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Abstract
Social networks are expected to matter for invention in cities, but empirical evidence

is still puzzling. In this paper, we provide new results on urban patenting covering more
than twenty years of European patents invented by nearly one hundred thousand inven-
tors located in France. Elaborating on the recent economic literatures on peer effects
and on games in social networks, we assume that the productivity of an inventor’s efforts
is positively affected by the efforts of his or her partners and negatively by the number
of these partners’ connections. In this framework, inventors’ equilibrium outcomes are
proportional to the square of their network centrality, which encompasses, as special
cases, several well-known forms of centrality (Degree, Katz-Bonacich, Page-Rank). Our
empirical results show that urban inventors benefit from their collaboration network.
Their production increases when they collaborate with more central agents and when
they have more collaborations. Our estimations suggest that inventors’ productivity
grows sublinearly with the efforts of direct partners, and that they incur no negative
externality from them having many partners. Overall, we estimate that a one standard
deviation increase in local inventors’ centrality raises future urban patenting by 13%.
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1 Introduction

It is well known that invention and R&D activities are highly concentrated geographically,
even more so than manufacturing employment (Audretsch and Feldman, 1996; Buzard and
Carlino, 2013; Carlino et al., 2007). The literature highlights that a critical force for the
agglomeration of inventive activities is knowledge spillovers between workers specialized in
innovation tasks. Long ago, Marshall (1890) already highlighted that ideas can be shared
locally through social and professional interactions. The role of these interactions has since
been shown to be crucial in many successful technological clusters (e.g. Saxenian, 1991;
Porter, 1998). Jaffe et al. (1993) argue that knowledge flows diminish with geographical
distance as citations are more likely to come from the same metropolitan area (MSA) as the
cited patents.1 Other authors make it clear that social and professional connections between
inventors who are most often geographically close (Breschi and Lissoni, 2005; Carayol and
Roux, 2008) are key determinants of knowledge diffusion (Singh, 2005; Agrawal et al., 2006;
Breschi and Lissoni, 2005).

Those findings suggest that social networks between inventors are an important source of
disparities in inventive productivity across cities or regions because they facilitate knowledge
diffusion. However, to date, the main empirical studies that have exploited the availability of
patent data to assess this influence have produced contrasting and somewhat puzzling conclu-
sions. Fleming et al. (2007) and Lobo and Strumsky (2008), using nearly identical US patent
data from the late 1970s to 2002, regress, at the MSA level, patent counts against network
variables built using co-invention patterns and other controls. Breschi and Lenzi (2016) use
EPO patent data of inventors located in US MSAs to build network variables prior to 1999
in order to explain patenting in year 2009. These three studies converge to stress the positive
effect of inventor agglomeration. However, they find that the structural characteristics of
the co-invention networks2 have only small effects on urban patenting. Lobo and Strumsky
(2008) even find a negative effect of network density on urban innovation. Local social prox-
imity, that is, the average of the inverse social distance between a city’s inventors, has a small
positive effect for Fleming et al. (2007) but no significant effect according to Breschi and Lenzi
(2016). Both articles argue that combining local social proximity (for knowledge diffusion)
and social cliquishness3 (for cohesion and cooperation enforcement) should positively affect
innovation, but their results again diverge as the former study concludes negatively while the
latter concludes positively.4 Breschi and Lenzi (2016) find that network proximity between

1Much other direct or indirect evidence has been provided for the fact that knowledge spillovers arise over
small geographical distances (for a recent survey, one may refer to Carlino and Kerr, 2015).

2Such networks are built by drawing a link between two agents when they are both listed as inventors of
the same patent application.

3Often measured by the frequency of closed triangles over the frequency of connected triples. Also called
global clustering in the literature.

4Notice that different studies in specific contexts (scientific or artistic productions for instance) are not
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a city’s inventors and the inventors located outside the city does not correlate significantly
with invention, only that its interaction with local proximity is positive.

These results challenge our conception of how networks affect urban invention. We would
have expected that, in urban areas, denser and well architectured webs of connections clearly
spur the diffusion of information and ideas between participants, and eventually stimulate
their inventive productivity. But does knowledge really (even imperfectly) flow in networks, so
that cities which are more connected and which minimize between-inventors distances invent
more? A bunch of recent empirical studies suggest that a slightly different story may be true.
? shows that, following the sudden death of a ’superstar’ scientist, his/her direct collaborators
face a significant and long-lasting decline in their productivity, and that this effect increases
with their intellectual proximity. Using the dismissal of Jewish mathematics professors in
Nazi Germany as a source of exogenous variation in university quality, ? concludes that
the mentor’s quality affects both the short-term accomplishments and the long-term career
achievements of the former PhD students. ? stress that among the mathematicians remaining
in the former Soviet Union after 1990, the only ones who significantly suffered from the
loss of their colleagues emigrating to the West were those who lost direct collaborators.
These findings highlight the importance of direct and intense collaborations with high-quality
partners. They are consistent with the idea that professional networks stimulate knowledge
production and invention mainly because, in direct professional collaborations, they emulate
early discussions and confrontations of ideas between very active and committed peers, and
less because they act as channels for knowledge diffusion.

In this article aiming to empirically analyze how the social networks of inventors affect
their performances, we propose microfoundations which are consistent with those basic ideas.
We rely on games in which each agent’s payoffs essentially depend on his/her action (typically
level of effort) and on those of his/her directly connected agents (see Jackson (2010) for an
overview). In this approach, the emulation between connected partners is basically captured
by the complementarity between partners’ strategies, that is, the productivity of each agent’s
efforts increases with the efforts of his/her partners. Ballester et al. (2006) first showed that
when actions are linear strategic complements (and under some boundary conditions), there
exists a unique Nash equilibrium in which agents’ actions are equal to their Katz-Bonacich
centralities.5 Technically, our model is more general in that effort complementarity is not
necessarily linear. More specifically, our model contains three adjustable basic ingredients:
connectivity, synergy and rivalry. Connectivity simply presumes that inventor productivity

more conclusive concerning “small-world” effects (e.g., Uzzi and Spiro, 2005; Guimera et al., 2005; Smith,
2006).

5Helsley and Zenou (2014) explore some interesting theoretical implications of this model concerning
social interactions in cities. The questions they address are however very different from ours as they com-
pare the periphery and the center and endogeneize the location decision, whereas we focus on the form of
complementarity between agents.
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is directly and positively affected by being connected to other inventors. Synergy posits
that the productivity of an inventor’s efforts depends positively on the efforts that his/her
partners put into knowledge production. Rivalry captures the idea that agents may not
benefit a partner’s efforts as efficiently when the number of his/her connections increases.6

In this set-up, equilibrium inventors’ outcomes are proportional to the square of a certain
form of their network centrality, which, as we will show, is itself parametrized by the degrees
of connectivity, synergy and rivalry. This form of centrality is generic, as it nests existing
centrality measures such as Degree, Katz-Bonacich and Page-Rank (Katz, 1953; Bonacich,
1972; Brin and Page, 1998).

By bringing this heuristic model to the data, we seek to identify which premisses on
the way agents affect their neighbors’ research productivity, typically which degree of con-
nectivity, synergy and rivalry, best predict future inventions. Our data concern nearly one
hundred thousand French inventors and their collaborations for the period 1981-2003, previ-
ously cleaned and disambiguated (Carayol et al., 2015), the related information on European
patents for the same period, the forward citations made to those patents until 2008, as well
as mandatory company survey data from 1985 to 2003. We identify network effects at the
level of the local community of inventors by pooling all information at the level of the urban
French employment areas (EA) combined with the broad technological field.7 We estimate a
model in which the future patent production of such communities is a function of the average
network centrality of their inventors. The structure of the data allows us to include various
sets of controls such as EA-technology and time-technology fixed effects as well as several
other variables capturing agglomeration economies, which have proven to be important de-
terminants of invention in cities (Fleming et al., 2007; Lobo and Strumsky, 2008; Breschi and
Lenzi, 2016).

The results show that the inventive productivity of cities is positively and significantly
affected by the network structure of its inventors. Our preferred estimation indicates that
a one standard deviation increase in local inventors’ centrality raises future innovation in
an urban area and technology field by 13%. Further, no rivalry effect is found but a strong
synergy effect is. According to our microfoundations, the results suggest that keeping all other
factors constant, a ten percent increase in the efforts of the direct connections of an inventor
would raise the social component of his/her productivity of efforts by five percentage points on
average. Our results hold across a long series of robustness checks. One of the main concerns

6This idea is reminiscent of the “co-author model” introduced by Jackson and Wolinsky (1996) in which
agents divide their time equally in joint bilateral projects undertaken with each of their direct connections.

7Recently, regression techniques have been introduced to overcome the estimation issues (such as the
reflection problem, Manski, 1993) that arise in individual level estimations (e.g. Bramoulle et al., 2009; Lee
et al., 2010; Patachini et al., 2016; Lindquist et al., 2016). However, in urban and regional economics, scholars
often do not work at the individual level because proper identification would at least require the use of rich
covariates that are only available at a more aggregated level. We are following this approach.
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we deal with is that, thought we have a rich set of covariates, time-varying unobserved
variables might still affect both present network centrality and future invention. However,
the effect of inventors’ network centrality is robust to the introduction of current performances
for predicting a city’s future invention, which limits the issue of reverse causality. Further, we
pay special attention to the problem of the spatial sorting of inventors which could bias our
results if most productive inventors move to places that currently host more central inventors.
The results are however not altered by such composition effect as they essentially remain the
same when mobile inventors and newcomers are excluded. Other robustness checks deal with
the sensitivity of our results regarding star inventors, the Paris region, and the spatial and
technological scales of our analysis. Interestingly, the NUTS3 geographical scale allows us to
also control for the local R&D spendings of companies. Finally, we also check the robustness
of our basic theoretical model by testing alternative microfoundations that recuse agents
responding to their networks by adjusting their research efforts, and which turn out to not
fit the data.

The remainder of the paper is organized as follows. Section 2 describes the construction of
our sample and provides some motivating descriptive statistics. Section 3 presents the model
which links inventors’ productivity to their network. Our empirical strategy is described in
Section 4, and the variables in the following Section 5. The results are presented in Section 6.
Robustness checks are reported in Section 7. The last section concludes.

2 Patent data, sample construction and first motivat-
ing empirical insights

In this section, we describe our dataset construction and provide some motivating descriptive
statistics about inventor collaborations, inventor concentration and inventor productivity.

Patent data Our starting dataset consists of all European patent applications of which
at least one inventor declared an address in France and which were first applied for between
January 1981 and December 2003. This represents 125,162 patents. After inventor disam-
biguation8, we know that these patents have been invented by 98,239 distinct individual
inventors.

8Using patent data raises a cleaning issue due to homonymy problems in inventors’ names or to spelling
errors. Indeed, the proper identification of inventors cannot be neglected since small identity errors are likely
to cause significant changes in network measures. For instance, homonymy errors leading to consider that two
different persons are the same can lead to erroneously linking different communities of inventors. Inventor
disambiguation has been performed using the methodology developed by Carayol and Cassi (2009).
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Collaborations as co-inventions Interactions between knowledge workers cannot be di-
rectly observed. Instead, as is typically done in network studies using patent data (see e.g.,
Singh, 2005; Agrawal et al., 2006; Fleming et al., 2007; Carayol and Roux, 2008; Lobo and
Strumsky, 2008; Breschi and Lissoni, 2009), the network of social interactions between in-
ventors is drawn from the patent records. Two inventors are considered to be connected
if they are jointly listed as inventors of at least one patent. The underlying assumption is
that all inventors of a given patent interacted with each other. This assumption is fairly
acceptable for most patent teams as the average team size is rather small (2.13 on average).
It might however not be realistic for patents involving large teams of inventors as the number
of possible bilateral connections evolves quadratically with the team size. For this reason,
we withdraw from the sample all patents having strictly more than 8 inventors.9 Our fi-
nal dataset then consists of 124,825 patents, 97,287 unique inventors and 171,587 inventive
collaborations over the 1985-2002 period.

Locating inventors We use inventors’ private addresses reported in the patents to locate
them in space. The post-codes are matched with the list of French towns, to obtain, for
each address, its corresponding latitude and longitude coordinates as well as its associated
Employment Area (EA). These EAs are statistical constructs based on daily commuting
patterns that account for local labor markets.10 Most take the form of a core town with its
surroundings. These EAs cover the whole French metropolitan territory. Note that though
some inventors are geographically mobile (about twelve thousand), they mostly remain in
the same areas. Nearly 80% of the commutes are of less than 20 km.

Collaboration in space To study the geographical distribution of collaborations we cal-
culate the geodesic geographical distance separating co-inventors. The first row of Table 1
shows that social connections are highly correlated with geographical space: more than 75%
of all the connections are achieved between inventors that live less than 42 km from each
other. More than half of the connections are made within the borders of one single EA. Given
the weight of Paris and its region (Ile de France), there was a concern that these statistics
could be biased. They are thus recalculated when neither, one, or both inventors are located
in the Paris region. Interestingly, more than two thirds of the collaborations within the Paris
region are also formed within one single EA. This supports the idea that close proximity is
important even within larger agglomerations. Moreover, when excluding the Paris region at

9This represents less than 0.2% of all patent applications. Note also that our results are robust to changes
in this cutoff. Results with different cutoffs are available from the authors upon request.

10Continental France is split in 297 EAs. More information on these statistical areas can be found in Jayet
(1985). In this article, we use the 2010 release of EAs. Note that, since the results could be sensitive to the
choice of geographical units, the econometric analysis will be replicated using French NUTS3 (see Section
7).
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Table 1: Geographic distribution of co-inventors over the 1985-2002 period

Distribution Nb or % of Quartiles (km) Max Share of links
of the links Links 25th 50th 75th Dist. (km) within a Single EA
All Collaborations 171,587 (100%) 4.8 14.4 41.5 1099.8 54.0 %
Paris Reg ↔ Paris Reg 54,834 (32 %) 0 8.8 16.9 233.8 65.0 %
Paris Reg ↔ Non-Paris Reg 28,774 (17 %) 29.8 185.4 400.7 729.52 0 %
Non-Paris Reg ↔ Non-Paris Reg 87,979 (51 %) 4.5 13.2 41.1 1099.8 64.6 %

Notes: “Paris Reg ↔ Paris Reg” indicates that both inventors in the pair are located in one of the nineteen
EAs that are totally or partly included in the Ile de France Region. “Paris Reg ↔ Non-Paris Reg” means
that only one end is located in the Paris Region. None for “Non-Paris Reg ↔ Non-Paris Reg”.

both ends of the collaboration, we observe that the first three quartiles of the geographic
distance are very similar to (or even below) the ones calculated for the whole set of collab-
orations. This would suggest that omitting Paris connections does not significantly modify
collaboration patterns. However, as the Paris region accounts for a very significant propor-
tion of research and development in France, we should be particularly cautious to ensure that
results are not driven by Paris region polarization.

Technological fields When filing a patent with the EPO, the patent holder has to assign
it to one or several technological classes which correspond to an international patent classifi-
cation (IPC) code. These IPC codes are associated with one of seven aggregate technological
fields following the French Observatoire des Sciences et Techniques (OST) methodology.11

We find that more than 93% of all the inventors invent in only one technological field. This
percentage is reduced to 80% for prolific inventors who produced more than ten patents.
Moreover, these shares are the same when only collaborative patents are considered. This
suggests that most inventors are specialized in technological fields.

Urban invention The EAs cover the whole French territory, part of which is however
rural. Since our focus is on urban environments, we restrict our analysis to the 71 EAs whose
core city’s population is greater than fifty thousand according to the 1999 census, thereby
following the standard definition of EAs given by the US metropolitan statistical areas (Office
of Management and Budget, 2010). These urban EAs account for nearly 85% of all patents.

EA-tech In this article, we use the EA-technology field (EA-Tech) as our statistical unit
of analysis, that is, the EA combined with the patent’s technological field. This allows us
to control for technological fields and thus to account for patenting schemes specific to these

11The seven technological fields are: ‘Electronics’, ‘Instruments’, ‘Chemicals‘, ‘Drugs, Medicine‘, ‘Industrial
processes‘, ‘Machinery, Transport‘, ‘Consumer goods, Construction‘. More information on the transition from
IPC to OST7 can be found in OST (2010).
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fields. Further, as we have seen above, these EAs and technological fields tend to correspond
to communities of inventors as collaboration tend to be more organized within EAs and
technology fields. Since there are 71 EAs and seven technological fields, we obtain 497 EA-
Tech units. Among them, two EA-Techs do not have any patent over the whole time period
and are therefore discarded from the sample. Our final sample consists of 495 EA-Techs the
inventive performances of which we will study over nearly 20 years. More detailed descriptive
statistics on the EA-Tech invention, network and economic characteristics at the EA-tech will
be provided in Section 5.

The distribution of invention The average urban EA-Tech produces 12 patents yearly,
involving 14 distinct inventors. As a first sign that invention is highly concentrated, the
median EA-Tech produces only 3 patents involving 4 inventors. The same observation holds
for patent citations. Two illustrative examples of Electronics and Chemicals are provided in
Table 2. For both technologies, the top three EAs account for more than half of the patents.

Concentration and productivity Table 2 also shows that the top five cities as regards in-
vention in those two fields significantly differ in terms of their inventive productivity (patents
or citation-weighted patents per inventor). Moreover, their productivity differences appear
to be unrelated to the number of patents or to the agglomeration of inventors. For example,
Roissy has five times less inventors than Paris in Chemicals, but its average inventor is 45%
more productive in terms of patents and 47% more productive in terms of citations. In the
field of Electronics, the average Saclay inventor is significantly more productive than the
average inventor in the other two more concentrated areas. This statement holds when we
extend the analysis to all technologies and EAs. Figure 1 shows that a (positive) relation-
ship between average productivity and the agglomeration of inventors cannot be assumed.
Agrawal et al. (2014) reach similar conclusions in the field of computers and communications
on a cross section of US metropolitan areas.

3 Micro-foundations at the inventor level

We have seen in the previous section that even though inventors are highly agglomerated in
France, their agglomeration clearly fails to explain variations in their performances. We argue
that their collaborations, which are often very local, are expected to play an important role.
This section intends to provide a simple and flexible view of how inventors’ productivity may
be affected by their social connections, and hence how the network structure may influence
innovation. The formal approach is stylized and focused on network-related characteristics.
For now, we implicitly assume that the effect the network has on inventors’ productivity
is independent from any other determinants of productivity, which are discarded from the
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Table 2: Top five French cities in Electronics and Chemicals on average over the 1985-2002
period.

EA-Tech Number of Shares of Number of Patents per Citations per
Patents Patents Inventors Inventor Inventor

Electronics
Paris 598.8 39.5% 741 0.81 1.75
Grenoble 170.7 11.3% 237.3 0.70 1.49
Saclay 152.9 10.1% 151.2 0.99 2.24
Rennes 50.6 3.3% 61.7 0.75 1.98
Toulouse 42 2.8% 63.8 0.62 1.26

Chemicals
Paris 246.8 24.9% 305.8 0.81 1.68
Lyon 140.6 14.2% 179.2 0.79 1.57
Saclay 98.7 10.0% 94.5 1.05 2.20
Roissy 68.0 6.9% 57.5 1.18 2.48
Grenoble 38.5 3.9% 58.1 0.67 1.26

Notes: The numbers of patents, citations and inventors are yearly averages. The citations are made by other
patents applied in a five-year window after each focal patent. Self-citations are excluded at the inventor and
at the applicant levels.

Figure 1: Inventors productivity and inventors agglomeration.
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analysis. In the empirical sections, we introduce other factors that may affect inventors’
productivity and need to be controlled for.

The first subsection describes the model while the second studies the equilibrium and its
properties. The last two subsections provide stylized and empirical illustrations.

3.1 The model

Consider a professional network of n agents i = 1, ...n, typically representing inventors, and
whose links between each other are professional connections based on past or present col-
laborations. The network can be represented by the symmetric square matrix g, whose ith
line and jth column entry gij equals one if inventors i and j are linked, and zero otherwise.
The line vector composed of the ith line entries of g is noted gi. Self-relations are excluded
(gii = 0). The number of links of an inventor, also called i’s degree is di ≡ gi ·1, where 1 is a
n-lines column vector of ones.

Let yi be the inventive production of agent i. It is modeled as a function of the (research)
efforts i exerts, noted ei. The productivity of efforts is assumed to be constant and divided
into an autonomous part and a social part. These two parts are assumed to additively
contribute to effort productivity. The autonomous part is normalized to the unity, so that
the production of an isolated agent is a one-to-one process which transforms one unit of effort
into one unit of outcomes.12 The social part of effort productivity is noted ψi. Agent i’s
production is thus written as follows:

yi (ei,ψi) = ei (1+ψi) . (1)

Turning to the utility function, we consider the most simple functional form13 in which
utility equals production minus a quadratic disutility of efforts: u(ei,ψi) = yi (ei,ψi)− e2

i
2 .

The main ingredients of the model lie in the conceptualization of the social part of the
productivity component ψi. It is assumed to be (additively) affected by the agents to which
agent i is directly connected. We aim to incorporate two effects: synergy and rivalry. Syn-
ergy refers to the positive effect that partners’ activity has on the productivity of one’s
effort. Rivalry refers to a local negative effect of partners’ involvement in other professional
connections. Those two ideas materialize through the following simple expression:

ψi(g,e−i) = λ
∑
j

gije
α
j d
−β
j , (2)

12Setting the default productivity to any other positive value has no implication on the results, as shown
in the Appendix.

13Again, in the Appendix, we will consider more complex functional forms of the utility function. The
inclusion of a parameter tuning effort disutility would imply no significant change in the results.
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where e−i is the vector of all efforts but i’s. As gij is non null only when i and j are linked,
only i’s partners directly affect his/her productivity. The parameters λ, α and β are assumed
to be such that: λ≥ 0, α ∈ [0,1] and β ∈ [0,1].14

Each parameter influences inventors’ productivity and carries a different meaning.

λ (Connectivity) scales the linear relation between the network and agents’ productivity
stemming from the network. If λ = 0, the inventor’s network has no effect on his/her
productivity and α and β can no longer be interpreted. The higher λ, the higher the
social part of productivity as compared to the autonomous part normalized to one. In
a “growth-accounting” view, λ can be seen as a residual. It represents what remains
of the social part of effort productivity variation that would not be explained by the
variation in partners’ efforts and degree (including the effect at the extensive margin
due to the variation in the set of partners).

α (Synergy) is the elasticity of the social component of i’s productivity (ψi) to all his/her
neighbor j’s efforts: α = ∑

j
∂ψi
∂ej
· ejψi .

15 It gives the social component of effort produc-
tivity response, in percentage terms, to one percent increase in all partners’ efforts. As
such, α thus provides a measure of the degree of synergy between partners, concep-
tualized as the direct effect of the work intensity of my partners on the efficiency of
my own work. If equal to zero, its minimal value, then the efforts of the partners do
not matter whatsoever, only the number of partners counts. As long as α is strictly
positive, whatever the type of spillover involved, an increase in connected agents’ efforts
directly enhances effort productivity.16 When α is maximally equal to the unity, effort
productivity increases linearly with partners’ efforts (elasticity equal to one). The de-
gree of synergy is assumed not to be greater than unity for consistency requirements,
as otherwise equilibrium effort levels become infinite.

β (Rivalry) scales the degree of rivalry of direct network benefits. −β equals the sum
of elasticities of i’s productivity to his/her neighbors’ degree: β = −∑j

∂ψi
∂dj
· djψi . A

one percent decrease in all i’s degree of connections increases the social component
of i’s productivity by β percent. An elasticity equal to −1 (β = 1) corresponds to
the maximal possible rivalry. In that case, the sum of direct network externalities
stemming from any connected agent j is fixed, to be divided equally among all his or her

14From a technical point of view, this setup generalizes the model proposed by Ballester et al. (2006),
which is the special case of the linear effect of neighbors efforts on productivity (when α= 1) and no rivalry
(β = 0).

15It can be calculated as follows:
∑
j
∂ψi
∂ej
· ejψi =

∑
j

gijλαe
α−1
j

d
−β
j
ej∑

j
gijλe

α
j
d

−β
j

=
∑

j
gijλαe

α−1
j

d
−β
j
ej∑

j
gijλe

α
j
d

−β
j

= α, if λ > 0. If λ

is null, the elasticity cannot be calculated.
16If α were negative, then efforts would be strategic substitutes. This is not relevant in our application,

but could fit other situations.
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partners.17 In that case, if an agent experiences an increase in his or her neighborhood
size, its accumulated direct impact on his/her neighbors’ productivity remains constant.
Conversely, if β becomes null, then productivity is totally inelastic to the partners’
degree. Each inventor contributes fully to each of his/her collaborators. There is no
rivalry effect in this case, as agents do not suffer from their direct connections having
more acquaintances, all other factors kept constant.

It should be noted that the effects we have examined so far are only direct ones, which are
likely to ‘spread’ along the inventor’s direct connections. For instance, an increase in an
inventor’s efforts will raise the productivity of his/her direct connections, which will lead
them to increase their efforts and this in turn will raise the productivity of their neighbors
(including himself), etc. The efforts that result from all such interactions in the network are
obtained at the equilibrium, studied in the next subsection.

3.2 Equilibrium

We now look at the equilibrium efforts and subsequent inventors’ productivity. If each in-
ventor maximizes his/her utility while taking the efforts of all other inventors as given, then
the resulting interior Nash equilibrium is characterized by the following n best responses:

ei = 1+λ
∑
j

gije
α
j d
−β
j ,∀i. (3)

The equilibrium research efforts can thus be written as a function of the network and of
the parameters: ei ≡ ci (g,λ,α,β). The system of equations given in (3) generalizes well-
known forms of centrality, such as the degree centrality (Bavelas, 1948), the Katz-Bonacich
centrality (Bonacich, 1987) or the Page-Rank centrality (Katz, 1953; Brin and Page, 1998).
These existing centrality measures can be obtained for different admitted values of parameters
α and β. Table 3 presents some nested typical forms of centrality. As agents’ equilibrium
efforts are equal to their centralities, typical assumptions about the social component of the
productivity function lead to different effort levels. For instance, if no synergy or rivalry is
at play, agents’ efforts would be equal to their degree centrality. At the other end of the
spectrum, agents’ efforts would be equal to their Page-Rank centralities if both synergy and
rivalry are maximally unitary.

Combining Equation (1) and Equation (3), it turns out that equilibrium production is
given by y∗i = (e∗i )

2 =
(
1+ψi

(
g,e∗−i

))2
. Substituting equilibrium efforts for centralities thus

gives:
y∗i = c2i (g,λ,α,β) . (4)

17As in the co-author model introduced by Jackson and Wolinsky 1996, without considering what they call
the “synergy effect”.
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Table 3: Existing centrality measures nested in the centrality defined by Equation (3). The
last column provides the formula of the centrality when the parameters α and β are set as
in the first column.

(α,β) Centrality name Definition

(0,0) Degree centrality ci = 1+λdi, ∀i

(1,0) Katz-Bonacich centrality ci = 1+λ
∑
j

gijcj , ∀i

(1,1) Page-Rank centrality ci = 1+λ
∑
j

gij
cj
dj
, ∀i

Therefore, i’s equilibrium production is equal to the square of its network centrality, which
depends on the network g and on the three parameters λ, α and β.

Existence and unicity Is the centrality measure defined by Equation (3) well defined, in
the sense that it has a positive solution so that the equilibrium efforts and productivities can
be computed? Moreover, is it unique? The answers to these questions depend on α. When
it is equal to one, the system of equations in (3) is linear and has a particular behavior as
compared to the sublinear case. In short, an equilibrium exists and is unique if λ is sufficiently
small (Ballester et al. (2006)).18 In contrast, as soon as α is strictly less than unity, there is
no longer a restriction on λ to obtain existence. Moreover, as Theorem 1 states, the unicity
of the solution is guaranteed.

Theorem 1. When α ∈ [0;1[, for any g, β and for any positive λ, the system defined by
Equation (3) has a unique positive solution.

The complete proof of Theorem 1 is given in the Appendix. This theorem will be very
useful in the empirics, as the sublinear case is consistent with the data. In practice, the
unique solution can be computed via an increasing sequence. Let cki denote the centrality
of inventor i at iteration k (the parameters α, β and λ are omitted for readability). Each
centrality is first initialized to 1 and then the following calculus is performed until numerical
convergence:19

18See the Appendix for more details.
19In this paper, whenever this network centrality is to be computed, we stop the algorithm when the

maximum absolute difference between two successive centralities (maxi{ck+1
i − cki }) is smaller than 0.0001.

13



Figure 2: Stylized example of an inventor network.

ck+1
i = 1+λ

∑
j

gij
(
ckj
)α
d−βj . (5)

At the end of the process, each inventor’s centrality respects the definition of Equation (3)
up to a negligible numerical error.

3.3 Stylized example

We first use a stylized example to illustrate how typical individual network-positions rank
for different traditional centralities nested in our definition. This should clarify that different
premisses on how agents are influenced by their connections lead to distinct predictions in
terms of productivity at equilibrium. We compare several typical centralities computed for
the network represented in Figure 2. This figure depicts a network consisting of seven agents,
including four agents fully connected with each other (agents 2, 3, 4 and 5) and two having
only one connection (nodes 6 and 7). The last agent, 1, is connected to these two groups.
We focus on four “typical” agents: 1, 2, 3 and 6. Table 4 reports degree, Katz-Bonacich and
Page-Rank centrality. The parameter λ is here set to 0.25 but many other strictly positive
values for this parameter could have been chosen for it to respect the existence and unicity
conditions. As it only marginally affects the way agents’ centralities rank, we do not consider
other values and focus on synergy and rivalry effects captured by α and β.

If (α,β) = (0,0), so that there is no synergy or rivalry at play in the network, the produc-
tivity gain from any connection is the same, equal to λ. The centrality of the agents then
relies only on their number of connections. In this case, agents 1 and 2 have four connections
and therefore have the highest centrality, followed by agents 3 and 6. In the case of linear
synergy but no rivalry, (α,β) = (1,0), one’s productivity depends positively on the partner’s
effort, and as the rise in productivity spurs one’s effort, this new effort will in turn increase
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Table 4: Centrality measures, as defined by Equation (3), for the nodes depicted in Figure 2.

Centrality
Degree Katz-Bonacich Page-Rank

Agent (α = 0,β = 0) (α = 1,β = 0) (α = 1,β = 1)
1 2 6.08 1.73
2 2 7.65 1.41
3 1.75 6.43 1.28
6 1.25 2.52 1.10

Notes: The value of λ is here set to 0.25.

the partner’s productivity, which will increase the partner’s effort, etc. Therefore, linear
synergy implies that agents who are strongly interconnected in cliques benefit the most from
this type of effects. Despite having the same number of connections as agent 1, agent 2
has the highest centrality because he/she is highly connected to highly connected neighbors.
Moreover, agent 3, whose degree is lower than agent 1, becomes more central than agent 1,
as he/she strongly benefits from being involved in a fully connected clique. As compared to
the previous case, when synergy is linear and rivalry is maximal, that is, when (α,β) = (1,1),
connections to more isolated agents become relatively more effective. And hence in that case
agent 1 surpasses agents 2 and 3 so that agent 1 exhibits the highest centrality.

3.4 Empirical example

Let us consider three distinct local communities of inventors defined as the set of inventors
in the ‘chemicals’ field for the period 1991-1995, each located in a different city area (three
distinct employment areas). For each community, we compute the average squared central-
ities of their inventors. The centralities are of course computed in the whole collaboration
network, that is, when all the links between all French inventors are taken into account (any
city and any technology). The average centralities for the three cities are given in Table 5.
Interestingly, the three communities rank differently depending on the type of centrality.
The Orly community has the highest average degree centrality. The highest average Katz-
Bonacich centrality is found for Nantes whereas Saint-Étienne inventors have the highest
average Page-Rank centrality. We see here that distinct assumptions concerning the man-
ner in which agents benefit from their connections may lead to different predictions on the
relative performance of local communities. If one believes that neither synergy nor rivalry is
at play, the average inventor in the Orly community should be more productive. If synergy
is assumed to come into play linearly, an additional full rivalry assumption would lead to a
prediction that inventors in the Saint-Étienne chemicals community are more efficient. And

15



Table 5: Average squared centralities for several urban (EAs) networks of inventors in the
technological field of ‘Chemicals‘.

Centrality
Number of Degree Katz-Bonacich Page-Rank

Community Name Inventors (α = 0,β = 0) (α = 1,β = 0) (α = 1,β = 1)
Orly 53 1.53 1.91 1.08
Nantes 33 1.45 3.44 1.07
Saint-Étienne 43 1.36 1.52 1.11

Notes: The value of λ is here set to 0.04 as it is close to (but still less than) the inverse of the largest
eigenvalue of the global network (the three communities belong to the same network).

so on and so forth. In fact, all possible assumptions can be screened and their associated pre-
dictions can be confronted with the observed future productivity of these communities. We
are seeking the premisses, fully contained in specific values of parameters λ, α and β, which
best explain the observed productivities of these communities. The next section provides an
empirical methodology for this purpose.

4 Empirical strategy

4.1 An aggregated production function approach

The production of innovations in each EA-Tech is assumed to follow similar patterns: as
in standard regional knowledge production function approaches, the innovative outcomes
are obtained from a common production function with similar elasticities across units of
observation (Fleming et al., 2007; Lobo and Strumsky, 2008). The main input considered
here is the contribution of inventors, which is assumed to constitute the backbone of invention
production. The basic relation describing urban innovation production is thus given by the
following equation:

Ya,f = Aa,f · lγa,f , (6)

in which Ya,f is the innovation output of the urban EA a and technological field f , Aa,f
contains the specific factors affecting urban innovation production and la,f is the sum of the
contributions of all inventors associated with the EA-Tech; γ is a positive parameter.

If we let Inva,f denote the set of inventors associated with an EA-Tech, we are able to
introduce the individual inventive contributions of local inventors as defined in the previous
section, as follows:

la,f =
∑

i∈Inva,f
ei (1+ψi(g,e−i)) . (7)
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The efforts agents exert and the direct influence of their network neighbors are however
typically not observable in the data. Our micro-foundations suggest that an agent’s effort is
affected by his or her network so that, in equilibrium, the network-related production is equal
to the square of the agent’s network centrality (cf. Equation (4)). This centrality depends
on the inventors’ network and on the three parameters of connectivity, synergy and rivalry.
In equilibrium, we thus have:

la,f =
∑

i∈Inva,f
c2i (g,λ,α,β) . (8)

In this equation, it is clear that variable la,f is in fact the combination of two elements:
1) a size effect, since it is the sum of all inventors associated with the EA-Tech, and 2) a
network effect, since the production of each inventor is assumed to depend on their network
position. However, as Bettencourt et al. (2007) has shown, the number of inventors is a major
determinant of patent production and is tightly linked to city size. In order to identify the
network effect, it should be separated from the size effect. In consequence, in Equation (6),
the variable la,f is broken down as the product of the number of inventors in the EA-Tech,
#Inva,f , and their average equilibrium contribution, noted c2a,f (g,λ,α,β):

Ya,f = Aa,f ·#Invτa,f · c2a,f (g,λ,α,β)
τ
. (9)

4.2 Estimation procedure

As explained in the next section, urban invention production will be measured in terms of
patents or patent-citations, which are count variables. A natural way to estimate the model
is to use a Poisson model. Indeed, contrary to linear models which lead to biased coefficient
estimates when dealing with count data, a Poisson model copes suitably with this issue
and also allows us to deal with over-dispersion (see e.g., Santos Silva and Tenreyro, 2006).
Further, to limit the problem of omitted variables and to fully exploit the panel structure
of our dataset, we employ a fixed-effect Poisson estimation where the unit of observation
is the EA-Tech, so that every time-invariant unobservable effect specific to the employment
area and the technological field will be controlled for. Further, Time-Tech dummies are also
introduced to control for exogenous shocks that could affect the production of inventions in
a specific technology. To avoid simultaneity issues, the dependent variable is forward-lagged
in t+ 1 so that the explanatory variables explain the production of the subsequent year (as
in Fleming et al., 2007).

Based on this large set of fixed effects, the identification of the effect of inventors’ centrality
on urban innovation then hinges on within-EA-Tech variations, net of any technology-time
effect. Therefore, we wonder whether the variation in the centrality of inventors in a given
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EA-Tech (e.g. Paris-Chemistry) has any influence on the future invention production of this
EA-Tech.

Formally, the equation that will be estimated is:

E
(
Ya,f,t+1

)
= da,f ·df,t ·

∏
k

Xθk
k,a,f,t ·#Inv

τ
a,f,t · c2a,f (gt,λ,α,β)

τ
(10)

where Ya,f,t+1 is the dependent variable, and da,f and df,t are EA-Tech and Time-Tech
dummies for the EA a, the technological field f and the year t. The k-indexed variables in
Xk,a,f,t are all other determinants of urban patent production which include agglomeration
economies variables as well as other network-related controls. According to our empirical
model, we set the elasticity of the average squared centrality, τ , to be equal to the elasticity
of the number of inventors.20

The parameters of interest in our approach (α, β, λ) cannot be estimated by traditional
linear techniques. Indeed, changing the value of any of these parameters implies non-trivial
changes to every inventor’s network centrality. Stated differently, the network centrality
variable cannot be expressed as a linear combination of its parameters with some other
exogenous variables. To cope with this issue, we apply nonlinear estimation techniques.
Similarly to models with linear right-hand sides, the estimated coefficients are simply the set
of parameters that maximizes the likelihood as follows:

arg max
d,θ,λ,α,β,τ

L(Y|d,X,θ, Inv,λ,α,β,τ) .

The interpretation of the parameters along the model defined in Section 3 is valid only for
positive values of these parameters. Further, we restrict α as strictly lower than 1, because
if α were equal to 1 then the centrality measure would not be defined for any positive λ (see
Section 3.2), which would impede the estimation procedure. Consequently, the estimation
runs with the following constraints: λ≥ 0, α ∈ [0;0.99], β ≥ 0.

Finally, even though these parameters enter the model in a nonlinear form, they end
up being asymptotically normally distributed (see Wooldridge, 2010, theorem 12.3, p. 407).
In every estimation, we will report standard-errors clustered by EA-Tech. As in standard
maximum likelihood models, the estimates are obtained by using a maximization algorithm.
In this context, the variable c2a,f (gt,λ,α,β) needs to be computed anew at each iteration of
the maximization process. To make this estimation, we used the statistical software R in
combination with the new package FENmlm which estimates maximum likelihood models

20Note that setting the elasticity of the average squared centrality to other values implies no change in our
results. Indeed, we replicated the main analysis with elasticities ranging from 0.2 to 1.0 and this did not alter
our main findings regarding i) the centrality coefficients and ii) the average impact of inventors’ centralities
on future EA-Tech innovation. The results are reported in the Appendix.
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with fixed effects and which admits nonlinear right hand sides. A simple illustration of this
parameter estimation is provided in the Appendix.

5 Variables

5.1 Dependent variables

The measure of a city’s innovation output will be drawn from patent counts. However, the
number of patents alone may not be sufficient as patents vary greatly in quality (see e.g.,
Trajtenberg, 1990; Lanjouw et al., 1998; Hall et al., 2005). A way to account for patent
quality is to measure how much the knowledge embodied in a patent has been used in later
patented innovations. When a patent is applied for, it has to reference prior art (see e.g.,
Criscuolo and Verspagen, 2008, for a review). A positive relationship between patent value
and citations received has been demonstrated in various studies (see e.g., Trajtenberg, 1990;
Harhoff et al., 1999; Hall et al., 2005). Thus, in order to have a finer grained measure of
innovation, each patent will be weighted by one plus the number of citations it receives, in
line with various studies dealing with urban innovation (e.g., Agrawal et al., 2014; Kaiser
et al., 2015). In a sense, the patent is itself considered as its first citation, a procedure which
has the advantage of not giving a zero mass to a non-cited-patent. This dependent variable
is called number of citation-weighted patents, noted CW . However, to ensure that the results
do not rest upon our choice of dependent variable, we also run the econometric analysis on
the number of patents (P ) and the number of citations (C). The former variable reflects
the idea of quantity of urban innovation production, while the latter captures the quality of
patents. In fact, the main dependent variable combines the two dimensions (CW = C+P ).

A 5-year window is used to construct the number of citations a patent receives, allowing
this number to be comparable across patents from different years. As the most recent patents
from our sample are from 2003, we need information on citing-patents until 2008. Further,
as the aim is to depict the quality of a patent, the citing-patents should not be restricted to
French patents only.21 The number of citations a patent receives is defined as the number
of EPO-patents whose application date lies in the five following years and that cite the
application number of the cited patent.22 Further, in order to avoid citations due to factors
unrelated to quality, we withdraw every citation coming from patents either from the same
inventor or from the same company.23 The location of the patents is based on the inventors’

21The citations-related data are drawn from the CRIOS-Patstat database which compiles data on all EPO-
filed patents (see Coffano and Tarasconi, 2014, for a description of the database).

22The 5-year window is accurate to the day. As the day, month and year of application are available for
each patent, we are able to keep only the citing-patents which were filed no later than 1,825 (365×5) days
after the cited-patents.

23Thanks to the algorithm from Pezzoni et al. (2014), each patent in the CRIOS-Patstat database has an
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addresses, so that the dependent variable for EA a and technological field f will be the
number of citation-weighted patents filed in year t+ 1 in technological field f that have at
least one inventor located in area a.

5.2 Network-based variables

We start with two comments that apply to all network-based variables. First, these variables
will be constructed using a five-year window: from t− 4 to t. This period of time is used
to gather enough information on the network patterns of the EA-Techs as patenting can be
considered as a rare event (Lobo and Strumsky, 2008). Second, when, for some EA-Tech,
no patent has been produced in the five-year-window, so that some network-based variables
cannot be computed (e.g. the average team size), we set these variables to their minimal
value, and to 0.01 if the minimum is 0. (see Fleming et al., 2007)

Centrality Our main explanatory variable is, as shown in Section 4.1, the average squared
network-centrality of the inventors of a given city-technology. This variable is built in two
steps.

In the first step, the network-centrality of all inventors is computed by using the whole
co-invention network in a 5-year window. The network consists in all collaborations between
inventors having patented between years t− 4 and t, no matter the technological class or
the EA. This network is built by assigning a link between each pair of inventors having co-
patented at least once during that period. Then, from this network and for possible given
values of parameters α, β and λ, we compute the centrality of each inventor ci (gt,α,β,λ),
according to the system of Equations in (3).

The second step consists in the aggregation of these inventors’ centralities. Each inventor
is assumed to contribute fully to each EA-Tech he/she has patented in. If a person has moved
or has invented patents in different technologies in the considered period, it will be counted
in each corresponding EA tech. The average squared centrality among all inventors having
patented at least once in the EA-Tech considered over the 5-year window period:

c2a,f (gt,α,β,λ) = 1
#Inva,f,t

×
∑

i∈Inva,f,t
c2i (gt,α,β,λ) ,

where Inva,f,t (resp. #Inva,f,t) is the set (resp. number) of inventors having patented in
EA a, technological field f and years [t−4, t]. Note that for EA-Techs with no inventor in
a given window, this centrality is not defined. We thus assign to it the value 1, as it is the
minimal value possibly attained by the centrality.

identification number for the inventors who filed it and the companies which own it. The ‘self-citations’ were
cleaned thanks to those identification numbers.
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Network covariates The main input of patent generation is creative individuals, and
in this subset of the population, the most committed individuals in invention activities, the
inventors themselves (Fleming et al., 2007). The variable inventors is the number of inventors
having patented at least one patent in the EA-Tech over the 5-year period (Inva,f,t). This
variable also aims at capturing the effects of the agglomeration of innovative activities.

Patent teams are not locally bounded: they can be the outcome of collaborations between
inventors located in different urban areas. If so, the number of inventors of an EA-Tech as a
control may be not sufficient to capture the inputs to knowledge creation as it would neglect
the inventors outside the EA-Tech who have also contributed to producing the patents in the
area. To control for this, we include the variable share of outside collaborators which is the
number of external (to the area) inventors divided by the total number of inventors having
participated in the patents in the area.

The distribution of the patent resources among different technologies may influence the
efficiency of knowledge production. If agglomeration economies are at work, the concentration
of patents in some particular technological fields may enhance the productivity of research
in those fields. Thus we include the variable technology Herfindahl, defined as the Herfindahl
index of the patents produced in the area distributed among 30 technological classes denoted
c.24 This variable is defined at the EA-year level and its formal definition is ∑30

c=1 s
2
c , where

sc is the share of patents in the technological-class c.

The econometric analysis will control for the specificity of the technological fields with
EA-Tech dummies. Yet, even when controlling for a technology, some EA-Tech may still be
specialized in specific fields within a given technology which are more recent and more fertile
in new ideas and patents. Those technologies are possibly less likely to cite old knowledge.
To control for this effect, we include, as in Lobo and Strumsky (2008), the technology age
variable which is the average number of references cited by the patents produced in the
EA-Tech.

Another important issue stems from the very nature of the collaboration network data
we are using. These data are a bipartite graph in which the connections between inventors
and patents are observed. The connections between inventors are not directly observable
but reconstructed. Two inventors are assumed to be connected whenever they co-invent a
patent. This is quite an acceptable assumption to make as inventor teams are usually small
(the median is equal to two). However, in this context, team size has a large influence
on the network structure since each inventor within a team is connected with all the other
inventors of this team. The increase in team size may still raise inventors’ average centrality
by increasing their number of connections. In consequence, if larger teams produce more

24The classification leading to 30 technological classes, referred to as OST30, is based on the IPC code of
the patents and is a finer grained version of the OST7 classification. See OST (2010) for more information.
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patents, and if larger teams also imply higher centrality, then the effect captured by the
centrality variable may be spurious. To control for such team size effects, we introduce in
our regressions the variable average team size, defined as the average number of inventors
per patent produced in the EA-Tech-year.

5.3 Agglomeration variables

Finally, we also integrate economic variables in order to account for industry-related agglom-
eration economies. To do so, we use plant-level data stemming from French annual business
surveys over the period 1985–2003.25 These mandatory surveys provide information regard-
ing employment for all manufacturing firms of more than 20 employees. The precise location
along with the industrial sector and the level of employment of each French plant of these
firms are also reported. We create, for each EA, the variables number of industry workers and
number of plants of more than 200 employees. The former variable aims to control for the
employment density in the industrial sector of the area which has proven to affect inventive
production in cities (Carlino et al., 2007). The second one seeks to capture the effects of
a potentially higher level of effort in R&D undertaken by large firms (Lobo and Strumsky,
2008). Last, we introduce an index of employment diversity in the EA to account for the
potential effects of local industrial diversification at the city level, as in Carlino et al. (2007).
This index of employment diversity is based on a Herfindahl index at the 3-digit sectoral
level. It is defined by ln(1/∑s s

2
a,s) where sa,s is the share of workers in sector s in city a.

5.4 Descriptive statistics

Our sample consists of 495 EA-Techs and 18 years (1985–2002 for the explanatory variables
and 1986–2003 for the dependent variables). Table 6a presents the summary statistics for the
main variables. The correlation between the variables are reported in Table 6b. The highest
correlations are of 90% between the number of workers and the number of large plants, and
of 92% between the average team size and the technology age. As these variables are used
as controls, we keep them in the sample.

6 Main Results

The results of the Poisson estimation are reported in Table 7. We focus first on Model (1)
which is a benchmark model excluding network centrality variables, before going on to com-
ment on the main results in Models (2) to (4). As usual in studies on urban patenting, the
number of inventors has a strong positive effect. We find that a 10% increase in the number

25The sources are the data from the ‘Enquetes Annuelles d’Entreprises’, which are collected by the French
Ministries of Industry, Agriculture and Food, jointly with the French national statisitcs institute (INSEE).
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Table 7: Baseline Poisson estimations.

Model: (1) (2) (3) (4)
Dependent Variable: CWt+1 CWt+1 Pt+1 Ct+1
Network Centrality Parameters
λ (Connectivity) 0.0701∗∗ 0.0394∗∗ 0.1089∗∗

(0.0267) (0.0167) (0.0426)
α (Synergy) 0.5003∗∗∗ 0.6528∗ 0.4161∗∗∗

(0.1511) (0.341) (0.0951)
β (Rivalry) 0 0 0

(0.1953) (0.2706) (0.1814)
EA-Tech-Specific Variables
# Inventors (ln) 0.3498∗∗∗ 0.3525∗∗∗ 0.3772∗∗∗ 0.3306∗∗∗

(0.03) (0.0432) (0.0426) (0.0536)
Average Team Size (ln) -0.2667∗∗ -0.3644∗∗∗ -0.364∗∗∗ -0.3809∗∗∗

(0.0852) (0.0741) (0.0617) (0.1066)
Share of Outside Collaborators 0.2669∗ 0.2935∗∗ 0.3675∗∗ 0.2164

(0.1465) (0.1364) (0.1131) (0.2079)
Technology Age (ln) -0.0187 0.0197 0.0104 0.0313

(0.0523) (0.0485) (0.0391) (0.0695)
EA-Specific Variables
Technology Herfindahl (OST30) 0.9694∗ 0.8405 1.1689∗ 0.5026

(0.5858) (0.5744) (0.6045) (0.6096)
# Plants of 200+ Employees (ln) -0.092 -0.097 -0.1034 -0.1051

(0.0714) (0.072) (0.0674) (0.095)
# Workers (ln) 0.4226∗∗∗ 0.4294∗∗∗ 0.4643∗∗∗ 0.3922∗∗

(0.115) (0.1095) (0.1047) (0.1391)
Employment Diversity (3-digits) 0.0835 0.0688 0.0303 0.0872

(0.073) (0.0694) (0.0744) (0.079)
Dummies
EA × Tech YES YES YES YES
Time × Tech YES YES YES YES
Fit statistics
Observations 8,910 8,910 8,910 8,838
Adj-pseudo R2 0.90769 0.90785 0.88348 0.86471
BIC 69,589.527 69,493.238 46,099.191 56,316.964

Notes: Fixed-effects Poisson estimations. The dependent variable is in t+ 1 while the explaining variables
based on patent data are built using a 5-year window from t− 4 to t. The parameters λ, α and β are the
ones of the network-centrality, as defined in Equation (3). Clustered standard-errors in parentheses (at the
EA-Tech level). Level of statistical significance: ***, **, * means significance at the 1%, 5% and 10% level.
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of inventors leads to a 3.5% increase in future urban patenting. The negative effect of the av-
erage patenting team size is in line with the literature (e.g. Lobo and Strumsky, 2008). The
estimates suggest that a 10% increase in the average team size in the EA-Tech would imply
a decrease of 2.6% in urban patenting. Having access to knowledge from outside the city
should be valuable since it creates new possibilities of knowledge combination. Accordingly,
the share of inventors from other cities taking part in the EA-Tech patents has a positive and
significant coefficient. This result is also in line with the previous studies of Fleming et al.
(2007) and Lobo and Strumsky (2008). Specialization at the city level, as measured by the
Herfindahl technology, has a positive and significant effect on urban patenting. The age of
the technology developed in the EA-Tech, approximated by the average number of references
to older patents, has no significant effect. Regarding the agglomeration variables, we observe
that the number of large plants and the diversity index of the workforce are not significant
whereas the number of workers within the EA increases urban patenting.

We now turn to Model (2) which contains the baseline results of the paper. Does the
structure of the inventor network influence future urban invention? The positive and signif-
icant coefficient of connectivity λ, indicates that inventors benefit from being connected in
the network. It provides a first and reassuring result as it supports the idea that the central-
ity of inventors sustains innovation. Indeed, it would be misleading to consider that its low
estimated value (λ̂ = 0.07) implies that inventor networks play a marginal role. In fact, the
global magnitude of the network effect, captured as the effect of the squared centrality on
urban invention, can be computed considering within-sample variation in inventors’ squared
centrality, as estimated in the model (c2a,f

(
gt, α̂, β̂, λ̂

)
). We look at the increase in future

urban invention when the inventors in an EA-Tech increase their centrality by one standard
deviation on average. It turns out that this effect is important: all else being equal, a one-
standard-deviation increase in the squared centrality of an EA-Tech implies an increase in
future innovation production of 13%. The 95% confidence interval of this effect lies between
4% and 28%.26 Note that the effects of the other variables remain globally stable.

However, these results do not show how the inventors’ connections affect their produc-
tivity. To get a sense of the “how” question, we need to look to the other two structural
parameters of the centrality measure. First, results strongly support the absence of any
rivalry effect. The estimated coefficient of rivalry, β̂, is at its lower admitted bound, 0. As-
suming the theoretical model presented in Section 3 holds, this means that, when an inventor
gets new connections, this inflicts no negative externality on his/her current collaborators,

26Finding the 95% confidence interval is not straightforward because the value of the centrality depends on
two variables that are different from zero: λ and α. To obtain the 95% confidence interval, we sampled 1,000
draws of both λ and α along a normal law of mean and standard error their estimated ones (in model (2) of
Table 7). For each draw, we computed the average squared centrality for each EA-Tech and its associated
standard-deviation. We finally report the bounds (min and max) of the magnitude of the effect of the
centrality on urban invention after trimming for the 25 highest and 25 lowest values.
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controlling for his/her potentially varying research efforts. Stated differently, all else being
equal, an inventor’s productivity does not decrease when one of his/her partners engages in
a new collaboration, assuming that partners (and all others) arbitrarily maintain constant
his/her research efforts. Turning now to the estimated value of α, we find a strong synergy
effect at play as its coefficient is positive and strongly significant, with α̂= 0.50. This means,
still assuming the theoretical model holds, that a ten percent increase in the efforts of all
direct connections of an inventor would raise the social component of his/her effort produc-
tivity by five percent points on average, all other factors and interactions remaining constant.
While quite high in our view, that effect is significantly less than unity, as it is assumed to
be in standard theoretical models.

To ensure that those results do not rest upon our choice of dependent variable, measured
by the number of citations-weighed patents (CW), we run the econometric analysis on two
other measures of invention: the number of patents (P) and the number of citations (C). The
results of these estimations are reported in Models (3) and (4) of Table 7. For both dependent
variables the coefficient of connectivity, λ, is positive and significant. It is lower when the
dependent variable is P and higher when the dependent variable is C. However, the overall
effects of the network remain similar (unreported but available from the authors). Further,
the coefficient of rivalry, β, remains equal to 0. The main difference is that, in Model (3), for
patent counts, the synergy coefficient is now equal to 0.65 but significant at the 10% level
only, while in Model (4) this coefficient remains strongly significant, but slightly lower with
a value of 0.41. As the coefficient of connectivity is also higher when the dependent variable
is the number of citations, at 0.11, this suggests that inter-inventor connections are more
beneficial in terms of more quality-orientated measures. All in all, the results are maintained
in essence with these two different dependent variables. The baseline estimates of Model (4)
are, as expected, right between the ones of Model (3) and Model (4). Finally, here again, the
effects of the other variables remain globally unchanged with the exception of the “outside
collaborators” variable which does not affect the quality of the patents produced locally.

7 Robustness checks

We now propose several robustness checks and extensions. In a nutshell, we i) cope with the
reverse causality issue, ii) document and fend off the possible sorting effect of inventors across
cities, iii) control for the influence of star inventors, iv) exclude the Paris region, v) change
the spatial scale, vi) reproduce the analysis at the EA level, by pooling all technologies and
vii) test alternative micro-foundations.
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7.1 Endogeneity

We consider a first channel of endogeneity that could bias our previous estimates. The urban
centrality is calculated using the patterns of collaborations between inventors, measured via
patent co-invention. Similarly, the dependent variable is based on patent data. For the sake
of argument, assume that centrality does not affect innovation, but that centrality values at
the city level are determined by the number of patents produced in these cities so that a
high centrality value may come from a high number of patents produced. Assume also that,
due to temporal auto-correlation, the past number of patents determines future outcomes as
measured with the dependent variable.27 If these three assumptions hold, we would find a
spurious positive effect of past centrality on present innovation which would only be due to
reverse causality and temporal serial correlation of the dependent variable. However, if this
is true, then including past levels of the dependent variable in the model would capture the
effect of the centrality that stems from this channel of endogeneity.

Therefore, we include the lag of the dependent variable in the regression. The results are
provided in Model (5) of Table 8. The lag of the dependent variable has a positive effect on
future urban invention and the results regarding the centrality components are remarkably
similar to the baseline results: the estimated value of λ is still close to 0.07, the synergy
coefficient is slightly reduced to 0.48 and there is still no evidence of rivalry.

We are aware that including the past value of the dependent variable may introduce
a bias on the coefficients because we are in a panel setup (for a discussion of this issue,
see for instance Windmeijer, 2008). To circumvent this problem, we take advantage of the
“quantity” (number of patents) and “quality” (citations received) information contained in
our data. We thus regress the future “quality” of urban patenting while controlling for the
past “quantity” produced. This setup has two advantages: i) the quantity measure is likely
to be a better control for the network centrality than the quality,28 and ii) since quantity and
quality variables are of a different nature, the estimated coefficients should not suffer from
bias. In Model (6) of Table 8 we can see that the results are also very similar to the ones of
Model (4): we find a positive and significant effect of the network (λ) with synergy but no
rivalry.

27Note that the average temporal auto-correlation at the EA-Tech level is of only 10%.
28For instance, a city can produce 10 patents while receiving no citations, and conversely, a city can receive

100 citations while producing only one patent. It is then clear that as the network is based on patent-
collaborations, only the production of patents “makes” the network, independently of the citations they
receive.
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7.2 Dealing with spatial sorting

A second form of endogeneity could arise due to omitted variables. Thought we have a
rich set of covariates, still it could be possible that time-varying unobserved variables might
affect both present network centrality and future invention. However, as we have shown in
the previous sub-section, our results are robust to the introduction of the current production
variables. Therefore, to alter our results, an omitted variable should be both correlated with
a city’s network centrality but orthogonal to its current production. The only such variables
we could think of are related to the potential variation of inventors abilities due to spatial
sorting of inventors across cities. The urban areas which host the most central inventors may
attract the best brains, and thus turn out to be more productive. If so, the interpretation
of the results would differ: a high network centrality would imply higher productivity not
because of the spillovers and synergies between connected agents but because of its higher
attraction power. Moreover, the most productive cities may attract the most productive
inventors, who are also the most central in the network. Because of serial correlation in the
dependent variable, lagging the dependent variable might not be sufficient to get rid of the
bias in this form of endogeneity.

A first way to examine this issue is to study mobility behaviors. For this purpose we
build a database of mobilities between EA. We consider that an inventor has moved from
EA a to EA a′ when he has a patent in EA a in period t and he has a patent in a′ in period
t′ > t and a′ being the first different city reported in the subsequent patents of the inventor.
The moves signaled by two dates which correspond to the same year are dropped to exclude
too-close application dates. As the EPO does not use the invention date as the USPTO but
the application date, too-close dates could actually correspond to reversed order invention
dates, in which case mobility inference would also be reversed. We find 5,329 such moves
between two distinct urban EAs. Table 9 reports the relative differences between the origin
and the destination EA-tech characteristics at the time of the last patent in the origin EA
(t). Results when the year of the first patent in the EA of destination is used are qualitatively
similar. We see that the moves are toward less concentrated areas in numbers of inventors
and patents (all measures). The moves are to areas that are very similar in terms of all per
capita efficiency measurements as well as in terms of average centrality. So it seems that our
results should not be biased by the spatial sorting of inventors.

Nevertheless, to complement this descriptive analysis, we re-do the econometric regres-
sions excluding the mobile inventors. The dependent variable is computed afresh without
considering their production. Further, the production of the inventors who have their first
patent in the period t+1 are also excluded, so that the variables are preserved from potential
bias due to the arrival of potential newcomers of better quality in some EA-tech. The depen-
dent variable is thus only based on the production of inventors who were already active and,
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Table 9: Difference between the destination EA-tech characteristics and the origin EA-tech
for all inventors moves.

Relative difference in the mean median std dev min max
Number of inventors -0.234 -0.643 1.457 -2 1.997
Number of patents -0.238 -0.643 1.46 -2 1.997
Number of citations -0.234 -0.697 1.495 -2 2
Number of weighted patents -0.236 -0.658 1.471 -2 1.999
Number of patents per inventor 0.028 0.009 0.467 -1.716 1.871
Number of citations per inventor 0.012 -0.008 0.648 -2 2
Number of weighted patents per inventor 0.024 0.005 0.511 -1.728 1.913
Average squared centrality -0.004 -0.002 0.079 -0.385 0.340
Total accumulated squared centrality -0.143 -0.463 1.459 -1.990 1.998

Notes: For each move and each variable considered, the relative difference is computed as 2× (destination−
origin)/(destination+ origin). The network centrality (last line) is computed using the baseline estimates
of Model (2) of Table 7.

we suspect, have never moved from the city. For consistency, we also exclude the centrality of
all mobile inventors in the computation of the EA’s average squared network-centrality. The
results obtained with this new variable are reported in Model (7) of Table 8, which confirms
our previous observation. We see that they are very close to the baseline results in Model
(2) of Table 7 though the coefficients of connectivity are slightly lower and the coefficient
of synergy is slightly higher. Finally, we show, in Model (8) of Table 8, that the results of
Model (6), which controls for endogeneity by using past production as a control, do not differ
when we exclude mobile inventors from the sample.

7.3 Controlling for stars

With the type of centrality indexes we are using, the distribution of centrality in the pop-
ulation might be very skewed. There was thus the concern that the results could be driven
by star inventors who would also be outliers in terms of centrality. We have implicitly as-
sumed that all inventors’ squared centrality matters and can be simply aggregated so that
the average squared centrality is considered in the regressions. If only the centrality of stars
drives the results, this would partly flaw our assumption. Interpretation of the results would
also be affected. To control for such a possible over-influence of stars,29 we run a new anal-
ysis in which the production of EA-techs is regressed on average squared network centrality
computed while excluding star inventors.

More precisely, the new centrality variable is obtained in two steps. In the first step, the
29This procedure is intended to control only for their direct influence on urban productivity, and not for

their indirect influence, that is, the influence transferred to their neighbors in the network.
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centrality of all inventors is computed using the whole network, stars included. The difference
with the original variable lies in the second step where we average the squared centrality of
only non-star inventors at the EA-Tech level. Formally, let Invno_Stara,f,t be the set of inventors
of the EA-Tech that are not defined as stars. Then the non-star EA-Tech average network
centrality is defined as:

(
cno_Stara,f,t (gt,λ,α,β)

)2
= 1

#Invno_Stara,f,t

×
∑

i∈Invno_Star
a,f,t

c2i,t (gt,λ,α,β) .

Star inventors are defined anew for each year t, based on their production between t−4 and
t.30 An inventor is designated as a ‘star’ if the number of patents he/she produced in a
given 5-year window is strictly greater than the top 1% percentile.31 Those star inventors are
then dropped from the population of inventors of their EA-tech as well as their contribution
to forward inventions. The results of this estimation are reported in Table 8, Model (9).
We find that the estimated connectivity λ and synergy α, are still positive and significant
and the estimated rivalry is still equal to 0. The main difference with our baseline results
comes from the connectivity coefficient which is higher, reaching a value of 8.4%. These
estimations overall mean that the results and the interpretation are hinging on the centrality
of all inventors and not only on the few star inventors present in the EA-Tech.

7.4 The Paris region

The employment areas at least partly located in Ile de France, the Paris region, represent
a very significant amount of French invention. We are thus interested to see whether these
employment areas could drive our results. To check that, we reproduce the baseline model
having dropped all yearly observations of the six EA-tech associated with Ile-de-France. This
leads to Model (10) of Table 8 which does not exhibit significant changes with respect to the
baseline model.

7.5 A different spatial aggregation unit

A common issue arising when dealing with discrete geographical units is the moving areal
unit problem (MAUP). Because space is continuous and geographical units are discrete in
nature, the results can be reliant on the choice of these geographical units. To limit this
issue and assure the robustness of our results, the econometric analysis of the baseline model
is replicated using NUTS3 geographical units. In France, the NUTS3 regions correspond

30The ‘average squared centrality’ for EA-Techs in which only star-inventors reside is set to 1 (which is the
minimum value for this variable), as for EA-Techs in which there is no inventor at all.

31The cut-off for being in the top 1% inventors increases gradually from 8 patents in 1985 to 12 patents in
2002.
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to the ‘départements’ which were defined by the French administration. They are larger
aggregates than the EAs: continental France is divided in 94 NUTS3 regions while there are
a total of 297 EAs.32 Since we are interested only in urban areas, we then use the 80 NUTS3
areas that contain at least one of the 71 urban EAs (remember that EAs are not defined by
administrative boundaries and can span different NUTS3 regions).

The estimates for this geographical unit are reported in Model (11) of Table 10. The
results are qualitatively similar to the main results at the EA level. The coefficient of rivalry
is still found to be equal to 0, while the synergy and connectivity coefficients are positive
with orders of magnitude close to those of the baseline model. Their significance is however
slightly lower.

Controlling for R&D Using NUTS3 areas as spatial aggregation units gives us the oppor-
tunity to control for the R&D expenditures realized at this local level. To this end, we make
use of the French annual R&D surveys for the period 1985-2002, produced by the French
Ministry of Research, on all firms located in France with at least one full time equivalent
R&D employee. Those firms have to report the total amount of their R&D expenditures
realized in each of the French NUTS3 (this information is therefore not available at the EA
level). Then we ran the same regression as Model (11) adding R&D as a new regressor as
presented in Model (12) of Table 10. The introduction of R&D does not change the results
whose coefficient turns out to be positive but not significant. It seems that the number of
inventors already captures most of the effect of companies’ local R&D expenditures.

7.6 Without breaking down the data by technologies

Most of the previous studies in the field (Fleming et al., 2007; Lobo and Strumsky, 2008;
Breschi and Lenzi, 2016) have conducted their analysis at the MSA level, without breaking
down the data by technological fields as we do. We have good reason to do so because it
allows us to use a much more refined set of controls. However, here we replicate the analysis
at the EA level for comparability to these other studies. As we introduce EA and time fixed
effects, the variation now comes only from within-city evolution, without direct controls for
the technology developed in the city. Models (13) to (15) of Table 10 present the main
results. Model (13) mirrors the baseline model. In Model (14) we focus on the “quality” of
the urban production (i.e. the number of citations). Model (15) replicates this last model
but including the number of patents as a control. Overall we find similar patterns: positive
and significant effect of the network with synergy and no rivalry. However, we observe that
the coefficients of connectivity and synergy are above those of the main regressions. This

32The average EA (NUTS3) surface area is 1,818 (5,745) square kilometers.
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would suggest that omitting technology controls may actually lead to a slight overestimation
of the network effects.

7.7 Alternative micro-foundation

In the heuristic model presented in Section 3, agents are assumed to exert efforts, the returns
of which are affected by their network connections. However, these efforts are not observ-
able in the data. In this subsection, we question this assumption by making an alternative
assumption. There are no longer any efforts and the inventive contribution of agent i is
directly equal to his/her productivity: yi = 1 +ψi. Productivity has an autonomous and
a network-based component (in a very similar fashion as in the main model), given by the
following equation:

ψi (g) = λ
∑
j

gijψj (g)α d−βj , (11)

Now α receives a slightly different interpretation: it scales the extent to which an agent’s
productivity increases with the one of her/his partners. Without any form of maximization,
agents’ productivities are again obtained as fixed-point, a solution of the system of equations
induced by Equation (11), for all i. It turns out that we obtain:

y∗i = ci (g,λ,α,β) , (12)

where ci is a centrality measure that depends only on the position of the inventor within the
network and on the three parameters λ, α and β. Therefore, at the equilibrium, the only
difference with the model based on efforts is that here inventors’ productivities are equal to
their centrality whereas in the main model, they are equal to the square of their centrality.
We have thus tested, in Model (16) (Table 10), the same model as Model (2) but using
the average centrality in the EA-Tech instead of the average squared centralities. We find
that the coefficient associated with the main parameter of the centrality measure, λ, is still
positive but no longer significant. This therefore suggests that the model including efforts is
better in line with the data. This supports the interpretation of our findings.

8 Conclusion

In this paper, we re-examine the role of collaborative networks between inventors in urban
invention. This role has been challenged in the recent literature, which has sought to clarify
the effects of agglomeration vs. the effects of networks on the inventive performance of
cities. We first introduce a stylized model linking an inventor’s productivity to his/her
network connections, associating inventors’ productivity to the square of their centrality
in the network. Our centrality is generic so that the network can presumably affect the
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innovation performance in different ways. We then test which premisses on the way agents
affect their neighbors’ research productivity best predict future inventions in cities, while
controlling for various agglomerative features of cities.

Our results suggest that network connections clearly matter for urban invention. Cities
benefit from their inventors’ networks in a way which suggests that inventors’ productivity
increases with their partners’ efforts (synergy effect) in a non-rival manner. That is to say,
agents’ productivity is improved thanks to their partners’ efforts without being impaired
by other inventors jointly benefiting from those partners. Non-rivalry of connections and
synergy effect could provide a new view on interactions between knowledge workers. Improved
productivity seems not to come from knowledge that would simply spill over, flowing through
connections in a passive way. Rather, it would result from interacting with partners in
professional networks that may involve the exchange, confrontation and enrichment of ideas
which increase partners’ productivity. From a methodological point of view, our results also
indicate that the effects of existing centrality measures such as Degree or Katz-Bonacich
should be treated cautiously as they may hide some more complex realities on how networks
matter.

In terms of policy, the conclusions of the paper support local public policies aiming at
increasing connectivity of inventors (within and outside cities) and at attracting central
agents. The role of star inventors, emphasized in many innovation studies since Zucker and
Darby (1996), is here highlighted on the grounds of their role in networks. Central agents are
beneficial to, and benefit from, their numerous collaborators’ productivity without rivalry,
and that effect propagates in the network. Of course, these effects have been tested on
French inventors only. Natural extensions include the application to other countries, other
geographical scales, or even to other contexts.
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Appendix

A.1 A more general form of the model

This section follows the model developed in Section 3.1 and shows that the introduction of
new parameters in this model imply no significant change to the results.

Consider the following new productivity and utility functions:

yi = ei (γ1 +ψi (g,e−i)) ,

ui = ei (γ1 +ψi (g,e−i))−
γ2
2 e

2
i ,

where γ1 is the inventor’s own productivity without any collaborator and γ2 is a parameter
scaling the disutility of the effort. Those modifications imply no significant change to the
result.

Indeed, with those new parameters, the equilibrium effort of each inventor, e∗i (g,λ,α,β,γ1,γ2),
must respect the following system of equations:

e∗i = γ1
γ2

+ λ

γ2

∑
j

gij
(
e∗j
)α
d−βj , ∀i.

Denoting γ = γ1/γ2 and dividing by γ yields:

e∗i
γ

= 1+ 1
γ
× λ

γ2

∑
j

gij
(
e∗j
)α
d−βj ,

⇔ e∗i
γ

= 1+γ−(1−α) λ

γ2

∑
j

gij

(
e∗j
γ

)α
d−βj .

Note that by writing ẽ∗i ≡ e∗i /γ, then ẽ∗i respects the centrality defined by Equation (3) and
thus can be written as ẽ∗i = ci

(
g,γ−(1−α)λ/γ2,α,β

)
. This shows that we have the following

equivalence:

e∗i (g,λ,α,β,γ1,γ2) = γci

(
g,γ−(1−α) λ

γ2
,α,β

)
.

Thus including the two parameters, γ1 and γ2, to the productivity and the utility functions
would merely lead to the introduction of a proportionality coefficient to the centrality measure
at equilibrium without providing any distributional change.

A.2 Existence and unicity of the centrality when α = 1

When α = 1, the centrality has a closed-form and can be obtained as:
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c(g,λ,α = 1,β) = (I−λg̃ (β))−1 1, (13)

where 1 is a n vector of ones and g̃ (β) is the matrix of typical element g̃ij (β)≡ gij/dβj if gij=1
(which ensures that dj > 0) and zero otherwise. Note that g̃ (β) is equal to the adjacency
matrix if β = 0, and to the column standardized adjacency matrix if β = 1. c(g,λ,α = 1,β)
is the vector of all centralities.

The solution of the system of linear equations characterized by Equation (13) does not
generically admit a positive solution when λ is greater than or equal to the inverse of the
largest eigenvalue of the matrix g̃ (β). In our model, efforts make sense only if positive, and
thus so do the centralities. The matrix (I−λg̃ (β)) is invertible, and its inverse matrix is
unique and non-negative (implying that its product with 1 is positive) if λ < 1/s(β) where
s(β) is the largest eigenvalue of the non-negative matrix g̃ (β) (this matrix contains only
positive elements).33 Such condition on g̃ (β) implies that equilibrium efforts cannot be
calculated for any network, connectivity and rivalry.

A.3 Existence and unicity of the centrality when α ∈ [0;1[

In this section we demonstrate Theorem 1. As when λ = 0 and when α = 0 the proof is
trivial, in what follows we consider only λ > 0 and α ∈ ]0,1[. We essentially show that the
properties of Equation (3) allows us to apply theorems introduced by Kennan (2001) which
establishes that there is one and only one positive solution.

Let the function f : Rn+→ R
n
+ be given by:

f (x) = 1+λGxα,

where x ∈ Rn+, 1 is a n-vector of ones, λ > 0 and α ∈ ]0;1[ are fixed scalars, and G is a n×n
matrix of typical element Gij such that Gij ≥ 0, ∀i, j. The vector xα is defined as the vector
whose ith element is given by (xα)i = xαi . If we replace G by g̃ (β) as defined in A.2, we have
exactly Equation (13).

The function f is increasing as its first derivatives, given by

∂fi(x)
∂xj

= αλGijx
−(1−α)
j , ∀i, j,

are positive.

Let ĝ ≡ max
{
Gij/(i, j) ∈ {1, . . .n}2

}
. Since α ∈ ]0,1[, there exists an x̂ ∈ R+ such that

x̂ > 1 +λĝx̂α (note that limx̂→+∞ x̂/(1+λĝx̂α) = +∞). Let X̂ be the Rn+ vector such that
33See theorem III∗ of Debreu and Herstein (1953) for a formal proof.
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X̂i = x̂,∀i. We thus have f
(
X̂
)

= 1 +λGijX̂
α ≤ 1 +λĝX̂α < X̂. As we also have f (0) > 0,

we can thus apply Theorem 3.2 of Kennan, 2001 (implied by Tarski’s theorem) which states
that if f is increasing, if for a positive vector a, f(a)> a and if f(b)< b for some vector b > a,
then f has a positive fixed point. We now turn to unicity.

Let function h be defined by h(x) = f (x)−x. Assume further that xf is a fixed point
of function f so that f

(
xf
)

= xf and h
(
xf
)

= 0. For any δ such that 0 < δ < 1, we have
f
(
δxf

)
= 1+λG

(
δxf

)α
= 1+δαλGxαf = 1+δα

(
f
(
xf
)
−1

)
= 1+δα

(
xf −1

)
. As α ∈ ]0,1[,

we have δα > δ and δα < 1, and thus 1 + δα
(
xf −1

)
> δxf . Therefore h

(
δxf

)
> 0. This

means h is strictly R-concave. We can thus apply Corollary 3.1 of Kennan (2001) which
states that if function f is quasi-increasing and h is strictly R-concave, then there is at most
one positive fixed point of f . As we have shown this fixed point exists, it is then also unique.
This ends the proof of Theorem 1.2

A.4 How does the parameters’ estimation work? An example

This section is intended to provide an example of how we estimate the parameters λ, α and β.
We consider a Poisson maximum likelihood framework to estimate the centrality parameters.
However as the centrality parameters are not linearly separable, we use a Poisson econometric
model with a non-linear right hand side. We here introduce a simple example to illustrate
how this non-linear estimation works.

First, consider, as in the previous section, the simple network depicted by Figure 2.
Then, assume that each node produces a specific outcome and that we aim to estimate the
link between the node’s centrality and it’s outcome. The estimated relationship is then the
following:

E (outcomei) = constant×Centrality2
i (λ,α,β) , (14)

where subset i refers to the node.
The regression of this equation should provide centrality parameters estimates such that

the nodes with the highest centrality should also be the ones with the highest outcome.
To illustrate this point we create four different sets of outcomes, each providing a different

ordering of the nodes. For each of these sets of outcomes, depicted in Table 11, we then
estimate Equation (14) via Poisson maximum likelihood and we also report the estimated
parameters in Table 11. The main point is that each set of outcome leads to a different set
of estimated centrality parameters. How the parameters are estimated is best described by
Figure 3 which depicts the outcome of each node (y-axis) as well as their centrality for the
estimated parameters (x-axis).

This figure confirms that the method has estimated centrality parameters so as to provide
the highest centrality to the nodes with the highest outcome.
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Table 11: Four sets of outcome and the estimated parameters of Equation (14) for each set
of outcome.

Node Estimated Parameters
1 2 3 4 5 6 7 λ̂ α̂ β̂

Outcome 1 5 3.5 3 2 3 1 0 1.5 0 0.34
Outcome 2 2.5 5 5 3 6 1 0 0.28 0.985 0
Outcome 3 5 7 3 4 8 1 2 0.42 0.42 0
Outcome 4 5 4 2 1 3 6 7 0 0.28 0.39

Note that for the fourth set of outcomes, where the nodes 6 and 7 have the highest
outcome, the estimated value of λ is 0 since the centrality parameters were not able to rank
these two nodes high. This situation means that the centrality is irrelevant to explain this
outcome distribution and therefore as λ̂ is equal to 0, the two parameters α̂ and β̂ cannot be
interpreted.

The results in Section 6 relate to the same idea: the estimated parameters are such that
the EA-Techs with the highest future innovation output have the highest centrality. Similarly
to this example, if the centrality measure were not relevant, then λ would have an estimated
value of 0.

Code used to run the example (R software) Finally we provide the code used for the
simple example of this section: from the construction of the network, via the calculus of the
centrality, to the estimation of the parameters. This code is written in the language of the
free statistical software R.34

# Defining the network
# The matrix G represents the adjacency matrix of the network depicted in Figure 1
G = matrix(0, 7, 7) # an empty 7x7 matrix
# We add the 10 edges of the network
G[1,2] = G[1,5] = G[1,6] = G[1,7] = G[2,3] = G[2,4] = G[2,5] = G[3,4] = G[3,5] = G[4,5] = 1
G = G + t(G) # G is symmetric, we add its transpose
# Defining the function to get the network centrality
abCentrality = function(G, lambda, alpha, beta){

n = nrow(G)
# We compute the matrix G_tilde(beta)
degree = pmax(rowSums(G), 1)
G_d = t(G/(degree^beta))
# We start at the vector of 1, and iterate until convergence (ie reaching a fixed point)
C_old = rep(1, n)
iterMax = 1000 # Just a control to avoid possible problems
iter = 0

34The code used in the text is more complex since the centrality of each inventor is aggregated at the
EA-Tech level. However, this lengthier code used to get the paper’s results is available on request.
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Figure 3: Illustration of the link between the set of outcomes and the estimated parameters.
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Notes: This graph represents the results of the regression described by Equation (14) via Poisson maximum
likelihood. All regressions are based on the same network depicted by Figure 2.
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maxDiff = Inf # The algorithm stops when maxDiff < 0.0001
while(maxDiff>1e-4 & (iter <- iter+1)<iterMax){

C_new = 1 + lambda * G_d %*% C_old^alpha
maxDiff = max(abs(C_new - C_old))
C_old = C_new

}
if(iter == iterMax) stop("Error: Maximum iterations reached.")
return(C_new)

}
# Defining the centrality function that will be used in the optimization process:
centFun = function(alpha, beta, lambda){

# G is a global variable (i.e. should be loaded in the global environment)
cent = abCentrality(G, lambda = lambda, alpha = alpha, beta = beta)
return(cent**2) # the squared centrality is returned

}
# Defining the outcomes (i.e. the dependent variable of the regression)
# There is 7 nodes in the network => we create the vector containing the outcome of each of the nodes
# As in Table 8
myData = data.frame(outcome_1 = c(5, 3.5, 3, 2, 3, 1, 0),

outcome_2 = c(2.5, 5, 5, 3, 6, 1, 0),
outcome_3 = c(5, 7, 3, 4, 8, 1, 2),
outcome_4 = c(5, 4, 2, 1, 3, 6, 7))

# Running the regression (note that we bound the values of lambda, alpha and beta)
# (abbreviation: ’NL’ means non-linear)
# install.packages("FENmlm") # installation of the package if necessary
# help(feNmlm) # Documentation of the function feNmlm
library(FENmlm)
res = feNmlm(outcome_1 ~ log(centFun(alpha, beta, lambda)), # The dep. var. and the NL formula

myData, # The data
~ 1, # We manually add the intercept
start = list(lambda=0.1, alpha=0.2, beta=0.3), # Starting values of the NL part
lower = list(lambda = 0, alpha = 0, beta = 0), # Lower bounds of the NL parameters
upper = list(alpha = 0.99, beta=1)) # Upper bounds of the NL parameters

# We look at the results
summary(res)
# For the results for other outcomes, just change the name of the dependent variable

A.5 Varying values of the elasticity

The empirical model of Section 4 assumes the same elasticity, τ , between the number of in-
ventors and the EA-Tech average squared centrality. In this section, we relax this assumption
and re-do the baseline econometric analysis, Model (2) of Table 7, for varying elasticities of
the average squared centrality. More specifically, instead of Equation (10), we estimate the
following equation:

E
(
Ya,f,t+1

)
= da,f ·df,t ·

∏
k

Xθk
k,a,f,t · Inv

γ
a,f,t · c2a,f (gt,λ,α,β)

τ
,

assuming a value of the elasticity τ ranging from 0.2 to 1 by 0.1 increments. In all 8 estima-
tions, we find a rivalry coefficient at its lower bound, 0, similarly to the main results. Figure 4
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summarizes the other results. As clearly shown in the figure, we see that the connectivity
coefficient and the synergy coefficients remain positive and statistically significant. Looking
at the overall effect of the centrality variable on future innovation, we also see that the mag-
nitude of the effect and its 95% confidence interval remain fairly stable despite the variation
in the elasticity. Therefore, our main results, namely positive effect of the network on urban
invention with synergy and no rivalry, are not altered when relaxing this assumption.
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Figure 4: Consequence of changing the elasticity of the city average squared centrality.

(a) Coefficient and 95% confidence interval estimates of connec-
tivity (λ) for varying values of the elasticity of the average squared
centrality variable.
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(b) Coefficient and 95% confidence interval estimates of connec-
tivity (λ) for varying values of the elasticity of the average squared
centrality variable.
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(c) Increase in future urban invention due to a one standard devi-
ation increase in the network-centrality of all inventors of an EA-
Tech, for varying values of the elasticity of the average squared
centrality variable.
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