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Abstract

The Malliavin calculus is an extension of the classical calculus of variations from
deterministic functions to stochastic processes. In this paper we aim to show in a
practical and didactic way how to calculate the Malliavin derivative, the derivative of
the expectation of a quantity of interest of a model with respect to its underlying
stochastic parameters, for four problems found in mechanics. The non-intrusive
approach uses the Malliavin Weight Sampling (MWS) method in conjunction with a
standard Monte Carlo method. The models are expressed as ODEs or PDEs and
discretised using the finite difference or finite element methods. Specifically, we consider
stochastic extensions of; a 1D Kelvin-Voigt viscoelastic model discretised with finite
differences, a 1D linear elastic bar, a hyperelastic bar undergoing buckling, and
incompressible Navier-Stokes flow around a cylinder, all discretised with finite elements.
A further contribution of this paper is an extension of the MWS method to the more
difficult case of non-Gaussian random variables and the calculation of second-order
derivatives. We provide open-source code for the numerical examples in this paper.

Introduction 1

The classical derivative is a fundamental tool of calculus that is widely used across every 2

field of mathematics, science and engineering. Various generalisations and extensions of 3

the classical derivative, e.g. local and/or partial Frechét and Gâteaux derivatives [1], are 4

now common tools in the repertoire of practitioners working in many fields. Modern 5

extensions such as fractional and non-local derivatives are finding increasing use in 6

several fields of science and technology, see e.g. [2–6]. The semi-inverse method of [7] is 7

a powerful tool for the establishment of variational principles (Euler-Lagrange) from 8

governing equations for physical problems. 9

By contrast, the Malliavin calculus [8], an extension of the notions of classical 10

calculus of variations to stochastic processes, is certainly less widely known. In our view, 11

this is probably because the vast majority of papers written on the subject require 12

study of mathematics and stochastics to an advanced level. However, we think that 13

Malliavin calculus deserves a wider audience. The objective of this paper then is 14

introduce the Malliavin derivative as a useful numerical tool for practitioners to 15
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understand the behaviour of stochastic PDEs in mechanics, rather than to fully explain 16

the technicalities of Malliavin calculus. Interested readers are referred to e.g. [8–10] for 17

a full mathematical treatment. 18

We are not the first to apply Malliavin calculus as a useful tool for practical 19

computation. The Malliavin calculus can be used to efficiently calculate the Greeks, the 20

sensitivity of financial instruments to their underlying parameters e.g. [11–14]. In the 21

physical sciences we are aware of only a handful of recent papers that use techniques 22

inspired by the Malliavin calculus to understand the behaviour of systems with 23

stochastic behaviour. We are not aware of any papers in the engineering mechanics 24

community on the topic. [15] introduced the methodology of Malliavin Weight Sampling 25

(MWS), the method we adopt in this paper, and applied it to the simulation of particles 26

undergoing Brownian motion. [16] presented a more general framework for deriving the 27

MWS update rules and its practical implementation. [17] used the MWS to evaluated 28

linear response functions of particle systems forced by coloured noise. When the 29

coefficients of the models are assumed to follow known statistical distributions, then the 30

likelihood ratio method can be seen as a Malliavin weighting function [11,12,18]. The 31

Malliavin theory is however more general and allows the determination of the optimal 32

weight with minimum variance even if the specification of the stochastic parameters 33

involved in the model are not known explicitly. 34

The contribution of this paper is as follows; we show the application of the Malliavin 35

Weight Sampling method [15] to four archetypal problems in mechanics. Unlike the 36

examples in [15], we consider some models defined by partial differential equations 37

(PDEs) that are discretised using the finite element method. We make a new extension 38

of the MWS method to parameters defined by non-Gaussian distributions. This has 39

important practical value because it is often important to model parameters with 40

distributions that preclude realisations with non-physical values, e.g. positive viscosity 41

in a fluid mechanics problem. Finally we extend the MWS method in [15] to the 42

calculation of second-order derivatives. 43

An outline of this paper is as follows; we give an outline of the MWS method and 44

use the MWS method to study the behaviour of a simple Kelvin-Voigt visco-elastic 45

system with Gaussian and non-Gaussian stochastic variables respectively. We extend 46

the analysis of the Kelvin-Voigt system to the second derivative. We then study; a 1D 47

elastic bar, a hyperelastic bar prone to buckling, and Navier-Stokes flow around a 48

cylinder, all discretised in space using the finite element method. Finally we summarise 49

and suggest some interesting avenues for future research. 50

The Malliavin Weight Sampling (MWS) method 51

Problem setting 52

Consider a non-linear, possibly time-dependent stochastic partial differential equation 53

F (u,m) = 0 with random parameter m. For each possible value of m, u is the solution 54

of the PDE and therefore u depends explicitly on m (m 7→ u(m)). To simplify the 55

notation, the spatial position x and time t are omitted but it is understood that u can 56

also depend on x ∈ Ω ⊂ Rd where d = {1, 2, 3} is the spatial dimension of the domain 57

and/or t ∈ R+. 58

Let (Ωp,F , P ) a probability space where Ωp is the sample space, F is a σ-algebra of 59

subsets of Ωp and P is a probability measure. We are interested to evaluate the 60

expected value of a quantity of interest J(m) = J(u(m)) denoted by E[J ] [19]: 61

E[J ] :=

∫
Ωp

J (u(ω)) · dP (ω). (1)
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Fig 1. Schematic of a Kelvin-Voigt model with Young’s modulus E, viscosity η and
loading stress σ. We model the loading stress σ as a random noise (random variable),
inducing a random strain ε as the output of the model.

In a practical way, if m is a random variable with probability density function fm, 62

Eq. (1) writes: 63

E[J ] :=

∫
R
J (u(x)) · fm(x)dx. (2)

As we will see, the Malliavin Weight Sampling method (MWS) [16] allows the 64

evaluation of the sensitivity of the expected value of the quantity of interest with 65

respect to the mean value of the stochastic parameter m as [9, 11,16,18]: 66

∂E[J ]

∂m
= E[Jqm], (3)

where qm is the Malliavin weight for the parameter m and m is the mean of m. Under 67

certain condition of regularity [11,20,21] when the probability density function (PDF) of 68

the parameter m is known, the Malliavin weight qm associated can be computed directly 69

from the PDF of m. This approach can be viewed as an integration by parts, and is a 70

direct result of Malliavin calculus where we take the derivative of random functions 71

rather than the classical derivative. We emphasise again the quite different nature of the 72

above derivative Eq. (3) to the classical notion of a derivative from elementary calculus. 73

In Eq. (3), we suppose that the quantity of interest J does not depend explicitly on 74

the parameter m. Later we introduce a more general equation Eq. (34) that must be 75

considered if in fact J does depend on m. 76

The simplest approach to calculate E[Jqm], and the one we use exclusively in this 77

paper, is to use the standard Monte Carlo estimator; that is, take Z independent and 78

identically distributed (iid) realisations mz of m, solve for Jz := J(u(mz)) before taking 79

the sample mean of the set of realisations {J1, . . . , JZ}: 80

∂E[J ]

∂m
= E[Jqm] ≈ 1

Z

Z∑
z=1

J(mz) · qm(mz). (4)

From the central limit theorem, the error in Eq. (4) is normally distributed with 81

variance Z−1V where V is the variance of Jqm. 82

What will not be clear to the reader at this stage is how to determine the Malliavin 83

weights. Through a simple practical examples in the next section, we will explain how 84

to use the MWS method, determine the specification of the weights for both Gaussian 85

and non-Gaussian distributions on the parameter m, and thus calculate the Malliavin 86

derivative Eq. (3). 87

Kelvin-Voigt model 88

The Kelvin-Voigt constitutive model with Young’s modulus E, viscosity η and loading 89

stress σ can be written as the following linear ordinary differential equation: 90

Eε(t) + η
dε(t)

dt
= σ. (5)

A schematic of this model is shown in Fig. 1. 91
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The initial condition on the strain is ε(t = 0) = 0 and we study the response of the 92

system for time t ∈ [0, T ]. Our quantity of interest functional is the value of the strain 93

at time t, i.e.: 94

J := ε(t) (6)

and we are interested in its expected value (mean) E[ε(t)]. 95

Gaussian case 96

We first consider the case that the randomness can be modelled as a Gaussian random 97

variable. A similar model is shown in [16]. 98

We choose choose to model the stress as a random noise: 99

σ(t) = σ0 + αξ, (7)

where σ0 and α are constant and ξ is a a Gaussian random variable with zero mean and 100

unit variance. ξ represents the uncertainty related to the value of the stress σ. 101

From Eq. (7), the mean value of σ is σ0 and the variance of σ is equal to α2. We 102

assume throughout that the Young’s modulus E and the viscosity η are perfectly known. 103

Given that the forcing stress σ for the system is random, the strain ε is also random. 104

The goal then is to evaluate the derivative of the expected value of the strain with 105

respect to the mean value σ0: 106

∂E[ε(t)]

∂σ0
(8)

using the method of MWS. 107

We choose to solve the ODE Eq. (5) using an Euler explicit finite difference method 108

with time step δt: 109

ε(t+ δt) = ε(t) +
δt

η

[
σ0 − Eε(t) +

αξ√
δt

]
. (9)

Remark. Note that the multiplying term before ξ contains
√
δt and not δt. This is a 110

‘conforming’ discretisation of the stochastic noise term, resulting in a dependence of the 111

variance of the random parameter on the discretisation size. Informally, taking the limit, we 112

can recover the original ODE Eq. (5) as: 113

E
[
dε

dt

]
= (σ0 − Eε(t))/η, (10)

and: 114

V
[
η
dε

dt
− (σ0 − Eε(t))

]
= α2. (11)

Where V[·] is the the variance. Given that E[
√
δtξ] = 0 and E[(

√
δtαξ)2] = α2δt, the numerical 115

method in Eq. (9) is consistent in the following sense: 116

lim
δt→0

1

δt
E [ε(t+ δt)− ε(t)] = (σ0 − Eε(t))/η, (12)

117

lim
δt→0

1

δt
E
[
[η(ε(t+ δt)− ε(t))− δt(σ0 − Eε(t))]2

]
= α2. (13)

For this next part, we adopt the same notation as [16]. We denote ε the strain of the 118

the system at time t and we denote ε′ the strain of the the system at time t+ δt. 119

Furthermore, we let P (ε) and P (ε′) be the probability that the strain of the system is ε 120

and ε′ respectively. The propagator W (ε→ ε′) must satisfy: 121

P (ε′) =

∫
ε

W (ε→ ε′)P (ε)dε, (14a)
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122∫
ε′
W (ε→ ε′)dε′ = 1. (14b)

Eq. (14a) means that the probability that the strain of the system is ε′ is the sum 123

(integral) of all the probabilities to be at ε multiplied by the probability that the system 124

passes from state ε to ε′ during δt. Condition Eq. (14b) comes from the integration of 125

the first condition over ε′. 126

To derive the analytical expression of the propagator in Eq. (17) we start with the 127

fact that ξ? = α
√
δtξ is Gaussian N ∼ (0, δtα2), hence the probability density function 128

is known and must satisfy the following condition: 129∫ +∞

−∞

1√
2πδtα2

exp

(
− ξ?2

2δtα2

)
dξ? = 1. (15)

With an integration by substitution from Eq. (9), with: 130

ξ? = ((ε′ − ε)η − δtσ0 + δtEε) , (16)

we can then show the expression of the propagator, the probability that the system 131

passes from state ε to ε′ during δt is given by [16]: 132

W (ε→ ε′) =
η√

2πδtα2
exp

(
− ((ε′ − ε)η − δtσ0 + δtEε)

2

2δtα2

)
. (17)

With the propagator in hand we will now see how it is possible to evaluate the 133

Malliavin derivative with the MWS method. To recap, we denote by J(ε) a quantity of 134

interest of our system and we want to compute the derivative of the mean value of this 135

quantity of interest E[J ] with respect to a parameter m, in this case σ0 when 136

σ = σ0 + αξ. 137

The form of the Malliavin weights qm can be obtained using the following procedure. 138

First, we know that with dP (ε) = P (ε)dε, Eq. (1) we can write: 139

E[J ] =

∫
ε

JP (ε)dε, (18)

and by taking the derivative of Eq. (18) [11,16,18]: 140

∂E[J ]

∂m
=

∫
ε

JP (ε)
∂ lnP

∂m
dε. (19)

To define a set of rules for updating qm, we differentiate Eq. (14a) with respect to m: 141

P (ε′)
∂ lnP ′

∂m
=

∫
ε

W (ε→ ε′)P (ε)
∂ lnP + ∂ lnW

∂m
dε, (20)

and we obtain the following rule for updating the Malliavin weight: 142

qm(t+ δt) = qm(t) +
∂ lnW

∂m
. (21)

In the example of random stress with σ = σ0 + ξ, we obtain: 143

∂ lnW

∂σ
=
√
δtξ/α. (22)

For random Young’s modulus E = E0 + ξ we would have the same expression. In the 144

case of random viscosity η = η0 + ξ we would obtain following the same logic: 145

∂ lnW

∂η
= ξ/α. (23)
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With the expression for the Malliavin weight Eq. (22) in hand we can now 146

implement an algorithm to calculate the derivative. The procedure is very simple; we 147

take Z samples of the evolutions of the stochastic ODE using the explicit Euler scheme 148

whilst simultaneously evolving the Malliavin weight qm. At teach time step Algorithm 149

1 describes this procedure in more detail. 150

The deterministic constants are given to be η = 1, E = 1 and we take a time step of 151

δt = 0.01 for the finite difference scheme. We evaluate by the MWS method the 152

derivative of the expected value of ε with respect to σ0 for a loading time t ∈ [0, T ] with 153

T = 30s. In this example the number of realisations is fixed at Z = 20000. We compare 154

the results with the analytical solution which is: 155

∂E[ε]

∂σ0
=

1

E

(
1− exp

{
−Et
η

})
. (24)

We briefly remark that for all numerical results presented in this paper there are two 156

sources of errors committed with respect to the undiscretised problem. The first error is 157

due to the deterministic approximation of the PDE (finite difference or finite element 158

method), and the second due to the stochastic approximation (Monte Carlo estimator). 159

In all cases we drive the error in the deterministic approximation of the PDE far lower 160

than that in the stochastic approximation, such that the error is dominated by the 161

number of realisations Z used in the Monte Carlo estimator. 162

In Fig. 2 we can see that the MWS method gives a good estimation of the Malliavin 163

derivative, particularly in the non-steady state regime t ≤ 5s. The relative error and so 164

the global statistical error can become very high when the system reaches a steady state 165

because the value of the sensitivity derivative is constant but the statistical error is 166

compounded after each time step. To address this issue a technique can be employed 167

based on the correlation function [16]. The reader is referred to [16] for further details. 168

We have implemented this correlation correction, which we denote MWS-steady-state, 169

and we can see in Fig. 2 that the error is greatly reduced in the steady-state regime. For 170

the numerical examples presented in the following sections, we will consider only the 171

systems undergoing transition or purely steady state systems. Therefore we will not use 172

the MWS-steady-state method again in this paper. 173

Non-Gaussian case 174

In this section we explain how to calculate the derivative for non-Gaussian stochastic 175

parameters using the MWS method. The procedure is similar to that shown in the 176

previous part but the rule for updating the Malliavin weight must be modified. 177

We begin as before by considering uncertainty in the stress σ: 178

σ = σ1 + cξ

= σ1 + cE[ξ]︸ ︷︷ ︸
σ0

+c(ξ − E[ξ]). (25)

where ξ a random variable with probability density function f(x) and c and σ1 are two 179

constants. We have written Eq. (25) in the form of a constant σ0 = σ1 + cE[ζ] plus a 180

random variable c(ζ − E[ζ]) with zero mean. Then it follows that σ0 is the mean of the 181

uncertain stress σ. We will use the MWS method to evaluate the derivative of the 182

expected value of the quantity of interest with respect to σ0. 183

To be able to use the MWS method the probability density function on the 184

parameter must satisfy some regularity conditions, see [11,20,21]. Intuitively, the 185

probability density function must be sufficiently “regular” on R which holds for the 186

Gaussian, log-normal, Beta(α > 1, β > 1) and Gamma(k > 1, θ) distributions. However, 187
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[ε
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σ
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exact solution

MWS-steady-state

Fig 2. Malliavin derivative of the expected value of the strain with respect to the
loading σ0 for the Kelvin-Voigt model with uncertain stress modelled as a Gaussian
random variable. Comparison between the exact solution, the MWS method and the
the MWS-steady-state method with a correction using the correlation function to
improve the convergence of the MWS method when the system transitions into the
steady state. For the MWS method we use Z = 20000 realisations at each time step.

Data: σ0, E, η and the random variable ξ ∈ N(0, 1).
Result: ∂E[ε(t)]/∂σ0, the derivative of the mean of ε with respect to the mean

stress σ0 at time t.
∂E[ε(t)]/∂σ0 = 0 for all t. . initialisation
for z = 0 to Z − 1 do

t = 0; . time
ε(t) = 0; . initial condition
qσ = 0; . MWS weight
for i = 1 to n do

Draw realisation of random variable ξi;

ε(t+ δt) = ε(t) +
σ0δt

η
− Eε(t)δt

η
+

√
δt ξi
η

;

qσ(t+ δt) = qσ(t) +
∂ lnW

∂σ
= qσ +

√
δtξi;

∂E[ε(t+ δt)]/∂σ0 += ε(t+ δt)qσ/Z;
t += δt;

end

end
Algorithm 1: Malliavin Weight Sampling algorithm for time dependent problem. The
notation used is that of the Kelvin-Voigt example in but the same basic algorithm
is used throughout the paper. Note that a correction term is needed for systems in
steady state, see [16].
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exact solution

Fig 3. Malliavin derivatives of the expected value of the strain with respect to the
mean of the stochastic parameters (Young’s modulus E0, viscosity η0 and stress loading
σ0). Comparison between the exact solution and the MWS method. All uncertain
parameters are modeled with a beta(2, 2) distribution. Z = 105 realisations are
performed for each estimator and the mean value of 10 estimators is plotted for each
parameter. Note that the value of Z is not large enough for the viscosity to converge
with an negligible error compared to the two other parameters. By increasing Z, this
error could be reduced.

a uniform distribution between two values a and b can not be considered “regular” 188

because the probability density function is not differentiable at a and b. Instead, we 189

choose to regularised approximation of a uniform distribution using a Beta(1 + e, 1 + e) 190

random variable with e� 1. 191

Continuing, we again discretise Eq. (5) using an explicit Euler method with time 192

step δt: 193

ε(t+ δt) = ε(t) +
δt

η

(
σ0 − E0ε(t) +

c√
δt

(ξ − E[ξ])

)
. (26)

Alternatively, in the case of uncertainty in the Young’s modulus, the discretisation can 194

be written: 195

ε(t+ δt) = ε(t) +
δt

η

(
σ0 − E0ε(t) +

c ε(t)√
δt

(E[ξ]− ξ)
)
, (27)

or, for uncertainty related to the viscosity: 196

ε(t+ δt) = ε(t) +
σ0 − Eε(t)
ξ + η

δt. (28)

The probability density function of the beta distribution, for 0 ≤ x ≤ 1, and shape 197

parameters α, β > 0, is: 198

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1. (29)

The beta function B is a normalisation constant to ensure that the total probability 199

integrates to 1. In general we will evaluate and update the Malliavin weight for the 200
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distribution
∂ lnW

∂σ
or

∂ lnW

∂E

∂ lnW

∂η

Beta(α, β)
(β − 1)

√
δt

c(1−m)
− (α− 1)

√
δt

mc

(β − 1)

c(1−m)
− (α− 1)

mc

Gamma(κ, θ)
−(κ− 1)

√
δt

mc
+

√
δt

θc

−(κ− 1)

mc
+

1

θc

log-Normal(µ, σ)

√
δt

mc

(
1 +

lnm− µ
σ2

)
1

mc

(
1 +

lnm− µ
σ2

)
Table 1. Summary of main results for Kelvin-Voigt model with three distributions on
three different model parameters.

parameter m as: 201

qm(t+ δt) = qm(t) +
∂ lnW

∂m
= qm(t) +

∂ ln f(ξ)

∂ξ

∂ξ

∂m
. (30)

Note that in Eq. (30), it is important to check that the condition E[qm(t)] = 0 is 202

verified. If E[qm(t)] 6= 0, the updated rule must be corrected. An example of performing 203

this correction is given in the next section entitled extension to second derivative. 204

Finally, we note that for the initial condition we always impose qm(t = 0) = 0. 205

For the uncertain Young’s modulus modelled with a beta distribution, we have: 206

∂ lnW

∂m
=

(β − 1)
√
δt

c(1−m)
− (α− 1)

√
δt

c m
. (31)

For the uncertain stress with beta distribution, we have: 207

∂ lnW

∂m
=

(β − 1)
√
δt

c(1−m)
− (α− 1)

√
δt

c m
. (32)

For the uncertain viscosity with beta distribution, we have: 208

∂ lnW

∂m
=

β − 1

c(1−m)
− α− 1

c m
. (33)

These results and further calculations are summarised in Table 1. 209

The Malliavin derivatives of the Kelvin-Voigt model with respect to the mean of the 210

three parameters {σ0, η0, E0} modelled as beta(2, 2) distributions are shown in Fig. 3. 211

The exact solution is computed semi-analytically using standard integration rules. Good 212

agreement between the MWS and semi-analytical solution is observed for E0 and σ0. 213

For the viscosity η0 the number of Monte Carlo samples is not sufficient to achieve 214

negligible error, but the overall trend is followed. 215

Extension to second derivative 216

The MWS method can also be used to compute the second Malliavin derivative of the 217

expected value of a quantity of interest J . If the quantity of interest does not depend 218

explicitly of the random parameter, the expression given in Eq. (3) is valid, but the 219

more general form is the following: 220

∂E[J ]

∂m
= E

[
∂J

∂m

]
+ E[Jqm]. (34)
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In Eq. (34), when we want to compute the second derivative the term

[
∂J

∂m

]
does not 221

vanish because in this case J is the first derivative with respect to m and therefore 222

depends on the parameter m in general. By applying Eq. (34), we can show for example 223

in the case of uncertain Young’s modulus that: 224

∂2E[ε(t)]

∂E2
0

= E
[
ε(t)(qEE(t) + qE(t)2 − CEE − C2

E)
]
, (35)

with the following updating rule: 225

qEE(t+ δt) = qEE(t) +
∂2 lnW

∂E2
, (36)

and: 226

qE(t+ δt) = qE(t) +
∂ lnW

∂E
. (37)

The constant C2
E and CEE allow to ensure that the expected value of the global 227

Malliavin weight (qEE(t) + qE(t)2 −CEE −C2
E) has an expected value equal to zero. In 228

this specific case we have: 229

C2
E = E

[(
∂ lnW

∂E

)2
]
, (38)

230

CEE = E
[
∂2 lnW

∂E2

]
. (39)

The precise specification of the constants depends on the distribution. We compute 231

them analytically or by using standard numerical integration techniques found in e.g. 232

Scipy or Maple. 233

In Fig. 4, a comparison between the analytical solution and the MWS method is 234

given for the value of the second derivative depending on time of the expected value of ε 235

with respect to the Young’s modulus. For the sake of example, the problem specification 236

is the same as in previous sections, with the exception that the random variable follows 237

a log-normal(µ, σ) distribution with mean equal to 0.5 and standard deviation equal to 238

0.25 which corresponds to µ = −0.804 and σ = 0.473. The analytical solutions for the 239

two constants CEE and C2
E are in this case: 240

CEE = C2
E = (1 + 1

σ2 ) exp(2σ2 − 2µ). (40)

As we can see in Fig. 4, the MWS method gives a good approximation for the 241

evaluation of the second derivative with Z = 107 realisations. 242

Extension to random process 243

In this paper we deal with random noise and in the next section we show numerical 244

results of stochastic mechanics problems where models are defined as PDEs. The 245

probability density function of the random variables used in these examples does not 246

depend on time. Similarly to the Kelvin-Voigt model presented before, we study a time 247

dependent problem in a finite dimensional space by splitting the time interval [0, T ] into 248

a finite number of increments. Note that it is also possible to take into account the 249

random noise only at the initial time instead of generating random variables at each 250

time step. It would be possible to extend this work to random process, e.g. by using a 251

Wiener process W (t) which verifies in particular (W (t+ δt)−W (t)) ∼ N(0, δt). In this 252

case, even for simple ODEs, it is very difficult to obtain analytical solutions because the 253

probability density function of a random process evolves in time. The Malliavin calculus 254
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Fig 4. Second sensitivity derivative of the expected value of the strain with respect to
the Young’s modulus for the Kelvin-Voigt model. Comparison between the exact
solution solution and the MWS method. The Young’s modulus is modelled with a
log-normal distribution. For the MWS method, Z = 107 realisations are performed.
Note that the value of Z for the same order of magnitude for the error is higher for the
second derivative compared to the first derivative because the variance V in the
Malliavin estimator is bigger and we know from the central limit theorem that the error
is in O(V 1/2Z−1/2).

is very well adapted to address these stochastic problems but requires much more 255

advanced mathematical tools as those presented in this paper. In addition, the Malliavin 256

calculus has the advantage and the specificity that it is possible to directly work in the 257

continuum (infinite dimensional space) to evaluate the sensitivity derivatives. We hope 258

that the first and simple approach restricted to random variables presented in this paper 259

may be of interest to the engineering community and encourage them to investigate the 260

benefits that the Malliavin calculus could provide in the context of stochastic PDEs. 261

PDE examples 262

We now turn our attention to models that are defined as PDEs. To solve the 263

deterministic evaluations of the PDEs we use the finite element method. We have 264

chosen to use DOLFIN, part of the FEniCS Project to implement the finite element 265

method solvers [22]. 266

Elastic bar with stochastic Young’s modulus 267

The strong form PDE and boundary conditions of the behaviour of a 1-dimensional 268

elastic bar (see Fig. 5) are: 269

E
d2u(x)

dx2
+ f = 0; u(0) = 0 and

du(L)

dx
= 0. (41)

We take f = 1, L = 1 and a stochastic Young’s modulus: 270

E = 2(1 + ξ), (42)
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Fig 5. Elastic bar with stochastic Young’s modulus.

with ξ a random variable with beta(2,2) distribution. 271

The forward model is described by the following weak residual formulation, find 272

u ∈ H1
D(Ωs) such that: 273

F (u; ũ) := −
∫

Ωs

E ∇u · ∇ũ dx+

∫
Ωs

fũ dx = 0 ∀ũ ∈ H1
0 (Ωs), (43)

where the space H1
D(Ωs) is the usual Sobolev space of square-integrable functions with 274

square-integrable weak derivatives on the domain Ωs := [0, 1] that satisfy the Dirichlet 275

boundary condition u(0) = 0 and H1
0 (Ωs) vanish on the whole boundary. We solve the 276

forward model using a piecewise linear finite element method with 1024 cells in the 277

mesh. 278

The quantity of interest is: 279

J =

∫ 1

0

u(x)dx. (44)

The derivative of the expected value of J with respect to the mean value of the Young’s 280

modulus E can be computed analytically in this case: 281

∂E[J ]

∂E
= −

∫ 1

0

1

3(2 + 2x)2

x(1− x)

B(2, 2)
dx = 1− 3

2 ln(2). (45)

This problem is a stationary (not time-dependent), in contrast to the Kelvin-Voigt 282

model considered previously. However, this stationary problem can be solved using the 283

same techniques. We introduce the concept of pseudo-time, where the system evolves 284

from its initial state at t = 0 to the final solution at time t = T through the a single 285

solution of the PDE Eq. (43). Therefore in algorithm 1 we take the pseudo-time step as 286

δt = T and hence n = 1. As before, the Malliavin weight still has initial condition 287

qm(0) = 0. 288

Finally, the relative error between the MWS method with Z = 5× 105 realisations 289

and the analytical solution is 3.0× 10−3. 290

Buckling of a hyperelastic beam with stochastic Young’s 291

modulus 292

We study the deformation of a 2D geometrically non-linear hyperelastic beam with 293

stochastic Young’s modulus E. We have deliberately designed this problem so that for 294

some values of E the beam undergoes buckling, and for others not. 295

Consider a hyperelastic body that in its undeformed state occupies the domain 296

Ω0 = [0, L]× [0, e] ⊂ R2 with L = 0.2m and e = 0.01m (see Fig. 6), and in its deformed 297

state occupies some (unknown) domain Ω ⊂ R2. ϕ is the map between the material 298

points X in the undeformed domain Ω0 and points x in the deformed domain Ω: 299

ϕ : Ω0 3 X→ x ∈ Ω, (46)
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Fig 6. Hyperelastic beam: mesh and schematic of boundary conditions. (1) a
realisation of the problem where there is a geometric instability (buckling) and (2)
another without.

The deformation gradient can be written F(X) := ∂ϕ
∂X . The right Cauchy-Green tensor 300

is then defined as C := FTF. 301

The Neo-Hookean stored energy density of the body is then: 302

W(F) := µ(Ic − 2)/2− µ log I3 + λ(log I3)2/2. (47)

where I3 := det(F) and and IC = tr(C). λ and µ are the Lame parameters and can be 303

expressed as a function of the Young’s modulus E and Poisson’s ratio ν as: 304

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (48)

We choose to model the Young’s modulus as a log-normal random variable with mean 305

value 11 MPa and standard deviation 2 MPa. We take Poisson’s ratio as a fixed 306

constant ν = 0.3. 307

Defining the displacement field as u := ϕ−X and a linear functional f that encodes 308

the external tractions we can characterise the elastic equilibrium displacement field u∗ 309

as the solution to the following minimisation problem: 310

u∗ = arg min
u∈[H1

D(Ω0)]2
L(u)

= arg min
u∈[H1

D(Ω0)]2

{∫
Ω0

W(F) dx0 − 〈f ,u〉
}
,

(49)

where [H1
D(Ω0)]2 is the usual vector-valued Sobolev space of square integrable functions 311

with square integrable derivatives that satisfies the given Dirichlet boundary conditions 312

and dx0 is a measure on Ω0. We fix the left hand of the beam, u(0, y) = 0 and apply a 313
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surface traction in the negative x direction on the right hand of the beam of magnitude 314

f . 315

For one Monte Carlo realisation we solve the non-linear problem using a Newton 316

method from SNES [23] with continuation in the loading parameter f and a third-order 317

backtracking line search. We let the symbolic differentiation capabilities of UFL derive 318

the residual and Jacobian of the forward model for use in the Newton method. We solve 319

the linear systems arising from the Newton iterations using a conjugate gradient 320

method preconditioned using algebraic multigrid (Hypre BoomerAMG [24]) interfaced 321

from PETSc [23]. 322

The quantity of interest is defined as: 323

J =

∫
Ω

|uy| dx. (50)

The Malliavin derivative of E[J ] with respect to the mean Young’s modulus obtained 324

with the MWS method with Z = 3× 103 realisations is: 325

∂E[J ]

∂E0
≈ −3.1× 10−6 m3/MPa. (51)

No analytical solution exists for comparison. If we use dolfin-adjoint [25], we can 326

compute the classical derivative of J with respect to the Young’s modulus around the 327

mean parameter: 328

∂J

∂E

∣∣∣∣
E=E0

≈ −3.5× 10−8 m3/MPa. (52)

In this example the difference between the classical derivative and the Malliavin 329

derivative is quite pronounced. This difference is caused by the presence of an instability 330

(buckling). This instability is not activated when E = E0, hence, the classical derivative 331

tells us that J is relatively insensitive to perturbations in the Young’s modulus about 332

E0. However, the Malliavin derivative tells us that E[J ] is in fact quite sensitive to 333

changes in the mean of the Young’s modulus E0. The Malliavin derivative gives us quite 334

a different perspective on the sensitivity of this problem than the classical one. 335

Incompressible Navier-Stokes equations with stochastic viscosity 336

We consider the incompressible Navier-Stokes equations on a domain Ω in R2 consisting 337

of a pair of momentum and continuity equations: 338

u̇ +∇u · u− ν∆u +∇p = f ,

∇ · u = 0.
(53)

In Eq. (53), u refers to the unknown velocity of the fluid, ν is the viscosity of the fluid, 339

p the unknown pressure and f is a given source. The mesh, geometry and boundary 340

conditions for the incompressible Navier-Stokes problem are shown in Fig. 7. The 341

viscosity is modelled as a random variable: 342

ν = 0.015 + 0.01(ξ − 0.005), (54)

with ξ a log-normal distribution with mean equal to 0.5 and standard deviation equal to 343

0.25. 344

We solve the PDE for a given parameter ν with FEniCS [26] (FE approximation) 345

using Chorin’s method with time step δt = 0.01 for t ∈ [0, 1], see [27] for more details on 346

the implementation. For one realisation of the viscosity the velocity at time t = 1 s is 347

show in Fig. 8. 348
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Fig 7. Mesh, geometry and boundary conditions for the incompressible Navier-Stokes
problem.

Velocity magnitude (m/s)

Fig 8. Velocity magnitude at time t = 1 s for one realisation of the viscosity.
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The quantity of interest is the total volume of fluid that exits the right end of the 349

domain: 350

J =

∫ t=1

t=0

∫
Sp=0

u · n dsdt, (55)

where Sp=0 is the surface with normal vector n on the right side where the pressure is 351

imposed to zero. 352

The derivative of E[J ] with respect to η0 obtained with the MWS method for 353

Z = 4× 105 realisations is: 354

∂E[J ]

∂η0
≈ −7.9 s/m2. (56)

No analytical solution exists for comparison. If we use dolfin-adjoint [25], we can 355

compute the derivative of J with respect to the viscosity around the mean parameter: 356

∂J

∂η

∣∣∣∣
η=η0

≈ −7.85 s/m2. (57)

The two sensitivity derivatives are close. In this example, contrary to the hyperelastic 357

example, the Malliavin approach does not give us a particularly different interpretation 358

of the sensitivity. 359

Conclusion 360

In this paper we have shown how to calculate the Malliavin derivative using the method 361

of Malliavin Weight Sampling. We have applied the method to some typical mechanics 362

models that can be described by ODEs and PDEs, and solved those models using finite 363

difference and finite element methods. In addition, we have extended the existing 364

practical literature on MWS to non-Gaussian random variables and the calculation of 365

second-order derivatives. We are currently investigating the extension of this work from 366

random parameters to problems with variables modelled as random fields. We are also 367

exploring the use of the Malliavin derivative in derivative-driven variance reduction 368

methods e.g. [28]. 369
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