
1

A Unified Successive Pseudo-Convex
Approximation Framework

Yang Yang and Marius Pesavento

Abstract—In this paper, we propose a successive pseudo-convex
approximation algorithm to efficiently compute stationary points
for a large class of possibly nonconvex optimization problems.
The stationary points are obtained by solving a sequence of
successively refined approximate problems, each of which is
much easier to solve than the original problem. To achieve
convergence, the approximate problem only needs to exhibit a
weak form of convexity, namely, pseudo-convexity. We show that
the proposed framework not only includes as special cases a
number of existing methods, for example, the gradient method
and the Jacobi algorithm, but also leads to new algorithms which
enjoy easier implementation and faster convergence speed. We
also propose a novel line search method for nondifferentiable
optimization problems, which is carried out over a properly
constructed differentiable function with the benefit of a simpli-
fied implementation as compared to state-of-the-art line search
techniques that directly operate on the original nondifferentiable
objective function. The advantages of the proposed algorithm
are shown, both theoretically and numerically, by several ex-
ample applications, namely, MIMO broadcast channel capacity
computation, energy efficiency maximization in massive MIMO
systems and LASSO in sparse signal recovery.

Index Terms—Energy efficiency, exact line search, LASSO,
massive MIMO, MIMO broadcast channel, nonconvex optimiza-
tion, nondifferentiable optimization, pseudo-convex optimization,
successive convex approximation.

I. INTRODUCTION

In this paper, we propose an iterative algorithm to solve the
following general optimization problem:

minimize
x

f(x)

subject to x ∈ X ,
(1)

where X ⊆ Rn is a closed and convex set, and f(x) : Rn →
R is a proper and differentiable function with a continuous
gradient. We assume that problem (1) has a solution.

Manuscript received April 26, 2016; revised November 13, 2016 and
February 23, 2016; accepted February 23, 2017. Date of publication May
02, 2016; date of current version August 05, 2016. The work of Y. Yang
was supported by the Seventh Framework Programme for Research of the
European Commission under Grant ADEL-619647, the EXPRESS project
within the DFG priority program CoSIP (DFG-SPP 1798), and the framework
of the Horizon 2020 project FANTASTIC-5G (ICT-671660). The work of
M. Pesavento was supported by the Seventh Framework Programme for
Research of the European Commission under Grant ADEL 619647 and the
EXPRESS project within the DFG priority program CoSIP (DFG-SPP 1798).
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Anthony So.

Y. Yang is with Intel Deutschland GmbH, Neubiberg 85579, Germany
(email: yang1.yang@intel.com).

M. Pesavento is with the Communication Systems Group, Technische
Universität Darmstadt , Darmstadt 64283, Germany (email: pesavento@nt.tu-
darmstadt.de).

Problem (1) includes some class of nondifferentiable prob-
lems, if the nondifferentiable function g(x) is convex:

minimize
x

f(x) + g(x)

subject to x ∈ X ,
(2)

because problem (2) can be rewritten into a problem with the
form of (1) by the help of auxiliary variables:

minimize
x,y

f(x) + y

subject to x ∈ X , g(x) ≤ y.
(3)

Problems (1) and (3) are of the same form as the objective
functions are differentiable and the constraint sets are convex.

We do not assume that f(x) is convex, so (1) is in general a
nonconvex optimization problem. The focus of this paper is on
the development of efficient iterative algorithms for computing
the stationary points of problem (1). The optimization problem
(1) represents general class of optimization problems with a
vast number of diverse applications. Consider for example
the sum-rate maximization in the MIMO multiple access
channel (MAC) [1], the broadcast channel (BC) [2, 3] and the
interference channel (IC) [4, 5, 6, 7, 8, 9], where f(x) is the
sum-rate function of multiple users (to be maximized) while
the set X characterizes the users’ power constraints. In the
context of the MIMO IC, (1) is a nonconvex problem and NP-
hard [5]. As another example, consider portfolio optimization
in which f(x) represents the expected return of the portfolio
(to be maximized) and the set X characterizes the trading
constraints [10]. Furthermore, in sparse (l1-regularized) linear
regression, f(x) denotes the least square function and g(x) is
the sparsity regularization function [11, 12].

Commonly used iterative algorithms belong to the class of
descent direction methods such as the conditional gradient
method and the gradient projection method for the differen-
tiable problem (1) [13] and the proximal gradient method for
the nondifferentiable problem (2) [14, 15], which often suffer
from slow convergence. To speed up the convergence, the
block coordinate descent (BCD) method that uses the notion
of the nonlinear best-response has been widely studied [13,
Sec. 2.7], and it is applicable if the constraint set of (1) has a
Cartesian product structure X = X1 × . . .×XK such that

minimize
x=(xk)Kk=1

f(x1, . . . ,xK)

subject to xk ∈ Xk, k = 1, . . . ,K.
(4)

The BCD method is an iterative algorithm: in each iteration,
only one variable is updated by its best-response xt+1

k =
arg minxk∈Xk f(xt+1

1 , . . . ,xt+1
k−1,xk,x

t
k+1, . . . ,x

t
K) (i.e., the

2

point that minimizes f(x) with respect to (w.r.t.) the variable
xk only while the remaining variables are fixed to their values
of the preceding iteration) and the variables are updated se-
quentially. This method and its variants have been successfully
adopted to many practical problems [1, 6, 7, 10, 16].

When the number of variables is large, the convergence
speed of the BCD method may be slow due to the sequential
nature of the update. A parallel variable update based on the
best-response seems attractive as a mean to speed up the
updating procedure, however, the convergence of a parallel
best-response algorithm is only guaranteed under rather re-
strictive conditions, c.f. the diagonal dominance condition on
the objective function f(x1, . . . ,xK) [17], which is not only
difficult to satisfy but also hard to verify. If f(x1, . . . ,xK)
is convex, the parallel algorithms converge if the stepsize
is inversely proportional to the number of block variables
K. This choice of stepsize, however, tends to be overly
conservative in systems with a large number of block variables
and inevitably slows down the convergence [2, 10, 18].

A recent progress in parallel algorithms has been made in
[8, 9, 16, 19, 20], in which it was shown that the stationary
point of (1) can be found by solving a sequence of successively
refined approximate problems of the original problem (1), and
convergence to a stationary point is established if, among other
conditions, the approximate function (the objective function of
the approximate problem) and stepsizes are properly selected.
The parallel algorithms proposed in [8, 9, 16, 19, 20] are
essentially descent direction methods. A description on how
to construct the approximate problem such that the convexity
of the original problem is preserved as much as possible is
also contained in [8, 9, 19, 20] to achieve faster convergence
than standard descent directions methods such as classical
conditional gradient method and gradient projection method.

Despite its novelty, the parallel algorithms proposed in
[8, 9, 16, 19, 20] suffer from two limitations. Firstly, the
approximate function must be strictly or strongly convex, and
this is usually guaranteed by artificially adding a quadratic reg-
ularization term to the original objective function f(x), which
however may destroy the desirable characteristic structure of
the original problem that could otherwise be exploited, e.g., to
obtain computationally efficient closed-form solutions of the
approximate problems [6]. Secondly, the algorithms (except
that in [16]) require the use of a decreasing stepsize. On
the one hand, a slow decay of the stepsize is preferable to
make notable progress and to achieve satisfactory convergence
speed; on the other hand, theoretical convergence is guaranteed
only when the stepsize decays fast enough. In practice, it is a
difficult task on its own to find a decay rate for the stepsize
that provides a good trade-off between convergence speed and
convergence guarantee, and current practices mainly rely on
heuristics [19].

The contribution of this paper consists in the development
of a novel iterative pseudo-convex approximation method to
solve problem (1). In particular, the advantages of the proposed
iterative algorithm are the following:

1) The approximate function of the original problem (1) in
each iteration only needs to exhibit a weak form of convexity,
namely, pseudo-convexity. The proposed iterative method not

only includes as special cases many existing methods, for
example, [4, 8, 9, 19], but also opens new possibilities for
constructing approximate problems that are easier to solve. For
example, in the MIMO BC sum-rate maximization problems,
the new approximate problems can be solved in closed-form.
We also show by a counterexample that the assumption on
pseudo-convexity is tight in the sense that if it is not satisfied,
the algorithm may not converge.

2) The stepsizes can be determined based on the problem
structure, typically resulting in faster convergence than in cases
where constant stepsizes [2, 10, 18] and decreasing stepsizes
[8, 19] are used. For example, the exact line search based on
the bisection method can be used when f(x) is convex. When
the objective function is nondifferentiable, we propose a new
exact/successive line search method that is carried out over a
properly constructed differentiable function. Thus it is easier
to implement than state-of-the-art techniques that operate on
the original nondifferentiable objective function directly.

In the proposed algorithm, the exact/successive line search
is used to determine the stepsize and it can be implemented
in a centralized controller, whose presence is justified for
particular applications, e.g., the base station in the MIMO
BC, and the portfolio manager in multi-portfolio optimization
[10]. We remark that also in applications in which centralized
controller are not admitted, however, the line search procedure
does not necessarily imply an increased signaling burden when
it is implemented in a distributed manner among different
distributed processors. For example, in the LASSO problem
studied in Sec. IV-C, the stepsize based on the exact line
search can be computed in closed-form and it does not incur
any additional signaling as in predetermined stepsizes, e.g.,
decreasing stepsizes and constant stepsizes. Besides, even
in cases where the line search procedure induces additional
signaling, the burden is often fully amortized by the significant
increase in the convergence rate.

The rest of the paper is organized as follows. In Sec.
II we introduce the mathematical background. The novel
iterative method is proposed and its convergence is analyzed
in Sec. III; its connection to several existing descent direction
algorithms is presented there. In Sec. IV, several applications
are considered: the sum rate maximization problem of MIMO
BC, the energy efficiency maximization of a massive MIMO
system to illustrate the advantage of the proposed approximate
function, and the LASSO problem to illustrate the advantage
of the proposed stepsize. The paper is concluded in Sec. V.

Notation: We use x, x and X to denote a scalar, vector
and matrix, respectively. We use Xjk to denote the (j, k)-
th element of X; xk is the k-th element of x where x =
(xk)Kk=1, and x−k denotes all elements of x except xk:
x−k = (xj)

K
j=1,j 6=k. We denote x−1 as the element-wise

inverse of x, i.e., (x−1)k = 1/xk. Notation x ◦ y and
X⊗Y denotes the Hadamard product between x and y, and
the Kronecker product between X and Y, respectively. The
operator [x]ba returns the element-wise projection of x onto
[a,b]: [x]ba , max(min(x,b),a). We denote d(X) as the
vector that consists of the diagonal elements of X and diag(x)
is a diagonal matrix whose diagonal elements are as same as
x. We use 1 to denote a vector with all elements equal to 1.

3

II. PRELIMINARIES ON DESCENT DIRECTION METHOD
AND CONVEX FUNCTIONS

In this section, we introduce the basic definitions and
concepts that are fundamental in the development of the
mathematical formalism used in the rest of the paper.

Stationary point. A point y ∈ X is a stationary point of
problem (1) if

∇f(y)T (x− y) ≥ 0, ∀x ∈ X . (5)

Condition (5) is the necessary condition for local optimality
of the variable y. For nonconvex problems, where global
optimality conditions are difficult to establish, the computation
of stationary points of the optimization problem (1) is gener-
ally desired. If (1) is convex, stationary points coincide with
(globally) optimal points and condition (5) is also sufficient
for y to be (globally) optimal.

Descent direction. The vector dt is a descent direction of
the function f(x) at x = xt if

∇f(xt)Tdt < 0. (6)

If (6) is satisfied, the function f(x) can be decreased when x
is updated from xt along direction dt. This is because in the
Taylor expansion of f(x) around x = xt is given by:

f(xt + γdt) = f(xt) + γ∇f(xt)Tdt + o(γ),

where the first order term is negative in view of (6). For
sufficiently small γ, the first order term dominates all higher
order terms. More rigorously, if dt is a descent direction, there
exists a γ̄t > 0 such that [21, 8.2.1]

f(xt + γdt) < f(xt),∀γ ∈ (0, γ̄t).

Note that the converse is not necessarily true, i.e., f(xt+1) <
f(xt) for arbitrary functions f(x) does not necessarily imply
that xt+1 − xt is a descent direction of f(x) at x = xt.

Quasi-convex function. A function h(x) is quasi-convex if
for any α ∈ [0, 1]:

h((1− α)x + αy) ≤ max(h(x), h(y)), ∀x,y ∈ X .

It is strictly quasi-convex if the above inequality is satisfied
with strict inequality whenever h(x) 6= h(y).

Pseudo-convex function. A function h(x) is pseudo-convex
if [22, Sec. 9.3]

∇h(x)T (y − x) ≥ 0 =⇒ h(y) ≥ h(x), ∀x,y ∈ X .

Combining this with (5) implies that any stationary point of a
pseudo-convex function is a global minimizer [22, Th. 9.3.3].

Another equivalent definition of pseudo-convex functions is
also useful in our context:

h(y) < h(x) =⇒ ∇h(x)T (y − x) < 0. (7)

In other words, h(y) < h(x) implies that y − x is a descent
direction of h(x). A pseudo-convex function is also quasi-
convex [22, Th. 9.3.5].

Convex function. A function h(x) is convex if

h(y) ≥ h(x) +∇h(x)T (y − x), ∀x,y ∈ X .

Figure 1. Relationship of functions with different degree of convexity

It is strictly convex if the above inequality is satisfied with
strict inequality whenever x 6= y. It is easy to see that a convex
function is pseudo-convex.

Strongly convex functions. A function h(x) is strongly
convex with constant a if for some positive constant a:

h(y) ≥ h(x) +∇h(x)T (y − x) + a
2 ‖y − x‖22 , ∀x,y ∈ X .

The relationship of functions with different degree of con-
vexity is summarized in Fig. 1 where the arrow denotes
implication in the direction of the arrow.

III. THE PROPOSED SUCCESSIVE PSEUDO-CONVEX
APPROXIMATION ALGORITHM

In this section, we propose an iterative algorithm that
solves (1) as a sequence of successively refined approximate
problems, each of which is much easier to solve than the
original problem (1), e.g., the approximate problem can be
decomposed into independent subproblems that might even
exhibit closed-form solutions.

In iteration t, let f̃(x;xt) be the approximate function of
f(x) around the point xt. Then the approximate problem is

minimize
x

f̃(x;xt)

subject to x ∈ X ,
(8)

and its (globally) optimal point and solution set is denoted as
Bxt and S(xt), respectively:

S(xt) ,
{
Bxt : Bxt = arg min

x∈X
f̃(x;xt)

}
. (9)

We assume that the approximate function f̃(x;y) satisfies the
following technical conditions:
(A1) The approximate function f̃(x;y) is pseudo-convex in
x for any given y ∈ X ;
(A2) The approximate function f̃(x;y) is continuously differ-
entiable in x for any given y ∈ X and continuous in y for
any x ∈ X ;
(A3) The gradient of f̃(x;y) and the gradient of f(x) are
identical at x = y for any y ∈ X , i.e., ∇xf̃(y;y) = ∇xf(y);

Based on (9), we define the mapping Bx that is used to
generate the sequence of points in the proposed algorithm:

X 3 x 7−→ Bx ∈ X . (10)

Given the mapping Bx, the following properties hold.

Proposition 1 (Stationary point and descent direction). Pro-
vided that Assumptions (A1)-(A3) are satisfied: (i) A point y

4

is a stationary point of (1) if and only if y ∈ S(y) defined in
(9); (ii) If y is not a stationary point of (1), then By−y is a
descent direction of f(x):

∇f(y)T (By − y) < 0. (11)

Proof: See Appendix A.
If xt is not a stationary point, according to Proposition 1,

we define the vector update xt+1 in the (t+1)-th iteration as:

xt+1 = xt + γt(Bxt − xt), (12)

where γt ∈ (0, 1] is an appropriate stepsize that can be
determined by either the exact line search (also known as the
minimization rule) or the successive line search (also known
as the Armijo rule). Since xt ∈ X , Bxt ∈ X and γt ∈ (0, 1],
it follows from the convexity of X that xt+1 ∈ X for all t.

Exact line search. The stepsize is selected such that the
function f(x) is decreased to the largest extent along the
descent direction Bxt−xt. In other words, γt is the (globally)
optimal point of the following optimization problem:

γt ∈ arg min
0≤γ≤1

f(xt + γ(Bxt − xt)). (13)

With this stepsize rule, it is easy to see that if xt is not a
stationary point, then f(xt+1) < f(xt).

In the special case that f(x) in (1) is convex and γ? nulls
the gradient of f(xt+γ(Bxt−xt)), i.e., ∇γf(xt+γ?(Bxt−
xt)) = 0, then γt in (13) is simply the projection of γ? onto
the interval [0, 1]:

γt = [γ?]
1
0 =


1, if ∇γf(xt + γ(Bxt − xt))|γ=1 ≥ 0,

0, if ∇γf(xt + γ(Bxt − xt))|γ=0 ≤ 0,

γ?, otherwise.

If 0 ≤ γt = γ? ≤ 1, the constrained optimization problem
in (13) is essentially unconstrained. In some applications it is
possible to compute γ? analytically, e.g., if f(x) is quadratic
as in the LASSO problem (Sec. IV-C). Otherwise, for general
convex functions, γ? can be found efficiently by the bisection
method as follows. Restricting the function f(x) to a line
xt + γ(Bxt − xt), the new function f(xt + γ(Bxt − xt)) is
convex in γ [23]. It thus follows that∇γf(xt+γ(Bxt−xt)) <
0 if γ < γ? and ∇γf(xt+γ(Bxt−xt)) > 0 if γ > γ?. Given
an interval [γlow, γup] containing γ? (the initial value of γlow
and γup is 0 and 1, respectively), set γmid = (γlow + γup)/2
and refine γlow and γup according to the following rule:{

γlow = γmid, if ∇γf(xt + γmid(Bxt − xt)) > 0,

γup = γmid, if ∇γf(xt + γmid(Bxt − xt)) < 0.

The procedure is repeated for finite times until the gap γup −
γlow is smaller than a prescribed precision.

Successive line search. If no structure in f(x) (e.g., con-
vexity) can be exploited to efficiently compute γt according
to the exact line search (13), the successive line search can
instead be employed: given scalars 0 < α < 1 and 0 < β < 1,
the stepsize γt is set to be γt = βmt , where mt is the smallest
nonnegative integer m satisfying the following inequality:

f(xt + βm(Bxt − xt)) ≤ f(xt) + αβm∇f(xt)T (Bxt − xt).
(14)

Algorithm 1 The successive pseudo-convex approximation
algorithm for differentiable problem (1)
Data: t = 0 and x0 ∈ X .
Repeat the following steps until convergence:
S1: Compute Bxt using (9).
S2: Compute γt by the exact line search (13) or the succes-

sive line search (14).
S3: Update xt+1 according to (12) and set t← t+ 1.

Note that the existence of a finite mt satisfying (14) is always
guaranteed if Bxt − xt is a descent direction at xt and
∇f(xt)T (Bxt − xt) < 0 [13].

The successive line search (14) ensures that the stepsize
γt = βmt is sufficiently small to yield a decrease in the
objective function, but not too small so that sufficient decrease
can be achieved. In this procedure, ∇f(xt) must be calculated
and the function f(xt + βm(Bxt − xt)) are evaluated several
times; see [24, Sec. 3.1] for more details.

The algorithm is formally summarized in Algorithm 1 and
its convergence properties are given in the following theorem.

Theorem 2 (Convergence to a stationary point). Consider
the sequence {xt} generated by Algorithm 1. Provided that
Assumptions (A1)-(A3) as well as the following assumptions
are satisfied:
(A4) The solution set S(xt) is nonempty for t = 1, 2, . . .;
(A5) Given any convergent subsequence {xt}t∈T where T ⊆

{1, 2, . . .}, the sequence {Bxt}t∈T is bounded.
Then any limit point of {xt} is a stationary point of (1).

Proof: See Appendix B.
In the following we discuss some properties of the proposed

Algorithm 1.
On the conditions (A1)-(A5). The only requirement on

the convexity of the approximate function f̃(x;xt) is that it
is pseudo-convex, cf. (A1). To the best of our knowledge,
these are the weakest conditions for descent direction meth-
ods available in the literature. As a result, it enables the
construction of new approximate functions that can often be
optimized more easily or even in closed-form, resulting in a
significant reduction of the computational cost. Assumptions
(A2)-(A3) represent standard conditions for successive convex
approximation techniques and are satisfied for many existing
approximation functions, cf. Sec. III-B. Sufficient conditions
for Assumptions (A4)-(A5) are that either the feasible set X in
(8) is bounded or the approximate function in (8) is strongly
convex [25]. We show that how these assumptions are satisfied
in popular applications considered in Sec. IV.

On the pseudo-convexity of the approximate function.
Assumption (A1) is tight in the sense that if it is not satisfied,
Proposition 1 may not hold. Consider the following simple
example: f(x) = x3, where −1 ≤ x ≤ 1 and the point xt = 0
in iteration t. Choosing the approximate function f̃(x;xt) =
x3, which is strictly quasi-convex but not pseudo-convex, all
assumptions except (A1) are satisfied. It is easy to see that
Bxt = −1, however (Bxt − xt)∇f(xt) = (−1 − 0) · 0 = 0,

5

and thus Bxt − xt is not a descent direction in the sense that
inequality (11) in Proposition 1 is violated.

Similar to convex optimization problems, any stationary
point of the pseudo-convex optimization problem (8) is also
globally optimal [22, Th. 9.3.3]. Some important instances
of pseudo-convex optimization problems can be solved by
interior point methods. For example, the fractional function
(convex function divided by a concave function) is one of the
most popular examples of pseudo-convex functions. This par-
ticular pseudo-convex optimization problem can be solved by
the interior point method proposed in [26], whose complexity
is the same as that of interior point methods designed for
convex optimization problems [23, Ch. 11]. More generally,
a pseudo-convex function is also a quasi-convex function, so
problem (8) can be solved by the bisection method, solving
a convex feasibility problem at each step, relying on standard
convex optimization techniques [23, Sec. 4.2.5].

On the stepsize. The stepsize can be determined in a more
straightforward way if f̃(x;xt) is a global upper bound of
f(x) that is exact at x = xt, i.e., assume that
(A6) f̃(x;xt) ≥ f(x) and f̃(xt;xt) = f(xt),
then Algorithm 1 converges under the choice γt = 1 which
results in the update xt+1 = Bxt. To see this, we first remark
that γt = 1 must be an optimal point of the following problem:

1 ∈ argmin
0≤γ≤1

f̃(xt + γ(Bxt − xt);xt), (15)

otherwise the optimality of Bxt is contradicted, cf. (9).
At the same time, it follows from Proposition 1 that
∇f̃(xt;xt)T (Bxt − xt) < 0. The successive line search over
f̃(xt+γ(Bxt−xt)) thus yields a nonnegative and finite integer
mt such that for some 0 < α < 1 and 0 < β < 1:

f̃(Bxt;xt) ≤ f̃(xt + βmt(Bxt − xt);xt)

≤ f̃(xt) + αβmt∇f̃(xt;xt)T (Bxt − xt)

= f(xt) + αβmt∇f(xt)T (Bxt − xt), (16)

where the second inequality comes from the definition of
successive line search [cf. (14)] and the last equality follows
from Assumptions (A3) and (A6). Invoking Assumption (A6)
again, we obtain

f(xt+1) ≤ f(xt) + αβmt∇f(xt)T (Bxt − xt)
∣∣
xt+1=Bxt .

(17)
The proof of Theorem 2 can be used verbatim to prove the
convergence of Algorithm 1 with a constant stepsize γt = 1.

A. Nondifferentiable Optimization Problems

In this subsection, we propose a successive convex ap-
proximation framework for the nondifferentiable problem (2),
following the previous line of argument. To ease the readers,
the development is divided into three steps: we start by apply-
ing the proposed Algorithm 1 to problem (3), an equivalent
reformulation of (2), and then the update in each iteration is
further refined, and we finally remove the auxiliary variables.

Step 1: Suppose that f̃(x;xt) is an approximate function of
f(x) in (3) around xt and it satisfies Assumptions (A2)-(A3)

as well as the following convexity assumption (A1’) which is
stricter than Assumption (A1):
(A1’) The approximate function f̃(x;y) is convex in x for
any given y ∈ X .

Then the approximation of problem (3) around (xt, yt) is

(Bxt, y?(xt)) , arg min
(x,y):x∈X ,g(x)≤y

f̃(x;xt) + y. (18)

That is, we only need to replace the differentiable function
f(x) by its (convex) approximate function f̃(x;xt). Since the
approximate function in (18) is convex, it is sufficient to verify
Assumption (A3) only:

∇x(f̃(xt;xt) + y) = ∇x(f(xt) + yt),

∇y(f̃(xt;xt) + y) = ∇y(f(xt) + y) = 1.

Based on the exact line search, the stepsize γt in this case is
given as

γt ∈ argmin
0≤γ≤1

{
f(xt+γ(Bxt−xt))+yt+γ(y?(xt)−yt))

}
, (19)

where yt ≥ g(xt). Then the variables xt+1 and yt+1 are
defined as follows:

xt+1 = xt + γt(Bxt − xt), (20a)

yt+1 = yt + γt(y?(xt)− yt). (20b)

The convergence of Algorithm 1 with (Bxt, y?(xt)) and γt

given by (18)-(19) directly follows from Theorem 2.
Step 2: The point yt+1 given in (20b) can be further refined:

f(xt+1) + yt+1 = f(xt+1) + yt + γt(y?(xt)− yt)
≥ f(xt+1) + g(xt) + γt(g(Bxt)− g(xt))

≥ f(xt+1) + g((1− γt)xt + γtBxt)
= f(xt+1) + g(xt+1),

where the first and the second inequality comes from the
fact that yt ≥ g(xt) as well as y?(xt) = g(Bxt) and
Jensen’s inequality of convex functions g(x) [23], respectively.
Since yt+1 ≥ g(xt+1), the point (xt+1, g(xt+1)) always
yields a lower value of f(x) + y than (xt+1, yt+1) while
(xt+1, g(xt+1)) is still a feasible point for problem (3). The
update (20b) is then replaced by the following enhanced rule:

yt+1 = g(xt+1), ∀t, (21)

while y0 = g(x0). Algorithm 1 with Bxt given in (20a) and
yt+1 given in (21) still converges to a stationary point of (3).

Step 3: The notation in (18)-(19) can be simplified by
removing the auxiliary variable y: Bxt in (18) can be equiv-
alently written as

Bxt = arg min
x∈X

{
f̃(x;xt) + g(x)

}
(22)

and combining (19) and (21) yields

γt ∈ argmin
0≤γ≤1

{
f(xt+γ(Bxt−xt))+γ(g(Bxt)−g(xt))

}
. (23)

In successive line search, customizing the general definition
(14) for problem (2) yields the choice γt = βmt with mt being
the smallest integer that satisfies the inequality:

6

Algorithm 2 The successive convex approximation algorithm
for nondifferentiable problem (2)
Data: t = 0 and x0 ∈ X .
Repeat the following steps until convergence:
S1: Compute Bxt using (22).
S2: Compute γt by the exact line search (23) or the succes-

sive line search (24).
S3: Update xt+1 according to

xt+1 = xt + γt(Bxt − xt).

Set t← t+ 1.

f(xt + βm(Bxt − xt))− f(xt) ≤
βm
(
α∇f(xt)T (Bxt − xt)+(α− 1)(g(Bxt)− g(xt))

)
.

(24)

Based on the above steps, the proposed algorithm for the
nondifferentiable problem (2) is summarized in Algorithm 2.

It is much easier to calculate γt according to (23) than in
state-of-the-art techniques that directly carry out the exact line
search over the original nondifferentiable objective function in
(2) [27, Rule E], i.e.,

min
0≤γ≤1

f(xt + γ(Bxt − xt)) + g(xt + γ(Bxt − xt)).

This is because the objective function in (23) is differentiable
in γ while state-of-the-art techniques involve the minimization
of a nondifferentiable function. If f(x) exhibits a specific
structure such as in quadratic functions, γt can even be
calculated in closed-form. This property will be exploited
to develop fast and easily implementable algorithm for the
popular LASSO problem in Sec. IV-C.

In the proposed successive line search, the left hand side
of (24) depends on f(x) while the right hand side is linear
in βm. The proposed variation of the successive line search
thus involves only the evaluation of the differentiable function
f(x) and its computational complexity and signaling exchange
(when implemented in a distributed manner) is thus lower than
state-of-the-art techniques (for example [27, Rule A’], [28,
Equations (9)-(10)], [19, Remark 4] and [29, Algorithm 2.1]),
in which the whole nondifferentiable function f(x) + g(x)
must be repeatedly evaluated (for different m) and compared
with a certain benchmark before mt is found.

B. Special Cases and New Algorithms

In this subsection, we interpret some existing methods in the
context of Algorithm 1 and show that they can be considered as
special cases of the proposed algorithm. We also show that the
convergence conditions of existing algorithms can be greatly
relaxed by exploiting the proposed framework.

Conditional gradient method: In this iterative algorithm
for problem (1), the approximate function is given as the first-
order approximation of f(x) at x = xt [13, Sec. 2.2.2], i.e.,

f̃(x;xt) = ∇f(xt)T (x− xt). (25)

Then the stepsize is selected by either the exact line search or
the successive line search.

Gradient projection method: In this iterative algorithm for
problem (1), Bxt is given by [13, Sec. 2.3]

Bxt =
[
xt − st∇f(xt)

]
X ,

where st > 0 and [x]X denotes the projection of x onto X .
This is equivalent to defining f̃(x;xt) in (9) as follows:

f̃(x;xt) = ∇f(xt)T (x− xt) +
1

2st
∥∥x− xt

∥∥2

2
, (26)

which is the first-order approximation of f(x) augmented by a
quadratic regularization term that is introduced to improve the
numerical stability [17]. A generalization of (26) is to replace
the quadratic term by (x−xt)Ht(x−xt) where Ht � 0 [28].

Proximal gradient method: If f(x) is convex and has a
Lipschitz continuous gradient with a constant L, the proximal
gradient method for problem (2) has the following form [14,
Sec. 4.2]:

xt+1 = arg min
x

{
stg(x) +

1

2

∥∥x− (xt − st∇f(xt))
∥∥2
}

= arg min
x

{
∇f(xt)(x− xt)+

1

2st
∥∥x− xt

∥∥2
+g(x)

}
,

(27)

where st > 0. In the context of the proposed framework (22),
the update (27) is equivalent to defining f̃(x;xt) as follows:

f̃(x;xt) = ∇f(x)T (x− xt) +
1

2st
∥∥x− xt

∥∥2
(28)

and setting the stepsize γt = 1 for all t. According to Theorem
2 and the discussion following Assumption (A6), the proposed
algorithm converges under a constant unit stepsize if f̃(x;xt)
is a global upper bound of f(x), which is indeed the case when
st ≤ 1/L in view of the descent lemma [13, Prop. A.24].

Jacobi algorithm: In problem (1), if f(x) is convex in each
xk where k = 1, . . . ,K (but not necessarily jointly convex in
(x1, . . . ,xK)), the approximate function is defined as [8]

f̃(x;xt) =
∑K
k=1

(
f(xk,x

t
−k) + τk

2

∥∥xk − xtk
∥∥2

2

)
, (29)

where τk ≥ 0 for k = 1, . . . ,K. The k-th component function
f(xk,x

t
−k) + τk

2 ‖xk − xtk‖
2

2 in (29) is obtained from the
original function f(x) by fixing all variables except xk, i.e.,
x−k = xt−k, and further adding a quadratic regularization
term. Since f̃(x;xt) in (29) is convex, Assumption (A1) is
satisfied. Based on the observations that

∇xk f̃(xt;xt) = ∇xk

(
f(xk,x

t
−k) + τk

2

∥∥xk − xtk
∥∥2

2

)∣∣
xk=xtk

= ∇xkf(xk,x
t
−k) + τk(xk − xtk)

∣∣
xk=xtk

= ∇xkf(xt),

we conclude that Assumption (A3) is satisfied by the choice of
the approximate function in (29). The resulting approximate
problem is given by

minimize
x=(xk)Kk=1

∑K
k=1(f(xk,x

t
−k) + τk

2 ‖xk − xtk‖
2
)

subject to x ∈ X .
(30)

7

Algorithm 3 The Jacobi algorithm for problem (4)
Data: t = 0 and x0

k ∈ Xk for all k = 1, . . . ,K.
Repeat the following steps until convergence:
S1: For k = 1, . . . ,K, compute Bkxt using (31).
S2: Compute γt by the exact line search (13) or the succes-

sive line search (14).
S3: Update xt+1 according to

xt+1
k = xtk + γt(Bkxt − xtk),∀k = 1, . . . ,K.

Set t← t+ 1.

This is commonly known as the Jacobi algorithm. The struc-
ture inside the constraint set X , if any, may be exploited
to solve (30) even more efficiently. For example, the con-
straint set X consists of separable constraints in the form of∑K
k=1 hk(xk) ≤ 0 for some convex functions hk(xk). Since

subproblem (30) is convex, primal and dual decomposition
techniques can readily be used to solve (30) efficiently [30].

To guarantee the convergence, the condition proposed in [9]
is that τk > 0 for all k in (29) unless f(x) is strongly convex
in each xk. However, the strong convexity of f(x) in each
xk is a strong assumption that cannot always be satisfied and
the additional quadratic regularization term that is required
may destroy the convenient structure that could otherwise be
exploited, as we show through an example application in the
MIMO BC in Sec. IV-A. In the case τk = 0, convergence
of the Jacobi algorithm (30) is only proved when f(x) is
jointly convex in (x1, . . . ,xK) and the stepsize is inversely
proportional to the number of variables K [2, 10, 13], namely,
γt = 1/K. However, the resulting convergence speed is
usually slow when K is large, as it tends to be conservative.

With the technical assumptions specified in Theorem 2, the
existing convergence conditions can be relaxed. In particular,
the convergence of the Jacobi algorithm with the approximate
problem (30) and successive line search is guaranteed even
when τk = 0. This is because f̃(x;xt) in (29) is already
convex when τk = 0 for all k and it naturally satisfies the
pseudo-convexity assumption specified by Assumption (A1).

In the case that the constraint set X has a Cartesian product
structure (4), the subproblem (30) is naturally decomposed into
K sub-problems, one for each variable, which are then solved
in parallel. In this case, the requirement in the convexity of
f(x) in each xk can even be relaxed to pseudo-convexity
only (although the sum function

∑K
k=1 f(xk,x

t
−k) is not

necessarily pseudo-convex in x as pseudo-convexity is not
preserved under nonnegative weighted sum operator), and this
leads to the following update: Bxt = (Bkxt)Kk=1 and

Bkxt ∈ arg min
xk∈Xk

f(xk,x
t
−k), k = 1, . . . ,K, (31)

where Bkxt can be interpreted as variable xk’s best-response
to other variables x−k = (xj)j 6=k when x−k = xt−k.
The proposed Jacobi algorithm is formally summarized in
Algorithm 3 and its convergence is proved in Theorem 3.

Theorem 3. Consider the sequence {xt} generated by Algo-
rithm 3. Provided that f(x) is pseudo-convex in xk for all
k = 1, . . . ,K and Assumptions (A4)-(A5) are satisfied. Then
any limit point of the sequence generated by Algorithm 3 is a
stationary point of (4).

Proof: See Appendix C.
The proposed convergence condition specified in Theorem

3 relaxes those in [8, 19]: f(x) only needs to be pseudo-
convex in each variable xk and no regularization term is
needed (i.e., τk = 0). To the best of our knowledge, this is the
weakest convergence condition on Jacobi algorithms available
in the literature. We will show in Sec. IV-B by an example
application of the energy efficiency maximization problem in
massive MIMO systems how the weak assumption on the
approximate function’s convexity proposed in Theorem 2-3
can be exploited to the largest extent.

IV. EXAMPLE APPLICATIONS

In this section, we illustrate through several important
applications in communication networks and signal processing
the new algorithms motivated by the proposed framework.

A. MIMO Broadcast Channel Capacity Computation

In this subsection, we study the MIMO BC capacity com-
putation problem to illustrate the advantage of the proposed
approximate function.

Consider a MIMO BC where the channel matrix charac-
terizing the transmission from the base station to user k is
denoted by Hk, the transmit covariance matrix of the signal
from the base station to user k is denoted as Qk, and the
noise at each user k is an additive independent and identically
distributed Gaussian vector with unit variance on each of its
elements. Then the sum capacity of the MIMO BC is [31]

maximize
(Qk)Kk=1

log
∣∣I +

∑K
k=1HkQkH

H
k

∣∣
subject to Qk � 0, ∀k,

∑K
k=1tr(Qk) ≤ P, (32)

where P is the power budget at the base station.
Problem (32) is a convex problem whose solution cannot be

expressed in closed-form and can only be found iteratively. To
apply Algorithm 1, we invoke (29)-(30) and the approximate
problem at the t-th iteration is

maximize
(Qk)Kk=1

∑K
k=1 log

∣∣Rk(Qt
−k) + HkQkH

H
k

∣∣
subject to Qk � 0, ∀k,

∑K
k=1tr(Qk) ≤ P, (33)

where Rk(Qt
−k) , I +

∑
j 6=kHjQ

t
jH

H
j . The approximate

function is concave in Q and differentiable in both Q and
Qt, and thus Assumptions (A1)-(A3) are satisfied. Since the
constraint set in (33) is compact, the approximate problem
(33) has a solution and Assumptions (A4)-(A5) are satisfied.

Problem (33) is convex and the sum-power constraint
coupling Q1, . . . ,QK is separable, so dual decomposition
techniques can be used [30]. In particular, the constraint set
has a nonempty interior, so strong duality holds and (33) can

8

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

number of iterations

su
m

 r
at

e
(n

at
s/

s)

sum capacity (benchmark)
parallel update with fixed stepsize (state−of−the−art)
parallel update with exact line search (proposed)

of users: 100

of users: 20

Figure 2. MIMO BC: sum-rate versus the number of iterations.

be solved from the dual domain by relaxing the sum-power
constraint into the Lagrangian [23]:

BQt = arg max
(Qk�0)Kk=1

{∑K
k=1 log

∣∣Rk(Qt
−k) + HkQkH

H
k

∣∣
−λ?(

∑K
k=1tr(Qk)− P)

}
.

(34)
where BQt = (BkQt)Kk=1 and λ? is the optimal Lagrange
multiplier that satisfies the following conditions: λ? ≥ 0,∑K
k=1 tr(BkQt)− P ≤ 0, λ?(

∑K
k=1 tr(BkQt)− P) = 0, and

can be found efficiently using the bisection method.
The problem in (34) is uncoupled among different variables

Qk in both the objective function and the constraint set, so it
can be decomposed into a set of smaller subproblems which
are solved in parallel: BQt = (BkQt)Kk=1 and

BkQt = arg max
Qk�0

{
log
∣∣Rk(Qt

−k) + HkQkH
H
k

∣∣−λ?tr(Qk)
}
,

(35)
and BkQt exhibits a closed-form expression based on the
waterfilling solution [2]. Thus problem (33) also has a closed-
form solution up to a Lagrange multiplier that can be found
efficiently using the bisection method. With the update direc-
tion BQt −Qt, the base station can implement the exact line
search to determine the stepsize using the bisection method
described after (13) in Sec. III.

We remark that when the channel matrices Hk are rank
deficient, which is the case when Hk is a fat matrix, e.g.,
the base station has a large-scale antenna array, problem (33)
is convex but not strongly convex, but the proposed algorithm
with the approximate problem (33) still converges. However, if
the approximate function in [8] is used [cf. (29)], an additional
quadratic regularization term must be included into (33) (and
thus (35)) to make the approximate problem strongly convex,
but the resulting approximate problem no longer exhibits a
closed-form solution and thus are much more difficult to solve.

Simulations. The parameters are set as follows. The number
of users is K = 20 and K = 100, the number of transmit
and receive antenna is (5,4), and P = 10 dB. The simulation
results are averaged over 20 instances.

0 10 20 30 40 50
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

number of iterations

er
ro

r
e(

Q
t)

parallel update with decreasing stepsize (state−of−the−art)
parallel update with exact line search (proposed)

(Tx,Rx)=(10,8)

(Tx,Rx)=(5,4)

Figure 3. MIMO BC: error e(Qt) = <(tr(∇f(Qt)(BQt −Qt))) versus
the number of iterations.

We apply Algorithm 1 with approximate problem (33) and
stepsize based on the exact line search, and compare it with the
iterative algorithm proposed in [2, 18], which uses the same
approximate problem (33) but with a fixed stepsize γt = 1/K
(K is the number of users). It is easy to see from Fig. 2
that the proposed method converges very fast (in less than
10 iterations) to the sum capacity, while the method of [2]
requires many more iterations. This is due to the benefit of
the exact line search applied in our algorithm over the fixed
stepsize which tends to be overly conservative. Employing the
exact line search adds complexity as compared to the simple
choice of a fixed stepsize, however, since the objective function
of (32) is concave, the exact line search consists in maximizing
a differentiable concave function with a scalar variable, and
it can be solved efficiently by the bisection method with
affordable cost. More specifically, it takes 0.0023 seconds
to solve problem (33) and 0.0018 seconds to perform the
exact line search (the software/hardware environment is further
specified in Sec. IV-C). Therefore, the overall CPU time
(time per iteration×number of iterations) is still dramatically
decreased due to the notable reduction in the number of
iterations. Besides, in contrast to the method of [2], increasing
the number of users K does not slow down the convergence,
so the proposed algorithm is scalable in large networks.

We also compare the proposed algorithm with the iterative
algorithm of [20], which uses the approximate problem (33)
but with an additional quadratic regularization term, cf. (29),
where τk = 10−5 for all k, and decreasing stepsizes γt+1 =
γt(1−dγt) where d = 0.01 is the so-called decreasing rate that
controls the rate of decrease in the stepsize. We can see from
Fig. 3 that the convergence behavior of [20] is rather sensitive
to the decreasing rate d. The choice d = 0.01 performs well
when the number of transmit and receive antennas is 5 and
4, respectively, but it is no longer a good choice when the
number of transmit and receive antenna increases to 10 and 8,
respectively. A good decreasing rate d is usually dependent on
the problem parameters and no general rule performs equally
well for all choices of parameters.

9

We remark once again that the complexity of each iteration
of the proposed algorithm is very low because of the exis-
tence of a closed-form solution to the approximate problem
(33), while the approximate problem proposed in [20] does
not exhibit a closed-form solution and can only be solved
iteratively. Specifically, it takes CVX (version 2.0 [32]) 21.1785
seconds (based on the dual approach (35) where λ? is found
by bisection). Therefore, the overall complexity per iteration
of the proposed algorithm is much lower than that of [20].

B. Energy Efficiency Maximization in Massive MIMO Systems

In this subsection, we study the energy efficiency maxi-
mization problem in massive MIMO systems to illustrate the
advantage of the relaxed convexity requirement of the approxi-
mate function in the proposed iterative optimization approach:
according to Assumption (A1), f̃(x;xt) only needs to exhibit
the pseudo-convexity property rather than the convexity or
strong convexity property that is conventionally required.

Consider a multi-cell network with K cells and each cell
serves one user. The base stations have a large-scale antenna
systems and the user is equipped with a single antenna. The
achievable transmission rate for user k in the uplink can be
formulated into the following general form1:

rk(p) , log

(
1 +

wkkpk
σ2
k + φkpk +

∑
j 6=k wkjpj

)
, (36)

where pk is the transmission power for user k, σ2
k is the

covariance of the additive noise at the base station k, φk is a
positive constant that depends on the channel conditions only,
and wkj is the effective channel from user j to base station k,
which depends on the real channel condition and the receive
beamforming at base station k. In particular, φkpk accounts
for the hardware impairments in the large-scale antenna array,
and

∑
j 6=k wkjpj accounts for the inter-user interference [34].

In 5G wireless communication networks, the energy effi-
ciency is a key performance indicator. To address this issue,
we look for the optimal power allocation that maximizes the
energy efficiency:

maximize
p

∑K
k=1 rk(p)

Pc +
∑K
k=1 pk

subject to p ≤ p ≤ p̄, (37)

where Pc is a positive constant representing the total circuit
power dissipated in the network, and p = (p

k
)Kk=1 (p =

(pk)Kk=1) specifies the lower (upper) bound constraint.
Problem (37) is nonconvex and NP-hard [5]. Therefore we

aim at finding a stationary point of (37) using the proposed
framework. To begin with, we propose the following approx-
imate function at p = pt:

f̃(p;pt) =

∑K
k=1 r̃k(pk;pt)

Pc +
∑K
k=1 pk

, (38)

1We assume a single resource block. However, the extension to multiple
resource blocks is straightforward; see [33] for more details.

where

r̃k(pk;pt) , rk(pk,p
t
−k) +

∑
j 6=k

(pk − ptk)∇pkrj(pt). (39)

Note that the approximate function f̃(p;pt)’s numerator con-
sists of K component functions, one for each variable pk,
and the k-th component function is constructed as follows:
since rk(p) is concave in pk (shown in the right column of
this page) but rj(p) is not concave in pk (as a matter of
fact, it is convex in pk), the concave function rk(pk,p

t
−k) is

preserved in r̃k(pk;pt) in (39) with p−k fixed to be pt−k while
the nonconcave functions {rj(p)} are linearized w.r.t. pk at
p = pt. In this way, the partial concavity in the nonconcave
function

∑K
j=1 rj(p) is preserved in f̃(p;pt). Similarly, since

Pc +
∑K
j=1 pj in the denominator is linear in p, we leave

it unchanged. Note that the division operator in the original
problem (37) is kept in the approximate function f̃(p;pt)
(38). Although it will destroy the concavity (recall that a
concave function divided by a linear function is no longer a
concave function), the pseudo-concavity of f̃(p;pt) required
in Assumption (A1) is still preserved, because i) the function
rk(pk,p

t
−k) is concave (this can be verified by checking the

second order derivative of rk(pk,p
t
−k) w.r.t. pk; details are

presented in [33] and omitted here due to the page limit), and
the function

∑K
k=1 r̃k(pk;pt) is thus concave in p; ii) The

nonnegative concave function
∑K
k=1 r̃k(pk;pt) divided by a

positive convex function Pc+
∑K
k=1 pk is pseudo-concave [22].

Assumption (A2) is satisfied because both r̃k(pk;pt) and
pk+Pc+

∑
j 6=k p

t
j are continuously differentiable for any pt ≥

0. Then we verify Assumption (A3) in Theorem 3, namely the
gradient of the approximate function and that of the original
objective function are identical at p = pt:

∇pk f̃(p;pt)
∣∣∣
p=pt

=
∇pk r̃k(pt)(pc + 1Tpt)−

∑K
j=1 r̃j(p

t)

(Pc + 1Tpt)2

=
∇pk(

∑K
j=1 rj(p

t))(pc + 1Tpt)−
∑K
j=1 rj(p

t)

(Pc + 1Tpt)2

= ∇pk

(∑K
j=1 rj(p)

Pc +
∑K
j=1 pj

)∣∣∣∣∣
p=pt

, ∀ k,

where we have used the facts that ∇pk r̃k(pt) =

∇pk(
∑K
j=1 rj(p

t)) and r̃k(pt) = rk(pt) for all k.
Given the approximate function (38), the approximate prob-

lem in iteration t is thus

Bpt = arg max
p≤p≤p̄

∑K
k=1 r̃k(pk;pt)

Pc +
∑K
k=1 pk

. (40)

Since the feasible set [p,p] is bounded, Assumptions (A4) and
(A5) are also satisfied. Since the objective function in (37) is
nonconcave, it may not be computationally affordable to per-
form the exact line search. Instead, the successive line search
can be applied to calculate the stepsize. The convergence of
the proposed algorithm with approximate problem (40) and
successive line search follows from Theorem 3.

10

pk(λt,τ) =

intk(pt)

√
(2φk + wkk)2 − 4φk

(
wkk

(πk(pt)−λt,τ)intk(pt) + 1
)
− 1

2φk(πk(pt)− λt,τ)(φk + wkk)


pk

p
k

, (43)

The numerator function and the denominator function in
(40) is concave and linear, respectively, so the optimization
problem in (40) is a fractional programming problem and can
be solved by the Dinkelbach’s algorithm [34, Algorithm 5]:
given λt,τ (λt,0 can be set to 0), the following optimization
problem in iteration τ + 1 is solved:

p(λt,τ) , arg max
p≤p≤p

K∑
k=1

r̃k(pk;pt)−λt,τ
(
Pc+

K∑
k=1

pk

)
, (41)

The optimization problem in (41) can be decomposed into
scalar subproblems that can be solved in parallel:

pk(λt,τ) = arg max
p
k
≤pk≤p̄k

r̃k(pk;pt)− λt,τpk, k = 1, . . . ,K,

(42a)
The variable λt,τ is then updated in iteration τ + 1 as

λt,τ+1 =

∑K
k=1 r̃k(pk(λt,τ);pt)

Pc +
∑K
k=1 pk(λt,τ)

. (42b)

It follows from the convergence properties of the Dinkelbach’s
algorithm that

lim
τ→∞

p(λt,τ) = Bpt

at a superlinear convergence rate. Note that problem (42a)
can be solved in closed-form, as pk(λt,τ) is simply the
projection of the point that sets the gradient of the objective
function in (42a) to zero onto the interval [p

k
, pk]. It can

be verified that finding that point is equivalent to finding
the root of a polynomial with order 2 and it thus admits
a closed-form expression. We omit the detailed derivations
and directly give the expression of pk(λt,τ) in (43) at the
top of this page, where πk(pt) ,

∑
j 6=k∇pkrj(pt) and

intk(pt) , σ2
k +

∑
j 6=k wkjp

t
j .

We finally remark that the approximate function in (38) is
constructed in the same spirit as [8, 9, 35] by keeping as
much concavity as possible, namely, rk(p) in the numerator
and Pc+

∑K
j=1 pj in the denominator, and linearizing the non-

concave functions only, namely,
∑
j 6=k rj(p) in the numerator.

Besides this, the division operator is also kept. Therefore, the
proposed algorithm is of a best-response nature and expected
to converge faster than gradient based algorithms which lin-
earizes the objective function in (37) completely. However, the
convergence of the proposed algorithm with the approximate
problem (40) cannot be derived from existing works, since the
approximate function presents only a weak form of convexity,
namely, the pseudo-convexity, which is much weaker than
those required in state-of-the-art convergence analysis, e.g.,
uniform strong convexity [8].

Simulations. The number of antennas at the BS in each
cell is M = 50, and the channel from user j to cell
k is hkj ∈ CM×1. We assume a similar setup as [34]:

wkk =
∣∣hHkkhkk∣∣2, wkj =

∣∣hHkkhkj∣∣2 + εhHkkDjhkk for
j 6= k and φk = εhHkkDkhkk, where ε = 0.01 is the
error magnitude of hardware impairments at the BS and
Dj = diag({|hjj(m)|2}Mm=1). The noise covariance σ2

k = 1,
and the hardware dissipated power pc is 10dBm, while p

k
is -10dBm and pk is 10dBm for all users. The benchmark
algorithm is [34, Algorithm 1], which successively maximizes
the following lower bound function of the objective function
in (37), which is tight at p = pt:

maximize
q

∑K
k=1 b

t
k + atk logwkk

Pc +
∑K
k=1 e

qk
+∑K

k=1 a
t
k(qk − log(σ2

k + φke
qk +

∑
j 6=k wkje

qj))

Pc +
∑K
k=1 e

qk

subject to log(p
k
) ≤ qk ≤ log(pk), k = 1, . . . ,K, (44)

where atk , sinrk(pt)/(1 + sinrk(pt)), btk , log(1 +
sinrk(pt)) − log(sinrk(pt))sinrk(pt)/(1 + sinrk(pt)), and
sinrk(p) , wkkp

t/(σ2
k + φkpk +

∑
j 6=k wkjpj). Denote the

optimal variable of (44) as qt (which can be found by
the Dinkelbach’s algorithm); then the variable p is updated
as pt+1

k = eq
t
k for all k = 1, . . . ,K. We thus coin [34,

Algorithm 1] as the successive lower bound maximization
(SLBM) method.

In Fig. 4, we compare the convergence behavior of the pro-
posed Successive Pseudo-Convex Approximation Algorithm
(SPCAA) and the SLBM method in terms of both the number
of iterations (the upper subplots) and the CPU time (the lower
subplots), for two different number of users: K = 10 in the
left column and K = 50 in the right column. It is obvious that
the convergence speed of the proposed algorithm in terms of
the number of iterations is comparable to that of the SLBM
method. However, we remark that the approximate problem
(40) of the proposed algorithm is superior to that of the SLBM
method in the following aspects:

Firstly, the approximate problem of the proposed algorithm
consists of independent subproblems that can be solved in
parallel, cf. (41), while each subproblem has a closed-form
solution, cf. (42)-(43). However, the optimization variable in
the approximate problem of the SLBM method (44) is a vector
q ∈ RK×1 and the approximate problem can only be solved
by a general purpose solver.

In the simulations, we use the Matlab optimization toolbox
to solve (44) and the iterative update specified in (42)-
(43) to solve (40), where the stopping criterion for (42)
is
∥∥λt,τ∥∥∞ ≤ 10−5. The upper subplots in Fig. 4 show

that the numbers of iterations required for convergence are
approximately the same for the SLBM method when K = 10
and when K = 50. However, we see from the lower subplots

11

number of iterations
0 5 10

na
ts

/H
z/

s/
Jo

ul

200

400

600

800
Number of users: 50

SPCAA (proposed)
SLBM (state-of-the-art)

time (sec)
0 0.5 1

na
ts

/H
z/

s/
Jo

ul

200

400

600

800

SPCAA (proposed)
SLBM (state-of-the-art)

number of iterations
0 5 10

na
ts

/H
z/

s/
Jo

ul

300

400

500

600
Number of users: 10

SPCAA (proposed)
SLBM (state-of-the-art)

time (sec)
0 0.05 0.1

na
ts

/H
z/

s/
Jo

ul

300

400

500

600

SPCAA (proposed)
SLBM (state-of-the-art)

Figure 4. Energy Efficiency Maximization: achieved energy efficiency versus
the number of iterations and CPU time

in Fig. 4 that the CPU time of each iteration of the SLBM
method is dramatically increased when K is increased from
10 to 50. On the other hand, the CPU time of the proposed
algorithm is not notably changed because the operations are
parallelizable2 and the required CPU time is thus not affected
by the problem size.

Secondly, since a variable substitution qk = epk is adopted
in the SLBM method (we refer to [34] for more details), the
lower bound constraint p

k
= 0 (which corresponds to qk =

−∞) cannot be handled by the SLBM method numerically
which may impair the applicability of the SLBM method.

C. LASSO

In this subsection, we study the LASSO problem to illus-
trate the advantage of the proposed line search method for
nondifferentiable optimization problems.

LASSO is an important and widely studied problem in
sparse signal recovery [11, 12, 36, 37]:

minimize
x

1
2 ‖Ax− b‖22 + µ ‖x‖1 , (45)

where A ∈ RN×K (with N � K), b ∈ RK×1 and µ >
0 are given parameters. Problem (45) is an instance of the
general problem structure defined in (2) with the following
decomposition:

f(x) , 1
2 ‖Ax− b‖22 , and g(x) , µ ‖x‖1 . (46)

Problem (45) is convex, but its objective function is non-
differentiable and it does not have a closed-form solution. To

2By stacking the pk(λ
t,τ)’s into the vector form p(λt,τ) =

(pk(λ
t,τ))Kk=1 we can see that only element wise operations between vectors

and matrix vector multiplications are involved. The simulations on which
Fig. 4 are based are not performed in a real parallel computing environment
with K processors, but only make use of the efficient linear algebraic
implementations available in Matlab which already implicitly admits a certain
level of parallelism.

apply Algorithm 2, the scalar decomposition x = (xk)Kk=1 is
adopted. Recalling (22) and (29), the approximate problem is

Bxt = arg min
x

{∑K
k=1f(xk,x

t
−k) + g(x)

}
. (47)

Note that g(x) can be decomposed among different compo-
nents of x, i.e., g(x) =

∑K
k=1 g(xk), so the vector problem

(47) reduces to K independent scalar subproblems that can be
solved in parallel:

Bkxt = arg min
xk

{
f(xk,x

t
−k) + g(xk)

}
= dk(ATA)−1Sµ(rk(xt)), k = 1, . . . ,K,

where dk(ATA) is the k-th diagonal element of ATA,
Sa(b) , [b− a]

+ − [−b− a]
+ is the so-called soft-

thresholding operator [37] and

r(x) , d(ATA) ◦ x−AT (Ax− b), (48)

or more compactly:

Bxt = (Bkxt)Kk=1 = d(ATA)−1 ◦ Sµ1(r(xt)). (49)

Thus the update direction exhibits a closed-form expression.
The stepsize based on the proposed exact line search (23) is

γt = arg min
0≤γ≤1

{
f(xt + γ(Bxt − xt)) + γ

(
g(Bxt)− g(xt)

)}
= arg min

0≤γ≤1

{
1
2 ‖A(xt + γ(Bxt − xt))− b‖22

+ γ µ
(
‖Bxt‖1 − ‖xt‖1

) }

=

[
−

(Axt − b)TA(Bxt − xt) + µ(‖Bxt‖1 − ‖xt‖1)

(A(Bxt − xt))T (A(Bxt − xt))

]1

0

.

(50)

The exact line search consists in solving a convex quadratic
optimization problem with a scalar variable and a bound
constraint, so the problem exhibits a closed-form solution
(50). Therefore, both the update direction and stepsize can be
calculated in closed-form. We name the proposed update (49)-
(50) as Soft-Thresholding with Exact Line search Algorithm
(STELA).

Since f(xk,x
t
−k) is strongly convex, Assumptions (A4) and

(A5) are satisfied and the proposed update (49)-(50) converges.
The proposed update has several desirable features that make
it appealing in practice. Firstly, in each iteration, all elements
are updated in parallel based on the nonlinear best-response
(49). This is in the same spirit as [19, 38] and the convergence
speed is generally faster than BCD [39] or the gradient-based
update [40]. Secondly, the proposed exact line search (50) not
only yields notable progress in each iteration but also enjoys
an easy implementation given the closed-form expression. The
convergence speed is thus further enhanced as compared to the
procedures proposed in [19, 28, 38] where either decreasing
stepsizes are used [19] or the line search is over the original
nondifferentiable objective function in (45) [28, 38]:

min
0≤γ≤1

{
1
2 ‖A(xt + γ(Bxt − xt))− b‖22
+µ ‖xt + γ(Bxt − xt)‖1

}
.

Computational complexity. The computational overhead
associated with the proposed exact line search (50) can

12

Figure 5. Operation flow and signaling exchange between local processor
p and the central processor. A solid line indicates the computation that is
locally performed by the central/local processor, and a solid line with an
arrow indicates signaling exchange between the central and local processor
and the direction of the signaling exchange.

significantly be reduced if (50) is carefully implemented as
outlined in the following. The most complex operation in (50)
is the matrix-vector multiplication, namely, Axt − b in the
numerator and A(Bxt − xt) in the denominator. On the one
hand, the term Axt−b is already available from r(xt), which
is computed in order to determine the best-response in (49). On
the other hand, the matrix-vector multiplication A(Bxt − xt)
is also required for the computation of Axt+1 − b as it can
alternatively be computed as:

Axt+1 − b = A(xt + γt(Bxt − xt))− b

= (Axt − b) + γtA(Bxt − xt), (51)

where only an additional vector addition is involved. As a
result, the stepsize (50) does not incur any additional matrix-
vector multiplications, but only affordable vector-vector mul-
tiplications.

Signaling exchange. When A cannot be stored and pro-
cessed by a centralized processing unit, a parallel architecture
can be employed. Assume there are P +1 (P ≥ 2) processors.
We label the first P processors as local processors and the last
one as the central processor, and partition A as

A = [A1, A2, . . . ,AP],

where Ap ∈ RN×Kp and
∑P
p=1Kp = K. Matrix Ap is stored

and processed in the local processor p, and the following
computations are decomposed among the local processors:

Ax =
∑P
p=1Apxp, (52a)

AT (Ax− b) =
(
AT
p (Ax− b)

)P
p=1

, (52b)

d(ATA) = (d(AT
pAp))

P
p=1. (52c)

where xp ∈ RKp . The central processor computes the best-
response Bxt in (49) and the stepsize γt in (50). The decom-
position in (52) enables us to analyze the signaling exchange

50 100 150 200 250 300 350 400 450 500

10
−6

10
−4

10
−2

10
0

number of iterations

er
ro

r
e(

xt)

STELA: parallel update with simplified exact line search (proposed)
FLEXA: parallel update with decreasing stepsize (state−of−the−art)

decreasing rate: 10−4

decreasing rate: 10−1

decreasing rate: 10−3
decreasing rate: 10−2

Figure 6. Convergence of STELA (proposed) and FLEXA (state-of-the-art)
for LASSO: error versus the number of iterations.

between local processor p and the central processor involved
in (49) and (50)3.

The signaling exchange is summarized in Fig. 5. Firstly,
the central processor sends Axt − b to the local processors
(S1.1)4, and each local processor p for p = 1, . . . , P first
computes AT

p (Axt−b) and then sends it back to the central
processor (S1.2), which forms AT (Axt−b) (S1.3) as in (52b)
and calculates r(xt) as in (48) (S1.4) and then Bxt as in (49)
(S1.5). Then the central processor sends Bxtp−xtp to the local
processor p for p = 1, . . . , P (S2.1), and each local processor
first computes Ap(Bxtp − xtp) and then sends it back to the
central processor (S2.2), which forms A(Bxt − xt) (S2.3) as
in (52a), calculates γt as in (50) (S2.4), and updates xt+1

(S3.1) and Axt+1 − b (S3.2) according to (51). From Fig.
5 we observe that the exact line search (50) does not incur
any additional signaling compared with that of predetermined
stepsizes (e.g., constant and decreasing stepsize), because the
signaling exchange in S2.1-S2.2 has also to be carried out in
the computation of Axt+1 − b in S3.2, cf. (51).

We finally remark that the proposed successive line search
can also be applied and it exhibits a closed-form expression
as well. However, since the exact line search yields faster
convergence, we omit the details at this point.

Simulations. We first compare in Fig. 6 the proposed
algorithm STELA with FLEXA [19] in terms of the error
criterion e(xt) defined as:

e(xt) ,
∥∥∇f(xt)−

[
∇f(xt)− xt

]µ1
−µ1

∥∥
2
. (53)

Note that x? is a solution of (45) if and only if e(x?) = 0
[29]. FLEXA is implemented as outlined in [19]; however, the
selective update scheme [19] is not implemented in FLEXA
because it is also applicable for STELA and it cannot eliminate
the slow convergence and sensitivity of the decreasing stepsize.
We also remark that the stepsize rule for FLEXA is γt+1 =
γt(1−min(1, 10−4/e(xt))dγt) [19], where d is the decreasing

3Updates (49) and (50) can also be implemented by a parallel architecture
without a central processor. In this case, the signaling is exchanged mutually
between every two of the local processors, but the analysis is similar and the
conclusion to be drawn remains same: the proposed exact line search (50)
does not incur additional signaling compared with predetermined stepsizes.

4x0 is set to x0 = 0, so Ax0 − b = −b.

13

0 2 4 6 8 10
10

−6

10
1

er
ro

r
e(

xt)

0 2 4 6 8 10
10

−6

10
1

er
ro

r
e(

xt)

0 2 4 6 8 10
10

−6

10
1

time (sec)

er
ro

r
e(

xt)

0 20 40 60 80 100
10

−6

10
1

0 20 40 60 80 100
10

−6

10
1

0 20 40 60 80 100
10

−6

10
1

time (sec)

STELA (proposed)

ADMM

FISTA

GreedyBCD

SpaRSA

Figure 7. Time versus error of different algorithms for LASSO. In the left
and right column, the dimension of A is 2000 × 4000 and 5000 × 10000,
respectively. In the higher, middle and lower column, the density of xtrue is
0.1, 0.2 and 0.4, respectively.

rate and γ0 = 0.9. The code and the data generating the figure
can be downloaded online [41].

Note that the error e(xt) plotted in Fig. 6 does not nec-
essarily decrease monotonically while the objective function
f(xt) + g(xt) always does. This is because STELA and
FLEXA are descent direction methods. For FLEXA, when
the decreasing rate is low (d = 10−4), no improvement
is observed after 100 iterations. As a matter of fact, the
stepsize in those iterations is so large that the function value
is actually dramatically increased, and thus the associated
iterations are discarded in Fig. 6. A similar behavior is also
observed for d = 10−3, until the stepsize becomes sufficiently
small. When the stepsize is quickly decreasing (d = 10−1),
although improvement is made in all iterations, the asymptotic
convergence speed is slow because the stepsize is too small
to make notable improvement. For this example, the choice
d = 10−2 performs well, but the value of a good decreasing
rate depends on the parameter setup (e.g., A, b and µ)
and no general rule performs equally well for all choices of
parameters. By comparison, the proposed algorithm STELA
is fast to converge and exhibits stable performance without
requiring any parameter tuning.

We also compare in Fig. 7 the proposed algorithm STELA
with other competitive algorithms in literature: FISTA [37],
ADMM [12], GreedyBCD [42] and SpaRSA [43]. We sim-
ulated GreedyBCD of [42] because it exhibits guaranteed
convergence. The dimension of A is 2000 × 4000 (the left
column of Fig. 7) and 5000 × 10000 (the right column).
It is generated by the Matlab command randn with each
row being normalized to unity. The density (the proportion of

nonzero elements) of the sparse vector xtrue is 0.1 (the upper
row of Fig. 7), 0.2 (the middle row) and 0.4 (the lower row).
The vector b is generated as b = Axtrue +e where e is drawn
from an i.i.d. Gaussian distribution with variance 10−4. The
regularization gain µ is set to µ = 0.1

∥∥ATb
∥∥
∞, which allows

xtrue to be recovered to a high accuracy [43].
The simulations are carried out under Matlab R2012a on a

PC equipped with an operating system of Windows 7 64-bit
Home Premium Edition, an Intel i5-3210 2.50GHz CPU, and a
8GB RAM. All of the Matlab codes are available online [41].
The comparison is made in terms of CPU time that is required
until either a given error bound e(xt) ≤ 10−6 is reached or the
maximum number of iterations, namely, 2000, is reached. The
running time consists of both the initialization stage required
for preprocessing (represented by a flat curve) and the formal
stage in which the iterations are carried out. For example, in
the proposed algorithm STELA, d(ATA) is computed5 in the
initialization stage since it is required in the iterative variable
update in the formal stage, cf. (49). The simulation results are
averaged over 20 instances.

We observe from Fig. 7 that the proposed algorithm STELA
converges faster than all competing algorithms. Some further
observations are in order.
• The proposed algorithm STELA is not sensitive to the

density of the true signal xtrue. When the density is increased
from 0.1 (left column) to 0.2 (middle column) and then to 0.4
(right column), the CPU time increases negligibly.
• The proposed algorithm STELA scales relatively well with

the problem dimension. When the dimension of A is increased
from 2000×4000 (the left column) to 5000×10000 (the right
column), the CPU time is only marginally increased.
• The initialization stage of ADMM is time consuming

because of some expensive matrix operations as, e.g., AAT ,(
I + 1

cAAT
)−1

and AT
(
I + 1

cAAT
)−1

A (c is a given
positive constant). More details can be found in [12, Sec.
6.4]. Furthermore, the CPU time of the initialization stage of
ADMM is increased dramatically when the dimension of A is
increased from 2000× 4000 to 5000× 10000.
• SpaRSA performs better when the density of xtrue is

smaller, e.g., 0.1, than in the case when it is large, e.g., 0.2
and 0.4.
• The asymptotic convergence speed of GreedyBCD is

slow, because only one variable is updated in each iteration.
To further evaluate the performance of the proposed al-

gorithm STELA, we test it on the benchmarking platform
developed by the Optimization Group from Department of
Mathematics at Technische Universität Darmstadt6 and com-
pare it with different algorithms in various setups (data set,
problem dimension, etc.) for the basis pursuit problem [44]:

minimize ‖x‖1
subject to Ax = b.

To adapt STELA for the basis pursuit problem, we use the

5The Matlab command is sum(A.^2,1), so matrix-matrix multiplication
between AT and A is not required.

6Project website: http://wwwopt.mathematik.tu-darmstadt.de/spear/

14

augmented Lagrangian approach [13, 45]:

xt+1 = ‖x‖1 + (λt)T (Ax− b) +
ct

2
‖Ax− b‖22 ,

λt+1 = λt + ct(Axt+1 − b),

where ct+1 = min(2ct, 102) (c0 = 10/
∥∥ATb

∥∥
∞), xt+1 is

computed by STELA and this process is repeated until λt

converges. The numerical results summarized in [46] show
that, although STELA must be called multiple times before the
Lagrange multiplier λ converges, the proposed algorithm for
the basis pursuit problem based on STELA is very competitive
in terms of running time and robust in the sense that it solved
all problem instances in the test platform database.

V. CONCLUDING REMARKS

In this paper, we have proposed a novel iterative algorithm
based on convex approximation. The most critical requirement
on the approximate function is that it is pseudo-convex. On the
one hand, the relaxation of the assumptions on the approximate
functions can make the approximate problems much easier to
solve. We show by a counter-example that the assumption
on pseudo-convexity is tight in the sense that when it is
violated, the algorithm may not converge. On the another hand,
the stepsize based on the exact/successive line search yields
notable progress in each iteration. Additional structures can be
exploited to assist with the selection of the stepsize, so that the
algorithm can be further accelerated. The advantages and ben-
efits of the proposed algorithm have been demonstrated using
prominent applications in communication networks and signal
processing, and they are also numerically consolidated. After
the first submission of this work, the proposed framework has
been further customized to solve other emerging applications
such as channel estimation in array signal processing [47] and
symbol detection in massive MIMO systems [48].

APPENDIX A
PROOF OF PROPOSITION 1

Proof: i) Firstly, suppose y is a stationary point of (1); it
satisfies the first-order optimality condition:

∇f(y)T (x− y) ≥ 0, ∀x ∈ X .

Using Assumption (A3), we get

∇f̃(y;y)T (x− y) ≥ 0, ∀x ∈ X .

Since f̃(•;y) is pseudo-convex, the above condition implies

f̃(x;y) ≥ f̃(y;y), ∀x ∈ X .

That is, f̃(y;y) = minx∈X f̃(x;y) and y ∈ S(y).
Secondly, suppose y ∈ S(y). We readily get

∇f(y)T (x− y) = ∇f̃(y;y)T (x− y) ≥ 0, ∀x ∈ X , (54)

where the equality and inequality comes from Assumption
(A3) and the first-order optimality condition, respectively, so
y is a stationary point of (1).

ii) From the definition of Bx, it is either

f̃(By;y) = f̃(y;y), (55a)

or
f̃(By;y) < f̃(y;y), (55b)

If (55a) is true, then y ∈ S(y) and, as we have just shown, it is
a stationary point of (1). So only (55b) can be true. We know
from the pseudo-convexity of f̃(x;y) in x (cf. Assumption
(A1)) and (55b) that By 6= y and

∇f̃(y;y)T (By − y) = ∇f(y)T (By − y) < 0, (56)

where the equality comes from Assumption (A3).

APPENDIX B
PROOF OF THEOREM 2

Proof: Since Bxt is the optimal point of (8), it satisfies
the first-order optimality condition:

∇f̃(Bxt;xt)T (x− Bxt) ≥ 0, ∀x ∈ X . (57)

If (55a) is true, then xt ∈ S(xt) and it is a stationary point
of (1) according to Proposition 1 (i). Besides, it follows from
(54) (with x = Bxt and y = xt) that ∇f(xt)T (Bxt−xt) ≥ 0.
Note that equality is actually achieved, i.e.,

∇f(xt)T (Bxt − xt) = 0

because otherwise Bxt − xt would be an ascent direction
of f̃(x;xt) at x = xt and the definition of Bxt would be
contradicted. Then from the definition of the successive line
search, we can readily infer that

f(xt+1) ≤ f(xt). (58)

It is easy to see (58) holds for the exact line search as well.
If (55b) is true, xt is not a stationary point and Bxt − xt

is a strict descent direction of f(x) at x = xt according to
Proposition 1 (ii): f(x) is strictly decreased compared with
f(xt) if x is updated at xt along the direction Bxt − xt.
From the definition of the successive line search, there always
exists a γt such that 0 < γt ≤ 1 and

f(xt+1) = f(xt + γt(Bxt − xt)) < f(xt). (59)

This strict decreasing property also holds for the exact line
search because it is the stepsize that yields the largest decrease,
which is always larger than or equal to that of the successive
line search.

We know from (58) and (59) that {f(xt)} is a monoton-
ically decreasing sequence and it thus converges. Besides,
for any two (possibly different) convergent subsequences
{xt}t∈T1 and {xt}t∈T2 , the following holds:

lim
t→∞

f(xt) = lim
T13t→∞

f(xt) = lim
T23t→∞

f(xt).

Since f(x) is a continuous function, we infer from the
preceding equation that

f

(
lim

T13t→∞
xt
)

= f

(
lim

T23t→∞
xt
)
. (60)

Now consider any convergent subsequence {xt}t∈T with
limit point y, i.e., limT 3t→∞ xt = y. To show that y is a
stationary point, we first assume the contrary: y is not a sta-
tionary point. Since f̃(x;xt) is continuous in both x and xt by
Assumption (A2) and {Bxt}t∈T is bounded by Assumption

15

(A5), there exists a sequence {Bxt}t∈Ts with Ts ⊆ T such
that it converges and it follows from the Maximum Theorem in
[49, Ch. VI.3] that limTs3t→∞ Bxt ∈ S(y). Since both f(x)
and ∇f(x) are continuous, applying the Maximum Theorem
again implies there is a Ts′ such that Ts′ ⊆ Ts(⊆ T) and{
xt+1

}
t∈Ts′

converges to y′ defined as y′ , y + ρ(By− y),
where ρ is the stepsize when either the exact or successive
line search is applied to f(y) along the direction By − y.
Since y is not a stationary point, it follows from (59) that
f(y′) < f(y), but this would contradict (60). Therefore y is
a stationary point, and the proof is completed.

APPENDIX C
PROOF OF THEOREM 3

Proof: We first need to show that Proposition 1 still holds.
(i) We prove y is a stationary point of (4) if and only if

yk ∈ arg minxk∈Xk f(xk,y−k) for all k.
Suppose y is a stationary point of (4), it satisfies the first-

order optimality condition:

∇f(y)T (x− y) =
∑K
k=1∇kf(y)T (xk − yk) ≥ 0,∀x ∈ X ,

and it is equivalent to

∇kf(y)T (xk − yk) ≥ 0,∀xk ∈ Xk.

Since f(x) is pseudo-convex in xk, the above condition
implies f(yk,y−k) = minxk∈Xk f(xk,y−k) for all k =
1, . . . ,K.

Suppose yk ∈ arg minxk∈Xk f(xk,y−k) for all k =
1, . . . ,K. The first-order optimality conditions yields

∇kf(y)T (xk − yk) ≥ 0,∀xk ∈ Xk.

Adding the above inequality for all k = 1, . . . ,K yields

∇f(y)T (x− y) ≥ 0,∀x ∈ X .

Therefore, y is a stationary point of (4).
(ii) We prove that if y is not a stationary point of (4), then

∇f(y)T (By − y) < 0.
It follows from the optimality of Bkx that

f(Bky,y−k) ≤ f(yk,y−k),

and

∇kf(Bky,y−k)T (xk − Bky) ≥ 0,∀xk ∈ Xk. (61)

Firstly, there must exist an index j such that

f(Bjy,y−j) < f(yj ,y−j), (62)

otherwise y would be a stationary point of (4). Since f(x) is
pseudo-convex in xk for k = 1, . . . ,K, it follows from (62)
that

∇jf(y)T (Bjy − yj) < 0. (63)

Secondly, for any index k such that f(Bky,y−k) =
f(yk,y−k), yk minimizes f(xk,y−k) over xk ∈ Xk and
∇kf(yk,y−k)T (xk − yk) ≥ 0 for any xk ∈ X . Setting
xk = Bky yields

∇kf(yk,y−k)T (Bky − yk) ≥ 0. (64)

Similarly, setting xk = yk in (61) yields

∇kf(Bky,y−k)T (yk − Bky) ≥ 0. (65)

Adding (64) and (65), we can infer that (∇kf(y) −
∇kf(Bky,y−k))T (yk−Bky) ≥ 0. Therefore, we can rewrite
(65) as follows

0 ≤ ∇kf(Bky,y−k)T (yk − Bky)

= (∇kf(Bky,y−k)−∇kf(y) +∇kf(y))T (yk − Bky),

and thus

∇kf(y)T (Bky − yk) ≤
−(∇kf(Bky,y−k)−∇kf(y))T (Bky − yk) ≤ 0. (66)

Adding (63) and (66) over all k = 1, . . . ,K yields

∇f(y)T (By − y) =
∑K
k=1∇kf(y)T (Bky − yk) < 0.

That is, By− y is a descent direction of f(x) at the point y.
The proof of Theorem 2 can then be used verbatim to

prove the convergence of the algorithm with the approximate
problem (31) and the exact/successive line search.

REFERENCES

[1] W. Yu, W. Rhee, S. Boyd, and J. Cioffi, “Iterative Water-Filling for
Gaussian Vector Multiple-Access Channels,” IEEE Trans. Inf. Theory,
vol. 50, no. 1, pp. 145–152, Jan. 2004.

[2] N. Jindal, W. Rhee, S. Vishwanath, S. Jafar, and A. Goldsmith, “Sum
Power Iterative Water-Filling for Multi-Antenna Gaussian Broadcast
Channels,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1570–1580,
Apr. 2005.

[3] W. Yu, “Sum-capacity computation for the Gaussian vector broadcast
channel via dual decomposition,” IEEE Trans. Inf. Theory, vol. 52,
no. 2, pp. 754–759, Feb. 2006.

[4] S. Ye and R. Blum, “Optimized signaling for MIMO interference
systems with feedback,” IEEE Trans. Signal Process., vol. 51, no. 11,
pp. 2839–2848, Nov. 2003.

[5] Z.-Q. Luo and S. Zhang, “Dynamic Spectrum Management: Complexity
and Duality,” IEEE J. Sel. Topics Signal Process., vol. 2, no. 1, pp.
57–73, Feb. 2008.

[6] S.-J. Kim and G. B. Giannakis, “Optimal Resource Allocation for
MIMO Ad Hoc Cognitive Radio Networks,” IEEE Trans. Inf. Theory,
vol. 57, no. 5, pp. 3117–3131, May 2011.

[7] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An Iteratively Weighted
MMSE Approach to Distributed Sum-Utility Maximization for a MIMO
Interfering Broadcast Channel,” IEEE Trans. Signal Process., vol. 59,
no. 9, pp. 4331–4340, Sep. 2011.

[8] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang,
“Decomposition by Partial Linearization: Parallel Optimization of
Multi-Agent Systems,” IEEE Trans. Signal Process., vol. 62, no. 3, pp.
641–656, Feb. 2014.

[9] Y. Yang, G. Scutari, P. Song, and D. P. Palomar, “Robust MIMO
Cognitive Radio Systems Under Interference Temperature Constraints,”
IEEE J. Sel. Areas Commun., vol. 31, no. 11, pp. 2465–2482, Nov.
2013.

[10] Y. Yang, F. Rubio, G. Scutari, and D. P. Palomar, “Multi-Portfolio
Optimization: A Potential Game Approach,” IEEE Trans. Signal
Process., vol. 61, no. 22, pp. 5590–5602, Nov. 2013.

[11] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An Interior-
Point Method for Large-Scale l1-Regularized Least Squares,” IEEE J.
Sel. Topics Signal Process., vol. 1, no. 4, pp. 606–617, Dec. 2007.

[12] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, 2010.

[13] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[14] N. Parikh and S. Boyd, “Proximal Algorithms,” Foundations and

Trends in Optimization, vol. 1, no. 3, pp. 127–239, 2014.
[15] P. L. Combettes and J.-C. Pesquet, “Proximal Splitting Methods in

Signal Processing,” in Fixed-Point Algorithms for Inverse Problems

16

in Science and Engineering, ser. Springer Optimization and Its
Applications, H. H. Bauschke, R. S. Burachik, P. L. Combettes,
V. Elser, D. R. Luke, and H. Wolkowicz, Eds. New York, NY:
Springer New York, 2011, vol. 49, pp. 185–212.

[16] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence
analysis of block successive minimization methods for nonsmooth
optimization,” SIAM Journal on Optimization, vol. 23, no. 2, pp.
1126–1153, 2013.

[17] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
Numerical methods. Prentice Hall, 1989.

[18] P. He, “Correction of Convergence Proof for Iterative Water-Filling
in Gaussian MIMO Broadcast Channels,” IEEE Trans. Inf. Theory,
vol. 57, no. 4, pp. 2539–2543, Apr. 2011.

[19] F. Facchinei, G. Scutari, and S. Sagratella, “Parallel Selective
Algorithms for Nonconvex Big Data Optimization,” IEEE Trans. Signal
Process., vol. 63, no. 7, pp. 1874–1889, Nov. 2015.

[20] G. Scutari, F. Facchinei, and L. Lampariello, “Parallel and Distributed
Methods for Constrained Nonconvex Optimization-Part I: Theory,” IEEE
Trans. Signal Process., vol. 65, no. 8, pp. 1929–1944, April 2017.

[21] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear
equations in several variables. Academic, New York, 1970.

[22] O. L. Mangasarian, Nonlinear programming. McGraw-Hill, 1969.
[23] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge Univ

Pr, 2004.
[24] J. Nocedal and S. J. Wright, Numerical optimization, 2nd ed. Springer,

2006.
[25] S. M. Robinson and R. H. Day, “A sufficient condition for continuity of

optimal sets in mathematical programming,” Journal of Mathematical
Analysis and Applications, vol. 45, no. 2, pp. 506–511, Feb. 1974.

[26] R. W. Freund and F. Jarre, “An interior-point method for fractional
programs with convex constraints,” Mathematical Programming, vol. 67,
no. 1, pp. 407–440, 1994.

[27] M. Patriksson, “Cost Approximation: A Unified Framework of Descent
Algorithms for Nonlinear Programs,” SIAM Journal on Optimization,
vol. 8, no. 2, pp. 561–582, May 1998.

[28] P. Tseng and S. Yun, “A coordinate gradient descent method for
nonsmooth separable minimization,” Mathematical Programming, vol.
117, no. 1, pp. 387–423, 2009.

[29] R. H. Byrd, J. Nocedal, and F. Oztoprak, “An Inexact Successive
Quadratic Approximation Method for Convex L-1 Regularized
Optimization,” Sep. 2013. [Online]. Available: http://arxiv.org/abs/1309.
3529

[30] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE J. Sel. Areas Commun.,
vol. 24, no. 8, pp. 1439–1451, Aug. 2006.

[31] W. Yu and J. M. Cioffi, “Sum Capacity of Gaussian Vector Broadcast
Channels,” IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 1875–1892,
Sep. 2004.

[32] M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex
Programming, version 2.0 beta,” http://cvxr.com/, 2012.

[33] Y. Yang and M. Pesavento, “A Parallel Algorithm for Energy Efficiency
Maximization in Massive MIMO Networks,” in Proc. IEEE GLOBE-
COM, 2016.

[34] A. Zappone, L. Sanguinetti, G. Bacci, E. Jorswieck, and M. Debbah,
“Energy-Efficient Power Control: A Look at 5G Wireless Technologies,”
IEEE Trans. Signal Process., vol. 64, no. 7, pp. 1668–1683, April 2016.

[35] Y. Yang, G. Scutari, D. P. Palomar, and M. Pesavento, “A parallel de-
composition method for nonconvex stochastic multi-agent optimization
problems,” IEEE Trans. Signal Process., vol. 64, no. 11, pp. 2949–2964,
June 2016.

[36] R. Tibshirani, “Regression shrinkage and selection via the lasso: a retro-
spective,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 58, no. 1, pp. 267–288, Jun. 1996.

[37] A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding
Algorithm for Linear Inverse Problems,” SIAM Journal on Imaging
Sciences, vol. 2, no. 1, pp. 183–202, Jan. 2009.

[38] M. Elad, “Why simple shrinkage is still relevant for redundant repre-
sentations?” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5559–5569,
2006.

[39] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, “Pathwise
coordinate optimization,” The Annals of Applied Statistics, vol. 1, no. 2,
pp. 302–332, Dec. 2007.

[40] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient
Projection for Sparse Reconstruction: Application to Compressed
Sensing and Other Inverse Problems,” IEEE J. Sel. Topics Signal
Process., vol. 1, no. 4, pp. 586–597, Dec. 2007.

[41] Y. Yang, http://www.nts.tu-darmstadt.de/home_nts/staff_nts/former_

staff_nts/mitarbeiterdetails_32448.en.jsp.
[42] Z. Peng, M. Yan, and W. Yin, “Parallel and distributed sparse

optimization,” 2013 Asilomar Conference on Signals, Systems and
Computers, pp. 659–646, Nov. 2013.

[43] S. Wright, R. Nowak, and M. Figueiredo, “Sparse Reconstruction by
Separable Approximation,” IEEE Trans. Signal Process., vol. 57, no. 7,
pp. 2479–2493, Jul. 2009.

[44] D. Lorenz, M. Pfetsch, and A. Tillmann, “Solving Basis Pursuit:
Heuristic Optimality Check and Solver Comparison,” ACM Transactions
on Mathematical Software, vol. 41, no. 2, pp. 1–29, 2015.

[45] R. T. Rockafellar, “Augmented Lagrangians and Applications of the
Proximal Point Algorithm in Convex Programming,” Mathematics of
Operations Research, vol. 1, no. 2, pp. 97–116, 1976.

[46] J. Kuske and A. Tillmann, “Solving basis pursuit: Update,” Tech. Rep.,
April 2016. [Online]. Available: http://www.mathematik.tu-darmstadt.
de/~tillmann/docs/SolvingBPupdateApr2016.pdf

[47] C. Steffens, Y. Yang, and M. Pesavento, “Multidimensional sparse
recovery for MIMO channel parameter estimation,” in Proc. European
Signal Processing Conference (EUSIPCO), 2016.

[48] G. Hegde, Y. Yang, C. Steffens, and M. Pesavento, “Parallel low-
complexity M -PSK detector for large-scale MIMO systems,” in Proc.
IEEE sensor array and Multichannel signal processing workshop (SAM),
2016.

[49] C. Berge, Topological Spaces: Including a Treatment of Multi-Valued
Functions, Vector Spaces and Convexity. Dover Publications, 1997.

Yang Yang received the B.S. degree in School
of Information Science and Engineering, Southeast
University, Nanjing, China, in 2009, and the Ph.D.
degree in Department of Electronic and Computer
Engineering, The Hong Kong University of Science
and Technology. From Nov. 2013 to Nov. 2015 he
had been a postdoctoral research associate at the
Communication Systems Group, Darmstadt Univer-
sity of Technology, Darmstadt, Germany. He joined
Intel Deutschland GmbH as a research scientist in
Dec. 2015.

His research interests are in distributed solution methods in convex op-
timization, nonlinear programming, and game theory, with applications in
communication networks, signal processing, and financial engineering.

Marius Pesavento (M’00) received the Dipl-
Ing. and M.Eng. degrees from Ruhr-Universität
Bochum, Bochum, Germany, and McMaster Uni-
versity, Hamilton, ON, Canada, in 1999 and 2000,
respectively, and the Dr.-Ing. degree in electrical
engineering from Ruhr-Universitat Bochum in 2005.
Between 2005 and 2007, he was a Research En-
gineer at FAG Industrial Services GmbH, Aachen,
Germany. From 2007 to 2009, he was the Direc-
tor of the Signal Processing Section at MIMOon
GmbH, Duisburg, Germany. In 2010, he became an

Assistant Professor for Robust Signal Processing and a Full Professor for
Communication Systems in 2013, at the Department of Electrical Engineering
and Information Technology, Technische Universität Darmstadt, Darmstadt,
Germany. His research interests include robust signal processing and adap-
tive beamforming, high-resolution sensor array processing, multiantenna and
multiuser communication systems, distributed, sparse, and mixed-integer
optimization techniques for signal processing and communications, statistical
signal processing, spectral analysis, and parameter estimation. He has received
the 2003 ITG/VDE Best Paper Award, the 2005 Young Author Best Paper
Award of the IEEE Transactions on Signal Processing, and the 2010 Best
Paper Award of the CROWNCOM conference. He is a Member of the Editorial
Board of the EURASIP Signal Processing Journal, and served as an Associate
Editor for the IEEE Transactions on Signal Processing in the terms 2012-2016.
He is a Member of the Sensor Array and Multichannel Technical Committee
of the IEEE Signal Processing Society, and the Special Area Teams “Signal
Processing for Communications and Networking” and “Signal Processing for
Multisensor Systems”of the EURASIP.

