
ar
X

iv
:1

71
2.

09
26

8v
1 

 [
m

at
h.

Q
A

] 
 2

6 
D

ec
 2

01
7

MULTI-ORIENTED PROPS AND HOMOTOPY ALGEBRAS WITH BRANES

SERGEI MERKULOV

Abstract. We introduce a new category of differential graded multi-oriented props whose representations (called homotopy

algebras with branes) in a graded vector space require a choice of a collection of k linear subspaces in that space, k being

the number of extra directions (if k = 0 this structure recovers an ordinary prop); symplectic vector spaces equipped with k

Lagrangian subspaces play a distinguished role in this theory. Manin triples is a classical example of an algebraic structure

(concretely, a Lie bialgebra structure) given in terms of a vector space and its subspace; in the context of this paper Manin

triples are precisely symplectic Lagrangian representations of the 2-oriented generalization of the classical operad of Lie

algebras. In a sense, the theory of multi-oriented props provides us with a far reaching strong homotopy generalization of

Manin triples type constructions.

The homotopy theory of multi-oriented props can be quite non-trivial (and different from that of ordinary props). The

famous Grothendieck-Teichmüller group acts faithfully as homotopy non-trivial automorphisms on infinitely many multi-

oriented props, a fact which motivated much the present work as it gives us a hint to a non-trivial deformation quantization

theory in every geometric dimension d ≥ 4 generalizing to higher dimensions Drinfeld-Etingof-Kazhdan’s quantizations of

Lie bialgebras (the case d = 3) and Kontsevich’s quantizations of Poisson structures (the case d = 2).

1. Introduction

1.1. Why bother with multi-oriented props? A short answer to this question: “Because of the Grothendieck-

Teichmüller group GRT1”. It is the latter beautiful and mysterious structure which is the main motivation for in-

troducing and study of a new category of multi-oriented props as well as their representations (“homotopy algebras

with branes”). In geometric dimensions 2 and 3 the group GRT1 acts on some ordinary props of odd/even strong

homotopy Lie bialgebras [MW1] and plays thereby the classifying role in the associated transcendental deformation

quantizations of Poisson and, respectively, ordinary Lie bialgebra structures. In geometric dimension d ≥ 4 the group

GRT1 survives in the form of symmetries of some multi-oriented props of even/odd homotopy Lie bialgebras so that

deformation quantizations in higher dimensions (in which GRT1 retains its fundamental classifying role) should in-

volve a really new class of algebro-geometric structures — the homotopy algebras with branes. It is an attempt to

understand what could be a higher (d ≥ 4) analogue of two famous formality theorems, one for Poisson structures

[Ko] (the case d = 2), and another for ordinary Lie bialgebra ones [EK, Me2] (the case d = 4), that lead the author

to the category of multi-oriented props after reading the paper [Z] by Marko Živković and its predecessor [W2] by

Thomas Willwacher (see §5 for a brief but self-contained description of their remarkable results).

It is not that hard to define multi-oriented props in general, and multi-oriented generalizations of some concrete clas-

sical operads and props in particular, at the purely combinatorial level: the rules of the game with multi-oriented

decorated graphs are more or less standard (see §2) — for any given k ≥ 1 one just adds k extra directions to each

edge/leg of a 1-oriented graph,

 

1 2 ... k

and defines rules for multi-oriented prop compositions via contractions along admissible multi-oriented subgraphs.

However, it is much less evident how to transform that more or less standard rules into non-trivial and interesting

representations (i.e. examples) — the intuition from the theory of ordinary (wheeled) props does not help much.

Adding new k directions to each edges of a decorated graph of an ordinary prop can be naively understood as extending

that ordinary prop into a 2k-coloured one, but then the requirement that the new directions on graph edges do not create

“wheels” (that is, closed directed paths of edges with respect to any of the new orientations) kills that naive picture

immediately — the elements of the set of 2k new colours start interacting with each other in a non-trivial way. We

know which structure distinguishes ordinary props (the ones with no wheels in the given single orientation, i.e. the

ones which are 1-oriented in the terminology of this paper) from the ordinary wheeled props (that is, 0-oriented 1-

directed props in the terminology of this paper) in terms of representations in, say, a graded vector space V — it is the
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dimension of V . In general, a wheeled prop can have well-defined representations in V only in the case dim V < ∞ as

graphs with wheels generate the trace operation V ×V∗ → K which explodes in the case dim V = ∞; this phenomenon

explains the need for 1-oriented props.

How to explain the need for all (or some) of the extra k directions to be oriented? Which structure on a graded vector

space V can be used to separate (in the sense of representations) 0-oriented (k+1)-directed props from (k+1)-oriented

ones? Perhaps the main result of this paper is a rather surprising answer to that question: one has to work again with

a certain class of infinite-dimensional vector spaces V , but now equipped with k linear subspaces W1, . . . ,Wk ⊂ V

together with their complements, and interpret a single element of a (k + 1)-oriented prop P as a collection of k linear

maps from various intersections of subspaces W• and their complements and their duals to themselves; then indeed

graphs with wheels in one or another extra “coloured direction” get exploded under generic representations and hence

must be prohibited. Representations when V has a symplectic structure and the subspaces W1, . . . ,Wk are Lagrangian

play a special role in this story, a fact which becomes obvious once all the general definitions are given (see §4).

A well-known example of such a “brane” algebraic structure in finite dimensions is provided by Manin triples [D].

In the context of this paper Manin triples construction emerges as a (reduced symplectic Lagrangian) representation

of the 2-oriented operad of Lie algebras (note that one can not describe Manin triples using ordinary operads — one

needs an ordinary prop of Lie bialgebras for that purpose). In a sense, multi-oriented props provide us with a far

reaching strong homotopy generalization of Manin triples type constructions; they are really a new kind of “Cheshire

cat smiles” controlling (via representations) homotopy algebras with branes and admitting in some interesting cases a

highly non-trivial action of the Grothendieck-Teichmüller group [A, MW1].

This is the first of a sequence of papers on multi-oriented props. In the following paper [Me3] we study several tran-

scendental constructions with multi-oriented props (elucidating their role as the construction material for building new

highly non-trivial representations of ordinary props) and use them to prove several concrete deformation quantization

theorems. This paper attempts to be as simple as possible and aims for more general audience: we explain here the

main notion, illustrate it with examples, prove some theorems on multi-oriented resolutions, and, most importantly,

discuss in full details the most surprising part of the story — the representation theory of multi-oriented props in the

category of dg vector spaces with branes.

1.2. Finite dimensionality versus infinite one in the context of ordinary props. The theory of (wheeled) operads

and props originated in 60s and 70s in algebraic topology, and has seen since an explosive development (see, e.g., the

books [LV, MSS] or the articles [M, MMS, V] for details and references). Operads and props provide us with effective

tools to discover surprisingly deep and unexpected links between different theories and even branches of mathematics.

A building block of a prop(erad)P = {P(m, n)}m,n≥0 is a graph (often called corolla)

m output legs

n input legs

...

...

consisting of one vertex (decorated with an element of some S
op
m ×Sn module P(m, n)) which has n incoming legs and

m outgoing legs. Upon a representation of P in a graded vector space V this (m, n)-corolla gets transformed into a

linear map from V⊗n → V⊗m, i.e. every leg corresponds, roughly speaking, to V

⇔ V .

Such linear maps can be composed which leads us to the idea of considering all possible graphs, for example these

ones

,

composed from corollas by connecting some output legs of one corolla with input legs of another corolla and so on. The

graphs shown above when translated into linear maps upon some representation of P in V give us two very different

situations: if the left graph makes sense for representations in both finite- and infinite-dimensional vector spaces V , the

right graph gives us a well-defined linear map only for finite-dimensional vector spaces V as it contains a closed path

of directed edges (“wheel”) and hence involves a trace map V⊗V∗ → K which is not a well-defined operation in infinite
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dimensions in general. Hence to be able to work in infinite dimensions1 one has to prohibit certain graphs — the graphs

with wheels — and work solely with oriented (from bottom to the top) graphs. Similarly, to be able to work with

certain completions (defined in 4.6) of various intersections of of linear subspaces W1 ⊂ V, . . . ,Wk ⊂ V (“branes”),

one has to prohibit certain divergent multi-directed graphs (which already have no wheels with respect to the basic

direction!) — and this leads us to the new notion of (k + 1)-oriented prop which takes care about more sophisticated

divergences associated with branes (the case k = 0 recovers the ordinary props); this important “divergency handling”

part of our story is discussed in detail in §4.

There is a nice generalization of the notion of prop which takes care about collections of vector spaces W1, . . . ,WN .

The corresponding props are called coloured props and, say, N-coloured (wheeled) prop P is generated by corollas

m output legs

n input legs

...

...

whose input and output legs are “colored” (say, the unique vertex has a1 input legs in “straight colour” , a2 input legs

in “dotted colour”, etc) and correspond to linear maps of the form

W
⊗a1

1
⊗W

⊗a2

2
⊗ . . . ⊗W

⊗aN

N
−→ W

⊗b1

1
⊗W

⊗b2

2
⊗ . . . ⊗W

⊗bN

N
, a1 + . . . + aN = n, b1 + . . . + bN = m.

Again it makes sense to talk about wheeled (i.e. 0-oriented 1-directed) and ordinary (i.e. 1-oriented) coloured props.

In this theory an oriented leg in “colour” i ∈ {1, . . . ,N} corresponds to the i-th vector space

⇔ Wi

from the collection {W1, . . . ,Wi, . . . ,WN }.

1.3. From branes to multidirected props. A (k+1)-directed propPk+1 = {Pk+1(m, n)} is generated (modulo, in gen-

eral, some relations) by corollas

m output legs

n input legs

...

...

whose vertex is decorated with an element of some module Pk+1(m, n)

(see §2 for details) and whose input and output legs are decorated with extra (labelled by integers from 1 to k or by

some colours – blue, red, etc — as in the picture above) directions. The “original” (or basic) direction is always shown

in pictures in black colour as in the case of ordinary props; it is this basic direction which permits us to call this creature

an (m, n)-corolla (it can have different numbers of input and output legs with respect to directions in other colours).

Comparing this picture to the definition of an N-coloured prop, one can immediately see that a (k+ 1)-directed prop is

just a special case of a coloured prop when the number of colours is a power of 2,

(1) N = 2k.

If we allow all possible compositions of such multi-oriented corollas along legs with identical extra directions, then we

get nothing but a 2k-coloured prop indeed (called 0-oriented k + 1-directed prop). Keeping in mind the key distinction

between ordinary and wheeled props, one might contemplate the possibility of prohibiting compositions along graphs

which have closed wheels along any of the extra orientations (but no wheels along the basic one), i.e. prohibiting

compositions of the form

◦K :

I1︷    ︸︸    ︷
...

I2︷    ︸︸    ︷
...

I3

︸    ︷︷    ︸...
I4

︸    ︷︷    ︸...

J1︷    ︸︸    ︷
...

J2︷    ︸︸    ︷
...

J3

︸    ︷︷    ︸
...

J4

︸    ︷︷    ︸
...

−→

I1⊔J1︷ ︸︸ ︷
...

I2⊔J2︷ ︸︸ ︷
...

I3⊔J3

︸ ︷︷ ︸
...

I4⊔J4

︸ ︷︷ ︸
...

1As the symmetric monoidal category of infinite-dimensional vector spaces is not closed, one must be careful about the definition of the

endomorphism prop EndV in this category, see 4.1 for details.
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and allowing only compositions

I1︷    ︸︸    ︷
...

I2︷    ︸︸    ︷
...

I3

︸    ︷︷    ︸...
I4

︸    ︷︷    ︸...

J1︷    ︸︸    ︷
...

J2︷    ︸︸    ︷
...

J3

︸    ︷︷    ︸
...

J4

︸    ︷︷    ︸
...

−→

I1⊔J1︷ ︸︸ ︷
...

I2⊔J2︷ ︸︸ ︷
...

I3⊔J3

︸ ︷︷ ︸
...

I4⊔J4

︸ ︷︷ ︸
...

,

I1︷    ︸︸    ︷
...

I2︷    ︸︸    ︷
...

I3

︸    ︷︷    ︸...
I4

︸    ︷︷    ︸...

J1︷    ︸︸    ︷
...

J2︷    ︸︸    ︷
...

J3

︸    ︷︷    ︸
...

J4

︸    ︷︷    ︸
...

−→

I1⊔J1︷ ︸︸ ︷
...

I2⊔J2︷ ︸︸ ︷
...

I3⊔J3

︸ ︷︷ ︸
...

I4⊔J4

︸ ︷︷ ︸
...

along the subgraphs with no wheels with respect to any of the directions; let us call a prop generated by such multi-

oriented corollas and equipped with such compositions laws (see §2 for the full list of axioms) a (k + 1)-oriented

one.

Which structure on graded vector spaces V can be used to separate (in the sense of representations) 0-oriented (k + 1)-

directed props from (k + 1)-oriented ones (or, more generally, (l + 1) oriented (k + 1)-directed with l ≥ 0)? Note that

the compositions prohibited in the (k + 1)-oriented prop are still nicely oriented with respect to the basic direction, so

the answer can not be dimension of V only.

To make sense of these new restrictions (which have no analogue in the theory of coloured props) we suggest to define

a representation of a (k + 1)-oriented prop in a graded vector space V as follows. Assume V contains a collection of

linear subspaces (satisfying certain restrictions in the infinite-dimensional case, see §4)

(2) W+1 ⊂ V, W+2 ⊂ V, . . . , W+k ⊂ V

with chosen complements

V/W+1 ≃ W−1 ⊂ V, V/W+2 ≃ W−2 ⊂ V, . . . ,V/W+k ≃ W−k ⊂ V.

Then to a (k + 1)-directed outgoing leg we associate (roughly) an intersection2

1 2 ... k
⇔ W+1 ∩W−2 ∩ . . . ∩W+k

obtained by the intersection of “branes” according to the rule:

• to the basic direction we always associate the “full” vector space V;

• to the i-th direction we associate the vector subspace W+
i

if that direction is in agreement with the basic one,

or its complement W−
i

if it is not.

Then any multi-oriented corolla gets interpreted as a collection of k linear maps, one map for each coloured orientation.

For example, a 2-directed corolla gets represented in a graded vector space V equipped with two branes

W1
±,W2

± ⊂ V as two linear maps, one corresponding to three blue inputs and one blue output of the corolla,

W1
+ ∩W2

+ −→ (W1
+ ∩W2

+) ⊗ (W1
+ ∩W2

−) ⊗ (W1
− ∩W2

+)∗,

and another to three red inputs and one red output of the same corolla,

(W1
+ ∩W2

+) ⊗ (W1
− ∩W2

+) ⊗ (W1
+ ∩W2

−)∗ −→ W1
+ ∩W2

+

In finite dimensions both maps are just re-incarnations of one and the same linear map

(W1
+ ∩W2

+) ⊗ (W1
− ∩W2

+) −→ (W1
+ ∩W2

+) ⊗ (W1
+ ∩W2

−),

which is far from being the case in infinite dimensions. Most importantly, this approach to the representation theory

of multi-directed props explains nicely why compositions along graphs with wheels in at least one extra orientation

must be prohibited (we show explicit examples of the associated divergences in §4). This approach also explains the

formula (1) for the associated number of “colours” on legs.

2Strictly speaking, this is true only in finite dimensions. In infinite dimensions the subspaces W+
i

are defined as direct limits of systems of

finite-dimensional system while their complements W−
i

always come as projective limits, so their intersection makes sense only at the level of

finite-dimensional systems first (it is here where the interpretation of W+ and W− as subspaces of one and the same vector space plays its role), and

then taking either the direct or projective limit in accordance with the rule explained in §4.
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1.4. Structure of the paper. In §2 we give a detailed (combinatorial type) definition of multi-oriented props. In §3

we consider concrete examples. In particular, we introduce and study multi-oriented analogues,Ass(k+1) andLie(k+1),

of the classical operads of associative algebras and Lie algebras, and explicitly describe their minimal resolutions

Ass
(k+1)
∞ and Lie

(k+1)
∞ ; we also construct surprising “forgetful the basic direction” maps from Ass(2) to the dioperad

of infinitesimal bialgebras, and from Lie(2) to the dioperad of Lie bialgebras (proving that among representations of

multi-oriented props we can recover sometimes classical structures); we also introduce a family of (k + 1)-oriented

props of homotopy Lie bialgebrasHolieb
(c+d−1)

c,d
on which the Grothendieck-Teichmüller group acts faithfully (see §5).

In §4, the main section of this paper, we define the notion of a representation of a multi-oriented prop in the category

of graded vector spaces with branes, and show, as an illustration, that Manin triples give us a class of symplectic

Lagrangian representations of Lie(2).

Acknowledgement. It is a pleasure to thank Assar Andersson, Anton Khoroshkin, Thomas Willwacher and Marko

Živković for valuable discussions.

2. Multi-oriented props

2.1. S-bimodules reinterpreted. For a finite set I let S
(1)

I
be the set of all possible maps

s : I → {out, in}

from I to the set consisting of two elements called out and in. A finite set I together with a fixed function s ∈ S
(1)

I
is

called 1-oriented. The collection of 1-oriented sets forms a groupoid S(1) with isomorphisms

(I, s) −→ (I′, s′)

being bijections σ : I → I′ of finite sets such that s′ = s ◦ σ−1. The latter condition says that the groupoid S(1) can be

identified with the groupoid of cartesian products, {Iin := s−1(in) × Iout := s−1(out)}, of finite sets.

Let C be a symmetric monoidal category. A functor

P : S(1) −→ C

(I, s) −→ P(I, s)

is called an S(1)-module. An element a ∈ P(I, s) can be represented pictorially as a corolla with #I legs labelled by

elements of I and oriented via the rule: if s(i) = out (resp., s(i) = in) we orient the i-labelled leg by putting the direction

“ > ” from (resp., towards) the vertex; the vertex itself is decorated with a. For example, an element a ∈ P([6], s) can

have a pictorial representation of the form

3

16

2

45

• //��
✞✞✞

[[✼✼✼
oo [[

✼✼
✼

��✞✞
✞

The category of finite sets has a skeleton whose objects are sets [N] = {1, 2, . . . ,N} for some N ≥ 0 (with [0] = ∅). For

I = [N], we often abbreviate Ps(N, s) := Ps([N], s). Note that the above corolla is not assumed to be planar so that it

can be equivalently represented in a more standard way,

62 3 5

41

•

??⑧⑧⑧⑧
II✒✒✒

UU✱✱✱
__❄❄❄❄

[[
✼✼
✼CC

✞✞
✞ ≃

︷    ︸︸    ︷Iout

︸︷︷︸
Iin

•

??⑧⑧⑧⑧
II✒✒✒

UU✱✱✱
__❄❄❄❄

[[
✼✼
✼CC

✞✞
✞

which respects the flow of orientations going from bottom to the top.

Any S-bimodule E = {E(m, n)}m,n≥0, each E(m, n) being an S
op
m ×Sn-module, gives rise to a S(1)-module in the obvious

way (and vice versa).
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2.2. Multi-oriented modules. For a natural number k ≥ 0 let Ork+ be the set of all maps m : [k+] := {0, 1, . . . , k} →

{out, in}; the value m(τ) ⊂ {out, in} on τ ∈ [k+] is called τ-th orientation; the zero-th orientation m(0) is called the

basic one; the mapm is called itself a multi-direction. The elements of [k+] are often called (in shown in our pictures)

as colours. One can represent pictorially a multi-directionm ∈ Ork+ as an “outgoing leg” if m(0) = out,

m↔
m(1) m(2)... m(k) m(0)

or “ingoing leg” if m(0) = in

m↔
m(1) m(2)... m(k) m(0)

using the obvious rule: for any τ ∈ [k] the value m(τ) is represented by the τ-coloured symbol “ >τ ” oriented in the

same direction as m(0) = “ > ” if m(τ) = m(0) , or in the opposite direction, “ <τ ”, if m(τ) , m(0).

For a finite set I consider the associated set S
(k+1)

I
of all maps

s : I −→ Ork+

i −→ si := s(i) : [k+]→ {out, in}

For i ∈ I the value si on τ ∈ [k+] is called τ-th orientation (or τ-th direction) of the element i. For any such a function

s there is associated the opposite function sopp : I → Ork+ which is uniquely defined by the following condition: for

each i ∈ I and each τ ∈ [k+] the value of s
opp

i
on τ is different from the value of si on τ. Thus the set S

(k+1)

I
comes

equipped with an involution. The restriction of the function si to the subset [k] ⊂ [k+] is denoted by s̄i; hence we can

write

s̄i ∈ Ork := {[k]→ {out, in}} , ∀i ∈ I.

This function takes care about extra (i.e. non-basic) orientation assigned to an element i ∈ I. In some pictorial

representations of multi-oriented sets (I, s) we show explicitly only the basic orientation while compressing all the

extra ones into this symbol s̄i (see below).

Note that for any given multi-oriented set (I, s) and a fixed colour τ ∈ [k+] there is an associated map

(3)
šτ : I −→ {out, in}

i −→ šτ(i) := si(τ)

which we use in several constructions below.

Using the above pictorial interpretation of elements of Ork+ as multi-oriented legs, one can uniquely represent any

element s ∈ S
(k+1)

I
as a multi-directed (or multi-oriented) corolla, that is, as a (non-planar) graph with one vertex •

and #I legs such that each leg is (i) distinguished by an element i from I and (ii) decorated with the multi-direction

si ∈ Ork+ as explained just above. For example, a corolla

(4)

6 1

2 3

5 4

�

6 52

31 4

�

6

54

31 2

�

s̄6 s̄5s̄2

s̄3s̄1 s̄4

represents non-ambiguously some element s ∈ S
(2)

[6]
. In the theory of ordinary props corollas are often depicted in

such a way that the orientation flow runs from the bottom to the top. In the multi-directed case such a respecting flow

representation (now non-unique — one for each coloured direction) also makes sense in applications.

A finite set I together with a fixed function s ∈ S
(k+1)

I
is called (k + 1)-oriented. The collection of (k + 1)-oriented sets

forms a groupoid S(k+1) with isomorphisms

(I, s) −→ (I′, s′)

being isomorphismsσ : I → I′ of finite sets such that s′ = s◦σ−1. For example, the automorphism group of the object

([6], s) given by corolla (4) is S2 × S2 as we can permute only labels (1, 3) and independently (5, 6) using morphisms

in the S(2).

Let C be a symmetric monoidal category. A functor

P(k+1) : S(k+1) −→ C

(I, s) −→ P(k+1)(I, s)

6



is called an S(k+1)-module. Thus an element of P(k+1)(I, s) is a of pair of the form


c =

6 1

2 3

5 4

, V := P(k+1)(c) ∈ Ob jects(C)



Note that V carries a representation of the group Aut(c) (in this particular case, of S2×S2). We shall work in this paper

in category of topological vector spaces so that it make sense to talk about elements v of V . The pairs (c, v) are called

decorated corollas and are often represented pictorially by the corolla c with its vertex decorated (often tacitly) by the

vector v. Such decorated corollas span P(k+1)(I, s).

When k is clear, we often abbreviate P = P(k+1). The case k = 0 corresponds to the ordinary S-bimodule.

2.3. Directed and multidirected graphs. By a graph Γ we understand a 1-dimensional CW complex whose zero-

cells are called vertices, and whose 1-cells are called edges. The set of vertices Γ is denoted by V(Γ) and the set of its

edges by E(Γ). A graph is called directed if each edge comes equipped with a fixed orientation (which we show in

pictures as an arrow and call it the basic orientation). Here is an example of a directed graph

with three vertices and three edges.

By a multi-directed, more precisely, (k+1)-directed graph we understand a pair
(
Γ, s ∈ S

(k+1)

E(Γ)

)
consisting of a directed

graph and a function s : E(Γ) → Ork+ such that for each e ∈ E(Γ) the value of the associated function se : [k+] →

{out, in} takes value out at the “zero-th colour” 0 always equals “out” (or, equivalently, “in”) and is identified pictorially

with the original (basic) direction of e,

e =  

se(1) se(2)... se(k) se(0)=out

Thus the data
(
Γ, s ∈ S

(k+1)

E(Γ)

)
can be represented pictorially as a graph whose edges are equipped with (k+1)-directions.

Here is an example of a 3-directed graph.

Let G0↑k+1 denote set of all such (k + 1)-directed graphs. The permutation group Sk+1 acts on this set via its canonical

action on the set of colours [k+].

Let A be a subset of [k+]. A (k + 1)-directed graph Γ ∈ G0↑k+1 is called A-oriented if Γ contains no closed directed

paths of edges (“wheels” or “loops”) in every colour c ∈ A. The subset of A-oriented graphs is denoted by GA↑k+1. If A

is non-empty, then applying a suitable element of the automorphism group Sk+1 we can (and will) assume without loss

of generality that A = {0, 1, 2, . . . , l} for some l ≥ 0 and re-denote Gl+1↑k+1 := GA↑k+1. If l = k, we further abbreviate

G(k+1)-or := Gk+1↑k+1 and call its elements multi-oriented graphs.

2.4. From multi-directed graphs to endofunctors on S(k+1)-modules. Fix an integer k ≥ 0 and an integer l in the

range −1 ≤ l ≤ k. For a finite set I define Gl+1↑k+1(I) to be the set of (k+1)-directed (l+1)-oriented graphs Γ equipped

with an injection i : I → V1(Γ), where V1(Γ) ⊂ V(Γ) is the subset of univalent vertices. The univalent vertices lying

in the image L(Γ) := i(I) of this map are called (k + 1)-directed legs of Γ; each such leg is labelled therefore by an

element i of I and is called an i-leg (in pictures we show it as a leg indeed with the 1-valent vertex erased and the

index i put on its place); vertices in Vint(Γ) := V(Γ) \ L(Γ) are called internal. Edges connecting internal vertices are

called internal; there is a decomposition E(Γ) = L(Γ) ⊔ Eint(Γ). Here are examples of 2-directed graphs, one with 4

7



internal vertices and 4 legs, the other with two internal vertices and 3 legs,

1

4

2 3

∈ G2↑2(4) ,

1

2 3

∈ G1↑2(3)

Given an internal vertex v ∈ Vint(Γ), there is an associated set Hv of edges attached to v and an obvious function (“the

multi-oriented corolla at v”)

sv : Hv −→ Ork+

There is also an induced function

s : I = L(Γ) −→ Ork+

on the set of legs defined uniquely by the pictorial rule explained in the the first paragraph of §2.2. Let Gl+1↑k+1(I, s) ⊂

Gl+1↑k+1(I) be the subset of multi-directed (partially oriented, in general) graphs which have one and the same orienta-

tion function s on the set of legs I.

For an S(k+1)-module E = {E(I, s)} in a symmetric monoidal category C with countable coproducts and a graph

Γ ∈ Gl+1↑k+1(I, s) consider the unordered tensor product3 (cf. [M, MSS])

Γ〈E〉(I, s) :=


⊗

v∈Vint(G)

E(Hv, sv)


Aut(Γ)

where Aut(Γ) stands for the automorphism group of the graph Γ, and define an S(k+1)-module in C

Freel+1↑k+1〈E〉 : S(k+1) −→ C

(I, s) −→ Freel+1↑k+1〈E〉(s, I) :=
⊕
Γ∈Gl+1↑k+1 (I,s)

Γ〈E〉(I, s)

A we shall see below, that Freel+1↑k+1〈E〉 gives us an example of a (k + 1)-directed (l + 1)-oriented prop (called the

free prop generated by the S(k+1)-module E. For l = k = 0 this is precisely the ordinary free prop generated by the

S(1)-module E. For l = −1, k = 0 this is the free wheeled prop generated by E [Me1, MMS]. If l = k, i.e. if all

directions are oriented, we abbreviate Freek+1↑k+1〈E〉 =: Free(k+1)-or〈E〉.

2.5. Multi-oriented prop(erad)s. A (possibly disconnected) subgraph γ of a (connected or disconnected) graph Γ ∈

Gl+1↑l+1(I, s) is called complete if the complement Vint \ Vint(γ) does not contain internal edges of Γ attached (on

both ends) to vertices of γ. Let Γ/γ be the graph obtained from Γ by contracting all internal vertices and all internal

edges of γ to a single new vertex; note that the legs of Γ/γ are the same as in Γ so that Γ/γ comes equipped with

the same orientation function s : L(Γ/γ) → Ork+ . A complete subgraph γ ⊂ Γ is called admissible if Γ/γ belongs to

Gl+1↑k+1(I, s), i.e. the contraction procedure does not create wheels in the first l + 1 coloured directions. Note that by

its very definition γ belongs to ∈ Gl+1↑k+1(I′, s′), where I′ is the subset of E(Γ) consisting of (non-loop) edges attached

only to one vertex of γ, and the function s′ : I′ → Ork+ is given by the restriction of s to that subset (in accordance

with the pictorial representation of multi-orientations as explained in the first paragraph of §2.2).

A (k+1)-directed (l+1)-oriented prop in a symmetric monoidal category (with countable colimits) C is, by definition,

an S(k+1)-module P = {P(I, s)} in C together with a natural transformation of functors

µ : Freel+1↑k+1〈P〉 −→ P

µΓ : Γ〈P〉(I, s) −→ P(I, s)

such that for any graph Γ ∈ Gl+1↑k+1(I, s) and any admissible subgraph γ ⊂ Γ one has

(5) µΓ = µΓ/γ ◦ µ
′
γ,

where µ′γ : Γ〈P〉(I, s)→ (Γ/γ)〈P〉(I, s) stands for the obvious map which equals µγ on the (decorated) subgraph γ and

which is identity on all other vertices of Γ.

3The (unordered) tensor product
⊗

i∈I
Xi of vector spaces Xi labelled by elements i of a finite set I of cardinality, say, n is defined as the space

of Sn-coinvariants

(⊕
σ:[n]

≃
−→I

Xσ(1) ⊗ Xσ(2) ⊗ . . . ⊗ Xσ(n)

)

Sn

.
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The most interesting case for us is k = l. The associated props are called multi-oriented (more precisely, (k + 1)-

oriented). Thus a multi-oriented prop is an S(k+1)-module P equipped with

(i) a horizontal composition

⊠ : P(I1, s1) ⊗ P(I2, s2) −→ P(I1 ⊔ I2, s1 ⊔ s2),

(ii) and, for any two injections of the same finite set f1 : K → I1 and f2 : K → I2, a vertical composition

P(I1, s1) ◦K P(I2, s2) −→ Ps12
((I \ f1(K)) ⊔ (I2 \ f2(K)), s12)

which is non-zero if only if the compositions

K
s1◦ f1
−→ Ork+ , K

s2◦ f2
−→ Ork+

satisfy the condition s1 ◦ f1 = (s2 ◦ f2)opp (put another way, one can compose decorated corollas (4) along legs

which have opposite orientations). Here

s12 : (I1 \ f1(K)) ⊔ (I2 \ f2(K)) −→ Ork+

is defined by s12(i) = s1(i) for i ∈ I1 \ f1(K) and s12(i) = s2(i) for i ∈ I2 \ f2(K).

These compositions are required to satisfy the “associativity” axioms which essentially say that when we iterate such

compositions the order in which we do it does not matter. In terms of decorated corollas these composition correspond

to contraction maps (for k = 1)

⊠ :

I1︷ ︸︸ ︷
...

I2︷ ︸︸ ︷
...

I3

︸ ︷︷ ︸
...

I4

︸ ︷︷ ︸
...

×

J1︷ ︸︸ ︷
...

J2︷ ︸︸ ︷
...

J3

︸ ︷︷ ︸
...

J4

︸ ︷︷ ︸
...

−→

I1⊔J1︷ ︸︸ ︷
...

I2⊔J2︷ ︸︸ ︷
...

I3⊔J3

︸ ︷︷ ︸
...

I4⊔J4

︸ ︷︷ ︸
...

(6) ◦K :

I1︷    ︸︸    ︷
...

I2︷    ︸︸    ︷
...

I3

︸    ︷︷    ︸...
I4

︸    ︷︷    ︸...

J1︷    ︸︸    ︷
...

J2︷    ︸︸    ︷
...

J3

︸    ︷︷    ︸
...

J4

︸    ︷︷    ︸
...

−→

I1⊔J1︷ ︸︸ ︷
...

I2⊔J2︷ ︸︸ ︷
...

I3⊔J3

︸ ︷︷ ︸
...

I4⊔J4

︸ ︷︷ ︸
...

, ◦K :

I1︷    ︸︸    ︷
...

I2︷    ︸︸    ︷
...

I3

︸    ︷︷    ︸...
I4

︸    ︷︷    ︸...

J1︷    ︸︸    ︷
...

J2︷    ︸︸    ︷
...

J3

︸    ︷︷    ︸
...

J4

︸    ︷︷    ︸
...

−→

I1⊔J1︷ ︸︸ ︷
...

I2⊔J2︷ ︸︸ ︷
...

I3⊔J3

︸ ︷︷ ︸
...

I4⊔J4

︸ ︷︷ ︸
...

Note that compositions of the form

(7) ◦K :

I1︷    ︸︸    ︷
...

I2︷    ︸︸    ︷
...

I3

︸    ︷︷    ︸...
I4

︸    ︷︷    ︸...

J1︷    ︸︸    ︷
...

J2︷    ︸︸    ︷
...

J3

︸    ︷︷    ︸
...

J4

︸    ︷︷    ︸
...

−→

I1⊔J1︷ ︸︸ ︷
...

I2⊔J2︷ ︸︸ ︷
...

I3⊔J3

︸ ︷︷ ︸
...

I4⊔J4

︸ ︷︷ ︸
...

are prohibited in 2-oriented props (as they contain at lats one wheel in blue colour), but are allowed in 1- or 0-oriented

2-directed props.

If in the above definition of the natural transformation µ we restrict only to the subset G
l+1↑k+1
c (I, s) ⊂ Gl+1↑k+1(I, s)

of connected graphs, we get the notion of an (l + 1)-oriented (k + 1)-directed properad P (cf. [V]). In this case we

do not have horizontal compositions in P, only vertical ones. There is an obvious exact functor from (k + 1)-directed

properads to (k + 1)-directed props.

For any S(k+1)-module E the associated S(k+1)-module F reel+1↑k+1〈E〉 is a (l + 1)-oriented (k + 1)-directed prop with

contraction maps µΓ being tautological. It is called the free multi-directed prop generated by E. If l = k, it is called

the free multi-oriented (more precisely, (k + 1)-oriented) prop generated by E.

2.6. Multi-oriented operads. If a multi-oriented properadP = {P(I, s)} is such thatP(I, s) vanishes unless š−1
0

(out) ,

1 (i.e. the functor P is non-trivial only on multi-oriented corollas with precisely one outgoing leg with respect to the

basic direction) it is called a multi-oriented operad. Note that there is no such a restriction on non-basic directions.
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2.7. Multi-oriented dioperads. Restricting the functor F reel+1↑k+1 (and denoting it by F ree
l+1↑k+1

0
) and the com-

positions µΓ above to connected graphs of genus zero only one gets the notion of a (k + 1)-directed (l + 1)-oriented

dioperad. Note that a multi-oriented operad is a special case of a multi-oriented dioperad.

2.8. Multidirected wheeled prop(erad)s. The above definitions makes sense in the case l = −1 as well; the associ-

ated 0-oriented (k+ 1)-directed prop(erad)P is called a (k+ 1)-directed wheeled prop(erad) (cf. [Me1, MMS]). In this

case graphs Γ can have an internal edge connecting one and the same vertex so that one has in addition to the above

mentioned horizontal and vertical compositions in P one has to add a trace map

TrK : P(I, s) −→ P
(
I \ [ f1(K) ⊔ f2(K), s′]

)

well-defined for any two injections f1 : K → I, f2 : K → I such that f1(K) ∩ f2(K) = ∅ and s ◦ f1 = (s ◦ f2)opp; the

orientation function s′ is obtained from s by its restriction to the subset I \ [ f1(K) ⊔ f2(K)].

Thus in the the family of (k + 1)-directed (l + 1) oriented props the special case (l = −1, k ≥ 0) corresponds to the

ordinary 2k-coloured wheeled prop while the case (l = 0, k ≥ 0) to the ordinary 2k coloured prop. Thus the really new

cases start must have k ≥ l ≥ 1.

In the next section we introduce multi-oriented versions of some classical operads and props at the combinatorial

level (which is straightforward). In the next Section after we discuss their representations, i.e. explain what these

multi-oriented graphical combinatorics gives us in practice (and this step is, perhaps, not that straightforward).

2.9. Ordinary props as multi-oriented ones. By the very definition, the category of ordinary props is precisely the

the category of 1-oriented props. It is worth mentioning, however, that there is a canonical but very naive functor for

any k ≥ 1

O(k+1) : Category of ordinary props −→ Category of (k + 1)oriented props

P = {P(I, s)} −→ O(k+1)(P) = {P(I, s(k+1))}

which simply associates to the S(1)-module {P(I, s)} an S(k+1)-module {P(I, s(k+1)) = P(I, s)} which is non-trivial (and

coincides with {P(I, s)}) only for those multi-orientations s(k+1) in which all extra directions are aligned coherently

with the basic one. More precisely, given an ordinary (1-oriented) prop

P (I, s : I → Or0+ ≡ {out, in})

we define

P(I, s(k+1)) :=

{
P(I, s) if s(k+1) satisfies s

(k+1)

i
(τ) := s(i) ∀ i ∈ I, ∀τ ∈ [k+],

0 or ∅ otherwise.

We do not use this naive functor in this paper (as it gives nothing new), but it is worth keeping in mind that all classical

props can be “embedded” into the category of (k + 1)-oriented props; at least nothing is lost.

Similarly one can interpret a (k + 1)-oriented prop as a (k + l + 1)-oriented prop for any l ≥ 1. In the next section we

consider much less naive extensions of classical operads and props to the multi-oriented setting.

3. Multi-oriented versions of some classical operads and props

3.1. Multi-oriented operad of (strongly homotopy) associative algebras. Let us recall an explicit combinatorial

description of the operad Ass of associative algebras in terms of planar 1-oriented (with orientation flow running

implicitly from the bottom to the top) corollas. By definition,Ass is the quotient,

Ass := Free1-or〈A〉/(R)

of the free operad Free〈A〉 generated by the S-module A = {A(n)}n≥0 with

A(n) :=



K[S2] ≡ span

〈 0

1 2

,

0

2 1

〉
if n = 2,

0 otherwise
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modulo the ideal generated by the relation (together with its S3 permutations),

0

1 2

3

−

0

32

1

= 0

Its minimal resolution is a dg free operad, Ass∞ := (Free〈E〉, δ) generated by the S-module E = {E(n)}≥2 (whose

generators we represent pictorially as planar corollas of homological degree 2 − n)

E(n) := K[Sn][n − 2] = span


σ(1) σ(2)

...

σ(n)σ(n−1)


σ∈Sn

,

and equipped with the differential given on the generators by

δ

1 2

...

nn−1

=

n−2∑

r=0

n−r∑

l=2

(−1)rl+n−r−l+1

1 r nr+l+1

...

... ...

r+1 r+2 r+l

Let us first consider the most naive multi-oriented generalization of Ass∞ in which we enlarge the set of generators

by decorating each leg of each planar corolla with k extra orientations in all possible ways4 while preserving its

homological degree,

0

1 2

...

nn−1

−→



0

1 2

...

nn−1

,

0

1 2

...

nn−1

, . . .


=



s̄0

s̄1 s̄2

...

s̄ns̄n−1


∀s̄0,s̄1,...s̄n∈Ork

In some pictures we show explicitly only the basic direction while extra directions are indicated only by extra-

orientation functions s̄i. Denote Asvbig
(k+1)
∞ := Free(k+1)-or

〈
A(k+1)

〉
be the free (“veri big”) operad generated by

these corollas, more precisely, by the associated S(k+1)-module A(k+1) = {A(k+1)(I, s)}which can be formally defined as

follows,

A(k+1)(I, s) =



0 if #I ≤ 2

0 if š−1
0

(out) , 1

span〈ord(I′)〉[#I − 3] otherwise.

where ord(I′) is the set of total orderings on the finite set I′ = I \ š−1
0

(out). The differential inAss∞ can be extended

toAsvbig
(k+1)
∞ by summing over all possible ways of attaching extra directions s̄ ∈ Ork to the internal edge,

(8) δ

s̄0

s̄1 s̄2

...

s̄ns̄n−1

=

n−2∑

r=0

n−r∑

l=2

∑

s̄∈Ork

(−1)rl+n−r−l+1
s̄

s̄0

s̄1 s̄r s̄ns̄r+l+1

...

... ...

s̄r+1 s̄r+2 s̄r+l

Note that the generating corollas inAsvbig
(k+1)
∞ have at least one ingoing leg and at least one outgoing leg with respect

to only basic direction (this condition kills “curvature terms” in that direction). As we shall see in the next chapter

(where we introduce representations of multi-oriented props), it is actually extra directions (if present) which play

the genuine role of inputs and outputs. Hence to avoid “curvature terms” with respect to any direction, we have to

consider an ideal I1 in the free operadAsvbig
(k+1)
∞ generated by those corollas which have no at least one output or no

at least one input leg with respect to at least one extra orientation. It is easy to see that the above differential δ respects

this ideal so that the quotient

Asbig
(k+1)
∞ := Asvbig

(k+1)
∞ /I1

is a dg free operad again. It is generated by a “smaller” set of generators, but still that set can be further reduced. Note

that once the basic direction is fixed, the set of extra orientations Ork can be identified with the set of words of length

4In some pictures we show explicitly only the basic direction while extra directions are indicated only by “extra-orientation” functions s̄i : [k]→

{out, in}.
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k in two letter, > and <, and hence can be equipped with the lexicographic order ≤. Let us call a generating corolla

s̄0

s̄1 s̄2

...

s̄ns̄n−1

special if s̄1 ≤ s̄2 ≤ . . . ≤ s̄n (i.e. if the planar order agrees with the lexicographic one), and let I2 be the ideal in the

free operad Asbig
(k+1)
∞ generated by non-special corollas. It is again easy to see that the differential δ respects that

second ideal so that the quotient

Ass
(k+1)
∞ := Asbig

(k+1)
∞ /I2

is a dg free operad generated by the special corollas (essentially, the main point of this discussion is to motivate the

claim that the derivation ofAss
(k+1)
∞ given on the generating special corollas by formula (8) is a differential). It is called

the multi-oriented operad of strongly homotopy associative algebras. Let J be the differential closure of the ideal in

the free (viewed as a non-differential) operadAss
(k+1)
∞ generated by the above corollas with n ≥ 3. The quotient

Ass(k+1) := Ass
(k+1)
∞ /J

is called a multi-oriented operad of associative algebras. We shall see below that this multi-oriented operad controls

structures which are governed, in some special case, by ordinary dioperads. For example, a representation of Ass(2)

in a symplectic vector space with one Lagrangian brane can be identified with an infinitesimal bialgebra structure on

that brane.

3.1.1. The simplest non-trivial case k = 1 in more detail. The dg operadAss
(2)
∞ is generated by planar corollas of

homological degree 2 − #I − #J

I
︸ ︷︷ ︸
...

J
︸ ︷︷ ︸
...

and

I
︸ ︷︷ ︸
...

J
︸ ︷︷ ︸
...

, #I + #J ≥ 2.

where the finite sets of labels I and J are totally ordered (in agreement with the given planar structure of the corollas).

The differential is given explicitly by

δ

I
︸ ︷︷ ︸
...

J
︸ ︷︷ ︸
...

=
∑

I=I1⊔I2⊔I3

(−1)#I1#I2+#I3+#J+1
︸︷︷︸

I1

︸︷︷︸
I3

︸︷︷︸
J

...

...

︸︷︷︸
I2

+
∑

J=J1⊔J2⊔J3

(−1)(#I+#J1)#J2+#J3+1
︸︷︷︸

J3

︸︷︷︸
J1

︸︷︷︸
I

...

...

︸︷︷︸
J2

+
∑

I=I1⊔I2
J=J1⊔J2

(−1)#I1(#I2+#J1)+#J2+1


︸︷︷︸

I1

︸︷︷︸
J2

︸︷︷︸
I2

︸︷︷︸
J1

...

... ... + ︸︷︷︸
I1

︸︷︷︸
J2

︸︷︷︸
I2

︸︷︷︸
J1

...

... ...



and similarly for the second corolla. Here the summations run over decompositions of the totally ordered sets into

disjoint unions of connected (with respect to the order) subsets.

The operadAss(2) is generated by the following planar corollas (in homological degree zero)

i0

i1 i2

,

i0

i2 i1

span K[S2]

,

i0

i1 i2

,

i0

i2 i1

span K[S2]

,

i0

i1 i2

spans K

,

i0

i1 i2

spans K

while the relations are given by

(9)

i0

i1 i2

i3

=

i0

i3i2

i1

,

i0

i1 i2

i3

=

i0

i3i2

i1

+

i0

i3i2

i1

,

i0

i1 i2

i3

=

i0

i3i2

i1
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(10)

i0

i1 i2

i3

=

i0

i3i2

i1

,

i0

i1 i2

i3

+

i0

i1 i2

i3

=

i0

i3i2

i1

,

i0

i1 i2

i3

=

i0

i3i2

i1

One can describe similarly the operadAss(k+1) in terms of generators and relations.

3.1.2. Theorem. The natural projectionAss
(k+1)
∞ −→ Ass(k+1) is a quasi-isomorphism.

Proof. We have to show that H•(Ass
(k+1)
∞ (I, s)) = Ass(k+1)(I, s) for any (k + 1)-oriented set (I, s). In fact, it is enough

to show that the cohomology of the operad H•(Ass
(k+1)
∞ (I, s)) is concentrated in degree zero because that would imply

the required equality due to the fact that the complexAss
(k+1)
∞ (I, s)) is non-positively graded.

We shall prove the claim by induction over #I = n + 1, and abbreviate the notation Ass
(2)
∞ (n) := Ass

(2)
∞ (I, s) and

Ass(2)(n) := Ass(2)(I, s). When n = 2, the equality H•(Ass
(2)
∞ (n)) = Ass(2)(n) is obvious. Assume it is true for all

multi-oriented sets with #I ≤ n+1, and consider the complexAss
(k+1)
∞ (n+1); we can assume without loss of generality

that the input (with respect to the basic colour) legs of any graph fromAss
(2)
∞ (n + 1) are labelled from left to right (in

accordance with the planar structure) by 1, 2, . . . , n + 1 (while the root vertex by n + 2).

Consider first a filtration ofAss
(2)
∞ (n+1) by the total number of vertices lying on the path from the root edge to the leg

labelled by 1 (and call it a special path), and let Gr(n + 1) denote the associated graded. Consider next a filtration of

Gr(n + 1) by the total valency of vertices lying on the special path (and denote the set of such vertices by Vsp), and let

(Er, δr) be the associated spectral sequence (converging to H•(Ass
(2)
∞ (n + 1)). The initial page (E0, δ0) is isomorphic

to the direct sum of tensor products of complexes of the form Ass
(k+1)
∞ (n′) with all n′ ≤ n so that by the induction

hypothesis we can easily describe the next page of the spectral sequence:

E1 = H•(E0) �
⊕

special paths

⊕

n=
∑

v∈Vsp nv

nv≥1

⊗

v∈Vsp

Cv(nv)

where Cv(nv) is a complex spanned by planar corollas of the form

•

✂✂
✂✂
. . . ❁❁
❁❁

❑❑❑
❑❑❑

a1 ap−1 ap

, p ≥ 1,

whose dashed legs belong to the given special path (and are equipped with the induced multi-orientations from that

special path) while solid legs are decorated by arbitrary elements of the unital extension of the operadAss(k+1),

ai ∈ Ass(k+1)
u (ni) :=



Ass(k+1)(ni) if #ni ≥ 2

K if #ni = 1

0 if #ni = 0

, i ∈ [p],

subject to the condition that
p∑

i=1

ni = nv,

The differential on Cv(nv) is non-trivial only on the root corolla on which it acts as follows (we suppress some extra

orientations in the picture),

(11) δ1 •

✂✂
✂✂
. . . ❁❁
❁❁

❑❑❑
❑❑❑

a1 ap−1 ap

=



∑p−2

i=0

∑
s̄∈Ork

(−1)p−i+1 •

✆✆
✆✆

.. ..❁
❁❁

❁

✜✜
✜

❑❑❑
❑❑❑

s̄

ai ap

•
✆✆
✆ ❅❅
❅

ai+1 ai+2

for p ≥ 3

−
∑
s̄∈Ork

•
s̄

•
☎☎
☎ ✿✿
✿

a1 a2

for p = 2

0 for p = 1.
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Claim. The cohomology of the complex Cv(nv) is concentrated in cohomological degree zero.

Indeed, consider a one-step filtration of Cv(nv) by the number of three-valent vertices of the form • and the associ-

ated two pages spectral sequence. It is easy to see that the complex on the initial page is a direct sum of a trivial complex

spanned by graphs of the form •

a1

with a1 ∈ Ass
(k+1)
u (nv) and a non-trivial complex which is quasi-isomorphic to

the degree shifted (direct summand) subcomplex of (Ass
(k+1)
∞ (nv)[1], δ) spanned by graphs with the orientation of the

unique root leg fixed by the multi-orientation of the corresponding dashed edge of the given special path (indeed, take

a filtration of the latter sub-complex by the valency of the root vertex and use the induction assumption). As nv ≤ n

we conclude (again by the induction assumption) that its cohomology is equal to

A := span

〈
•

✂✂
✂✂ ❁❁
❁❁

a1 a2

mod Ass(k+1)-relations, a1 ∈ Ass(k+1)
u (n1), a2 ∈ Ass(k+1)

u (n2), n1 + n2 = nv

〉

The induced differential on the next (and final) page of the spectral sequence is an injection

d : A −→ Ass(k+1)(nv) = span

〈
•

a

, a ∈ Ass
(k+1)
u (nv)

〉

•

✂✂
✂✂ ❁❁
❁❁

a1 a2

−→ −
∑
s̄∈Ork

•
s̄

•
☎☎
☎ ✿✿
✿

a1 a2

which proves the Claim.

We conclude that the cohomology H•(Ass
(k+1)
∞ (n+1)) is generated by multi-oriented graphs of the form (modulo some

relations corresponding to the image of the injection d)

•
✼✼

✼

av1•
✼✼

✼

av2...•
✼✼

✼

avl

where l := #Vsp, avi
∈ Ass(k+1)

u (nvi
),

l∑

i=1

nvi
= n

which all have cohomological degree zero. Hence H•(Ass
(k+1)
∞ (n + 1)) is concentrated in degree zero implying its

identification withAss(k+1)(n + 1). The induction argument and hence the proof the Theorem are completed. �

In the next subsection we discuss representations of Ass(k+1), that is, associative algebras with k branes. Rather

surprisingly, we recover, in particular, a well-known notion of infinitesimal bialgebra as an associative algebra with

one (symplectic Lagrangian) brane. This interesting fact can be seen already now (i.e. in purely combinatorial way)

as follows.

3.2. Infinitesimal bialgebras as 2-oriented associative algebras. Recall that an ordinary (i.e. 1-oriented) dioperad

of infinitesimal associative bialgebras is, by definition, the quotient of the 1-oriented free dioperad

IB := F ree1-or
0 〈B〉 /R

generated by an S-bimodule B = {B(m, n)}

B(m, n) :=



K[S2] ⊗ 111 ≡ span

〈
◦
0

21

, ◦
0

12
〉

if m = 2, n = 1,

111 ⊗ K[S2] ≡ span

〈
◦

0

21

, ◦

0

12

〉
if m = 1, n = 2,

0 otherwise

modulo the ideal R generated by the following relations

◦
◦ 3

21

−
◦
◦1

2 3

= 0,
◦
◦ 3

21

−
◦
◦1

2 3

= 0,
◦
◦

21

3 4

−
1

2

3

4
◦
◦
−

2

1

4

3
◦
◦

= 0.
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Here all internal edges and legs are assumed to be oriented along the flow running from the bottom of a graph to its

top.

3.2.1. Proposition. There is a (forgetting the basic orientation) morphism of dioperads

α : Ass(2) −→ IB

given on the generators as follows:

α



0

1 2

 := ◦

0

21

, α


0

1 2

 = ◦
0

12

, α



0

1 2

 = ◦
1

20

, α


0

1 2

 = ◦

2

10

Proof. It is straightforward to check that each of the six relations in (9)-(10) is mapped under α into one of the above

three relations for IB. Hence the map is well-defined indeed. �

This proposition indicates that the notion of representation of a multi-oriented prop(erad) can not be an immediate

generalization of that notion for ordinary coloured prop(erad)s — the extra orientations are not really “colours”, and

the distinction between operads and dioperads should become non-existent.

3.3. Example: Multi-oriented operad of Lie and Lie∞ algebras. Recall that the ordinary operad of strongly ho-

motopy Lie algebras is the free operadLie∞ := (Free1-or〈L〉, δ) generated by an S-module L = {L(n)}≥2 with

L(n) := Idn[n − 2] = span


1 2

...

nn−1

= (−1)σ

σ(1) σ(2)

...

σ(n)σ(n−1)

,∀ σ ∈ Sn



and equipped with the differential given on the generators by

δ

I
︸                ︷︷                ︸

...
=

∑

I=I1⊔I2

(−1)#I2+1

︸︷︷︸
I1

︸︷︷︸
I2

︸︷︷︸
J2

... ...

......

︸︷︷︸
J1

It is essentially a skewsymmetrized version ofAss∞ (there is a canonical morphism of operadsLie∞ → Ass∞ sending

a generator ofLie∞ into a skewsymmetrization of the corresponding generator ofAss∞). If I is the differential closure

of the ideal in Lie∞ generated by all corollas with negative cohomological degree, then the quotient

Lie := Lie∞/I

is an operad controlling Lie algebras. It is generated by degree zero planar skewsymmetric corollas

0

1 2

= −

0

1 2

modulo the Jacobi relation,
0

32

1

+

0

21

3

+

0

13

2

= 0

The natural surjection Lie∞ −→ Lie is a quasi-isomorphism.

An operad of (k + 1)-oriented strongly homotopy Lie algebras is defined an as obvious skew-symmetrization of the

operad Ass
(k+1)
∞ introduced in the previous subsection (so that there is again a canonical morphism of dg operads

Lie
(k+1)
∞ → Ass

(k+1)
∞ ). More precisely, the prop Lie

(k+1)
∞ is a free (k + 1)-oriented prop generated by corollas with the

same symmetries and degrees as in the case of Lie∞, but now with each leg decorated with extra k-orientations,

s̄0

s̄1 s̄2 s̄n−1s̄n

...
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with the condition that there is at least one ingoing edge and outgoing edge with respect to each of the new directions.

The differential is given by the same formula as in the case ofHoliebc,d except that now we sum over all possible (and

admissible) new orientations attached to the new edge

δ

s̄0

s̄1 s̄2 s̄n−1s̄n

...
=

∑

[1,...,n]=J1⊔J2
|J1 |≥1,|J2 |≥1

∑

s̄∈Ork

(−1)1+#J2+·sgn(J1,J2)
s̄

s̄i , i∈J1

︸              ︷︷              ︸

s̄0

s̄i , i∈J2

︸        ︷︷        ︸

...

...

where the first sum run over decompositions of the ordered set [n] into the disjoint union of (not necessarily connected)

ordered subsets, and sign(I1, I2) stands for the parity of the permutation [n]→ I1 ⊔ I2.

In more detail, the operad of 2-oriented strongly homotopy Lie algebras is, by definition, a free 2-oriented operad

generated by the following skewsymmetric planar corollas of degree 2 − n, n ≥ 2,

0

σ(1) σ(r)

... ...
τ(r+1)τ(r+l)

= (−1)σ+τ

0

1 r

... ...
r+1r+l

r+l≥2, r≥1, l≥0

,

0

σ(1) σ(r)

... ...
τ(r+1)τ(r+l)

= (−1)σ+τ

0

1 r

... ...
r+1r+l

r+l≥2, r≥0, l≥1

,

for any σ ∈ Sr and τ ∈ Sl. As in the case of Ass
(k+1)
∞ we require that each corolla has at least one ingoing leg and at

least one outgoing leg in each extra orientation (in order to avoid curvature terms in representations).

The differential is given by (and it is easy to check that δ is a differential indeed)

δ

I
︸ ︷︷ ︸
...

J
︸ ︷︷ ︸
...

=
∑

I=I1⊔I2
J=J1⊔J2

(−1)#I1(#I2+#J1)+#J2+1+sign(I1 ,I2)+sign(J1,J2)


︸︷︷︸

I1

︸︷︷︸
J2

︸︷︷︸
I2

︸︷︷︸
J1

...

... ... + ︸︷︷︸
I1

︸︷︷︸
J2

︸︷︷︸
I2

︸︷︷︸
J1

...

... ...



and similarly for the second class of corollas. Here the sums run over all admissible decompositions of the ordered

sets I and J into the disjoint unions of (not necessarily connected) ordered subsets, and sign(I1, I2) (resp., sign(J1, J2))

stands for the parity of the permutation I → I1 ⊔ I2 (resp., J → J1 ⊔ J2).

If I is the differential closure of the ideal in Lie
(k+1)
∞ generated by all corollas with negative cohomological degree,

then the quotient

Lie(k+1) := Lie
(k+1)
∞ /I

is called an operad of multi-oriented Lie algebras.

3.3.1. Theorem. The natural projection Lie
(k+1)
∞ −→ Lie(k+1) is a quasi-isomorphism.

Proof. It is enough to show that Lie
(k+1)
∞ is concentrated in cohomological degree zero, and this can be done by the

arity induction in a close analogy to the proof of Theorem 3.1.2. We omit the details. �

3.4. The operad of 2-oriented Lie algebras versus the ordinary dioperad of Lie bialgebras. The operad Lie(2)

can be explicitly described as follows: it is generated by the following list of degree 0 corollas,

0

1 2

= −

0

2 1

,

0

1 2

= −

0

2 1

,

0

1 2

,

0

1 2

modulo the following relations

(12)

0

1 2

3

+

0

3 1

2

+

0

1 2

3

= 0,

0

1 2

3

−

0

32

1

+

0

31

2

−

0

32

1

+

0

31

2

= 0
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(13)

0

1 2

3

−

0

1 3

2

−

0

32

1

= 0,

0

1 2

3

+

0

3 1

2

+

0

1 2

3

= 0

(14)

0

1 2

3

−

0

1 3

2

+

0

1 2

3

−

0

1 3

2

−

0

32

1

= 0,

0

1 2

3

−

0

32

1

+

0

31

2

= 0

Representations of the operad of 2-oriented Lie algebras in symplectic vector spaces with one Lagrangian brane are

studied in the next section where it is shown that they can be identified with famous Manin’s triples which give us an

alternative (and often very useful) characterization of Lie bialgebras. Hence the combinatorics of the latter structures

must be hidden in the combinatorics of the former ones, and our next our purpose to make this inter-relation explicit.

Recall that the ordinary (i.e. 1-oriented) dioperad of Lie bialgebras is the quotient

Liebdiop := Free1-or
0 〈M〉 /J

of the free 1-oriented free dioperad generated by an S-bimodule M = {M(m, n)} with

M(m, n) :=



sgn2 ⊗ 111 ≡ span

〈
⑧⑧❄❄
•
0

21

= −
⑧⑧❄❄
•
0

12 〉
if m = 2, n = 1,

111 ⊗ sgn2 ≡ span

〈
❄❄⑧⑧•

0

21

= − ❄❄⑧⑧•

0

12

〉
if m = 1, n = 2,

0 otherwise

modulo the ideal J generated by the following relations

•⑧⑧
❄❄•
☎☎

❁❁
3

21

+ •⑧⑧
❄❄•
☎☎

❁❁
2

13

+ •⑧⑧
❄❄•
☎☎

❁❁
1

32

= 0 ,
•❄❄⑧⑧•❂❂✁✁ 3

21

+ •❄❄⑧⑧•❂❂✁✁ 2

13

+ •❄❄⑧⑧•❂❂✁✁ 1

32

= 0,

⑧⑧❄❄
•
•
✝✝ ✽
✽

21

3 4

− ✞✞
✼✼
•
•✷✷

3

4

2

1

+ ✞✞
✼✼
•
•✷✷

4

3

2

1

− ✞✞
✼✼
•
•✷✷

4

3

1

2

+ ✞✞
✼✼
•
•✷✷

3

4

1

2

= 0

3.4.1. Proposition. There is a (forgetting the basic orientation) morphism of dioperads

β : Lie(2) −→ Liebdiop

given on the generators as follows:

β



0

1 2

 := ❄❄⑧⑧•

0

21

, β


0

1 2

 =
⑧⑧❄❄
•
0

12

, β



0

1 2

 =
⑧⑧❄❄
•
1

20

, β


0

1 2

 = ❄❄⑧⑧•

2

10

Proof. It is straightforward to check that each of the eight relations in (12)-(14) is mapped under β into one of the

above three relations for Liebdiop. Hence the map is well-defined indeed. �

This result gives us a purely combinatorial interpretation of the famous Manin triple construction [D].
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3.5. Multi-oriented prop of homotopy Lie bialgebras. Let us recall a graded generalization of the classical prop of

Lie bialgebras depending on two integer parameters c, d ∈ Z. By definition [MW1], Liebc,d is a quadratic properad

given as the quotient,

Liebc,d := Free1-or〈Q〉/〈R〉,

of the free properad generated by an S-bimodule Q = {Q(m, n)}m,n≥1 with all Q(m, n) = 0 except

Q(2, 1) := 111 ⊗ sgn⊗c
2 [c − 1] = span

〈
⑧⑧❄❄
•

21

= (−1)c ⑧⑧❄❄
•

12
〉

Q(1, 2) := sgn⊗d
2 ⊗ 111[d − 1] = span

〈
❄❄⑧⑧•

21

= (−1)d ❄❄⑧⑧•
12

〉

by the ideal generated by the following relations

•⑧⑧
❄❄•
☎☎

❁❁
3

21

+ •⑧⑧
❄❄•
☎☎

❁❁
2

13

+ •⑧⑧
❄❄•
☎☎

❁❁
1

32

,
•❄❄⑧⑧•❂❂✁✁ 3
21

+
•❄❄⑧⑧•❂❂✁✁ 2
13

+
•❄❄⑧⑧•❂❂✁✁ 1
32

⑧⑧❄❄
•
•
✝✝ ✽
✽

21

1 2

− ✞✞
✼✼
•
•✷✷

1
2

2

1

− (−1)d ✞✞
✼✼
•
•✷✷

2
1

2

1

− (−1)d+c ✞✞
✼✼
•
•✷✷

2
1

1

2

− (−1)c ✞✞
✼✼
•
•✷✷

1
2

1

2

Its minimal resolutionHoliebc,d is a 1-oriented dg free properad generated by the following (skew)symmetric corollas

of degree 1 + c(1 − m) + d(1 − n)

(15) •

❑❑❑❑❑
❃❃❃❃
. . .✁✁✁✁

sssss

σ(1) σ(2) σ(m)

ss
ss
s

✁✁
✁✁
. . .❃
❃❃

❃
❑❑

❑❑
❑

τ(1) τ(2) τ(n)

= (−1)c|σ|+d|τ| •

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 m−1 m

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 n−1 n

∀σ ∈ Sm,∀τ ∈ Sn

and has the differential given on the generators by

(16) δ •

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 m−1 m

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 n−1 n

=
∑

[1,...,m]=I1⊔I2
|I1 |≥0,|I2 |≥1

∑

[1,...,n]=J1⊔J2
|J1 |≥1,|J2 |≥1

(−1)#I1#J2+#I1+#J2+csgn(I1 ,I2)+dsgn(J1,J2)
•

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

❦❦❦❦❦❦❦❦

︷  ︸︸  ︷I1

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

︸     ︷︷     ︸
J1

•

▲▲▲▲▲▲
❃❃❃❃
. . . ✟✟✟✟

✈✈✈✈✈

︷    ︸︸    ︷I2

⑦⑦
⑦⑦
. . .

✺✺
✺✺

●●
●●

●

︸ ︷︷ ︸
J2

where sign(I1, I2) (resp., sign(J1, J2)) stands for the parity of the permutation I → I1 ⊔ I2 (resp., J → J1 ⊔ J2). The

case c = d = 0 corresponds to the ordinary strong homotopy Lie bialgebras, while the case c = 1, d = 0 to formal

Poisson structures on graded vector spaces V viewed as linear manifolds [Me1].

A (k+1)-oriented generalization ofHoliebc,d is quite straightforward: the propHolieb
(k+1)-or

c,d
is a free (k+1)-oriented

prop generated by corollas with the same symmetries and degrees as in the case of Holiebc,d, but now with each leg

decorated with k extra orientations,
s̄1 s̄2 s̄ms̄m−1

s̄m+1 s̄m+2 s̄n+ms̄n+m−1

...

...

I3

subject to the condition that there is at least one ingoing edge and outgoing edge in each of the new direction. The

differential is given by the same formula as in the case of Holiebc,d except that now we sum over all possible (and

admissible) new orientations attached to the new edge

δ

s̄1 s̄2 s̄ms̄m−1

s̄m+1 s̄m+2 s̄n+ms̄n+m−1

...

...
=

∑

[1,...,m]=I1⊔I2
|I1 |≥0,|I2 |≥1

∑

[m+1,...,m+n]=J1⊔J2
|J1 |≥1,|J2 |≥1

∑

s̄∈Ork

(−1)#I1#J2+#I2+#J2+c·sgn(I1 ,I2)+d·sgn(J1,J2) s̄

s̄i, i∈I1︷        ︸︸        ︷

s̄i, i∈J1

︸              ︷︷              ︸

s̄i, i∈I2︷        ︸︸        ︷

s̄i, i∈J2

︸        ︷︷        ︸...

...

...

...

The homotopy theory of such props can be highly non-trivial. As we discuss in more detail below in §5. the automor-

phism group ofHolieb
(c+d−1)-or

c,d
contains the Grothendieck-Teichmüller group GRT1 (for any c, d ∈ Z with c + d ≥ 2)

and hence this prop can be a foundation for a rich deformation quantization theory in the geometric dimension c+d ≥ 4.

This fact was one of the our main motivations to introduce and study the multi-oriented props.
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Let K be the differential closure of the ideal inHolieb
(k+1)-or

c,d
generated by all corollas with total arity ≥ 4 and denote

the quotient by

(17) Lieb
(k+1)-or

c,d
= Holieb

(k+1)-or

c,d
/K.

This prop gives us a (k + 1) oriented version of Liebc,d. The canonical projection projection

p : Holieb
(k+1)-or

c,d
−→ Lieb

(k+1)-or

c,d

is not a quasi-isomorphism in general. Indeed, it is quite easy to see that the automorphism groups of the props

Lieb
(c+d−1)-or

c,d
with c, d ≥ 1 and c + d ≥ 3 must be almost trivial (i.e. consisting solely of a finite number of rescaling

operators on the generators). If the projection p is a quasi-isomorphism in any of these cases, that would contradict

the main results in [Z] and [A] which imply a highly non-trivial action of Grothendieck-Teichmüller Lie algebra grt1

as (homotopy non-trivial) derivations of the genus completed prop Ĥolieb
(c+d−1)-or

c,d for any5 c, d ≥ 1 and c + d ≥ 3

(see more details on this matter in §5 below). It is likely that the projection (17) is not a quasi-isomorphism for any

k ≥ 1: the proof of the famous Theorem claiming quasi-isomorphism of p in the case k = 0 (and for any c and d) is

based on the Kontsevich idea to use path filtrations, “small” props and “reduced” graphs (see [MaVo] for full details);

however that approach does not work in the multidirected case as the process of “reduction” of generic multi-oriented

graphs along one of the orientations (say the one which is chosen to define the path filtration) can create wheels in

other orientations and hence fails.

The fact that the projection (17) is not a quasi-isomorphism in the case of props Holieb
(c+d−1)-or

c,d
with c, d ≥ 1 and

c + d ≥ 4 is quite useful in the context of deformation quantization in geometric dimension ≥ 4. It can be compared

with non-exactness of the wheelification functor in the case of 1-directed props [Me1], a fact which is directly related

to the remarkable richness of the set of Kontsevich formality maps.

4. Multidirected endomorphism prop and homotopy algebras with branes

4.1. Tensor algebra of infinite-dimensional vector spaces. By a countably infinite-dimensional graded vector space

V we understand in this paper any direct limit V := lim
−→

Vp of a direct system of finite dimensional vector spaces Vp,

p ≥ 1,

(18) V0 −→ V1

i1
−→ V2

i2
−→ . . .

ip−1

−→ Vp

ip

−→ Vp+1

ip+1

−→ . . . .

where all arrows ip are proper injections. For example, K
∞ = lim

−→
n

K
n where

0 −→ K
i1
−→ K

2 i2
−→ . . .

ip

−→ K
p

ip+1

−→ K
p+1

ip+2

−→ . . . ,

where ip(a1, . . . , ap) = (a1, . . . , ap, 0), is an example of a (countably) infinite-dimensional vector space.

Next we define (non-countably) infinite-dimensional vector spaces

Hom(⊗rV,⊗lV) = lim
←−

(p1 ,...,pr )

(
V∗p1
⊗ . . . ⊗ V∗pr

⊗ V⊗
l
)
.

which are equipped with the standard projective limit topology. An element f ∈ Hom(⊗rV,⊗lV) is called a linear map

f : ⊗rV −→ ⊗lV

from ⊗rV to ⊗lV . Such maps can be composed (no divergences) so that one has a well-defined endomorphism prop

EndV =
{
EndV(l, r) := Hom(⊗rV,⊗lV)

}

associated to V and hence talk about representations of ordinary props in V .

5In the 1-oriented case (c + d = 2) this fact was established in [MW1], but in these special cases the automorphism groups of Lieb
(c+d−1)-or

c,d
are

very rich
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Note that Hom(V,V) can contain infinite sums of the form

∞∑

n,m=1

an
mem ⊗ en, em ∈ V∗m, en ∈ Vn, a

n
m ∈ K, all an

m , 0,

so that the trace operation on Hom(V,V) (and hence on Hom(⊗kV,⊗lV)) is not well-defined in general so that V can

not be used for representations of wheeled props.

If one has a collection of k infinite-dimensional vector spaces, Vi = lim
−→

Vi,p, one can define similarly a k-coloured

endomorphism prop EndV1,...,Vk
based on topological S-modules

(19)

EndV1,...,Vk
=

Hom(V
⊗r1

1
⊗ . . . ⊗ V

⊗rk

k
,V
⊗l1
1
⊗ . . . ⊗ V

⊗lk
k

) := lim
←−

(n1 ,...,nr )

(
(V∗1,p1

)⊗r1 ⊗ . . . ⊗ (V∗k,pk
)⊗rk ⊗ V

⊗l1
1
⊗ . . . ⊗ V

⊗lk
k

) .

Its elements give us linear maps V
⊗r1

1
⊗ . . .⊗V

⊗rk

k
−→ V

⊗l1
1
⊗ . . .⊗V

⊗lk
k

and hence can be used to define a representation

of a k-coloured prop.

4.2. An infinite-dimensional graded vector space with k branes. Let V := lim
−→

p

Vp be a countably infinite-

dimensional graded vector space. It is called a vector space with k branes (and is denoted by (V,W1, . . . ,Wk) or

simply by Vk-br) if the following conditions hold:

(i) V comes equipped with a descending filtration

V = F0V ⊃ F1V ⊃ F2V ⊃ . . . ⊃ F pV ⊃ F p+1V ⊃ . . .

such that each quotient vector space V/F pV is finite-dimensional and equals Vp for any p ∈ N,

(ii) For any p ≥ 0 we have k different non trivial direct sum decompositions Vp = W+τ,p ⊕W−τ,p, τ ∈ [k], which are

compatible with the given injections ip : Vp → Vp+1,

ip(W±τ,p) ⊂ W±τ,p+1

Note that the inclusion F p+1V ⊂ F pV induces a projection

πp+1 : Vp+1 ≡ F p+1V/F p+2V −→ Vp := F pVF p+1V

so that in this case we have not only direct systems of finite-dimensional vector spaces, but also inverse ones,

. . .
πp+1

−→ W±τ,p
πp

−→ W±τ,p−1

πp−2

−→ . . . −→ 0

and hence can consider two limits for branes (and their intersections, see below), the direct and projective ones,

W±τ := lim
−→

p

W±τ,p ⊂ Ŵ±τ := lim
←−

p

W±τ,p, (W±τ )∗ = lim
←−

p

(W±τ,p)∗ ⊃ (Ŵ±τ )∗ = lim
−→

p

(W±τ,p)∗, ∀τ ∈ [k].

Note that the spaces W±τ and (Ŵ±τ )∗ are always countably dimensional, while (W±τ )∗ and Ŵ±τ are, in general, not (but as

a compensation they come equipped with a nice topology). Note also that

((Ŵ±τ )∗)∗ = Ŵ±τ , ((W±τ )∗)∗ = W±τ .

To define a suitable multi-oriented endomorphism prop out of an infinite-dimensional vector space with k branes, one

has to work with both types of completions simultaneously. This fact motivates the extra filtration condition (i) in the

definition of Vk-br above.

4.2.1. Basic example. Let {x1, x2, . . . , } be a countably infinite set of formal variables of some homological degrees

|xi| ∈ Z, i ∈ N≥1. The graded vector space

V = span〈x1, x2, . . . 〉

is a typical example of an infinite-dimensional vector space satisfying conditions (i) and (ii) above with

F pV = span〈xi〉i≥p+1, Vp = span〈x1, x2, . . . , xp〉.

Let us choose k injections of countably infinite sets (i.e. k pairs of disjoint countably infinite subsets of N≥1)

fi : N≥1 ⊕ N≥1 −→ N≥1, i ∈ [k],
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and define a family of finite-dimensional vector spaces (equipped with the Z-grading induced in the obvious way from

the homological grading of the formal variables (x1, x2, . . . , xp)

W+i,p := span
〈
π+ ◦ f −1

i {1, 2, . . . , p}
〉
, W−i,p := span

〈
π− ◦ f −1

i {1, 2, . . . , p}
〉

where π± : N≥1 ⊕ N≥1 → N≥1 is the projection to the first/second summand. The resulting data (V,W±
1
, . . . ,W±

k
) is an

example of an infinite-dimensional graded vector space with k branes.

4.3. Finite-dimensional case. A finite-dimensional vector space with k branes is simply a finite-dimensional vector

space V equipped with k direct sum decompositions V = W+τ ⊕ W−τ , τ ∈ [k]. We shall be most interested in the

infinite-dimensional case and hence use all the time use the direct/projective limit notation introduced in the previous

section. The finite dimensional version fits into that notation as a special case when Vp = V , W±τ,p = W±τ for all p.

4.4. The simplest case of a 2-directed endomorphism prop. Let V1-br be an infinite-dimensional vector space with

one brane, and consider

W+ = lim
−→

p

W+p , Ŵ− = lim
←−

p

W−p , (W+)∗ = lim
←−

p

(W+p )∗, (Ŵ−)∗ = lim
−→

p

(W−p )∗

Note that of these four spaces only W+ and (Ŵ−)∗ are always countably dimensional.

Using these data we construct an S(2)-module, that is a functor

EndV1-br : S(2) −→ Category of graded vector spaces

(I, s) −→ EndV2-br(I, s)

as follows. First, one can identify any 2-oriented set6

(I, s : I → Or1+ ) ≡
(
I, s0̄ : I → {out, in}, s1̄ : I → {out, in} such that s0̄(i) := si(0̄), s1̄(i) := si(1̄) ∀i ∈ I

)

with a 2-directed corolla (the subscript 0 indicates the basic orientation)

(20)

Iout,out0︷ ︸︸ ︷
...

Iin,out0︷ ︸︸ ︷
...

Iin,in0

︸ ︷︷ ︸
...

Iout,in0

︸ ︷︷ ︸
...

where

Iout,out0 := s−1

1̄
(out)⊔s−1

0̄
(out)), Iin,out0 := s−1

1̄
(in)⊔s−1

0̄
(out)), Iout,in0 := s−1

1̄
(out)⊔s−1

0̄
(in)), Iin,in0 := s−1

1̄
(in)⊔s−1

0̄
(in)),

Set

#Iout,out0 =: m1, #Iin,out0 =: m2, #Iin,in0 =: n1, #Iout,in0 =: n2.

Next we define7 (cf. (19))

EndV1-br(I, s) := lim
←−

pa for

a∈I
in,in0
τ

lim
←−

pb for

b∈I
in,out0
τ


lim
−→

pc for

c∈I
out,out0
τ

lim
−→

pe for

e∈I
out,in0
τ

⊗

a∈I
in,in0
τ

(W+pa
)∗

⊗

b∈I
in,out0
τ

W−pb

⊗

c∈I
out,out0
τ

W+pc

⊗

e∈I
out,in0
τ

(W−pe
)∗



= lim
←−

pa for

a∈I
in,in0
τ

lim
←−

pb for

b∈I
in,out0
τ

Hom


⊗

a∈I
in,in0
τ

W+pa

⊗

b∈I
in,out0
τ

(W−pb
)∗ , ⊗m1 W+

⊗
⊗n2 (Ŵ−)∗



= Hom
(
⊗n1 W+

⊗
⊗m2 (Ŵ−)∗ , ⊗m1 W+

⊗
⊗n2 (Ŵ−)∗

)

6Here we denote the elements of [1+] by 0̄ and 1̄ so that the value si of the map s on an element i ∈ I is itself a map of sets si : {0̄, 1̄} → {out, in}.
7Here we use the facts that for any vector space M and any inverse system of finite-dimensional vector spaces {Ni} one has lim

←−
Hom(Ni,M) �

Hom(lim
−→

Ni,M) and lim
←−

Hom(M, Ni) � Hom(M, lim
←−

Ni), while lim
←−

(Ni ⊗ M) � (lim
←−

Ni) ⊗ M only if M is finite-dimensional. On the other hand, for

any direct system {Ni} the equality lim
−→

(M ⊗ Ni) � M ⊗ lim
−→

Ni holds true for any M, while the equality lim
−→

Hom(M, Ni) � Hom(M, lim
−→

Ni) is true if

and only if M is finite-dimensional.
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Thus an element f ∈ EndV1-br(I, s) gives us a well-defined map

f : ⊗n1 W+
⊗
⊗m2 (Ŵ−)∗ −→ ⊗m1 W+

⊗
⊗n2 (Ŵ−)∗

between countably dimensional vector spaces and hence such elements can be composed along the “blue direction”.

What about the basic direction? Note that we can try rearranging tensor factors in EndV1-br(I, s) as follows

EndV1-br(I, s) := lim
←−
pa

lim
←−
pb

lim−→
pc

lim
−→
pe

⊗

a∈I
in,in0
τ

(W+pa
)∗

⊗

e∈I
out,in0
τ

(W−pe
)∗

⊗

c∈I
out,out0
τ

W+pc

⊗

b∈I
in,out0
τ

W−pb



= lim
←−
pa

lim
←−
pb

lim−→
pc

lim
−→
pe

Hom


⊗

a∈I
in,in0
τ

W+pa

⊗

e∈I
out,in0
τ

W−pe
,

⊗

c∈I
out,out0
τ

W+pc

⊗

b∈I
in,out0
τ

W−pb





= Hom

lim
−→
pa

lim
←−
pe

⊗

a∈I
in,in0
τ

W+pa

⊗

e∈I
out,in0
τ

W−pe
, lim

←−
pb

lim
−→
pc

⊗

c∈I
out,out0
τ

W+pc

⊗

b∈I
in,out0
τ

W−pb



However, in general,

⊗n1W+
⊗
⊗̂

n2 Ŵ− := lim
−→
pa

lim
←−
pe

⊗

a∈I
in,in0
τ

W+pa

⊗

e∈I
out,in0
τ

W−pe
, lim

←−
pe

lim
−→
pa

⊗

a∈I
in,in0
τ

W+pa

⊗

e∈I
out,in0
τ

W−pe
=: ⊗m1 W+

⊗̂
⊗̂

m2 Ŵ−

with the l.h.s. being a (proper, in general!) subspace of the r.h.s. Hence elements of

EndV1-br(I, s) � Hom

(
⊗n1W+

⊗
⊗̂

n2 Ŵ− , ⊗m1 W+
⊗̂
⊗̂

m2 Ŵ−

)

can not, in general, be composed along graphs of the type shown in (7). (Nevertheless the latest formula shows that

any element of EndV1-br(I, s) can nevertheless be understood as some linear map along the basic direction.)

We conclude that the S(2)-module EndV1-br admits nice compositions µΓ along any graphs not containing closed paths

of directed edges in blue color as in (6) (with the “associativity” axioms are obviously satisfied) and hence gives us

an example of 2-oriented prop. We call it the endomorphism prop of V1-br.

Note that if V1-br is finite-dimensional (or at least if W− is finite-dimensional), then

EndV1-br(I, s) � Hom
(
⊗n1 W+

⊗
⊗n2 W− ,⊗m1 W+

⊗
⊗m2 W−

)
� Hom

(
⊗n1 W+

⊗
⊗m2 (Ŵ−)∗ , ⊗m1 W+

⊗
⊗n2 (Ŵ−)∗

)

and the compositions µΓ (in the definition of a multi-directed prop) make sense for any graphs Γ ∈ G0↑k+1.

4.4.1. Definition. Let P2-or be a 2-oriented prop(erad). A morphism of 2-oriented prop(erad)s

ρ : P2-or −→ EndV1-br

is called a representation of P2-or in the vector space V with one brane.

4.4.2. Example. A representation of a 2-oriented operad Ass(2) (resp., Lie(2)) in V1-br is given by a collection of

linear maps

: W+ ⊗W+ → W+, : (Ŵ−)∗ → (Ŵ−)∗ ⊗ (Ŵ−)∗, : W+ → W+ ⊗ (W−)∗, : W⊗(Ŵ−)∗ → (Ŵ−)∗

such that their compositions satisfy relations (9)-(10) (respectively, (12)-(14)).

To illustrate divergency phenomenon let us consider generic representations of a prop in which compositions along

graphs with non-trivial genus make sense. For example, a representation of, say, the prop of 2-oriented Lie bialgebras

Lieb2-or in V1-br is given by maps as above plus the following ones

: W+ → W+⊗W+, : (Ŵ−)∗ → W+⊗(Ŵ−)∗ : W+ ⊗ (Ŵ−)∗ → W+, : (Ŵ−)∗ ⊗ (Ŵ−)∗ → (Ŵ−)∗
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satisfying certain quadratic relations. If {xa+ }a+∈N≥1
is a countably infinite basis of W+, {xa− }a−∈N≥1

is a countably infinite

basis of W−, and {ya+}a+∈N≥1
and {ya− }a−∈N≥1

the associated countably infinite dual bases for (Ŵ+)∗ and (Ŵ−)∗ then the

corresponding maps, say the following ones

: W+ ⊗W+
µ1

→ W+, : W+
µ2

→ W+ ⊗ (Ŵ−)∗, : W+
µ3

→ W+⊗W+, : W+ ⊗ (Ŵ−)∗
µ4

→ W+,

can be represented by the following infinite, in general, sums

µ1 =
∑

a+,b+,c+∈N≥1

Φc+

a+b+y
a+ ⊗ yb+ ⊗ xc+ , µ2 =

∑

a+ ,b−,c
+∈N≥1

Φa+

c+b−
xc+ ⊗ xa+ ⊗ yb− , Φc+

a+b+ ,Φ
a+

c+b−
∈ K

µ3 =
∑

a+,b+,c+∈N≥1

Ψa+b+
c+

yc+ ⊗ xa+ ⊗ xb+ µ4 =
∑

a+,b−,c
+∈N≥1

Ψ
a+b−
c+

yc+ ⊗ xb− ⊗ xa+ , Ψa+b+
c+
,Ψ

a+b−
c+
∈ K.

where the coefficients satisfy the conditions:

• for fixed a+, b− only finitely many Φc+

a+b+
, 0;for fixed c+ only finitely many Φa+

c+b−
, 0;

• for fixed c+ only finitely many Ψ
a+b+
c+ , 0; for fixed a+, b− only finitely many Ψc+

a+b−
, 0.

Then the element

∈ Lieb2-or

gets represented in V1-br as a linear map

∑

c+,d+∈N≥1



∑

a+ ,b+∈N≥1

Φc+

a+b+Ψ
a+b+
d+

only finitely many
terms non−zero



yd+ ⊗ xc+ : W+ → W+

which is always well defined, while the element

∈ Lieb1↑2

gets represented in V1-br as a formal sum of linear maps

∑

c+,d+∈N≥1



∑

a+ ,b+∈N≥1

Φc+

a+b−
Ψ

a+b−
d+

infinitely many terms
can be non−zero ingeneral



yd+ ⊗ xc+ : W+ → W+

which in general diverges. Such an element can be represented in general only in the case dim V < ∞.

4.4.3. Symplectic vector space with Lagrangian branes. Let (V, ω : ∧2V → K) be a finite-dimensional vector space

equipped with a symplectic form; in general dim V = 2n for some n ∈ N≥1. A subspace W ⊂ V is called isotropic if

W ⊂ W⊥ := {v ∈ V | ω(v,w) = 0 ∀w ∈ W} .

Such a subspace is called Lagrangian if dim W = n. It is well-known that a Lagrangian subspace W+ ⊂ V always

has a complement W− ⊂ V which is also Lagrangian. Moreover, in this case the symplectic form induces a canonical

isomorphism

ω : (W−)∗ −→ W+.
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The data (V,W+,W−) is called a finite-dimensional symplectic vector space with one Lagrangian brane. Similarly

one defines finite-dimensional symplectic vector space with k Lagrangian branes, (V,W+τ ,W
−
τ )τ∈[k]. We generalize this

notion to infinite dimensions as follows.

Let (V,W1, . . . ,Wk) be a countably infinite dimensional vector space with k branes such that for each p and each τ ∈ [k]

the vector space Vp = W+τ,p ⊕W−τ,p is a finite dimensional symplectic vector space with k Lagrangian branes. Then the

symplectic forms induce a non-degenerate pairing

ω : (Ŵ−τ )∗ −→ W+τ

which is an isomorphism for each τ ∈ [k]. The resulting datum (V,W1, . . . ,Wk, ω) is called an infinite-dimensional

symplectic vector space with k Lagrangian branes and often is denoted by Vk-br
symp.

If we consider now a generic representation ρ of, say,Ass(2) orLie(2) in V1-br
symp, then, due to the canonical isomorphism

(Ŵ−τ )∗ = W+τ , we see that multioriented generators which differ only in the basic orientation stand for linear maps of

the same type, for example

: W+ ⊗W+ → W+, : W+⊗W+ → W+,

and hence it makes sense to identify them. We call the representation ρ in V1-br
symp reduced symplectic Lagrangian if ρ

takes identical values on all generating corollas of P2-or which become identical (as k-oriented graphs) once the basic

directions on edges are forgotten. Then we can reformulate observations 3.2.1 and 3.4.1 as follows.

4.4.4. Proposition. (i) There is a one-to-one correspondence between reduced symplectic Lagrangian representations

ofAss(2) in V1-br
symp and infinitesimal bialgebra structures in the Lagrangian subspace W+.

(ii) There is a one-to-one correspondence between reduced symplectic Lagrangian representations of Lie(2) in V1-br
symp

and Lie bialgebra structures in the Lagrangian subspace W+.

4.5. Remark. In principle one can use symplectic structures on V of homological degree q , 0 so that the induced

isomorphism takes the form ω : (Ŵ−τ )∗ −→ W+τ [q] but then the basic direction can not be forgotten completely in

representations as it stands now for a degree shift of linear maps.

4.6. Endomorphism multidirected prop of a graded vector space with k branes. Given any multi-oriented set

(I, s : I → Ork+ ). Recall that for any fixed i ∈ I there is an associated map

si : [k+]
s(i)
−→ {out, in}.

while for any fixed τ ∈ [k+] there is a map

sτ : I −→ {out, in}

i −→ sτ(i) := si(τ).

The latter map can be used to decompose I into two disjoint subsets

I = s−1
τ (out) ⊔ s−1

τ (in)

The basic direction τ = 0 plays a special role. For any τ , 0, i.e. for any τ ∈ [k] we can further decompose the set I

into four disjoint subsets

I = (s−1
τ (out) ⊔ s−1

τ (in)) ∩ (s−1
0 (out) ⊔ s−1

0 (in)) := Iout,out0
τ ⊔ Iout,in0

τ ⊔ Iin,out0
τ ⊔ Iin,in0

τ

where

Iout,out0
τ := s−1

τ (out)∩ s−1
0 (out), Iout,in0

τ := s−1
τ (out)∩ s−1

0 (in), Iin,out0
τ := s−1

τ (in)∩ s−1
0 (out), Iin,in0

τ := s−1
τ (in)∩ s−1

0 (in),

Given a graded vector space with k branes, Vk-br = (V = lim
−→

Vp,W1, . . . ,Wk), consider a collection of linear subspaces

for each p ∈ N,

Wmp := W
m(1)

1,p
∩W

m(2)

2,p
∩ . . . ∩W

m(k)

k,p
,
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one for each multidirectionm : [k+]→ {out, in} from Ork+ , where we set for each τ ∈ [k],

Wm(τ)
τ,p :=



W+τ,p if m(0) = m(τ) = out

(W+τ,p)∗ if m(0) = m(τ) = in

W−τ,p if m(0) = out, m(τ) = in

(W−τ,p)∗ if m(0) = in, m(τ) = out

Note that (Wmτ,p)∗ = Wm
opp

τ,p . For example,

for m =
m(1) m(2)... m(k) m(0)

one has Wmp = W−1,p ∩W+2,p ∩ . . . ∩W−k,p

while

for mopp =
m(1) m(2)... m(k) m(0)

one has Wm
opp

p = (W−1,p)∗ ∩ (W+2,p)∗ ∩ . . . ∩ (W−k,p)∗.

We define a countably dimensional vector space

Wm := lim
−→

p

Wmp ,

Define an S(k+1)-module EndVk-br, that is, a functor

EndVk-br : S(k+1) −→ Category of graded vector spaces

(I, s) −→ EndVk-br(I, s)
,

by setting

EndVk-br(I, s) :=
⋂

τ∈[k]

Homτ(s, I),

where (cf. (19))

Homτ(s, I) := lim
←−

pi for

i∈I
in,out0
τ ∪I

in,in0
τ


lim
−→

p j for

i∈I
out,out0
τ ∪I

out,in0
τ

⊗

i∈I

Wsipi



= lim
←−
pi


⊗

i∈i∈I
in,out0
τ ∪I

in,in0
τ

Wsipi
⊗

⊗

j∈I
out,out0
τ ∪I

out,in0
τ

Ws j



= Hom


⊗

i∈I
in,out0
τ ∪I

in,in0
τ

lim
−→
pi

W
s

opp

i
pi
,

⊗

j∈I
out,out0
τ ∪I

out,in0
τ

Ws j



= Hom


⊗

i∈i∈I
in,out0
τ ∪I

in,in0
τ

Ws
opp

i ,
⊗

j∈I
out,out0
τ ∪I

out,in0
τ

Ws j

 .

Thus a single element f ∈ EndVk-br(I, s) has k incarnations as a linear map, one for each “coloured direction” τ ∈ [k].

Note that all the k spaces Homτ(s, I), τ ∈ [k], belong to one and the same vector space

(21) Hom(s, I) := lim
←−
pi

⊗

i∈I

Wsipi

so that it makes sense to talk about their intersection. If V is finite-dimensional, then, of course, Homτ(s, I) = Hom(s, I)

for any τ ∈ [k].

Therefore elements of EndVk-br can be composed (when it makes sense) along each of the “coloured” direction, but in

general they can not be composed along the basic direction (i.e. compositions of the type (7) have no sense in general).

Let P(k+1)-or be a (k + 1)-oriented prop(erad). A morphism of (k + 1)-oriented prop(erad)s

ρ : P(k+1)-or −→ EndVk-br

is called a representation of P(k+1)-or in a vector space with one k branes Vk-br. If Vk-br happens to be a symplectic

vector space with k Lagrangian branes, that a representation ρ is called reduced symplectic Lagrangian if ρ takes
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identical values on all those generating corollas of P(k+1)-or which become identical (as k-oriented graphs) once the

basic directions on edges are forgotten.

4.7. Example: 3-oriented endomorphism prop. Let V2-or = (V,W+
1
,W+

2
) be a countably dimensional graded vector

space with 2 branes. We would like to describe in more details the structure of the associated endomorphism prop

which is a functor

EndV2-or : S(3) −→ Category of dg vector spaces

(I, s) =

I2︷ ︸︸ ︷
...

I1︷ ︸︸ ︷
...

I3︷ ︸︸ ︷
...

I4︷ ︸︸ ︷
...

I6

︸ ︷︷ ︸...
I5

︸ ︷︷ ︸...
I7

︸ ︷︷ ︸...

I8

︸ ︷︷ ︸...

−→ EndV2-or(I, s)

The multi-orientation s defines (and can be reconstructed from) the decomposition I = I1 ⊔ I2 ⊔ . . . ⊔ I8 as explained

in the picture. If

#Ii = mi for i ∈ {1, 2, 3, 4} , #Ii = ni−4 for i ∈ {5, 6, 7, 8}.

then, by definition, EndV2-or(I, s) is the intersection in (21) of two graded vector spaces

Hom(I, s) := Hom
(
⊗n1 W++ ⊗n3 W+− ⊗m2 (Ŵ−+)∗ ⊗m4 (Ŵ−−)∗ , ⊗m1 W++ ⊗m3 W+− ⊗n2 (Ŵ−+)∗ ⊗n4 (Ŵ−−)∗

)

and

Hom(I, s) := Hom
(
⊗n1 W++ ⊗n2 W−+ ⊗m3 (Ŵ+−)∗ ⊗m4 (Ŵ−−)∗ , ⊗m1 W++ ⊗m2 W−+ ⊗n3 (Ŵ+−)∗ ⊗n4 (Ŵ−−)∗

)

where we set

W++ := lim
−→

p

W+1,p ∩W+2,p, W−+ := lim
−→

p

W−1,p ∩W+2,p, W+− := lim
−→

p

W+1,p ∩W−2,p, W−− := lim
−→

p

W−1,p ∩W−2,p,

Ŵ++ := lim
−→

p

W−1,p ∩W−2,p, Ŵ−+ := lim
←−

p

W−1,p ∩W+2,p, Ŵ−− := lim
−→

p

W−1,p ∩W−2,p, Ŵ+− := lim
←−

p

W+1,p ∩W−2,p,

All the tensor factors shown in the above formulae for Hom(I, s) and Hom(I, s) are countably dimensional vector

spaces. Let {xA++ }, {xA+− }, {xA−+ }, {xA−− } be bases for the (direct limit) vector spaces W++, W+−, W−+ and W−−, while

yA++ , yA+− , yA−+ and yA−− be the associated dual bases for (also direct limit) vector spaces (Ŵ++)∗, (Ŵ+−)∗, (Ŵ+−)∗ and

(Ŵ−−)∗. Then the “big” vector space (21) consists of all formal power series of the form
∑

A•,• ,B
••

F
A++A+−A−+A−−
B++B+−B−+B−−

xA−+ ⊗ xA−+ ⊗ xA−+ ⊗ xA−+ ⊗ yB++ ⊗ yB+− ⊗ yB−+ ⊗ yB−− , F
A++A+−A−+A−−
B++B+−B−+B−−

∈ K,

its subspace Hom(I, s) is spanned by those formal series whose coefficients satisfy the condition

• for any fixed values of indices A++, A+−, B−+ and B−− only finitely many F
A++A+−A−+A−−
B++B+−B−+B−−

, 0,

while the subspace Hom(I, s) is characterized by

• for any fixed values of indices A++, A−+, B+− and B−− only finitely many F
A++A+−A−+A−−
B++B+−B−+B−−

, 0,

This gives us a “down to earth” characterization of the endomorphism prop EndV2-br � {Hom(I, s) ∩ Hom(I, s)}.

5. Action of the Grothendieck-Tiechmüller group on some multi-oriented props

5.1. An operad of multi-oriented graphs. For any l ≥ −1 and k ≥ 0 let G
l+1↑k+1
n,p be a set of (l + 1)-oriented (k + 1)-

directed (see §2.3) graphs Γ with n vertices and p edges such that some bijections V(Γ) → [n] and E(Γ) → [p] are

fixed, i.e. every vertex and every edge of Γ has a numerical label. There is a natural right action of the group Sn × Sp

on the set G
l+1↑k+1
n,p with Sn acting by relabeling the vertices and Sp by relabeling the edges. For each fixed integer d,

consider a collection of Sn-modules Gra
l+1↑k+1

d
= {Gra

l+1↑k+1

d
(n)}n≥1, where

Gra
l+1↑k+1

d
(n) :=

∏

p≥0

K〈Gl+1↑k+1
n,p 〉 ⊗Sp

sgn⊗|d−1|
p [p(d − 1)].
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where sgnp is the 1-dimensional sign representation of Sp. It has an (ordinary, i.e 1-oriented!) operad structure with

the composition rule,

◦i : Gra
l+1↑k+1

d
(n) × Gra

l+1↑k+1

d
(m) −→ Gra

l+1↑k+1

d
(n + m − 1), ∀ i ∈ [n]

(Γ1, Γ2) −→ Γ1 ◦i Γ2,

given by substituting the graph Γ2 into the i-labeled vertex vi of Γ1 and taking the sum over re-attachments of dangling

edges (attached before to vi) to vertices of Γ2 in all possible ways. If l = k we abbreviate Gra
(k+1)-or

d
= Gra

k+1↑k+1

d
and

call it the operad of (k + 1)-oriented graphs.

Note also that for l > l′ the operad Gra
l+1↑k+1

d
is a suboperad of Gra

l′+1↑k+1

d
.

There is a canonical injection

Gra
l+1↑k+1

d
−→ Gra

l+1↑k+2

d

sending a (k+1)-directed graph Γ into a sum of (k+2)-directed graphs obtained from Γ by attaching the new (k+2)nd

direction to each edge in all (i.e. two) possible ways.

LetLied be a (degree shifted) ordinary operad of Lie algebras whose representations are graded Lie algebras equipped

with the Lie bracket in degree 1−d, and consider the standard (cf. [MV]) deformation complex of the trivial morphism

of operads,

(22) fGC
l+1↑k+1

d
:= Def

(
Lied

0
−→ Gra

l+1↑k+1

d

)
≃

∏

n≥1

Gra
l+1↑k+1

d
(n)Sn[d(1 − n)] ∀ k ≥ 0, l ∈ {−1, 0, 1, . . . , k}.

This is a Lie algebra. Moreover, it admits a non-trivial Maurer-Cartan element γ0 which corresponds to a morphism

γ0 : Lied −→ Gra
l+1↑k+1

d

given explicitly on the generator (of homological degree 1 − d)

❄❄⑧⑧◦
21

= (−1)d ❄❄⑧⑧◦
12

∈ Lied(2)

by the following explicit formula (cf. [W1, W2])

(23) γ0

(
❄❄⑧⑧◦

21

)
=

∑

a∈Ork

(
1 '!&"%#$ 2 '!&"%#$a

// + (−1)d
2 '!&"%#$ 1 '!&"%#$a

//

)
=: • •//

where the summation runs over all possible ways to attach extra k directions to the 1-oriented edge. Note that elements

of fGC
l+1↑k+1

d
can be identified with graphs from Gra

l+1↑k+1

d
whose vertices’ labels are symmetrized (for d even) or

skew-symmetrized (for d odd) so that in pictures we can forget about labels of vertices and denote them by unlabelled

black bullets as in the formula above. Note also that graphs from Gra
l+1↑k+1

d
come equipped with a orientation which

is a choice of ordering of edges (for d even) or a choice of ordering of vertices (for d odd) up to an even permutation

in both cases. Thus every graph Γ ∈ fGC
l+1↑k+1

d
has at most two different orientations, or and oropp, and one has the

standard relation, (Γ, or) = −(Γ, oropp); as usual, the data (Γ, or) is abbreviated to Γ (with some choice of orientation

implicitly assumed). Note that the homological degree of graph Γ from fGC
l+1↑k+1

d
is given by

|Γ| = d(#V(Γ) − 1) + (1 − d)#E(Γ).

We show in [Me3] some other explicit Maurer-Cartan elements in the Lie algebra fGC
l+1↑k+1

d
given by transcendental

formulae; in this paper we need only γ0.

The above Maurer-Cartan (23) makes (fGC
l+1↑k+1

d
, [ , ]) into a differential Lie algebra with the differential

(24) δ0 := [• •// , ].

This dg Lie algebra contains a dg subalgebra fcGC
l+1↑k+1

d
spanned by connected graphs which in turn contains a dg Lie

algebra GC
l+1↑k+1

d
spanned by connected graphs with at least bivalent vertices. It was proven in [W1, W2] (for the case

k = 0 and l = −1, 0 but the arguments works in greater generality) that the latter two subalgebras are quasi-isomorphic,

H•(fcGC
l+1↑k+1

d
, δ0) = H•(GC

l+1↑k+1

d
, δ0)

It was proven in [W1, W2] (in the cases k = 0 and l ∈ {−1, 0} but the arguments work in greater generality) that

H•(fGC
l+1↑k+1

d
, δ0) = ⊙•≥1

(
GC

l+1↑k+1

d
[−d]

)
[d]
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so that there is no loss of information when working with GC
l+1↑k+1

d
instead of the full graph complex fGC

l+1↑k+1

d
.

There is a remarkable isomorphism of Lie algebras [W1],

H0(GC
0↑1

2
, δ0) = grt1,

where grt1 is the Lie algebra of the Grothendieck-Teichmüller group GRT1 introduced by Drinfeld in the context of

deformation quantization of Lie bialgebras. Nowadays, this group plays an important role in many areas of mathemat-

ics.

The multidirected graph complexes have been introduced and studied in [Z]; more precisely, Marko Živković stud-

ied fully oriented graph complexes which are dual to the complexes
(
GC

k+1↑k+1

d
, δ0

)
, k ≥ 0. We often abbreviate

GC
(k+1)-or

d
:= GC

k+1↑k+1

d
for k ≥ 0 and GC

0-or
d := GC

0↑1

d

Note that for l′ < l the Lie algebra GC
l+1↑k+1

d
is a Lie subalgebra of GC

l′+1↑k+1

d
.

5.2. Cohomology of (partially) oriented multi-directed graph complexes. For any k ≥ 0 and any −1 ≤ l ≤ k there

is an obvious map of graph complexes

i : GC
l+1↑k+1

d
−→ GC

l+1↑k+2

d

which sends an (l + 1)-oriented graph with k + 1 directions to an (l + 1)-oriented graph with k + 2 directions by taking

a sum over all possible ways to attach a new (k + 2)-nd direction to each (k + 1)-directed edge.

5.2.1. Theorem [W1]. The injection i : GC
l+1↑k+1

d
−→ GC

l+1↑k+2

d
is a quasi-isomorphism of dg Lie algebras.

This theorem was proved in [W1] by Thomas Willwacher for the case k = 0, l ∈ {−1, 0}, but the argument works in

greater generality. This result implies

H•(GC
l+1↑k+1

d
, δ0) = H•(GC

(l+1)-or

d
, δ0) ∀k ≥ 0, −1 ≤ l ≤ k.

Put another way, multidirections which are not oriented can be forgotten, they do not give us something really new.

Thomas Willwacher also proved the following

5.2.2. Theorem [W2]. H•(GC
0-or
d , δ0) = H•(GC

1-or
d+1; δ0) for any d ∈ Z.

In particular, one has an isomorphism

H0(GC
1-or
3 , δ0) = H0(GC

0-or
2 , δ0) = grt1

which plays an important role in the homotopy theory of (involutive) Lie bialgebras [MW1].

This Theorem has been recently generalized to k-directed oriented graphs by Marko Živković.

5.2.3. Theorem [Z]. H•(GC
(k+1)-or

d
, δ0) = H•(GC

(k+2)-or

d+1
, δ0) for any d ∈ Z and any k ≥ 0.

Theorems 5.2.1 and 5.2.3 imply the equalities

(25) H•(GC
l+1↑k+1

d
, δ0) = H•(GC

l+2↑k+2

d+1
, δ0) = ∀d ∈ Z, k ≥ 0, −1 ≤ l ≤ k.

In particular we have isomorphisms of Lie algebras,

(26) H0(GC
d-or
d+2, δ0) = H0(GC

0↑1

2
, δ0) = grt1,

for any d ≥ 0. For d = 2 and d = 3 the algebro-geometric meanings of the associated graph complex incarnations

of the Grothendieck-Teichmüller group GRT1 are clear: the d = 2 case corresponds to the action of GRT1 (through

cocycles representative in GC
0↑1

2
) on universal Kontsevich formality maps associated with deformation quantizations

of Poisson structures (given explicitly with the help of suitable configuration spaces in the two dimensional upper half-

plane [Ko]), while the case d = 3 corresponds to the action of GRT1 (through cocycles representatives in GC
1-or
3 ) on

universal formality maps associated with deformation quantizations of Lie bialgebras (see [MW3] where compactified

configuration spaces in three dimensions have been used).

The above results tell us that the Grothendieck-Teichmüller group survives in any geometric dimension ≥ 4 but now

in the multi-oriented graph complex incarnation. What can the associated to grt1 degree zero cocycles in GC
d-or
d+2 act

on? It is an attempt to answer this question which motivated much of the present work. In the first approximation

the answer to that question is that it acts on the multi-oriented props Holieb
(c+d−1)-or

c,d
(more precisely, on their genus
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completed versions Ĥolieb
(c+d−1)-or

c,d , and it is not hard to see how. Recall the main result of [MW1] which says that

there is a morphism of dg Lie algebras

F : GC
1-or
c+d+1 → Der(Ĥoliebc,d)

where Ĥoliebc,d is the genus completion ofHoliebc,d and Der(Ĥoliebc,d) is the Lie algebra of continuous derivations

of Ĥoliebc,d (see [MW1] for some small subtleties in its definition). This map is a quasi-isomorphism (up to two

rescaling classes), and it can be given by a simple formula: for any Γ ∈ GC
1-or
c+d+1 one has

F(Γ) =
∑

m,n≥1

∑

s:[n]→V(Γ)
ŝ:[m]→V(Γ)

1 2 m

2 n1

...

...
Γ

❄❄❄❄
✴✴✴ ✎✎✎

⑧⑧⑧⑧

✎✎
✎ ✴✴
✴

❄❄
❄❄

⑧⑧
⑧⑧

where the second sum in taken over all ways, s and ŝ, of attaching the in- and outgoing legs to the graph Γ, and then

setting to zero every graph containing a vertex with valency ≤ 2 or with no input legs or no output legs (there is an

implicit rule of signs in-built into this formula). In a complete analogy one can define an action of the dg Lie algebra

GC
(k+1)-or

c+d+1
as derivations on the multi-oriented dg prop Ĥolieb

(k+1)-or

c,d , that is, a morphism of dg Lie algebras

F : GC
(k+1)-or

c+d+1
→ Der(Ĥolieb

(k+1)-or

c,d ).

It was proven by Assar Andersen in [A] that this map is a quasi-isomorphism (up to a finite number of classes corre-

sponding to the rescaling automorphisms). This result together with equality (26) imply a highly non-trivial action of

GRT1 on the infinite family of the multi-oriented props Ĥolieb
(c+d−1)-or

c,d , c + d ≥ 4.
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[Z] M. Živković, Multi-oriented graph complexes and quasi-isomorphisms between them, preprint arXiv:1703.09605 (2017)

SergeiMerkulov: Mathematics Research Unit, Luxembourg University, Grand Duchy of Luxembourg

E-mail address: sergei.merkulov@uni.lu

29

http://arxiv.org/abs/1512.05252
http://arxiv.org/abs/1605.01282
http://arxiv.org/abs/1612.00368
http://arxiv.org/abs/1703.09605

	1. Introduction
	1.1. Why bother with multi-oriented props?
	1.2. Finite dimensionality versus infinite one in the context of ordinary props
	1.3. From branes to multidirected props
	1.4. Structure of the paper

	2. Multi-oriented props
	2.1. S-bimodules reinterpreted
	2.2. Multi-oriented modules
	2.3. Directed and multidirected graphs
	2.4. From multi-directed graphs to endofunctors on S(k+1)-modules
	2.5. Multi-oriented prop(erad)s
	2.6. Multi-oriented operads
	2.7. Multi-oriented dioperads
	2.8. Multidirected wheeled prop(erad)s
	2.9. Ordinary props as multi-oriented ones

	3. Multi-oriented versions of some classical operads and props
	3.1. Multi-oriented operad of (strongly homotopy) associative algebras
	3.2. Infinitesimal bialgebras as 2-oriented associative algebras
	3.3. Example: Multi-oriented operad of Lie and Lie algebras
	3.4. The operad of 2-oriented Lie algebras versus the ordinary dioperad of Lie bialgebras
	3.5. Multi-oriented prop of homotopy Lie bialgebras

	4. Multidirected endomorphism prop and homotopy algebras with branes
	4.1. Tensor algebra of infinite-dimensional vector spaces
	4.2. An infinite-dimensional graded vector space with k branes
	4.3. Finite-dimensional case
	4.4. The simplest case of a 2-directed endomorphism prop
	4.5. Remark
	4.6. Endomorphism multidirected prop of a graded vector space with k branes
	4.7. Example: 3-oriented endomorphism prop

	5. Action of the Grothendieck-Tiechmüller group on some multi-oriented props
	5.1. An operad of multi-oriented graphs
	5.2. Cohomology of (partially) oriented multi-directed graph complexes

	References

