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Abstract

This article gives an overview of several challenges studied in deontic logic,
with an emphasis on challenges involving agents. We start with traditional
modal deontic logic using preferences to address the challenge of contrary-to-
duty reasoning, and STIT theory addressing the challenges of non-deterministic
actions, moral luck and procrastination. Then we turn to alternative norm-
based deontic logics detaching obligations from norms to address the challenge
of Jørgensen’s dilemma, including the question how to derive obligations from
a normative system when agents cannot assume that other agents comply with
their norms. We discuss also some traditional challenges from the viewpoint
of normative systems: when a set of norms may be termed ‘coherent’, how to
deal with normative conflicts, how to combine normative systems and tradi-
tional deontic logic, how various kinds of permission can be accommodated,
how meaning postulates and counts-as conditionals can be taken into account,
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how sets of norms may be revised and merged, and how normative systems can
be combined with game theory. The normative systems perspective means that
norms, not ideality or preference, should take the central position in deontic se-
mantics, and that a semantics that represents norms explicitly provides a helpful
tool for analysing, clarifying and solving the problems of deontic logic. We focus
on the challenges rather than trying to give full coverage of related work, for
which we refer to the handbook of deontic logic and normative systems.1

Introduction
Deontic logic [116, 34] is the field of logic that is concerned with normative concepts
such as obligation, permission, and prohibition. Alternatively, a deontic logic is a
formal system capturing the essential logical features of these concepts. Typically,
a deontic logic uses Op to mean that it is obligatory that p, (or it ought to be the
case that p), and Pp to mean that it is permitted, or permissible, that p. The term
‘deontic’ is derived from the ancient Greek déon, meaning that “which is binding or
proper".

Deontic logic can be used for reasoning about normative multiagent systems,
i.e. about multiagent systems with normative systems in which agents can de-
cide whether to follow the explicitly represented norms, and the normative systems
specify how and to which extent agents can modify the norms [16, 6]. Normative
multiagent systems need to combine normative reasoning with agent interaction,
and thus raise the challenge to relate the logic of normative systems to game theory
[109].

Traditional (or “standard”) deontic logic is a normal propositional modal logic
of type KD, which means that it extends the propositional tautologies with the
axioms K : O(p → q) → (Op → Oq) and D : ¬(Op ∧ O¬p), and it is closed under
the inference rules modus ponens p, p → q/q and generalization or necessitation
p/Op. Prohibition and permission are defined by Fp = O¬p and Pp = ¬O¬p.
Traditional deontic logic is an unusually simple and elegant theory. An advantage of
its modal-logical setting is that it can easily be extended with other modalities such
as epistemic or temporal operators and modal accounts of action. In this article we
illustrate the combination of deontic logic with a modal logic of action, called STIT
logic [58].

Not surprisingly for such a highly simplified theory, there are many features of
actual normative reasoning that traditional deontic logic does not capture. Noto-

1Sections 2-4 are based on a review of Horty’s book on obligation and agency [23], Section 1 and
Sections 5-14 are based on a technical report of a Dagstuhl seminar [52], and Section 15 is based
on an article of the second author of this paper [109].
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rious are the so-called ‘paradoxes of deontic logic’, which are usually dismissed as
consequences of the simplifications of traditional deontic logic. For example, Ross’s
paradox [99] is the counterintuitive derivation of “you ought to mail or burn the
letter” from “you ought to mail the letter.” It is typically viewed as a side effect of
the interpretation of ‘or’ in natural language.

In this article we discuss also an example of norm based semantics, called in-
put/output logic, to discuss challenges related to norms and detachment. Maybe
the most striking feature of the abstract character of traditional deontic logic is that
it does not explicitly represent the norms of the system, only the obligations and
permissions which can be detached from the norms in a given context. This is an
obvious limitation when using deontic logic to reason about normative multiagent
systems, in which norms are represented explicitly.

In this article we consider the following fifteen challenges for multiagent deontic
logic. The list of challenges is by no means final. Other problems may be considered
equally important, such as how a hierarchy of norms (or of the norm-giving author-
ities) is to be respected, how general abstract norms relate to individual concrete
obligations, how norms can be interpreted, or how various kinds of imperatives can
be distinguished. We do not consider deontic logics for specification and verification
of multiagent systems [20, 1], but we focus on normative reasoning within multia-
gent systems. The three central concepts in these challenges are preference, agency,
and norms. Regarding agency, we consider individual agent action as well as agent
interaction in games.

1. Contrary-to-duty reasoning, preference and violation preference
2. Non-deterministic actions: ought-to-do vs ought-to-be agency
3. Moral luck and the driving example agency
4. Procrastination: actualism vs possibilism agency
5. Jørgensen’s dilemma and the problem of detachment norms
6. Multiagent detachment norms
7. Coherence of a normative system norms
8. Normative conflicts and dilemmas preference & norms
9. Descriptive dyadic obligations and norms preference & norms
10. Permissive norms preference & norms
11. Meaning postulates and intermediate concepts norms
12. Constitutive norms norms
13. Revision of a normative system norms
14. Merging normative systems norms
15. Games, norms and obligations norms & agency
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To discuss these challenges, we repeat the basic definitions of so-called standard
deontic logic, dyadic standard deontic logic, deontic STIT logic, and input/output
logic. The article thus contains several definitions, but these are not put to work in
any theorems or propositions, for which we refer to the handbook of deontic logic
and normative systems [34]. The point of introducing formal definitions in this
article is just to have a reference for the interested reader. Likewise, the interested
reader should consult the handbook of deontic logic and normative systems for a
more comprehensive description of the work done on each challenge, as in this article
we can mention only a few references for each challenge.

1 Contrary-to-duty reasoning, preference and violation
In this section we discuss how the challenge of the contrary-to-duty paradoxes leads
to traditional modal deontic logic introduced at the end of the sixties, based on
dyadic operators and preference based semantics. Moreover, we contrast this use of
preference in deontic logic with the use of preference in decision theory.

1.1 Chisholm’s paradox
Suppose we are given a code of conditional norms, that we are presented with a
condition (input) that is unalterably true, and asked what obligations (output) it
gives rise to. It may happen that the condition is something that should not have
been true in the first place. But that is now water under the bridge: we have to
“make the best out of the sad circumstances” as B. Hansson [53] put it. We therefore
abstract from the deontic status of the condition, and focus on the obligations that
are consistent with its presence. How to determine this in general terms, and if
possible in formal ones, is the well-known problem of contrary-to-duty conditions as
exemplified by the notorious contrary-to-duty paradoxes. Chisholm’s paradox [28]
consists of the following four sentences:
(1) It ought to be that a certain man go to the assistance of his neighbours.
(2) It ought to be that if he does go, he tell them he is coming.
(3) If he does not go then he ought not to tell them he is coming.
(4) He does not go.

Furthermore, intuitively, the sentences derive the following sentence (5):
(5) He ought not to tell them he is coming.

Chisholm’s paradox is a contrary-to-duty paradox, since it contains both a pri-
mary obligation to go, and a secondary obligation not to tell if the agent does not
go. Traditionally, the paradox was approached by trying to formalise each of the
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sentences in an appropriate language of deontic logic. However, in traditional (or
“standard”) deontic logic, i.e. the normal propositional modal logic of type KD, it
turned out that either the set of formulas is inconsistent, or one formula is a logical
consequence of another formula. Yet intuitively the natural-language expressions
that make up the paradox are consistent and independent from each other: this is
why it is called a paradox. The problem is thus:

Challenge 1. How do we reason with contrary-to-duty obligations which are in force
only in case of norm violations?

There are various kinds of scenarios which are similar to Chisholm’s scenario.
For example, there is a key difference between contrary-to-duties proper, and repara-
tory obligations, because the latter cannot be atemporal [98]. Though Chisholm
presented his challenge as essentially a single agent decision problem, we can as well
reformulate it as a multiagent reasoning problem:
(1) It is obligatory that i sees to it that p (i should do p).
(2) It is obligatory that j sees to it that q if i does not see to it that p

(j should sanction i if i does not do as told).
(3) It is obligatory that j does not see to it that q if i sees to it that p

(j should not sanction i if i does as told).
(4) i does not do as told.

The logic may give us the paradoxical conclusion that j should see to it that q and
he should see to it that not q. For example, van Benthem, Grossi and Liu [108] give
the following example, in the formulation proposed by Åqvist [7]:
(1) It ought to be that Smith refrains from robbing Jones.
(2) Smith robs Jones.
(3) If Smith robs Jones, he ought to be punished for robbery.
(4) It ought to be that if Smith refrains from robbing Jones he is not punished

for robbery.
As explained in detail in the following subsections, the development of dyadic

deontic operators as well as the introduction of temporally relative deontic logic
operators can be seen as a direct result of Chisholm’s paradox. Since the robbing
takes place before the punishment, the example can quite easily be represented once
time is made explicit [110]. If you make time explicit or you direct obligations to
different agents, then the paradox disappears, in a way. However, both the fact that
time and agency are present may distract from the key point behind the example.
Therefore also atemporal, non-agency version of the paradox allow to address to
the core challenge of the issue. For example, Prakken and Sergot [98] consider the
following variant of Chisholm’s scenario:
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(1) It ought to be that there is no dog.
(2) If there is a dog, there should be a sign.
(3) If there is no dog, there should be no sign.
(4) There is a dog.

When a new deontic logic is proposed, the traditional contrary-to-duty examples
are always the first benchmark examples to be checked. It may be observed here
that some researchers in deontic logic doubt that contrary-to-duties can still be con-
sidered a challenge, because due to extensive research by now we know pretty much
everything about them. The deontic logic literature is full of (at least purported)
solutions. In other words, these researchers doubt that deontic logic still needs more
research on contrary-to-duties. Indeed, it appears to be difficult to make an original
contribution to this vast literature, but new twists are still identified [96].

1.2 Monadic deontic logic
Traditional or ‘standard’ deontic logic, often referred to as SDL, was introduced by
Von Wright [116].

1.2.1 Language

Let Φ be a set of propositional letters. The language of traditional deontic logic LD
is given by the following BNF:

ϕ := ⊥ | p | ¬ϕ | (ϕ ∧ ϕ) | ©ϕ | 2ϕ

where p ∈ Φ. The intended reading of ©ϕ is “ϕ is obligatory" and the intended
reading of 2ϕ is “ϕ is necessary”. Moreover we use Pϕ, read as “ϕ is permitted", as
an abbreviation of ¬© ¬ϕ and Fϕ, “ϕ is forbidden", as an abbreviation of ©¬ϕ.
Likewise, ∨, → and ↔ are defined in the usual way.

1.2.2 Semantics

The semantics is based on an accessibility relation that gives all the ideal alternatives
of a world.

Definition 1.1. A deontic relational model M = (W,R, V ) is a structure where:

• W is a nonempty set of worlds.
• R is a serial relation over W . That is, R ⊆W ×W and for all w ∈W , there
exist v ∈W such that Rwv.
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• V is a valuation function that assigns a subset of W to each propositional
letter p. Intuitively, V (p) is the set of worlds in which p is true.

A formula©ϕ is true at world w when ϕ is true in all the ideal alternatives of w.

Definition 1.2. Given a relational model M , and a world s in M , we define the
satisfaction relation M, s |= A (“world s satisfies A in M") by induction on A using
the clauses:

• M, s � p iff s ∈ V (p).
• M, s � ¬ϕ iff not M, s � ϕ.
• M, s � (ϕ ∧ ψ) iff M, s � ϕ and M, s � ψ.
• M, s �©ϕ iff for all t, if Rst then M, t � ϕ.
• M, s � 2ϕ iff for all t ∈W , M, t � ϕ.

For a set Γ of formulas, we write M, s � Γ iff for all ϕ ∈ Γ, M, s � ϕ. For a set Γ
of formulas and a formula ϕ, we say that ϕ is a consequence of Γ (written as Γ � ϕ)
if for all models M and all worlds s ∈W , if M, s � Γ then M, s � ϕ.

1.2.3 Limitations

The following example is a variant of the scenario originally phrased by Chisholm in
1963. There is widespread agreement in the literature that, from the intuitive point
of view, this set of sentences is consistent, and its members are logically independent
of each other.

(A) It ought to be that Jones does not eat fast food for dinner.
(B) It ought to be that if Jones does not eat fast food for dinner, then he does not

go to McDonald’s.
(C) If Jones eats fast food for dinner, then he ought to go to McDonald’s.
(D) Jones eats fast food for dinner.

Below are three ways to formalise this example. The first attempt is inconsistent.
The second attempt is redundant due to ©¬f |=©(f → m). The third attempt is
redundant due to f |= ¬f →©¬m.
(Aa) ©¬f (Ab) ©¬f (Ac) ©¬f
(Ba) ©(¬f → ¬m) (Bb) ©(¬f → ¬m) (Bc) ¬f →©¬m
(Ca) f →©m (Cb) ©(f → m) (Cc) f →©m
(Da) f (Db) f (Dc) f
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However, it is not very hard to meet the two requirements of consistency and
logical independence. The following representation is an example. It comes with
apparently strong assumptions, because B1/C1 seem to say that my (conditional)
obligations are necessary. For instance, Anderson argued that norms are contingent,
because we make our rules; they are not (logical) necessities. However, we could also
say that the 2 is just part of the definition of a strict conditional. Also, we could
represent the first obligation as 2©¬f .
(A1) ©¬f
(B1) 2(¬f →©¬m)
(C1) 2(f →©m)
(D1) ¬f

More seriously, a drawback of the SDL representation A1−D1 is that it does not
represent that ideally, the man does not eat fast food and does not go to McDonald’s.
In the ideal world, Jones goes to McDonald, yet he does not eat fast food. Moreover,
there does not seem to be a similar solution for the following variant of the scenario.
It is a variant of Forrester’s paradox [33], also known as the gentle murderer paradox:
You should not kill, but if you kill, you should do it gently.

(AB) It ought to be that Jones does not eat fast food and does not go to McDon-
ald’s.

(C) If Jones eats fast food, then he ought to go to McDonald’s.
(D) Jones eats fast food for dinner.

Moreover, SDL uses a binary classification of worlds into ideal/non-ideal, whereas
many situations require a trade-off between violations. The challenge is to extend
the semantics of SDL in order to overcome this limitation. For example, one can add
distinct modal operators for primary and secondary obligations, where a secondary
obligation is a kind of reparational obligation. From A2 − D2 we can derive only
©1m ∧©2¬m, which is perfectly consistent.
(A2) ©1¬f
(B2) ©1(¬f → ¬m)
(C2) f →©2m
(D2) f

However, it may not always be easy to distinguish primary from secondary obli-
gations, because it may depend on the context whether an obligation is primary or
secondary. For example, if we leave out A, then C would be a primary obligation
instead of a secondary one. Carmo and Jones [25] therefore put as an additional
requirement for a solution of the paradox that B and C are represented in the same
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way (as in A1-D1). Also, the distinction between ©1 and ©2 is insufficient for ex-
tensions of the paradox that seem to need also operators like ©3, ©4, etc, such as
the following E and F.

(E) If Jones eats fast food but does not go to McDonald’s, then he should go to
Quick.

(F) If Jones eats fast food but does not go to McDonald’s or to Quick, then he
should . . .

1.2.4 SDL proof system

The proof system of traditional deontic logic ΛD is the smallest set of formulas of
LD that contains all propositional tautologies, together with the following axioms:

K ©(ϕ→ ψ)→ (©ϕ→©ψ)

D ©ϕ→ Pϕ

and is closed under modus pones, and generalization (that is, if ϕ ∈ ΛD, then
©ϕ ∈ ΛD).

For every ϕ ∈ LD, if ϕ ∈ ΛD then we say ϕ is a theorem and write ` ϕ. For a
set of formulas Γ and formula ϕ, we say ϕ is deducible form Γ (write Γ ` ϕ) if ` ϕ
or there are formulas ψ1, . . . , ψn ∈ Γ such that ` (ψ1 ∧ . . . ∧ ψn)→ ϕ.

1.3 Dyadic deontic logic

Inspired by rational choice theory in the sixties, preference-based semantics for tra-
ditional deontic logic was used by, for example, Danielsson [32], Hansson [53], van
Fraassen [115], Lewis [74], and Spohn [104]. The obligations of Chisholm’s paradox
can be represented by a preference ordering, like:

¬f ∧ ¬m > ¬f ∧m > f ∧m > f ∧ ¬m

Extensions like E and F can be incorporated by further refining the preference
relation. The language is extended with dyadic operators ©(p|q), which is true
iff the preferred q worlds satisfy p. The class of logics is called Dyadic ‘Standard’
Deontic Logic or DSDL. The notation is inspired by the representation of conditional
probability.
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1.3.1 Language

Given a set Φ of propositional letters. The language of DSDL LD is given by the
following BNF:

ϕ := ⊥ | p | ¬ϕ | (ϕ ∧ ϕ) | �ϕ | ©(ϕ|ϕ)

The intended reading of �ϕ is “necessarily ϕ", ©(ϕ|ψ) is “It ought to be ϕ,
given ψ". Moreover we use P (ϕ|ψ), read as “ϕ is permitted, given ψ", as an abbre-
viation of ¬© (¬ϕ|ψ), and ♦ϕ, read as “possibly ϕ", as an abbreviation of ¬�¬ϕ.

Unconditional obligations are defined in terms of the conditional ones by
©p =©(p|>), where > stands for any tautology.

1.3.2 Semantics

The semantics is based on an accessibility relation that gives all better alternatives
of a world.

Definition 1.3. A preference model M = (W,≥, V ) is a structure where:

• W is a nonempty set of worlds.
• ≥ is a reflexive, transitive relation over W satisfying the following limitedness
requirement: if ||ϕ|| 6= ∅ then {x ∈ ||ϕ|| : (∀y ∈ ||ϕ||)x ≥ y} 6= ∅. Here
||ϕ|| = {x ∈W : M,x � ϕ}.
• V is a standard propositional valuation such that for every propositional let-
ter p, V (p) ⊆W .

Definition 1.4. Formulas of LD are interpreted in preference models.

• M, s � p iff s ∈ V (p).
• M, s � ¬ϕ iff not M, s � ϕ.
• M, s � (ϕ ∧ ψ) iff M, s � ϕ and M, s � ψ.
• M, s � �ϕ iff ∀t ∈W , M, t � ϕ.
• M, s �©(ψ|ϕ) iff ∀t(((M, t � ϕ)& ∀u(M,u � ϕ)⇒ t ≥ u)⇒M, t � ψ).

Intuitively, ©(ψ|ϕ) holds whenever the best ϕ-worlds are ψ-worlds.
The Chisholm’s scenario can be formalised in DSDL as follows:

(A3)©¬f

(B3)© (¬m|¬f)
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(C3)© (m|f)

(D3)f

A challenge of both the multiple obligation solution using ©1, ©2, . . . and the
preference based semantics is to combine preference orderings, for example combin-
ing the Chisholm preferences with preferences originating from the Good Samaritan
paradox:

(AB’) A man should not be robbed.
(C’) If he is robbed, he should be helped.
(D’) A man is robbed.

¬r ∧ ¬h > r ∧ h > r ∧ ¬h
The main drawback of DSDL is that in a monotonic setting, we cannot detach

the obligation ©m from the four sentences. In fact, the preference based solution
represents A, B and C, but has little to say about D. So the dyadic representa-
tion A3 −D3 highlights the dilemma between factual detachment (FD) and deon-
tic detachment (DD). We cannot have both FD and DD, as we derive a dilemma
©¬m ∧©m.

©(m|f), f
©m FD

©(¬m|¬f),©¬f
©¬m DD

1.3.3 DSDL proof system

The proof system of traditional deontic logic ΛD, also referred as Aqvist’s system
G, is the smallest set of formulas of LD that contains all propositional tautologies,
the following axioms. The names of the labels are taken from Parent [93]:

S5 S5-schemata for �
COK ©(B → C|A)→ (©(B|A)→©(C|A))
Abs ©(B|A)→ �© (B|A)

CON �B →©(B|A)
Ext �(A↔ B)→ (©(C|A)↔©(C|B))
Id ©(A|A)
C ©(C|(A ∧B))→©((B → C)|A)

D ? ♦A→ (©(B|A)→ P (B|A))
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S (P (B|A) ∧©((B → C)|A))→©(C|(A ∧B))

and is closed under modus ponens, and generalization (that is, if ϕ ∈ ΛD, then
�ϕ ∈ ΛD).

1.3.4 The use of preferences in decision theory

Arrow’s condition of rational choice theory says that if C are the best alternatives
of A, and B ∩ C is nonempty, then B ∩ C are the best alternatives of A ∩ B. This
principle is reflected by the S axiom of DSDL:

(P (B|A) ∧©((B → C)|A))→©(C|(A ∧B))

Moreover, we may represent a preference or comparative operator � in the lan-
guage, and define the dyadic operator in terms of the preference logic:

O(ψ | φ) =def (φ ∧ ψ) � (φ ∧ ¬ψ)

One may wonder whether the parallel between deontic reasoning and rational
choice can be extended to utility theory, decision theory, game theory, planning,
and so on. First, consider a typical example from Prakken and Sergot’s Cottage
Regulations [98]: there should be no fence, if there is a fence there should be a
white fence, if there is a non-white fence, it should be black, if there is a fence
which is neither white nor black, then . . . . This part of the cottage regulations is
related to Forrester’s paradox [33]. However, note the following difference between
Forrester’s paradox and the cottage regulations. Once you kill someone, it can
no longer be undone, whereas if you build a fence, you can still remove it. The
associated preferences of the fence example are:

no fence > white fence > black fence > . . .

If this represents a utility ordering over states, then we miss the representation
of action [97]. For example, it may be preferred that the sun shines, but we do
not say that the sun should shine. As a simple model of action, one might distin-
guish controllable from uncontrollable propositions [19], and restrict obligations to
controllable propositions. Moreover, we may consider actions instead of states: we
should remove the fence if there is one, we may paint the fence white, we may paint
it black, etc.

remove > paint white > paint black > . . .

We may interpret this preference ordering as an ordering of expected utility
of actions. Alternatively, the ordering may be generated by another decision rule,
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such as maximin or minimal regret. Once we are working with a decision theoretic
semantics, we may represent probabilities explicitly, or model causality. For example,
let n stand for not doing homework and g for getting a good grade for a test. Then we
may have the following preference order, which does not reflect that doing homework
causes good grades:

n ∧ g > ¬n ∧ g > n ∧ ¬g > ¬n ∧ ¬g

1.3.5 The use of goals in planning and agent theory

We may interpret Oφ or O(φ | ψ) as goals for φ, rather than obligations. This
naturally leads to the distinction between maintenance and achievement goals, and
to extensions of the logic with beliefs and intentions. Belief-Desire-Intention or BDI
logics have been developed as formalizations of BDI theory.

BDI theory is developed in the theory of mind and has been based on folk
psychology. In planning, more efficient alternatives to classical planning have been
developed, for example based on hierarchical or graph planning.

The following example is a more challenging variant of Chisholm’s scenario us-
ing anankastic conditionals [31], also known as hypothetical imperatives. The four
sentences can be given a consistent interpretation, when the second sentence is
interpreted as a classical conditional, and the third sentence is interpreted as an
anankastic conditional.

(a) It ought to be that you do not smoke.
(b) If you want to smoke, then you should not buy cigarettes.
(c) If you want to smoke, then you should buy cigarettes.
(d) You want to smoke.

1.4 Defeasible Deontic Logic: detachment and constraints
Defeasible deontic logics (DDLs) use techniques developed in non-monotonic logic,
such as constrained inference [60, 86]. Using these techniques, we can derive ©m
from only the first two sentences A and B, but not from all four sentences A-D.
Consequently, the inference relation is not monotonic. For example, we may read
O(φ|ψ) as follows: if the facts are exactly ψ, then φ is obligatory. This implies that
we no longer have that O(φ) is represented by O(φ|>).

In a similar fashion, in deontic update semantics (see van der Torre and Tan
[111, 113, 112]) facts are updates that restrict the domain of the model. They
make a fact ‘settled’ in the sense that it will never change again even after future
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updates of the same sort. Van Benthem et al. [108] use dynamic logic to phrase
such a dynamic approach within standard modal logic including reduction axioms
and standard model theory. They rehabilitate classical modal logic as a legitimate
tool to do deontic logic, and position deontic logic within the growing dynamic logic
literature.

A drawback of the use of non-monotonic techniques is that we often have that
violated obligations are no longer derived. This is sometimes referred to as the
drowning problem. For example, in the cottage regulations, if it is no longer derived
that there should be no fence once there is a fence, then how do we represent that
a violation has occurred?

A second related drawback of this solution is that it does not give the cue for
action that the decision maker should change his mind. For example, once there is
a fence, it does not represent the obligation to remove the fence.

A third drawback of this approach is that the use of non-monotonic logic tech-
niques like constraints should also be used to represent exceptions, and it thus raises
the challenge how to distinguish violations from exceptions. This is highlighted by
Prakken and Sergot’s cottage regulations [98].

(A”) It ought to be that there is no fence around the cottage.
(BC”) If there is a fence around the cottage, then it ought to be white.
(G”) If the cottage is close to a cliff, then there ought to be a fence.
(D”) There is a fence around the cottage, which is close to a cliff.

We say more about defeasible deontic logic in Section 8.

1.5 Alternative approaches

Carmo and Jones [25] suggest that the representation of the facts is challenging,
instead of the representation of the norms. In their approach, depending on the
formalisation of the facts various obligations can be detached.

Another approach to Chisholm’s paradox is to detach both obligations of the
dilemma ©¬m∧©m, and represent them consistently using some kind of minimal
deontic logic, for example using techniques from paraconsistent logic. From a prac-
tical reasoning point of view, a drawback of this approach is that a dilemma is not
very useful as a moral cue for action. Moreover, intuitively it is not clear that the
example presents a true dilemma. We say more about dilemmas in Section 9.

A recent representation of Chisholm’s paradox [94, 95, 107] is to replace deontic
detachment by so-called aggregative deontic detachment (ADD), and to derive from
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A-D the obligation ©(¬f ∧ ¬m) and ©m, but not ©¬m.

©(m|f), f
©m FD

©(¬m|¬f),©¬f
©(¬m ∧ ¬f) ADD

A possible drawback of these approaches is that we can no longer accept the principle
of weakening (also known as inheritance).

©(¬m ∧ ¬f |>)
©(¬m|>) W

2 Non-deterministic actions: ought-to-do vs ought-to-
be

We now turn to three specific challenges on agency and obligation, discussed in
much more detail by Horty [58, 23]. His textbook is a prime reference for the use
of deontic logic for multiagent systems. The central challenge Horty addresses is
whether ought-to-do can be reduced to ought-to-be. A particular problem is the
granularity of actions in case of non-deterministic effects, like flipping a coin or
throwing a dice.

Challenge 2. How to define obligations to perform non-deterministic actions?

At first sight, we may define an obligation to do an action as an obligation that
such an action is done, and we can thus reuse SDL or DSDL to define obligations
regarding non-deterministic actions. In other words, it may seem that we can reduce
ought-to-do to ought-to-be. However, as we discuss in Section 2.2, such a reduction
is problematic. To explain this challenge, we first introduce a logic to express non-
deterministic actions, so-called See-To-It-That or STIT logic.

2.1 Horty’s STIT logic
We give a very brief overview of the main concepts of Horty’s STIT logic. For
more details and motivation we refer to Horty’s textbook on obligation and agency
[58]. As illustrated in Figure 1, a STIT model is a tree where each moment is a
partitioning of traces or histories, where the partitioning Choicemα represents the
choices of the agent at that moment. Each alternative of the choice is called an
action Km

1 , Km
2 , etc. With each history a utility value is associated, and the higher

the utility value, the better the history.
Formulas are evaluated with respect to moment-history pairs. Some typical

formulas of Horty’s utilitarian STIT-formalism are A, FA, [α cstit : A], and ©A
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Figure 1: A decision tree and the corresponding utilitarian STIT-model

for ‘the atomic proposition A’, ‘some time in the future A will be the case’, ‘agent α
Sees To It That A’, and ‘it ought to be that A’, respectively.

A is true at a moment-history pair m,h if and only if it is assigned the value true
in the STIT-model, FA is true at a moment-history pair m,h if and only if there is
some future moment on the history where A is true, [α cstit : A] is true at a moment
history pair m,h if and only if A is true at all moment-history pairs through m that
belong to the same action as m,h, and ©A is true at a moment history pair m,h if
and only if there is some history h′ through m such that A is true at all pairs m,h′′

for which the history h′′ has a utility at least as high as h′ (‘moment determinate’).
This semantic condition for the STIT-ought is a utilitarian generalisation of the

standard deontic logic view (SDL) that ‘it ought to be that A’ means that A holds
in all deontically optimal worlds.

On the STIT-model of Figure 1 we have M,m, h3 |= A (directly from the val-
uation of atomic propositions on moment-history pairs), M,m, h3 |= F¬A (the
proposition ¬A is true later on, at moment n, on the history h3 through m).

Also we haveM,m, h3 |= [α cstit : A], because A holds for all histories through
moment m belonging to the same action as h3 (i.e. action Km

2 ). Regarding ought-
formulas we have: M,m, h3 |=©A andM,m, h3 |=©[α cstit : A].

These two propositions are true for the same reason: the history h4 through m
has the highest utility (which means that we do not have to check conditions for
histories with even higher utility) and satisfies both A and [α cstit : A] at m.

2.2 Gambling problem

Horty argues that ought-to-do statements are not just special kinds of ought-to-be
statements. In particular, he claims that ‘agent α ought to see to it that A’ cannot
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be modelled by the formula ©[α cstit : A] (‘it ought to be that agent α sees to it
that A’).

Justification of this claim is found in the ‘gambling example’. This example
concerns the situation where an agent faces the choice between gambling to double
or lose five dollar (action K1) and refraining from gambling (action K2). This
situation is sketched in the figure below.

h h h
1

A A A

h 2 3 4

0 5510

K2K 1

Choice
m

α

A

Figure 2: The gambling problem

The two histories that are possible by choosing action K1 represent ending up
with ten dollar by gaining five, and ending up with nothing by loosing all, respec-
tively.

Also for action K2, the game event causes histories to branch. But, for this
action the two branches have equal utilities because the agent is not taking part
in the game, thereby preserving his 5 dollar. Note this points to redundancy in
the model representation: the two branches are logically indistinguishable, because
there is no formula whose truth value would change by dropping one of them.
©[α cstit : A] is true at m for history h1 and for all histories with a higher utility

(i.e. none), the formula [α cstit : A] is true. However, a reading of ©[α cstit : A] as
‘agent α ought to perform action K1’ is counter-intuitive for this example. From the
description of the gambling scenario it does not follow that one action is better than
the other. In particular, without knowing the odds (the probabilities), we cannot
say anything in favor of action K1: by choosing it, we may either end up with more
or with less utility than by doing K2. The only thing one may observe is that action
K1 will be preferred by more adventurous agents. But that is not something the
logic is concerned with.
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This demonstrates that ‘agent α ought to see to it that A’ cannot be modelled
by ©[α cstit : A]. The cause of the mismatch can be explained as follows. Adapt-
ing and generalising the main idea behind SDL to the STIT-context, ought-to-be
statements concern truth in a set of optimal histories (‘worlds’ in SDL). Optimality
is directly determined by the utilities associated with individual histories. If ought-
to-be is about optimal histories, then ought-to-do is about optimal actions. But,
since actions are assumed to be non-deterministic, actions do not correspond with
individual histories, but with sets of histories. This means that to apply the idea
of optimality to the definition of ought-to-do operators, we have to generalise the
notion of optimality such that it applies to sets of histories, namely, the sets that
make up non-deterministic actions. More specifically, we have to lift the ordering
of histories to an ordering of actions. The ordering of actions suggested by Horty is
very simple: an action is strictly better than another action if all of its histories are
at least as good as any history of the other action, and not the other way around.

Having lifted the ranking of histories to a ranking of actions, the utilitarian ought
conditions can now be applied to actions. Thus, Horty defines the new operator
‘agent α ought to see to it that A (in formula form: ⊙[α cstit : A])’ as the condition
that for all actions not resulting in A there is a higher ranked action that does result
in A, plus that all actions that are ranked even higher also result in A. This ‘solves’
the gambling problem. We do not have ⊙[α cstit : A] or ⊙[α cstit : ¬A] in the
gambling scenario, because in the ordering of actions, K1 is not better or worse
than K2.

3 Moral luck and the driving example
The gambling problem may be seen as a kind of moral luck: whether we obtain the
utility of 10 or 0 is not due to our actions, but due to luck. The issue of moral
luck is even more interesting in the case of multiple agents, where it depends on the
actions of other agents whether you get utility 10 or 0.

Challenge 3. How to deal with moral luck in normative reasoning?

The driving example [58, p.119-121] is used to illustrate the difference between so-
called dominance act utilitarianism and orthodox perspective on the agent’s ought.
Roughly, dominance act utilitarianism is that α ought to see to it that A just in
case the truth of A is guaranteed by each of the optimal actions available to the
agent—formally, that ⊙[α cstit : A] should be settled true at a moment m just in
case K ⊆ |A|m for each K ∈ Optimalmα . When we adopt the orthodox perspective,
the truth or falsity of ought statements can vary from index to index. The orthodox
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perspective is that α should see to it that A at a certain index just in case the truth
of A is guaranteed by each of the actions available to the agent that are optimal
given the circumstances in which he finds himself at this index.

“In this example, two drivers are travelling toward each other on a one-
lane road, with no time to stop or communicate, and with a single mo-
ment at which each must choose, independently, either to swerve or to
continue along the road. There is only one direction in which the drivers
might swerve, and so a collision can be avoided only if one of the drivers
swerves and the other does not; if neither swerves, or both do, a collision
occurs. This example is depicted in Figure 3, where α and β represent
the two drivers, K1 and K2 represent the actions available to α of swerv-
ing or staying on the road, K3 and K4 likewise represent the swerving or
continuing actions available to β, and m represents the moment at which
α and β must make their choice. The histories h1 and h3 are the ideal
outcomes, resulting when one driver swerves and the other one does not;
collision is avoided. The histories h2 and h4, resulting either when both
drivers swerve or both continue along the road, represent non-ideal out-
comes; collision occurs. The statement A, true at h1 and h2, expresses
the proposition that α swerves.” [58, p.119]
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K
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Choice
m
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Figure 3: The driving example and moral luck

From the dominance point of view both actions available to α are classified as
optimal, written as Optimalmα = {K1,K2}. One of the optimal actions available to
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α guarantees the truth of A and the other guarantees the truth of ¬A. Consequently
M,m 6|= ⊙[α cstit : A] and M,m 6|= ⊙[α cstit : ¬A]. From the orthodox point of
view, we have M,m, h1 |=©[α cstit : A] and M,m, h2 |=©[α cstit : ¬A]. What α
ought to do at an index depends on what β does.

Horty concludes that from the standpoint of intuitive adequacy, the contrast
between the orthodox and dominance deontic operators provides us with another
perspective on the issue of moral luck, the role of external factors in our moral
evaluations [58, p.121]. The orthodox ought is the one who after the actual event
looks back to it. For example, when there has been a collision then α might say—
perhaps while recovering from the hospital bed—that he ought to have swerved.
The dominance ought is looking forward. Though the agent may legitimately regret
his choice, it is not one for which he can be blamed, since either choice, at the time,
could have led to a collision.

4 Procrastination: actualism vs possibilism
Practical reasoning is intimately related to reasoning about time. For example, if
you are obliged and willing to visit a relative, but you always procrastinate this
visit, then we may conclude that you violated this obligation. In other words, each
obligation to do an action should come with a deadline [22, 11].

Challenge 4. How to deal with procrastination in normative reasoning?

The example of Procrastinate’s choices [58, p. 162] illustrates the notion of
strategic oughts. A strategy is a generalized action involving a series of actions.
Like an action, a strategy determines a subset of histories. The set of admissible
histories for a strategy σ is denoted Adh(σ).

A crucial new concept here is the concept of a Field, which is basically a subtree
of the STIT model which denotes that the agent’s reasoning is limited to this range.
A strategic ought is defined analogous to dominance act utilitarianism, in which
action is replaced by strategy in a field. α ought to see to it that A just in case the
truth of A is guaranteed by each of the optimal strategies available to the agent in
the field—formally, that ⊙[α cstit : A] should be settled true at a moment m just
in case Adh(σ) ⊆ |A|m for each σ ∈ Optimalmα . Horty observes some complications,
and that a ‘proper treatment of these issues might well push us beyond the borders
of the current representational formalism’ [p.150].

Horty also uses the example of Procrastinate’s choices to distinguish between
actualism and possibilism, for which he uses the strategic oughts, and in particular
the notion of a field. Roughly, actualism is the view that an agent’s current actions
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are to be evaluated against the background of the actions he is actually going to
perform in the future. Possibilism is the view that an agent’s current actions are
to be evaluated against the background of the actions that he might perform in the
future, the available future actions.

The example is due to Jackson and Pargetter [63].

“Professor Procrastinate receives an invitation to review a book. He is
the best person to do the review, has the time, and so on. The best thing
that can happen is that he says yes, and then writes the review when the
book arrives. However, suppose it is further the case that were to say
yes, he would not in fact get around to writing the review. Not because
of incapacity or outside interference or anything like that, but because
he would keep on putting the task off. (This has been known to happen.)
This although the best thing that can happen is for Procrastinate to say
yes and then write, and he can do exactly this, what would happen in
fact were he to say yes is that he would not write the review. Moreover,
we may suppose, this latter is the worst thing which may happen.
[. . . ]
According to possibilism, the fact that Procrastinate would not write the
review were he to say yes is irrelevant. What matters is simply what is
possible for Procrastinate. He can say yes and then write; that is best;
that requires inter alia that he says yes; therefore, he ought to say yes.
According to actualism, the fact that Procrastinate would not actually
write the review were he to say yes is crucial. It means that to say yes
would be in fact to realize the worst. Therefore, Procrastinate ought to
say no.”

Horty represents the example by the STIT model in Figure 4. Here, m1 is the
moment at which Procrastinate, represented as the agent α, chooses whether or not
to accept the invitation: K1 represents the choice of accepting, K2 the choice of de-
clining. If Procrastinate accepts the invitation, he then faces at m2 the later choice
of writing the review or not: K3 represents the choice of writing the review, K4
another choice that results in the review not being written. For convenience, Horty
also supposes that at m3 Procrastinate has a similar choice whether or not to write
the review: K5 represents the choice of writing, K6 the choice of not writing. The
history h1, in which Procrastinate accepts the invitation and then writes the review,
carries the greatest value of 10; the history h2, in which Procrastinate accepts the
invitation and then neglects the task, the least value of 0; the history h4, in which
he declines, such that a less competent authority reviews the book, carries an inter-
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mediate value of 5; and the peculiar h3, in which he declines the invitation but then
reviews the book anyway, carries a slightly lower value of 4, since he wastes his time,
apart from doing no one else any good. The statement A represents the proposi-
tion that he accepts the invitation; the statement B represents the proposition that
Procrastinate will write the review.
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m
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Figure 4: Procrastinate’s choices

Now, in the possibilist interpretation, M = {m1,m2,m3} is the background
field. In this interpretation, Procrastinate ought to accept the invitation because
this is the action determined by the best available strategy—first accepting the
invitation, and then writing the review. Formally, we have OptimalMα = {σ6} with
σ6 = {〈m1,K1〉, 〈m2,K3〉}. Since Adh(σ6) ⊆ |A|m, the strategic ought statement⊙[α cstit : A] is settled true in the field M . In the actualist interpretation, the
background field may be narrowed to the set M ′ = {m1}, which shifts from the
strategic to the momentary theory of oughts. In this case, we have ⊙[α cstit : A] is
settled false. It is as if we choose to view Procrastinate as gambling on his own later
choice in deciding whether to accept the invitation. However, from this perspective,
this should not be viewed as a gamble; an important background assumption—and
the reason that he should decline the invitation—is that he will not, in fact, write
the review.

5 Jørgensen’s dilemma and the problem of detachment
A philosophical problem that has had a major impact in the development of deontic
logic is Jørgensen’s dilemma. In a nutshell, given that norms cannot be true or false,
the dilemma implies that deontic logic cannot be based on traditional truth func-
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tional semantics. In particular, building on a tradition of Alchourrón and Bulygin
in the seventies, Makinson [84] argues that norms need to be represented explicitly.
SDL, DSDL and STIT logic represent logical relations between deontic operators,
but they do not explicitly represent a distinction between norms and obligations.
The explicit representation of norms is the basis of alternative semantics, that breaks
with the idea of traditional semantics that norms and obligations have truth val-
ues, and most importantly, that discards the main technical and conceptual tool of
traditional semantics, namely possible worlds. As an example, in this section we
illustrate this alternative semantics using input/output logic.

5.1 Jørgensen’s dilemma

While normative concepts are the subject of deontic logic, it is quite difficult to see
how there can be a logic of such concepts at all. Norms like individual imperatives,
promises, legal statutes, and moral standards are usually not viewed as being true
or false. E.g. consider imperative or permissive expressions such as “John, leave
the room!” and “Mary, you may enter now”: they do not describe, but demand
or allow a behavior on the part of John and Mary. Being non-descriptive, they
cannot meaningfully be termed true or false. Lacking truth values, these expressions
cannot—in the usual sense—be premise or conclusion in an inference, be termed
consistent or contradictory, or be compounded by truth-functional operators. Hence,
though there certainly exists a logical study of normative expressions and concepts,
it seems there cannot be a logic of norms: this is Jørgensen’s dilemma [65, 84].

Though norms are neither true nor false, one may state that according to the
norms, something ought to be done or is permitted: the statements “John ought to
leave the room” and“Mary is permitted to enter” are then true or false descriptions
of the normative situation. Such statements are sometimes called normative state-
ments, as distinguished from norms. To express principles such as the principle of
conjunction: O(p∧ q)↔ (Op∧Oq), with Boolean operators having truth-functional
meaning at all places, deontic logic has resorted to interpreting its formulas Op, Fp,
Pp not as representing norms, but as representing such normative statements. A
possible logic of normative statements may then reflect logical properties of under-
lying norms—thus logic may have a “wider reach than truth”, as Von Wright [124]
famously stated.

Since the truth of normative statements depends on a normative situation, in the
way in which the truth of the statement “John ought to leave the room” depends on
whether some authority ordered John to leave the room or not, it seems that norms
must be represented in a logical semantics that models such truth or falsity. However,
semantics used to model the truth or falsity of normative statements mostly fail to
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include norms. Standard deontic semantics evaluates deontic formulas with respect
to sets of worlds, in which some are ideal or better than others—Ox is then defined
to be true if x is true in all ideal or the best reachable worlds. Alternatively, norms,
not ideality, should provide the basis on which normative statements are evaluated.
Thus the following question arises, asked by D. Makinson [84]:

Challenge 5. How can deontic logic be reconstructed in accord with the philosophical
position that norms are neither true nor false?

In the older literature on deontic logic there has been a veritable ‘imperativist
tradition’ of authors that have, deviating from the standard approach, in one way
or other, tried to give truth definitions for deontic operators with respect to given
sets of norms. Cf. among others S. Kanger [67], E. Stenius [105], T. J. Smiley
[103], Z. Ziemba [125], B. van Fraassen [114], Alchourrón and Bulygin [2] and I.
Niiniluoto [90]. The reconstruction of deontic logic as logic about imperatives has
been the project of Jörg Hansen beginning with [47]. Input/output logic [85] is
another reconstruction of a logic of norms in accord with the philosophical position
that norms direct rather than describe, and are neither true nor false. We explain
it in more detail in the next section below.

5.2 Input/output logic
To illustrate a possible answer to the dilemma, we use Makinson and van der Torre’s
input/output logic [85, 86, 87], and we therefore assume familiarity with this ap-
proach (cf. [88] for an introduction). Input/output logic takes a very general view
at the process used to obtain conclusions (more generally: outputs) from given sets
of premises (more generally: inputs). While the transformation may work in the
usual way, as an ‘inference motor’ to provide logical conclusions from a given set of
premises, it might also be put to other, perhaps non-logical uses. Logic then acts as
a kind of secretarial assistant, helping to prepare the inputs before they go into the
machine, unpacking outputs as they emerge, and, less obviously, coordinating the
two. The process as a whole is one of logically assisted transformation, and is an
inference only when the central transformation is so. This is the general perspec-
tive underlying input/output logic. It is one of logic at work rather than logic in
isolation; not some kind of non-classical logic, but a way of using the classical one.

Suppose that we have a set G (meant to be a set of conditional norms), and a
set A of formulas (meant to be a set of given facts). The problem is then: how may
we reasonably define the set of propositions x making up the output of G given A,
which we write out(G,A)? In particular, if we view the output as a collection of
descriptions of states of affairs that ought to obtain given the norms G and the
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facts A, what is a reasonable output operation that enables us to define a deontic
O-operator that returns the normative statements that are true given the norms and
the facts—the normative consequences given the situation? One such definition is
the following:

G,A |= Ox iff x ∈ out(G,A)
So Ox is true iff the output of G under A includes x. Note that this is rather a
description of how we think such an output should or might be interpreted, whereas
‘pure’ input/output logic does not discuss such definitions. For a simple case, let G
include a conditional norm that states that if a is the case, x should obtain (we
write (a, x) ∈ G). An unconditional norm that commits the agent to realizing x is
represented by a conditional norm (>, x), where > means an arbitrary tautology. If
a can be inferred from A, i.e. if a ∈ Cn(A), and z is logically implied by x, then z
should be among the normative consequences of G given A. An operation that does
this is simple-minded output out1:

out1(G,A) = Cn(G(Cn(A)))
where G(B) = {y | (b, y) ∈ G and b ∈ B}. So in the given example, Oz is true given
(a, x) ∈ G, a ∈ Cn(A) and z ∈ Cn(x).

Simple-minded output may, however, not be strong enough. Sometimes, legal
argumentation supports reasoning by cases: if there is a conditional norm (a, x) that
states that an agent must bring about x if a is the case, and a norm (b, x) that states
that the same agent must also bring about x if b is the case, and a∨ b is implied by
the facts, then we should be able to conclude that the agent must bring about x.
An operation that supports such reasoning is basic output out2:

out2(G,A) = ∩{Cn(G(V )) | v(A) = 1}
where v ranges over Boolean valuations plus the function that puts v(b) = 1 for all
formulae b, and V = {b | v(b) = 1}. It can easily be seen that now Ox is true given
{(a, x), (b, x)} ⊆ G and a ∨ b ∈ Cn(A).

This definition of out2 may give rise to a mere feeling of merely technical ade-
quacy, because of its recourse to intersection and valuations, neither of which quite
corresponds to our natural course of reasoning in such situations. However, this
semantics makes explicit what is present but implicit in the use of possible worlds in
conditional logics: if you want to reason by cases in the logic, you need to represent
the cases explicitly in the semantics.

It is quite controversial whether reasoning with conditional norms should support
‘normative’ or ‘deontic detachment’, i.e. whether it should be accepted that if one
norm (a, x) commands an agent to make x true in conditions a, and another norm
(x, y) directs the agent to make y true given x is true, then the agent has an obligation
to make y true if a is factually true. Some would argue that as long as the agent
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has not in fact realized x, the norm to bring about y is not ‘triggered’; others would
maintain that obviously the agent has an obligation to make x ∧ y true given that
a is true. Moreover, the inference can be restricted to cases where the agent ought
to make x true instantly rather than eventually, see [84, 11] If such detachment is
viewed as permissible for normative reasoning, then one might use reusable output
out3 that supports such reasoning:

out3(G,A) = ∩{Cn(G(B)) | A ⊆ B = Cn(B) ⊇ G(B)}
An operation that combines reasoning by cases with deontic detachment is then
reusable basic output out4:

out4(G,A) = ∩{Cn(G(V )) : v(A) = 1 and G(V ) ⊆ V }
It may turn out that further modifications of the output operation are required

in order to produce reasonable results for normative reasoning. Also, the proposal
to employ input/output logic to reconstruct deontic logic may lead to competing
solutions, depending on what philosophical views as to what transformations should
be acceptable one subscribes to. All this is what input/output logic is about. How-
ever, it should be noted that input/output logic succeeds in representing norms as
entities that are neither true nor false, while still permitting normative reasoning
about such entities.

5.3 Contrary to duty reasoning reconsidered
In the input/output logic framework, the strategy for eliminating excess output is to
cut back the set of generators to just below the threshold of yielding excess. To do
that, input/output logic looks at the maximal non-excessive subsets, as described
by the following definition:
Definition (Maxfamilies) Let G be a set of conditional norms and A and C
two sets of propositional formulas. Then maxfamily(G,A,C) is the set of maximal
subsets H ⊆ G such that out(H,A) ∪ C is consistent.
For a possible solution to Chisholm’s paradox, consider the following output opera-
tion out∩:

out∩(G,A) = ⋂{out(H,A) | H ∈ maxfamily(G,A,A)}
So an output x is in out∩(G,A) if it is in output out(H,A) of all maximal norm
subsets H ⊆ G such that out(H,A) is consistent with the input A. Let a deontic
O-operator be defined in the usual way with regard to this output:

G,A |= O∩x iff x ∈ out∩(G,A)
Furthermore, tentatively, and only for the task of shedding light on Chisholm’s
paradox, let us define an entailment relation between norms as follows:
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Definition (Entailment relation) Let G be a set of conditional norms, and (a, x)
be a norm whose addition to G is under consideration. Then (a, x) is entailed by G
iff for all sets of propositions A, out∩(G ∪ {(a, x)}, A) = out∩(G,A).
So a (considered) norm is entailed by a (given) set of norms if its addition to this set
would not make a difference for any set of facts A. Finally, let us use the following
cautious definition of ‘coherence from the start’ (also called ‘minimal coherence’ or
‘coherence per se’), see Section 7:

A set of norms G is ‘coherent from the start’ iff ⊥ /∈ out(G,>).
Now consider a ‘Chisholm norm set’ G = {(>, x), (x, z), (¬x,¬z), }, where (>, x)
means the norm that the man must go to the assistance of his neighbors, (x, z)
means the norm that it ought to be that if he goes he ought to tell them he is coming,
and (¬x,¬z) means the norm that if he does not go he ought not to tell them he is
coming. It can be easily verified that the norm set G is ‘coherent from the start’ for
all standard output operations outn, since for these either out(G,>) = Cn({x}) or
out(G,>) = Cn({x, z}), and both sets {x} and {x, z} are consistent. Furthermore, it
should be noted that all norms in the norm set G are independent from each other, in
the sense that no norm (a, x) ∈ G is entailed by G\{(a, x)} for any standard output
operation out(+)

n : for (>, x) we have x ∈ out∩(G,>) but x /∈ out∩(G \ {(>, x)},>),
for (x, z) we have z ∈ out∩(G, x) but z /∈ out∩(G \ {(x, z)}, x), and for (¬x,¬z)
we have ¬z ∈ out∩(G,¬x) but ¬z /∈ out∩(G \ {(¬x,¬z)},>). Finally consider
the ‘Chisholm fact set’ A = {¬x}, that includes as an assumed unalterable fact
the proposition ¬x, that the man will not go to the assistance of his neighbors:
we have maxfamily(G,A,A) = {G \ {(>, x)}} = {{(x, z), (¬x,¬z), }} and either
out(G \ {(>, x)}, A) = Cn({¬z}) or out(G \ {(>, x)}, A) = Cn({¬x,¬z}) for all
standard output operations out(+)

n , and so O∩¬z is true given the norm and fact
sets G and A, i.e. the man must not tell his neighbors he is coming. Thus:

G,A |= O∩¬z

6 Multiagent detachment
In Section 6.1 we introduce normative multiagent systems using agents and con-
trollable propositions, and we introduce a challenge for detachment for multiagent
systems. In Section 6.2 we give a solution for the challenge in these formalisms.

6.1 Challenge for multiagent detachment
Olde Loohuis [91] argues that the assumption that other agents comply with their
norms reflects that agents live in a responsible world. However, Makinson [84]
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observes that if all we know is that “John owes Peter $1000” and “if John pays
Peter $1000, then Peter is obliged to give John a receipt,” then we cannot detach
that Peter has to give John a receipt unconditionally based on the assumption that
John will pay Peter the money.

We assume that the normative system is known to all agents, and in this section
we assume that it does not change over time, and that each norm is directed to
one agent only. The agents reason about the consequences of the normative system,
that is, which obligations and permissions can be detached from it. With an explicit
normative system, the agents should act such that they do not violate norms. More-
over, in this section we assume that each (instance of a) norm specifies the behavior
of a single individual agent. For example, a norm may say that an agent should
drive to the right hand side of the street, but we do not consider group norms saying
that agents should live together in harmony.

We do not assume a full action theory as in STIT logic, but we assume a minimal
action theory: the set of propositions is partitioned into parameters (uncontrollable
propositions) and decision variables (controllable propositions). Boutilier [19] traces
this idea back to discrete event systems, see also Cholvy and Garion [30]. It is
an abstract and general approach, since we can instantiate the propositions with
action descriptions like do(action) or done(action). Note that this generality is in
line with game theory, which abstracts away sequential decisions in extensive games
by representing conditional plans as strategic games. Boutilier observes that the
theory can be extended to a full fledged action theory by, for example, introducing
a causal theory. By convention, the proposition letters p, p1, etc are parameters,
a, a1, . . . , are decision variables for agent 1, b, b1, . . . , are decision variables for
agent 2, etc. Norms are written as pairs of propositional formulas, where (p1, p2)
is read as “if p1 is the case, then p2 ought to be the case,” (a1, a2) is read as “if
agent 1 does a1, then he has to do a2,” and so on. We restrict the propositional
language to conjunctions of literals (propositional atoms or their negations), so we
do not consider disjunctions or material implications.

Definition 6.1 (Normative multi agent system, individual norms). A normative
multiagent system is a tuple NMAS= 〈A,P, c,N〉 where A is a set of agents, P
is a set of atomic propositions, c : P → A is a partial function which maps the
propositions to the agents controlling them, and N is a set of pairs of conjunctions
of literals built of P , such that if (φ, ψ) ∈ N , then all propositional atoms in ψ are
controlled by a single agent.

Our action theory may be seen as a simple kind of STIT theory, in the sense
that an obligation for a proposition p controlled by agent α may be read as: “the
agent α ought to see to it that p is the case.” Though this abstracts away from the
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temporal issues of STIT operators, it still has the characteristic property of STIT
logics that actions have a higher granularity than worlds.

Makinson [84] illustrates the intricacies of temporal reasoning with norms, obli-
gations and agents by discussing the iteration of detachment, in the sense that from
the two conditional norms “if φ, then obligatory ψ” and “if ψ, then obligatory χ”
together with the fact φ, we can derive not only that ψ is obligatory, but also that
χ is obligatory. Makinson’s challenge is how to detach obligations based on the
principle that agents cannot assume that other agents comply with their norms, but
they assume that they themselves comply with their norms. In other words, deontic
detachment holds only for the single agent a-temporal case.

First, Makinson argues that iteration of detachment often appears to be appro-
priate. He gives the following example, based on instructions to authors preparing
manuscripts.
Example 6.2 (Manuscript [84]). Let the set of norms be as follows:
(25x15, 12)=“if 25x15, then obligatory 12” and (12, refs10)=“if 12, then obligatory
refs10”, where 25x15 is "The text area is 25 by 15 cm", 12 is "The font size for
the main text is 12 points", and refs10 is "The font size for the list of references is
10 points". Moreover, consider a single agent controlling the three variables. If the
facts contain 25x15, then we want to detach not only that it is obligatory that 12,
but also that it is obligatory that refs10.

Second, he argues that iteration of detachment sometimes appears to be in-
appropriate by discussing the following example, which he attributes to Sven Ove
Hansson.
Example 6.3 (Receipt [84]). Let instances of the norms be

(owejp, payjp)=“if owejp, then obligatory payjp” and
(payjp, receiptpj)=“if payxy, then obligatory receiptpj”

where owejp is “John owes Peter $1000", payjp is “John pays Peter $1000", and
receiptpj is “Peter gives John a receipt for $1000". Moreover, assume that the first
variable is not controlled by an agent, the second is controlled by John, and the third
is controlled by Peter. Intuitively Makinson would say that in the circumstance
that John owes Peter $1000, considered alone, Peter has no obligation to write any
receipt. That obligation arises only when John fulfils his obligation.

Makinson observes that there appear to be two principal sources of difficulty
here. One concerns the passage of time, and the other concerns bearers of the
obligations. Sven Ove Hansson’s example above involves both of these factors.

“We recall that our representation of norms abstracts entirely from the
question of time. Evidently, this is a major limitation of scope, and leads
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to discrepancies with real-life examples, where there is almost always an
implicit time element. This may be transitive, as when we say “when b
holds then a should eventually hold", or “. . . should simultaneously hold".
But it may be intransitive, as when we say “when b holds then a should
hold within a short time" or “. . . should be treated as a matter of first
priority to bring about". Clearly, iteration of detachment can be legiti-
mate only when the implicit time element is either nil or transitive. Our
representation also abstracts from the question of bearer, that is, who (if
anyone) is assigned responsibility for carrying out what is required. This
too can lead to discrepancies. Iteration of detachment becomes question-
able as soon as some promulgations have different bearers from others,
or some are impersonal (i.e. without bearer) while others are not. Only
when the locus of responsibility is held constant can such an operation
take place.” [84]

Challenge 6. How to define detachment for multiple agents?

Broersen and van der Torre [21] consider the temporal aspects of the example.
In this section we consider the actions of the agents. The following example extends
the discussion of the example to aggregative deontic detachment.

Example 6.4 (continued). Consider again (owejp, payjp) and (payjp, receiptpj),
where the first variable is not controlled by an agent, the second is controlled by
John, and the third is controlled by Peter. In the circumstance that John owes Peter
$1000, considered alone, do we want to derive the obligation for payjp∧receiptpj, that
is, the obligation that “John pays Peter $1000", and “Peter gives John a receipt for
$1000"? In many systems the obligation for payjp ∧ receiptpj implies the obligation
for receiptpj, such that the answer will be negative. However, if the obligation for
payjp∧receiptpj does not imply the obligation for receiptpj, then maybe the obligation
for payjp ∧ receiptpj is not as problematic as the obligation for receiptpj. Moreover,
the obligation for payjp∧receiptpj is a compact representation of the fact that ideally,
the exchange of money and receipt takes place.

6.2 Deontic detachment for agents

As the iterative approaches seem most natural to most people, we define deontic
detachment of agents using these iterative approaches. The question thus arises
whether we consider sequential or iterated detachment. The following example il-
lustrates this question, not discussed by Makinson [84].
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Example 6.5. N = {(p, a), (a, b1), (a ∧ b1, b2)} where p is a parameter, a is a
decision variable of agent 1, and b1 and b2 are decision variables of agent 2. In
context F = {p, a}, do we want to detach only b1, or both b1 and b2? If we can
detach b2, then this implies that despite the fact that a and b1 are decision variable
from distinct agents we can use (a ∧ b1, b2) to detach b2.

In the above example, we believe that b2 should be derivable, because only b1 is
reused when b2 is detached, and both b1 and b2 are decision variables of the same
agent. In other words, when considering the norm (a∧b1, b2) to detach b2, we should
not consider the norm and reject it because there is a variable in the input which
refers to another agent, but we should consider it since we have a ∈ F as a fact, and
b1 already in the output, we can derive b2 too.

If b2 should not be derivable, then we could simply restrict the set of norms that
we select from N to satisfy the syntactic criterion, just like we selected the set of
norms N0. However, if b2 should be derivable, then we have to define detachment
procedures for each agent, and combine them afterwards. This is formalized in the
following detachment procedure for agents.

Definition 6.6 (Iterative detachment for agents.). Agent a ∈ A controls a propo-
sitional formula φ, written as c(φ) = a, if and only if for all atoms x ∈ φ we have
c(x) = a.

Na
0 = {(φ, ψ) ∈ N | F ∪ {φ} 6|= ¬ψ, c(ψ) = a}

Eia0 = ∅. For n = 1 to ∞ do Eian+1 = {ψ | (φ, ψ) ∈ Na
0 , F ∪ Eian |= φ} if

consistent with F , Eian otherwise. outia(N,F, a) = Cn(∪Eiai ), and outia(N,F ) =
∪a∈Aoutia(N,F, a).

We leave the logical analysis of this ans related approaches to future work.

7 Coherence
Consider norms which at the same time require you to leave the room and not
to leave the room. In such cases, we are inclined to say that there is something
wrong with the normative system. This intuition is captured by the SDL axiom
D : ¬(Ox ∧ O¬x) that states that there cannot be co-existing obligations to bring
about x and to bring about ¬x, or, using the standard cross-definitions of the deontic
modalities: x cannot be both, obligatory and forbidden, or: if x is obligatory then
it is also permitted. However, what does this tell us about the normative system?

Since norms do not bear truth values, we cannot, in any usual sense, say that
such a set of norms is inconsistent. All we can consider is the consistency of the
output of a set of norms. We like to use the term coherence with respect to a set of
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norms with consistent output. For a start, consider the notion of minimal coherence
in Section 5.3:
(0) A set of norms G is minimal coherent iff ⊥ /∈ out(G, ∅).

This is clearly very weak, as for example the norms (a, x), (a,¬x) would be
coherent. Alternatively, we might try to define coherence as follows:
(1) A set of norms G is coherent iff ⊥ /∈ out(G,A).

However, this definition seems not quite sufficient: one might argue that one should
be able to determine whether a set of norms G is coherent or not regardless of what
arbitrary facts A might be assumed. A better definition would be (1a):
(1a) A set of norms G is coherent iff there exists a set of formulas A such

that ⊥ /∈ out(G,A).
For (1a) it suffices that there exists a situation in which the norms can be, or could
have been, fulfilled. However, consider the set of norms G = {(a, x), (a,¬x)} that
requires both x to be realized and ¬x to be realized in conditions a: it is immediate
that e.g. for all output operations outn, we have ⊥ /∈ outn(G,¬a): no conflicting
demands arise when ¬a is factually assumed. Yet something seems wrong with
a normative system that explicitly considers a fact a only to tie to it conflicting
normative consequences. The dual of (1a) would be
(1b) A set of norms G is coherent iff for all sets of formulas A, we have

⊥ /∈ out(G,A).
Now a set G with G = {(a, x), (a,¬x)} would no longer be termed coherent. (1b)
makes the claim that for no situation A, two norms (a, x), (b, y) would ever come
into conflict, which might seem too strong. We may wish to restrict A to sets of
facts that are consistent, or that are not in violation of the norms. The question
is, basically, how to distinguish situations that the norm-givers should have taken
care of, from those that describe misfortune or otherwise unhappy circumstances.
A weaker claim than (1b) would be (1c):
(1c) A set of norms G is coherent iff for all a with (a, x) ∈ G, we have

⊥ /∈ out(G, a).
By this change, consistency of output is required just for those factual situations that
the norm-givers have foreseen, in the sense that they have explicitly tied normative
consequences to such facts. Still, (1c) might require further modification, since if
a is a foreseen situation, and so is b, then also a ∨ b or a ∧ b might be counted as
foreseen situations for which the norms should be coherent.

As one anonymous reviewer suggested, another solution consists in combining
elements of previous proposals:
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(1d) A set of norms G is coherent iff for each A ⊆ {a | (a, x) ∈ G}, if A
is non-empty and consistent, then
⊥ /∈ out(G,A).

However, there is a further difficulty: let G contain a norm (a,¬a) that, for
conditions in which a is unalterably true, demands that ¬a be realized. We then have
¬a ∈ outn(G, a) for the principal output operations outn, but not ⊥ ∈ outn(G, a).
Certainly the term ‘incoherent’ should apply to a normative system that requires the
agent to accomplish what is—given the facts in which the duty arises—impossible.
However, since not every output operation supports ‘throughput’, i.e. the input
is not necessarily included in the output, neither (1) nor its variants implies that
the agent can actually realize all propositions in the output, though they might be
logically consistent. We might therefore demand that the output be not merely
consistent, but consistent with the input:
(2) A set of norms G is coherent iff out(G,A) ∪A 6|= ⊥.

However, with definition (2) we obtain the questionable result that for any case of
norm-violation, i.e. for any case in which (a, x) ∈ G and (a ∧ ¬x) ∈ Cn(A), G must
be termed incoherent—Adam’s fall would only indicate that there was something
wrong with God’s commands. One remedy would be to leave aside all those norms
whose violation is entailed by the circumstances A, i.e. instead of out(G,A) consider
out({(a, x) ∈ G | (a ∧ ¬x) /∈ Cn(A)}, A)—but then a set G such that (a,¬a) ∈ G
would not be incoherent.2 It seems it is time to formally state our problem:

Challenge 7. When is a set of norms to be termed ‘coherent’?

As can be seen from the discussion above, input/output logic provides the tools
to formally discuss this question, by rephrasing the question of coherence of the
norms as one of consistency of output, and of output with input. Both notions have
been explored in the input/output framework as ‘output under constraints’, see also
the motivation regarding contrary-to-duty reasoning in Section 1.4.:
Definition (Output under constraints) Let G be a set of conditional norms
and A and C two sets of propositional formulas. Then G is coherent in A under
constraints C when out(G,A) ∪ C is consistent.
Future study must define an output operation, determine the relevant states A, and
find the constraints C, such that any set of norms G would be appropriately termed
coherent or incoherent by this definition.

2Temporal dimensions are not considered here. In an approach that would consider dynamic
norms, one may argue, throughput should not be included in a definition of coherence as any change
involves an inconsistency between the way things were and the way they become.

2961



Pigozzi and van der Torre

8 Normative conflicts and dilemmas
There are essentially two views on the question of normative conflicts: in the one
view, they do not exist. In the other view, conflicts and dilemmas are ubiquitous.

According to the view that normative conflicts are ubiquitous, it is obvious that
we may become the addressees of conflicting normative demands at any time. My
mother may want me to stay inside while my brother wants me to go outside with
him and play games. I may have promised to finish a paper by the end of a certain
day, while for the same day I have promised a friend to come to dinner—now it
is late afternoon and I realize I will not be able to finish the paper if I visit my
friend. Social convention may require me to offer you a cigarette when I am lighting
one for myself, while concerns for your health should make me not offer you one.
Legal obligations might collide - think of the case where the SWIFT international
money transfer program was required by US anti-terror laws to disclose certain
information about its customers, while under European law that also applied to that
company, it was required not to disclose this information. Formally, let there be two
conditional norms (a, x) and (b, y): unless we have that either (x→ y) ∈ Cn(a ∧ b)
or (y → x) ∈ Cn(a ∧ b) there is a possible situation a ∧ b ∧ ¬(x ∧ y) in which the
agent can still satisfy each norm individually, but not both norms collectively. But
to assume this for any two norms (a, x) and (b, y) is clearly absurd. Nevertheless,
as discussed extensively in Section 1 of this article, Lewis’s [74, 75] and Hansson’s
[53] deontic semantics imply that there exists a ‘system of spheres’, in our setting: a
sequence of boxed contrary-to-duty norms (>, x1), (¬x1, x2), (¬x1 ∧¬x2, x3), ... that
satisfies this condition. So any logic about norms must take into account possible
conflicts. But standard deontic logic SDL includes D: ¬(Ox ∧ O¬x) as one of its
axioms, and it is not immediately clear how deontic reasoning could accommodate
conflicting norms.

Challenge 8.Challenge 8a. How can deontic logic accommodate possible conflicts of norms?

The literature on normative conflicts and dilemmas is vast. As highlighted earlier
in this article, here we do not aim at an exhausting literature review on the topic;
for that, the interested reader is referred to Goble’s [38] chapter in the handbook of
deontic logic and normative systems. If we accept the view that normative conflicts
not only genuinely exist but are also ubiquitous, one classical way to deal with
such conflicts consists in denying that ‘ought’ implies ‘can’, as done by Lemmon
[73]. Another common solution is to deny the principle of conjunction, that is, to
deny that oughting to do x and y separately implies ought to do both [89, 114, 35].
However, this solution was challenged by Horty’s example [59, 60, 61, 62] where,
from “Smith ought to fight in the army or perform alternative national service"
and “Smith ought not to fight in the army", we should be able to derive “Smith
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ought to perform alternative national service". By withdrawing the principle of
conjunction, this argument is no longer valid. The distribution rule states that
x necessitates y implies that, if one ought to do x, then one ought to do y. As
Goble [38] observes, although this principle has been often criticized for its role in
many deontic paradoxes, its responsibility in connection with normative conflicts
has rarely been discussed. Keeping the principle of conjunction while removing
the distribution rule would validate Horty’s argument [37]. For other systems that
restrict the distribution principle, see [36, 37].

In an input/output setting one could say that there exists a conflict whenever
⊥ ∈ Cn(out(G,A) ∪ A), i.e. whenever the output is inconsistent with the input:
then the norms cannot all be satisfied in the given situation. There appear to be
two ways to proceed when such inconsistencies cannot be ruled out. For the concepts
underlying the ‘some-things-considered’ and ‘all-things-considered’ O-operators de-
fined below cf. Horty [60] and Hansen [48, 49]. For both, it is necessary to recur
to the the notion of a maxfamily(G,A,A), i.e. the family of all maximal H ⊆ G
such that out(H,A) ∪A is consistent. On this basis, input/output logic defines the
following two output operations out∪ and out∩:

out∪(G,A) = ⋃{out(H,A) | H ∈ maxfamily(G,A,A)}
out∩(G,A) = ⋂{out(H,A) | H ∈ maxfamily(G,A,A)}

Note that out∪ is a non-standard output operation that is not closed under conse-
quences, i.e. we do not generally have Cn(out∪(G,A)) = out∪(G,A). Finally we
may use the intended definition of an O-operator

G,A |= Ox iff x ∈ out(G,A)
to refer to the operations out∪ and out∩, rather than the underlying operation
out(G,A) itself, and write O∪x and O∩x to mean that x ∈ out∪(G,A) and
x ∈ out∩(G,A), respectively. Then we have that the ‘some-things-considered’, or
‘bold’ O-operator O∪ describes x as obligatory given the set of norms G and the
facts A if x is in the output of some H ∈ maxfamily(G,A,A), i.e. if some sub-
set of non-conflicting norms, or: some coherent normative standard embedded in
the norms, requires x to be true. It is immediate that neither the SDL axiom
D : ¬(Ox ∧ O¬x) nor the agglomeration principle C : Ox ∧ Oy → O(x ∧ y) holds
for O∪, as there may be two competing standards demanding x and ¬x to be real-
ized, while there may be none that demands the impossible x ∧ ¬x. However, the
‘all-things-considered’, or ‘sceptic’, O-operator O∩ describes x as obligatory given
the norms G and the facts A if x is in the outputs of all H ∈ maxfamily(G,A,A), i.e.
it requires that x must be realized according to all coherent normative standards.
Note that by this definition, both SDL theorems D and C are validated.

The opposite view, that normative conflicts do not exist, appeals to the very
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notion of obligation: it is essential for the function of norms—to direct human
behavior—that the subject of the norms is capable of following them. To state
a norm that cannot be fulfilled is a meaningless use of language. To state two
norms which cannot both be fulfilled is confusing the subject, not giving him or
her directions. To say that a subject has two conflicting obligations is therefore a
misuse of the term ‘obligation’. So there cannot be conflicting obligations, and if
things appear differently, a careful inspection of the normative situation is required
that resolves the dilemma in favor of the one or other of what only appeared both to
be obligations. In particular, this inspection may reveal that the apparent conflicts
in reality comes from some ambiguities in the examples, for instance where a moral
‘ought’ is not compatible with a legal ‘ought’: thus, there is no real conflict, because
the two ‘oughts’ refer to two different spheres, and each should be represented with a
different operator [26, 27]. Or again, a priority ordering of the apparent obligations
may help resolving the conflict, e.g. in Ross [100], von Wright [121, 122], and Hare
[55]. The problem that arises for such a view is then how to determine the ‘actual
obligations’ in face of apparent conflicts, or, put differently, in the face of conflicting
‘prima facie’ obligations.

Challenge 8b. How can the resolution of apparent conflicts be semantically mod-
eled?

Again, both the O∪ and the O∩-operator may help to formulate and solve the
problem: O∪ names the conflicting prima facie obligations that arise from a set of
norms G in a given situation A, whereas O∩ resolves the conflict by only telling
the agent to do what is required by all maximal coherent subsets of the norms:
so there might be conflicting ‘prima facie’ O∪-obligations, but no conflicting ‘all
things considered’ O∩-obligations. The view that a priority ordering helps to resolve
conflicts seems more difficult to model. A good approach appears to be to let
the priorities help us to select a set P (G,A,A) of preferred maximal subsets H ∈
maxfamily(G,A,A). We may then define the O∩-operator not with respect to the
whole of maxfamily(G,A,A), but only with respect to its selected preferred subsets
P (G,A,A). Ideally, in order to resolve all conflicts, the priority ordering should
narrow down the selected sets to card(P (G,A,A)) = 1, but this generally requires
a strict ordering of the norms in G. The demand that all norms can be strictly
ordered is itself subject of philosophical dispute. Some moral requirements may be
incomparable: this is Sartre’s paradox, where the requirement that Sartre’s student
stays with his ailing mother conflicts with the requirement that the student joins
the resistance against the German occupation [101]. Other moral requirements may
be of equal weight, e.g. two simultaneously obtained obligations towards identical
twins, of which only one can be fulfilled [89]. The difficult part is then to define
a mechanism that determines the preferred maximal subsets by use of the given
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priorities between the norms. There have been several proposals to this effect, not
all of them successful, and the reader is referred to the discussions in Boella and van
der Torre [13] and Hansen [50, 51].

9 Descriptive dyadic obligations
Dyadic deontic operators, that formalize e.g. ‘x ought to be true under conditions
a’ as O(x|a), were introduced over 50 years ago by G. H. von Wright [118]. Their
introduction was due to Prior’s paradox of derived obligation: often a primary obli-
gation Ox is accompanied by a secondary, ‘contrary-to-duty’ obligation that pro-
nounces y (a sanction, a remedy) as obligatory if the primary obligation is violated.
At the time, the usual formalization of the secondary obligation would have been
O(¬x→ y), but given Ox and the axioms of standard deontic logic SDL, O(¬x→ y)
is derivable for any y. A bit later, Chisholm’s paradox showed that formalizing the
secondary obligation as ¬x→ Oy produces similarly counterintuitive results. So to
deal with such contrary-to-duty conditions, the dyadic deontic operator O(x|a) was
invented. For a historical account the reader is referred to Hilpinen and McNamara’s
chapter in the handbook of deontic logic and normative systems [57].

In Section 1.3 we have extensively discussed DSDL. The perhaps best-known se-
mantic characterization of dyadic deontic logic is B. Hansson’s [53] system DSDL3,
axiomatized by Spohn [104]. Hansson’s idea was that the circumstances (the con-
ditions a) are something which has actually happened (or will unavoidably happen)
and which cannot be changed afterwards. Ideal worlds in which ¬a is true are
therefore excluded. However, some worlds may still be better than others, and
there should then be an obligation to make ‘the best out of the sad circumstances”.
Consequently, Hansson presents a possible worlds semantics in which all worlds are
ordered by a preference (betterness) relation. O(x|a) is then defined true if x is true
in the best a-worlds. Here, we intend to employ semantics that do not make use of
any prohairetic betterness relation, but that model deontic operators with regard to
given sets of norms and facts.

Challenge 9. How to define dyadic deontic operators with regard to given sets of
norms and facts?

Input/output logic assumes a set of (conditional) norms G, and a set of unal-
terable facts A. The facts A may describe a situation that is inconsistent with the
output out(G,A): suppose there is a primary norm (>, a) ∈ G and a secondary
norm (¬a, x) ∈ G, i.e. G = {(>, a), (¬a, x)}, and A = {¬a}. Though a ∈ out(G,A),
it makes no sense to describe a as obligatory since a cannot be realized any more
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in the given situation—no crying over spilt milk. Rather, the output should include
only the consequent of the secondary obligation x—it is the best we can make out
of these circumstances. To do so, we return to the definitions of maxfamily(G,A,A)
as the set of all maximal subsets H ⊆ G such that out(H,A) ∪A is consistent, and
the set out∩(G,A) as the intersection of all outputs from H ∈ maxfamily(G,A,A),
i.e. out∩(G,A) = ⋂{out(H,A) | H ∈ maxfamily(G,A,A)}. We may then define:

G |= O(x|a) iff x ∈ out∩(G, {a})
Thus, relative to the set of norms G, O(x|a) is defined true if x is in the output
under a of all maximal setsH of norms such that their output under {a} is consistent
with a. In the example where G = {(>, a), (¬a, x)} we therefore obtain O(x|¬a)
but not O(a|¬a) as being true, i.e. only the consequent of the secondary obligation
is described as obligatory in conditions ¬a.

In the above definition, the antecedent a of the dyadic formula O(x|a) makes the
inputs explicit: the truth definition does not make use of any facts other than a.
This may be unwanted; one might consider an input set A of given facts, and employ
the antecedent a only to denote an additional, assumed fact. Still, the output should
contradict neither the given nor the assumed facts, and the output should include
also the normative consequences x of a norm (a, x) given the assumed fact a. This
may be realized by the following definition:

G,A |= O(x|a) iff x ∈ out∩(G,A ∪ {a})
So, relative to a set of norms G and a set of facts A, O(x, a) is defined true if x is
in the output under A ∪ {a} of all maximal sets H of norms such that their output
under A ∪ {a} is consistent with A ∪ {a}.

Hansson’s description of dyadic deontic operators as describing defeasible obli-
gations that are subject to change when more specific, namely contrary-to-duty
situations emerge, may be the most prominent view, but it is by no means the only
one. Earlier authors like von Wright [119, 120] and Anderson [5] have proposed more
normal conditionals, which in particular support ‘strengthening of the antecedent’
SA O(x|a)→ O(x|a∧ b). From an input/output perspective, such operators can be
accommodated by defining

G,A |= O(x|a) iff x ∈ out(G,A ∪ {a})
It is immediate that for all standard output operations outn this definition validates
SA. The properties of dyadic deontic operators that are, like the above, semantically
defined within the framework of input/output logic, have not been studied so far.
The theorems they validate will inevitably depend on what output operation is
chosen, cf. Hansen [51] for some related conjectures.
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10 Permissive norms
In formal deontic logic, permission is studied less frequently than obligation. For a
long time, it was naively assumed that it can simply be taken as a dual of obligation,
just as possibility is the dual of necessity in modal logic. Permission is then defined
as the absence of an obligation to the contrary, and the modal operator P defined
by Px =def ¬O¬x. Today’s focus on obligations is not only in stark contrast how
deontic logic began, for when von Wright [117] started modern deontic logic in 1951,
it was the P -operator that he took as primitive, and defined obligation as an absence
of a permission to the contrary. Rather, more and more authors have come to realize
how subtle and multi-faceted the concept of permission is. Much energy was devoted
to solving the problem of ‘free choice permission’, where one may derive from the
statement that one is permitted to have a cup of tea or a cup of coffee that it is
permitted to have a cup of tea, and it is permitted to have a cup of coffee, or for
short, that P (x ∨ y) implies Px and Py (cf. Kamp [66]). Von Wright, in his late
work starting with [123], dropped the concept of inter-definability of obligations and
permissions altogether by introducing P -norms and O-norms, where one may call
something permitted only if it derives from the collective contents of some O-norms
and at most one P -norm. This concept of ‘strong permission’ introduced deontic
‘gaps’: whereas in standard deontic logic SDL, O¬x∨Px is a tautology, meaning that
any state of affairs is either forbidden or permitted, von Wright’s new theory means
that in the absence of explicit P -norms only what is obligatory is permitted, and
that nothing is permitted if also O-norms are missing. Perhaps most importantly,
Bulygin [24] observed that an authoritative kind of permission must be used in
the context of multiple authorities and updating normative systems: if a higher
authority permits you to do something, a lower authority can no longer prohibit
it. Summing up, the understanding of permission is still in a less satisfactory state
than the understanding of obligation and prohibition. Indeed, a whole chapter in
the handbook of deontic logic and normative systems is devoted to the various forms
of permission [54].

Challenge 10. How to distinguish various kinds of permissions and relate them to
obligations?

From the viewpoint of input/output logic, one may first try to define a concept
of negative permission in the line of the classic approach. Such a definition is the
following:

G,A |= P negx iff ¬x /∈ out(G,A)
So something is permitted by a code iff its negation is not obligatory according to
the code and in the given situation. As innocuous and standard as such a definition
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seems, questions arise as to what output operation out may be used. Simple-minded
output out1 and basic output out2 produce counterintuitive results: consider a set
of norms G of which one norm (work, tax) demands that if I am employed then I
have to pay taxes. For the default situation A = {>} then P neg(work∧¬tax) is true,
i.e. it is by default permitted that I am employed and do not pay taxes. Stronger
output operations out3 and out4 that warrant reusable output exclude this result,
but their use in deontic reasoning is questionable due to contrary-to-duty reasoning,
as discussed in Section 1.

In contrast to a concept of negative permission, one may also define a concept of
‘strong’ or ‘positive permission’. This requires a set P of explicit permissive norms,
just as G is a set of explicit obligations. As a first approximation, one may say that
something is positively permitted by a code iff the code explicitly presents it as such.
However, this leaves a central logical question unanswered as to how explicitly given
permissive and obligating norms may generate permissions that—in some sense—
follow from the explicitly given norms. Pursuing von Wright’s later approach, we
may define:

G,P |= P stat(x/a) iff x ∈ out(G ∪ {(b, y)}, a) for some (b, y) ∈ P ∪
{(>,>)}

So there is a permission to realize x in conditions a if x is generated under these
conditions either by the norms in G alone, or the norms in G together with some
explicit permission (b, y) in P . We call this a ‘static’ version of strong permission. For
example, consider a set G consisting of the norm (work, tax), and a set P consisting
of the sole license (18y, vote) that permits all adults to take part in political elections.
Then all of the following are true: P stat(tax/work), P stat(vote/18y), P stat(tax/work∧
male) and also P stat(vote/¬work ∧ 18y) (so even unemployed adults are permitted
to vote).

Where negative permission is liberal, in the sense that anything is permitted
that does not conflict with one’s obligations, the concept of static permission is
quite strict, as nothing is permitted that does not explicitly occur in the norms. In
between, one may define a concept of ‘dynamic permission’ that defines something
as permitted in some situation a if forbidding it for these conditions would prevent
an agent from making use of some explicit (static) permission. The formal definition
reads:

G,P |= P dyn(x/a) iff ¬y ∈ out(G∪ {(a,¬x)}, b) for some y and condi-
tions b such that G,P |= P stat(y/b)

Consider the above static permission P stat(vote/¬work ∧ 18y) that even the unem-
ployed adult populations is permitted to vote, generated by P = {(18y, vote)} and
G = {(work, tax)}. We might also like to say, without reference to age, that the
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unemployed are protected from being forbidden to vote, and in this sense are per-
mitted to vote, but P stat(vote/¬work) is not true. And we might like to say that
adults are protected from being forbidden to vote unless they are employed, and in
this sense are permitted to be both unemployed and take part in elections, but also
P stat(¬work ∧ vote/18y) is not true. Dynamic permissions allow us to express such
protections, and make both P dyn(vote/¬work) and P dyn(¬work ∧ vote/18y) true: if
either (¬work,¬vote) or (18y, (¬work → ¬vote)) were added to G we would obtain
¬vote as output in conditions (¬work ∧ 18y) in spite of the fact that, as we have
seen, G,P |= P stat(vote/¬work ∧ 18y).

The relation of permission and obligation can also be studied from a multi-agent
perspective. Think of two brothers who are fighting for a toy, and the mother obliges
the son who’s playing with the toy to permit his brother to play as well.

There are, ultimately, a number of questions for all these concepts of permissions
that Makinson and van der Torre have further explored [87]. Other kinds of permis-
sions have been discussed from an input/output perspective in the literature, too,
for example permissions as exceptions of obligations [13]. It seems input/output
logic is able to help clarify the underlying concepts of permission better than tra-
ditional deontic semantics. One challenge is Governatori’s paradox [39], containing
a conditional norm whose body and head are permissions: “the collection of medi-
cal information is permitted provided that the collection of personal information is
permitted."

11 Meaning postulates and intermediate concepts
To define a deontic operator of individual obligation seems straightforward if the
norm in question is an individual command or act of promising. For example, if you
are the addressee α of the following imperative sentence
(1) You, hand me that screwdriver, please.

and you consider the command valid, then what you ought to do is to hand the
screwdriver in question to the person β uttering the request. In terms of input/out-
put logic, let x be the proposition that α hands the screwdriver to β: with the set
of norms G = {(>, x)}, the set of facts A = {>}, and the truth definition Ox iff
x ∈ out(A,G): then we obtain that Ox is true, i.e. it is true that it ought to be that
α hands the screwdriver to β.

Norms that belong to a legal system are more complex, and thus more difficult
to reason about. Consider, for example
(2) An act of theft is punished by a prison sentence not exceeding 5 years or a

fine.
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Things are again easy if you are a judge and you know that the accused in front
of you has committed an act of theft—then you ought to hand out a verdict that
commits the accused to pay a fine or to serve a prison sentence not exceeding 5
years. However, how does the judge arrive at the conclusion that an act of theft
has been committed? ‘Theft’ is a legal term that is usually accompanied by a legal
definition such as the following one:
(3) Someone commits an act of theft if that person has taken a movable object

from the possession of another person into his own possession with the
intention to own it, and if the act occurred without the consent of the other
person or some other legal authorization.

It is noteworthy that (3) is not a norm in the strict sense—it does not prescribe or
allow a behavior—but rather a stipulative definition, or, in more general terms, a
meaning postulate that constitutes the legal meaning of theft. Such sentences are
often part of the legal code. They share with norms the property of being neither
true nor false: stipulative definitions are neither empirical statements nor descriptive
statements. In this sense we say that they are neither true nor false. However, they
are held to be true by definition. The significance of (3) is that it decomposes the
complex legal term ‘theft’ into more basic legal concepts. These concepts are again
the subject of further meaning postulates, among which may be the following:
(4) A person in the sense of the law is a human being that has been born.
(5) A movable object is any physical object that is not a person or a piece of

land.
(6) A movable object is in the possession of a person if that person is able to

control the uses and the location of the object.
(7) The owner of an object is—within the limits of the law—entitled to do

with it whatever he wants, namely keep it, use it, transfer possession or
ownership of the object to another person, and destroy or abandon it.

Not all of definitions (4)-(7) may be found in the legal statutes, though they may be
viewed as belonging to the normative system by virtue of having been accepted in
legal theory and judicial reasoning. They constitute ‘intermediate concepts’: they
link legal terms (person, movable object, possession etc.) to words describing natural
facts (human being, born, piece of land, keep an object etc.).

Any proper representation of legal norms must include means of representing
meaning postulates that define legal terms, decompose legal terms into more basic
legal terms, or serve as intermediate concepts that link legal terms to terms that
describe natural facts. But for deontic logic, with its standard possible worlds se-
mantics, a comprehensive solution to the problem of representing meaning postulates
is so far lacking (cf. Lindahl [78]).
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Challenge 11. How can meaning postulates and intermediate terms be modeled in
semantics for deontic logic reasoning?

The representation of intermediate concepts is of particular interest, since such
concepts arguably reduce the number of implications required for the transition
from natural facts to legal consequences and thus serve an economy of expression
(cf. Lindahl and Odelstad [79] and their recent overview chapter [80]). Lindahl and
Odelstad use the term ‘ownership’ as an example to argue as follows: let F1, ..., Fp be
descriptions of some situations in which a person α acquires ownership of an object
γ, e.g. by acquiring it from some other person β, finding it, building it from owned
materials, etc., and let C1, ..., Cn be among the legal consequences of α’s ownership of
γ, e.g. freedom to use the object, rights to compensation when the object is damaged,
obligations to maintain the object or pay taxes for it etc. To express that each fact
Fi has the consequence Cj , p×n implications are required. The introduction of the
term Ownership(x, y) reduces the number of required implications to p + n: there
are p implications that link the facts F1, ..., Fp to the legal term Ownership(x, y),
and n implications that link the legal term Ownership(x, y) to each of the legal
consequences C1, ..., Cn. The argument obviously does not apply to all cases: one
implication (F1 ∨ ... ∨ Fp)→ (C1 ∧ ... ∧Cn) may often be sufficient to represent the
case that a variety of facts F1, ..., Fp has the same multitude of legal consequences
C1, ..., Cn. However, things may be different when norms that link a number of
factual descriptions to the same legal consequences stem from different normative
sources, may come into conflict with other norms, can be overridden by norms of
higher priority, or be subject to individual exemption by norms that grant freedoms
or licenses: in these cases, the norms must be represented individually. So it seems
worthwhile to consider ways to incorporate intermediate concepts into a formal
semantics for deontic logic.

In an input/output framework, a first step could be to employ a separate set T of
theoretical terms, namely meaning postulates, alongside the set G of norms. Let T
consists of intermediates of the form (a, x), where a is a factual sentence (e.g. that β
is in possession of γ, and that α and β agreed that α should have γ, and that β
hands γ to α), and x states that some legal term obtains (e.g. that α is now owner
of γ). To derive outputs from the set of norms G, one may then use A ∪ out(T,A)
as input, i.e. the factual descriptions together with the legal statements that obtain
given the intermediates T and the facts A.

It may be of particular interest to see that such a set of intermediates may help
resolve possible conflicts in the law. Let (>,¬dog) be a statute that forbids dogs on
the premises, but let there also be a higher order principle that no blind person may
be required to give up his or her guide dog. Of course the conflict may be solved
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by modifying the statute (e.g. add a condition that the dog in question is not a
guide dog), but then modifying a statute is usually not something a judge, faced
with such a norm, is allowed to do: the judge’s duty is solely to consider the statute,
interpret it according to the known or supposed will of the norm-giver, and apply
it to the given facts. The judge may then come to the conclusion that a fair and
considerate norm-giver would not have meant the statute to apply to guide dogs, i.e.
the term “dog” in the statute is a theoretical term whose extension is smaller than
the natural term. So the statute must be re-interpreted as reading (>,¬tdog) with
the additional intermediate (dog ∧ ¬guidedog, tdog) ∈ T , and thus no conflict arises
for the case of blind persons that want to keep their guide dog. While this seems
to be a rather natural view of how judicial conflict resolution works (the example
is taken from an actual court case), the exact process of creating and modifying
theoretical terms in order to resolve conflicts must be left to further study.

12 Constitutive norms
Constitutive norms like counts-as conditionals are rules that create the possibility of
or define an activity. For example, according to Searle [102], the activity of playing
chess is constituted by action in accordance with these rules. Chess has no existence
apart from these rules. The institutions of marriage, money, and promising are like
the institutions of baseball and chess in that they are systems of such constitutive
rules or conventions. They have been identified as the key mechanism to norma-
tive reasoning in dynamic and uncertain environments, for example to realize agent
communication, electronic contracting, dynamics of organizations, see, e.g., Boella
and van der Torre [14].

Challenge 12. How to define counts-as conditionals and relate them to obligations
and permissions?

For Jones and Sergot [64], the counts-as relation expresses the fact that a state
of affairs or an action of an agent “is a sufficient condition to guarantee that the
institution creates some (usually normative) state of affairs". They formalize this in-
troducing a conditional connective ⇒s to express the “counts-as" connection in the
context of an institution s. They characterize the logic of ⇒s as a conditional
logic, with axioms for agglomeration ((x ⇒s y) & (x ⇒s z)) ⊃ (x ⇒s (y ∧ z)),
left disjunction ((x ⇒s z) & (y ⇒s z)) ⊃ ((x ∨ y) ⇒s z) together with transitivity
((x ⇒s y) & (y ⇒s z)) ⊃ (x ⇒s z). The flat fragment can be phrased as an in-
put/output logic as follows [15].
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Definition 12.1. Let L be a propositional action logic with ` the related notion
of derivability and Cn the related consequence operation Cn(x) = {y | x ` y}.
Let CA be a set of pairs of L, {(x1, y1), . . . , (xn, yn)}, read as ‘x1 counts as y1’,
etc. Moreover, consider the following proof rules conjunction for the output (AND),
disjunction of the input (OR), and transitivity (T) defined as follows:

(x, y1), (x, y2)
(x, y1 ∧ y2) AND

(x1, y), (x2, y)
(x1 ∨ x2, y) OR

(x, y1), (y1, y2)
(x, y2) T

For an institution s, the counts-as output operator outCA is defined as the closure
operator on the set CA using the rules above together with a tacit rule that allows re-
placement of logical equivalents in input and output. We write (x, y) ∈ outCA(CA, s).
Moreover, for X ⊆ L, we write y ∈ outCA(CA, s,X) if there is a finite X ′ ⊆ X such
that (∧X ′, y) ∈ outCA(CA, s), indicating that the output y is derived by the output
operator for the input X, given the counts-as conditionals CA of institution s. We
also write outCA(CA, s, x) for outCA(CA, s, {x}).

Example 12.2. If for some institution s we have CA = {(a, x), (x, y)}, then we
have outCA(CA, s, a) = {x, y}.

The recognition that statements like “X counts as Y in context c" may have
different meanings in different situations lead Grossi et al. [45, 46] to propose a
family of operators capturing four notions of counts-as conditionals. Starting from
a simple modal logic of contexts, several logics are used to define the family of
operators. All logics have been proven to be sound and strongly complete. By using
a logic of acceptance, Lorini et al. [81, 82] investigate another aspect of constitutive
norms, that is, the fact that agents of a society need to accept such norms in order
for them to be in force.

Considering the legal practice, Governatori and Rotolo [40] propose a study of
constitutive norms within the framework of defeasible logic. This allows them to
capture de defeasibility of counts-as conditionals: even in presence of a constitutive
norms like “X counts as Y in context c", the inference of Y from X can be blocked
in presence of exceptions.

There is presently no consensus on the logic of counts-as conditionals, probably
due to the fact that the concept is not studied in depth yet. For example, the
adoption of the transitivity rule T for their logic is criticized by Artosi et al. [8].
Jones and Sergot say that “we have been unable to produce any counter-instances
[of transitivity], and we are inclined to accept it”. Neither of these authors considers
replacing transitivity by cumulative transitivity (CT): ((x⇒s y)&(x ∧ y ⇒s z)) ⊃
(x⇒s z), that characterizes operations out3, out4 of input/output logic. For a more
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comprehensive overview on constitutive norms, the reader is referred to the chapter
by Grossi and Jones [44] in the handbook of deontic logic and normative systems.

The main issue in defining constitutive norms like counts-as conditionals is defin-
ing their relation to regulative norms like obligations and permissions. Boella and
van der Torre [15] use the notion of a logical architecture combining several logics
into a more complex logical system, also called logical input/output nets (or lions).

The notion of logical architecture naturally extends the input/output logic frame-
work, since each input/output logic can be seen as the description of a ‘black box’. In
the above figure there are boxes for counts-as conditionals (CA), institutional con-
straints (IC), obligating norms (O) and explicit permissions (P). The norm base (NB)
component contains sets of norms or rules, which are used in the other components
to generate the component’s output from its input. The figure shows that the
counts-as conditionals are combined with the obligations and permissions using it-
eration, that is, the counts-as conditionals produce institutional facts, which are
input for the norms. Roughly, if we write out(CA, G,A) for the output of counts-
as conditionals together with obligations, out(G,A) for obligations as before, then
out(CA, G,A) = out(G, outCA(CA, A)).

There are many open issues concerning constitutive norms, since their logical
analysis has not attracted much attention yet. How to distinguish among various
kinds of constitutive norms? How are constitutive norms (x counts as y) distin-
guished from classifications (x is a y)? What is the relation with intermediate
concepts?

13 Revision of a set of norms

In general, a code G of regulations is not static, but changes over time. For example,
a legislative body may want to introduce new norms or to eliminate some existing
ones. A different (but related) type of change is the one induced by the fusion of
two (or more) codes—a topic addressed in the next section. A related but different
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issue not addressed here is that of how norms come about, how they propagate in
the society, and how they change over time.

Little work exists on the logic of the revision of a set of norms. To the best of
our knowledge, Alchourrón and Makinson [3, 4] were the first to study the changes
of a legal code. The addition of a new norm n causes an enlargement of the code,
consisting of the new norm plus all the regulations that can be derived from n.
Alchourrón and Makinson distinguish two other types of change. When the new
norm is incoherent with the existing ones, we have an amendment of the code: in
order to coherently add the new regulation, we need to reject those norms that
conflict with n. Finally, derogation is the elimination of a norm n together with
whatever part of G implies n.

Alchourrón and Makinson [3] assume a “hierarchy of regulations". Alchourrón
and Bulygin [2] also considered the Normenordnung and the consequences of gaps
in this ordering. For example, in jurisprudence the existence of precedents is an
established method to determine the ordering among norms.

However, although Alchourrón and Makinson aim at defining change operators
for a set of norms of some legal system, the only condition they impose on G is that
it is a non-empty and finite set of propositions. In other words, a norm x is taken
to be simply a formula in propositional logic. Thus, they suggest that “the same
concepts and techniques may be taken up in other areas, wherever problems akin to
inconsistency and derogation arise" ([3], p. 147).

This explains how their work (together with Gärdenfors’s analysis of counterfac-
tuals) could ground that research area that is now known as belief revision. Belief
revision is the formal study of how a set of propositions changes in view of new
information that may be inconsistent with the existing beliefs. Expansion, revision
and contraction are the three belief change operations that Alchourrón, Gärden-
fors and Makinson identified in their approach (called AGM) and that have a clear
correspondence with the changes on a system of norms we mentioned above.

Challenge 13. How to revise a set of regulations or obligations?

Recently, AGM theory has been reconsidered as a framework for norm change.
However, beside syntactic approaches where norm change is performed directly on
the set of norms (as in AGM), there are also proposals that appeared in the dynamic
logic literature and that could be described as semantic approaches.

One example of this is the dynamic context logic proposed by Aucher et al. [9],
where norm change is a form of model update. Point of depart is a dynamic variant
of the logic of context used to study counts-as conditionals introduced by Grossi et
al. [46]. Context expansion and context contraction operators are defined. Context
expansion and context contraction represent the promulgation and the derogation
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of constitutive norms respectively. One of the advantages of this approach is that it
can be used for the formal specification and verification of computational models of
interactions based on norms.

A formal account clearly rooted in the legal practice is the one proposed by Gov-
ernatori and Rotolo [41]. In particular, the removal of norms can be performed by
annulment or by abrogation. The crucial difference between these two mechanisms
is that annulment removes a norm from the code and all its effects (past and future)
are cancelled. Abrogation, on the other hand, does not operate retroactively, and
so it leaves the effects of an abrogated norm holding in the past.

It should then be clear that, in order to capture the difference between annulment
and abrogation, the temporal dimension is pivotal. For this reason, Governatori and
Rotolo’s first attempt is to use theory revision in Defeasible Logic without temporal
reasoning is unsuccessful as it cannot capture retroactivity. They the add a temporal
dimension to Defeasible Logic to keep track of the changes in a normative system and
to deal with retroactivity. Norms are represented along two temporal dimensions:
the time of validity when the norm enters in the normative system and the time of
effectiveness when the norm can produce legal effects. This leads to keep multiple
versions of a normative system are needed. If Governatori and Rotolo [41] manage to
capture the temporal dimension that plays a role in legal modifications, the resulting
formalisation is rather complex.

To overcome such complexity without losing hold on the legal practice, Gover-
natori et al. [42] explored three AGM-like contraction operators to remove rules,
add exceptions and revise rule priorities.

Boella et al. [12] also use AGM theory, where propositional formulas are replaced
by pairs of propositional formulas to represent rules, and the classical consequence
operator Cn is replaced by an input/output logic. Within this framework, AGM
contraction and revision of rules are studied. It is shown that results from belief base
dynamics can be transferred to rule base dynamics. However, difficulties arise in the
transfer of AGM theory change to rule change. In particular, it is shown that the
six basic postulates of AGM contraction are consistent only for some input/output
logics but not for others. Furthermore, it is shown how AGM rule revision can be
defined in terms of AGM rule contraction using the Levi identity.

When we turn to a proper representation of norms, as in the input/output logic
framework, the AGM principles thus prove to be too general to deal with the revi-
sion of a normative system. For example, one difference between revising a set of
beliefs and revising a set of regulations is the following: when a new norm is added,
coherence may be restored by modifying some of the existing norms, not necessarily
retracting some of them. The following example clarifies this point:
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Example. If we have {(>, a), (a, b)} and we have that c is an exception to the obliga-
tion to do b, then we need to retract (c, b). Two possible solutions are {(¬c, a), (a, b)}
or {(>, a), (a ∧ ¬c, b)}.

Stolpe [106] also combines input/output logic and AGM theory to propose an
abstract model of norm change. Contraction is used to represent the derogation
of a norm, that is, the elimination of a norm together with whatever part of the
code that implies that norm. This is rendered as an AGM partial meet contraction
with a selection function for a set of norms in input/output logic. Stolpe gives a
complete AGM-style characterisation of the derogation operation. Revision, on the
other hand, serves to study the amendment of a code, which happens when we wish
to add a new norm which is incoherent with the existing ones. Amendment is defined
as a norm revision obtained via the Levi identity.

Future research must investigate whether general patterns in the revision and
contraction of norms exist and how to formalize them. Another open question
is whether other logics can offer a general framework for modelling norm change.
Finally, more case studies showing that formally defined operators serve for a con-
ceptual analysis of normative change are needed.

14 Merging sets of norms
We now turn to another type of change, that is the aggregation of regulations. This
problem has been only recently addressed in the literature and therefore the findings
are still incomplete.

The first noticeable thing is the lack of general agreement about where the norms
that are to be aggregated come from:

1. some papers focus on the merging of conflicting norms that belong to the same
normative system [29];

2. other papers assume that the regulations to be fused belong to different systems
[18]; and finally

3. some authors provide patterns of possible rules to be combined, and consider
both cases 1. and 2. above [43].

The first situation seems to be more a matter of coherence of the whole system
rather than a genuine problem of fusion of norms. However, such approaches have
the merit to reveal the tight connections between fusion of norms, non-monotonic
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logics and defeasible deontic reasoning. The initial motivation for the study of belief
revision was the ambition to model the revision of a set of regulations. In contrast to
this, the generalization of belief revision to belief merging is primarily dictated by the
goal to tackle the problem—arising in computer science—of combining information
from different sources. The pieces of information are represented in a formal language
and the aim is to merge them in an (ideally) unique knowledge base. See Konieczny
and Grégoire [71] for a survey on logic-based approaches to information fusion.

Challenge 14. Can the belief merging framework deal with the problem of merging
sets of norms?

If, following Alchourrón and Makinson, we assume that norms are unconditional,
then we could expect to use standard merging operators to fuse sets of norms.
Yet once we consider conditional norms, as in the input/output logic framework,
problems arise again. Moreover, most of the fusion procedures proposed in the
literature seem to be inadequate for the scope.

To see why this is the case, we need to explain the merging approach in a few
words. Let us assume that we have a finite number of belief bases K1,K2, . . . ,Kn

to merge. IC is the belief base whose elements are the integrity constraints (i.e.,
any condition that we want the final outcome to satisfy). Given a multi-set E =
{K1,K2, . . . ,Kn} and IC, a merging operator F is a function that assigns a belief
base to E and IC. Let FIC(E) be the resulting collective base from the IC fusion
on E.

Fusion operators come in two types: model-based and syntax-based. The idea
of a model-based fusion operator is that models of FIC(E) are models of IC, which
are preferred according to some criterion depending on E. Usually the preference
information takes the form of a total pre-order on the interpretations induced by a
notion of distance d(w,E) between an interpretation w and E.

Syntax-based merging operators are usually based on the selection of some con-
sistent subsets of ⋃

E [10, 70]. The bases Ki in E can be inconsistent and the result
does not depend on the distribution of the well formed formulas over the members of
the group. Konieczny [70] refers the term ‘combination’ to the syntax-based fusion
operators to distinguish them from the model-based approaches.

Finally, the model-based aggregation operators for bases of equally reliable
sources can be of two sorts. On the one hand, there are majoritarian operators
that are based on a principle of distance-minimization [77]. On the other hand,
there are egalitarian operators, which look at the distribution of the distances in E
[69]. These two types of merging try to capture two intuitions that often guide the
aggregation of individual preferences into a social one. One option is to let the ma-
jority decide the collective outcome, and the other possibility is to equally distribute

2978



Multiagent Deontic Logic and its Challenges

the individual dissatisfaction.
Obviously, these intuitions may well serve in the aggregation of individual knowl-

edge bases or individual preferences, but have nothing to say when we try to model
the fusion of sets of norms. Hence, for this purpose, syntactic merging operators
may be more appealing. Nevertheless, the selection of a coherent subset depends
on additional information like an order of priority over the norms to be merged, or
some other meta-principles.

The reader may wonder about the relationships between merging sets of norms
and the revision of a normative system. In particular, one may speculate that
Challenge 14 is not independent of Challenge 13, and that a positive answer to
Challenge 14 implies an answer to 13. This is indeed an interesting question, but we
believe that the answer to this question is not straightforward. Konieczny and Pino
Pérez [72] have shown that there are close links between belief merging operators
and belief revision ones. In particular, they show that an IC merging operator is
an extension of an AGM revision operator. However, as we have seen, it is not
clear whether IC merging operators could be properly used to study the merging of
norms.

An alternative approach is to generalize existing belief change operators to merg-
ing rules. This is the approach followed by Booth et al. [18], where merging operators
defined using a consolidation operation and possibilistic logic are applied to the ag-
gregation of conditional norms in an input/output logic framework. However, at
this preliminary stage, it is not clear whether such methodology is more fruitful for
testing the flexibility of existing operators to tackle other problems than the ones
they were created for, or if this approach can really shed some light on the new
riddle at hand.

Grégoire [43] takes a different perspective. Here, real examples from the Belgian-
French bilateral agreement preventing double taxation are considered.
These are fitted into a taxonomy of the most common legal rules with exceptions,
and the combination of each pair of norms is analyzed. Moreover, both the situa-
tions in which the regulations come from the same system and those in which they
come from different ones are contemplated, and some general principles are derived.
Finally, a merging operator for rules with abnormality propositions is proposed. A
limitation of Grégoire’s proposal is that only the aggregation of rules with the same
consequence is taken into account and, in our opinion, this neglects other sorts of
conflicts that may arise, as we see now.

Cholvy and Cuppens [29] also call for non-monotonic reasoning in the treatment
of contradictions, and present a method for merging norms. The proposal assumes an
order of priority among the norms to be merged and this order is used to resolve the
incoherence. Even though this is quite a strong assumption, Cholvy and Cuppens’s
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work takes into consideration a broader type of incoherence than Grégoire [43]. In
their example, an organization that works with secret documents has two rules. R1
is “It is obligatory that any document containing some secret information is kept
in a safe, when nobody is using this document". R2 is “If nobody has used a given
document for five years, then it is obligatory to destroy this document by burning
it". As they observe, in order to deduce that the two rules are conflicting, we need to
introduce the constraint that keeping a document and destroying it are contradictory
actions. That is, the notion of coherence between norms can involve information not
given by any norms.

15 Games, norms and obligations
Deontic logic has been developed as a logic for practical reasoning, and normative
systems are used to guide, control, or regulate desired system behaviour. This
raises a number of questions. For example, how are deontic logic and the logic of
normative systems related to alternative decision and agent interaction models such
as BDI theory, decision theory, game theory, or social choice theory? Moreover,
how can deontic logic be extended with cognitive concepts such as beliefs, desires,
goals, intentions, and commitments? Though there have been a few efforts to base
deontic logic with a logic of knowledge to define knowledge based obligation [92], or
to extend deontic logic with BDI concepts [20], we believe that such extensions have
not been fully explored yet. For example, Kolodny and MacFarlane [68] describe
a decision problem involving miners, as well as several dialogues scenarios, which
highlight the problems of normative reasoning with agents.

Maybe the most fundamental challenge has become apparent in this article. We
discussed how deontic STIT logics are based on interactions of agents in games, and
we discussed how norm based deontic logics have been developed on the basis of
detachment. However, these two approaches have not been combined yet. So this is
our final challenge in this article.

Challenge 15. How can deontic logic be based on both norm and detachment, as
well as decision and game theory?

Norms and games have been related before. Lewis [76] introduced master-slave
games and Bulygin [24] introduced Rex-minister-subject games in a discussion on the
role of permissive norms in normative systems and deontic logic. Moreover, deontic
logic has been used as an element in games to partially influence the behavior of
individual agents [17]. Van der Torre [109] proposes games as the foundation of
deontic logic. He illustrate the notion of a violation game using a metaphor from

2980



Multiagent Deontic Logic and its Challenges

daily life. A person faces the parental problem of letting the son go to bed in time, or
letting him make his homework. The mother is obliging her son to eat his vegetables.
As illustrated in the first drawing of Figure 5, the son did what his mother asked
him to do.

16 

Violation Game 1: Conformance 
You must empty 

your plate! 

Yes, mum! 

Deontic logic 
Violation games 
Acknowledgments 

17 

Violation Games: Problem 

Empty 
your plate! 

NO! 

Deontic logic 
Violation games 
Acknowledgments 
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Violation Game 2: Incentives 
Would you  

like a dessert? 
OK! 

Deontic logic 
Violation games 
Acknowledgments 

19 

Violation Games: Problem 

Would you  
like a dessert? 

NO! 

Deontic logic 
Violation games 
Acknowledgments 

20 

Violation Game 3: Negotiation 

Yes! 

Deontic logic 
Violation games 
Acknowledgments 

Figure 5: Conformance, violation, incentive, violation, negotiation (Drawings by
Egberdien van der Torre), from [van der Torre, 2010].

However, in the second drawing his behavior has changed. The son does not
like vegetables, and when the parents tell the boy to eat his vegetables, he just says
“No!” At the third drawing, when the son’s desire not to eat vegetables became
stronger than his motivation to obey his parents, the parents adapted their strategy
and introduced the use of incentives. They told their son, “if you empty your plate
you will get a dessert”, or sometimes, “if you don’t finish your plate, you don’t get
a dessert.” The boy has a desire to eat a dessert, and this desire is stronger than
the desire not to eat vegetables, so he is eating his vegetables again. However, after
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some time we reach the fourth figure where the incentive no longer works. The boy
starts to protest and to negotiate. In those cases, the parents sometimes decide that
the son will get his dessert even without eating his vegetables, for example, because
the child still has eaten at least some of them, or because it is his birthday, or simply
because they are not in the mood to argue. As visualized in the fifth figure, this
makes the boy very happy. It is precisely this aspect that characterizes a violation
game. The violation does not follow necessarily from the norm, but is subject to
exceptions and negotiation.

Figure 6 models this example by a standard extensive game tree. Let’s look
first at one moment in time. The child decides first whether to eat his vegetables
or not. But in this decision, he takes the response of his parents into account. In
other words, he has a model of how the parents will respond to his behavior. In the
deontic logic we propose here, based on a violation game, it is obligatory to empty
the plate when the boy expects that not eating his vegetables leads to violation,
not when a violation logically follows. By the way, we identify the recognition of
violation and the sanction in the example for illustrative purposes, in reality usually
two distinct steps can be distinguished.

21 

O(       ) = if            , then          is expected 

Logic of Violation Games 

Ox = E (¬x →V) 
Deontic logic 
Violation games 
Acknowledgments 

Figure 6: Expectation, from [van der Torre, 2010]

The general definition of obligation based on violation games extends this basic
idea to behavior over periods of time. Let’s consider the three phases in the example.
Borrowing from terminology from classical game theory, we say that it is obligatory
to eat the vegetables, when not eating them and the strategy that this leads to a
violation, is an equilibrium. In the first phase in which the son eats his vegetables,
the violation is only implicit since it does not occur. In the second phase not eating
the vegetables is identified with the absence of the dessert. In the third phase, the
boy may sometimes eat his vegetables, and sometimes not. As long as the norm is
in force, he will still believe to be sanctioned most of the time when he does not eat
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his vegetables. When the sanction is not applied most of the time we have reached
a fourth phase, in which we say that the norm is no longer in force.

22 

O(        ) =             with          is equilibrium 

Logic of Violation Games 

Deontic logic 
Violation games 
Acknowledgments Ox = stable (¬x : V) 

1. Conformance 2. Incentives 3. Negotiation 

V 

Figure 7: Equilibrium, from [van der Torre, 2010]

Summarizing, norms are rules defining a violation game.

Definition 15.1 (Violation games [109]). Violation games are social interactions
among agents to determine whether violations have occurred, and which sanctions
will be imposed for such violations. A normative system is a specification of violation
games.

Since norms do not have truth values, we cannot say that two normative systems
are logically equivalent, or that a normative system implies a norm. Therefore it has
been proposed to take equivalence of normative systems as the fundamental principle
of deontic logic. Implication is then replaced by acceptance and redundancy, which
are defined in terms of norm equivalence: a norm is accepted by a normative system
if adding it to the normative system leads to an equivalent normative system, and a
norm is redundant in a normative system if removing it from the normative system
leads to an equivalent normative system. The fundamental notion of equivalence of
normative systems can be defined in terms of violation games.

Definition 15.2 (Equivalence of normative systems [109]). Two normative systems
are equivalent if and only if they define the same set of violation games.

Finally, we can now give a more precise definition of an autonomous system.
Remember that auto means self, and nomos means norm.

Definition 15.3 (Autonomy [109]). A system is autonomous if and only if it can
play violation games.
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Violation games are the basis of normative reasoning and deontic logic, but
more complex games must be considered too. Consider for example the following
situation. If a child is in the water and there is one bystander, chances are that the
bystander will jump into the water and save the child. However, if there are one
hundred bystanders, chances are that no-one jumps in the water and the child will
drown. How to reason about such bystander effects?

Van der Torre suggests that an extension of violation games, called norm creation
games [17], may be used to analyze the situation. An agent reasons as follows. What
is the explicit norm I would like to adopt for such situations? Clearly, if I would
be in the water and I could not swim, or it is my child drowning in the water, then
I would like prefer that someone would jump in the water. To be precise, I would
accept a norm that in such cases, the norm for each individual would be to jump
into the water. Consequently, one should act according to this norm, and everyone
should jump into the water. Norm creation games can be used to give a more general
definition of a normative system.

Definition 15.4 (Norm creation games [109]). Norm creation games are social
interactions among agents to determine which norms are in force, whether norm
violations have occurred, and which sanctions will be imposed for such violations. A
normative system is a specification of norm creation games.

There are many details to be further discussed here. For example, if there is
a way to discriminate among the people and it may be assumed that all people
would follow this discrimination, then only some people have to jump into the water
(the men, the good swimmers if they can be identified, the tall people, and so on).
In general, and as common in legal reasoning, the more that is known about the
situation, the more can be said about the protocol leading to the norm.

For the semantics of the new deontic logic founded on violation games, one needs
a way to derive obligations from norms, as in the iterative detachment approach, or
input/output logic. The extension now is to represent the agents and their games
into the semantic structures, and derive the norms from that using game theoretic
methods. As the norm creation game illustrates, also protocols for norm creation
must be represented to model more complex games.

The language of the new deontic logic founded on violation games will be richer
than most of the deontic logics studied thus far. There will be formal statements
referring to the regulative, permissive and constitutive norms, as in the input/output
logic framework, but there will also be an explicit representation of the games the
agents are playing. Many choices are possible here, and the area of game theory will
lead the way.
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We need other approaches that represent norms and obligations at the same
time, since deontic logic founded on violation games has to built on it. We also also
have to study time, actions, mental modalities, permissions and constitutive norms,
since they all play a role in violation games. We also need a precise understanding
of Anderson’s idea of violation conditions which do not necessarily lead to sanctions,
but to the more abstract notion of “a bad state,” i.e. a state in which something
bad has happened. Whereas many of these deontic problems have been studied in
isolation in the deontic logic literature, we believe that violation games will work as
a metaphor to bring these problems together, and study their interdependencies.

16 Summary

The aim of this article is to introduce readers to the area of deontic logic and its
challenges. The interested reader is advised to download the handbook of deontic
logic and normative systems, and should not take our article only as its guidance. In
particular, in this article we have not gone into the formal aspects of deontic logic.
Deontic logicians have developed monadic modal logics, non-monotonic ones, rule
based systems, and much more. The formalisms developed in deontic logic have also
been adopted by a wider logic community, in particular the preference based deontic
logics have been adopted in many areas [83].

As far as open problems are concerned, in the context of the handbook this
concerns mainly the problems of multiagent deontic logic and problems related to
normative systems. We have addressed the following challenges.

How to reconstruct the history of traditional deontic logic as a challenge to deal
with contrary to duty reasoning, violations and preference (Challenge 1)?

What are the challenges in game theoretic approach to normative reasoning
(Section 2), which is based on non-deterministic actions (Challenge 2), moral luck
(Challenge 3) and procrastination (Challenge 4)?

How to reconstruct the history of modern deontic logic as a challenge to deal
with Jørgensen’s dilemma and detachment (Challenge 5), and more generally to
bridge the tradition of normative system with the tradition of modal deontic logic?

What is the challenge in multi agent detachment of obligations from norms? For
example, when detaching obligations from norms, when do agents assume that other
agents comply with their norms (Challenge 6)? In game theory, agents assume that
other agents are rational in the sense of acting in their best interest. Analogously,
multiagent deontic logic raises the question when agents assume that other agents
comply with their norms. For answering the question, we assume that every norm
is directed towards a single agent, and that the normative system does not change.
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How do norm based semantics handle the traditional challenges in deontic logic?
These problems are when a set of norms may be termed ‘coherent’ (Challenge 7),
how to deal with normative conflicts (Challenge 8), how to interpret dyadic deontic
operators that formalize ‘it ought to be that x on conditions α’ as O(x/α) (Chal-
lenge 9), how various concepts of permission can be accommodated (Challenge 10),
how meaning postulates and counts-as conditionals can be taken into account (Chal-
lenge 11 and 12), and how sets of norms may be revised and merged (Challenge 13
and 14).

Finally, how can the two approaches of game based deontic logic and norm based
deontic logic be combined? (Challenge 15)
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