eliot
Four Quartets

Outline

We propose a novel TSC approach named Domain Series Corpus (DSCo), which
firstly transforms numeric values into texts and then builds per-class language
models from these texts. To classify unlabeled samples, we compute the fitness of
each symbolized sample against all per-class models and choose the class repre-
sented by the model with the best fitness score. In addition, we propose improve-
ments to this approach and bring up DSCo-NG, which can be more efficient and
yield more accurate classification results.

5.1 introduction

Time series data refers to a sequence of data that is ordered either temporally,
spatially or in other defined order. Such data are abundant in various domains in-
cluding health-care, finance, energy and industry applications. Furthermore, time
series data are often characterized as large in size and high in dimensionality [Fu,
2011]. These characteristics of time series data – together with its abundance – has
led to various challenges in both storage and analytics. For example, the BLUED
non-intrusive load monitoring dataset [Anderson et al., 2012] records voltage and
current measurements in a single household for one week with a sampling rate
of 12 kHz, leading to a total of tens of billions of numeric readings and making it
extremely difficult to mine meaningful patterns in real-time using these raw nu-
meric data. Researchers from EPFL also argue that while smart meter technologies
make it possible for utility companies to analyze household energy consumption
data in real-time, data acquired by smart meters are often so large that analytic
tasks become extremely expensive [Wijaya et al., 2013].

Traditionally, researchers have proposed various methodologies to represent
time series more efficiently, including dimensionality reduction [Keogh et al., 2001]
and numerosity reduction [Xi et al., 2006] techniques. Another line of research
on time series representation focuses on converting numeric values into symbolic

53

54 domain series corpora

form [Fu, 2011], while one of the most prominent approaches is Symbolic Aggre-
gate approXimation (SAX) [Lin et al., 2007]. Although SAX comes with a distance
measure that can be used for nearest neighbor classification, it is still unclear how
classification performance will be affected when classifying SAX’s symbolic repre-
sentations of time series.

In this chapter, we set to investigate how symbolic representations of time series
can tackle time series classification (TSC) challenges. Specifically, we propose a
novel TSC approach named Domain Series Corpus (DSCo, pronounced as disco),
which firstly transforms numeric values into texts and then builds per-class lan-
guage models from these texts. To classify unlabeled samples, we compute the
fitness of each symbolized sample against all per-class models and choose the
class represented by the model with the best fitness score. Our work innovatively
takes advantage of mature techniques from both time series mining and Natural
Language Processing (NLP) communities. Through extensive experiments on an
open dataset archive, we demonstrate that our approach not only performs sim-
ilarly or better than state-of-the-art approaches (which works with original data
that possesses much more information), but can also work on reduced data, an
essential property to ensure scalability in TSC.

Overall, the contributions of this chapter are summarized as follows:

- We bring up a novel method for TSC by leveraging mature techniques from
the NLP community. By taking advantage of language modeling techniques
we are able to consider both local and global similarities among time series.

- We have tested our approach extensively on an open archive which contains
datasets from various domains, demonstrating by comparison with state-of-
the-art approaches that DSCo is performant, efficient and can be generalized.

- We prove that although our approach works with approximated data,
DSCo can perform similarly to approaches that work with original uncom-
pressed numeric data.

- We propose a new perspective for TSC: we view time series data as sentences
(as in natural languages), where some words and their combinations will de-
fine different classes. In this way, we approximate a TSC task to a pseudo
language detection problem.

The remainder of this chapter is organized as follows. Section 5.2 provides our
intuition and the necessary background information on time series classification
as well as preliminaries on language modeling. Section 5.3 presents the details of
our approach, while experiments and evaluation results compared with related
work are described in Section 5.4. We further propose DSCo-NG to improve the
performance of DSCo in Section 5.5 and evaluate its performance in Section 5.6.
Section 5.7 briefly surveys related research work to ours. Section 5.8 concludes the
chapter with directions for future work.

5.2 background and key intuition 55

5.2 background and key intuition

In this section, we briefly introduce the mechanism behind SAX and how SAX is
traditionally used for TSC tasks. Then we present language modeling and how
it can be used in combination with SAX-ified strings. In the meanwhile, we intro-
duce our intuitions on tackling TSC with symbolic representation and language
modeling.

5.2.1 Language Modeling

Given a string representation of time series data, we can apply language modeling
to assess whether it fits the model of a class. Language models are used to answer
questions such as “How likely a string of words from a language vocabulary is good
phrasing in this language?”. A statistical language model is a probability distribution
over strings of a corpus [Ponte and Croft, 1998]. Thus, any sequence of words W
has a probability score P(W) = P(w1, ...,wn) in the language model, indicative of
its relative validity within a language.

N-gram language models are common means of language modeling. In the sim-
plest case of unigram models (1-gram models), the probability score of the sequence
of wordsW is approximated to the product of the probabilities of each word. Equa-
tion 5.1 provides the formula for computing this score.

P(W) = P(w1, ...,wn) ≈
n∏

i=1

P(wi) (5.1)

Bigram models put conditions on the previous word to account for the likelihood
of co-occurrence between two words (for instance, beer drinkers appears more often
than beer eaters). The probability score of the sequence W is then approximately
the product of conditional probabilities of words with their previous peer. It is
computed by the formula in Equation 5.2.

P(W) = P(w1, ...,wn) ≈
n∏

i=1

P(wi|wi−1) (5.2)

Since in a given corpus it is possible that certain bigrams are never observed
beforehand, it is reasonable to use a back-off mechanism to take into account
only their unigram probabilities. Although N-grams models can be theoretically
insufficient because language has long-distance dependencies (for instance, some
words may co-occur in a sentence but not directly following each other in the
sequence: “the computer which I just bought and setup in my room crashed”), these
models have been shown to be efficient in practice and used in various fields
including speech recognition, author attribution and malware detection.

56 domain series corpora

5.3 domain series corpora for tsc

Since symbolic representation of time series data is a promising mechanism to
tackle the numeriosity and high dimensionality issue in the era of big data, we
investigate how symbolic representation and language modeling can be used for
TSC. Recall that DSCo builds on the simple intuition that time series patterns in
a specific class of a given domain can be differentiated from other class patterns,
which is similar to NLP methods that distinguish texts from different languages
or dialects. The assumption is thus that the language model extracted from the
samples of a specific class will be descriptive and discriminative enough to differ-
entiate it from another language model within the same domain. DSCo therefore
consists of building a corpus of words representative of time series subsequences
(or segments) for a given domain and the associated language models for its classes.

Figure 5.1 illustrates the steps for building per-class Domain Series Corpora for
a specific domain. First of all, data readings of time series samples from each class
are transformed into texts. Next, language modeling is applied on these texts to
extract the corresponding language models, so that afterwards these models can
be used to test and classify unlabeled samples.

5.3.1 Data Representation as Texts

As described in Section 5.2, we create symbolic representations for real-valued
samples. In DSCo we have leveraged SAX for this task. It is nonetheless possible
to leverage another symbolic representation algorithms for time series. The output
of this step is a string representation for each time series sample.

5.3.2 Language Model Inference

DSCo explores a training set of time series to extract meaningful patterns of seg-
ments by studying their occurrence frequencies. Once time series are represented
as texts, a language model can be built to summarize each time series class. To
build a language model for a time series class, DSCo generates its correspond-
ing dictionary by collecting words that appear in the training set. A large body of
work have been proposed in the NLP literature on how to obtain such dictionar-
ies.However, since the symbolic representations generated by SAX have no word
boundaries, we need to break them into smaller pieces first by employing a cor-
pus acquisition mechanism. This is common procedure for some natural languages
such as Chinese, which has no obvious word boundaries.

One approach to dictionary acquisition is to break the sequences using an an-
nealing algorithm, which is a probabilistic and non-deterministic algorithm that
randomly permutes the possible segmentations and searches the whole solution
space with the best segmentation until thresholds are met according to an ob-

5.3 domain series corpora for tsc 57

Per-Class
Language

Models

Class 1:
0,5,7,9,8,0,
9,0,5,9

Class 1:
acbbc

BuildReduction
LM_1:
ac 1
cb 1…

LM_N:
………

LM }
Class N:
……

Class N:
……

BuildReduction
LM

Figure 5.1: Process for building language models in DSCo.

jective function. Such an approach is able to find word boundaries with reason-
able accuracy given a large training set. Unfortunately, this algorithm is highly
time-consuming. Besides, time series training sets are seldom sufficiently large to
accommodate this algorithm. As a result, we extract words from the symbolic repre-
sentations using a naïve sliding window method described in Algorithm 5.1. This
algorithm collects all possible sub-strings of length w within a string, so that no
descriptive segment is left uncaptured from the original time series. For example,
we can break string abccc into the following 2-alphabet segments: ab, bc, cc and
cc.

Algorithm 5.1 Extract words from a string (S) using a sliding window (of length l).

1: procedure ExtractWords(S, l)
2: words← ∅
3: for i← 0,GetLength(S) − l+ 1 do
4: word← SubString(S, i, l) . Sub-string of size l
5: words← words∪ {word}
6: return words

Next, in order to better preserve the descriptive information that time series gen-
erally come together in a sequence, we also compute the frequencies of n-grams.
We build n-gram language models for each time series class in our training set.
This process is illustrated in Algorithm 5.2. In order to be generic, we define a
minimum (minWL) word length and a maximum word length (maxWL): The intu-
ition behind this is that 2-alphabet segments may be generic but not descriptive,
while segments with larger length may be descriptive but not generic enough.
These extreme values can be easily determined with enough domain knowledge.
For instance, if we assume that electrocardiogram (ECG) patterns generally have
similar lengths, the minWL and maxWL values can be predefined to avoid producing
noisy segments.

When all n-grams in every per-class language model are counted, we convert
their frequencies into probabilities within each language model. Note that frequen-
cies may need normalization when there are different number of instances in each
class. Otherwise n-gram probabilities will be biased and lead to classification er-
rors in the next step.

58 domain series corpora

Algorithm 5.2 Build language models (LMs) from a list (SL) of (string, label)
pairs.

1: procedure BuildLM(SL,minWL,maxWL)
2: LMs← ∅
3: for all (string, label) ∈ SL do
4: if NGramslabel /∈ LMs then
5: NGramslabel ← ∅
6: for wl← minWL, maxWL do
7: words← ExtractWords(string,wl))
8: for all ngram ∈ GetNGrams(words) do
9: InsertOrIncreaseFreq(NGramslabel,ngram)

10: LMs← LMs∪NGramslabel
11: ConvertFreqToProbability(LMs)
12: return LMs

5.3.3 Classification

0,5,7,9,8,0,
9,0,5,9 acbbcReduction

LM_1:
ab 2
ac 1…

LM_N:
………

Score_LM_1
…
Score_LM_N

Segmentation
Using LM

Segmentation
Using LM

Assign Label X X = argmax({Score_LM_1, …, Score_LM_N})

Best
Score

Best
Score

Figure 5.2: Illustration of DSCo’s classification process.

In DSCo, classification is performed by checking which language model is the
best fit for the tested sample, as shown in Figure 5.2. First, similar to the train-
ing phase, each test sample is reduced to a string using the same algorithms and
parameters. Then, in order to test model fitness, each language model – which
summarizes the characteristics of all samples from a given class – is used to seg-
ment the time series’ text representation. To be computationally efficient, we con-
sider a probabilistic language modeling approach with bigrams as introduced in
Section 5.2. We compute the segmentation score as the product of conditional prob-
ability of all segmented words following Equation 5.2. If a bigram is not known
in the language model, we just back-off to the unigram probability values for this
specific segment. Since there are different ways to segment the text according to a
specific language model, we only consider the best segmentation score that can be
obtained with each language model. That is, each language model segments the
sample and keeps its best segmentation score, then all language models compare

5.4 evaluation 59

their scores and the winning language model’s class label will be applied to the
sample.

Algorithm 5.3 Given language models, find the best way (with the maximum
probability) to segment a string (S).

Require: global minWL and maxWL
1: procedure SplitString(S)
2: P ← ∅
3: sl← GetLength(S)

4: for l← minWL,min(sl,maxWL) do
5: if sl− l > minWL then
6: P ← P ∪ {(Slice(S, 0, l),Slice(S, l, sl))}

7: return P
8: procedure Segment(S, prev)
9: UpdateViterbiTable() . Dynamic programming to avoid repetitive

computing
10: if GetLength(S) < minWL then
11: return 0

12: Sgs← ∅
13: for all (h, t) ∈ SplitString(S) do
14: Sgs← Sgs∪ {P(S|prev) ∗ Segment(t,h)}
15: return max(Sgs)

5.4 evaluation

In order to evaluate the feasibility and performance of our approach, we have im-
plemented DSCo and tested on an open dataset archive. We first reduce time series
data using SAX and show that SAX distance-based 1NN under-performs DTW.
Then we investigate the value added by DSCo on top of SAX. Finally, through
comparison with Euclidean- and DTW-based 1NN classification, we show that
DSCo is indeed performant. We have open sourced our implementation1 in order
to increase reproducibility.

To explore the performance of the DSCo approach and investigate the extent of
its applicability, we consider the Time Series Classification Archive [Chen et al.,
2015] from University of California, Riverside. The datasets contained in this
archive are popular within the TSC community, allowing for a reliable compar-
ison baseline. Besides, the archive includes error rates for DTW- and Euclidean-
based nearest neighbor classification as a performance benchmark for TSC. The
UCR archive is composed of two sub-archives: Pre_Summer_2015_Datasets and
Newly Added Datasets which include datasets from various fields, ranging from
electrocardiograms (ECG) to intra-species image recognition data. We tested on
the latter (which contains 39 different datasets) because its file format and internal

1 https://github.com/serval-snt-uni-lu/dsco

https://github.com/serval-snt-uni-lu/dsco

60 domain series corpora

data structures are consistent, making it possible to conduct batch processing in
a content-agnostic manner. Furthermore, both sub-archives have similar dataset
diversity and some datasets for specific domains (for example, ECG data) appear
in both sub-archives. Specifically, these 39 datasets have various number of classes
from 2 to 60 and different number of training and testing instances from 20 to
8,926, with time series lengths varying from 80 to 2,079.

5.4.1 Reducing Data using SAX

In order to validate SAX’s data reduction performance, we take those Newly Added
Datasets from UCR and transform the numeric data records into symbols. We
have set the maximum time series length to 100 and varied SAX’s alphabet size
from 3 to 20, so that we can take advantage of SAX’s dimensionality and nume-
riosity reduction mechanism. Since SAX can be viewed as a lossy compression
function, we evaluate how well the original information are kept for TSC using
1NN classification and compare the classification performance between DTW dis-
tance and SAX’s internal distance measure as defined in [Lin et al., 2007]. SAX’s
distance measure is essentially a variance of Euclidean distance except that the dis-
tance between two alphabets are predefined in SAX’s look-up table. For instance,
for an alphabet size of 4, dist(a,b) = 0 and dist(a, c) = 0.67. Figure 5.3 presents
the 1NN classification comparison, where the solid lines indicate SAX distance-
based 1NN classification accuracy for each of the 39 datasets, and the dashed lines
shows DTW distance-based 1NN classification performance.

Here we show the classification accuracy of DTW-based 1NN because it is the
most mature and widely used distance measure among the research community.
Furthermore, classification performance using DTW is readily available from the
UCR archive. Finally, using DTW requires one to explicitly setting its warping size
parameter. In Figure 5.3 we show DTW’s performance with the best warping size
(parameter space is 100: warping size varies from 0 to 100 percent of original time
series length) that is found in [Chen et al., 2015]. When comparing SAX distance
to DTW’s best performance, we believe it is fair to present SAX’s best accuracy
results as well (parameter space is 18: alphabet size varies from 3 to 20). In this
case DTW-based 1NN outperforms SAX in 69.2%(27/39) datasets indicating that
SAX distance-based 1NN classification indeed under-performs DTW, possibly due
to two major facts, namely SAX’s lossy reduction of the original numeric data and
SAX distance’s inability to consider time series’ global similarities. As a result, we
take advantage of DSCo and take into account both global and local similarities of
time series to counter SAX’s lossy reduction. And as we shall demonstrate later,
DSCo indeed classifies time series more accurately than SAX distance-based 1NN
classification.

5.4 evaluation 61

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

3 8 13 18
0.0

0.5

1.0

3 8 13 18 3 8 13 18 3 8 13 18 3 8 13 18

Figure 5.3: 1NN classification accuracy comparison between DTW (dashed) and SAX
(solid) distance.

5.4.2 Implementation and Setup

Normally, DSCo’s classification process can be extremely expensive due to the
need of recursively dividing strings in to smaller pieces and segmenting these
sub-strings. However, a good implementation may take advantage of the Viterbi
algorithm [Viterbi, 1967] – which is in essence a dynamic programming approach
– to avoid redundant computation. In addition, the classification process calcu-
lates best segmentation scores based on the text segmentation algorithm provided
in [Norvig, 2009], which works exceptionally well for NLP text segmentation tasks
and has a computational complexity of O(nL2), where n is the length of a testing
string, and L is the maximum word length. Finally, DSCo computes segmentation
scores using mainly bigram probabilities, only falling back to unigram probabili-
ties when a specific bigram is not found.

Recall that time series longer than 100 have been arbitrarily reduced to 100-
alphabet strings during dimensionality reduction, in order to speed up the clas-
sification process; and we have varied SAX’s alphabet size from 3 to 20 to
search for the best text representation. Since DSCo requires two parameters:
a (minWL,maxWL) tuple, we experiment with three sets of parameter set-
tings: short segments (minWL = 2,maxWL = 10), long segments (minWL =

11,maxWL = 20) and short-long combined (minWL = 2,maxWL = 20). Results
illustrated in Figure 5.4 show that DSCo’s performance are relatively consistent

62 domain series corpora

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

3 8 13 18
0.0

0.5

1.0

3 8 13 18 3 8 13 18 3 8 13 18 3 8 13 18

Figure 5.4: DSCo’s classification accuracy with different parameter settings: short seg-
ments (dashed-dotted lines), long segments (dashed lines) and combined (solid
lines).

regardless short or long segments (words) are configured. As a result, in the fol-
lowing comparisons, we fix minWL to 2 and maxWL to 20.

5.4.3 Comparison of Classification Performance

In the first round of experiments, we investigate the value added by the language
modeling to the use of the SAX representations. Since SAX already comes with
a distance metric which was demonstrated to yield better performance than the
Euclidean distance on real-valued time series data [Lin et al., 2007], we compare
DSCo against SAX-distance-based 1NN classification. Table 5.1 shows respectively
the classification accuracy and alphabet size when each classification approach
performs best. DSCo outperforms in 74% (29/39) datasets. The results further
shows no explicit correlation between DSCo and SAX-distance-based 1NN clas-
sification performances, both obtained mostly with unrelated alphabet sizes. Since
both DSCo and SAX-distance-based 1NN leverage SAX, these results thus sug-
gest that DSCo’s performance cannot be directly attributed to the usage of SAX
representation, but rather to the language modeling process.

In the second round, we compare the classification results of DSCo against the
benchmark 1NN with Euclidean distance. In 74% (29/39) of the datasets, DSCo per-
forms better in terms of classification accuracy. We also compare the improvement
brought by DTW – the state-of-the-art approach – over Euclidean distance: DTW-

5.4 evaluation 63

Table 5.1: Classification accuracy comparison between the best performance of DSCo and
1NN with SAX distance, where |α| is the alphabet size when best performance
is achieved.

Data- SAX’s Best DSCo’s Best Data- SAX’s Best DSCo’s Best Data- SAX’s Best DSCo’s Best

set |α| acc. |α| acc. set |α| acc. |α| acc. set |α| acc. |α| acc.

1 14 0.79 11 0.62 14 20 0.81 3 0.77 27 11 0.34 4 0.53

2 4 0.75 5 0.95 15 3 0.59 14 0.64 28 14 0.37 17 0.45

3 4 0.65 9 0.90 16 8 0.56 3 0.27 29 18 0.57 3 0.68

4 6 0.51 9 0.67 17 19 0.49 6 0.72 30 20 0.75 11 0.64

5 12 0.81 12 0.83 18 3 0.33 6 0.95 31 20 0.42 19 0.66

6 20 0.77 20 0.77 19 13 0.76 17 0.77 32 20 0.70 15 0.94

7 14 0.74 20 0.76 20 20 0.63 7 0.63 33 11 0.69 5 0.85

8 3 0.79 3 0.78 21 20 0.59 20 0.62 34 9 0.88 5 0.78

9 7 0.93 11 0.91 22 20 0.64 8 0.72 35 14 0.95 6 0.50

10 19 0.50 9 0.65 23 8 0.06 4 0.18 36 3 0.50 17 0.80

11 20 0.66 3 0.78 24 18 0.78 4 0.87 37 17 0.63 7 0.30

12 11 0.56 3 0.71 25 7 0.71 17 0.83 38 5 0.38 6 0.54

13 14 0.66 3 0.70 26 19 0.67 18 0.78 39 8 0.61 6 0.71

based 1NN beats 1NN with Euclidean distance in 64% (25/39) datasets. We fur-
ther compare directly DSCo with DTW-based 1NN classification. Figure 5.5 illus-
trates the results where we consider the best performance with DTW (i.e., with the
best warping window size) and the best performance of DSCo (i.e., with the best
SAX alphabet size). As shown, DSCo performs similarly to DTW in most datasets.
DSCo appears to have good performance in image recognition tasks (for example,
BeetleFly and BirdChicken), while it performs badly for some datasets where the
training set has unbalanced distribution of different classes (e.g., WordSynonyms),
making it difficult for DSCo to extract discriminatory n-grams. Overall, DSCo per-
forms better than DTW in 64% (25/39) datasets, indicating good classification per-
formance.

6
4

d
o

m
a

i
n

s
e

r
i
e

s
c

o
r

p
o

r
a

1 ArrowHead

2 BeetleFly

3 BirdChicke
n

4 Computers

5 Dista
lPhalanxOutlineAgeGroup

6 Dista
lPhalanxOutlineCorrect

7 Dista
lPhalanxTW

8 Earthquakes

9 ECG5000

10 Electric
Device

s

11 FordA
12 FordB

13 Ham

14 HandOutlines

15 Herrin
g

16 InsectW
ingbeatSound

17 LargeKitch
enAppliances

18 Meat

19 MiddlePhalanxOutlineAgeGroup

20 MiddlePhalanxOutlineCorrect

21 MiddlePhalanxTW

22 PhalangesOutlinesCorrect

23 Phoneme

24 Proxim
alPhalanxOutlineAgeGroup

25 Proxim
alPhalanxOutlineCorrect

26 Proxim
alPhalanxTW

27 RefrigerationDevice
s

28 ScreenType

29 ShapeletSim

30 ShapesAll

31 SmallKitch
enAppliances

32 Strawberry

33 ToeSegmentation1

34 ToeSegmentation2

35 UWaveGestureLibraryA
ll

36 Wine

37 WordSynonyms

38 Worms

39 WormsTwoClass

Dataset

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

1NN (DTW Best Warping) DSCo (Best Alphabet Size)

Figure 5.5: Overall accuracy comparison between 1NN with DTW distance and DSCo.

5.4 evaluation 65

2 4 6 8 10 12 14 16 18 20
Alphabet size

0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92

Ac
cu

ra
cy

Accuracy

0

150000

300000

450000

600000

big

ra
m

s

bigrams without pruning

bigrams with pruning

Figure 5.6: For the ECG5000 dataset, classification accuracy remains the same after pruning
up to 95.8% bigrams.

Finally, we investigate if pruning bigrams affect classification accuracy. Fig-
ure 5.6 illustrates the case with the ECG5000 dataset, where we removed all bigrams
that has frequencies lower than the mean value from each language model and use
the pruned language models for classification. In some cases the pruned language
models has less than 5% bigrams from the original ones. Yet surprisingly, the classi-
fication accuracy remains exactly the same. This indicates high redundancy in the
language models and pruning techniques can be used in order to reduce memory
footprints and speed up the classification process.

5.4.4 Time and Space Complexity

SAX has a linear time and space complexity when transforming real-valued time
series into PAA and then to text representation. DSCo’s language model inference
step processes each training sample constant times and stores the models to ex-
ternal storage, resulting an O(n) time and space complexity. We have shown that
the fitness metric algorithm for classification in DSCo has a computational com-
plexity of O(nL2) (in our experiments, n 6 100 and L = 20). In comparison, the
state-of-the-art DTW-based metric has a computational complexity of O(n2), al-
though with LB_Keogh lower bounding technique this complexity can be reduced
to O(n) [Smith and Craven, 2008]. However, for complete classification processes,
where a tested sample is compared against all samples from the training set, the
1NN approach using DTW with LB_Keogh yields a complexity of of O(mn) where
m is the size of training set. DSCo, on the other hand, has a complexity of O(cnL2)
where c is the number of classes (c� m for most scenarios).

Next, we compute the space complexity of DSCo . Given a time series sample
Ti of length n, Algorithm 5.1 produces maximum n− l+ 1 unique words of length
l. We denote Ti’s l-sized words as Wi,l, then

1 6 |Wi,l| 6 n− l+ 1 (5.3)

66 domain series corpora

We denote the set of unigrams from a specific class of time series consisting of m
instances (T = {T1, ..., Tm}) as W, then

m 6 |W| 6 m
maxWL∑

l=minWL

(n− l+ 1) (5.4)

Since we use bigrams in our DSCo implementation, it thus has a space complex-
ity of O(m2n2), equivalent to that of shapelet-based algorithms, which also have
a time complexity of O(m2n2) for their full search procedures [Hills et al., 2014].

5.4.5 Limitations

We have demonstrated DSCo’s performance through extensive experiments and
complexity analysis. However, it also has its own limitations. Since DSCo essen-
tially summarizes training samples into models, it performs best when there are
a sufficient number of training samples in each class. Furthermore, our current
implementation is built on top of SAX, tweaking SAX’s parameters – for example,
alphabet size – may require users to look inside data samples in order to achieve
best performance. Nevertheless, we believe DSCo has offered a new perspective
for TSC tasks and its limitations can be tackled in the near future by employing
more advanced symbolization and corpus acquisition algorithms. Another issue
with DSCo lies in its excessive memory usage when calculating the fitness score
of one sample against language models, which makes it impractical for real-world
applications.

5.5 improving dsco

In this section, we set to improve DSCo’s time and space complexity and propose a
next generation of DSCo: DSCo-NG . We follow our initial intuition that time series
data are similar to sentences from different languages or dialects, but apply a more
efficient approach to find nuances of difference from these languages. Specifically,
unlike in DSCo where we try to find the best way to recursively segment time
series, DSCo-NG breaks time series into smaller segments of the same size, and
this simplification of the classification process also leads to simplified language
model inference in the training phase.

The main complexity of original DSCo lies in the classification process, where
testing instances are recursively segmented in order to produce the best segmen-
tation result using a language model, in DSCo-NG we try to break the testing
instances into sub-sequences of the same length. Then we calculate the product
of bigram probability of these sub-sequences. This scheme is inspired by the intu-
ition that when using a sliding widow of size w to iterate over the training set, all
possible unigrams and bigrams are already captured within the language model

5.5 improving dsco 67

of a specific class. As a result, there is no need to use a sliding window of variable
length during the classification process, thus reducing the classification complex-
ity. To better illustrate how DSCo-NG works, we detail it in three steps in the
subsections below.

5.5.1 Compressing Time Series into Texts

There are potentially many approaches that can compress time series data into
texts. In DSCo-NG we still employ the same technique – SAX – to transform
real-valued time series into texts, in order to investigate whether our proposed
improvements still work.

5.5.2 Extracting Language Models

Once time series are compressed to texts, a language model can be extracted to
summarize each time series class. Since the text representation does not have word
boundaries, we need to create artificial words. To that end, we employ a sliding
window mechanism that generates such words as specified in Algorithm 5.1. This
algorithm collects all possible sub-strings of length w within a string, so that no
descriptive segment is left uncaptured from the original time series. For example,
we can break string abcde into the following 2-alphabet words: ExtractWords(abcde,
2) produces an output of [ab,bc, cd,de].

Next, we build ngram language models for each time series class in our training
set, which is illustrated in Algorithm 5.4. Unlike DSCo that requires a minimum
word length and a maximum word length to capture words, here we use a single
length w. Note that the probability of ngrams are calculated independently, since
different classes may have different number of training instances.

Algorithm 5.4 Build language models (LMs) from a list (SL) of (string, label)
pairs.

1: procedure BuildLM(SL,w)
2: LMs← ∅
3: for all (string, label) ∈ SL do
4: if NGramslabel /∈ LMs then
5: NGramslabel ← ∅
6: words← ExtractWords(string,w))
7: for all ngram ∈ GetNGrams(words) do
8: InsertOrIncreaseFreq(NGramslabel,ngram)

9: LMs← LMs∪NGramslabel
10: ConvertFreqToProbability(LMs)
11: return LMs

68 domain series corpora

5.5.3 Classifying Unlabeled Instances

As mentioned earlier, classification in DSCo-NG is performed by checking which
language model is the best fit for the tested sample. Specifically, we compare the
sample’s fitness scores to each model, which is calculated following the ngram
statistical language model probability.

In practice, bigrams (n = 2) and trigrams (n = 3) are most prominent [Belle-
garda, 2004]. We have opted for the bigram model due to its simplicity for both the
language model extraction process and fitness score calculation, which is approxi-
mated as P(w1, ...,wm) ≈ ∏m

i=1 P(wi|wi−1). During the classification process, we
need to break time series strings into words. Unlike original DSCo which breaks
sentences into variable sized words, here we adopt the same sliding window size w
as the uniform word length. As we shall show later, this simplified process yields
similar classification accuracy but greatly reduces the complexity compared with
DSCo.

5.5.4 Time and Space Complexity

During the preprocessing phase, SAX has a linear time and space complexity when
transforming real-valued time series into text representation. When extracting lan-
guage models in the training phase, each training sample is went through once and
models are stored to external storage, resulting anO(n) time and space complexity.
Finally, the classification process go through testing samples constant times with
language models loaded from external storage, yielding linear time complexity.
Language models loaded to memory has a theoretic complexity of O(αw) where
α is the alphabet size used when using SAX to compress real-valued data, and w
is the length of artificial words. In practice, language models seldom exceed a few
megabytes, due to the fact that time series in a domain have a very limited number
of words.

DSCo-NG’s real advantage comes when the training set is large. Given a training
set of m1 time series of length n, when classifying a testing set of m2 instances,
traditional kNN approaches have to conductm1×m2 pairwise comparisons. Even
when using a linear similarity measure such as Euclidean distance, the overall
time complexity goes up to O(m1m2n). On the other hand, DSCo-NG would only
have a computational complexity of O(cm2n) where c is the number of classes
and c� m1, making DSCo-NG a magnitude faster than kNN. And this is indeed
great improvement even compared with DSCo which has a time complexity of
O(cm2nw

2) and space complexity of O(m2
1n

2).

5.6 experimental evaluation of dsco-ng 69

5.6 experimental evaluation of dsco-ng

In order to evaluate performance of our new approach, we have implemented
DSCo-NG and tested it on an open dataset archive. To facilitate reproducibility, we
have open sourced our implementation with full documentation and tutorials on
GitHub2. We opt for testing with the UCR Time Series Classification Archive [Chen
et al., 2015] for three reasons: 1) this archive has a large number of publicly acces-
sible datasets; 2) these datasets are from a wide range of domains, from environ-
mental monitoring to medical diagnosis; 3) it comes with precomputed classifica-
tion accuracy rates for DTW-based 1NN, which is the most widely used similarity
measure in the research community and has become the de facto state-of-the-art
benchmark for TSC. In the experiments below we consider 39 datasets from the
Newly Added Datasets sub-archive because of its uniform file format and structure.

5.6.1 Implementation and Setup

In theory, when calculating ngram probabilities, the larger n is, the more accurate
these probabilities will be. However, in practice it is seldom the case, due to the
lack of training data and the rise of complexity when n becomes larger. As a result,
our implementation considers the bigram model with unigram fallback as a trade-
off between efficiency and accuracy. Note that falling back to unigrams may not
always work, when specific unigrams are missing from the training set. In this
case it is necessary to employ a penalty mechanism to offset the influence of such
unigrams. From our experience, these missing unigrams’ probability could be set
as a constant of low probability value, so that the missing probabilities do not
overwhelm the existing ones and lead to inaccurate classification.

5.6.2 Parameter Optimization

Ideally, time series mining approaches should have as few parameters as possible,
even parameter-free, so as to avoid presumption on data [Keogh et al., 2004]. In
reality it is extremely difficult to achieve. For instance, even the popular DTW dis-
tance requires a warping window size to be set in order to produce optimal results.
In DSCo-NG , we essentially have two parameters: the cardinality of SAX alpha-
bet when compressing real-valued data to text strings and the sliding window size
or length of artificial words. Normally, approaches based on SAX have to specify
both the cardinality and a PAA size to which time series are reduced. Since DSCo-
NG does not necessarily need dimensionality reduction, we only need to fix for
a suitable cardinality, i.e., a good alphabet size that keeps sufficient information
during time series compression. To that end, we try to reduce time series using
different cardinality values from 3 to 20, which is range supported by major SAX

2 Repository is available at https://github.com/serval-snt-uni-lu/dsco

https://github.com/serval-snt-uni-lu/dsco

70 domain series corpora

implementations. For length of artificial words, we also fix a range to 2 to 20 in
order to avoid extremely long words, in order to limit the size of language models.

Figure 5.7 presents the classification accuracy from four datasets across different
domains. As shown, although these four datasets have different characteristics in
terms of training dataset size, time series length and number of classes, there is a
clear trend when high classification accuracy is achieved. That is, generally good
accuracy is achieved with small to medium SAX alphabet size and the alphabet
size has more impact than the word length (imagine projecting the 3D plots to
the 2D plane defined by the alphabet size and accuracy axis). This is extremely
useful to narrow down the parameter space, even though in fact our parameter
space is already small (18 ∗ 19 = 342 combinations in total). Note that there are
other methods available for finding the optimal parameters. For instance, in [Wang
et al., 2016b] the authors have adopted an algorithm named DIRECT. Thanks to
the small parameter space and efficiency of DSCo-NG we employ a brute force
approach for finding the best parameters for different datasets. Naturally, there is
not a single parameter setting that guarantees good performance, since different
datasets can be totally different in number of classes, size, time series lengths and
variation amplitude. However, it is indeed possible to set the same parameters for
datasets with similar characteristics.

5.6.3 Comparison of Classification Performance

Now that we have fixed the parameters for DSCo-NG , here we set to compare its
performance with its predecessor DSCo and the state-of-the-art approach DTW-
based 1NN classifier. As an intuitive and simple benchmark, we only consider
the classification accuracy here because the accuracy results are available in the
UCR archive and it is in general what the time series classification community
compare with. Figure 5.8 presents the classification results. It clearly demonstrates
that DSCo-NG outperforms its predecessor. In fact, in 90% (35/39) of the datasets,
DSCo-NG is more or equally accurate compared with DSCo, indeed suggesting
performance improvement in accuracy. This is probably due to the fact that DSCo
tries to find the best way to segment time series; however, with insufficient training
data this segmentation process will result in suboptimal segmentation and thus
not as high accuracy. Furthermore, we note that in 72% (28/39) of the datasets,
DSCo-NG also outperforms the state-of-the-art DTW-based 1NN, indicating its
superiority in specific datasets. Besides, we would like to remind the readers that
DSCo-NG is potentially more scale than 1NN based approaches, especially for
datasets with a large training set, e.g., the ElectricDevices dataset.

5.6 experimental evaluation of dsco-ng 71

Word Length

2 4 6 8 10 12 14 16 18 20 Al
ph
ab
et
 S
iz
e

4
6
8
10
12
14
16
18
20

Ac
cu
ra
cy

0.0

0.2

0.4

0.6

0.8

1.0

FordA

Word Length

2 4 6 8 10 12 14 16 18 20 Al
ph
ab
et
 S
iz
e

4
6
8
10
12
14
16
18
20

Ac
cu
ra
cy

0.0

0.2

0.4

0.6

0.8

1.0

RefrigerationDevices

Word Length

2 4 6 8 10 12 14 16 18 20 Al
ph
ab
et
 S
iz
e

4
6
8
10
12
14
16
18
20

Ac
cu
ra
cy

0.0

0.2

0.4

0.6

0.8

1.0

ToeSegmentation1

Word Length

2 4 6 8 10 12 14 16 18 20 Al
ph
ab
et
 S
iz
e

4
6
8
10
12
14
16
18
20

Ac
cu
ra
cy

0.0

0.2

0.4

0.6

0.8

1.0

UWaveGestureLibraryAll

Figure 5.7: 3D surface plots of classification accuracy with different parameters, darker
blue indicates higher accuracy.

7
2

d
o

m
a

i
n

s
e

r
i
e

s
c

o
r

p
o

r
a

Arro
wHea

d

Beet
leFl

y

Bird
Chic

ken

Comp
uter

s

Dist
alPh

alan
xOut

line
AgeG

roup

Dist
alPh

alan
xOut

line
Corr

ect

Dist
alPh

alan
xTW

Eart
hqua

kes
ECG5

000

Elec
tric

Devi
cesFord

A
Ford

B Ham

Hand
Outl

ines
Herr

ing

Inse
ctWi

ngbe
atSo

und

Larg
eKit

chen
Appl

ianc
esMeat

Midd
lePh

alan
xOut

line
AgeG

roup

Midd
lePh

alan
xOut

line
Corr

ect

Midd
lePh

alan
xTW

Phal
ange

sOut
line

sCor
rectPhon

eme

Prox
imal

Phal
anxO

utli
neAg

eGro
up

Prox
imal

Phal
anxO

utli
neCo

rrec
t

Prox
imal

Phal
anxT

W

Refr
iger

atio
nDev

ices

Scre
enTy

pe

Shap
elet

Sim

Shap
esAl

l

Smal
lKit

chen
Appl

ianc
es

Stra
wber

ry

ToeS
egme

ntat
ion1

ToeS
egme

ntat
ion2

UWav
eGes

ture
Libr

aryA
llWine

Word
Syno

nymsWorm
s

Worm
sTwo

Clas
s

Dataset

0.0

0.2

0.4

0.6

0.8

1.0
1NN DTW DSCo DSCo-NG

Figure 5.8: Overall accuracy comparison between 1NN with DTW distance, DSCo and DSCo-NG.

5.7 related work 73

We have demonstrated the performance of DSCo-NG through complexity anal-
ysis and extensive experiments. Although DSCo-NG outperforms our previous
work in vast majority of tested datasets, it remains unclear why DSCo-NG outper-
forms DTW-based 1NN in certain datasets while underperforms in other ones.
To this end, we investigate in which scenarios DSCo-NG performs better. Ob-
viously the size of training set can be an important factor, because our model-
based approach has to capture from different and a large number of instances
the representative patterns, while for instance-based approaches – e.g. kNN – one
representative instance could potentially help accurately classifying all similar in-
stances. This is a major reason why DSCo-NG greatly underperforms 1NN for the
WordSynonyms dataset, which has many (25) classes but very few (267) training in-
stances. Besides, some classes in this dataset has as few as two instances, making
the language model extraction highly inaccurate for DSCo-NG .

1
0
1
2
3
4
5
6
7

0 50 100 150 200 250
1
0
1
2
3
4
5
6
7

Figure 5.9: All instances of two classes (1 and 5) from InsectWingbeatSound’s training set.

Besides training set size, in this study we found another important factor that
lies in how small segments constitute a time series. Figure 5.9 shows why DSCo-
NG does not perform well for InsectWingbeatSound: these two classes consist of
similar segments installed in different positions of time series. Thus DSCo-NG will
consider these segments as the same word unless we set an extremely long word
length. Similarly, DSCo-NG underperforms for UWaveGestureLibraryAll because
instances in this dataset are composed of three different segments.

Finally, we demonstrate with one example why DSCo-NG outperforms DTW-
based 1NN. Consider the two classes from the FordA dataset as shown in Fig-
ure 5.10. It is obvious that visually it is impossible for a human being to distin-
guish these two classes, because there are two many samples that are not properly
aligned like in Figure 5.9. As a result, for 1NN classifier, these samples could be
distracting so that it fails to find similar samples given a testing instance. However,
DSCo-NG is able to aggregate samples within a class so that it finds the overall
descriptive way to differentiate different classes.

5.7 related work

Due to TSC’s wide application scenarios, there are a plethora of algorithms made
available by the research community. An extensive review of time series mining

74 domain series corpora

2.5
0.0
2.5

0 100 200 300 400 500

2.5
0.0
2.5

Figure 5.10: First 100 instances of two classes (-1 and 1) from FordA’s training set.

has been done by Fu [Fu, 2011]. Here we only survey the works that are closely
related to ours due to space limitation. Since DSCo-NG is a compression-based
approach, we introduce related approaches that also takes advantage of time series
compression techniques.

There are basically two methods for compressing time series, i.e., dimensional-
ity reduction that works on the time axis and numerosity reduction that works
on the value axis. Dimensionality reduction mechanisms include Piecewise Lin-
ear Representation (PLR) [Keogh, 1997], Piecewise Aggregate Approximation
(PAA) [Keogh et al., 2001], and methods that keeps only perceptually important
points (PIP) [Chung et al., 2001]. Our previous work [Li et al., 2016c] takes ad-
vantage of Discrete Wavelet Transform for dimensionality reduction. On the value
axis, Xi et al [Xi et al., 2006] have proposed using numerosity reduction to speed
up TSC. Common numerosity reduction techniques include parametric regression,
non-parametric clustering and sampling, etc..

Symbolic representation of time series has opened a new avenue for TSC since
it makes it possible to borrow paradigms from the text mining community. For in-
stance, the bag-of-words approach has inspired the bag-of-features [Baydogan et al.,
2013; Wang et al., 2013] and SAX-VSM [Senin and Malinchik, 2013] approach for
TSC. Furthermore, Representative Pattern Mining (RPM) [Wang et al., 2016b] com-
presses time series to strings using SAX and then tries to identify the most repre-
sentative patterns in the training set. These patterns are then used to match against
testing instances during classification. Unlike RPM, DSCo does not try to find
which patterns are representative or not. Instead, we evaluate testing instances’
fitness to each class in an overall perspective.

Note that our compression-based approach is not to be confused with
compression-based time series similarity measures [Keogh et al., 2004], which
compares the compression ratios of time series under the assumption that com-
pressing similar series would produce higher compression rates than compressing
dissimilar ones.

5.8 conclusions and future work 75

5.8 conclusions and future work

In this work, we have brought up a novel approach named DSCo-NG for time
series classification. It works on symbolized time series data and builds per-class
language models, against which testing samples are fitted in order to predict their
corresponding class labels. Through extensive experiments we are able to prove
that DSCo-NG performs similarly or better than some state-of-the-art TSC ap-
proaches that works with original numeric data, namely 1NN with Euclidean and
DTW distance. By taking advantage of mature algorithms from the NLP commu-
nity, DSCo-NG is able to achieve close-to-linear time complexity, which will be a
great advantage for real-time applications.

Our future work will focus on further improving DSCo’s performance, includ-
ing reducing computation overhead and memory consumption by more effectively
pruning n-grams in language models, improving classification accuracy and find-
ing key defining subsequences for better user comprehension. In addition, other
symbolization techniques can be taken advantage of to make DSCo more general-
ized and parameter free.

6
M U LT I S C A L E V I S I B I L I T Y G R A P H

横看成岭侧成峰，远近高低各不同。

苏轼

题西林壁

Outline

This chapter presents a multiscale visibility graph representation for time series as
well as feature extraction methods for time series classification (TSC). We augment
time series by means of their multiscale approximations, which are further trans-
formed into a set of visibility graphs. After extracting probability distributions of
small motifs, density, assortativity, etc., these features are used for building highly
accurate classification models using generic classifiers (e.g., Support Vector Ma-
chine and eXtreme Gradient Boosting). Thanks to the way how we transform time
series into graphs and extract features from them, we are able to capture both
global and local features from time series. Based on extensive experiments on a
large number of open datasets and comparison with five state-of-the-art TSC algo-
rithms, our approach is shown to be both accurate and efficient: it is more accurate
than Learning Shapelets and at the same time faster than Fast Shapelets.

6.1 introduction

Time series data refer to sequences of data that are ordered either temporally, spa-
tially or in another defined order. They can be frequently found in a variety of
domains, including financial data analysis, medical and health monitoring and
industrial automation applications. Recently, it turns out to be feasible to model
software systems as time series in order to conduct malware detection and clas-
sification [Wojnowicz et al., 2017]. Due to their wide application scenarios and
abundance, there has been an increasing need for efficient knowledge discovery
methods to extract useful information from time series databases. One of the ma-
jor tasks in time series mining is time series classification (TSC), which consists of
applying a learning algorithm on labeled data to train a model that will then be
used to predict the classes of samples from an unlabeled data set. Due to the se-
quential characteristic of time series data, state-of-the-art classification algorithms
(such as SVM and Random Forest [Fernández-Delgado et al., 2014]) that perform
well for generic data are generally not suitable for TSC. It is thus important and
beneficial to have a feature extraction mechanism that transforms the sequential

77

78 multiscale visibility graph

characteristics of time series data into unordered feature vectors, so that any mod-
ern classification algorithm can be taken advantage of. After all, one of the most
challenging aspects of TSC lies in the sequentiality property.

Traditionally, researchers often rely on one of the simplest classifiers for TSC: the
k Nearest Neighbor (kNN) algorithm. As stated in [Batista et al., 2011], “all of the
current empirical evidence suggests that simple nearest neighbor classification is
very difficult to beat”. To perform well, kNN classifiers leverage the Dynamic Time
Warping (DTW) [Berndt and Clifford, 1994; Rakthanmanon et al., 2012] distance
which mitigates problems caused by distortion in the time axis. One intrinsic issue
with DTW, however, is that it focuses on finding global similarities, i.e., the overall
curve shape of time series. It also requires applications to specify a proper warp-
ing window size or to properly align data samples. Figure 2.3 shows an example
where DTW fails to identify two subsequences cropped from the same parent-
curve due to different data alignment, i.e., a phase shift. Specifically, plots b and c
are subsequences in a with the same length. However, the DTW distance between
b and c is larger than that between b and d or c and d. In this specific case, all test
samples resembling the overall shape of b or c may be mistakenly labeled as the
class of d, leading to poor classification accuracy. As a result, DTW can be sensitive
to data alignment/segmentation and it performs better when data are properly cu-
rated. In practice, however, well-aligned time series data are difficult or expensive
to come by [Hu et al., 2013].

To address the phase issue of DTW- and other distance-based 1NN approaches,
the research community has proposed approaches that focuses on finding defining
local features/subsequences in order to be invariant to data alignment and rotation.
Popular methods that fall into this category include Bag-of-Patterns [Lin et al.,
2012], SAX-VSM [Senin and Malinchik, 2013] and shapelets-based algorithms [Ye
and Keogh, 2009], such as Fast Shapelets (FS) [Rakthanmanon and Keogh, 2013]
and Learning Shapelets (LS) [Grabocka et al., 2014]. The majority of these tech-
niques have taken advantage of text feature extraction approaches – e.g., TF-IDF
– after converting time series into alphabetical strings. Such conversion is often
done via Symbolic Aggregate approXimation (SAX) [Lin et al., 2007], which re-
quires two parameters (i.e., cardinality and PAA window size) to be set and it may
not always be trivial to find the best pair. Besides, many approaches attempt to
find time series subsequences that are representative of each class, e.g., shapelets
by definition are defining time series subsequences that are calculated by exhaus-
tive or optimized search. Overall, many of these methods have suffered from high
computation complexity or suboptimal classification accuracy [Wang et al., 2016b].

Graph representations for TSC, on the other hand, have not been investigated
extensively by the data mining research community possibly due to their high com-
putation complexity. Nevertheless, thanks to recent development of graph mining
algorithms [Newman and Girvan, 2003; Batagelj and Zaversnik, 2003], some of the
formerly complex problems can be solved extremely efficiently with optimization
and parallelization techniques [Ahmed et al., 2015]. Such advances give us the
opportunity to re-evaluate the possibility of taking advantage of graph represen-

6.1 introduction 79

tations and extracting graph features for building an efficient and accurate TSC
algorithm.

This chapter proposes a novel approach for TSC that considers time series as
complex graphs/networks and extracts from these networks important statistical
features, which are fed to modern generic classifiers to learn structural knowledge
from the original time series. After evaluating the classification performance with
a large open dataset, we find out that our approach is capable of making efficient
and accurate classification predictions. The main contributions of this chapter are
listed as follows:

- We present a multiscale graph representation for time series, so that both
global and local features from time series can be captured, making this ap-
proach agnostic to time series alignment and outperform major distance-
based TSC algorithms.

- Since we transform time series that are intrinsically sequential into un-
ordered feature vectors, it is then suitable for taking advantage of modern
generic classifiers (e.g., RF, SVM and XGBoost) for efficient feature selection
and classification. This clear separation of feature extraction and actual clas-
sification can help researcher focus on finding insightful characteristics in
time series data without the need of reinventing the wheel and designing a
classifier from scratch specifically for time series.

- We propose a novel feature extraction and classification method for time
series based on calculating probability distributions of small motifs (i.e., re-
peated patterns) in visibility graphs and other statistical features such as
density, degree statistics, assortativity and coreness. This feature extraction
mechanism is parameter-free, so that it can be easy to use and help yield
reproducible results.

- We have intentionally chosen a collection of statistical features that are com-
putationally efficient to extract from graphs and validated their effectiveness
in controlled experiments. Moreover, since our feature extraction and classi-
fication process is inherently parallel, it is suitable for and capable of large
scale data explorations.

- After extensively evaluating our approach with a large number of open
datasets and comparing with related research efforts, experiment results in-
deed suggest that accurate and efficient classification can be obtained follow-
ing this paradigm.

The remainder of this chapter is structured as follows. Section 6.2 lays down
the necessary background. Next, we present our approach in section 6.3 and de-
tail TSC accuracy and efficiency evaluation results along with a case study in sec-
tion 6.4. For interested readers, section 6.5 introduces research work related to ours.
Finally, we conclude the chapter with future research directions in section 6.6.

80 multiscale visibility graph

6.2 background

In this section, we set to prepare readers for the necessary background. Especially,
we present how graph representations can be used for time series and TSC. For
the sake of clarity, we reproduce a few definitions from Chapter 2.

Traditionally, time series refer to a sequence of numbers that are chronologically
ordered. However, in the research community time series have a much broader
scope and do not associate strictly with timestamps:

Definition 6.1 (Time series)
A time series instance T is an ordered sequence of n real-valued variables, i.e., T =

(v1, ..., vn), vi ∈ R.

If we consider each point in a time series as a single feature in a vector, then
time series data usually have a huge number of features. When considering these
features as a vector in an n-dimensional space, time series data are often high
dimensional. Due to difficulties to conduct knowledge discovery tasks on high
dimensional data, it is frequently required to reduce the dimensionality of time
series in order to improve computation efficiency:

Definition 6.2 (Dimensionality reduction)
The dimensionality of a time series sample T is the length of T , denoted by |T |. If T ′

is an approximated representation of T and |T ′| � |T |, then T ′ is a dimension-reduced
representation of T .

The research community has proposed a number of dimensionality reduc-
tion techniques for time series, including sampling [Åström, 1969], Piecewise
Linear Representation (PLR) [Keogh, 1997], Piecewise Aggregate Approximation
(PAA) [Keogh and Pazzani, 2000], etc.. Among them PAA is perhaps one of the sim-
plest and most widely applied approaches. PAA reduces time series T = (v1, ..., vn)
from n dimensions to s dimensions by firstly dividing the data into s segments of
equal size, then the approximation is a vector of the mean values of the data read-
ings per segment [Keogh and Pazzani, 2000; Lin et al., 2007]. Let T ′ = (v ′1, ..., v ′s)
be this vector where v ′i is computed by equation 6.1. For the sake of simplicity, n

s

is often chosen to be an integer or rounded to the nearest one.

v ′i =
s

n

n
s i∑

k=n
s (i−1)+1

vk (6.1)

One of the core routines in distance-based classification algorithms involves eval-
uating the dissimilarity (or similarity) of two time series. There are a number of
dissimilarity measures for time series, two of the most frequently used measures
in the research community are Euclidean distance and DTW distance. The Eu-
clidean distance maintains a one-to-one mapping of all the points in two series.

6.2 background 81

On the other hand, the DTW distance tries to find the best mapping of points in
two series using the dynamic programming paradigm, so that the minimum dis-
tance between these two series is achieved. The paradigm is called “time warping”
since the time axis of series can be expanded or compressed in order to ensure
the minimum distance, i.e., an ith point in X can be mapped to a jth point (it is
possible that i 6= j), or one point in X may even be mapped to multiple points in Y.

6.2.1 Visibility Graph

Aiming for taking advantage of graph theories as a way of characterizing time
series, an algorithm named visibility graph (VG) [Lacasa et al., 2008, 2009] is pro-
posed to transforms time series into a network structure. The creation of VGs relies
on an extremely simple idea: each point in a time series is treated as a vertical bar,
whose height is the corresponding numerical value. When considering these bars
on a landscape, it is then straightforward that the top of a bar may be visible from
the top of other bars. Assume each time-step as a vertex in a graph, then two ver-
tices are connected if the top of the vertical bars are visible to each other, i.e., there
exists a straight line from the top of the two bars without intersecting with other
bars. More formally,
Definition 6.3 (Visibility graph)
Given a time series T = (v1, ..., vn), its VG representation G = (V ,E) has n vertices:
V = (1, ...,n). An edge e = (i, j) ∈ E iff ∀k such that i < k < j (1 6 i, j 6 n) inequality
vk < vj + (vi − vj)

j−k
j−i is satisfied.

It is obvious that VGs are undirected, although it is possible to create a directed
version by limiting the direction of viewpoints from the vertical bars. Besides, VGs
are always connected since each node will always be visible to its neighbors. Fi-
nally, VGs are invariant when time series undergo affine transformations, i.e., the
visibility criterion remains fulfilled when rescaling the time series either horizon-
tally or vertically. However, VGs are not suitable for non-stationary time series,
i.e., those having monotonically increasing/decreasing trends in time. Such trends
should be removed before applying VG generation. The goal of VGs is to charac-
terize structural properties [Lacasa et al., 2009] of time series, such as periodicity,
fractality, etc., although it is claimed that it can be extended to weighted VGs in
order to quantitatively distinguish generic time series [Supriya et al., 2016].

Creation of VGs from time series without optimization generally has O(n2)

computation complexity, where n is the dimensionality of time series data. How-
ever, a more efficient VG generation algorithm [Afshani et al., 2017] can have
a sub-quadratic computation complexity. Specifically, this algorithm can reduce
the complexity of time series VG generation down to O(n log2(n)). When further
taking advantage of parallelization, O(n log2(n)) work can be effectively solved
within O(log2(n)) time. Another simplified variant of VG, horizontal visibility
graph (HVG) [Luque et al., 2009], only connects nodes i and j if a horizontal line
can be drawn between these nodes. Creation of HVGs without any optimization
generally has a computation complexity of O(n).

82 multiscale visibility graph

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Visibility Graph

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Horizontal Visibility Graph

Figure 6.1: An example of converting time series to visibility graph and horizontal visibil-
ity graph.

Definition 6.4 (Horizontal visibility graph)
Given a time series T = (v1, ..., vn), its HVG representation Ḡ = (V ,E) has n vertices:
V = (1, ...,n). An edge e = (i, j) ∈ E iff ∀k such that i < k < j (1 6 i, j 6 n) inequality
vi, vj > vk is satisfied.

VG and its variants have been shown to be able to differentiate certain time se-
ries. For instance, [Iacovacci and Lacasa, 2016] have extracted motifs from HVGs
and claimed the motif statistics can be used for differentiating various types of
time series data, including white Gaussian noises, fully chaotic logistic maps and
noisy fully chaotic logistic maps. The authors further claimed that HVG motif pro-
files from heart rate time series can be used to cluster different types of meditative
activities.

Intuitively, VGs and HVGs are very similar concepts and HVG is a subgraph of
VG. However, when extracting statistics from them, VGs can be more capable of
capturing global features, while HVGs are often more sensitive to local variations.
As a result, VGs and HVGs can be joined to provide more accurate representations
of time series data. We will discuss more about such heuristics in section 6.4.2. For

6.2 background 83

simplicity, in the remainder of this chapter the term VG indicates the combination
of VG and HVG if HVG is not explicitly specified.

6.2.2 Graph Classification with Deep Neural Networks

Graphs in computer science are often represented with edge lists or adjacency
matrices. When visibility graphs are represented in a matrix form, classification
of them can then be converted to a problem of image recognition. Consequently,
can we first transform time series into visibility graphs – which are represented by
means of matrices/images, and try to apply image recognition techniques for clas-
sifying time series? For instance, Figure 6.2 illustrates the converted images from
time series WVGs. Human beings may immediately find the characteristics corre-
sponding to most classes. Similar to this time series image recognition paradigm,
[Wang and Oates, 2015] have also attempted encoding time series as images using
Gramian Angular Fields (GAF) and Markov Transition Fields (MTF), so that CNN
can be taken advantage of for classification.

ElectricDevices Class 1 ElectricDevices Class 2 ElectricDevices Class 3 ElectricDevices Class 4

ElectricDevices Class 5 ElectricDevices Class 6 ElectricDevices Class 7

Figure 6.2: Time series instances from different classes of ElectricDevices are trans-
formed into VGs and whose matrices are plotted as images.

In order to investigate if computers can tell different classes of WVG images
apart, we employ one of the most advanced image recognition techniques named
Residual Networks (ResNet) [He et al., 2016]. The experiments are conducted on
a HPC platform [Varrette et al., 2014] so that we can take advantage of GPUs
to accelerate the training tasks. Specifically, we use NVIDIA Tesla K40M GPUs
with 2880 stream cores and 12GB memory for training ResNet models consisting
of 50 layers. We have selected to experiment on datasets with large number of
training instances per class in order to reduce the risk of overfitting and increase
the generalization of the ResNet models. Besides, since WVG images created from
some datasets can be large due to long time series lengths/dimensionality, to avoid
memory errors we have to conduct Principal Component Analysis (PCA) to reduce
the dimensionality of WVG matrices. Although GPUs can be a magnitude (e.g., ten

84 multiscale visibility graph

times) faster than CPUs, training these models may still take several (more than
12) hours.

Table 6.1: Converting time series into WVGs and using ResNet for classification: classifica-
tion accuracy compared to 1NN with Euclidean distance and 1NN with DTW.

Dataset 1NN ED 1NN DTW ResNet50

ResNet50

(PCA)

ElectricDevices 55.00 62.40 69.55 57.18

FordA 65.90 65.90 N/A 76.51

FordB 55.80 58.60 N/A 68.76

PhalangesOutlinesCorrect 76.10 76.10 74.59 63.40

ProximalPhalanxOutlineCorrect 80.80 79.00 31.62 75.60

Strawberry 93.80 93.80 93.80 72.43

Table 6.1 presents the classification accuracy results. When compared with popu-
lar benchmark classifiers, i.e., 1NN with Euclidean and DTW distance, ResNet does
not appear to have yielded good results. Besides, ResNet models are extremely dif-
ficult to train and relies on GPU accelerators, which may not be widely accessible.
As a result, it can be impractical to apply this approach for TSC and we may need
to extract graph features for practical classification.

6.2.3 Graph Features

Extracting features from graphs has become a popular research topic thanks to the
recent applications in social network analysis, physics as well as bio-informatics.
There are a number of research avenues in graph mining, the most popular ones
are about finding communities or clusters within large graphs and characterizing
graphs by means of finding and counting recurrent patterns. Since time series VGs
are always connected, it is thus not immediately helpful to extract clusters, since
clusters in these graphs will always correspond to subsequences of original time
series.

Table 6.2: Computation time of finding motifs from an undirected graph with 1000 nodes
and 1300 edges using GTrieScanner.

Motif size 4 5 6 7 8

No. of connected motifs 6 21 122 853 11,117

Time (s) 0.011 0.25 5.46 105 1,732

Graph motifs or graphlets, however, are especially interesting since they are sub-
graph structures or patterns in a larger graph that are recurrent and statistically
significant. Finding motifs in graphs is generally a complex issue, but there have
been a number of research work for efficiently extracting motifs from graph data,
such as GTrieScanner [Ribeiro et al., 2010] and Parallel Parameterized Graphlet
Decomposition (PGD) [Ahmed et al., 2015]. Due to the fact that the number of
motifs increases exponentially with motif size, the complexity of finding motifs

6.2 background 85

is also exponentially correlated with motif size (cf. Table 6.2), researchers thus
generally focus on optimizing computation efficiency of locating small motifs (of
size up to four). PGD is the state-of-the-art approach for efficiently finding and
counting small motifs in graphs and can be several magnitudes faster than other
approaches. Table 6.3 shows all possible small graph motifs up to size four. Note
that PGD works only for undirected graphs, while GTrieScanner works on both
directed and undirected graphs. However, motifs extracted by GTrieScanner are
only connected motifs and the running time is significantly slower than PGD. As
a result, in this chapter we take advantage of PGD for small motif counting.

Table 6.3: All graph motifs up to size 4. Note that connected graphs may contain discon-
nected motifs.

Motif Name # Motif Name

M21 2-edge M22 2-node-independent

M31 3-triangle M33 3-node-1-edge

C
o

n
n

e
c

t
e

d

M32 3-path

D
i
s
c

o
n

n
e
c

t
e

d

M34 3-node-independent

M41 4-clique M47 4-node-triangle

M42 4-chordal-cycle M48 4-node-star

M43 4-tailed-triangle M49 4-node-2-edges

M44 4-cycle M410 4-node-1-edge

M45 4-star M411 4-node-independent

M46 4-path

Researchers argue that motif distribution extracted from VGs can be extremely
helpful for identifying different types of time series. For instance, Figure 6.3 illus-
trates that motif distributions are easily distinguishable with VGs that are gener-
ated from artificial time series data.

However, in practice the motif distributions may not be as distinguishable as
those from artificial data. For example, Figure 6.4 illustrates the motif distributions
of three different classes of time series from the ArrowHead dataset. As shown, it
can be very difficult for human beings to tell one class apart from another given
only these distributions since the probability distributions of different classes tend
to overlap, especially for instances from class 2 and 3. Furthermore, if we only
consider connected motifs, the differences of motif distributions are slightly bigger,
as shown in Figure 6.5, but it is still difficult to tell specific classes apart due
to overlapping of distribution. As a result, although motif distributions can be
helpful, more features from VGs need to be extracted in order to draw clearer
lines between different classes during classification.

Besides small motifs, other graph features are also easy to obtain, e.g., vertex
and edge statistics as well as structural metrics. In this chapter we consider some
additional graph features listed as follows:

86 multiscale visibility graph

similarity and heterogeneity. Points on the attractor are sparse
in some areas, and dense in others. After being transformed into
the complex network domain, the points in dense regions are
found to have higher degrees than those in sparse regions. This

cannot be simply attributed to the fact that the density of points
is higher, but rather that the interconnection among them is
stronger. In a sparse region of phase space, the 4 nearest
neighbors are less likely to be mutual (i.e., they are nontransi-
tive), and therefore the corresponding node will only have 4
links. Conversely, the points in a dense region of phase space are
more likely to be mutual (fully transitive) and therefore have a
higher degree. In comparison, periodic flow signals show more
regular local structures and a more homogeneous distribution of
points on the attractive regions of phase space. Periodic flow
signals with different noise levels produce more random struc-
tures and hence the region of phase space that they occupy
becomes thicker (high dimensional or perhaps more diffuse)
than purely periodic flow data.

Note that the distinction among periodic, chaotic, and periodic
noisy flow data can be described with reference to the relative
frequencies of 2 particular motifs (D and F). The rank of motif
D is increased but motif F occurs less frequently from Fig. 2 A
(periodic) to Fig. 2B (chaotic) and further to Fig. 2C (noisy
periodic). This is essentially due to the heterogeneity of the
attractor and related to the intrinsic dimension of the system.
Motif D will generally occur frequently if it is likely that node w
is close to x, y, and z, but x, y, and z are not close to each other
(for any 4 nodes w, x, y, and z forming a single motif). Conversely,
motif F will occur more frequently if w is close to x, y, and z only
when x, y, and z are also close to one another. As we would
expect, the former structure D is more likely to appear only in
higher dimensions, or when the distribution of points is heter-
ogeneous; whereas F will occur more often when the points are
evenly distributed in a low-dimensional (that is, linear or planar)
attractor.

We assert that the motif F is more common for stable flow
data, and less common for transitive dynamics because of the
distribution of embedded points within phase space. Recall that
for strictly periodic flow the points will be evenly distributed and,
therefore, the strong mutual coupling implied by motif F will be
common. For chaotic systems, the distribution is structured but
nonuniform (a consequence of the self-similar fractal structure
of points on the attractor). Hence, nontransitive coupling struc-
tures (such as motif D) will be more common. A careful
examination of Fig. 2A and a comparison with Fig. 2B bears out
the above observation; not only through the increasing frequen-
cies of D and E, but also through the change of the relative
frequencies of D and F. That is, when the periodicity increases
(from period 2 up to period 8; see Fig. 2A), D and E increase
because the attractor becomes more heterogeneous. Moreover,
as the dynamics cease to be periodic and transit to chaos (Fig.
2B), the order of occurrence of the 2 subgraphs (D and F)
changes too.

For periodic dynamics with significant noise (30 dB to 0 dB),
the distinction of subgraph ranks is more obvious in Fig. 2C. The
last 3 subgraphs (C, E, and F) occur less often when the noise
level increases. Adding noise to periodic dynamics increases the
dimension of the dynamics while retaining the homogeneity of
the distribution of points. This causes the relative frequency
of the nontransitive motif D to increase, whereas the frequency
of fully transitive motif F decreases further. Moreover, the
frequency with which motif C occurs decreases. This motif C will
occur if w and z are connected to x and y, but x and y are not
connected, so x and y must be close to both w and z, but not to
one another. This configuration can frequently occur only if the
distance between the points is irregular, i.e., d(w, z) !! d(x, y),
that is, the distribution of points on the attractor is heteroge-
neous. Again, this is reflected not only by the relative frequency
of the various subgraphs, but also by the increasing abundance
with which they occur as a function of noise levels. We have
repeated this analysis with a correlated noise contamination [an
AR(3) process sn " 0.8sn#1 # 0.5sn#2 $ 0.6sn#3 $!n], and found

A B C D E F

x

w y

z x

w y

z x

w y

z
Fig. 1. All subgraphs of size 4 in undirected networks. We arbitrarily label
these subgraphs A, B, C, D, E, and F as shown.

100

101

102

103

104

105

Fr
eq

ue
nc

ies
 o

f S
ub

gr
ap

hs

Rossler flow (period=2, c=6)
Rossler flow (period=3, c=12)
Rossler flow (period=6, c=12.6)
Rossler flow (period=8, c=8.7)

A

A B C DF E

104

105

Fr
eq

ue
nc

ies
 o

f S
ub

gr
ap

hs

Rossler flow (chaotic, c=9)
Rossler flow (chaotic, c=18)
Lorenz flow (chaotic)
Chua circuit flow (chaotic)
Mackey−Glass flow (chaotic)

B

A B C D EF

103

104

105

106

Fr
eq

ue
nc

ies
 o

f S
ub

gr
ap

hs

Sine+WGN(30dB)
Sine+WGN(20dB)
Sine+WGN(10dB)
Sine+WGN(0dB)

C

A B CD FE

Fig. 2. Subgraph ranks of different types of time series. (A) Periodic flow
data. (B) Chaotic flow data. (C) Periodic flow data with white Gaussian noise.
Note that in B, the Mackey–Glass flow is a high-dimensional chaotic system
and does not follow the same subgraph rank ordering as the other systems in
this plot.

19602 ! www.pnas.org"cgi"doi"10.1073"pnas.0806082105 Xu et al.

Figure 6.3: Motif distribution of artificially generated data by [Xu et al., 2008]. (A) Periodic
flow. (B) Chaotic flow. (C) Periodic flow with Gaussian noise.

- Density: the ratio of the number of edges to the number of all possible edges.
Graph density is computed following equation 6.2 and has a computation
complexity of O(1).

p =
2|E|

|V |(|V |− 1)
(6.2)

6.2 background 87

M41 M42 M43 M44 M45 M46 M47 M48 M49 M410 M411

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Pr

ob
ab

ilit
y

Class 1

Class 2

Class 3

Figure 6.4: Boxplots of all motif probability distribution of different classes from the Ar-
rowHead Dataset’s training set.

M41 M42 M43 M44 M45 M46
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ilit

y

Class 1

Class 2

Class 3

Connected Motifs

M47 M48 M49 M410 M411

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Class 1

Class 2

Class 3

Disconnected Motifs

Figure 6.5: Boxplots of connected and disconnected motif probability distribution of dif-
ferent classes from the ArrowHead Dataset’s training set.

88 multiscale visibility graph

- K-core: the K-core of a graph G = (V ,E) is a maximal subgraph H = (V ′,E ′)
in which each vertex has a degree of at least K, i.e., ∀v ∈ V ′ : degH(v) > K.
Consequently, it is a cohesiveness measurement of interlinked subgraphs
within a network and K is computed by equation 6.3. Computing K has an
O(|E|) time complexity [Batagelj and Zaversnik, 2003].

K = argmax
H∈G

CoreH > K (6.3)

- Assortativity coefficient: a metric to measure the correlation of vertices in
a graph through calculating the Pearson correlation coefficient of degree
between pairs of connected vertices. Equation 6.4 shows how assortativity
coefficient is computed,

r =

∑
xy xy(exy − axby)

σaσb
(6.4)

where ax and by represents respectively the fraction of edges that start and
end at vertices with values x and y, and exy is the measure of assortativity,
such that

∑
xy exy = 1,

∑
y exy = ax and

∑
x exy = by. Finally, σa and σb

are the standard deviations of the distributions ax and by. Computing r has
an O(|E|) time complexity [Newman and Girvan, 2003].

- Degree statistics including max, min and mean degree per vertex. Naturally,
computing such statistics has an O(|V |) time complexity.

Note that there are a plethora of features that can be extracted from
graphs [Costa et al., 2007], and such features are not necessarily equally easy to ob-
tain. For instance, the diameter of a graph – which is the shortest distance between
the two most distant vertices in the graph – can be computationally expensive to
calculate since it demands O(|V |(|V |+ |E|)) computation. Nonetheless, this chapter
does not intend to find the exclusive set of features that are both efficient and de-
scriptive for time series VGs. Rather, we try to investigate if these aforementioned
statistical features are indeed helpful for TSC.

6.3 multiscale visibility graph

Time series data differ greatly in characteristics depending on how they are cap-
tured, sampled and their underlying applications: in one domain global features
may be helpful, while in another domain local features (i.e., defining subsequences)
can become more important for classification. After transforming real-valued time
series into VGs, specific features from such VGs – such as probability distribu-
tions of small motifs – are more reflective of local features than global ones. We
refer to this type of representation as Uniscale Visibility Graph (UVG) in the re-
mainder of this chapter. In this case, extracting more global features (i.e., prob-

6.3 multiscale visibility graph 89

ability distributions of large motifs) becomes exponentially expensive for com-
putation. To mitigate this problem, we propose the Multiscale Visibility Graph
(MVG) representation such that each time series sequence is transformed into a
set of dimensionality-reduced approximations: these downscaled approximations
are then converted into a set of VGs. Consequently, features are extracted from
each graph in MVGs, thus approximating the process of extracting features of
different scales. This approach is inspired by computationally efficient wavelet
transform [Cohen et al., 1993], with the exception that time series in each scale are
represented with graph structures instead of numerical values. We first define the
multiscale representation of time series as follows:

Definition 6.5 (Multiscale Approximation)
Given a time series T0 = (v1, ..., vn), its approximated multiscale representation is a set
of time series T̂ = (T1, T2, , ..., Tm), where Ti (1 6 i 6 m) is a downscaled approxima-
tion of T0, such that |Ti| = |T0|/2

i = n/2i. In addition, to avoid tiny and meaningless
representations we enforce a constant threshold τ for the downscaled approximations, i.e.,
|Tm| > τ.

The downscaling of T0 can be achieved with widely used dimensionality re-
duction techniques such as PAA (cf. equation 6.1). Since the size of downscaled
time series representations follows an exponential decay, time series multiscale
representations T̂ often consists of a small number downscaled series. Besides,
considering

∑∞
i=1 n ∗ 2−i = n, theoretically the maximal dimension of T̂ when

fully expanded is n.

Definition 6.6 (Multiscale representation)
Given a time series T0 and its approximated multiscale representation T̂ =

(T1, T2, , ..., Tm), its multiscale representation is the union of T̂ and T0, i.e., T =

(T0, T1, T2, , ..., Tm).

Approximated multiscale representations can help smoothing time series and
reducing noises, while full multiscale representations consist of both the original
time series and augmented versions. Each series in multiscale representations can
be transformed into VGs, thus we have a natural definition for multiscale visi-
bility graphs, which are supersets of approximated multiscale visibility graphs
(AMVGs):

Definition 6.7 (Multiscale visibility graph)
Given a time series T and its multiscale representation T = (T0, T1, T2, , ..., Tm), its multi-
scale visibility graph is a set of graphs G = (G0,G1,G2, , ...,Gm), where Gi (1 6 i 6 m)
is the corresponding visibility graph created from Ti.

Since the number of vertices in Gi equals the dimensionality of Ti, to avoid
meaningless trivial graphs it is natural to set τ to a small integer (e.g., τ = 15), such
that the smallest graph in G contains more than τ vertices. Note that τ should not
be considered as a parameter for the feature extraction process. Rather, it is more
an optimization trick and bearing a default value of 0 will not cause any issues,
since feature selection is done during classification.

90 multiscale visibility graph

6.3.1 Feature Extraction

As shown in Algorithm 6.1, feature extraction in MVGs follow the same paradigm
as extracting features from individual graphs in an MVG and concatenating all
features together, since graph features extracted in this chapter are solely statis-
tical and do not pertain orders. Consequently, these features can be fed into any
generic classification algorithms [Fernández-Delgado et al., 2014] well studied in
the machine learning and data mining community. It is utterly important that
this feature extraction transforms the sequential characteristics of time series data
into unordered feature vectors, so that any modern classification algorithm can be
taken advantage of.

Algorithm 6.1 Building time series MVGs and extracting features from them.

1: procedure ExtractFeatures(T)
2: F← ∅ . Feature set
3: G← ∅ . MVGs
4: T ′ ← T

5: while |T ′| > τ do . Ignore trivial graphs
6: G← G∪BuildVGAndHVG(T ′)
7: T ′ ← DimensionalityReduction(T) . |T ′| 6 |T |

2

8: for G ∈ G do
9: M←MotifProbabilityDistribution(G)

10: M← Normalize(M)

11: F← F∪ {M,OtherStatistics(G)}

12: return F

Although features have become unordered, it is nevertheless important to care-
fully curate them in order to achieve better classification results. Note that PGD is
very efficient in counting motifs in graphs, and the dominant features from time
series MVGs will be the probability distribution of motifs of different sizes:

Definition 6.8 (Motif probability distribution)
Given a time series visibility graph G and the set of motifs M, the motif probability distri-
bution PG is the set of probabilities corresponding to each motif in M.

Empirically, the distribution of connected and disconnected motifs vary
greatly in graphs. It is thus desirable to calculate separately motif proba-
bility distributions depending upon motif connectivity. To that end, the mo-
tif probability distributions (MPDs) are calculated per motif size and con-
nectivity. This essentially normalizes extracted motif features. Specifically,
MPDs are normalized according to the following five groups (cf. Table 6.3):
{{M21,M22}, {M31,M32}, {M33,M34}, {M41, ...,M46}, {M47, ...,M411}}. Finally, it is
obvious that other graph features – e.g., graph density and assortativity coefficient
– are independent of MPDs. As a result, no further curation for such features is
needed.

6.4 evaluation 91

6.3.2 Classification

When features are extracted, we can feed them into a generic classifier to learn
from labeled samples and predict the class of unlabeled ones. We are in favor
of most well-known and widely accepted and well optimized algorithms such
as SVM, Random Forest and eXtreme Gradient Boosting (XGBoost) [Chen and
Guestrin, 2016] for this task. Especially, as a highly optimized distributed gradient
boosting library, XGBoost runs on major distributed environment. It has gained
remarkable adoption since its inception and is well known for its performance in
machine learning and data mining competitions.

Typical classification tasks involve learning models and selecting a performant
estimator through the process of validation. Although in this study we have pro-
posed a parameter-free method for feature extraction, it is still required to tune the
hyper-parameters for generic classifiers. Note that hyper-parameters in machine
learning refers to parameters that are external to the model and such values cannot
be estimated from the training data. As a result, they are often set using heuristics.
For instance, the k in kNN classifier can be considered as a hyper-parameter, since
“there is no analytical formula available to calculate an appropriate value” [Kuhn
and Johnson, 2013]. In order to tune hyper-parameters in our classifiers, we con-
duct cross-validation to evaluate the performance of estimators and apply grid
search to find the most satisfactory estimator based on the cross entropy scores:

− logP(ŷ|y) = −(y log(ŷ) + (1− y) log(1− ŷ)) (6.5)

where y is the ground truth, and ŷ is the probabilistic predictions by an estima-
tor. Since datasets may be highly imbalanced, which will lead to degraded classi-
fication results, we can apply random oversampling techniques over the minority
class and use stratified cross validation to preserve class balance when validating
models.

6.4 evaluation

To evaluate our approach, we conduct experiments using a large number of pub-
licly accessible datasets. We first introduce the datasets. Then we list and validate
our heuristics, followed by creating an accurate classifier with stacked generaliza-
tion. Next, we compare the accuracy and efficiency of our method with state-of-
the-art approaches. Finally, we close this section with a case study and discussions.

6.4.1 Datasets

When validating our heuristics, we consider the most popular and largest open
dataset for TSC: the UCR Time Series Classification Archive [Chen et al., 2015].

92 multiscale visibility graph

Specifically, we use a subset from the UCR archive that are more recent (added
after the summer of 2015), which include datasets from various fields ranging
from electrocardiograms (ECG) to intra-species image recognition data. These
datasets have a uniform file format and consistent internal data structures, making
it possible to conduct batch processing in a content-agnostic manner. Furthermore,
datasets in this subset are generally larger in size, making it more reliable to eval-
uate the scalability of TSC algorithms.

When comparing our approach with state-of-the-art approaches, we take advan-
tage of the UEA & UCR Time Series Classification Repository since it contains
all datasets from the UCR archive. In addition, this repository also provides open
source implementation for more than 18 TSC algorithms [Bagnall et al., 2017] and
benchmarking results are publicly available from the repository website1. We com-
pare our results with relevant algorithms using the default train and test split from
this repository.

6.4.2 Validating Heuristics

Before diving directly into MVG representations, it would be a prerequisite to
validate our heuristics step by step. We summarize these heuristics below:

(a) Motif statistics from VGs and HVGs can serve better during classification
when combined with other graph features such as degree statistics.

(b) Features from HVGs are more capable of capturing local characteristics while
those from VGs are capable of capturing global characteristics. Combining
features from both HVGs and VGs can help yield more accurate classification
results.

(c) Multiscale representations are able to reveal time series features at different
scales, and a generic classifier is able to conduct feature selection and find im-
portant features to perform more accurate classification than using features
without multiscale augmentation.

When validating these heuristics, we feed the features corresponding to each
heuristic to an XGBoost classifier for 3-fold cross-validation and model selection.
A set of hyper-parameters have been set for grid search, including the learning
rate (three choices from 0.01 to 0.3), number of estimators (10 choices from 10 to
100), max tree depth (10 or 20). In order to prevent overfitting, the subsampling
and column sampling hyper-parameters are both set to 0.5 to randomly collect
half of the data instances and features to grow trees. To reduce the impact of
random over sampling on minority classes and floating-point summation issues
in parallel processing, all experiments have been repeated five times and average
accuracy scores are calculated. Finally, all experiments are conducted on a Linux
server with two Intel Xeon E5-2430 CPUs with a clock rate of 2.20GHz. With this

1 http://timeseriesclassification.com/

http://timeseriesclassification.com/

6.4 evaluation 93

setup, we illustrate step by step how experiments are setup and present the final
classification results in Table 6.4.

Table 6.4: Error rates of classifying 39 UCR datasets compared with 1NN-Euclidean and
1NN-DTW. Different heuristic combinations are taken into account. Bold-faced
values indicate lowest error rates (including ties) for specific datasets in all ex-
periments.

Scales→ UVG AMVG MVG

Type of Graphs→ HVG VG VG+HVG

Features→ MPDs All MPDs All All

Dataset #Cls. #Train #Test Dim.
1NN-

ED
1NN-
DTW

A B C D E F G

ArrowHead 3 36 175 251 0.200 0.200 0.482 0.449 0.406 0.407 0.385 0.405 0.398

BeetleFly 2 20 20 512 0.250 0.300 0.440 0.410 0.250 0.170 0.250 0.150 0.180

BirdChicken 2 20 20 512 0.450 0.300 0.260 0.150 0.000 0.000 0.000 0.050 0.050

Computers 2 250 250 720 0.424 0.380 0.294 0.284 0.367 0.338 0.281 0.292 0.266

DistalPhalanxOutlineAgeGroup 3 139 400 80 0.218 0.228 0.204 0.202 0.214 0.196 0.202 0.196 0.188

DistalPhalanxOutlineCorrect 2 276 600 80 0.248 0.232 0.409 0.389 0.251 0.263 0.251 0.264 0.231

DistalPhalanxTW 6 139 400 80 0.273 0.272 0.342 0.348 0.298 0.300 0.315 0.275 0.279

ECG5000 5 500 4500 140 0.075 0.075 0.289 0.182 0.137 0.112 0.116 0.076 0.075

Earthquakes 2 139 322 512 0.326 0.258 0.262 0.255 0.286 0.265 0.245 0.276 0.283

ElectricDevices 7 8926 7711 96 0.450 0.376 0.503 0.493 0.392 0.357 0.366 0.368 0.338

FordA 2 1320 3601 500 0.341 0.341 0.009 0.009 0.254 0.220 0.007 0.167 0.006

FordB 2 810 3636 500 0.442 0.414 0.328 0.318 0.313 0.290 0.271 0.257 0.230

Ham 2 109 105 431 0.400 0.400 0.463 0.463 0.347 0.345 0.389 0.389 0.343

HandOutlines 2 370 1000 2709 0.199 0.197 0.293 0.288 0.275 0.225 0.221 0.215 0.206

Herring 2 64 64 512 0.484 0.469 0.425 0.419 0.450 0.484 0.381 0.431 0.288

InsectWingbeatSound 11 220 1980 256 0.438 0.422 0.808 0.763 0.586 0.577 0.557 0.484 0.488

LargeKitchenAppliances 3 375 375 720 0.507 0.205 0.461 0.414 0.490 0.478 0.380 0.346 0.325

Meat 3 60 60 448 0.067 0.067 0.497 0.490 0.160 0.097 0.117 0.050 0.080

MiddlePhalanxOutlineAgeGroup 3 154 400 80 0.260 0.253 0.274 0.279 0.246 0.238 0.267 0.266 0.247

MiddlePhalanxOutlineCorrect 2 291 600 80 0.247 0.318 0.534 0.531 0.305 0.294 0.337 0.426 0.314

MiddlePhalanxTW 6 154 399 80 0.439 0.419 0.471 0.443 0.419 0.426 0.401 0.434 0.410

PhalangesOutlinesCorrect 2 1800 858 80 0.239 0.239 0.397 0.391 0.302 0.291 0.288 0.272 0.264

Phoneme 39 214 1896 1024 0.891 0.773 0.798 0.786 0.812 0.797 0.759 0.772 0.730

ProximalPhalanxOutlineAgeGroup 3 400 205 80 0.215 0.215 0.207 0.194 0.185 0.192 0.178 0.152 0.170

ProximalPhalanxOutlineCorrect 2 600 291 80 0.192 0.210 0.280 0.267 0.167 0.165 0.174 0.181 0.144

ProximalPhalanxTW 6 205 400 80 0.292 0.263 0.303 0.307 0.257 0.259 0.257 0.300 0.233

RefrigerationDevices 3 375 375 720 0.605 0.560 0.533 0.523 0.526 0.494 0.478 0.415 0.417

ScreenType 3 375 375 720 0.640 0.589 0.506 0.486 0.678 0.669 0.572 0.506 0.499

ShapeletSim 2 20 180 500 0.461 0.300 0.189 0.194 0.067 0.051 0.017 0.161 0.047

ShapesAll 60 600 600 512 0.248 0.198 0.715 0.595 0.585 0.485 0.448 0.332 0.313

SmallKitchenAppliances 3 375 375 720 0.659 0.328 0.239 0.212 0.282 0.261 0.205 0.205 0.206

Strawberry 2 370 613 235 0.062 0.062 0.217 0.205 0.117 0.113 0.097 0.099 0.094

ToeSegmentation1 2 40 228 277 0.320 0.250 0.354 0.339 0.289 0.301 0.296 0.261 0.259

ToeSegmentation2 2 36 130 343 0.192 0.092 0.185 0.185 0.205 0.182 0.185 0.218 0.185

UWaveGestureLibraryAll 8 896 3582 945 0.052 0.034 0.551 0.498 0.516 0.482 0.386 0.278 0.265

Wine 2 57 54 234 0.389 0.389 0.493 0.404 0.530 0.519 0.448 0.556 0.548

WordSynonyms 25 267 638 270 0.382 0.252 0.794 0.770 0.662 0.610 0.578 0.559 0.571

Worms 5 77 181 900 0.635 0.586 0.492 0.470 0.414 0.409 0.387 0.448 0.409

WormsTwoClass 2 77 181 900 0.414 0.414 0.328 0.306 0.242 0.248 0.243 0.239 0.233

Comparison versus G G B D D E F G E

Number of more accurate datasets 26 23 32 30 29 27 19 29 30

Wilcoxon test p-value 0.01 0.1638

9.48e-
7

3.09e-
3

9.56e-
5

5.01e-
3

0.8623

1.72e-
4

8.74e-
4

94 multiscale visibility graph

6.4.2.1 Choosing Graph Features

We first investigate which graph features are helpful for extracting distinguishable
information from time series. Specifically, we transform time series into UVGs con-
sisting of both VG and HVG representations and try to extract MPDs as well as
other features (density, assortativity and degree statistics) from these graphs. We
are interested in finding out whether MPDs are sufficient for TSC and if extract-
ing other statistic features from graphs are necessary. Next, we take advantage of
XGBoost classifier to train on different feature sets and classify the test datasets.
Columns A, B, C and D in Table 6.4 presents the classification error rates using
HVG with only MPDs, HVG with MPDs and other graph features, VG with only
MPDs and VG with all features. Comparison on the bottom of the table shows
that including features such as density and assortativity coefficient indeed helps
improving classification accuracy. For HVGs, including features other than MPDs
increases classification accuracy in 32 datasets, while for VGs 29 datasets saw accu-
racy improvements. A Wilcoxon signed rank test with p-values 9.48e-7 and 9.56e-5
suggests that such improvement is indeed significant (both p-values < 0.05). Fig-
ure 6.6 shows the classification results in the form of scatter plots, where each point
represent a dataset. Such results along with the Wilcoxon test indeed suggest that
our Heuristic (a) is valid.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

H
VG

M
PD

s
w

in
s

H
VG

A
ll

w
in

s

HVG MPDs vs. HVG All

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

VG
M

PD
s

w
in

s

VG
A

ll
w

in
s

VG MPDs vs. VG All

Figure 6.6: Comparison of classification error rates: using MPDs with or without other
graph features.

6.4.2.2 VG and HVG

Next, it is necessary to show that graph features extracted from both VGs and
HVGs are important. Recall that, intuitively, VGs are helpful for capturing global
features while HVG can help locating local features. We separately test the dis-
tinguishing power of VGs and HVGs for time series in order to make sure that
both can lead to satisfactory classification results. Furthermore, we conduct exper-
iments to investigate if combining VGs and HVGs can better capture both global
and local features for time series and thus lead to more accurate classification.

Figure 6.7 illustrates the comparison of classification accuracy with VG and
HVG features as well as combining both VG and HVG. The first scatter plot

6.4 evaluation 95

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

H
VG

A
ll

w
in

s

VG
A

ll
w

in
s

HVG All vs. VG All

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

H
VG

A
ll

w
in

s

U
VG

w
in

s

HVG All vs. UVG

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

VG
A

ll
w

in
s

U
VG

w
in

s

VG All vs. UVG

Figure 6.7: Comparison of classification error rates: using HVGs, VGs or combining two
together (denoted as UVG here).

shows that for majority datasets, VG features can yield more accurate classifica-
tion performance. However, it is still worth mentioning that HVG features can
also outperform VG features in some specific datasets, possibly due to the reason
that local features are more influential in such datasets. Moreover, it is obvious
from the other two scatter plots in Figure 6.7 that combining both VG features
and HVG features can greatly boost the classification accuracy. This is probably
due to the excellent feature selection capability of XGBoost, so that the classifier is
able to find out which features are more important during the training process. In
addition, as shown in Table 6.4, using VGs outperforms HVGs in 30 datasets with
a p-value of 3.09e-3, suggesting VGs are capable of capturing more characteristics
in time series. Finally, combining features from both VGs and HVGs yields more
accurate results in 27 datasets with a p-value of 5.01e-3, indicating significant im-
provement when combining two different types of graphs. As a result, the validity
of our Heuristic (b) can be confirmed.

6.4.2.3 UVG, AMVG and MVG

Since we have demonstrated that taking advantage of both VG and HVG features
can improve classification accuracy for UVG representations, now we can investi-
gate whether Heuristic (c) holds, i.e., if multiscale representations can help achiev-
ing even more accurate results. To visually inspect which representation suites best
for TSC, we further draw scatter plots of the accuracy results in Figure 6.8. It is
then obvious that AMVG and UVG (scatter plot on top) lead to similar classifica-
tion accuracy, which suggests that AMVG can be good approximations for original
time series data. Furthermore, the two scatter plots in the bottom of Figure 6.8 in-
deed confirm that MVG representations result in better classification performance,
since almost all dots representing results from different datasets fall on the side of
MVG.

From Table 6.4, we can see that multiscale approximations outperforms uniscale
time series in 19 datasets, with a Wilcoxon p-value of 0.8623 > 0.05. As a result,
AMVG representations are not statistically significantly different than UVGs. On
the other hand, MVGs outperform AMVG in 29 datasets with a p-value of 1.72e-4

96 multiscale visibility graph

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

U
VG

w
in

s

A
M

VG
w

in
s

UVG vs. AMVG

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

A
M

VG
w

in
s

M
VG

w
in

s

AMVG vs. MVG

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

U
VG

w
in

s

M
VG

w
in

s

UVG vs. MVG

Figure 6.8: Comparison of UVG, AMVG and MVG’s error rates.

and MVGs are more accurate than UVGs in 30 datasets with a p-value of 8.74e-
4, suggesting that MVG representations indeed contribute significantly towards a
more accurate feature extraction and TSC process. As a result, our Heuristic (c) is
valid.

6.4.2.4 Summary of Heuristic Validation

Overall, all our heuristics are supported by experiment results and each heuristic
contributes significantly to a more accurate TSC process. Table 6.4 also shows the
comparison between our approach and Euclidean distance- as well as DTW-based
nearest neighbor classification. Our approach outperforms 1NN-Euclidean in 26

datasets with a Wilcoxon p-value of 0.01, suggesting MVG features with XGBoost
is significantly more accurate than 1NN-Euclidean. Moreover, MVG appears to be
in par with 1NN-DTW in terms of classification accuracy since 23 datasets are in
favor of MVG with a p-value of 0.1638. Next, we will try to build a more robust
and accurate classifier using stacked generalization.

6.4.3 Stacked Generalization

Previously we have solely taken advantage of XGBoost for classifying time series
with features extracted from graphs. However, it can also be interesting to inves-
tigate if other classifiers can achieve similar results. Besides, although modern
classifiers such as XGBoost and RF are capable of efficiently conducting feature
selection during training, we can still conduct feature selection processes and feed
such a prior information to classifiers in order to achieve better classification ac-
curacy. To that end, we propose feeding different sets of features to a collection
of classifiers and then create a meta-classifier using stacked generalization (a.k.a
stacking or blending) [Wolpert, 1992]. This meta-classifier will then hopefully gen-
erate better final predictions. In fact, a variant of this technique has led to winning
the Netflix Prize with a reward of one million dollars [Sill et al., 2009].

6.4 evaluation 97

Before building a meta-classifier with stacked generalization, we first make sure
that features we previously extracted are suitable inputs for different classifiers
such as RF and SVM. Generally, tree-based classifiers are not so sensitive to mono-
tonic transformations of individual features. As a result, it is often not required to
have features scaled to similar magnitudes for RF and XGBoost. However, since
SVM’s kernel functions (in an Euclidean space) are usually sensitive to different
feature magnitudes, we use Min-Max scaling to transform each feature into range
of zero and one. After that, we compare the classification performance of these
three classifiers.

In order to evaluate the significance of the differences a generic classifier can
incur, we take advantage of the Nemenyi test [Dunn, 1964], which is a post-hoc
test aiming for finding whether groups of data differ after a statistical test of mul-
tiple comparisons. This test can be illustrated by means of a critical difference
diagram, where average ranks of all approaches are presented. Specifically, the
location of vertical lines indicate the average ranking of an approach and bold
lines (insignificance lines) indicate groups of approaches that are not significantly
different. In this case, for one approach to be considered significantly better than
another, its overall ranking has to be at least 0.5307 higher than its competitor. As
shown in Figure 6.9, XGBoost performs slightly better than RF in general, and
both are significantly more accurate than SVM. Such results are not surprising,
since [Fernández-Delgado et al., 2014] have empirically tested hundreds of classi-
fiers and concluded that RF produces the most accurate classification results. This
study was conducted before the initial release of XGBoost, and the recent adop-
tion momentum of XGBoost indeed suggests that XGBoost is great for yielding
accurate classification results.

123

MVG (SVM)

MVG (RF)

MVG (XGBoost)

CD = 0.5307 α = 0.05

Figure 6.9: Critical difference diagram comparison of RF, SVM and XGBoost.

Now that generic classifiers can be used for graph features extracted from time
series, we then set to investigate whether stacking can help further increase clas-
sification accuracy. We first stack top performing classifiers in each family before
blending classifiers from different families. Specifically, we first select the top five
most accurate classifiers from RF, SVM and XGBoost through cross validation.
Then these five classifiers are stacked to produce a meta-classifier, which is used
for producing final predictions. Finally, when stacking classifiers of different fam-
ilies, five classifiers from each family have been selected, thus the meta-classifier
has been trained with 15 classifiers. Our algorithm is described in Algorithm 6.2.

Our experiments show that, for RF and SVM, stacking their top performing
classifiers indeed increases final classification. In the case of XGBoost, however,
stacking its most accurate classifiers does not seem to significantly increase clas-

98 multiscale visibility graph

Algorithm 6.2 Algorithm for creating an ensemble classifiers using stacked gener-
alization.

Input: Training dataset D = {Xi,yi}mi=1(Xi ∈ Rn,yi ∈ Z)

Base classifiers H (with different hyper-parameters)
Output: An stacked ensemble E

1: procedure BuildStackingEnsemble(D, H)
2: S← CreateStratifiedKFolds(D, cv=3) . 3-fold CV
3: E← ∅ . Best performing base estimators
4: for all h ∈H do
5: H← ∅
6: for all S = {Dtrain, Dvalidation} ∈ S do
7: TrainClassifier(h, Dtrain)
8: ŷ←Predict(h, Xvalidation)
9: score← − logP(ŷ|yvalidation)

10: H← H∪ {h, score}

11: H← arg sort(H) . Sort estimators by score
12: E← E ∪ slice(H,k) . Select top-k estimators

13: W ← ComputeEstimatorWeights(E) . with logistic regression
14: E←∑|E|

i=1WiEi

15: return E

sification accuracy, since the classification results of stacked generalization is on
par with those with a single most accurate classification during cross validation.
It possibly indicates that XGBoost has already very good generalization capabil-
ities. Finally, stacking most accurate classifiers from three different families can
help achieving better classification accuracy than single best XGBoost classifier in
most datasets. As a result, stacked generalization can indeed be helpful for further
improving the performance of MVG.

Figure 6.10 demonstrates how stacked generalization can help boosting classi-
fication accuracy. It is straightforward that stacking XGBoost and SVM produces
similar classification accuracy, while stacking top performers from all three fami-
lies can be significantly more accurate than using a single family. As a result, we
are confident that staked generalization is favorable for more accurate TSC.

1234

XGBoost

SVM RF

All

CD = 0.7511 α = 0.05

Figure 6.10: Critical difference diagram comparison of stacking single family of classifiers
versus all families of classifiers.

6.4 evaluation 99

Table 6.5: Classification error rates compared with five benchmark approaches and run-
ning time statistics (in seconds).

Classification Error Rate MVG Runtime FS
Runtime

Dataset # Cls. #Train #Test Dim. 1NN-
ED

1NN-
DTW

LS FS
SAX-
VSM

MVG FE Clf.
∑

ArrowHead 3 36 175 251 0.200 0.297 0.154 0.406 0.211 0.371 8 29 37 30

BeetleFly 2 20 20 512 0.250 0.300 0.200 0.300 0.100 0.050 2 21 23 54

BirdChicken 2 20 20 512 0.450 0.250 0.200 0.250 0.000 0.000 4 22 26 38

Computers 2 250 250 720 0.424 0.300 0.416 0.500 0.380 0.252 22 51 73 1293

DistalPhalanxOutlineAgeGroup 3 400 139 80 0.374 0.230 0.281 0.345 0.158 0.254 11 86 97 45

DistalPhalanxOutlineCorrect 2 600 276 80 0.283 0.283 0.221 0.250 0.272 0.281 19 93 112 101

DistalPhalanxTW 6 400 139 80 0.367 0.410 0.374 0.374 0.396 0.381 12 204 216 59

ECG5000 5 500 4500 140 0.075 0.076 0.068 0.077 0.090 0.069 162 190 352 170

Earthquakes 2 322 139 512 0.288 0.281 0.259 0.295 0.252 0.252 22 78 100 3689

ElectricDevices 7 8926 7711 96 0.448 0.398 0.413 0.421 0.295 0.332 406 6344 6750 3558

FordA 2 3601 1320 500 0.335 0.445 0.043 0.213 0.173 0.014 207 410 617 44832

FordB 2 3636 810 500 0.394 0.380 0.083 0.272 0.249 0.333 183 534 717 45874

Ham 2 109 105 431 0.400 0.533 0.333 0.352 0.190 0.343 8 32 40 670

HandOutlines 2 1000 370 2709 0.138 0.119 0.519 0.189 0.092 0.200 4431 182 4613 179745

Herring 2 64 64 512 0.484 0.469 0.375 0.469 0.375 0.344 19 30 49 286

InsectWingbeatSound 11 220 1980 256 0.438 0.645 0.394 0.511 0.453 0.459 85 130 215 705

LargeKitchenAppliances 3 375 375 720 0.507 0.205 0.299 0.440 0.123 0.288 32 89 121 7301

Meat 3 60 60 448 0.150 0.067 0.100 0.067 0.067 0.050 10 31 41 120

MiddlePhalanxOutlineAgeGroup 3 400 154 80 0.481 0.500 0.429 0.455 0.455 0.435 9 88 97 50

MiddlePhalanxOutlineCorrect 2 600 291 80 0.234 0.302 0.220 0.271 0.323 0.289 15 87 102 80

MiddlePhalanxTW 6 399 154 80 0.487 0.494 0.494 0.468 0.513 0.481 9 177 186 62

PhalangesOutlinesCorrect 2 1800 858 80 0.239 0.272 0.235 0.256 0.290 0.248 48 209 257 332

Phoneme 39 214 1896 1024 0.891 0.772 0.782 0.826 0.895 0.692 134 1419 1553 25604

ProximalPhalanxOutlineAgeGroup 3 400 205 80 0.215 0.195 0.166 0.220 0.176 0.166 11 70 81 41

ProximalPhalanxOutlineCorrect 2 600 291 80 0.192 0.216 0.151 0.196 0.172 0.144 18 80 98 80

ProximalPhalanxTW 6 400 205 80 0.293 0.239 0.224 0.298 0.390 0.220 12 160 172 49

RefrigerationDevices 3 375 375 720 0.605 0.536 0.485 0.667 0.347 0.421 37 77 114 12798

ScreenType 3 375 375 720 0.640 0.603 0.571 0.587 0.488 0.480 35 89 124 8473

ShapeletSim 2 20 180 500 0.461 0.350 0.050 0.000 0.283 0.000 6 22 28 76

ShapesAll 60 600 600 512 0.248 0.232 0.232 0.420 0.302 0.255 168 1833 2001 7939

SmallKitchenAppliances 3 375 375 720 0.656 0.357 0.336 0.667 0.421 0.208 30 75 105 5667

Strawberry 2 613 370 235 0.054 0.059 0.089 0.097 0.043 0.076 29 75 104 314

ToeSegmentation1 2 40 228 277 0.320 0.228 0.066 0.044 0.070 0.197 8 26 34 30

ToeSegmentation2 2 36 130 343 0.192 0.162 0.085 0.308 0.138 0.185 6 22 28 38

UWaveGestureLibraryAll 8 896 3582 945 0.052 0.108 0.047 0.211 0.201 0.258 470 343 813 32047

Wine 2 57 54 234 0.389 0.426 0.500 0.241 0.037 0.519 4 27 31 22

WordSynonyms 25 267 638 270 0.382 0.351 0.393 0.569 0.509 0.522 39 1017 1056 907

Worms 5 181 77 900 0.545 0.416 0.390 0.351 0.442 0.182 26 98 124 6852

WormsTwoClass 2 181 77 900 0.390 0.377 0.273 0.273 0.286 0.130 27 45 72 5044

Number of best (including ties) 1 2 12 3 10 16 24 15

Wilcoxon test p-value 0.0023 0.0044 0.3421 0.0005 0.5767 – Total time→ 21379 395075

6.4.4 Accuracy Benchmarking

Finally, we compare our results with the state-of-the-art and relevant approaches.
Table 6.5 presents the classification error rates as well as the running time statis-
tics. Specifically, datasets in this experiment are from the UEA & UCR Time Series
Classification Repository thanks to the many benchmarking results that are pub-
licly available. Note that although names of the datasets used in this repository
are exactly the same compared to our previous experiments, the similarity of their
contents is not guaranteed. In fact, the training and testing datasets may have been
swapped for a number of datasets. An obvious example is the FordA dataset, where
in this experiment the training dataset and testing set are of size 1320 and 3601 re-

100 multiscale visibility graph

spectively, while in our previous experiments the training set has 3601 samples
and the testing test has 1320.

We compare our method MVG with five state-of-the-art approaches: two
distance-based global similarity matching algorithms including Euclidean- and
DTW-based nearest neighbor classification (1NN-ED and 1NN-DTW), and three
local pattern matching algorithms including Learning Shapelets (LS) [Grabocka
et al., 2014], Fast Shapelets (FS) [Rakthanmanon and Keogh, 2013] and SAX-
VSM [Senin and Malinchik, 2013]. Among all five approaches, LS is recognized as
the most accurate classifier [Wang et al., 2016b] by the research community. How-
ever, LS is also known for its high computation complexity. We first compare the
classification accuracy of different approaches in this section and then investigate
MVG’s efficiency later in section 6.4.5.

Viewing the error rate comparison columns in Table 6.5, it is obvious that MVG
is the most accurate classifier with 16 winning datasets. LS then follows MVG
with 12 winning datasets. A Wilcoxon test between MVG and LS yields a p-value
of 0.3421 > 0.05, suggesting that MVG should not be considered significantly bet-
ter than LS. SAX-VSM is ranked third with 10 winning cases. The Wilcoxon test
again suggest that such difference is not statistically significant. However, MVG
is indeed significantly more accurate than FS, 1NN-DTW and 1NN-ED. Moreover,
scatter plots in Figure 6.11 shows that most of the points in each comparison are
located away from the diagonal line, suggesting that MVG is indeed a very dif-
ferent approach when compared to the state-of-the-art. Having confirmed MVG’s
excellent accuracy, we continue to investigate its runtime efficiency.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1N
N

-E
D

w
in

s

M
VG

w
in

s

1NN-ED vs. MVG

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1N
N

-D
T

W
w

in
s

M
VG

w
in

s

1NN-DTW vs. MVG

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

LS
w

in
s

M
VG

w
in

s

LS vs. MVG

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

FS
w

in
s

M
VG

w
in

s

FS vs. MVG

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

SA
X

V
SM

w
in

s

M
VG

w
in

s

SAXVSM vs. MVG

Figure 6.11: Comparison of classification accuracy with five state-of-the-art approaches in
the form of scatter plots.

6.4 evaluation 101

6.4.5 Efficiency

The pipeline of MVG consists of a feature extraction phase and a train-validate-test
process. During the feature extraction process, time series are firstly transformed
in to VGs and then features are extracted from such graphs. With optimization
from [Afshani et al., 2017], transforming time series of length n into VGs has a
computation complexity of O(n log2(n)) and it can be effectively solved within
O(log2(n)) time when taking full advantage of parallelization. Extracting motif
features from VGs may be potentially expensive, fortunately PGD provides a fully
parallel way of counting small motifs. For instance, counting graph cliques of
size 4 – one of the most time consuming tasks in PGD – has a computation com-
plexity of O(m · ∆ · Tmax), where m is the number of 4-motifs (i.e., 11), ∆ is the
maximum degree and Tmax is the maximum number of triangles incident to an
edge and Tmax � ∆. PGD is hundreds of times faster than other motif count-
ing algorithms: counting motifs from a graph with more than 26,000 vertices can
take only 0.01 seconds on a twelve-core commodity CPU [Ahmed et al., 2015].
Since other statistic features such as density, k-core, assortativity and degree statis-
tics extracted from time series VGs are intentionally chosen to be simple met-
rics, collecting these features has a time complexity of O(max(|V |, |E|)). Since we
use a multiscale graph representation, ultimately graph generation has a mono-
thread complexity of O(n log3(n)) and in parallel an O(log3(n)) time complex-
ity. As a result, feature extraction per graph has a computation complexity of
O(max(|V |, |E|) +m ·∆ · Tmax). The classification process leverages state-of-the-art
classifiers that are widely used and well-optimized. Overall, the efficiency of MVG
may be best illustrated when we compare our method against our benchmarking
approaches.

Previous research [Wang et al., 2016b] has shown that LS is extremely time con-
suming, and FS as an approximated approach can be 100X faster than LS. As a
result, FS will be a good and strong baseline to which the running time of our
approach can be compared. Thus we record the running time of FS and MVG and
compare their efficiency. These experiments are conducted on a computer with
Intel i7-4980HQ quad-core CPU clocked at 2.80GHz, 16GB memory and solid-
state drive suitable for fast I/O. We use the FS implementation by its original au-
thors [Rakthanmanon and Keogh, 2013] with default parameters. Columns located
on the right side of Table 6.5 shows the running time per dataset for MVG and FS.
For MVG, running time for feature extraction and training are recorded separately
and then summed. Overall, MVG completes faster than FS for 24 datasets. The
total running time of FS for all 39 datasets amounts to 395075 seconds, which is
more than 18 times that of MVG. A scatter plot of the running time is provided in
Figure 6.12, obviously MVG can be up to 100X faster than FS, suggesting that it is
indeed an efficient TSC approach. In addition, we note that FS appears to be time
consuming with large datasets with time series of high dimensionality, while the
running time of MVG remains reasonable as datasets grow larger. Furthermore,
since we have experimented only on a quad-core commodity computer that is not
really powerful in terms of parallel processing, the efficiency of MVG can be easily

102 multiscale visibility graph

boosted by adding more computing cores. Overall, MVG can indeed be considered
an efficient TSC approach.

1 2 3 4 5

1

2

3

4

5

FS
w

in
s

M
VG

w
in

s

10
0X

10
X

10
X

10
0X

FS vs. MVG (log10 Runtime)

Figure 6.12: Runtime comparison between FS and MVG.

6.4.6 Case Studies

Although accuracy and efficiency are very important measurements for TSC ap-
proaches, it is also desirable for TSC methods to have comprehensible classifica-
tion processes, so that users may gain extra insights into his/her time series data.
Popular approaches based on shapelets and subsequences may have a natural ad-
vantage in classification comprehensibility. However, since features extracted in
MVG are solely statistical, it can be difficult to locate exactly where a distinguish-
ing subsequence lies in the original time series. However, for MVG it is still pos-
sible to understand which features have contributed most to correct classification.
For instance, when feeding features to train an XGBoost classifier, it will assign
weights to all the features. After ranking these features, we can also gain insights
into the data.

For instance, Figure 6.13 plots all the test samples of three different classes from
the Meat dataset. For humans it can be extremely difficult to spot the differences
across different classes of data. With the help of MVG, extra insights can be gained.
Figure 6.14 illustrates a scatter matrix plot for the test dataset of Meat showing ten
most important features learned by the classifier. Out of ten features, only four

6.4 evaluation 103

are features from VGs, which are created from the original series (T0), indicating
that mulitiscale representations are indeed helpful.Furthermore, it appears that
most highly ranked graph features for this dataset are MPDs and assortativity,
confirming that statistics other than MPDs are helpful. Finally, visually from the
kernel density estimation it is obvious that certain features – e.g., T5 VG P(M44)

– are already descriptive, again confirming that it is feasible for MVG to present
visually comprehensible cues regarding its classification decisions.

0 50 100 150 200 250 300 350 400

−1

0

1

2

3

Meat Class 1

0 50 100 150 200 250 300 350 400

−1

0

1

2

3

Meat Class 2

0 50 100 150 200 250 300 350 400

−1

0

1

2

3

Meat Class 3

Figure 6.13: Samples from the Meat test dataset.

Figure 6.15 shows another example, where all the test samples of three different
classes from the Meat dataset are plotted. Unlike Figure mvg-fig:meat where all
different classes seems to be similar fro human eyes, it is the opposite in this case:
there does not appear to be a clear pattern within each class. Again, with the help

104 multiscale visibility graph

0.180.20.22

T
0

V
G
P

(M
4

3
)

0.375

0.400

0.425

0.450

T
0

V
G
P

(M
4

5
)

250

260

270

T
0

V
G

M
ax

D
eg

.

0.23

0.24

0.25

T
1

V
G
P

(M
4 3

)

0.11

0.12

0.13

T
1

V
G
P

(M
4

9
)

0.09

0.10

T
2

V
G
P

(M
4

2
)

0.34

0.36

T
2

V
G
P

(M
4

5
)

0.06

0.08

T
2

H
V

G
P

(M
4 5

)

0.00218

0.00220

0.00222

T
2

H
V

G
P

(M
4 8

)

0
.2

0
0

0
.2

2
5

T0 VG P (M43)

0.29

0.30

0.31

T
4

H
V

G
P

(M
4 3

)

0
.4

0

0
.4

5

T0 VG P (M45)

2
5
0

2
6
0

2
7
0

T0 VG Max Deg.

0
.2

3

0
.2

4

0
.2

5

T1 VG P (M43)

0
.1

1

0
.1

2

0
.1

3

T1 VG P (M49)

0
.0

9

0
.1

0

T2 VG P (M42)

0
.3

2
5

0
.3

5
0

T2 VG P (M45)

0
.0

5
0

0
.0

7
5

T2 HVG P (M45) 0
.0

0
2
1
7
5

0
.0

0
2
2
0
0

0
.0

0
2
2
2
5

T2 HVG P (M48)

0
.2

9

0
.3

0

0
.3

1

T4 HVG P (M43)

Figure 6.14: Scatter matrix of ten most important features for Meat’s test dataset. Different
point colors indicate different classes and the diagonal shows the Gaussian
kernel density estimation for each feature.

of MVG, we investigate if extra insights are readily available. Figure 6.16 illustrates
a scatter matrix plot for the test dataset of Worms showing ten most important
features learned by the classifier. Out of ten features, seven are features from VGs,
which are created from the original series (T0) as well as multiscale approximations
(T1 and T2). HVGs features from dimensionality-reduced approximations (T2 and
T4) are also present. Moreover, it appears that most highly ranked graph features
for this dataset are MPDs and max degree, suggesting that statistics other than
MPDs are indeed helpful. Finally, visually from the kernel density estimation it is
obvious that some features alone – e.g., T0 VG P(M45), T0 VG Max Degree and
T2 VG P(M42) – can already provide good classification guidelines, suggesting
that it is feasible for MVG to present visually comprehensible cues regarding its
classification decisions.

6.4 evaluation 105

To save space, we show more examples comparing original time series and im-
portant MVG features on project website. Interested readers are recommended to
visit http://daoyuan.li/mvg/ for more illustrations.

http://daoyuan.li/mvg/

106 multiscale visibility graph

6.4.7 Discussions

Due to specific characteristics of VGs, obviously MVG may not be suitable for
every TSC scenarios. For instance, VGs are agnostic of affine transformations in
time series. That is, in applications where the absolute oscillation is more impor-
tant, MVG is less likely to detect such characteristics. Furthermore, when dealing
with non-stationary time series data where trends are very frequently found, MVG
works best when trends are not the deciding factor since VGs may not be able to
capture long-term monolithic trends. Since many graph features have been taken
into account in MVG, we believe it can be robust in practical applications.

In addition to limitations inherited from VGs, our approach is more suitable
for applications where the size of training datasets is larger, so that classification
models can generalize better. In fact, when we review the classification accuracy
of MVG, it seems that a majority of its winning datasets have either long time
series or large training datasets. This is perhaps innate to the nature of statistics:
sample size has to be sufficiently large to make accurate estimations. Based on
running time comparison, MVG also scales well with large datasets, which can be
an important advantage in the era of big data.

6.5 related work

TSC is a major task in time series mining thanks to its wide application scenar-
ios. As a consequence, there are a plethora of classification algorithms for TSC.
Classical TSC approaches involve utilizing 1NN classification together with simi-
larity measures specific to time series data, e.g., DTW [Berndt and Clifford, 1994]
and its variants with lower bounding [Ratanamahatana and Keogh, 2005] and
early abandoning techniques [Rakthanmanon et al., 2012], Time Warp Edit Dis-
tance (TWED) [Marteau, 2009] and Minimum Jump Cost (MJC) [Serra and Arcos,
2012].

Another line of research transforms time series into texts and resort to text
classification algorithms. For example, inspired by the well known bag-of-words
approach, [Lin et al., 2012] proposes the Bag-of-Patterns approach for TSC. SAX-
VSM [Senin and Malinchik, 2013] also takes advantage of bag-of-words approach
and builds term frequency-inverse document frequency (TF-IDF) vectors in its
training phase. It defines a similarity measure of two vectors (that are constructed
from original series) based on their inner product. Both Bag-of-Patterns and SAX-
VSM relies on SAX [Lin et al., 2007] for transforming time series into texts. A more
recent work, Representative Pattern Mining (RPM) [Wang et al., 2016b], also tries
to classify time series by means of finding the most representative SAX-symbolized
subsequences. [Schäfer, 2015] invents another symbolic representation based on
Fourier transform and proposes a bag-of-patterns approach named BOSS ensem-
ble based on this symbolic representation method.

6.6 conclusions and future work 107

Recently, shapelet-based approaches are gaining popularity among the research
community. A shapelet [Ye and Keogh, 2009] is a single subsequence in time series
that is representative of its class. However, these approaches [Grabocka et al., 2014;
Hills et al., 2014] are known for their high computation complexity. As we have
demonstrated in this chapter, FS [Rakthanmanon and Keogh, 2013] as an approx-
imated approach can also take long time to run. High computation complexity is
also present for TSC approaches using deep neural networks [Yang et al., 2015].
Finally, [Bagnall et al., 2015] introduce an ensemble algorithm named Collective of
Transformation-based Ensembles (COTE) – an ensemble of 35 different classifiers
– that has shown to be very accurate but has a time complexity of O(m4n2), where
m is the dimensionality of time series and n is the size of training dataset.

Although the concept of time series VGs has appeared for almost a decade,
using it for TSC has just started picking up. Machine learning approaches tak-
ing advantage of VG and its variants are generally using artificially generated
data [Xu et al., 2008] or EEG signals. For instance, [Supriya et al., 2016] convert
EEG signals into weighted VGs for the detection of epilepsy. Finally, graph ker-
nel methods [Kondor and Pan, 2016] can be used for evaluating graph similarity,
which may potentially be used for TSC as well.

6.6 conclusions and future work

This chapter proposes a graph-based multiscale time series representation named
MVG and a feature extraction method for TSC. MVG transforms time series into
a collection of visibility graphs of various scales and feature extraction are con-
ducted by investigating statistical graph features such as probability distributions
of small motifs, assortativity as well as degree statistics. After a large scale eval-
uation with open datasets and comparison with a number of state-of-the-art TSC
algorithms, our proposed approach appears to be both accurate and efficient: it
can be more accurate than LS and up to ∼100X faster than FS.

In the future, we plan to further investigate other useful and efficient graph
features – such as degree distribution entropy, centrality, bipartivity, etc. [Costa
et al., 2007] – for MVG in order to further improve its accuracy. Currently we
have only evaluated MVG with univariate time series data, we are also excited to
investigate the possibility of adopting MVG for multivariate TSC.

108 multiscale visibility graph

0 100 200 300 400 500 600 700 800

−3

−2

−1

0

1

2

3

Worms Class 1

0 100 200 300 400 500 600 700 800

−4

−2

0

2

4

Worms Class 2

0 100 200 300 400 500 600 700 800

−3

−2

−1

0

1

2

3

4
Worms Class 3

0 100 200 300 400 500 600 700 800

−2

−1

0

1

2

Worms Class 4

0 100 200 300 400 500 600 700 800

−4

−3

−2

−1

0

1

2

Worms Class 5

Figure 6.15: Samples from the Worms’ test dataset.

6.6 conclusions and future work 109

0.10.2

T
0

V
G
P

(M
2

1
)

0.1

0.2

T
0

V
G
P

(M
3

1
)

0.1

0.2

0.3

0.4

T
0

H
V

G
P

(M
4

5
)

0.00010

0.00012

0.00014

T
0

H
V

G
P

(M
4 9

)

0.20

0.25

T
1

H
V

G
P

(M
4

3
)

0.0

0.1

0.2

0.3

T
2

H
V

G
A

ss
or

t.

0.1

0.2

0.3

T
3

H
V

G
P

(M
4 5

)

0.0

0.2

0.4

T
3

H
V

G
A

ss
or

t.

0.000

0.025

0.050

0.075

T
5

V
G
P

(M
4

4
)

0
.1

0
.2

T0 VG P (M21)

0.06

0.08

0.10

T
5

H
V

G
P

(M
4 2

)

0
.1

0
.2

T0 VG P (M31)

0
.2

0
.4

T0 HVG P (M45)

0
.0

0
0
1
0
0

0
.0

0
0
1
2
5

0
.0

0
0
1
5
0

T0 HVG P (M49)

0
.2

0

0
.2

5

T1 HVG P (M43)

0
.0

0
.2

T2 HVG Assort.

0
.1

0
.2

0
.3

T3 HVG P (M45)

0
.0

0

0
.2

5

T3 HVG Assort.

0
.0

0

0
.0

5

T5 VG P (M44)

0
.0

5

0
.1

0

T5 HVG P (M42)

Figure 6.16: Scatter matrix of ten most important features for Worms’ test dataset. Different
point colors indicate different classes and the diagonal shows the Gaussian
kernel density estimation for each feature.

Part IV

A P P L I C AT I O N S

7
P R O F I L I N G H O U S E H O L D A P P L I A N C E S

In theory, there is no difference
between theory and practice. But, in
practice, there is.

Walter J. Savitch
Pascal: An Introduction to the Art and

Science of Programming

Outline

In this chapter, we apply DSCo in the domain of Non-Intrusive Load Monitoring
(NILM). Specifically, we profile the electricity consumption of different household
appliances with language models and experiment against real-world datasets.

7.1 introduction

Citizens in modern societies are increasingly aware of the urgent need to make
better use of energy resources and move to more sustainable and greener develop-
ment paths. The are some signs that the rate of improvement in energy efficiency
has been increasing slightly in the last few years, but much remains to be done, es-
pecially to turn consumers’ awareness into concrete and tangible actions. Typically,
while one of the major sources of electric consumption is household appliances,
studies show that inhabitant behaviors have not yet fully shifted [Morales Pedraza,
2015]. The introduction of smart meters in households is predicted as a defining
factor to change such behaviors and incur reduction of energy usage [Darby, 2001],
as they are promising means for gaining insights on energy consumption by min-
ing electricity usage patterns.

Smart meters measure energy consumption and provide online readings on
electricity usage from households, thus allowing a fine-grained visualization of
real-time consumption. This data can be leveraged to detect malfunctioning ap-
pliances or discover abnormal situations once usage patterns of appliances have
been identified. In order to avoid reluctance and involve the general public in
the usage pattern identification task, the research community is investigating au-
tomated processes (e.g., to prevent inhabitants being requested to manually indi-
cate which appliance is generating a given consumption signal). In this regard,
household appliance classification has become increasingly popular among the re-
search community. The development of Non-Intrusive Load Monitoring (NILM)

113

114 profiling household appliances

techniques [Hart, 1992] has made it possible, in a non-intrusive manner, to dis-
aggregate households’ single-point energy consumption measurements into indi-
vidual devices’ consumption. Analyzing the usage patterns of different household
devices helps, among other things, to better predict future consumptions and ease
the macro-management of overall power demand for smart grids [Barbato et al.,
2011].

State-of-the-art research works in this area often apply time series classification
techniques for identifying appliance electricity usage profiles [Lines et al., 2011; El-
hamifar and Sastry, 2015]. However, our research claims that such approaches are
not suitable for large-scale electricity usage due to their time complexity, and the
fact that they may appear sensitive to noises (leading to inaccuracies in classifica-
tion of similar appliances). One research hypothesis of this study is that electricity
usage of a given appliance can be viewed as unique and recognizable repeating
signals that could be represented as a sequence of sentences. In this respect, our
research aims to develop an innovative time series classification approach – DSCo
that is based on language modeling techniques as discussed in Chapter 5 – that
help to identify the “language” of each type of appliances. In a more concrete
level, the language modeling approach aims to capture with its n-grams both
local discriminative features and overall curve shapes. On the one hand, local
discriminative features (e.g., sharp edges) help to distinguish/identify appliances
with different electricity usage patterns during turn-on and turn-off phases. On
the other hand, overall curve shapes are essential to minimize the impact of noise,
which can affect local features. Existing techniques [Zeifman and Roth, 2011] of-
ten focus on detecting whether a given appliance is on or off, and at what time
it has been switched. As a preliminary investigation in the direction of energy
disaggregation, our study assesses the potential of the proposed language mod-
eling approach to identify the contributions of several appliances in a combined
electricity usage data, and particularly to identify whether pairwise combinations
of appliance consumption data can be accurately profiled. Overall, the chapter’s
contributions are:

- Proposal and development of an innovative accurate and practical approach
to profiling household appliances based on their electricity consumption
readings.

- Evaluation – using a large dataset – of our approach against the state-of-the-art
approach to time series classification.

- Presentation of preliminary findings on profiling of electricity consumption
of combinations from different household appliances.

Related work in the literature and the necessary background for the approach
are respectively introduced in Sections 7.2. We have detailed our DSCo approach
in chapter 5, as a result we skip the methods used in this chapter and present
experiments and evaluation results in Section 7.3; discussion and conclusion follow
in Sections 7.4 and 7.5.

7.2 related work 115

7.2 related work

A set of techniques for appliance classification and profiling have been introduced
in the literature. For example, NILM systems break summarized appliance usage
information into individual appliance usage patterns. Typically, household appli-
ances can be divided into four categories: 1) permanent devices that work con-
stantly with steady active and reactive power consumption; 2) on-and-off devices
that could be either on or off at any point of time (e.g., lights, toasters. . .); 3) ap-
pliances with many states where energy consumption may switch from one state
to another (those appliances can be modeled as Finite State Machines – FSM); and
4) continuously variable devices, which exhibit no usage patterns. Given these cat-
egories, only categories 2) and 3) can be detected using NILM techniques [Zeifman
and Roth, 2011]. Indeed, the main NILM research effort has been on appliance sig-
nature extraction, which is often viewed as a pattern recognition task. Numerous
techniques have been applied for that purpose, including k Nearest Neighbors
(kNN) [Berges et al., 2010] that looks for the most similar patterns from the exist-
ing pattern pool, Naïve Bayes classifier [Lines et al., 2011] that is a probabilistic
classifier modeling patterns as feature vectors (assuming feature independence
within vectors), and Powerlets [Elhamifar and Sastry, 2015] that uses sharp edges in
appliance usage patterns as discriminative features. It is important note that some
recent NILM research takes advantage of features other than appliances’ real and
reactive power (e.g., transients and harmonics) [Laughman et al., 2003], however,
such techniques require very high sampling frequency leading to expensive mea-
surement hardware.

Regarding appliance usage representation, many research efforts have adopted
the time series model, which is the “natural" representation of device energy con-
sumption data. Lines et al. [Lines et al., 2011] classify household devices by elec-
tricity usage profiles using a time series classification approach, and compare clas-
sification results using different algorithms such as kNN, Naïve Bayes, Random
Forest, etc.. Similarly, Basu et al. [Basu et al., 2012] adapted a time series model
by introducing a multi-label classifier approach to predict appliance usage in the
near future.

Time series classification is an active research field in the machine learning com-
munity, where a number of approaches and algorithms have been proposed, in-
cluding neural networks [Nanopoulos et al., 2001], decision trees [Rodríguez and
Alonso, 2004] and SVM [Wu and Chang, 2004], while empirical studies have shown
that kNN works exceptionally well [Batista et al., 2011]. To perform best, kNN
classifiers leverage the Dynamic Time Warping (DTW) distance, thus mitigating
problems by warping the time axis [Ratanamahatana and Keogh, 2005]. Another
line of research – shapelets-based classifiers [Ye and Keogh, 2009] – focuses on find-
ing the most discriminative features. Shapelet algorithms are proven to be accurate
for time series classification tasks, but they are generally time consuming due to
the exhaustive process searching for the best features. As a result, latest research
efforts focus on reducing the time complexity of these algorithms [Mueen et al.,
2011; Rakthanmanon and Keogh, 2013].

116 profiling household appliances

7.3 empirical evaluation

Table 7.1: Characteristics of appliance electricity usage data from the UCR archive and
classification accuracy comparison between the performance of 1NN with Eu-
clidean and DTW distance and our approach. Best classification accuracy results
are highlighted in bold font.

Characteristics Classification Accuracy

Dataset Name # Classes # Training Instances # Testing Instances Instance Length 1NN (Euclidean) 1NN (DTW Best Warping) Our Approach

Computers 2 250 250 720 0.576 0.62 0.668

ElectricDevices 7 8,926 7,711 96 0.55 0.624 0.651

LargeKitchenAppliances 3 375 375 720 0.493 0.795 0.72

RefrigerationDevices 3 375 375 720 0.395 0.44 0.528

ScreenType 3 375 375 720 0.36 0.411 0.448

SmallKitchenAppliances 3 375 375 720 0.341 0.672 0.659

Our approach has been implemented in order to evaluate the classification per-
formance against state-of-the-art approaches. The set of experiments has been con-
ducted using the computing platform presented in [Varrette et al., 2014], and con-
sidering several datasets and scenarios. Unless otherwise specified, we extracted –
for all datasets – subsequences of lengths ranging from 2 to 20. Furthermore, data
samples longer than 100 are reduced to 100 using SAX in order to speed up exper-
iments.The evaluation results and findings are presented and discussed through
the sections 7.3.1 to 7.3.3. The source code of our prototype is released to the pub-
lic1 to increase reproducibility.

7.3.1 Evaluation against normalized datasets

Our approach is compared against state-of-the-art approaches with an openly ac-
cessible dataset archive (the UCR archive [Chen et al., 2015]), which is widely
adopted in the research community. Besides, it comes with classification results
for state-of-the-art classification algorithms for benchmark comparison, namely
Euclidean- and DTW-distance based Nearest Neighbor as shown in Table 7.1. This
archive contains many different datasets from interspecies images to medical ap-
plications such as electrocardiograms.

In this research, only datasets related to household appliance electricity usage
profiles are tested since our main interest is on classifying electric devices. The
characteristics of these datasets are summarized in Table 7.1, where performance
of our approach is compared with Euclidean-based 1NN and DTW-based 1NN
(best accuracy varying the warping size from 0 to 100 percent of the series length,
while best accuracy varying SAX alphabet size parameter from 3 to 20). Although
our approach performs well with regard to these datasets, a more in-depth study
should be conducted due to the fact that data that compose these datasets have
already been normalized, adding that each dataset contains only a small number
of samples as well as classes. Furthermore, the training sets and testing datasets
have been roughly equally divided in terms of number of instances.

1 https://github.com/serval-snt-uni-lu/profiling-appliances

https://github.com/serval-snt-uni-lu/profiling-appliances

7.3 empirical evaluation 117

7.3.2 Evaluation against real-world readings

Table 7.2: Confusion matrix from ten-fold cross-validation experiment on the most
recorded appliances.

Classified As
F-Measure

Fridge Freezer Kettle Microwave Dishwasher Washing Machine Shower TV LCD Light 1 Light 2 Vacuum Cleaner

A
ct

ua
l

Fridge Freezer 9,380 1 7 97 58 1 509 40 16 1 0.931

Kettle 3 4,343 215 21 90 109 6 0 6 267 0.831

Microwave 36 885 936 64 171 242 29 7 6 164 0.482

Dishwasher 20 23 35 895 203 28 12 9 3 32 0.660

Washing Machine 46 22 58 159 1,302 48 53 7 3 32 0.676

Shower 0 36 16 27 35 246 2 5 4 29 0.408

TV LCD 476 20 24 99 186 37 2,174 116 106 22 0.699

Light 1 52 5 13 27 28 13 101 341 40 10 0.575

Light 2 16 8 8 18 15 34 70 32 227 2 0.540

Vacuum Cleaner 1 52 33 46 32 48 3 0 0 45 0.104

To test our approach with real-world data, the dataset obtained from the UK
Household Electricity Usage Survey (HEUS) project [Zimmermann et al., 2012]
has been used, which contains electric appliance usage readings from 251 house-
holds (monitoring periods: 2010 to 2011). In our study, a subset containing more
than 50 million appliance electricity usage readings from 27 discting household
have been considered (readings being sampled at two-minute intervals). As a first
step, from this subset the ten appliances that have the most recorded readings has
been extracted, along with their electricity consumption patterns as depicted in
Figure 7.1.

0

80

Fridge Freezer

0

884

Kettle

0

222
Microwave

0

782
Dishwasher

0

743
Washing Machine

0

2649
Shower

0

23
TV LCD

0

52

Light 1

0

8

Light 2

0 50 100 150 200
0

366
Vacuum Cleaner

Time (minutes)

Po
we

r (
W

)

Figure 7.1: Electricity consumption patterns of ten most recorded appliances from 27

households surveyed in the HEUS project.

118 profiling household appliances

Afterwards, readings are clustered into time series with size of 100, which cor-
responds to appliances’ electricity readings during a 200-minute period. Note that
readings that are roughly constant during each that period have been removed,
leading to 25, 652 time series. A ten-fold cross-validation is then performed to clas-
sify these time series. More specifically, this dataset is firstly divided into ten por-
tions, nine of them being used for training and the remaining one being used for
testing. This process is repeated ten times and the average classification accuracy is
reported at 77.4%. Compared with [Lines et al., 2011], where data is sampled with
a 15-minute interval and clustered into weekly and daily series, the best results
obtained are 61.34% and 55.81% respectively. In addition, since we have mixed ap-
pliance usage data across households, the good classification results suggests that
certain kinds of household appliances exhibit similar profiles. Thus, it is sensible
to build a profile repository for different appliances so that, later, unknown appli-
ances can potentially be matched with profiles in the repository, without the need
of setting up monitoring devices in each household and learning device profiles
from scratch.

Table 7.2 presents the confusion matrix from the ten-fold cross-validation ex-
periment. The standard F-measure scores (the harmonic mean of precision and
recall calculated following Equation 7.1) are also reported in order to present the
performance of our approach in a more interpretable manner.

F−measure = F1 = 2 · Precision · Recall
Precision+ Recall

(7.1)

It can be observed that our approach provides good results for certain appliance
categories such as Fridge Freezer and Kettle. Furthermore, our approach tends to
perform better for appliances with larger number of reading records, indicating
that good performance can be achieved with sufficiently large training dataset.

7.3.3 Combining appliance consumption readings

So far, the evaluation focused on exclusive energy readings for specific appliances.
Unfortunately, in many cases, it is often difficult to get such readings. Instead, it is
likely that some appliances (e.g., a fridge) stay on the ON mode, while others more
occasionally used appliance (e.g., a microwave) is turned ON or OFF. Thus, a deeper
investigation is carried out in this section in order to classify the combinations of
appliances’ energy consumptions. This study will help us to gain insights on the
potential of the language modeling approach to support energy disaggregation
schemes.

To this end, we first find out the ten most recorded appliances within the dataset
following the same procedures mentioned previously. Then, we investigate which
of these ten appliances are found in each household and sum up the power con-
sumption data based on timestamps. In this way we are able to keep the original
appliance usage patterns – i.e., which two appliances are used within the same pe-
riod – from each household. Afterwards, we find out the most frequent consump-

7.3 empirical evaluation 119

tion sums representing appliance usage patterns and set to classify them using our
language modeling based approach. All the combination samples are mixed in or-
der to create a sufficiently large dataset. Finally, a ten-fold cross-validation experi-
ment is conducted in order to differentiate various appliance usage consumption
combinations.

Table 7.3: Classification results for ten-fold cross-validation between two appliance energy
consumption combinations. Columns P, R and F stand for Precision, Recall and
F-Measure respectively.

Combination 1 Combination 2 P R F

Fridge Freezer + Kettle Kettle + Light 1 0.941 0.941 0.941

Fridge Freezer + Kettle Kettle + Microwave 0.959 0.958 0.958

Fridge Freezer + Light 1 Fridge Freezer + Microwave 0.551 0.549 0.549

Fridge Freezer + Light 1 Fridge Freezer + Kettle 0.647 0.637 0.638

Fridge Freezer + Light 1 Kettle + Light 1 0.977 0.977 0.977

Fridge Freezer + Light 1 Kettle + Microwave 0.990 0.990 0.990

Fridge Freezer + Light 1 Fridge Freezer + Washing Machine 0.472 0.469 0.470

Fridge Freezer + Microwave Fridge Freezer + Kettle 0.620 0.617 0.617

Fridge Freezer + Microwave Kettle + Light 1 0.975 0.975 0.975

Fridge Freezer + Microwave Kettle + Microwave 0.987 0.987 0.987

Fridge Freezer + Washing Machine Fridge Freezer + Microwave 0.538 0.538 0.538

Fridge Freezer + Washing Machine Kettle + Microwave 0.990 0.990 0.990

Fridge Freezer + Washing Machine Kettle + Light 1 0.977 0.977 0.977

Fridge Freezer + Washing Machine Fridge Freezer + Kettle 0.600 0.599 0.598

Kettle + Light 1 Kettle + Microwave 0.618 0.596 0.587

Kettle + Washing Machine Kettle + Microwave 0.625 0.573 0.558

Kettle + Washing Machine Kettle + Light 1 0.585 0.576 0.574

Kettle + Washing Machine Fridge Freezer + Microwave 0.979 0.979 0.979

Kettle + Washing Machine Fridge Freezer + Light 1 0.986 0.986 0.986

Kettle + Washing Machine Fridge Freezer + Washing Machine 0.961 0.961 0.961

Kettle + Washing Machine Fridge Freezer + Kettle 0.949 0.948 0.948

Microwave + Light 1 Fridge Freezer + Washing Machine 0.965 0.965 0.965

Microwave + Light 1 Fridge Freezer + Light 1 0.961 0.961 0.961

Microwave + Light 1 Fridge Freezer + Kettle 0.947 0.947 0.947

Microwave + Light 1 Fridge Freezer + Microwave 0.955 0.955 0.955

Microwave + Light 1 Kettle + Microwave 0.839 0.833 0.829

Microwave + Light 1 Kettle + Washing Machine 0.863 0.850 0.847

Microwave + Light 1 Kettle + Light 1 0.798 0.795 0.792

Table 7.3 presents the most frequently found appliance combinations and classi-
fication results. As shown, it is possible to differentiate combinations of appliance
usage, e.g., the Fridge Freezer and Light 1 combination can be differentiated from
the Kettle and Microwave combination. This can be explained by the fact that each
appliance has a different usage patterns(Fridge Freezer and Light 1 tend to be con-
stant while Kettle and Microwave both exhibit burst patterns). On the other hand,
some combinations such as the Fridge Freezer and Light 1 vs. Fridge Freezer and
Washing Machine are difficult to differentiate, whose possible reasons may be:

- Appliance usage data are sampled at a low frequency (a 2 minute interval
may not be enough to pertain appliance usage characteristics, or to sum up
the usage data).

120 profiling household appliances

- Our approach reduces real-valued power consumption into alphabets, and
this numerosity reduction process may have incurred inaccurate data repre-
sentation for combinations.

- The size of training data may not be sufficiently large, thus leading to insuf-
ficient training process and misclassified testing instances.

7.4 discussions

The approach proposed in this chapter relies on a mechanism to transform house-
hold appliance electricity usage data into a string, where strings of a same appli-
ance category forms a appliance-specific dictionary. The results from our empirical
experiments showed how performant our approach is, and made it possible to val-
idate the analogy between appliance energy consumption patterns and natural
language sentences. Besides classification accuracy, this approach has a few other
advantages. For example, our approach is able to handle data samples of differ-
ent length. This is helpful in that it eases data preparation and segmentation in
practice. Furthermore, this approach makes it easy to store data samples as well as
learned profiles/models in a distributed manner, so that existing distributed and
cloud computing techniques can be easily taken advantage of and further boost
the efficiency of our approach.

Nonetheless, some limitations of our approach can be discussed. First, the
model-based nature underlying our approach demands a large training set so as to
achieve a high performance. Then, with our current settings, T1 = [1, 1, 4, 4, 10, 10]
and T2 = [100, 100, 300, 300, 600, 600] will be transformed into the same string (aab-
bcc) when SAX alphabet size is set to 3 and string length set to keep the original
series length, which can be an issue and cause mis-profiling of appliances. On the
opposite, this issue can benefit our approach when profiling a same category of
appliances having different power draws. For example, a 1000 KW and 1500 KW
hair dryer should indeed have same consumption patterns, while a 1000 KW dish-
washer should exhibit different profiles compared with the 1000 KW hair dryer.
For the same reason, when combining appliance consumption readings, data from
one appliance with small power draw may be dwarfed by an appliance with a
much larger power draw, so that the former becomes noises and the overall curve
shape is dominated by the latter.

7.5 conclusions and future work

Electricity usage profiling of household appliances is becoming an important step
for identifying malfunctioning devices and generating automatic alerts about un-
usual consumptions. In this context (i.e., household appliances profiling context),
this chapter investigates the capability of a language modeling approach for time
series classification. To this end, an innovative approach is proposed in this chap-
ter, which aims to first transform energy consumption readings – which consist of

7.5 conclusions and future work 121

real-valued time series data – into texts, and then to build per-class language mod-
els (i.e. profiles) from these texts. Such class models can therefore be used for new
electricity usage readings in order to predict the corresponding appliance cate-
gory. The proposed approach has been implemented and evaluated through a
set of experiments considering both normalized datasets from the research com-
munity and real world datasets from the UK Household Electricity Usage Survey
project (27 households monitored over one year). These experiments show that our
approach performs generally better than state-of-the-art time series classification
approaches.

8
S E N S I N G B Y P R O X Y O F I N D O O R T E M P E R AT U R E
M O V E M E N T S

“From a drop of water,” said the
writer, “a logician could infer the
possibility of an Atlantic or a
Niagara without having seen or
heard of one or the other.”

Arthur Conan Doyle
A Study In Scarlet

Outline

We take advantage of hierarchical clustering of time series to conduct anomaly
and activity detection inside buildings. Specifically, we collect indoor temperature
readings from different classrooms in a school and model the temperature read-
ings as time series. Through hierarchical clustering of such time series, we are able
to accurately infer the relative locations of different classrooms as well as coarse-
grained type of activities inside different rooms.

8.1 introduction

Citizens in a modern society spend a majority of their time everyday inside build-
ings working or relaxing. In turn, buildings consume a surprisingly large portion
of total energy consumption by all sectors. For example, 41% of energy consump-
tion attributes to buildings in the US and buildings consume even more energy
than industry in the EU [Nguyen and Aiello, 2013]. Many initiatives have thus
been proposed to combat the energy consumption issue. As the concept of In-
ternet of Things (IoT) develops, more and more proposals focus on devising more
efficient Building Energy and Comfort Management (BECM) systems, which try to
fulfill users’ comfort requirements while reducing energy footprints for building
operations including heating, ventilation, and air conditioning (HVAC), lighting
and plug loads. Indeed, research has shown that BECM systems can potentially
reduce buildings’ energy footprints in both simulated and real-world evaluations.

BECM systems often involves taking advantage of heterogeneous sensors, such
as passive infrared (PIR) sensors, cameras, motion and presence detectors, and
environmental sensors like temperature, humidity, CO2, etc., to monitor the status
of the building and especially occupant activities, since conservative behaviors can

123

124 sensing by proxy of indoor temperature movements

help reducing building operation energy consumption by one-third compared to
design point benchmark while careless ones may increase energy footprints by one-
third [Nguyen and Aiello, 2013]. However, the assumption of tracking individual
occupants in real-time is largely impractical and rarely adopted in real-world cases
due to technological, construction and maintenance cost and privacy challenges.

To tackle with these challenges, we seek to devise an plug-and-play and cost-
effective approach that takes advantage of existing BECM systems and investigates
the feasibility of gaining extra intelligence about corresponding buildings and their
occupants from such systems. Since user behaviors have a large impact on their
indoor environments, we can profile these behaviors by proxy of the resulting
impacts they have made. To be exact, sensing by proxy here refers to inferring
latent factors with indirect measurements on activity traces rather than directly
measuring activities. To make our approach more applicable to different scenarios
and cost-effective, we take advantage of mature and widely deployed temperature
sensors. We have conducted this study using real-world settings and all our data
has been collected from a school building in western Europe, which was planned
and constructed around 2000 and is equipped with basic sensors and actuators
(e.g., temperature sensors and HVAC system) to facilitate building operations. The
main contributions of this chapter include:

(a) We adopt a sensing by proxy paradigm to reduce costs and relax users’ pri-
vacy concerns. We confirm that agglomerative clustering of temperature evo-
lution of indoor environments (with minimal occupant activities) produces
accurate adjacency maps with regard to the physical location of each tem-
perature sensor. This adjacency map is helpful and can be complement to
indoor floor plan inference and localization.

(b) We prove that it is feasible to infer coarse-grained intelligence about occupant
activities using agglomerative clustering of temperature evolution of indoor
environments with occupant activities even if data have been collected with
low frequency in a non-intrusive manner.

(c) We provide a data analytics tool that extends off-the-shelf BECM systems
for smart homes and smart buildings that helps owners and operators to
understand the overall status the buildings with regard to its previous status.
Our approach can also be used to track anomalies within buildings.

The remainder of this chapter is organized as follows. Section 8.2 prepares read-
ers with the necessary technical background and Section 8.3 introduces works that
are related to ours. We present our methodology in Section 8.4 and real-world ex-
periment results in Section 8.5. Finally we conclude with future research directions
in Section 8.6.

8.2 background 125

8.2 background

Time series clustering is a common type of unsupervised time series mining task
that tries to partition time series into homogeneous groups while maximizing
within-group similarity and between-group dissimilarity [Liao, 2005]. Clustering
algorithms can be categorized into different families based on their underlying
models, for instance hierarchical clustering which is based on connectivity and
centroid-based clustering (e.g. k-means) where clusters are represented by a rep-
resentative point. In this chapter, we are especially interested in the former, since
hierarchical clusters can be represented as a dendrogram, which depicts the hierar-
chy arrangement of clusters that can be merged with another at certain distances.
Hierarchical clustering do not attempt to generate an arbitrary number of clusters.
Instead, it produces a hierarchy that is easier for users to understand and users can
set the break points by themselves. Hierarchical agglomerative clustering has re-
cently received great interests in pattern recognition and become especially popu-
lar in financial applications. Figure 8.1 shows an example of hierarchical clustering
results, where companies with similar business domain and activities have been
grouped together. Note that in dendrograms, the height of a branch indicates how
different it is from another while the horizontal orientation is generally irrelevant.

W
al
-M

ar
t

Kr
af

t F
oo

ds

Pe
ps

i

Coc
a

Col
a

To
ta

l

Che
vr

on

Ex
xo

n

Am
er

ic
an

 e
xp

re
ss

Gol
dm

an
 S

ac
hs

JP
M
or

ga
n

Cha
se

Ban
k
of

 A
m

er
ic
a

App
le

IB
M

M
ic
ro

so
ft

Te
xa

s
in

st
ru

m
en

ts

Cisc
o

Figure 8.1: Example dendrogram from hierarchical clustering, using daily stock price vari-
ations from January 2012 to January 2016.

Hierarchical clustering can employ either a bottom-up (agglomerative) or top-
down (divisive) approach. The former starts with a single instance from the dataset
and gradually aggregates instances into clusters until all instances are grouped
into a single cluster, while the latter starts with the whole dataset and iteratively
divide the dataset into clusters. In general, agglomerative methods are computa-
tionally more efficient than divisive ones. Thus we favor the former, and especially
the Ward’s method [Ward Jr, 1963], which is a popular algorithm used to minimize
the total within-cluster variance. Recall that Ward – as an agglomerative approach
– works incrementally, the distance (namely the Ward’s Linkage) of clusters I ∪ J
and K are calculated based on a distance update formula DWard(I∪ J,K) as speci-
fied below:√

(|I|+ |K|)D(I,K)2 + (|J|+ |K|)D(J,K)2 − |K|D(I, J)2

|I|+ |J|+ |K|

126 sensing by proxy of indoor temperature movements

where I and J are two clusters to be joined into a new cluster and K is any
other cluster, and | ∗ | denotes the number of instances in one cluster. The com-
putational complexity of Ward is O(n2), where n is the size of the dataset. Ward
is widely available in many software packages, for example Matlab and Wolfram
Mathematica.

8.3 related work

Recent research on BECM systems focuses on collectively taking advantage of both
real-time occupancy information and occupant preferences when designing more
efficient building control systems. For instance, Chen et al. [Chen et al., 2009] pro-
pose a BECM system that keeps track of occupants’ real-time location to enable
fine-grained control of ambient environment including lighting, cooling, heating,
etc. As sensors and actuators are deployed in buildings and these systems are
connected to external networks such as the Internet, occupant security and pri-
vacy become a more challenging task since sensor data can be leveraged to make
unwanted inferences about occupants and their behaviors [Zhu et al., 2015]. For
instance, Yang et al. [Yang et al., 2014] have conducted empirical experiments us-
ing motion sensors in a three-person single-family home and electricity meters
in a twelve-person university lab, and shown that data from these sensors can
enable inferring real-time occupancy and even occupants’ identities. Another ap-
proach [Zhen et al., 2008] takes advantage of RFID technologies and implements a
localization algorithm that learns about the location of occupants.

Information about indoor environment is important for many applications in-
cluding indoor localization services, security services like access control and
alarms, and privacy protection. However, this information is often either unavail-
able or obtaining it is time-consuming due to effort-intensive negotiations with
building operators. As a result, many approaches have been proposed to explore
and infer indoor environments. Earlier approaches takes advantage of laser scan-
ners [Okorn et al., 2010] to infer and reconstruct indoor floor plans, while more
recent works leverage mainly commodity sensors available on smartphones [Shin
et al., 2012] and takes a crowd sensing approach. For instance, CrowdInside [Alzan-
tot and Youssef, 2012] takes advantage of sensors (including accelerometers, mag-
netometers, gyroscopes, etc.) on smartphones to construct occupants’ motion
traces and then infer floor plan as well as room and corridor shapes. [Jiang et al.,
2013] introduces another indoor floor plan construction system that takes advan-
tage of Wi-Fi signals to construct room adjacency graphs and leverages user mo-
tion data collected from smartphones to to estimate room sizes and orders. Unlike
these approaches that involve taking advantage of heterogeneous or ad hoc (specific
purposed) sensors, our approach does not require any sophisticated sensing hard-
ware and utilizes only indoor temperature sensors, which are commonly found in
modern buildings with HVAC control systems.

Indoor occupant activity inference and detection is another research trend since
more and more sensors are installed in buildings and occupants are becoming

8.4 methodology 127

increasingly concerned about their own privacy. For instance, motion sensors and
smart meters can be used for detecting whether a room is occupied and even for an-
alyzing occupant identities [Yang et al., 2014]. A more recent work [Shih and Rowe,
2015] explores the resonance effect of rooms and devise models to infer the num-
ber of occupants by observing changes in the ultrasonic spectrum reflected back
from a centrally located ultrasonic chirp transmitter. Our work has been largely
influenced by that of Jin et al. [Jin et al., 2015], where the authors try to infer im-
plicit factors by indirect measurements based on the physical environment. They
argue that occupancy can be inferred by indoor CO2 concentration. Since CO2

sensors are not as widely available as temperature sensors, we try to investigate
the sensing by proxy paradigm using temperature sensor readings. Note that our
work mainly concerns inferring indoor environments and occupant activities from
sensor data, instead of exploring the vulnerability of networking protocols such as
KNX [Antonini et al., 2014].

8.4 methodology

Since different buildings operate with different BECM systems, to extend such sys-
tems we have to find a common interface or common type of data when conduct-
ing latent sensing. Fortunately, temperature sensors are usually available in the
majority of BECM systems because of the requirements by HVAC devices. Besides
the availability, we believe indoor temperature movements are largely influenced
by both natural factors and occupant behaviors, making temperature sensors a
perfect data source for inferring relevant information from buildings and their
occupants behaviors. For instance, we have collected data – including tempera-
ture measurements and set-points, lighting, alarms, etc. – from the BECM system
located in a school building, and indoor temperature records attribute to a signifi-
cantly large portion in our database. To be exact, around 60 percent of total records
are indoor temperature measurements, while in comparison outdoor weather sta-
tion data contributes around 15 percent. In this section, we introduce the whole
pipeline of our approach from collecting data, processing these data so that it fits
the agglomerative clustering algorithm, to the validation process.

8.4.1 Data Collection and Processing

We are interested in collecting indoor temperature data from buildings’ BECM sys-
tems. Fortunately, majority of BECM systems are based on open communication
standards such as KNX1 or LON2. As a result, it is easy to get a compatible watch-
dog module and simply attach it to the control bus and start collecting data. We
store all collected data in a database for ease of querying and retrieving purposes.

1 http://www.knx.org/
2 http://www.lonmark.org/

http://www.knx.org/
http://www.lonmark.org/

128 sensing by proxy of indoor temperature movements

Note that in practice sensor readings generally exhibit different statistical char-
acteristics. For instance, different temperature sensors report temperatures at dif-
ferent frequencies and the amplitude of values may also differ. Besides, abnormal
and missing values are very common, making the collected data quite noisy. To
proceed processing the data, we have to conduct data cleansing tasks as specified
below:

(a) Resampling. Specifically, we choose to down-sample data records using a
uniform frequency of one hour for temperature readings. This process helps
reducing noises as noisy data points can be filtered out. Furthermore, down-
sampling can greatly reduces the dataset size and improve computation effi-
ciency.

(b) Interpolation. Some sensors may be missing values at certain timestamps
even after down-sampling. Missing values are common in our case due to
sensor failures and occasional server shutdown. There are many missing
value imputation techniques [Royston et al., 2004], however, we choose to
linearly interpolate these missing values since temperatures of indoor envi-
ronments do not tend to change drastically.

(c) Normalization. Temperature sensors in different locations may report val-
ues of significantly different amplitude levels. This can result in inaccurate
computation especially with distance measures such as the DTW distance.
In this chapter, we are more concerned with the oscillation development for
readings from each individual sensor. As a result, we divide each sensor’s
readings by their corresponding standard deviation for normalization, i.e.,

t ′i = ti/
√

1
n

∑n−1
i=0 (ti − µ)2 for 0 6 i < n, where µ = 1

n

∑n−1
i=0 ti. This step is

especially important if we are concerned with the overall temperature move-
ments instead of the absolute terms, which are easy to get using simple
algebras and statistical methods.

Afterwards, we calculate the pairwise distance of temperature movements of
different rooms (in the form of time series) using both Euclidean and DTW dis-
tance and generate a corresponding distance matrix, which is then fed as input to
the agglomerative clustering process.

8.4.2 Baseline Establishment and Validation

Since our intuition is that temperature movements are mainly influenced by natu-
ral factors and occupant behaviors, to validate this assumption we have to separate
the influence of such two factors. If we can achieve this, then we can continue in-
vestigating how each factor contributes to the temperature movements. Separation
of natural factors and occupant behaviors can be easy and sometimes maybe trivial
since we can just find out when occupants are in the building. For example, offices
and schools usually have a consistent schedule that tells us when rooms are occu-
pied (e.g. daytime on weekdays) or not (e.g. nighttime or holidays). For simplicity,
we choose to split all temperature data into daytime and nighttime readings.

8.5 experimental evaluation 129

When investigating how each factor contributes to indoor temperature move-
ments, consider first the natural factors. It is obvious that the physical location can
have the biggest impact on room temperature. For instance, rooms facing south (in
the Northern Hemisphere) would generally fluctuate more drastically than rooms
always in shadows, provided that all rooms in the same building have the same
heat insulation features. In this case, we can validate the clustering results against
the floor plans in order to evaluate the impact of natural factors. On the other
hand, since human activities can greatly impact indoor environments, clustering
temperature movements under human influence will tell us more about the actual
activities.

In summary, agglomerative clustering of indoor temperature movement data
collected when minimal occupant activities are present will likely tell us more in-
formation about the physical locations of rooms; while clustering of temperature
movement data when occupant activities are present will likely enable us infer
how close activities in one room is to those in another room. We continue validat-
ing these assumptions with real-world data in the following section.

8.5 experimental evaluation

In order to validate our assumptions, we have conducted experiments using data
from a real-world building that is in daily use. In this section we present the ex-
periments and their results. We present our research questions (RQs) and answer
then along with experiment results.

8.5.1 Experiment Subject and Data Collection

All our data has been collected from a single school building in western Europe,
which has around 100 classrooms, labs and offices located on five different floors
and 86 of these rooms are equipped with a single temperature sensor in each room.
This building was planned and constructed around 2000 and most rooms as well
outside facades are equipped with sensors and actuators to monitor and control
temperature and heating, ventilation, illumination, etc. for the ease of building op-
erations. In total, this building has more than 1000 connected sensors and actuators.
All these sensors and actuators (such as light switches and dimming units) have
been connected to a KNX bus, which is a broadcast networking protocol where
all communication telegrams passes on the bus and pre-configured source/desti-
nation pairs may send and receive only relevant telegrams and react. KNX is a
very popular building control protocol that has been deployed in several millions
of installations worldwide.

We have implemented a system to collect data from the building, as shown in
Figure 8.2. The broadcasting nature of KNX makes it easy for us to simply attach
a KNX-to-USB interface to the KNX bus and listens to every telegram on the bus
to a gateway server via the USB interface (in our case, it is a Weinzierl KNX USB

130 sensing by proxy of indoor temperature movements

S

Sensors

S
S

S

S

S

S

S

S

S

KNX
Bus

Figure 8.2: Overview of data collection and management process.

05

02

04

06 03

01

Mar 2
016

Apr 2
016

May 2016

Jun 2016

Jul 2
016

10

15

20

25

30

35

R
o
o
m

 T
e
m

p
e
ra

tu
re

R1 R2 R3 R4 R5 R6

Figure 8.3: Simplified floor plan (top) and temperature readings during a course of around
five months (bottom).

Interface 311, which costs around 200 Euros). This gateway then parses and stores
all KNX telegrams to a Linux server. We started collecting data from this building
from mid February, 2016. In this chapter, we have used data collected over a span
of five months from February till July, 2016. Each record in our database consists of
information such as telegram timestamp, source and destination addresses, KNX
telegram type and message (generally a numerical value) parsed from this tele-
gram. The commercial BECM system used by the school provides only a interface
to monitor real-time readings from each sensor and no history data were store
anywhere. As a result, we have also developed a dashboard (a web application)
for the building operators to monitor and view charts about the real-time as well
as historical records from sensors and actuators that are interesting to the build-
ing operator. In a backend, users and operators may configure a more customized
dashboard interface by themselves.

8.5 experimental evaluation 131

8.5.2 Inferring Indoor Environment

Following our intuition that rooms located physically together should share sim-
ilar patterns in room temperature movements due to similar natural influences
such as sunshine, rain and wind. Optimally, human occupant impacts need to be
ruled out when recording room temperatures that will be utilized for agglomera-
tive clustering. To that end we choose those time periods when there is minimal
occupant activities. Since our experiment subject is a school building and no one is
in the building during night time, we split temperature readings into two subsets
– daytime (07:00 to 19:00) and nighttime (19:00 to 07:00) readings – and explore
only the nighttime temperature records. We start our research by investigating
if temperature sensor records can be used to correctly group physically nearby
classrooms other than mere temperature fluctuations (RQ1).

To answer RQ1, we extracted all the temperature records and down-sampled
them to one-hour frequency to establish a tradeoff between reducing dataset size
and lowering the amount of missing value interpolation. After normalization, we
then calculate the pairwise Euclidean and DTW distance for all the preprocessed
data and feed these distances to agglomerative clustering using Ward’s linkage al-
gorithm. We have experimented with data from all five floors. In order to make the
readers understand better, we start with the top floor where temperature readings
are available in only six classrooms.

Figure 8.3 shows the simplified floor plan (to protect the privacy of the school)
and the temperature readings in each room for around five months. For human
eyes, indoor temperature does not fluctuate greatly and these readings from dif-
ferent classrooms look more or less similar along the course. Especially, when
the whether gets warmer, the temperature differences among different classrooms
become smaller. By generating a distance matrix diagram of temperature move-
ments from different rooms where darker blocks indicate more differences rather
than similarities (cf. Figure 8.4 left), it may take some time (even for experts) to
identify that R6 and R4 are more different than other classrooms. However, such
a matrix does not tell us (or building facility management teams) about what can
be the potential cause. Finally, note that the distance matrices in our case are sym-
metric, since D(X, Y) = D(Y,X) for both Euclidean and DTW distance. We present
whole matrices in this chapter for the sake of straightforwardness.

When applying agglomerative clustering techniques on the temperature move-
ments (cf. Figure 8.4 right), our approach has produced two bottom level clusters
{R1,R3} and {R2,R5}, and moving up from the latter, R4 can be attached to {R2,R5}
to form a larger cluster, which can then be joined by R6. These results accurately
corresponds with our floor plan in Figure 8.3, since rooms R1 and R3 are indeed
located next to each other, and the so are the others. Also, R5 has been clustered
with R2 but not with R1, probably due to the fact that there is a staircase between
R5 and R1, while R2 and R5 are physically near each other. As a result, the an-
swer to RQ1 is indeed positive: room temperatures are good indicators of sensor

132 sensing by proxy of indoor temperature movements

adjacency (and thus physical adjacency of rooms) inference using agglomerative
clustering.

R
1

R
2

R
3

R
4

R
5

R
6

R1

R2

R3

R4

R5

R6

0

4

8

12

16

20

24

28

32

36

R
1

R
3

R
6

R
4

R
2

R
5

R1

R3

R6

R4

R2

R5

0

4

8

12

16

20

24

28

32

36

Figure 8.4: Distance matrix of temperature movements with Euclidean distance (left) and
agglomerative clustering clustergram of temperature readings for six rooms
with Ward (right).

Following RQ1, we wonder how much data is needed for accurate inference
of sensor adjacency (RQ2) and if Euclidean and DTW distance make a differ-
ence to clustering results (RQ3). To that end, we repeat our previous clustering
process with the time span of room temperature readings using a sliding window
with size varying from one to 160 nights and conduct the pairwise distance calcu-
lation with both Euclidean and DTW distance. In total, we have generated 26,080

dendrograms, which we programmatically validate if each dendrogram conflicts
with our floor plan. A clustering output is considered as an error if any two rooms
fall into one cluster in the dendrogram while these two are not strictly next to
each other according to the floor plan, for instance, when a dendrogram reads that
R2 and R6 or R4 and R1 belong to one cluster. Due to wide hallways, we do not
consider classrooms located on different side of the hallway as close to each other.

20 40 60 80 100 120 140 160

Temperature records used (number of nights)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

E
rr

o
r

ra
te

Eclidean

DTW

Figure 8.5: Error rate regarding the amount of data used for agglomerative clustering.

We present the error rate with each time span setting in Figure 8.5. It is obvious
that the more data we use for clustering, the more accurate results are. And in
our case with six classrooms, using room temperature readings (with one-hour
sampling frequency) during a span of three months produces clusters strictly
correlated with regard to the floor plan (RQ2). This span may seem long, how-

8.5 experimental evaluation 133

ever, in practice it may still be faster than effort-intensive negotiations with build-
ing operators (which took more than six months in our case to get the building
floor plans). Besides, in this experiment we use hourly sampled temperature dur-
ing nighttime, it is thus probable that using temperature readings with higher
sampling rate would reduce the inference time. Regarding RQ3, it is obvious from
Figure 8.5 that both Euclidean and DTW distance contributes to better clustering
results with more data. Furthermore, DTW seems to be more sensitive to noises
since its performance is not as stable as Euclidean with small datasets and smaller
datasets are known to have smaller signal to noise ratio (SNR). Due to DTW’s com-
putational complexity is a magnitude higher than Euclidean, we find Euclidean to
be a more efficient and accurate distance measure than DTW (RQ3).

Next, we seek to find out if our approach works with data from more class-
rooms and classrooms from different floors (RQ4). We have tested our approach
with data from each of the five floors within the school building, results show that
agglomerative clustering of room temperature indeed helps inferring the relative
physical locations of classrooms even with as many as twenty rooms. Figure 8.6
presents an example clustering with nighttime temperature movements (during a
span of five months) from all 20 rooms on another floor. In order to validate the
result, we have assigned a color for each cluster in order to visualize the similar-
ities between different rooms. To investigate if this clustering results correspond-
ing to the physical locations of the rooms, we apply the same color scheme to
the floor plan, which is shown in Figure 8.7. It is obvious that classrooms located
next to each other generally fall into the same cluster, with the only exception
that R28 is colored differently compared to its neighbors, indicating an anomaly.
However, when comparing Figure 8.6, R28 is actually attached to the cluster of
{R25,R27,R29,R31} at a very late phase, suggesting that R28 is not so similar with
the rest in its cluster. Besides, we have found out that R28 is used as a classroom
for musical education while others are normal classrooms. This indicates that R28
may have special features (e.g., heat insulation or acoustic requirements) in design
and construction stage.

Furthermore, as shown in Figure 8.8, our experiments demonstrate that cluster-
ing of rooms on higher floors generate more relevant results than rooms in lower
ones, indicating that rooms located on higher floors of a building are more im-
pacted by natural factors such as sun, rain and wind which influences buildings’
energy performance. Especially, clustering results are terrible with indoor tem-
perature movements in the basement, while better results are achieved above the
ground. As a result, our results indeed indicate that our approach are more sen-
sitive to the floor location of rooms rather than the number of items to cluster
(RQ4). This result suggest that this approach can potentially be performant with
rooms in higher tower buildings as their indoor temperature are more impacted
by natural factors.

134 sensing by proxy of indoor temperature movements

Figure 8.6: Agglomerative clustering on temperature movements of 20 classrooms.

10

08

06

04

02 01

03

05

00
25 27 29 31 33 35 37

26 28 30 36

Figure 8.7: Simplified floor plan with coloring scheme from agglomerative clustering re-
sults.

8.5.3 Towards Inferring Occupant Activities

After validating that indoor temperature movements are closely correlated with
rooms’ physical locations, we set to investigate the possibility of inferring occu-

8.5 experimental evaluation 135

-1 0 1 2 3

Floor

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Figure 8.8: Clustering accuracy (number of correctly clustered rooms divided by total
rooms on each floor) among different floors.

pant activities by proxy of temperature movements (RQ5). To this end, from the
same school building we select temperature movements from 20 rooms that serve
different functionality. For instance, some rooms are offices or labs, while others
can be normal classrooms or libraries. Note that these rooms are located on differ-
ent floors of the building and rooms with similar functionality are generally not
physically close to each other. In this experiment we have only used temperature
readings during daytime for a course of five months, so as to reduce the dilution
by readings when no occupant activities are present.

Figure 8.9 presents the agglomerative clustering results. Much to our surprise,
rooms with similar activities or functionality are generally clustered together. For
instance, offices seem to have similar temperature movements and science labs do
not share much similarity with other type of rooms other than slight similarity
with offices. Besides, clustering results suggest that temperature movements in
cafeteria, auditorium and reception are quite similar, probably due to the fact
that all these rooms see bursts of occupants at specific time slots. Moreover, the
rooms hosting kindergartens and preschool classes fall into one cluster, which can
be joined by a meeting room, probably indicating that such rooms usually have
smaller number of occupants. Last but not least, classrooms for training purposes
(art, music and culinary) also have similar temperature movements.

While admittedly we are not able to predict what exactly a specific occupant
activity is at the moment, by comparing with other activity traces we are still able
to tell roughly what such an activity can possibly be. Furthermore, if we setup
a database of how different occupant activities can impact indoor temperature
movements with higher measuring requirements (e.g., higher sampling frequency,
more accurate measurements and larger amount of records), we are confident that
finer-grained activity inference can be achieved. As a result, the answer to RQ5
can be positive when such a activity inference database is established.

8.5.4 Discussion

Since most of the temperature sensors in our experiment subject report readings
with low frequencies, it has been challenging to infer fine-grained information
about indoor environment as well as occupant activities. Despite of dataset limi-

136 sensing by proxy of indoor temperature movements

C
la

ss
ro

o
m

 1

C
la

ss
ro

o
m

 2

C
u
lin

a
ry

 T
ra

in
in

g
 R

o
o
m

M
u
si

c
T
ra

in
in

g
 R

o
o
m

A
rt

 E
d
u
ca

ti
o
n
 R

o
o
m

La
rg

e
 L

ib
ra

ry

S
m

a
ll

Li
b
ra

ry

M
e
e
ti

n
g
 R

o
o
m

P
re

sc
h
o
o
l
C

la
ss

ro
o
m

K
in

d
e
rg

a
rt

e
n
 1

K
in

d
e
rg

a
rt

e
n
 2

R
e
ce

p
ti

o
n

A
u
d
it

o
ri

u
m

C
a
fe

te
ri

a

S
ci

e
n
ce

 L
a
b
 2

S
ci

e
n
ce

 L
a
b
 1

O
ff

ic
e
 (

M
a
rk

e
ti

n
g
 D

ir
e
ct

o
r)

O
ff

ic
e
 (

C
o
o
rd

in
a
to

r)

O
ff

ic
e
 (

D
ir

e
ct

o
r)

O
ff

ic
e
 (

T
e
a
ch

e
r)

Classroom 1

Classroom 2

Culinary Training Room

Music Training Room

Art Education Room

Large Library

Small Library

Meeting Room

Preschool Classroom

Kindergarten 1

Kindergarten 2

Reception

Auditorium

Cafeteria

Science Lab 2

Science Lab 1

Office (Marketing Director)

Office (Coordinator)

Office (Director)

Office (Teacher)

0

6

12

18

24

30

36

42

48

54

Figure 8.9: Agglomerative clustering on temperature movements of 20 rooms with differ-
ent functionality.

tations, our approach is still able to discover relevant information such as indoor
adjacency maps and coarse occupant activities. Furthermore, it is also beneficial to
use our system for anomaly detection and building diagnosis. We are able to find
groups of rooms whose temperature movements are different from all others. Such
anomalies may indicate sensor failures, different HVAC configurations, malfunc-
tioning heat insulation or simply abnormal occupant behaviors. In either case, this
kind of information can provide a starting point that helps building owners and
operators locating possible issues and fixing them. In addition, since our approach
takes advantage of existing building control systems and requires minimal efforts
for installation of new hardware, it has the potential to large scale deployment. In
turn, when more data are collected, sensing by proxy can become more accurate.

8.6 conclusion and future work 137

8.6 conclusion and future work

It is well established that a thorough understanding of indoor environments and
occupant activities is a key component in building control systems for better user
comfort and more efficient energy usage. Unlike traditional approaches that lever-
age heterogeneous sensors or crowd-sensing paradigms to monitor indoor envi-
ronments and activities, we adopt a non-intrusive sensing by proxy paradigm and
take advantage of existing infrastructures to be cost-effective. Through extensive
experiments with a school building that has 86 rooms equipped with tempera-
ture sensors, we are able to apply agglomerative clustering techniques on indoor
temperature movements and infer useful information about both the physical fea-
tures of rooms as well as the functionality of rooms based on traces from occupant
activities.

In the future we plan to experiment our approach with more different buildings
with respect to geolocations, heights, utility types (office or residential buildings)
and number of occupants within rooms. It can also be beneficial to harvest finer-
grained indoor temperature movements, i.e., collect temperature data with more
accurate sensors and higher frequencies, so that we may infer more detailed infor-
mation with regard to occupants’ exact activities. In addition, other machine learn-
ing approaches can be helpful in the context of activity recognition and anomaly
detection. Finally, other commonly available sensor and actuator data may also be
interesting and adopted to our system.

Part V

S U M M A RY

9
C O N C L U S I O N S

What we call the beginning is often
the end. And to make an end is to
make a beginning.

T. S. Eliot
Little Gidding, Four Quartets

9.1 conclusions

This dissertation has mainly investigated approaches for improving the efficiency
and accuracy of TSC tasks. To that end, we have explored three different research
avenues: 1) time series dimensionality reduction using DWT to speed up pair-
wise distance comparisons in distance-based TSC approaches; 2) language model-
based DSCo to improve TSC efficiency in the case of large training datasets; and
3) extracting features from multiscale time series visibility graphs so that generic
classifiers can be made suitable for TSC.

By means of a large scale empirical study involving taking advantage of discrete
wavelet transform (DWT) for time series dimensionality reduction, we are able to
provide assurances to practitioners by empirically showing, with various datasets
and with several DWT approaches that DTW distance-based 1NN TSC algorithm
yield similar accuracy on both compressed (i.e., approximated) and raw time series
data. We also show that, in some datasets, wavelets may actually help in reducing
noisy variations which deteriorate the performance of mining tasks. In a few cases,
we note that the residual details/noises from DWT compression are more useful
for recognizing data patterns.

Through innovatively taking advantage of mature techniques from both time se-
ries mining and NLP communities, we have brought up a language model-based
approach for TSC named DSCo. Extensive experiments on an open dataset archive
demonstrates that DSCo performs similarly to approaches (e.g., DTW and Eu-
clidean distance-based 1NN) working with original uncompressed numeric data.
We further propose DSCo-NG to improve the computation efficiency and classi-
fication accuracy of DSCo. DSCo-NG breaks time series into smaller segments of
the same size and to some extend simplifies DSCo, this simplification of the classi-
fication process also leads to simplified language model inference in the training
phase and slightly higher classification accuracy.

141

142 conclusions

Finally, as a consequence of extracting features from multiscale visibility graphs,
we are able to transform sequential time series data into unordered feature vec-
tors, so that these features can be fed into modern and generic classifiers for effi-
cient and accuracy classification. Unlike traditional TSC approaches that seek to
improve distance-based classification (e.g., 1NN with DTW distance) or to trans-
form real-valued time series into texts (e.g., DSCo, SAX-VSM and BOSS), we take
a very different path and augment time series by means of their multiscale ap-
proximations, which are further transformed into a set of visibility graphs. After
extracting probability distributions of small motifs and other statistical features
from such graphs, we are able to build reliable models that yield highly accurate
classification. Thanks to the way how we transform time series into graphs and ex-
tract features from them, we are able to capture both global and local features from
time series. Based on extensive experiments on a large number of open datasets
and comparison with ten state-of-the-art approaches, our approach appears to be
among the most accurate TSC algorithms and it is also shown to be highly efficient
as well as scalable.

To sum up, this dissertation explores different possibilities to improve the effi-
ciency and accuracy of TSC algorithms. To that end we employ a range of tech-
niques including wavelet transforms, symbolic approximations, language models
and graph mining algorithms. We experiment and evaluate our approaches using
publicly available time series datasets. Comparison with the state-of-the-art shows
that the approaches developed in this dissertation perform well, and contribute to
advance the field of TSC. Although specific applications are not the focus of this
dissertation, we have nonetheless applied TSC as well as clustering techniques in
the field of smart buildings, demonstrating the feasibility of some of our proposed
approaches for real-world applications.

9.2 future work

Obviously, it is not feasible to consider all related research topics in this disser-
tation. However, there are indeed a few research avenues that we are exited to
explore in the future:

(a) In this dissertation we mainly covered classification for univariate time series.
In reality, multivariate time series also have a large number of application
scenarios. For instance, multivariate time series are often found in human
activity detection and financial applications such as technical analysis of can-
dle charts (OHLC charts). Theoretically, DSCo as well as MVG might also
work for classifying multivariate time series, since multivariate time series
can be considered a set of independent univariate series. However, it will
remain a mystery unless empirically tested or theoretically proven. We are
excited to experiment our proposed approaches for multivariate time series
data in the future.

9.2 future work 143

(b) We are delighted that graph representations can be used for TSC. However,
we feel we have just scratched the surface in the direction of graph-based
TSC. In the future, we are passionate to further investigate other graph rep-
resentations for time series as well as useful and efficient graph features –
such as degree distribution entropy, centrality, bipartivity and so forth – for
MVG in order to improve its classification accuracy and efficiency. Thanks
to the rapid advances in graph mining, a lot of graph features remain to be
explored for TSC.

(c) During the past few years, ensemble methods have become increasingly pop-
ular in the TSC community. Although the MVG approach we have proposed
in this dissertation is an ensemble method, we have only taken advantage
of graph features. We are confident that when incorporating more features
other than those extracted from visibility graphs, TSC accuracy can be fur-
ther incremented. In the future, we plan to investigate and combine more
heterogeneous features for TSC.

(d) As the performance of GPUs keep improving and deep neural network plat-
forms mature, it is foreseeable that a large number of DM tasks will run on
deep learning architectures. ALthough we have scratched the surface of mak-
ing TSC suitable for deep learning architectures, we have not had great TSC
performances. Thus it would be interesting to investigate how preprocessing
and transformation techniques can be applied to time series so that efficient
and accurate classification can be achieved via deep learning algorithms.

B I B L I O G R A P H Y

P. S. Addison. Wavelet transforms and the ECG: a review. Physiological measurement,
26(5):R155, 2005. (Cited on pages 36 and 39.)

P. Afshani, M. de Berg, H. Casanova, B. Karsin, C. Lambrechts, N. Sitchinava, and
C. Tsirogiannis. An efficient algorithm for the 1d total visibility-index problem.
In 2017 Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experi-
ments (ALENEX), pages 218–231. SIAM, 2017. (Cited on pages 81 and 101.)

N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield. Efficient graphlet counting
for large networks. In ICDM, pages 1–10, 2015. (Cited on pages 78, 84, and 101.)

M. Alzantot and M. Youssef. Crowdinside: automatic construction of indoor floor-
plans. In Proceedings of the 20th International Conference on Advances in Geographic
Information Systems, pages 99–108. ACM, 2012. (Cited on page 126.)

K. Amolins, Y. Zhang, and P. Dare. Wavelet based image fusion techniques –
An introduction, review and comparison. ISPRS Journal of Photogrammetry and
Remote Sensing, 62(4):249–263, 2007. (Cited on pages 37 and 39.)

K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and M. Berges. Blued:
A fully labeled public dataset for event-based non-intrusive load monitoring
research. In Proceedings of the 2nd KDD workshop on data mining applications in
sustainability (SustKDD), pages 1–5, 2012. (Cited on pages 5, 35, and 53.)

A. Antonini, F. Maggi, and S. Zanero. A practical attack against a knx-based
building automation system. In Proceedings of the 2nd International Symposium on
ICS & SCADA Cyber Security Research 2014, pages 53–60. BCS, 2014. (Cited on
page 127.)

A. Bagnall, J. Lines, J. Hills, and A. Bostrom. Time-series classification with cote:
the collective of transformation-based ensembles. IEEE Transactions on Knowledge
and Data Engineering, 27(9):2522–2535, 2015. (Cited on pages 27 and 107.)

A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series clas-
sification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Mining and Knowledge Discovery, Online First, 2016. (Cited on
page 28.)

A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series clas-
sification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Mining and Knowledge Discovery, 31(3):606–660, 2017. (Cited on
page 92.)

A. Barbato, A. Capone, M. Rodolfi, and D. Tagliaferri. Forecasting the usage of
household appliances through power meter sensors for demand management
in the smart grid. In IEEE International Conference on Smart Grid Communications

145

146 bibliography

(SmartGridComm), pages 404–409. IEEE, 2011. (Cited on page 114.)

K. Basu, V. Debusschere, and S. Bacha. Appliance usage prediction using a time
series based classification approach. In Thirty-Eighth Annual Conference of the
IEEE Industrial Electronics Society (IECON), pages 1217–1222. IEEE, 2012. (Cited
on page 115.)

V. Batagelj and M. Zaversnik. An o(m) algorithm for cores decomposition of
networks. arXiv preprint cs/0310049, 2003. (Cited on pages 78 and 88.)

G. E. Batista, X. Wang, and E. J. Keogh. A complexity-invariant distance measure
for time series. In SDM, volume 11, pages 699–710, 2011. (Cited on pages 23, 78,
and 115.)

M. G. Baydogan, G. Runger, and E. Tuv. A bag-of-features framework to classify
time series. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11):
2796–2802, 2013. (Cited on pages 23, 24, and 74.)

J. R. Bellegarda. Statistical language model adaptation: review and perspectives.
Speech communication, 42(1):93–108, 2004. (Cited on page 68.)

M. E. Berges, E. Goldman, H. S. Matthews, and L. Soibelman. Enhancing electricity
audits in residential buildings with nonintrusive load monitoring. Journal of
industrial ecology, 14(5):844–858, 2010. (Cited on page 115.)

D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in time
series. In KDD workshop, volume 10, pages 359–370, 1994. (Cited on pages 5, 78,
and 106.)

L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001. (Cited on page 21.)

F. K.-P. Chan, A. W.-c. Fu, and C. Yu. Haar wavelets for efficient similarity search
of time-series: with and without time warping. Knowledge and Data Engineering,
IEEE Transactions on, 15(3):686–705, 2003. (Cited on page 40.)

H. Chen, P. Chou, S. Duri, H. Lei, and J. Reason. The design and implementation
of a smart building control system. In e-Business Engineering, 2009. ICEBE’09.
IEEE International Conference on, pages 255–262. IEEE, 2009. (Cited on page 126.)

L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for moving ob-
ject trajectories. In Proceedings of the 2005 ACM SIGMOD international conference
on Management of data, pages 491–502. ACM, 2005. (Cited on page 23.)

T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pages 785–794. ACM, 2016. (Cited on pages 21 and 91.)

Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh. Flying insect classi-
fication with inexpensive sensors. Journal of Insect Behavior, 5(27):657–677, 2014.
(Cited on page 3.)

Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G. Batista. The
ucr time series classification archive, July 2015. www.cs.ucr.edu/~eamonn/time_
series_data/. (Cited on pages 15, 28, 40, 59, 60, 69, 91, and 116.)

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/

bibliography 147

F.-L. Chung, T.-C. Fu, R. Luk, and V. Ng. Flexible time series pattern matching
based on perceptually important points. In International joint conference on artifi-
cial intelligence workshop on learning from temporal and spatial data, pages 1–7, 2001.
(Cited on page 74.)

A. Cohen, I. Daubechies, and P. Vial. Wavelets on the interval and fast wavelet
transforms. Applied and computational harmonic analysis, 1(1):54–81, 1993. (Cited
on pages 36 and 89.)

L. d. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. Characterization
of complex networks: A survey of measurements. Advances in physics, 56(1):
167–242, 2007. (Cited on pages 88 and 107.)

S. Darby. Making it obvious: designing feedback into energy consumption. In
Energy efficiency in household appliances and lighting, pages 685–696. Springer, 2001.
(Cited on page 113.)

I. Daubechies. Orthonormal bases of compactly supported wavelets. Communica-
tions on pure and applied mathematics, 41(7):909–996, 1988. (Cited on page 36.)

I. Daubechies. Orthonormal bases of compactly supported wavelets ii. variations
on a theme. SIAM Journal on Mathematical Analysis, 24(2):499–519, 1993. (Cited
on page 36.)

H. Deng, G. Runger, E. Tuv, and M. Vladimir. A time series forest for classifica-
tion and feature extraction. Information Sciences, 239:142–153, 2013. (Cited on
page 27.)

C. Duarte, P. Delmar, K. W. Goossen, K. Barner, and E. Gomez-Luna. Non-intrusive
load monitoring based on switching voltage transients and wavelet transforms.
In Future of Instrumentation International Workshop (FIIW), 2012, pages 1–4. IEEE,
2012. (Cited on pages 36 and 39.)

O. J. Dunn. Multiple comparisons using rank sums. Technometrics, 6(3):241–252,
1964. (Cited on page 97.)

E. Elhamifar and S. Sastry. Energy disaggregation via learning ‘powerlets ′ and
sparse coding. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
(Cited on pages 114 and 115.)

P. Esling and C. Agon. Time-series data mining. ACM Computing Surveys (CSUR),
45(1):12, 2012. (Cited on page 4.)

M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hun-
dreds of classifiers to solve real world classification problems. J. Mach. Learn.
Res, 15(1):3133–3181, 2014. (Cited on pages 21, 77, 90, and 97.)

R. Flanagan and L. Lacasa. Irreversibility of financial time series: a graph-
theoretical approach. Physics Letters A, 380(20):1689–1697, 2016. (Cited on
page 3.)

E. Frank, M. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. H. Witten, and L. Trigg.
Weka: a machine learning workbench for data mining. In Data mining and knowl-

148 bibliography

edge discovery handbook, pages 1269–1277. Springer, 2009. (Cited on page 28.)

Y. Freund and R. E. Schapire. A desicion-theoretic generalization of on-line learn-
ing and an application to boosting. In European conference on computational learn-
ing theory, pages 23–37. Springer, 1995. (Cited on page 21.)

J. H. Friedman. Stochastic gradient boosting. Computational Statistics & Data Anal-
ysis, 38(4):367–378, 2002. (Cited on page 22.)

T.-C. Fu. A review on time series data mining. Engineering Applications of Artificial
Intelligence, 24(1):164–181, 2011. (Cited on pages 35, 53, 54, and 74.)

J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme. Learning time-
series shapelets. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 392–401. ACM, 2014. (Cited on
pages 25, 26, 78, 100, and 107.)

A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee
international conference on, pages 6645–6649. IEEE, 2013. (Cited on page 22.)

M. Gray and W. Morsi. Application of wavelet-based classification in non-intrusive
load monitoring. In Electrical and Computer Engineering (CCECE), 2015 IEEE 28th
Canadian Conference on, pages 41–45. IEEE, 2015. (Cited on pages 36 and 39.)

G. W. Hart. Nonintrusive appliance load monitoring. Proceedings of the IEEE, 80

(12):1870–1891, 1992. (Cited on page 114.)

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016. (Cited on pages 22 and 83.)

J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. Classification of time
series by shapelet transformation. Data Mining and Knowledge Discovery, 28(4):
851–881, 2014. (Cited on pages 26, 66, and 107.)

C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide to support vector classifi-
cation. 2003. (Cited on page 30.)

B. Hu, Y. Chen, and E. Keogh. Time series classification under more realistic
assumptions. In Proceedings of the 2013 SIAM International Conference on Data
Mining, pages 578–586. SIAM, 2013. (Cited on page 78.)

J. Iacovacci and L. Lacasa. Sequential motif profile of natural visibility graphs.
Physical Review E, 94(5):052309, 2016. (Cited on page 82.)

Y. Jiang, Y. Xiang, X. Pan, K. Li, Q. Lv, R. P. Dick, L. Shang, and M. Hannigan. Hall-
way based automatic indoor floorplan construction using room fingerprints. In
Proceedings of the 2013 ACM international joint conference on Pervasive and ubiqui-
tous computing, pages 315–324. ACM, 2013. (Cited on page 126.)

M. Jin, N. Bekiaris-Liberis, K. Weekly, C. Spanos, and A. M. Bayen. Sensing by
proxy: Occupancy detection based on indoor co2 concentration. In The 9th Inter-
national Conference on Mobile Ubiquitous Computing, Systems, Services and Technolo-

bibliography 149

gies (UBICOMM’15), pages 1–10, 2015. (Cited on page 127.)

C. Kang, N. Park, B. A. Prakash, E. Serra, and V. Subrahmanian. Ensemble models
for data-driven prediction of malware infections. In Proceedings of the Ninth ACM
International Conference on Web Search and Data Mining, pages 583–592. ACM,
2016. (Cited on page 3.)

E. Keogh. Fast similarity search in the presence of longitudinal scaling in time
series databases. In Tools with Artificial Intelligence, 1997. Proceedings., Ninth IEEE
International Conference on, pages 578–584. IEEE, 1997. (Cited on pages 12, 74,
and 80.)

E. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping.
Knowledge and information systems, 7(3):358–386, 2005. (Cited on page 14.)

E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality reduction
for fast similarity search in large time series databases. Knowledge and information
Systems, 3(3):263–286, 2001. (Cited on pages 53 and 74.)

E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free data
mining. In Proceedings of the tenth ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 206–215. ACM, 2004. (Cited on pages 28,
69, and 74.)

E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping for datamin-
ing applications. In Proceedings of the 6th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 285–289. ACM, 2000. (Cited on
pages 12 and 80.)

R. Kondor and H. Pan. The multiscale laplacian graph kernel. In Advances in Neural
Information Processing Systems, pages 2990–2998, 2016. (Cited on page 107.)

L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-Brown. Auto-
weka 2.0: Automatic model selection and hyperparameter optimization in weka.
Journal of Machine Learning Research, 17:1–5, 2016. (Cited on page 31.)

M. Kuhn and K. Johnson. Applied predictive modeling, volume 810. Springer, 2013.
(Cited on pages 30 and 91.)

L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuno. From time series to
complex networks: The visibility graph. Proceedings of the National Academy of
Sciences, 105(13):4972–4975, 2008. (Cited on page 81.)

L. Lacasa, B. Luque, J. Luque, and J. C. Nuno. The visibility graph: A new method
for estimating the hurst exponent of fractional brownian motion. EPL (Euro-
physics Letters), 86(3):30001, 2009. (Cited on page 81.)

C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, and P. Armstrong.
Power signature analysis. Power and Energy Magazine, IEEE, 1(2):56–63, 2003.
(Cited on page 115.)

A. K.-m. Leung, F.-t. Chau, and J.-b. Gao. A review on applications of wavelet
transform techniques in chemical analysis: 1989–1997. Chemometrics and Intelli-

150 bibliography

gent Laboratory Systems, 43(1):165–184, 1998. (Cited on page 39.)

D. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon. DSCo-NG: A Practical Language
Modeling Approach for Time Series Classification. In The 15th International Sym-
posium on Intelligent Data Analysis (IDA 2016), October 2016a. (Cited on pages 7

and 40.)

D. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon. Time Series Classification with
Discrete Wavelet Transformed Data. In International Journal of Software Engi-
neering and Knowledge Engineering, volume 26, pages 1361–1377. World Scien-
tific, November & December 2016b. doi: 10.1142/S0218194016400088. (Cited on
page 7.)

D. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon. Time Series Classification with
Discrete Wavelet Transformed Data: Insights from an Empirical Study. In The
28th International Conference on Software Engineering and Knowledge Engineering
(SEKE 2016), pages 273–278, July 2016c. (Cited on pages 7, 36, 47, and 74.)

D. Li, T. F. Bissyandé, S. Kubler, J. Klein, and Y. Le Traon. Profiling Household
Appliance Electricity Usage with N-Gram Language Modeling. In The 2016
IEEE International Conference on Industrial Technology (ICIT 2016), pages 604–609.
IEEE, March 2016d. (Cited on pages 7 and 40.)

D. Li, L. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon. DSCo: A Language Modeling
Approach for Time Series Classification. In P. Perner, editor, Machine Learning
and Data Mining in Pattern Recognition: 12th International Conference, MLDM 2016,
New York, NY, USA, pages 294–310. Springer International Publishing, July 2016e.
ISBN 978-3-319-41920-6. doi: 10.1007/978-3-319-41920-6_22. (Cited on pages 7

and 40.)

D. Li, T. F. Bissyandé, J. Klein, and Y. Le Traon. Sensing by Proxy in Buildings
with Agglomerative Clustering of Indoor Temperature Movements. In The 32nd
ACM Symposium on Applied Computing (SAC 2017), pages 477–484, April 2017.
doi: 10.1145/3019612.3019699. (Cited on page 8.)

D. Li, J. Lin, T. F. Bissyandé, J. Klein, and Y. Le Traon. Extracting Statistical Graph
Features for Accurate and Efficient Time Series Classification. In The 21st Inter-
national Conference on Extending Database Technology (EDBT), March (To Appear)
2018. (Cited on page 8.)

Y. Li and J. Lin. Approximate variable-length time series motif discovery using
grammar inference. In Proceedings of the Tenth International Workshop on Multime-
dia Data Mining, page 10, 2010. (Cited on page 16.)

T. W. Liao. Clustering of time series data – a survey. Pattern recognition, 38(11):
1857–1874, 2005. (Cited on pages 4 and 125.)

J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time se-
ries, with implications for streaming algorithms. In Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining and knowledge discovery, pages
2–11. ACM, 2003. (Cited on page 16.)

http://daoyuan.li/publications/li2016dsco-ng.pdf
http://daoyuan.li/publications/li2016dsco-ng.pdf
http://daoyuan.li/publications/li2016time.pdf
http://daoyuan.li/publications/li2016time.pdf
http://daoyuan.li/publications/li2016profiling.pdf
http://daoyuan.li/publications/li2016profiling.pdf
http://daoyuan.li/publications/li2016dsco.pdf
http://daoyuan.li/publications/li2016dsco.pdf
http://daoyuan.li/publications/li2017sensing.pdf
http://daoyuan.li/publications/li2017sensing.pdf

bibliography 151

J. Lin, E. Keogh, L. Wei, and S. Lonardi. Experiencing sax: a novel symbolic repre-
sentation of time series. Data Mining and knowledge discovery, 15(2):107–144, 2007.
(Cited on pages 12, 15, 16, 36, 54, 60, 62, 78, 80, and 106.)

J. Lin, R. Khade, and Y. Li. Rotation-invariant similarity in time series using bag-of-
patterns representation. Journal of Intelligent Information Systems, 39(2):287–315,
2012. (Cited on pages 23, 78, and 106.)

J. Lines, A. Bagnall, P. Caiger-Smith, and S. Anderson. Classification of household
devices by electricity usage profiles. In Intelligent Data Engineering and Automated
Learning-IDEAL 2011, pages 403–412. Springer, 2011. (Cited on pages 114, 115,
and 118.)

J. Lines, L. M. Davis, J. Hills, and A. Bagnall. A shapelet transform for time series
classification. In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 289–297. ACM, 2012. (Cited on
page 26.)

J. Lines, S. Taylor, and A. Bagnall. Hive-cote: The hierarchical vote collective of
transformation-based ensembles for time series classification. In Data Mining
(ICDM), 2016 IEEE 16th International Conference on, pages 1041–1046. IEEE, 2016.
(Cited on page 27.)

B. Luque, L. Lacasa, F. Ballesteros, and J. Luque. Horizontal visibility graphs: Exact
results for random time series. Physical Review E, 80(4):046103, 2009. (Cited on
page 81.)

P.-F. Marteau. Time warp edit distance with stiffness adjustment for time series
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):
306–318, 2009. (Cited on pages 23 and 106.)

R. Martinez-Cantin. Bayesopt: A bayesian optimization library for nonlinear op-
timization, experimental design and bandits. The Journal of Machine Learning
Research, 15(1):3735–3739, 2014. (Cited on page 31.)

J. Morales Pedraza. Electrical Energy Generation in Europe: The Current Situation and
Perspectives in the Use of Renewable Energy Sources and Nuclear Power for Regional
Electricity Generation. Springer, 2015. (Cited on page 113.)

A. Mueen, E. Keogh, and N. Young. Logical-shapelets: an expressive primitive for
time series classification. In Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 1154–1162. ACM, 2011.
(Cited on pages 26 and 115.)

A. Nanopoulos, R. Alcock, and Y. Manolopoulos. Feature-based classification of
time-series data. International Journal of Computer Research, 10(3), 2001. (Cited on
page 115.)

P. Nemenyi. Distribution-free multiple comparisons. In Biometrics, volume 18,
page 263, 1962. (Cited on page 47.)

M. E. Newman and M. Girvan. Mixing patterns and community structure in
networks. Statistical mechanics of complex networks, pages 66–87, 2003. (Cited on

152 bibliography

pages 78 and 88.)

T. A. Nguyen and M. Aiello. Energy intelligent buildings based on user activity:
A survey. Energy and buildings, 56:244–257, 2013. (Cited on pages 123 and 124.)

P. Norvig. Natural language corpus data. In T. Segaran and J. Hammerbacher, edi-
tors, Beautiful data: the stories behind elegant data solutions, pages 219–242. O’Reilly
Media, Inc., 2009. (Cited on page 61.)

B. Okorn, X. Xiong, B. Akinci, and D. Huber. Toward automated modeling of
floor plans. In Proceedings of the symposium on 3D data processing, visualization and
transmission, volume 2, 2010. (Cited on page 126.)

N. D. Pham, Q. L. Le, and T. K. Dang. Two novel adaptive symbolic representations
for similarity search in time series databases. In Web Conference (APWEB), 2010
12th International Asia-Pacific, pages 181–187. IEEE, 2010. (Cited on page 17.)

A. Pizurica, A. M. Wink, E. Vansteenkiste, W. Philips, and B. J. Roerdink. A review
of wavelet denoising in MRI and ultrasound brain imaging. Current medical
imaging reviews, 2(2):247–260, 2006. (Cited on pages 36 and 39.)

J. M. Ponte and W. B. Croft. A language modeling approach to information re-
trieval. In Proceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval, pages 275–281, 1998. (Cited on
page 55.)

T. Rakthanmanon and E. Keogh. Fast shapelets: A scalable algorithm for discover-
ing time series shapelets. In Proceedings of the thirteenth SIAM conference on data
mining, 2013. (Cited on pages 25, 26, 78, 100, 101, 107, and 115.)

T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Za-
karia, and E. Keogh. Searching and mining trillions of time series subsequences
under dynamic time warping. In Proceedings of the 18th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 262–270. ACM,
2012. (Cited on pages 5, 14, 35, 40, 47, 78, and 106.)

K. J. Åström. On the choice of sampling rates in parametric identification of time
series. Information Sciences, 1(3):273–278, 1969. (Cited on pages 12 and 80.)

C. A. Ratanamahatana and E. Keogh. Everything you know about dynamic time
warping is wrong. In Third Workshop on Mining Temporal and Sequential Data.
Citeseer, 2004. (Cited on page 3.)

C. A. Ratanamahatana and E. Keogh. Three myths about dynamic time warp-
ing data mining. In Proceedings of SIAM International Conference on Data Mining,
pages 506–510, 2005. (Cited on pages 106 and 115.)

P. Ribeiro, F. Silva, and L. Lopes. Efficient parallel subgraph counting using g-tries.
In Cluster Computing (CLUSTER), 2010 IEEE International Conference on, pages
217–226. IEEE, 2010. (Cited on page 84.)

J. J. Rodríguez and C. J. Alonso. Interval and dynamic time warping-based deci-
sion trees. In Proceedings of the 2004 ACM symposium on Applied computing, pages

bibliography 153

548–552. ACM, 2004. (Cited on page 115.)

J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso. Rotation forest: A new classifier
ensemble method. IEEE transactions on pattern analysis and machine intelligence,
28(10):1619–1630, 2006. (Cited on page 21.)

P. Royston et al. Multiple imputation of missing values. Stata journal, 4(3):227–41,
2004. (Cited on page 128.)

S. Salvador and P. Chan. Toward accurate dynamic time warping in linear time
and space. Intelligent Data Analysis, 11(5):561–580, 2007. (Cited on page 40.)

K. Samiee, P. Kovacs, and M. Gabbouj. Epileptic seizure classification of eeg time-
series using rational discrete short-time fourier transform. IEEE transactions on
Biomedical Engineering, 62(2):541–552, 2015. (Cited on page 3.)

P. Schäfer. The boss is concerned with time series classification in the presence
of noise. Data Mining and Knowledge Discovery, 29(6):1505–1530, 2015. (Cited on
pages 25, 27, and 106.)

P. Schäfer and M. Högqvist. Sfa: a symbolic fourier approximation and index
for similarity search in high dimensional datasets. In Proceedings of the 15th
International Conference on Extending Database Technology, pages 516–527. ACM,
2012. (Cited on page 17.)

G. Schrack and M. Choit. Optimized relative step size random searches. Mathe-
matical Programming, 10(1):230–244, 1976. (Cited on page 30.)

P. Senin and S. Malinchik. Sax-vsm: Interpretable time series classification using
sax and vector space model. In IEEE 13th International Conference on Data Mining,
pages 1175–1180. IEEE, 2013. (Cited on pages 24, 74, 78, 100, and 106.)

P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen,
S. Frankenstein, and M. Lerner. Grammarviz 2.0: a tool for grammar-based
pattern discovery in time series. In Machine Learning and Knowledge Discovery in
Databases, pages 468–472. Springer, 2014. (Cited on page 16.)

J. Serra and J. L. Arcos. A competitive measure to assess the similarity between
two time series. In Case-Based Reasoning Research and Development, pages 414–427.
Springer, 2012. (Cited on pages 23 and 106.)

J. Serra and J. L. Arcos. An empirical evaluation of similarity measures for time se-
ries classification. Knowledge-Based Systems, 67:305–314, 2014. (Cited on pages 23

and 40.)

J. Shieh and E. Keogh. iSAX: indexing and mining terabyte sized time series. In
Proceedings of the 14th ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 623–631. ACM, 2008. (Cited on page 17.)

O. Shih and A. Rowe. Occupancy estimation using ultrasonic chirps. In Proceedings
of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems, pages
149–158. ACM, 2015. (Cited on page 127.)

154 bibliography

H. Shin, Y. Chon, and H. Cha. Unsupervised construction of an indoor floor plan
using a smartphone. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(6):889–898, 2012. (Cited on page 126.)

J. Sill, G. Takács, L. Mackey, and D. Lin. Feature-weighted linear stacking. arXiv
preprint arXiv:0911.0460, 2009. (Cited on page 96.)

A. A. Smith and M. Craven. Fast multisegment alignments for temporal expression
profiles. In Proceedings of the 7th Annual International Conference on Computational
Systems Bioinformatics, volume 7, pages 315–326. World Scientific, 2008. (Cited
on pages 14 and 65.)

S. Supriya, S. Siuly, H. Wang, J. Cao, and Y. Zhang. Weighted visibility graph with
complex network features in the detection of epilepsy. IEEE Access, 4:6554–6566,
2016. (Cited on pages 81 and 107.)

D. S. Taubman and M. W. Marcellin. JPEG2000: Standard for interactive imaging.
Proceedings of the IEEE, 90(8):1336–1357, 2002. (Cited on page 36.)

S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. Management of an academic
hpc cluster: The ul experience. In Proc. of the 2014 Intl. Conf. on High Performance
Computing & Simulation (HPCS 2014), pages 959–967. IEEE, July 2014. (Cited on
pages 41, 83, and 116.)

A. J. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269, 1967.
(Cited on page 61.)

Q. Wang and V. Megalooikonomou. A dimensionality reduction technique for
efficient time series similarity analysis. Information systems, 33(1):115–132, 2008.
(Cited on page 36.)

X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh. Exper-
imental comparison of representation methods and distance measures for time
series data. Data Mining and Knowledge Discovery, 26(2):275–309, 2013. (Cited on
page 74.)

X. Wang, J. Lin, N. Patel, and M. Braun. A self-learning and online algorithm for
time series anomaly detection, with application in cpu manufacturing. In Pro-
ceedings of the 25th ACM International on Conference on Information and Knowledge
Management, pages 1823–1832. ACM, 2016a. (Cited on page 3.)

X. Wang, J. Lin, P. Senin, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, and
S. Frankenstein. Rpm: Representative pattern mining for efficient time series
classification. In Proceedings of the 19th International Conference on Extending
Database Technology, 2016b. (Cited on pages 24, 70, 74, 78, 100, 101, and 106.)

Z. Wang and T. Oates. Encoding time series as images for visual inspection and
classification using tiled convolutional neural networks. In Workshops at the
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015. (Cited on page 83.)

J. H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of
the American statistical association, 58(301):236–244, 1963. (Cited on page 125.)

bibliography 155

T. K. Wijaya, J. Eberle, and K. Aberer. Symbolic representation of smart meter data.
In Proceedings of the Joint EDBT/ICDT 2013 Workshops, pages 242–248. ACM, 2013.
(Cited on page 53.)

M. Wojnowicz, G. Chisholm, B. Wallace, M. Wolff, X. Zhao, and J. Luan. Suspend:
Determining software suspiciousness by non-stationary time series modeling of
entropy signals. Expert Systems with Applications, 71:301–318, 2017. (Cited on
pages 3 and 77.)

D. H. Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992. (Cited
on page 96.)

D. F. Wong, L. S. Chao, X. Zeng, M.-I. Vai, and H.-L. Lam. Time series for blind
biosignal classification model. Computers in biology and medicine, 54:32–36, 2014.
(Cited on page 3.)

X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan,
A. Ng, B. Liu, S. Y. Philip, et al. Top 10 algorithms in data mining. Knowledge
and information systems, 14(1):1–37, 2008. (Cited on page 20.)

Y. Wu and E. Y. Chang. Distance-function design and fusion for sequence data. In
Proceedings of the 13th ACM international conference on Information and knowledge
management, pages 324–333. ACM, 2004. (Cited on page 115.)

X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana. Fast time series
classification using numerosity reduction. In Proceedings of the 23rd international
conference on Machine learning, pages 1033–1040. ACM, 2006. (Cited on pages 5,
53, and 74.)

X. Xu, J. Zhang, and M. Small. Superfamily phenomena and motifs of networks
induced from time series. Proceedings of the National Academy of Sciences, 105(50):
19601–19605, 2008. (Cited on pages xviii, 86, and 107.)

J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy. Deep convolutional
neural networks on multichannel time series for human activity recognition. In
IJCAI, pages 3995–4001, 2015. (Cited on page 107.)

L. Yang, K. Ting, and M. B. Srivastava. Inferring occupancy from opportunistically
available sensor data. In Pervasive Computing and Communications (PerCom), 2014
IEEE International Conference on, pages 60–68. IEEE, 2014. (Cited on pages 126

and 127.)

L. Ye and E. Keogh. Time series shapelets: a new primitive for data mining. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 947–956. ACM, 2009. (Cited on pages 23, 25, 78, 107,
and 115.)

M. Zeifman and K. Roth. Nonintrusive appliance load monitoring: Review and
outlook. IEEE Transactions on Consumer Electronics, pages 76–84, 2011. (Cited on
pages 114 and 115.)

G. P. Zhang. Time series forecasting using a hybrid arima and neural network
model. Neurocomputing, 50:159–175, 2003. (Cited on page 4.)

156 bibliography

Z.-N. Zhen, Q.-S. Jia, C. Song, and X. Guan. An indoor localization algorithm for
lighting control using rfid. In Energy 2030 Conference, 2008. ENERGY 2008. IEEE,
pages 1–6. IEEE, 2008. (Cited on page 126.)

S. Zhong, T. M. Khoshgoftaar, and N. Seliya. Clustering-based network intrusion
detection. International Journal of reliability, Quality and safety Engineering, 14(02):
169–187, 2007. (Cited on page 4.)

K. Zhu, Y. San Wong, and G. S. Hong. Wavelet analysis of sensor signals for tool
condition monitoring: a review and some new results. International Journal of
Machine Tools and Manufacture, 49(7):537–553, 2009. (Cited on page 39.)

T. Zhu, S. Xiao, Q. Zhang, Y. Gu, P. Yi, and Y. Li. Emergent technologies in big
data sensing: a survey. International Journal of Distributed Sensor Networks, 2015:8,
2015. (Cited on page 126.)

J.-P. Zimmermann, M. Evans, J. Griggs, N. King, L. Harding, P. Roberts, and
C. Evans. Household electricity survey: A study of domestic electrical product
usage. Intertek Testing & Certification Ltd, 2012. (Cited on page 117.)

	Abstract
	Dedication
	Acknowledgments
	Contents
	Acronyms
	List of Algorithms
	List of Tables
	List of Figures
	Overview
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Contributions
	1.4 Organization of this Dissertation

	Time Series
	2 Background
	2.1 Time Series
	2.2 Distance Measures
	2.3 Symbolic Representation of Time Series

	3 State-of-the-Art
	3.1 Generic Classification Algorithms
	3.1.1 kNN
	3.1.2 Support Vector Machine
	3.1.3 Decision Trees
	3.1.4 Ensemble Methods
	3.1.5 Neural Networks

	3.2 Time Series Classifiers
	3.2.1 Similarity-based Nearest Neighbor
	3.2.2 Bag-of-Patterns
	3.2.3 SAX-VSM
	3.2.4 Representative Pattern Mining
	3.2.5 BOSS
	3.2.6 Shapelets
	3.2.7 Logical Shapelets
	3.2.8 Learning Shapelets
	3.2.9 Shapelet Transform
	3.2.10 Fast Shapelets
	3.2.11 Collective of Transformation-based Ensembles

	3.3 Datasets
	3.4 Parameters and Hyper-parameters
	3.4.1 Cross Validation
	3.4.2 Tuning Hyper-Parameters

	Transforming Time Series for TSC
	4 Discrete Wavelet Transform for Dimensionality Reduction
	4.1 Introduction
	4.2 Discrete Wavelet Transform
	4.3 Related Work
	4.4 Experimental Study
	4.4.1 Setup and Datasets
	4.4.2 TSC with Wavelet Transformed Data
	4.4.3 TSC with Residual Details
	4.4.4 Multi-Level Wavelet Transformation
	4.4.5 Using the UCR suite for TSC and Significance Test

	4.5 The Smoothing Effect of Wavelets
	4.6 Conclusions and Future Work

	5 Domain Series Corpora
	5.1 Introduction
	5.2 Background and Key Intuition
	5.2.1 Language Modeling

	5.3 Domain Series Corpora for TSC
	5.3.1 Data Representation as Texts
	5.3.2 Language Model Inference
	5.3.3 Classification

	5.4 Evaluation
	5.4.1 Reducing Data using SAX
	5.4.2 Implementation and Setup
	5.4.3 Comparison of Classification Performance
	5.4.4 Time and Space Complexity
	5.4.5 Limitations

	5.5 Improving DSCo
	5.5.1 Compressing Time Series into Texts
	5.5.2 Extracting Language Models
	5.5.3 Classifying Unlabeled Instances
	5.5.4 Time and Space Complexity

	5.6 Experimental Evaluation of DSCo-NG
	5.6.1 Implementation and Setup
	5.6.2 Parameter Optimization
	5.6.3 Comparison of Classification Performance

	5.7 Related Work
	5.8 Conclusions and Future Work

	6 Multiscale Visibility Graph
	6.1 Introduction
	6.2 Background
	6.2.1 Visibility Graph
	6.2.2 Graph Classification with Deep Neural Networks
	6.2.3 Graph Features

	6.3 Multiscale Visibility Graph
	6.3.1 Feature Extraction
	6.3.2 Classification

	6.4 Evaluation
	6.4.1 Datasets
	6.4.2 Validating Heuristics
	6.4.3 Stacked Generalization
	6.4.4 Accuracy Benchmarking
	6.4.5 Efficiency
	6.4.6 Case Studies
	6.4.7 Discussions

	6.5 Related Work
	6.6 Conclusions and Future Work

	Applications
	7 Profiling Household Appliances
	7.1 Introduction
	7.2 Related work
	7.3 Empirical evaluation
	7.3.1 Evaluation against normalized datasets
	7.3.2 Evaluation against real-world readings
	7.3.3 Combining appliance consumption readings

	7.4 Discussions
	7.5 Conclusions and Future Work

	8 Sensing by Proxy of Indoor Temperature Movements
	8.1 Introduction
	8.2 Background
	8.3 Related Work
	8.4 Methodology
	8.4.1 Data Collection and Processing
	8.4.2 Baseline Establishment and Validation

	8.5 Experimental Evaluation
	8.5.1 Experiment Subject and Data Collection
	8.5.2 Inferring Indoor Environment
	8.5.3 Towards Inferring Occupant Activities
	8.5.4 Discussion

	8.6 Conclusion and Future Work

	Summary
	9 Conclusions
	9.1 Conclusions
	9.2 Future Work

	Bibliography

