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Abstract 

Sensor positioning is a fundamental problem in transportation networks, as the location of sensors 
strongly determines how traffic flows are observable and hence manageable.  

This paper aims to develop a methodology to determine sensor locations on a network such that an 
optimal trade-off solution is found between the amount of sensors installed and the resilience of the 
sensor set.  

In particular, we propose exact and heuristic solutions for identifying the optimal route sets such that 
no other route would include any additional information for finding optimal full and partial 
observability solutions. This is an important contribution to sensor location problems, as route-based 
link flow inference problems have non-unique solutions, strongly depending on the used link-route 
information. 

The properties of the new methodology are analysed and illustrated through different case studies, 
and the advantages of the algorithms are quantified both for full and for partial observability 
solutions. Thanks to the route sets found by our approach, we are able to find full observability 
solutions characterized by a small number of sensors, while yet being efficient also in terms of partial 
observability. We perform validation tests on both small and real-life sized network instances. 

 

Keywords: Network Sensor Location Problem, Partial Link Flow Observability, Route Set Generation, 
Maximum Clique Problem, Genetic algorithm 
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1. Introduction  

Traffic information and management applications strongly rely on how traffic flows are monitored. 
Locating traffic sensors in a network is therefore considered a problem of paramount importance in 
transportation engineering, in particular within estimation problems (e.g. real time traffic state 
estimation (Ahmed et al., 2014; Zhu et al., 2014), OD flows estimation (Hadavi and Shafahi, 2016; Hu 
and Liou, 2014; Zhou and List, 2010), link flow inference (Castillo et al., 2008c; Hu et al., 2009; Liu et 
al., 2014; Xu et al., 2016), travel time estimation (Viti et al., 2008; Xing et al., 2013) and path flow 
reconstruction (Cerrone et al., 2015; Fu et al., 2016, 2017; Li and Ouyang, 2011). 

Among others, network flow observability is a class of the so-called Network Sensor Location 
Problems (NSLP), in which the main goal is to determine the minimum set of observed link, route or 
OD flows that can be measured to provide information on the remaining non-observed link (or route, 
or OD) flows. Solutions to these problems are approached in literature by exploiting the fundamental 
relationships between the three sets of variables (link flows, route flows, OD flows), derived from 
conservation of vehicles principles. In this study we specifically focus on the link flow inference 
problem, i.e. the problem of identifying a (smallest) set of independent links able to fully determine 
the flow on other links in the network (Castillo et al., 2015).  

Existing approaches that compute link flow inference solutions are subdivided in methods exploiting 
node-link relations (Ng, 2012) or link-route relations  (Castillo et al., 2008a; Hu et al., 2009). This 
latter category of approaches has been shown to potentially identify more efficient solutions. The 
work of (Viti et al., 2014) showed that, for mid- and large-sized networks, node-based approaches 
tend to recommend a systematically higher number of sensors to install if compared to their route-
based counterparts. A fundamental reason for this systematic difference was observed in the richer 
information offered by link-route relations if compared to link-node relations. 

Despite their theoretical relevance, full observability solutions are however of little practicality in 
real-life networks, as the number of links to equip with sensors easily grows beyond economic 
feasibility with the size and complexity of the network itself. In (Castillo et al., 2014) the authors 
reported that such solutions usually require around 60% of link flows to be observed, which is clearly 
not feasible in networks with hundreds or thousands of links. Given this argument, the concept of 
partial observability becomes very appealing. In partial observability problems, approaches must 
take into account different constraints (e.g. maximum number of sensors to be installed, location-
specific restrictions, monetary budget limits,...), and therefore establish a trade-off between amount 
of measured/observed information and solution feasibility. The focus of the underlying problem 
shifts then from finding efficient measured link sets for complete link flow inference to, instead, 
maximizing the amount of total available information (different definitions of available information 
are provided later in Section 2 of this article). In (Viti et al., 2014) we developed a partial observability 
metric to characterize and classify partial observability solutions, showing how this metric was 
capable to capture partial relationships and locate sensors in a very intuitive manner. While exploring 
the properties of this metric we quickly realized that algebraically equivalent full observability 
solutions actually exhibit strong behavioural differences when analysed from a partial observability 
perspective.   

More recently, in (Rinaldi et al., 2015) we refined these results by empirically assessing the influence 
that route enumeration criteria have on the shape and structure of the full observability solution. We 
specifically concentrated on studying how the amount and quality of information in either full or 
partial information solutions depends on the number of routes and on the composition of the route 
set. The main finding of the paper was that the overall information content tends to increase as the 
route set is expanded, but the rate of growth reduces non linearly with the route set size, suggesting 
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that there is an upper bound above which no new information is gained by including additional 
routes in the route set. Moreover, enumerating routes according to algebraic independence 
principles resulted in overall better-informative observability solutions with respect to standard 
enumeration techniques, a conclusion entirely in line with the findings of (Castillo et al., 2014). 

However, due to the combinatorial nature of the problem at hand, in our previous approaches we 
have been limited to showcasing distributions of information contents, while incapable of isolating 
the single best possible combination of route set and, thus, independent/dependent variable sets.  

In this work we attempt to bridge this methodological gap, by indeed studying the nature of 
information in observability problems. Throughout the rest of the paper we will develop 
methodologies to exactly and approximately generate such a route set, and empirically verify 
whether indeed the resulting full observability solution is optimal in terms of partial observability 
information content. 

The remainder of this work is structured as follows: in Section 2 we present a concise literature 
review related to Network Sensor Location Problems and, more specifically, to observability 
problems. In Section 3 we introduce an exact methodology for determining the maximum 
independent route set for any given network as well as a heuristic algorithm, devised to overcome 
some of the exact algorithm’s computational limitations. Section 4 details two test cases, based on 
several small to mid-sized networks, aimed at verifying the key hypothesis introduced in Section 3. In 
Section 5 a meta-heuristic approach is developed, in order to extend the results and insights 
obtained for smaller networks towards real life instances. Section 6 presents validation results of the 
metaheuristic approach wrt. the exact results obtained in Section 4, and, finally, results on two mid-
large sized networks. Finally, in Section 7, conclusions and remarks related to future research are 
discussed. 

2. Literature review 

Network Sensor Location Problems 

The literature related to NSLP can be separated into approaches focusing on the algebraic and 
topologic properties of the network structure and connections (observability problems) and in those 
relating observed traffic states (usually, flows) with the ones derived using estimation techniques 
(flow-estimation problems) or including behavioural models and/or statistical models to predict 
future traffic states (flow prediction problems). For a more extensive overview of these problem 
types, their formalisation and the relevant literature we refer to (Gentili and Mirchandani, 2012), 
(Viti et al., 2014) and (Castillo et al., 2015). 

In observability problems, observed states from measurements can be used to infer this information 
to unobserved links states thanks to basic conservation of vehicles principles, i.e. when an 
unobserved variable can be related to only observed variables, it also becomes observable. In 
particular, in full observability solutions all unobserved flows are indirectly observable, as they all can 
be described as (linear) functions of the measured states. Flow-estimation problems, instead, seek to 
minimize the difference between measured and estimated traffic flows by applying various 
estimation techniques and/or heuristic rules (e.g., (Yang and Zhou, 1998), (Larsson et al., 2010), 
(Cipriani et al., 2006) and (Yang et al., 2006)). In this paper we focus on the first type, and in 
particular on the link flow observability problems or link flow inference problems, although the 
findings of the study are equally relevant for the second type, since most of the flow estimation 
problems rely on the same topological relations. 

Link Inference problems 
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When dealing with link flow inference problems, most of the literature focuses on finding efficient 
full observability solutions, i.e. how to determine the minimum set of observed link flows such that 
complete link flow information can be determined through topological relationships alone. As 
mentioned in the introduction, these approaches usually exploit linear algebraic transformation 
techniques on incidence matrices to identify the set of observed flows, based e.g. upon node-link 
topological relationships (e.g., (Ng, 2012)), or upon link-route relationships (e.g., (Castillo et al., 
2008a; Hu et al., 2009; Liu et al., 2014)). In both cases, the resulting solutions exhibit the very 
desirable property of guaranteeing linear independence relationships between all observed links, and 
exact linear dependences between unobserved and observed link flows. While the first relations are 
elegant as they do not require explicit route enumeration and remain tractable for large-sized 
networks, they do not contain all the information at the route and OD levels. This reflects in full 
observability solutions requiring a higher number of sensors to be installed, as empirically shown in 
(Viti et al., 2014). For this reason, our research follows a route-based approach. 

In route-based link flow inference problems relationships between links are derived starting from the 
fundamental relations between link and route flows (see e.g. (Cascetta, 2009)): 

 l lr r

r R

v a h l L


     (1) 

with 
rh   the route flow on a route r  belonging to the routes set R  , and 

lv  the link flow on link l  

belonging to the link set L . In this study we focus on static relations, which implies that the 

elements 
lra  composing the link-route adjacency matrix can only have values of 0 or 1, depending on 

whether the given route r  contains or not link l . The relations expressed in Equation (1) can also be 
formulated in vectorial-matrix form as: 

 v Ah   (2) 

Equations (1-2) express all linear relations connecting each state variable with other states in the 

network, provided that the route set R  is exhaustive. A similar relation can be formulated between 
route and OD flows but given the focus of this paper on route set generation we restrict ourselves to 
relations (1-2). 

One approach to solve link flow inference problems is to perform opportune matrix manipulations, 
i.e. by swapping or sorting rows or columns of A , while carefully maintaining the original relations 
between the variables as in the original set of relations (1-2). This approach (which we will refer to as 
pivoting procedure in this paper) has been proposed originally in (Castillo et al., 2001) for power 
networks, and later it has been extended to transportation networks (Castillo et al., 2008b, 2008a, 
2011). One of the main advantages of the pivoting procedure is that, in any solution, the selected 
links are by construction linearly independent. Clearly, a disadvantage is that, given the 
combinatorial nature of the problem, multiple solutions usually exist, depending on the sequence in 
which rows and columns are manipulated, as well as how A  is defined. Route-based approaches 
cannot guarantee in fact that all information about network topology and connectivity is included, if 
exhaustive route enumeration is not possible, which is very likely even in relatively small networks. 
This may then yield to solutions having different characteristics (or, ranks), i.e. full observability can 
be found with a different number (and position) of sensors. Hence, a minimum number of links to be 
observed is likely to exist, but is not guaranteed to be found through pivoting.  

An alternative approach to the pivoting procedure has been proposed by (Hu et al., 2009), which 
studied the conversion of the matrix A  into its “reduced row echelon form” through the Gaussian 
elimination method. By performing sensitivity analysis using different toy networks the authors 
suggested that an upper bound for the number of linearly independent links to be observed is likely 
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to exist, i.e. even if that number is variable, there must be an upper limit, above which any extra link 
flow will likely be linearly dependent on the others. In (Ng, 2012) the author showed that if a node-
based approach is adopted, an analytical expression for this upper bound could be found: it equals 
the difference between the number of links m and the number of non-centroid nodes n. However, 
He (He, 2013) recently pointed out that the relation found by Ng does not consider all information 
contained in a network, as it neglects dependency of routes through the OD relations.  

A more general goal is to find the tight upper bound of the minimum number of observed flows such 
that the system becomes fully observable, while, at the same time, the observed flows are all linearly 
independent, i.e. no redundant information is included. In (Castillo et al., 2014) the authors found 
that only linearly independent paths need to be used to obtain the minimum number of observed 
links. Through several numerical tests, they could show to improve the solutions provided by node-
based approaches of up to (indicatively) 16% less sensors. In addition, they provided a graphical 
approach and some simple methods to obtain the maximum number of linearly independent paths 
and the maximum set of links to be counted in non-planar networks. 

 

Partial Observability problems 

Full observability solutions may require an exceedingly large amount of sensors to be placed, which is 
infeasible for any real-sized network. Hence, despite their neat theoretical meaning, solutions of full 
observability are rather impractical if not in very local problems (e.g. dealing only with few links and 
nodes).  

Recently, the concept of partial observability has been introduced by different authors to identify 
solutions where full observability is not realistic. Partial observability solutions have been defined to 
answer two main research questions, i.e. 1) given some budget constraint (e.g. limited number of 
sensors to be installed) where sensors should be installed to maximize the information on the whole 
network? And 2) if one or more sensors are removed/added to an existing set, what is the 
information loss/gain on the whole network?  

Gentili and Mirchandani (2012) were perhaps the first to provide a formal definition of partial 
observability solutions as the (minimum) subsets of link flow variables such that the system is 
partially observable at level h. In this work, h is defined as the sum of the observed states and the 
number of unmeasured variables, which are observable on the basis of the observed states. This 
definition was also used in e.g. (Castillo et al., 2011) and (He, 2013) to propose partial observability 
solutions under budget constraints. In (Viti et al., 2014) we discussed this definition and pointed out 
that, despite the rigorousness of the definition by (Gentili and Mirchandani, 2012), this does not 
provide any indication on the additional effort required to observe the unmeasured variables. In 
other words, since many partial observability solutions can be found with a specific level h, some of 
them may increase the value of h with adding one or in general fewer links than others. This can be 
desirable if one considers that new sensors could be installed later. A second argument could be 
found thinking of the case of loss of sensors, i.e. one would desire solutions of level h such that, if 
one or more sensors are malfunctioning, the loss of information in the system is as small as possible. 

Motivated by these arguments, in (Viti et al., 2014) we introduced a new metric that considers the 
ensemble of information from both observable and non-observable link flows, with an attempt to 
measure the amount of information that sensors still provide to the unobserved link flows. To do so, 

we related the amount of information with the Null Space of the link-route incidence matrix A , 
which mathematically describes the degrees of freedom resulting from solution under-
determinedness. In addition, a metric was introduced to allow ranking of full observability solutions 
based on a limited number of “families”. These families depend on the total amount of information 
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contained by the different full observability solutions, in terms of quantity and quality of 
independence-dependence relationships. This metric was then employed in a greedy algorithm to 
identify an efficient sequence of link flows to measure in order to maximise the information on the 
network, by identifying and ranking the maximum information loss on the unobserved link flows in 
relation to a full observability solution containing the same subset of flows.  

In route-based partial observability problems the selection of the links to monitor may take 
advantage of a certain degree of information redundancy at the route level, in contrast with the 
problem of finding the tight upper bound of the minimum number of sensors, which clearly seeks for 
routes with theoretically no overlapping links. This will be explained with a simple illustrative 
example in the next section.  

With an attempt to create a bridge between finding linearly independent routes and realistic routes, 
i.e. where realistic route flows are likely to be observed, in (Rinaldi et al., 2015) the authors proposed 
a heuristic approach using k-shortest paths, a rather conventional method to generate routes in real-
sized network, which has the advantage to select routes that are likely containing a good deal of the 
OD flows, especially in low-congested networks. A variant of the well-known Dijkstra (Dijkstra, 1959) 
algorithm was used to sequentially generate linearly independent routes for each OD pair. In the 
proposed greedy k-independent shortest paths algorithm (KISP), when a new candidate path is 
generated, the algorithm verifies its linear independence with respect to the other paths already 
included in the generated set of paths. Tests on small and mid-sized toy network showed that full 
observability solutions found using route sets generated with KISP were systematically better than 
randomly generated route sets, and that more efficient pivoting solutions may be found. This 
suggests that a set of sensors to be installed for more efficient full observability solutions can still be 
sought and strongly depends on the way route-link relations are defined. 

 

3. Methodology pt I: exact approaches 

As we discussed in Section 1, in this work our objective is that of assessing the relationship between 
quantity and quality of information embedded in full observability solutions and the composition of 
the underlying route set. Our hypothesis is that embedding specific independence constraints in the 
route set generation procedure can be very beneficial in terms of information content, specifically 
looking at partial observability applications.  

In this Section we first provide a classification of information, which will be essential to understand 
the later definition of independent route sets. Then, we describe our methodology for finding exact 
independent route sets and we introduce two algorithms for approximate route set generation. 

Defining information (in-)dependence 

As discussed earlier, link to route relationships form the basic information block in (a specific class of) 
link inference problems. This information is usually represented through incidence matrices in the 

form | | | |l RA , where the matrix’s columns represent the | |R  routes composing the route set 

R  .  

In order to understand how different route sets influence observability problems, in this approach 
we characterize the information brought in by each new route as pertaining to one of the following 
three sets: 
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• Non Redundant (NR) set: a route ir R  pertains to the NR set if the links traversed by it 

were not previously included in the route set (i.e. the route consists solely of new, previously 
unavailable direct measurement information) 

• Redundant while Informative (RI) set: a route ir R pertains to the RI set if its inclusion in 

the route set allows deriving algebraic interactions between previously non-interrelated links 
(i.e. the route includes at least one new, previously unavailable direct measurement 
information, but isn’t solely composed of such information). 

• Purely Redundant (PR) set: a route ir R pertains to the PR set if its inclusion in the route 

set R  brings no further information to the system (i.e. the route is entirely composed of 
links which have already been traversed by any other (combination of) route(s) in the full set). 

In Figure 1 we showcase three simple examples of route sets for a small network: Figure 1(a) shows 
two routes both pertaining to the NR set, in 1(b) we show how a different choice for one of these 
two routes yields instead RI information, while in 1(c) we show how an additional third and fourth 
routes would yield PR information.  

  

 

 
 
 
 

,A H NR   

 
 
 
 
 

[, ]N IA RF R    

 

 
 
 

[, ]

,

NR RA F I

B E PR

 


 

 
 

Figure 1: example of route set with (a) Non-Redundant information only, (b) Non Redundant and Redundant while 
Informative, and (c) Non Redundant, Redundant while Informative and Purely Redundant. 
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From an algebraic perspective, this characterization can be classified according to the effects that 

routes pertaining to other sets have on the rank of the link-to-route incidence matrix A  associated 

with the full route set R  . Specifically, the following properties arise from the definitions above: 

 

' : ) ( )

' : ) ( )

( '

( '

( '' : ) ( )

i i

i i

i i

R R r rk A

R R r rk A

R

r NR rk A

r RI rk A

r rk A PRR rk A r

  

  

 

 

   

  (3) 

that is, membership of either NR or RI sets is a sufficient condition for guaranteeing that the route is 
linearly independent from all others; a weaker condition exists on the PR set, stating that all linearly 
dependent routes must be members of the PR set, but that membership itself is not a sufficient 
condition. 

Example 1(c) clearly shows how membership of the PR set does not guarantee linear dependence: 
adding either routes B or E to the set { , }A F  would indeed yield an increase in the rank of the 

associated link-route incidence matrix from 2 to 3, while adding both yields no further gain.  

In general, an arbitrarily generated route set (including the full route set) will be a union of all three 
subsets: 

 1 2{ , ,..., } [ ]nR r r r RIR RN P    (4) 

This specific subdivision in different sets of information allows us to clearly define the route set 
characteristics through which different goals pertaining to observability problems might be reached.  

When seeking to minimize the overall amount of sensors in full observability problems the best 
possible route set is determined by maximizing Non Redundant information while minimizing both 
PR (foremost) and RI sets. This is equivalent to determining the minimum linearly independent route 
set, and, as it has been shown in (Castillo et al., 2014), such a solution does indeed yield the smallest 
possible amount of sensors to be installed, specifically one per each route. The authors proceeded 
then to extend this set through a heuristic, aiming at including extra information to result in a more 
realistic representation of overall route choice from a user behavioural perspective. 

As we have discussed previously, when dealing with partial observability problems one seeks to 
maximize how resilient the overall sensing infrastructure can be even when some of the sensors 
necessary to achieve full observability are missing due to e.g. budget constraints or sensor failure (an 
in-depth discussion related to how sensor failure / missing sensors influence the error bounds on 
unobserved links can be found in (Viti et al., 2014)).  

In terms of the three information subsets, this translates into optimally balancing the composition of 
the NR and RI sets, while at the same time minimizing the cardinality of the PR set. Specifically, by 
maximizing the cardinality of the [ ]NR RI  set the amount of both directly available and indirectly 

inferable link information is also maximized, as indeed the higher the cardinality of this set and the 
higher the rank of the corresponding link-to-route incidence matrix.  

In this context, balancing the composition of the two NR and RI sets refers to the natural trade-off 
arising between the respective members: when seeking the maximum cardinality of the joint set, a 
reduction in the member count of the NR set must be met with a larger increase of members in the 
RI set. Figure 2 shows such an example, based on that of Figure 1(a), in which route H has been 
substituted by two equivalent RI routes (F and G).  
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,A H NR   

 
 
 
 
 
 
 
 
 

, , [ ]A F G NR RI    

Figure 2: Example of set memebership balancing. 

In this work, we develop a methodological framework that constructs route sets in order to meet 
such optimal (from a resilience perspective) information quality composition. This framework is then 
adapted to exact and approximate algorithms. As we detail in the next subsection, one of the key 
advantages of this framework is that the condition of membership to the [ ]NR RI  set can be 

captured through specific route independence rules, formulated exactly through a quadratic binary 
programming approach. 

Route independence rules 

As introduced earlier, determining the minimum linearly independent route set yields a solution 
where [ ]A NR   and, ideally, [ ]NRI R   (in general, the two redundant sets should be as 

small as possible, but might not be feasibly empty depending on the network’s topology).  

Our intuition is that when extending this initial route set with well-chosen routes, both NR and RI sets 
will increase in size, while the PR set will remain as small as possible.  

Based upon these considerations we form the following hypothesis: “determining the maximum 
independent route set for a given network yields maximal, optimally balanced NR and RI information 
while minimizing PR information”.  

To reach this objective we introduce a methodology capable of constructing a set of routes R  such 
that the three following conditions are verified: 

i. The set is maximal in terms of cardinality 
ii. All routes are independent from one another 

iii. All combinations of routes are independent from one another 

We begin by formalizing our chosen definition of independence between routes, which is based on 
that introduced in (Castillo et al., 2014). 
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Given a generic transportation network N  described by a directed graph ~ ( , )N G L V  with L  the 

set of links and V  the set of nodes and 1 2{ , ,..., }nR r r r   the set of routes, we define independence 

between routes as follows: 

  

 

1 2{ , ,..., }

{ , ,..., }

( , ) :

i n

j a b z

i j k k i k j

r l l l

r l l l

INDEP r r ll r l r  









  (5) 

  

given a route ir  composed by a set of links n   and a route jr  composed by a set of links z  (where 

,n z L  and | || |n L  and | || |z L ), the two routes ir  and jr  are independent from one another if 

and only if there exists a link kl  which is included in route ir  and not included in route jr . 

When considering an additional third route kr , independence between combinations of routes can 

be defined as follows: 

 

1 2{ , ,..., }

{ , ,..., }

{ , ,..., }

([ ], ) ( , ) : )(

i n

j a b z

k

i j k i j k i j

r l l l

r l l l

r l l l

INDEP r r r INDEP r r l r l r rl l

  

   







      

  (6) 

that is, a third route k is independent from another independent combination [i, j] if and only if there 

exists a link l  which is included in route kr   and not included in either route  or route . In this 

context, we dub “combination of routes” any set of routes bearing cardinality greater than one, such 

as the set [ ]i jr r .  

Following these definitions, the two following properties hold: 

 
( , ) ( , )

( ( , ) ( , ) ( , ))

i j j i

i j j k i k

INDEP r r INDEP r r

INDEP r r INDEP r r INDEP r r



  
  (7) 

that is, the independence relation between routes is symmetric, and it is not transitive. This latter 
property is considerably influential on the complexity of the problem at hand: lack of transitivity 
implies that guaranteeing independence between all possible combinations of routes requires their 
full enumeration.  

This definition of route independence is, as introduced earlier, not equivalent to the linear 
independence definition used by (Castillo 2014): a set of routes meeting conditions (5) and (6) will 
also be linearly independent, while the opposite cannot be guaranteed. As we’ll though showcase in 
what follows, our definition allows to obtain a very compact problem formulation, which can be 
approached from a graph theoretical perspective, internalizing the nonlinearity of the route 
independence constraints. As far as the authors know, the same simplification cannot be applied to 
linear independence constraints, meaning that a full-fledged nonlinear program would arise, where 
each possible combination of routes would require explicitly determining the rank of the associated 
link-to-route incidence matrix, in order to determine the largest possible linearly independent set. 

ir jr
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Problem formulation and hypergraph representation 

Based upon this notation, our desired route set generation approach can be formulated through the 
following constrained optimization problem: 

 
max | |

. . ( ,, )i j i j c

R

s t INDEP c c c c S 
  (8) 

where 

| |2

1

R

k

c

R
S

k

 
  

 
 is the set of all k-combinations of routes ir  populating the full route set R .  

Approaching this problem directly is impractical: while route enumeration can be formulated exactly 
through very simple mixed integer linear programs, the additional independence constraints cannot 
be directly formulated in linear form, thus requiring ad-hoc solvers and reducing any guarantees of 
finding a definitive optimal solution.  

To address this issue, we instead reformulate problem (8) in graph theoretical terms: based on the 

route set R  , we construct an opportune hypergraph ( , )h hHG L V , whose vertices h hv V  

represent all k-combinations of routes for the original network ( , )G L V , and whose arcs 

: ( , ), ,h h h i j i j hl l v v v VvL    capture instead the independence relationships between routes and 

combinations thereof.  

We represent the individual hypergraph vertices hv  through a set of | |L  elements | |{0,1}
i

L

hv   

which take a value of 1 if the corresponding link is included in the (set of) route(s) pertaining to the 
given vertex and 0 otherwise. In the case depicted earlier in Figure 1(a), for example, the resulting 
hypergraph vertices are as follows: 

 

{1,0,1,0,1,0}

{0,1,0,1,0,1}

{1,1,1,1,1,1}

A

H

AH

v

v

v







  

Thanks to this specific representation, to which we refer as “bitwise signature”, the condition of 
independence between different routes composing a given route set can be easily captured through 
a bitwise algebra operation: 

 ( , ) ( ) ( )
i j i i j ji j r r r r r rINDE v v vP r r v v v       (9) 

that is, a couple of routes (in general, vertices) ,i jr r  are independent from one another if and only if 

their combination (computed through a bitwise OR operation) is different from at least one of the 

two original parent elements. Accordingly, an arc between two vertices ,h kv v
 
will be drawn if and 

only if condition (9) is met. Once more referring to the example of Figure 1(a), we can simply 
conclude that the hypergraph for the two routes ,A H  is in fact complete, as condition (9) holds for 

all couples [ , ],[ , ],[ , ]A H AH H AA Hv v v v v v .  
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This reformulation bears a very attractive property: an equivalent solution for (7) can be determined 

by solving a constrained form of the maximum clique problem on the graph HG , a well-known 
problem in operations research and graph theory literature for which several formulations and 
algorithms are readily available (Alidaee et al., 2007; Macambira and de Souza, 2000).  Recently, a 
similar solution scheme was proposed by (Fu et al., 2016) to locate a combination of active and 
passive sensors in the network. 

Specifically, we introduce parenthood constraints to the maximum clique problem to correctly 
represent condition (iii), i.e. to ensure that all combinations of selected routes are independent from 
one another. This constraint can be formulated as follows: if a vertex pertaining to a k-combination 
of routes is selected, all vertices pertaining to the [ 1k   to 1]-combinations of routes composing the 
original vertex should also be selected. 

Through the following theorem we show that, indeed, solving the constrained max clique problem on 

the hypergraph  yields a set of routes meeting all conditions (i-iii). 

Theorem 1: Finding a parenthood-constrained maximum clique 
mC  on the complete hypergraph 

( , )h hHG V L  is equivalent to determining the maximum set of routes R  such that all routes and 

combinations thereof are independent from one another. 

Proof: 

We begin by proving the independence properties by contradiction: 

Hyp 1: Let a clique : : , )( : ( , )m j m s t j s tv C r vC r INDEP r r      be a solution to the max clique 

problem formulated on hypergraph ( , )h hHG V L , that is, let a vertex exist in the maximum clique 
mC   

such that two routes
sr and

tr  composing it are violating the independence condition as defined in (9). 

It follows from the basic properties of a clique that : [ ] , | |m m n mC HG C K n C  , i.e., the subgraph 

induced on hypergraph HG  by the clique must be a complete graph with n  vertices. 

By construction, the vertex set of the hypergraph 
hV  must be such that the parenthood constraints 

are met, that is, no less than two vertices representing the 1-combination of routes s  and t  must  

exist: , } :{ ,s t h s s t tVv v v r v r   . 

However, the arc set 
hL   is such that: ( , ) : ( , )s t h h h s tlINDEP r r lL v v   , that is, no arc can 

exist between any two vertices ( , )s t  violating condition (9). 

This implies that [ ]m nG C K , thus violating hypothesis 1 (
mC  cannot be a clique and contain vertex 

jv ).      □ 

Through contradiction we can furthermore show that, indeed, the determined solution entails the 

maximum set of independent routes R : 

Hyp 2: Let two route sets 
1 2' { , ,..., }nR r r r and 

1 2 1'' { , ,..., , }n nR r r r r   both meeting independence 

conditions (ii) and (iii): the parenthood-constrained maximum clique solution 
mC  captures route set 

'R . 

HG



14 
 

A clique C  is maximal if and only if the following condition is met: 

1: : [{ , }] , | |k k nC HG C v K n Cv   , that is, if there is no vertex 
kv  such that the clique 

mC   can 

be extended and still be a complete graph. 

Since 
1'' { ', }nR R r   is meeting all independence conditions it follows that 

1: [ ] nC CHG K   . 

However, following parenthood constraints, 1| | | | 2 | |n

m mC C C   , contradicting hypothesis 2 

(
mC  is not maximum).    □ 

 

To form a proper optimization problem, we base ourselves upon the Mixed-Integer Quadratic 
Programming (MIQP) formulation introduced by (Theorem 2.2 in Bomze et al., 1999). From the 

hypergraph HG the vertex-to-vertex adjacency matrix A g  can be extracted, defined as follows: 

 | |||
{0,} }{ 1A h hV V

g ija


    (10) 

where the elements ija  are equal to 1 if an arc hl  connects hypergraph vertices i  and j  and 0 

otherwise. The max clique problem’s quadratic matrix HGQ  can be derived as follows: 

 ( )HG gAQ I    (11) 

where | | | |h hV V
I


  is the identity matrix and gA   the adjacency matrix pertaining to the complement 

graph HG  , which is computed according to the following equation (12). 

 | | )(
hg V gI AA J     (12) 

where | | |

| | {1} h h

h

V V

VJ


  is the all-ones matrix of proper dimensions. 

The resulting MIQP problem is formulated as follows: 

 
{0,

min

. }. 1

T

x HGx Q x

s t x
  (13) 

and its solution vector * * *

1 | |[ ,..., ]
hVx x x  has elements 

* 1ix   in correspondence to those vertices i  

being part of the maximum clique.  

This quadratic problem finds exact solutions to the unconstrained Max Clique problem by exploiting 
a specific duality property between the Maximum Clique problem on indirect graphs and the 

Independent Set problem. Given a generic graph G , characterized by a node-to-node adjacency 
matrix A , rather than solving directly the Maximum Clique problem on the couple [ , ]G A  , one can 

solve the Independent Set problem on the complement graph G characterized by the adjacency 

matrix A  (as defined in (12)). The Independent Set problem can be formulated quadratically as in 

(13). Thanks to the duality between G  and G , solving the Independent Set problem on the latter 
yields a max clique solution in the former. 
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To represent the parenthood constraints, we extend this formulation by including an additional set of 
linear inequality constraints, together with a linear component prioritizing the choice of cliques 
bearing vertices composed by a larger amount of routes: 

 

min

. .
0

{0,1}

T

x HG

HG

x Q x f x

xP
s t

x



 









  (14) 

where the rows of matrix HGP  are structured as follows: 

 

1 | |[ , ] { }

1:

| |

,...,
hHG i iV

ik k i

ii i

P i

v

pp

vp v

p



 





   (15) 

This constraint ensures that all k-1 combinations of elements composing vertex 
iv  are to be selected 

if vertex 
iv  is selected, while not posing any restriction on the selection of single elements, provided 

vertex 
iv  is not selected. The weighing vector f  is computed as follows: 

 
| |

max(|
:

| ) 1

i
i

i h

v

v
f f

V






  (16) 

that is, the higher the amount of routes composing the vertex iv  , the closer the corresponding value 

of if   is to 1, although strictly smaller than one, to ensure dominance of the quadratic component.  

Equation (17) presents the full formulation for the example of Figure 1(a), in order to better clarify 
our contribution: 

 

 

[ , , ]

0 1 1

1 0 1

1 1 0

1 2 2

2 1 2

2 2 1

1/ 3 1/ 3 2 / 3

[ 1 1 1]

A H AH

g

HG

HG

x x x x

A

Q

f

P



 
 


 
 
 

   
 

    
    

   

  

  (17) 

For which, trivially, the optimal solution is 
* [1,1,1]x   .  

In Figure 3 we show two examples of hypergraphs and resulting max cliques (highlighted in red), both 
based on the small network featured in Figures 1 and 2. In Figure 3(a) we show the hypergraph 
related to the three routes {A,B,F}, and how this, clearly, is an instance in which the combination 
[A,B,F] is dependent. Figure 3(b) shows instead how this hypergraph changes when adding a fourth 
route {G}, and how, indeed, the solution [A,F,G] meets our independence conditions. 
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Figure 3: Hypergraph - clique representation of routes [A,B,F] (left) and [A,B,F,G] (right) 

 

Solution algorithms 

The hypergraph reformulation is a fundamental transformation of the original problem, which allows 
us to tackle part of the complexity of determining an exact solution to the maximum independent 
route set problem: the non-convexities deriving from the independence constraints are explicitly 
removed from the optimization problem, and instead expressed linearly through the hypergraph’s 
arcs.  

The resulting optimization problem (14) can then indeed be easily tackled by commercial 
optimization software (Such as IBM’s ILOG CPLEX or the Gurobi Optimization package), even when 
dealing with relatively large hypergraph instances. 

However, considerable complexity still remains in terms of combinatorial explosion: for a 
transportation network bearing a total of | |R   routes, the cardinality of the set of hypergraph 

vertices hV  will be | |2 R , and that of the set of arcs hL  will be, in the worst-case scenario, 

| | | | 1

2

2 (2 )R R 
  (i.e. the hypergraph will be complete).   

As the exact problem’s complexity increases drastically with the number of routes composing the full 
route set, we must limit ourselves to seeking exact solutions only for very simple test networks, for 

which a brute-force approach can be employed to compute the full hypergraph HG .  

To address this issue and generalize the methodology towards more significant networks, we hereby 
develop two algorithms that allow to construct only portions of the hypergraph, limiting thus the 
combinatorial explosion both in terms of computational and, especially, memory requirements.  A 
third algorithm, based on a well-known metaheuristic, is also introduced later in Section 5 to extend 
these results towards large networks. 

As we will show later in Sections 4 and 6, through these algorithms we’re still able to deduce 
insightful conclusions related to our key hypothesis, although sacrificing (in specific instances) the 
certainty of finding exact solutions to problem (8), as the heuristic(s) might fail to generate one or 
more vertices composing the exact solution.  

Three consecutive relaxations characterize the approach presented in the following Algorithms 3.1 
and 3.2: 

(a) (b) 
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i. Approximation of the initial route set 
ii. Exact culling of uninformative vertices during generation (Cul-1)  
iii. Approximate culling of bounded-information vertices during generation (Cul-2) 

Taking inspiration from our previous works (Rinaldi et al., 2015), we begin by enumerating a base set 

of k  routes bR  for each OD-couple for the given network, therefore directly bounding the amount 

of nodes characterizing the hypergraph HG  by a maximum of | |2OD k . This represents then 
relaxation i., which we consider “approximated”, as the resulting route set is not guaranteed to be 
complete. 

To enumerate this base route set we utilize the well-known K-Shortest Path algorithm of (Yen, 1971), 
which offers two specific benefits to our approach: firstly, due to the inner workings of the algorithm 
itself, routes successively created for a specific OD will bear very strong similarity with one another, 
often changing by only a few links. This is beneficial when seeking the maximum independent route 
set, as indeed a strong negative correlation exists between the size of an independent route set and 
how much variability the single routes exhibit with respect to one another. Moreover, employing the 
K-Shortest Path algorithm might yield better representative route sets, as road users have been 
shown to consider in their choice sets routes whose differences with respect to the ideal shortest 
path are very small indeed (for an overview on route choice problems we suggest the interested 
reader to consult the work of (Prato, 2009)). 

Starting from this set we begin by constructing the hypergraph’s vertex set hV
 
, treating the problem 

sequentially in an OD-by-OD fashion. For each OD, vertices corresponding to each route and each 2-

combination of routes are initially added to hV  . After this step, all 2-combinations of the newly 

introduced vertices and any pre-existing vertex are evaluated and the corresponding vertices are 

gradually added to the full set hV . Each new vertex is therefore generated on the basis of either one 

parent (single route), or two parents (route – vertex combination, or vertex – vertex combination). In 
the former case the newly generated vertex’s bitwise signature is none other than the signature of 
the route itself, while in the latter case it is generated by performing a single bitwise OR operation 
between the two parents’ signatures. By operating in sequential fashion, and specifically exploiting 
the associative property of the bitwise OR operation, we avoid direct computation of all k-

combinations of routes (totalling 
| |2K OD ), instead limiting computations to an increasing quantity of 

2-combinations, which amounts to 
| |

| |
2

OD K
OD K

 
  

 
. Once all relevant vertices have been 

added to hV  , the full arc set hL   can then be directly computed by exploring all 2-combinations of 

vertices: an arc il   will be created between two vertices ,h kv v   if and only if the two corresponding 

bitwise signatures differ by at least one element. This forms relaxation (i), the resulting hypergraph 
will be exact if and only if K  is selected large enough to, in fact, enumerate all routes in the network.  

We then introduce two culling rules, designed to remove nodes from the hypergraph during 
generation, when these are deemed unnecessary based upon their information content.  

The first rule, dubbed (Cul-1), is triggered during the construction of bitwise signatures for 
prospective children vertices. The philosophy behind this rule is rather trivial: a tentative vertex 
whose bitwise signature is entirely equal to either of his parents’ is bringing no further information to 
the system, and will automatically be dependent from one of the two (thus, even if the vertex were 
to be generated, it would never be part of a clique). Based on this consideration, if a vertex’s 
signature is found to be equal to either of his parents’, the vertex is culled.  
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The second rule, (Cul-2), stems from the same philosophy, but is instead heuristically based on 
keeping track of best bound values for the amount of routes composing the largest vertex of the 
hypergraph and the amount of information that vertices provide, computed as the simple sum of 
their bitwise signatures. Following our key objectives, a solution bearing favourable characteristics in 
terms of route set independence would entail vertices composed by as many routes as possible, 
while at the same time bearing as high information content as possible. Therefore, vertices bearing a 
very high information content (greater or equal to the current best bound value) while at the same 
time being composed of fewer routes than the current best bound are discarded. This rule, 
representing relaxation (iii.), is approximate, in the sense that the discarded (culled) vertices cannot 
be guaranteed not to eventually be part of a clique. 

To better clarify the effect of the two culling rules, we construct here a simple example, based on the 
four routes presented in Figure 1. While the hypergraph for the three routes , ,A B F  presented in 

Figure 3(a) would, in fact, remain unchanged if either Cul-1 or Cul-2 – or both, were applied, in 
Figures 4(a-c) we show instead the impact of applying them where the fourth route H is added 
sequentially to the existing set ABF, and what the impact is on the corresponding max cliques (d-f). 

Indeed, in this instance rule Cul-1 affects neither the size of the hypergraph nor the resulting max 

clique ((b), (e)), while Cul-2 affects both, by culling the four vertices , , ,AH AF ABH ABFHv v vv  ((c), (f)). As 

we will detail later, in general applying Cul-1 alone yields favourable results though at a rather high 
computational price, while applying both culling rules considerably impacts the computational price 
while delivering acceptable results. 

A more in-depth example assessing how the different culling rules impact this small network is 
included in Appendix A. 
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Figure 4: hypergraph representation and effect of applying the two proposed culling rules 

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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We now introduce the two algorithms resulting from the two different culling rules, which will then 
be employed throughout Section 4. 

 

Algorithm 3.1 (Cul-1 only): 

Choose a maximum number of routes per OD couple K 
 

1. enumerate the base route set 
bR   

2. Set 1k    

3. for each OD couple odn   

4. for each route r odn   
5. compute bitwise signature for r   

6. assign to tentative vertex 
kv   

7. for each 2-combination [ , ]i kc v v , 
i hv V     

8. compute bitwise signature, assign to tentative vertex 
ckv   

9. (Cul-1) if 
ck iv v   

10. discard 
ckv  

11. else 

12. add 
ckv to vertex set 

hV   

13. Set 1k k   
14. end(for) 
15. end(for) 
16. end(for) 

17. for each 2-combination c of vertices [ , ] , ,i j hv v i j V ji   : 

18. if 
i jv v   

19. create arc ( , )h i jl v v ; 

20. end(for) 

 

Algorithm 3.2 (Cul-1 + Cul-2): 

Choose a maximum number of routes per OD couple K 
 

1. enumerate the base route set 
bR   

2. Set 1k    

3. Set 0, 0bndQt bndIn   

4. for each OD couple odn   

5. for each route r odn   
6. compute bitwise signature for r   

7. assign to tentative vertex 
kv   

8. for each 2-combination [ , ]i kc v v , 
i hv V     

9. compute bitwise signature, assign to tentative vertex 
ckv   

10. (Cul-1) if 
ck iv v   

11. discard 
ckv  

12. else 

13. Set | |
ckcurrQt v  

14. Set ( ( ))kcurrIn sum bitsign v  
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15. (Cul-2)     if &currQt bndQt currIn bndIn  

16. discard 
ckv  

17. else   

18. add 
ckv to vertex set 

hV   

19. Set 1k k   

20. Set max( , )bndQt currQt bndQt  

21. Set max( , )bndIn currIn bndIn  

22. end(for) 
23. end(for) 
24. end(for) 

25. for each 2-combination c of vertices [ , ] , ,i j hv v i j V ji   : 

26. if 
i jv v   

27. create arc ( , )h i jl v v ; 

28. end(for) 

 

Depending on the choice for the K  parameter as well as on the nature of the underlying network 

and routes, a hypergraph HG  of reduced dimensions is generated by Algorithms 3.1 and 3.2, from 

which an appropriate quadratic program matrix 
AQ  can be extracted and fed into problem (11). 

Under specific conditions, both algorithms might fail to cull any node from the hypergraph HG , 
yielding therefore the full-sized problem. A computational analysis of such a situation, focusing on 
assessing the worst-case bound complexity and computational time of the two algorithms, is 
presented in Appendix D. Unsurprisingly, the probability of the heuristic to build a sufficiently 
representative portion of the full hypergraph decreases quickly with how small the parameter K  is 
chosen.  

Finally, after either algorithm is complete, for the sake of ensuring OD coverage, extra routes might 
be added even though violating the independence constraint, greedily selected from the originally 
enumerated route set. As will be shown later, this step does not impact the quality of the final 
solution. 
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4. Exact case studies 

In this Section we introduce and discuss two case studies based on several small to mid-sized 
networks, devised in order to validate of our newly proposed methodology and algorithm.  

The first case study follows the same structure, methodology and comparisons introduced in our 
previous works (Rinaldi et al., 2015; Viti et al., 2014), that is, we compare different route generation 
approaches, including the newly introduced Algorithms 3.1 and 3.2, and quantitatively assess their 
impact in terms of partial observability information content. Results are presented graphically and 
general performance factors are reported through tables, in order to ensure clarity.  

The second case study concentrates on one of these networks, and focuses on obtaining a qualitative 
assessment of which routes have been generated by our algorithm, in comparison with other results 
available in literature. 

The Section is concluded by a discussion of the proposed methodology’s limitations, especially in 
terms of scalability, and introduces the connection between the exact, theoretical methodology of 
Section 3 and the approximate, heuristic methodology which will be presented in Section 5.  

All computational tests have been performed on a 2.4GHz Core i5 processor equipped with 8GB RAM 
memory. Algorithms 3.1 and 3.2 have been implemented in MATLAB®, while the max clique MIQP 
problem (11) is solved through IBM ILOG CPLEX optimizer. 

Case Study 1: Partial observability information content analysis 

In this Subsection, numerical tests are performed on four small-sized networks, with the aim of 
verifying whether indeed route sets generated following the three conditions stated in Section 3 are 
beneficial in terms of maximizing the quantity of information embedded in full observability solutions.  

Specifically, we employ three different route set generation techniques to construct the link-to-route 

incidence matrix | | | |L RA  needed as an input for link inference full observability problems, and 
then proceed to solve the full observability problem through Castillo’s pivoting procedure, obtaining 

thus the observability matrices | | | |dep indep . Based on the latter matrices, we then compare the 
amount of information embedded in each of them, and how this is dependent on the nature of the 
original route set, in terms of partial observability. The three route set generation techniques we 
employ are the standard K-Shortest Path algorithm (KSP), our previously developed K-Independent 
Shortest Path (KISP) approach and the newly introduced hypergraph based approach of Algorithms 
3.1 & 3.2.  

We measure the quantity of information embedded in each full observability solution through two 
metrics, following the same approach of our previous contributions (Rinaldi et al., 2015; Viti et al., 
2014): firstly, we compute an a-priori ranking of full observability solutions, based on the 
observability matrices  , as follows: 

 || || ( )F rk     (18) 

where ( )rk   represents the matrix rank operation. Secondly, we analyse the information from the 

point of view of partial observability, assessing how quickly information can be collected in the 
chosen full observability scenario by greedily including sensors to the located set until full 
observability is reached. Qualitatively, the higher the information content embedded in the full 
observability solution, the faster/steeper the observation error will decrease when adding links to 
the observed set.  
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We now present the four toy networks employed in the case study, shown in Figure 5, and used also 
in Castillo et al. (2014). The full topological information is instead provided in Table 1. 

“Parallel Highway” “Fishbone” 

 

 
“Fishbone Mod I” “Fishbone Mod III” 

  
Figure 5: toy networks used to study the impact of route sets in terms of partial observability 

As we discussed in our previous work (Rinaldi et al., 2015), when employing either KSP or KISP, link 
inference problems such as Castillo’s pivoting procedure yield non-unique results as different 
permutations of routes (and thus, route information) can be selected. We capture this stochasticity 
by enumerating, through the pivoting procedure, 300 full observability solutions for each network. 
When testing our novel hypergraph-based approach, however, we select just one full observability 
solution, that corresponding with the first possible permutation, as our objective is indeed obtaining 
a set of sensors such that the density of information is high enough to avoid the need for further 
enumeration. 

Table 1: topological properties of the toy networks of Figure 7 

NETWORK # NODES # LINKS # ODS # ENUM. ROUTES  # SELECTED 
ROUTES 

PARALLEL HIGHWAY 9 14 4 24 12 
FISHBONE 10 18 4 40 12 
FISHBONE MOD I 12 22 4 40 12 
FISHBONE MOD III 10 15 4 30 12 

 

The comparative results of KSP, KISP and Algorithm 3.1’s hypergraph are shown in Figure 6, while 
Figure 7 presents the tests related to Algorithm 3.2.  
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Table 2: summary of results for Algorithm 3.1 

 
Hypergraph Statistics Solution statistics 

 
# Vertices # Arcs 

# Vertices Max 
Clique  

Final routeset size 
[ind, full coverage] 

Tot Memory usage (MB) 
[RAM + Nodefiles] 

Comp. Time 
(s) 

% Gap 

Parallel 
Highway 

3583 5991142 405 6, 6 217.77 3600+278.7 4.11 

Fishbone 4095 8134666 266 6, 9 275.34 3600+481.59 4.12 

Fishbone 
Mod I 

4095 8293427 453 7, 11 270.62 3600+479.92 4.2 

Fishbone 
Mod III 

4095 7712078 231 6, 8 288.12 3600+490.11 3.82 

Table 3: summary of results for Algorithm 3.2 

 
Hypergraph Statistics Solution statistics 

 
# Vertices # Arcs 

# Vertices Max 
Clique  

Final routeset size 
[ind, full coverage] 

Tot Memory usage (MB) 
[RAM + Nodefiles] 

Comp. 
Time (s) 

% Gap 

Parallel 
Highway 

1918 1819207 388 5, 6 60.17 3600+56.32 2.15 

Fishbone 1581 1207671 173 5, 11 42.36 3600+62.09 0.33 

Fishbone 
Mod I 

2141 2274412 394 7, 13 75.27 6+154.28 0 

Fishbone 
Mod III 

1885 1698224 193 5, 8 60.17 3600+78.65 1.25 

 

For each network, two graphs are shown in Figures 6 and 7. The left hand side figures represent the 
amount of measurement error, measured through our own NSP metric (18), obtained by successively 
locating sensors on the network through a greedy heuristic. On each of these, three different data 
sources are shown: a red distribution of descent patterns, related to the KSP-generated full 
observability solutions, a green distribution related to the KISP-generated solutions and, finally, a 
single black dashed line for the newly introduced hypergraph-based algorithms 3.1 & 3.2. The denser 
the amount of information embedded in a given full observability solution, the faster the amount of 
error will decrease as new sensors are located, and the fewer the sensors needed to achieve full 
observability (i.e. a measurement error of 0). On the right hand side figures, instead, similarly 
coloured histograms showcase the values that the a-priori metric (18) takes for the three different 
route set generation techniques. Statistics on the generated hypergraph as well as the solution’s 
statistics for Algorithms 3.1 and 3.2 are shown, respectively, in Tables 2 and 3. A maximum 
computational time limit of 3600s (1h) has been set for the maximum clique solution approach 
through CPLEX. The corresponding gap in optimality wrt. the unbounded optimal solution is reported 
in the last column of Tables 2 and 3. The computational times reported in the second to last column 
are therefore composed of a fixed part related to CPLEX, bounded to a max value of 3600, and a 
second part which instead is related to the hypergraph nodes and vertices generation.  
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Figure 6: NSP metric results using the greedy heuristic of Viti et al. (2014) and Algorithm 3.1 
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Figure 7: NSP metric results using the greedy heuristic of Viti et al. (2014) and Algorithm 3.2 
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Analysing the comparative results of our hypergraph-based algorithms compared to the enumerative 
route set generation heuristics, three main observations can be drawn: 

1. The total amount of independent link measures needed to achieve full observability 
decreases with respect to both KSP and KISP strategies (a condition especially evident for 
Algorithm 1) 

2. The amount of information embedded in the hypergraph-generated full observability 
solutions is consistently higher than that of the two enumerative strategies, which results in 
both higher values for the a-priori metric (18) and in very fast measurement error decrease 
when seeking partial observability solutions. 

3. The density of information reached by the newly proposed approach is such that the full 
observability solution can be computed through a one-shot procedure at little impact in 
terms of information content, reducing (if not, removing) the need for exploring multiple 
permutations in the pivoting procedure. 

These observations are indeed in line with our initial hypothesis: determining the maximum 
independent route set yields very high information content from the perspective of partial 
observability, indeed maximizing the [ ]NR RI  set. 

Interestingly, in all the presented instances, keeping the purely redundant information set PR   
empty appears to be in direct contraposition with ensuring OD coverage. This consideration, in 
addition to the fact that for all instances only a portion of the full route set was chosen as input for 
the hypergraph-based component, explains why the partial observability solution identified by the 
hypergraph-based algorithms is not always dominating in terms of error minimization.  

When comparing Algorithm 3.2’s solutions with those of Algorithm 3.1, a rather expectable loss of 
optimality is encountered in most instances, with the notable exception of Mod III Fishbone, where 
instead, Algorithm 3.2 manages to enumerate a highly informative portion of the network’s 
hypergraph, yielding better overall results. In general, Algorithm 3.2’s small loss of optimality appears 
to be very worth the strong gains in computational speed, while still yielding solutions bearing a 
consistently higher quality with respect to the two enumerative counterparts KSP and KISP. 

Case Study 2: The Parallel Highway network 

To underline the importance and relevance of maximizing the Non Redundant and Redundant yet 
Informative routes to compose the base route set for link inference problems, in this Subsection we 
perform a comparison between three different solutions, all generated for the “Parallel Highway” 
network, shown in Figure 8. 

 

Figure 8: the “Parallel Highway” network 

Specifically, we compare three different route generation results: the minimum independent route 
set, Castillo’s link observability/independence heuristic and our maximum independent route set. In 
this case study, our aim is to characterize the different solutions and their pros/cons in terms of full 
observability, through qualitative analysis.  
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Figure 9 shows the three different route sets obtained, superimposed on the original network. 
Different colors represent different routes generated through the given mechanism. In total, 4 routes 
have been generated by the min independent route set procedure, 9 characterize Castillo’s solution 

(as presented in (Castillo et al., 2014)) and 6 compose the max independent route set. 

From the point of view of full observability applications of the link inference problem, these three 
solutions are indeed considerably different.  

The solution identified by the minimum independent route set yields indeed the minimum amount of 
sensors necessary to observe the whole network (4), though at a considerable price in resilience and 
representability: failure of any of the four sensors equates sudden lack of observations on (up to) 1/4 
of the whole network link flows (e.g. a failure on link 2 means no measurements can be inferred on 
links 7, 9 and 13). Moreover, while indeed minimal, the route set might be under-representative of 
route choice behaviour, and thus unable to correctly cope with realistic data. 

The other two solutions merit a more in-depth comparison, shown in Figure 10: 

Figure 9: Different route set generation results: Min. Indep (top), Castillo’s Indep 
Heuristic (middle), Max. Indep (bottom) 
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Figure 10: Comparison between route sets generated through Castillo’s procedure and our own contribution 

As represented in the top portion of Figure 10, both algorithms identify a common route set 
connecting origin 1 to destinations 8 and 9. This partial set is in itself though insufficient to infer 
information on all links, and is indeed neglecting links 3, 4, 7, 9, and 12. 

As symbolised by the two diverging arrows, from this point on the behaviour of the two algorithms 
deviates considerably: Castillo’s heuristic adds one route separately covering each of the 5 missing 
links, neglecting any pre-existing relationships introduced by the initial 4 routes. The hypergraph 
based solution, however, is specifically devised to take direct advantage of these relationships, while 
maintaining overall independence. The result is a minimalistic addition to the original 4 routes, 
where indirect relationships between existing and newly introduced routes are exploited in order to 
infer information about the 5 missing links. This is in turn beneficial in terms of sensor budget, as 6 
sensors would be sufficient to infer all network link flows for the given route set, while 9 would be 
necessary following Castillo’s approach (the two corresponding observability matrices are presented 
in Appendix C). The overall sensitivity to breakdowns is also positively impacted, as partial 
relationship information can still be exploited to some advantage, as we showed in our earlier 
studies (Rinaldi et al., 2016; Viti et al., 2014). 

Observations 

A key limitation to our proposed approach is the inherent curse of dimensionality: two combinatorial 
problems are embedded one in another, namely the initial route set generation and the subsequent 
hypergraph node generation. Even when dealing with very small networks such as those presented in 
this section, unavoidable simplifications had to be taken in order to retain problem tractability.  

Employing a subset of K paths connecting each OD pair is in itself a very common choice, with limited 
behavioural repercussions. Indeed, a few studies in literature (Fiorenzo-Catalano et al., 2004; 
Frejinger et al., 2009) have shown that users are usually limited in their choice to 2-3 “main” route 
alternatives, for which topological distance (or, more generally, travel time) is the most influential 
aspect. This simplification is however still insufficient when dealing with large, real-life networks, 
where the dominating combinatorial aspect will simply shift from the amount of routes to the sheer 
amount of OD pairs. In these instances, even the more heuristic vertex generation technique of 
Algorithm 2 will simply prove computationally unfeasible due to excessive memory requirements.  

HG 
CAS 
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However, we believe that identifying the nature of exact solutions can be source of considerable 
insight when developing further heuristic applications. In the next Section we present such an 
approach, in which we build a scalable approximate solution algorithm for the problem (7), by 
exploiting specific sufficient conditions attributable to exact solutions. As will then be shown in 
Section 6, this approach can scale up to real-life sized instances by eliminating the need for large 
combinatorial computations, and moreover, thanks to the introduced sufficient conditions, still yield 
significant solutions compared to other heuristic approaches.  

 

5. Methodology pt II: heuristic approach 

In Section 3 we introduced a formulation for the problem of determining the maximum independent 
route set (8), together with two possible solution algorithms. As observed throughout Section 4, 
these approaches are very cumbersome in terms of computational complexity, due to the 
combinatorial nature of the hypergraph generation procedure. Aiming to scale the promising results 
obtained for small networks towards real-life instances, in this Section we exploit a well-known 
metaheuristic, the genetic algorithm, to considerably reduce the overall computational requirements 
of the approach, while still maintaining a high degree of solution quality.  

A Genetic Algorithm approach to maximum independent route set generation 

GAs represent a well-known class of optimization metaheuristics, whose inner workings are based 
upon the process of natural selection (Davis, 1991). 

Typically, to formulate an optimization problem in terms of genetic algorithms, the following key 
elements must be chosen and adapted accordingly to the structure and nature of the problem at 
hand: 

- An atomic representation of candidate solutions for the problem at hand must be adopted, 
this representation should be as compact as possible and exhibit specific regularity 
properties, such as fixed length; 

- A fitness function, capable of ranking different candidate solutions according to the overall 
optimality criterion, must be employed; 

- A crossover operator (or function) must be selected, which, given two candidate solutions 
(parents) as input, returns in output a properly generated genetic combination of the two 
(child). 

Given these three basic building blocks, the standard GA algorithm “evolves” an initial set of 
candidate solutions (initial population) towards optimality (higher fitness), by iteratively selecting the 
most fit candidates from the current population, breeding them through the crossover function and 
introducing (a selection of) the resulting children into the general population.  

Specific criteria (such as which percentage of population is maintained from one generation to the 
following, or elitism) as well as genetic operators other than crossover (such as the mutation 
operator) can also be included in the meta-heuristic configuration, depending on how fitting the 
different facets of natural selection are to the problem at hand. To maintain a good amount of 
control over the evolution of population and its computational impact, several parameters can 
moreover be tuned to represent the necessary safeguards: first and foremost, setting a maximum 
total population constraint directly limits how large the problem of selecting and breeding parents to 
obtain new children is. Optimal values should be selected such that the population is large enough to 
thrive over successive iterations (i.e., the portion of the total solution space being explored should be 
large enough to contain significant solutions), while at the same time small enough to maintain 
computational feasibility. Another key parameter is the so-called stagnation threshold: as the 
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number of generations progresses, it is likely to encounter situations in which, from one generation 
to the next, the maximum overall fitness remains constant. If this condition is consistently met over 
several successive generations, this indicates that the algorithm has evolved towards a (local) 
minimum from which it can no longer escape. This threshold represents then a termination condition, 
stating that after a given number of stagnant iterations the algorithm can be considered complete. 
Finally, a maximum limit to the total number of generations can also be set, limiting the total time 
the algorithm will spend looking for minima. 

Compared to standard optimization schemes, this heuristic has been found considerably successful 
when dealing with problems of a discrete nature, such as integer or binary programming problems, 
as its nature allows to explore a limited portion of the problem’s solution space, yielding 
considerable savings in terms of computational expenses. While the final solution’s optimality cannot 
be guaranteed, as with any heuristic approach dealing with non-convex solution spaces, this 
methodology has been applied consistently with competitive results in several fields, including some 
notable transportation applications, e.g. traffic signal timing optimisation (Teklu et al., 2007) and 
coordination (Putha et al., 2012), bus transit route network design (S. B. Pattnaik et al., 1998), railway 
systems (Nachtigall and Voget, 1996), etc. 

As discussed in Section 3, to obtain exact solutions for the maximum independent route sets we 

generate a hypergraph HG  capturing independence conditions through combinatorial enumeration, 
after which the problem collapses to a specific variant of the max clique problem on generic, non-
directed graphs.  

Through a GA approach, we seek to unify these two distinct phases (hypergraph generation and max 

clique solution) by directly generating only those vertices h hv V   belonging to a clique. 

We begin by formalizing the three key components of GA optimization characterising our specific 
problem instance.  

Genetic representation 

Each vertex h hv V  pertaining to the hypergraph HG  is, in our original formulation, described 

through a bitwise signature. This representation can be directly employed as the genetic 
representation for the GA candidate solutions: it is indeed atomic, since it enables a direct mapping 
of the entire solution space of possible route combinations, and it is of fixed length, since the 

number of elements in any vertex h hv V  is exactly | |R  for a given network. 

Fitness function 

Given the objective of determining a maximal route set, a natural choice for the fitness function is as 
follows: 

 
| |

1

( )
i

i

h

R

hg v v


   (19) 

which is indeed maximized by those vertices hv  bearing the highest amount of routes. 

Crossover operator 

Thanks to the bitwise representation of routes and combinations of routes, a very simple definition 
for the crossover operator can also be straightforwardly obtained: 
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 ( , )M F M Fc v v v v    (20) 

that is, given two parent vertices Mv  and Fv  , the generated child vertex is obtained through a single 

bitwise OR operation.  

These three basic ingredients, accompanied with proper choices for the main GA parameters, are 
indeed sufficient to generate a GA capable of enumerating vertices pertaining to the hypergraph 

HG . However, an essential element is still amiss: to generate solutions for the max clique problem 

also the independence constraints, captured by the arc set hL  , must also be introduced.  

This issue could be approached directly through population control, by ensuring that, at each GA 
iteration, only children who don’t violate said independence conditions are included in the 
population. However, such a choice would only mildly reduce the combinatorial nature of the original 
problem. Instead, as detailed in the next paragraph, we introduce specific generation requirements 
at the level of the crossover operator, such that vertices violating a necessary condition related to 
independence will not be included in the hypergraph. While approximate, this condition indeed 
allows to considerably decrease the overall computational burden, as it is applied in a pairwise 
fashion during crossover, rather than combinatorically over the entire population. To complete the 
algorithm, a filtering technique can then applied to the final population, to ensure that the output is 

indeed a clique in the original hypergraph HG . 

Necessary condition for route set independence in max-clique solutions 

Exact solutions to problem (8) must, by definition, meet the following necessary and sufficient 
condition: 

 ( ,, ) ,i j hIN i j C V jDEP v v i      (21) 

that is, all couples of vertices found in a clique C are independent from one another. 

In our GA based heuristic, we employ a weaker condition, which does not require extensive 

combinatorial exploration of the full vertex set hV   and is instead formulated and applied for any 

triplet of child and parent vertices , ,C M Fv v v : 

 : |( ),| | |MC M F F F Mvv v v v v v      (22) 

that is, a child vertex Cv  will only be generated as combination of two parent vertices if: 

- the two parent vertices are chosen such that the father vertex is always as large or larger 
than the mother vertex, and 

- the mother vertex is not a subset of the father vertex (that is, inclusion of the mother vertex 
introduces new information). 

Triplets of vertices meeting condition (22) will, by definition, exhibit the following property: 

 ( , ) ( ) ( , ),C M C F M FINDEP v v INDEP v INDEP vv v    (23) 

however, condition (22) represents only a necessary condition compared to the stricter 
independence nature of (21). A simple set-theoretical example showcasing this effect can be found in 
Appendix B. 
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Full Algorithm specification 

Our proposed GA formulation to approximately solve problem (8) is hereby introduced in its 
pseudocode form. 

Algorithm 5.1 (GA for maximum independent route set generation): 

Choose a maximum number of routes per OD couple K, a maximum population 

threshold popN  , an elitism ratio  , a maximum generation threshold mGen, 

a maximum stagnation parameter  . 
 

1. enumerate the base route set bR  

2. generate the initial population 
bRpop V   

3. Set MV pop   

4. Set 1genn   , 0genst    

5. while gen nn mGe  and genst   

6. select | |pop  father vertices FV  from population | |pop   

7. generate children vertices ( , )C F MV c V V   

8. if max( ( )) max( ))( Cg pop g V  

9. Set 1gen genst st   

10. Set 1gen genn n    

11. update population pop 
12. purge final population pop, removing dependent vertices 

 

The algorithm begins by generating the initial population, composed of all single-route vertices 

corresponding to the base route set bR . The set of mother vertices MV  is also equally composed, 

and its composition stays fixed throughout the rest of the algorithm. 

The main loop (steps 5 – 11) is responsible for evolving the initial population towards higher fitness 

values. After selecting a candidate set of father vertices FV , suitable children CV  are generated by 

randomly polling couples of parents ,M M F Fv vV V    and applying the crossover function ,( )c   . A 

large amount of tentative children is generated in this phase ( 410  ), with the crossover function 
taking care of discarding a priori those combinations violating condition (22). A portion of the 
surviving tentative children is then included in the general population pop in step 11, this portion 
dependent on the available slots in the general population: 

1. if | | || C poppop V N  

2. Set [ ]Cpop pop V  

3. else  

4. discard popN   low-fitness vertices from pop   

5. add popN  vertices from CV   

 

that is, all children C Cv V  will be added to the general population pop  only if there is enough 

room left with respect to the maximum population threshold. Otherwise, only a specific amount 
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(dictated by the elitism threshold   ) will be added to the population, at the cost of removing lower 

fitness vertices. 

Finally, in step 12, all 2-combinations of vertices composing the final population pop are explored, 
and couples violating condition (21) removed. The final solution is then, under specific conditions 
detailed in the next Subsection, guaranteed to be a clique in the original hypergraph HG, although 
not necessarily a maximum clique. 

Discussion 

With the objective of keeping computational costs at bay, several simplifications have been 
introduced throughout the GA application in comparison with the more rigorous approach of Section 
3. Specifically, three key steps and choices affect the overall exactness and quality of the final 
solution obtained by the GA approach: the maximum population threshold, the elitism parameter 
and the final population purging.  

The impact of the first on the final exactness is rather trivial: any choice lower than  | |2R

popN   

implies that only a portion of the complete solution space can, at any time, be explored. The lower 
this parameter is chosen and the lower the chances that high quality solutions will arise. The elitism 
parameter directly interacts with this choice: the mechanism of population update (step 11) 
sacrifices an amount of lower ranking vertices in order to meet the total population constraint. This 

affects the exactness of the approach in two distinct ways: (i) not all acceptable children vertices CV  

are included in new generations, directly influencing the direction in which the total solution space is 
explored and (ii) some older generation vertices are sacrificed over iterations. The latter 
phenomenon indirectly introduces a systematic error component in the final solution: step 12 
performs a combinatorial purging to remove vertices that violate condition (21), but this step’s 

output will be exact if and only if, for any vertex iv pop  , all of its parent vertices (as defined in eq. 

15) are also included in the final population. A sufficiently aggressive [ ],popN    combination will 

violate this condition, thus yielding inexact solutions, as vertices not pertaining to a clique in the 
original, full hypergraph will appear to be independent, due to lack of information. 

The reduction of computational complexity is however remarkable: the maximum amount of vertices 

generated by the GA is limited to | |popN  (as compared to 
| |

2 bR
 in the exact approach), their 

generation procedure bound by |( |)popO NmGen , rather than 
||

(2 )bR
O .  The computational effort 

of enumerating the corresponding hypergraph arcs is also reduced from 
||

2

2

bR 
 
 

 combinations to 

2

popN 
 
 

 . 

In the next Section, we showcase how this GA approach compares to the exact approach presented 
in Section 4, both in terms of solution quality and computational times. Successively, we approach 
two mid-scale real-life networks, and analyse Algorithm 5.1’s results wrt. other route set generation 
approaches in terms of full and partial observability performances.  
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6. Approximate case studies 

In this Section we validate our proposed GA based heuristic through two further case studies. Case 

Study III is based on the same small networks tested in Section 4, and is aimed at comparing the 

performances of the exact approaches presented therein with those of the proposed approximate 

heuristic. Finally, Case Study IV presents results related to two mid-size networks, the well-known 

Sioux Falls network and the sub-urban network of Rotterdam, the Netherlands, following the same 

structure as Case Study I. 

For all tests, the following configuration was chosen for the GA parameters: 

Parameter 
popN        mGen   K   

Value 10000 0.1 10 5000 3 

 

Future research will include investigating the approach’s sensitivity to changes in these parameter 

values, especially wrt. the projected solution quality. 

Case Study III 

We validate Algorithm 3 on the four small networks presented in Figure 5. Rather than performing a 

full comparative exploration as we did throughout Case Study I, we focus here on comparing the 

result statistics for Algorithms 3.1 and 3.2 (presented in Tables 2 and 3) with those obtained by 

applying Algorithm 5.1 on the same instances. Table 4 reports the statistics of Algorithm 5.1. 

Table 4: summary of results for Algorithm 5.1 

 
Generated Solution Statistics Solution statistics 

 
# Vertices 

Tot. GA 
Generations  

Final routeset size 
 

Tot Memory usage (MB) 
[RAM] 

Comp. Time 
(s) 

Parallel 
Highway 

9 23 - 7 0.02 7.6 

Fishbone 11 59 - 11 0.03 10.01 

Fishbone Mod I 12 59 - 12 0.04 11.44 

Fishbone Mod 
III 

9 44 - 9 0.02 7.11 

 

Comparing the three tables, we can conclude that the size of the generated route set is consistently 

larger than comparable exact solutions, meaning that indeed the GA was not able to determine exact 

solutions for either case. However, the solution quality is still in line with that of Algorithm 3.2, while 

computational and memory expenses have been drastically reduced. 

To conclude this case study, in Figure 11 we compare side by side the results obtained for the parallel 

highway network in terms of partial observability descent for Algorithm 3.1 and Algorithm 5.1. 
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Figure 11: Partial Observability descent results on Parallel Highway. Algorithm 3.1 (left), Algorithm 5.1 (right). 

While the solution identified by Algorithm 5.1 is clearly suboptimal wrt. that found by Algorithm 3.1, 

the result is still very satisfactory when compared to both basic enumeration approaches (KSP, KISP).  

Case Study IV 

Through this final Case Study, our aim is to validate the theoretical insights developed throughout 

this work to larger network instances. Specifically, we aim to showcase how generating routes that, 

at a best effort, adhere to the route independence rules introduced in Section 3 is beneficial to the 

problem of link flow inference, by reducing the amount of variables needed to attain full 

observability solutions and, at the same time, yielding information-rich solutions from the point of 

view of partial observability. 

Following the same structure as Case Study I, we quantitatively assess how different route set 

generation approaches influence full observability matrix   for the two selected networks, and how 

this in turn quantitatively influences partial observability information content. In addition to the 

already presented KSP and KISP route set generation strategies, we also showcase how Castillo’s 

algorithm for generating linearly independent paths (Algorithm 1, Castillo et al. (2014)) performs 

from the point of view of partial observability information content. Since Algorithms 3.1 and 3.2 are 

not applicable to these networks due to dimensionality constraints, no considerations on how close 

to exactness the result of Algorithm 5.1 is can be drawn at this stage. 

The two networks are presented in Figures 12 and 13, while Tables 5 and 6 recap the main network 

characteristics. The initial route set bR   has been computed, for both, setting 2K  . 
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Figure 12: Sioux Falls simplified network 

 

Table 5: Network Characteristics 

# NODES 24 

# LINKS 76 

# OD PAIRS 30 

# ROUTES 60 
 

 

 

 
Figure 13: Rotterdam sub-urban network. 

 

Table 6: Network Characteristics 

# NODES 243 

# LINKS 476 

# OD PAIRS 1890 

# ROUTES 3779 
 

The comparative results featuring the four route set generation strategies are shown in Figure 14, for 

the Sioux Falls network, and Figure 15 for the Rotterdam network. 
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Figure 14: Partial observability information comparison for the Sioux Falls network. 

 

Figure 15: Partial observability information comparison for the Rotterdam network. 

 

In both Figures, the partial observability information gains obtained by incrementally installing 

sensors based upon minimizing our NSP metric are shown (KSP in red, KISP in green, Castillo’s 
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Algorithm 1 in blue and Algorithm 5.1 in dotted black). Table 7 reports the corresponding 

computational times for the two networks. 

Table 7: Summary of results for Algorithm 5.1 

 
Generated Solution Statistics Solution statistics 

 
# Vertices 

Tot. GA 
Generations  

Final routeset size 
 

Tot Memory usage (MB) 
[RAM] 

Comp. Time 
(s) 

Sioux Falls 37 165 - 37 0.72 281.9 

Rotterdam 144 541 - 150 98.26 12259.1 

 

For both networks, the max independent route set solution found by Algorithm 5.1 is clearly 

dominating in terms of partial observability descent, displaying a very steep initial information gain. 

Interestingly, while for the Sioux Falls network the final solution in terms of amount of sensors 

ranges in the same order of magnitude as those obtained by other approaches, for the Rotterdam 

network this number is significantly lower, amounting to approximately half that needed by the 

purely enumerative KSP and KISP.  

To further investigate this last result, in Figures 16-19 we show a cross-comparison between the four 

different solutions. We install the first 50 sensors as identified for the four cases (highlighted in red), 

and show which links in the network become, through the given route-link relationships, partially 

observable (highlighted in yellow) and fully observable (highlighted in green). 

 

Figure 16: Measured / Observed / Partially observed links for the KSP full obs. solution 
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Figure 17: Measured / Observed / Partially observed links for the KISP full obs. solution 

 

Figure 18: Measured / Observed / Partially observed links for Castillo’s Alg. 1 full obs. solution 
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Figure 19: Measured / Observed / Partially observed links for Algorithm 5.1’s full obs. solution 

As can be seen by comparing the different results, the impact of enumerating route sets bearing 

denser information is consistently noticeable, as equipping an equal amount of sensors yields 

considerably more partially and fully observed links. From a geographical perspective, it’s interesting 

to notice how Castillo’s and our approach share a considerable amount of links, both focusing on 

measuring first the city centre close to the OD couples, while the two enumerative approaches have 

a lower focus, selecting links spanning the whole network.  

From the point of view of link flow inference, it’s important to stress that while these results are very 

promising from an algebraic perspective, the impact of discrepancies between the generated route 

set and the revealed route set certainly requires further investigation. 
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7. Conclusions 

In this paper we studied the impact of route set generation in route-based sensor location problems. 
We started by providing a definition of information redundancy, by classifying routes as non-
redundant, redundant while informative, and purely redundant and by relating these definitions to 
the concept of independent route sets. 

We then formulated a general optimisation problem aiming at maximising the amount of non-
redundant and redundant while informative information, and in the same time at minimising the 
purely redundant one. Exact solutions can be calculated by seeking for the maximum clique of an 
equivalent hypergraph consisting of all combination of possible routes in a network as nodes, and 
where the arcs represent the independence relations. 

Exact solutions however rely on the construction of the complete hypergraph, which is not 
computationally feasible even for relatively small-sized networks. For this reason, two solution 
algorithms have been proposed, which explore specific subsets of the hypergraphs. These algorithms 
have been shown to efficiently identify solutions for different toy networks. The identified routes 
sets have the desirable properties of finding through standard pivoting procedures very efficient 
solutions in terms of full observability, as well as consistently finding information-rich solutions in 
terms of partial observability. 

To validate and extend these results towards large, real-life sized networks, a Genetic Algorithm 
based solution to the maximum independent route set problem. Thanks to the considerable savings 
in computational effort, results pertaining to two mid-large scale networks were obtained, further 
confirming how route set selection criteria play a major role in generating information-dense full and 
partial observability solutions. 

Possible future research directions include exploring the advantages of the proposed approach to 
applications such as state and OD demand estimation. In previous works we already explored the 
interaction between optimal sensor locations and data dependent applications such as OD demand 
estimation techniques. Pursuing this direction, a very interesting topic would then be then evaluating 
the hypergraph generated route set’s realism, and how thus the flows captured by the located 
sensors influence OD estimation. 

Finally, a key research question that still needs proper addressing is assessing how discrepancies 

between the generated route set and the revealed route set would affect state estimation 

procedures, with a specific focus on the link flow inference problem. 
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Appendix A 

In this Appendix we validate our proposed independent route set generation algorithms 3.1 and 3.2 
through a simple network introduced in our previous works, dubbed “Candy”, shown again in Figure 
20.  

 

Figure 20: “Candy” network, with 6 links and 8 routes 

Considering the four OD couples {O1-D1, O1-D2, O2-D1, O2-D2}, the full route set for this network 
can be easily enumerated, as shown in Figure 21 (thicker, red links). 

 

Figure 21: complete route set for the Candy network 
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Out of the eight routes A-H, we seek those composing the maximum independent route set. To 

achieve this objective, we begin by building the hypergraph  proper to this network. As 

mentioned in Section 3, in the worst-case scenario the cardinalities of the vertices and arcs sets will 

be, respectively,  and .  

Following the same structure of Figure 3 we represent here the three instances (no culling, Algorithm 
3.1 and Algorithm 3.2) in Figure 22(a-c) and the corresponding max cliques in Figure 22 (d-f), isolated 
from the full hypergraphs for the sake of readability. Due to the extreme density of arcs in the full 
hypergraph (a), links become almost undistinguishable. Table 8 summarizes the hypergraphs’ and 
cliques’ topological properties. 

Table 8: summary of hypergraphs’ and max cliques’ topological properties and computational efforts 

INSTANCE # VERTICES # ARCS # VERTICES OF MAX 

CLIQUE 

COMP. TIME 

[S] 

FULL ENUM. 255 13731 27  1.1s 

ALGORITHM 3.1 155 11935 27 0.13s 

ALGORITHM 3.2 68 2113 26 0.09s 

 

The exact enumeration and algorithm 3.1 lead to a unanimous conclusion: for this network, no 
combination bearing more than three routes simultaneously can in fact be chosen without violating 
the independence constraints (no vertex corresponding to a combination of more than two routes 
appears in either max cliques). In fact, no single combination of four routes out of the full set of 
Figure 21 exists such that all four routes, all 4 3-combinations and all 6 2-combinations of routes are 
independent from one another (and thus, by induction, no combination of more than four routes can 
respect this condition either, due to parenthood constraints). 

Notice that for both Algorithms 3.1 & 3.2 the full route set has been selected as an input, simply 

selecting  for the K-Shortest path enumeration. Under this condition, as mentioned earlier, 
Algorithm 1 yields an exact solution (though discarding 100 vertices and, consequently, 1796 arcs), 
which can clearly be seen by comparing the two max clique solutions in Figure 22(d-e).  

The result of Algorithm 3.2 is however, as can clearly be seen in Figure 22(f), approximate. By 

applying the more aggressive culling rule (Cul-2), some significant vertices have been removed 

because deemed of lower information compared to the information bounds. This results in a 

suboptimal solution, composed of only two routes rather than three. As shown throughout Section 4, 

however, this has a limited impact when dealing larger networks, and the gains in terms of 

computational expense are justifiable. 

  

( , )h hHG V L

| | 256hV  | | 32385hL 

2K 
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Figure 22: hypergraph representations of the Candy network for the cases of (a) no culling, (b) algorithm 1 and (c) 

algorithm 2, and their corresponding max cliques (d-f).  

(a) (d) 

(b) 

(c) 

(e) 

(f) 
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Appendix B 

In Figure 23 we introduce a simple example showcasing the necessary but not sufficient nature of 
condition (22). 

 

 
Figure 23: Graphical interpretation of necessary condition (22). 

We represent, without loss of generality, four vertices , , ,A B C Dv v v v  pertaining to a hypergraph HG 

in set theoretical terms (left). Non-empty intersections between sets represent conditions the 
corresponding vertices exhibit common links in the bitwise representation. If the intersection 
between two sets includes one of the two, the included set is deemed fully dependent. Conversely, 
entirely disjoint sets represent vertices pertaining to the NR information category. 

For the first and second scenarios, it’s trivial to see that the necessary condition (22) is met: the 
father vertex is chosen larger than the mother vertex, and the latter clearly isn’t a subset of the first. 
Condition (21) is also satisfied in these instances: the generated portion of the hypergraph (consisting 

of all k-combinations of vertices , ,A B Cv v v   for the first case and , ,A B Dv v v   for the second one) is 

indeed a clique. 

The third case, however, depicts an instance where the necessary condition (22) holds, while the 

sufficient condition (21) doesn’t: indeed, the combination [ , ]C Dv v   is not independent, since 

C Dv v  . As will be detailed in the algorithm specification, we deal with this issue in a post-

processing phase, where vertices not pertaining to the clique are removed. As we then show in 
Section 6, the impact of this design choice on the overall quality of final solutions is minor, compared 
to the considerable gains in computational speed. 
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Appendix C 

The full observability matrices characterizing the solutions presented in Figure 10, HG referring to 

the hypergraph approach and c  for Castillo’s Algorithm 1 are presented in Equation (24): 

 

 

1 2 3 4 5 9

1 2 3 4 5 7

1 0 1 0 1 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 1 1 1
, [ , , , , , ]

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 0 1 0 1

1 0 1 0 1 0 0 0 0

0 1 0 1 0 1 0 0 0

, [ , , , , ,0 0 0 0 1 1 1 0 0

1 0 1 0 1 0 1 1 0

0 1 0 1 1 0 1 0 1

HG

c

obs l l l l l l

obs l l l l l l

 
 
 
 
 

  
 
 
 
 
 
  

 
 

 
  
 

  
  







9 11 13, , , ]l l l

  (24) 

The observed set is indeed smaller for the denser information matrix produced by the Hypergraph 
approach. Notably, this is accompanied by a larger   matrix rank (6 vs 5). 
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Appendix D 

In this Section, the worst-case bounds on the performance of the two heuristic approaches of 
Algorithms 3.1 and 3.2 are discussed in terms of computational complexity and time. 

The two algorithms’ computational complexity will be maximum when the underlying network is 
such that no single vertex can be successfully culled by either. An extreme instance of such a scenario 

is that in which the underlying network is in fact composed by a completely disjoint set of links L . In 
this scenario, each link is also the one and only route between its origin and destination nodes, as 
exemplified in Figure 24. 

 

Figure 24: Fully disjoint network. 

Under these conditions, it is trivial to see that no vertex can be culled by either algorithm, as indeed 
all routes (and combinations thereof) are by construction independent from one another, yielding a 

complete hypergraph | | ,RHG K R L  . 

We can easily derive the computational needs of the different steps composing the hypergraph 

construction: both Algorithms 3.1 and 3.2 would need to perform | |2 R  operations to generate the 

hypergraph vertex set hV , 
| |

| |

2 !

2!(2 1)!

R

R 
 operations to compute the hypergraph arc set hL  and finally 

2| |2 R  operations to compute the parenthood constraint set matrix HGP .  

Under these conditions, collecting all information describing problem (14) represents the largest 
computational expense, while, fortunately, its solution is very trivial. Indeed, a complete hypergraph 
implies that the maximum clique is nothing but the hypergraph itself.  

To better quantify how these computational requirements translate into actual computational times, 
we have performed a set of computational tests on a set of networks shaped like that of Figure 24, 

bearing an increasing amount of links, up to a value of | | 12L  , beyond which memory 

requirements become too large to be accommodated with the available hardware (parallelization of 
hypergraph construction was also disabled, to ensure deterministic measurements of computational 
time). 

In Figure 25 these results are shown, decomposed in the four basic operations listed above. 
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Figure 25: Measured computational times for increasing sizes of fully disjoint networks. 

As can clearly be seen by analysing Figure 25, the computational time of the maximum clique is 
indeed very limited compared to the exponentially increasing computational times related to the 
hypergraph construction. 

A simple estimator of the worst case computational time of either algorithm (on the tested 
hardware) can also be derived by fitting an exponential curve to the values collected for these tests, 
resulting in the following relationship: 

 1.663 | |10 6. 1.719 RTot Time se     
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