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Impact of Residual Additive Transceiver Hardware
Impairments on Rayleigh-Product MIMO Channels
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Abstract—Despite the importance of Rayleigh-product
multiple-input multiple-output (MIMO) channels and their
experimental validations, there is no work investigating their
performance in the presence of residual additive transceiver
hardware impairments, which arise in practical scenarios.
Hence, this paper focuses on the impact of these residual
imperfections on the ergodic channel capacity for optimal
receivers, and on the ergodic sum-rates for linear minimum
mean-squared-error (MMSE) receivers. Moreover, the low and
high-signal-to-noise ratio (SNR) cornerstones are characterized
for both types of receivers. Simple closed-form expressions are
obtained that allow the extraction of interesting conclusions. For
example, the minimum transmit energy per information bit for
optimal and MMSE receivers are not subject to any additive
impairments. In addition to the exact analysis, we also study
the Rayleigh-Product channels in the large system regime, and
we elaborate on the behavior of the ergodic channel capacity
with optimal receivers by varying the severity of the transceiver
additive impairments.

Index Terms—Ergodic capacity, Rayleigh-product channels,
hardware impairments, massive MIMO, MMSE receivers.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) systems have re-
ceived an enormous attention in terms of understanding
the fundamental capacity limits of various models [2]–[4].
However, the potential benefits of MIMO have been mostly
considered in rich scattering conditions, described by a full
rank channel matrix. In practice, there are environments, where
the “richness” is not fulfilled due to insufficient scattering [5]
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or the “keyhole” effect [6]. In such cases, a rank deficiency,
concerning the channel matrix, appears. The physical expla-
nation behind this rank deficiency is the description of the
double scattering effect1 [6]–[13]. This phenomenon was ex-
perimentally validated in [8], [9], [11], while its mathematical
characterization is given by the product of two statistically
independent complex Gaussian matrices. Interestingly, when
the antenna elements and the scattering objects are sufficiently
separated, the effective spatial correlations can be ignored,
resulting in the Rayleigh-product model2.

Plenty of works have studied the double scattering models in
different settings, and in particular, the double Rayleighmodel,
which is the special case of double scattering model with
identity transmitter, scatter and receiver correlation matrices.
For example, the derivation of an ergodic capacity upper bound
for this channel was carried out in [13]. In particular, its
performance with the low complexity linear minimum mean-
squared-error (MMSE) receivers was investigated recently
in [14]. However, the misleading standard assumption in the
context of double Rayleigh channels, considered in the existing
literature, includes ideal transceiver hardware, which isfar
from reality.

Inevitably, practical transceivers present hardware imper-
fections such as high power amplifier non-linearities and in-
phase/quadrature (I/Q) imbalance [15]–[26]. The hardware
impairments can be mainly classified into two categories.
In the first category, the effect of hardware impairments
is modeled as a multiplicative factor to the channel vector
causing channel attenuation and phase shifts. Note that this
factor cannot be incorporated by the channel vector by an
appropriate scaling of its covariance matrix or due to the
property of circular symmetry of the channel distribution,

1The double scattering effect includes both rank-deficiencyand spatial
correlation.

2It should be noted that the Rayleigh product channel can leadto a
keyhole in the extreme case of only one scatterer. Although the keyhole
channel has been studied intensively in the literature, it is still unclear how
often this appears in real situations [9]. However, the Rayleigh product is a
generalization of the keyhole channel and can capture a muchwider range of
scattering environments. In this direction, the next step would be to consider
parametric channel modes which depend on the angles or transmission and
arrival given a set of scattering clusters. This would require a different
analytical approach since the i.i.d. properties of the channel coefficients no
longer hold and it is reserved for future work.
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when it changes faster than the channel. An example is the
phase noise, which accumulates within the channel coherence
period [18], [27]. On the other hand, the aggregate effect
from many impairments can be described by an additive
system model [15], [16], [22]–[26], [28], [29], where the
impairments are modeled as independent additive distortion
noises at the base station (BS) as well as at the user. It is
a well-established model due to its analytical tractability and
the experimental verifications [16]. These kind of impairments
emerge as residual hardware impairments after the application
of inadequate compensation algorithms. Several reasons lead
to this inadequacy such as the imperfect parameter estimation
caused by the randomness and the time variation of the
hardware characteristics, the inaccuracy coming from limited
precision models, unsophisticated compensation algorithms,
etc [15], [16]. In particular, non-ideal hardware sets a finite
capacity limit at high signal-to-noise ratio (SNR), where the
authors considered only transmitter impairments [15], [16],
[21]. The impact of additive hardware impairments has been
studied for various channel models, e.g., point-to-point MIMO
channels, amplify-and-forward (AF) relay systems, and het-
erogeneous networks [21]–[23], [28]. This paper grapples
with the thorough investigation of residual additive hardware
impairments in Rayleigh-product MIMO channels, while mul-
tiplicative impairments are left for future work.

Turning the focus into the emerging technology of massive
MIMO, where a BS is deployed with a large number of
antennas and achieves a number of interesting properties such
as high gain and the ease of implementation, most works as-
sume ideal transceiver hardware [30]–[33]. Given that massive
MIMO systems are supposed to be implemented with low-cost
hardware, and hence are more prone to impairments, this is a
strong assumption. As a result, there is a meaningful turn ofthe
attention towards the direction of previous study regarding the
hardware impairments [27], [28]. For example, [27] showed
that massive MIMO systems are more tolerant to hardware
impairments. Moreover, the authors in [28], considering the
additive transceiver impairments, extended the analysis of [21]
to massive MIMO for arbitrary SNR values. It is worthwhile
to mention that the double scattering channel has been already
investigated for massive MIMO systems, which is one of
the prominent technologies for 5G of [34], [35]. Moreover,
it should be noted that the keyhole channel is a first step
towards the double scattering channels which is a suitable
model for characterizing the scattering limitations of higher
frequencies envisaged in the fifth generation (5G) networks.
Although these models have limitations in terms of accurately
matching the measurement campaigns, we believe that they
will remain useful tools for theoretical analysis of wireless
system performance3.

In this paper, assuming that the channel state information
(CSI) is not known at the transmitter side but it is perfectly
known at the receiver, we focus on the investigation of the
ergodic capacity with residual transceiver impairments inthe
context of double Rayleigh channels with optimal and linear

3It is worthwhile to mention with a fair degree of caution thatthis model
has not been validated by measurements and at this stage, it should be treated
as a proposed model rather than the correct model.

receivers (MMSE) in both regimes of finite and asymptotically
large MIMO4. It is worthwhile to mention that the study of
double Rayleigh channels is quite important in massive MIMO
systems and millimeter wave (mmWave) communications sug-
gested for the forthcoming 5G networks. For example, in urban
environments, double Rayleigh channels are more probable,
and it is crucial to investigate their realistic behavior when
residual hardware impairments are considered. Due to high
operating frequencies and wider bandwidths, it is important
to analyze the effect of transceiver hardware impairments
for the realistic performance evaluation of mmWave systems
[36], [37]. In this regard, recent experimental results in the
literature [37] have demonstrated that the achievable datarate
in wideband mmWave systems is severely limited by the
local oscillator phase noise resulted due to the multiplicative
noise added while performing frequency multiplication of low-
frequency local oscillator to a high frequency.

Furthermore, it is of great interest to show how the defi-
ciency of the channel matrix, i.e., the number of scatterers
affects the capacity by means of a thorough analysis in the
presence of the residual impairments in both the conventional
and large numbers of antennas regimes. In fact, although [14]
provides a similar analysis, we clearly differentiate from
this, since we incorporate the inevitable residual additive
transceiver impairments. In addition, the current paper delves
into the large system limit, thus leading to further insights. To
the best of our knowledge, there appears to be no analytical
results investigating the impact of transceiver impairments
for double Rayleigh channels5. In this direction, this paper
provides the following specific contributions:

• We study the ergodic channel capacity with optimal
receivers and the achievable sum-rate with linear MMSE
receivers for double Rayleigh channels in the presence
of residual transceiver hardware additive impairments.
Specifically, we derive novel exact analytical expressions.

• Towards obtaining more engineering insights, we further
investigate the low and high-SNR regimes by deriving
simple closed-form expressions for each type of receiver.
These results shed more light on the performance of
rank deficient channels in the realistic case, where the
inevitable imperfect hardware is present.

• Based on the proposed system model, we provide the
ergodic channel capacity with optimal receivers for dou-
ble Rayleigh channels under the presence of residual
hardware impairments in the large system limit by using
a free probability (FP) analysis.

The remainder of the paper is organized as follows: Sec-
tion II presents the system and signal models with both ideal
and imperfect hardware. In Section III, we provide a detailed
study of ergodic capacity for Rayleigh-product channels with
optimal receivers including the characterization of the low and
high-SNR regimes. To this direction, we perform a similar

4Among the linear receivers, we have chosen the MMSE receivers because
they provide the higher performance with reasonable complexity, especially,
in the large system regime, where the statistical expressions become determin-
istic.

5The behaviour of double Rayleigh channels in the large system limit
without any transceiver hardware impairments has been studied only in [34].



3

analysis for the sum-rate of linear MMSE receivers in Sec-
tion IV. With concern to the large system limit, where the
numbers of antennas and scatterers tend to infinity, but with
a given ratio, Section V elaborates on the investigation of
Rayleigh-product MIMO channels in the presence of hardware
impairments in the large antenna regime. Finally, concluding
remarks are given in Section VI.

Notation: Vectors and matrices are denoted by boldface
lower and upper case symbols. The⊗ symbol denotes the Kro-
necker product. The transpose, Hermitian transpose, and trace
operators are represented by(·)T, (·)H, andtr(·), respectively.
Additionally, Γ (z) =

∫∞

0
tz−1e−tdt andGm,n

p,q

(

x
∣

∣

α1,...,αp

β1...,βq

)

are the Gamma function [38, Eq. 8.310] and the Meijer G-
function [38, Eq. 9.301], respectively. The form ofA/B,
where A and B are matrices, denotesAB−1 with B−1

standing for the inverse of the matrixB. The first and the
second derivatives are denoted by∂∂ρ or (·)

′

and ∂2

∂ρ2 or (·)
′′

,
respectively. The expectation operator and the determinant of
a matrix are denoted byE [·] and det(·), respectively. The nota-
tionsCM andCM×N refer to complexM -dimensional vectors
andM×N matrices, respectively. Thediag{·} operator gener-
ates a diagonal matrix from a given vector, andIN denotes the
identity matrix of sizeN . Moreover,b ∼ CN (0,Σ) denotes
a circularly symmetric complex Gaussian vector with zero-
mean and covariance matrixΣ signifies the positive part of
its argument, whileX ∼ CN (M,Σ⊗Ψ) denotes thatX is a
Gaussian distributed matrix with mean matrixM ∈ Cp×q and
covariance matrixΣ ⊗ Ψ whereΣ ∈ Cp×p andΨ ∈ Cq×q

are Hermitian matrices withp ≤ q.

II. SYSTEM MODEL

We take into consideration the canonical flat-fading point-to-
point MIMO channel withM transmit antennas andN receive
antennas, as depicted in Fig. 1(a). Mathematically speaking,
the received signal in vector form is written as

y = Hx+ z, (1)

where x ∈ CM×1 is the zero-mean transmit Gaussian vec-
tor with covariance matrixE [xxH] = Q = ρ

M IM , and
z ∼ CN (0, IN ) denotes the additive white Gaussian noise
(AWGN) noise vector at the receiver. Note thatρ represents
the SNR, since we have assumed that the channel gain
and receiver noise power are normalized. Especially,H ∈
CN×M ∼ CN (0, IN ⊗ IM ) represents the Rayleigh-product
MIMO channel, exhibiting flat-fading in the presence of a
number of scatterers. More concretely,H is described as

H =
1√
K

H1H2, (2)

whereH1 ∈ CN×K ∼ CN (0, IN ⊗ IK) andH2 ∈ CK×M ∼
CN (0, IK⊗ IM ) are random matrices withK quantifying the
number of scatterers in the propagation environment [6].

Unfortunately, the common assumption of ideal hardware,
possibly leading to misleading results, is not realistic because
both the transmitter and the receiver suffer from certain
inevitable additive impairments such as I/Q imbalance and
high power amplifier (HPA) nonlinearities [15]. In fact, mit-
igation schemes are applied at both the transmitter and the

receiver. However, the emergence of various distortion noises
is unavoidable due to residual impairments [15], [16], [23],
[27]. Consequently, hardware transmit impairments inducea
mismatch between the intended signal and what is actually
transmitted during the transmit processing, and similarly, a
distortion of the received signal at the receiver side is produced
due to imperfect receiver hardware. As mentioned in Section-
I, these residual impairments can be modeled in terms of
distortions, which can be: a) multiplicative, when the received
signals are shifted in phase; b) additive, where the distortion
noise is added with a power proportional to the transmit signal
power and the total received signal power; and c) amplified
thermal noise. A generic model, including all these hardware
impairments, is written as

yn = ΘnH(Ψnxn + ηt,n) + ηr,n + ξn, (3)

where the additive termsηt,n and ηr,n denote the distor-
tion noises at timen coming from the residual impair-
ments in theM antennas transmitter andN antennas re-
ceiver, respectively, as shown in Fig. 1(b). Moreover,Θn =

diag
{

ejθ
(1)
n , . . . , ejθ

(N)
n

}

∈ CN×N is the phase noise sample
matrix because of the imperfections in the local oscillators
(LOs) of the receiver, whileΨn=diag

{

ejψ
(1)
n , . . . , ejψ

(M)
n

}

∈
CM×M is the the phase noise sample matrix because of
the imperfections in the LOs. The phase noise expresses the
distortion in the phase due to the random phase drift in the
signal coming from the LOs of both the transmitter and the
receiver during the up-conversion of the baseband signal to
passband and vice versa. The phase noise during thenth time
slot can be described by a discrete-time independent Wiener
process, i.e., the phase noises at the LOs of themth antenna
of the transmitter andkth antenna of the receiver are modeled
as [27]

ψm,n = ψm,n−1 + δψm
n (4)

θk,n = θk,n−1 + δθkn , (5)

where δψm
n ∼ N (0, σ2

ψm
) and δθkn ∼ N (0, σ2

θk
). Note that

σ2
i = 4π2fcciTs, i = ψm, θk describes the phase noise

increment variance withTs, ci, and fc being the symbol
interval, a constant dependent on the oscillator, and the carrier
frequency, respectively. Furthermore, some components such
as the low noise amplifier and the mixers at the receiver
engender an amplification of the thermal noise, which appears
as an increase of its variance [27]. In fact, the total effect
ξn can be modeled as Gaussian distributed with zero-mean
and varianceξnIN , where σ2 = 1 ≤ ξn is the corre-
sponding parameter of the actual thermal noise. Note that all
the impairments are time-dependent because they take new
realizations for each new data signal. Remarkably, the recent
work in [39] proposed the rate-splitting approach as a robust
method against the residual multiplicative transceiver hardware
impairments. Although these impairments are residual [39],
this work showed the robustness of rate-splitting over the
multiplicative impairments, while the additive impairments
can be mitigated with this approach. Note that the topic of
further dealing with other methods and strategies to mitigate
the residual impairments is left for future work.
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Focusing on the manifestation of only the residual additive
transceiver impairments, the generic model, after absorbing the
subscriptn, becomes6

y = H(x+ ηt) + ηr + z (6)

= hmxm +

M
∑

i=1,i6=m

hixi +Hηt + ηr + z, (7)

where,xm is the transmit signal from themth transmit an-
tenna. A general approach, validated by measurement results,
considers the assumption that the transmitter and the receiver
distortion noises are Gaussian distributed with their average
power being proportional to the average signal power [15],
[16], [28], and references therein7. In other words, the distor-
tion noises are modelled as8

ηt ∼ CN (0, δ2t diag (q1, . . . , qM )), (8)

ηr ∼ CN (0, δ2r tr (Q) IN ), (9)

whereδ2t andδ2r are proportionality parameters describing the
severity of the residual impairments in the transmitter andthe
receiver. Moreover,q1, . . . qN are the diagonal elements of the
signal covariance matrixQ. Hence, taking into account for
the form of the covariance matrixQ, the additive transceiver
impairments are expressed as

ηt ∼ CN (0, δ2t
ρ

M
IM ), (10)

ηr ∼ CN (0, δ2r ρIN ). (11)

In the following sections, we provide the theoretical analysis
and we verify the analytical results with the help of numerical
results. Subsequently, we illustrate the impact of impairments
on the ergodic capacity of Rayleigh-product channels with
optimal receivers and the ergodic sum rate of the Rayleigh-
product channels with MMSE receivers.

III. E RGODIC CHANNEL CAPACITY ANALYSIS

In this section, we investigate the impact of residual hard-
ware impairments on the ergodic channel capacity of Rayleigh-
product MIMO channels with optimal receivers, when the
number of antennas is arbitrary, but finite. Also, we assume

6Note that (7) reduces to the ideal model (1) forδt = δr=0, which indicates
ideal hardware on both sides of the transceiver.

7The circularly-symmetric complex Gaussianity, verified experimentally
(see e.g., [40, Fig. 4.13], can be also justified by means of the central
limit theorem (CLT), since we assume the aggregate contribution of many
independent impairments.

8Two basic approaches in the literature are followed for describing the
receive distortion noises. Their difference lies on both the mathematical
expression and physical meaning, where two types of randomness appear
when the received power is measured. The first approach includes the channel
variations, while the second one concerns the energy-variations in the wave-
form/modulation (the Gaussian codebook in our case). Hence, in several works
(e.g., see [27]), the authors take the average over the waveform/modulation,
i.e., the transmit signal, but not over the channel coefficients. For the sake of
simplified mathematical exposition and analysis, in this work, we follow the
second approach, where we take the average over both the channel variations
and the waveform [23], [28]. Following this direction, our analysis is more
tractable, while revealing at the same time all the interesting properties. It is
worthwhile to mention that the model that is closest to reality does not apply
any average.

Noise
z

Rayleigh-Product
Channel

with K scatterers

BS (M antennas)

Intended signal
x

BS (N antennas)

Received signal
y

(a)

Noise
z

Rayleigh-Product
Channel

with K scatterers

BS (M antennas)

Intended signal
x

Transmitter Distortion
!

t

Receiver Distortion
!

r

Received signal
y

BS (N antennas)

(b)
Fig. 1. (a) Conventional Rayleigh-product MIMO system withK scatterers
and ideal transceiver hardware. (b) Rayleigh-product MIMOsystem withK
scatterers and residual additive transceiver hardware impairments.

that no CSI is known at the transmitter side but it is perfectly
known at the receiver. In particular, the following proposition
allows us to express the ergodic capacity, when optimal
receivers are employed. Actually, it provides the startingpoint
for the subsequent derivations.

Proposition 1:The ergodic channel capacity of a practical
Rayleigh-product MIMO channel with optimal linear receivers,
but with residual additive transceiver impairments under the
constrainttrQ ≤ ρ is given by

Copt(ρ,M,N,K,δt,δr)=E

[

log2det
(

IN+
ρ

M
HHHΦ−1

)]

, (12)

whereΦ= ρ
KM δ2tH1H2H

H

2H
H

1+
(

ρδ2r + 1
)

IN .
Proof: It can be seen that (7) is an instance of the standard

MIMO channel given by (2) for any channel realizations
H1,H2 and transmit signal covariance matrixQ, being a
scaled identity matrix, but with a different noise covariance
given by

Φ =
δ2t
K

H1H2diag (q1, . . . , qM )HH

2H
H

1

+
(

δ2r trQ+ 1
)

IN . (13)

In such case, the ergodic capacity is written as

Copt (ρ,M,N,K)= max
Q:trQ≤ρ

E
[

log2det
(

IN+HQHHΦ−1
)]

.

Taking into account for the sufficiency and optimality of the
input signalx, since it is Gaussian distributed with covariance
matrixQ = ρ

M IM [2], the proof is concluded. Note that there
is no need of optimization ofQ, since we have no CSIT. For
this reason, we use unit covariance.

In what follows, we refer tom = max(M,N), n =
min(M,N), p = max(m,K), q = min(m,K), s =
min(K,n), t = max(K,n), and δ̃2t = 1 + δ2t , as well as for

notational convenience we denotef1 (ρ) =
ρ

KM (1+δ2t )
ρδ2r +1 and

f2 (ρ) =
ρ

KM
δ2t

ρδ2r+1 .
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A. Exact Expression

Herein, we focus on the study of realistic Rayleigh-product
channels with optimal receivers. In particular, the following
theorem, presenting the ergodic capacity of Rayleigh-product
channels with optimal receivers in the presence of hardware
impairments, being one of the main contributions of this paper,
is of high interest.

Theorem 1:The ergodic capacity of practical Rayleigh-
product channels with optimal receivers, accounting for resid-
ual additive hardware transceiver impairments, is given by

Copt(ρ,M,N,K, δt, δr)=A (C1(ρ,M,N,K, δt, δr)

−C2(ρ,M,N,K, δt, δr)), (14)

where

A =
K
ln 2

s
∑

i=1

s
∑

j=1

Gi,j
Γ (p− s+ j)

(15)

with

K =

(

s
∏

i=1

Γ (s− i+ 1)Γ (t− i+ 1)

)−1

, (16)

andGi,j is the (i, j)th cofactor of ans × s matrix G whose
(u, v)th entry is

[G]u,v = Γ (t− s+ u+ v − 1) .

Especially, regardingCi for i = 1, 2, we have

Ci (ρ,M,N,K, δt, δr) = G 1,4
4,2

(

fi
∣

∣

a1,a2,1,1
1,0

)

, (17)

wherea1 = s+ 2− i− j − t, anda2 = s+ 1− p− j.
Proof: See Appendix B.

Remark 1:In the case of ideal transceiver hardware, where
δt = δr = 0, Theorem 1 coincides with [14, Lemma 3].

The complicated expression of the capacity of optimal
receivers, provided by Theorem 1 does not allow a simple
analysis that would reveal the impact of various system
parameters. Hence, we focus onto the asymptotic high and low
SNR regimes. In fact, we derive simple expressions enabling
valuable physical insights into the system performance.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

Fig. 2. Per-antenna ergodic capacity of Rayleigh product channels with
optimal receivers for different levels of impairment severity at the transmitter
and receiver (K = 3, M = 4, N = 5).

Fig. 2 presents the per-antenna ergodic capacity of Rayleigh-
product channels with optimal receivers consideringK = 3,
M = 4, N = 5. Both theoretical and simulated results are
presented for the cases with and without residual transceiver
hardware impairments9. The theoretical curve for the case
without impairments was obtained by following the analy-
sis considered in [14]. Whereas, the theoretical curves for
the practical case with hardware impairments were obtained
by evaluating (14). Furthermore, the simulated curves were
obtained by averaging the corresponding capacities over103

random instances ofH1 andH2. It can be noted from Fig. 2
that the proposed capacity expression matches well with the
Monte Carlo (MC) simulation for the arbitrary finite values of
K, M andN . Most importantly, we note that in the absence
of residual hardware impairments, i.e.,δt = 0, δr = 0, the
per-antenna ergodic capacity monotonically increases with the
increase in the value ofρ. However, in the presence of residual
hardware impairments, the ergodic capacity first increaseswith
the increase in the value ofρ and then gets saturated after a
certain value ofρ. Besides, the capacity gap in the presence
of impairments as compared to the case without impairments
increases with the increase in the value ofρ. Moreover, another
important observation from Fig. 2 is that the per-antenna
ergodic capacity decreases with the increase in the severity
of the residual hardware impairments. In particular, the lower
the quality of transceiver hardware (higher severity), theearlier
the saturation point appears.

Number of Scatterers, K
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E
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it
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s/
H
z
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2

2.5

3

3.5

4

4.5

5

δt = 0, δr = 0
δt = 0.08, δr = 0.08
δt = 0.15, δr = 0.15

Fig. 3. Per-antenna ergodic capacity versus number of scatterers for Rayleigh
product channels with optimal linear receivers (ρ = 20 dB, M = 4, N = 5).

In addition, Fig. 2 demonstrates the effect of different
levels of impairments at the transmitter and receiver sides.
In order to evaluate the effect of impairments present in one
side (transmit/receive), the impairment value on the otherside
(receive/transmit) is set to be zero. It can be observed thatat
higher SNR values, the effect ofδr is more severe than that of
δt and this severity increases as the value of the corresponding
impairment increases.

9The impairment values of0.08 or 0.15 are selected based on the required
Error Vector Magnitude (EVM) at the transmit-side RF of the LTE system [41,
Sec. 14.3.4] and we assume that RF distortion at the receive-side is similar
to the transmit-side RF distortion [30].
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In order to illustrate the effect of the number of scatterers,
we plot per-antenna ergodic capacity versusK in Fig. 3
consideringρ = 20 dB, M = 4, N = 5. It can be noted
that the per-antenna ergodic capacity first increases with the
value ofK and then tends to saturate after a certain value.
Moreover, the per-antenna capacity versusK decreases with
the increase in the severity of the impairments. Also, the
saturation with the variation inK occurs earlier for the higher
value of impairments. Herein, we observe a known effect
taking place in MIMO channels. More specifically, please
note that the capacity increases withK until K = N = 5.
Then, the saturation tends to start. The reason behind this is
by increasing the number of receive antennasN , the amount
of received power is increased, but if we increase the number
of transmit antennas in the second MIMO product, the power
is split between all transmit antennas, and the power instead
of increasing, it saturates.

B. High-SNR Analysis

Due to the complexity of (14) describing the ergodic capac-
ity, we perform a high-SNR analysis to provide further insights
on the impact of the residual additive transceiver imperfections
on the achievable capacity in that regime.

In particular, the high-SNR region is characterized by the
affine expansion [42]

C (ρ,M,N,K, δt, δr) = S∞

(

ρ|dB
3dB

− L∞

)

+ o (1) , (18)

where the two relevant parameters

S∞ = lim
ρ→∞

C (ρ,M,N,K, δt, δr)

log2 ρ
(19)

and

L∞ = lim
ρ→∞

(

log2 ρ−
C (ρ,M,N,K, δt, δr)

S∞

)

(20)

denote the high-SNR slope in bits/s/Hz/(3 dB) and the
high-SNR offset in 3 dB units, respectively. Note that3
dB=10 log10 2.

Proposition 2:In the high-SNR regime (ρ→ ∞), the slope
S∞ and power offsetL∞ of Rayleigh-product channels with
optimal receivers, accounting for residual additive hardware
transceiver impairments are given by

S∞ = 0 bits/s/Hz (3 dB), (21)

and

L∞ = E

[

log2 det

(

1
M δ̃2tW + δ2r Is
1
M δ2tW + δ2r Is

)]

, (22)

where

W =
1

K











HH

2H
H

1H1H2 if s =M

HH

1H1H2H
H

2 if s = K

H1H2H
H

2H
H

1 if s = N,

. (23)

Proof: See Appendix C.
Clearly, the high-SNR slope is zero, i.e., the capacity of

optimal receivers increases unsaturated. In most cases, this
constant depends on the number of scatterers, since this
number is the smallest one amongM , K, N in Rayleigh-
product MIMO channels.

C. Low-SNR Analysis

In the regime of low-SNR, the study of the capacity in
terms of Eb

N0
is preferable than the per-symbol SNR,ρ. In

particular, the capacity in this region is well approximated
according to [43] by

Copt

(

Eb
N0

)

≈ Sopt
0 log2





Eopt
b

N0

Eb

N0min



 , (24)

where the two involved parametersE
opt
b

N0min
andSopt

0 represent
the minimum transmit energy per information bit and the
wideband slope, respectively. Interestingly, we can express
them in terms of the first and second derivatives ofCopt (ρ)
as

Eopt
b

N0min
= lim
ρ→0

ρ

Copt (ρ)
=

1

Ċopt (0)
, (25)

Sopt
0 = −

2
[

Ċopt (0)
]2

C̈opt (0)
ln2. (26)

According to [44], the low-SNR analysis in terms of the
wideband slope can illustrate : i) how the low spectral effi-
ciency values are obtained, when a given data rate (b/s) is
transmitted through a very large bandwidth. Note that large
bandwidth transmission, known also as millimeter-wave trans-
mission, is an emerging technology for the future 5G systems.
Hence, the study of the wideband slope is quite informative.
A scenario includes the case where a given bandwidth is used
to transmit a very small data rate. As a result, the “wideband
regime” is to be understood as encompassing any scenario
where the number of information bits transmitted per receive
dimension is small.

Proposition 3: In the low-SNR regime (ρ → 0), the

minimum transmit energy per information bitE
opt
b

N0min
and

the wideband slopeSopt
0 of Rayleigh-product channels with

optimal receivers, accounting for residual additive hardware
transceiver impairments, are given by

Eopt
b

N0min
=

ln 2

N
(27)

and

Sopt
0 =

2KMN

(1 + 2δ2t ) (1 +MN +K(M +N)) + 2KMδ2r
. (28)

Proof: See Appendix D.
Eopt

b

N0min
denotes the minimum normalized energy per informa-

tion bit required to convey any positive rate reliably. Interest-
ingly, as in [28], the minimum transmit energy per information

bit Eopt
b

N0min
does not depend on the channel impairments. Ac-

tually, Eopt
b

N0min
coincides with its value in the ideal case of no

hardware impairments, i.e., it is inversely proportional to the
number of receive antennas, and is independent of the number
of transmit antennas and the number of scatterers. However,
the wideband slope decreases with hardware impairments,
i.e., the number of information bits transmitted per receive
dimension reduces.
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IV. ERGODIC SUM-RATE ANALYSIS OF MMSE
RECEIVERS

This is the main section, where the ergodic sum-rate with
MMSE receivers, is obtained under the practical consideration
of additive hardware impairments. Although the probability
density function (PDF) of the SINR with MMSE receiver is
not available, we follow an approach similar to [14], [45] to
obtain the exact expression for the rate corresponding to the
optimal receiver.

More concretely, in the case of recovery of the signalx after
multiplication of the received signaly with a linear filter, the
instantaneous received SINR changes depending on the type
of the filter. Henceforth, our study focuses on the impact of
the residual RF transceiver impairments in the case that the
linear MMSE receiver, having the form

W =

√

M

ρ
R−1

g HH, (29)

is applied. Note thatRg is given by

Rg = HHH+ δ2tH
HH+M

(

δ2r + ρ−1
)

IM . (30)

We proceed with the presentation of the corresponding
SINR by following a similar procedure to [46]. Hence, the
instantaneous received SINR for themth MMSE receiver
element in the presence of residual additive hardware impair-
ments can be written as

γMMSE
m =

1
[

(

IM + ρ
MHHΦ−1H

)−1
]

m,m

− 1. (31)

Taking into account for independent decoding across the
filter outputs, the ergodic sum-rate of the system with MMSE
receiver is expressed by

CMMSE(ρ,M,N,K,δt,δr)=
M
∑

i=1

Eγi

{

log2
(

1+γMMSE
i

)

}

. (32)

A. Exact Expression

Theorem 2:The ergodic achievable sum-rate of practical
Rayleigh-product channels with MMSE receivers, accounting
for residual additive hardware transceiver impairments, reads
as

CMMSE (ρ,M,N,K, δt, δr) =MCopt (ρ,M,N,K, δt, δr)

−MCopt

(

M − 1

M
ρ,M − 1, N,K, δt,

√

M

M − 1
δr

)

, (33)

whereCopt (ρ,M,N,K, δt, δr) is given by (12).
Proof: See Appendix E.

Remark 2:The resemblance of Theorem 2 with [14, The-
orem 1] is noteworthy, however the current Theorem is more
general, since it includes the effects of the residual transceiver
impairments by means ofδt and δr. When δt = δr = 0, i.e.,
in the case of no hardware impairments, (33) coincides with
Theorem 1 in [14].

In Fig. 4, we compare the per-antenna ergodic achievable
sum-rate of Rayleigh-product channels with MMSE receivers

0 5 10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Fig. 4. Per-antenna achievable sum-rate of Rayleigh product channels with
MMSE receivers (K = 3, M = 4, N = 5).
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Fig. 5. Comparison between optimal and MMSE receivers in Rayleigh
product channels with parameters (K = 3, M = 4, N = 5).

assumingK = 3, M = 4, N = 5. As for the case
of optimal receivers in Fig. 2, we demonstrate the perfect
agreement between the analytical and the simulated results.
The theoretical curves with residual hardware impairments
were obtained by evaluating (33) in Theorem 2. It can be
depicted from Fig. 4 that the per-antenna ergodic rate of
MMSE receivers decreases with the increase in the severity of
the impairments. Another observation is that the rate curves
with the residual hardware impairments saturate after a certain
value ofρ. In order to provide insights on the differences of
optimal receiver and MMSE receivers, we also provide the
comparison between MMSE and optimal receivers in Fig. 5
considering both the cases with and without the impairments.
As expected, the performance of MMSE receivers is less than
the performance of the optimal for all the considered cases.

B. High-SNR Analysis

Proposition 4:In the high-SNR regime (ρ→ ∞), the slope
S∞ and the power offsetL∞ of Rayleigh-product channels
with MMSE receivers, accounting for residual additive hard-
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ware transceiver impairments are given by

S∞ =

{

s bits/s/Hz (3 dB) if M = s

0 if M > s,
(34)

L∞ =

{

(s−1)E
[

log2 det
(

1
s
δ̃2tW+δ2r Is

1
s
δ2tW+δ2r Is

)]

if M = s

∞ if M > s
. (35)

Proof: See Appendix F.
Proposition 5 indicates that the high-SNR slope equals toM

only if M is smaller thanK andN . However, given that we
assume a rank deficient channel, the high-SNR slope becomes
0. The same result occurs when the number of receive antennas
is insufficient. The reason behind this is the prevention of
the perfect cancellation of the co-channel interference. The
channel becomes interference-limited and the SINR saturates
at high SNR, i.e., the achievable rate does not scale with the
SNR.

C. Low-SNR Analysis

The characterization of the minimum transmit energy per in-
formation bit and the wideband slope, when MMSE receivers
are employed with transceiver hardware impairments, takes
place in this section.

Proposition 5: In the low-SNR regime (ρ → 0), the
minimum transmit energy per information bitE

MMSE
b

N0min
and the

wideband slopeSMMSE
0 of Rayleigh-product channels with

MMSE receivers, accounting for residual additive hardware
transceiver impairments are given by

EMMSE
b

N0min
=

ln 2

N
(36)

and

SMMSE
0 =

2KMN

(2KMδ2r +((2M−1)(N+K)+KN+1)(1+δ2t )) (1 + δ2t )
.

(37)

Proof: See Appendix G.
Remark 3: Increasing the transmit hardware impairment,

EMMSE
b

N0min
increases. Moreover, the wideband slope depends on

both transmit and receive impairments. In fact, when the qual-
ity of the transceiver hardware becomes worse, the wideband
slope decreases.

Figs. 6 and 7 illustrate the per-antenna ergodic capacity and
the achievable sum-rate versusEb/N0 for optimal and MMSE
receivers, respectively. The results for optimal receivers were
plotted by following the low-SNR analysis presented in Sec-
tion III-C. Similarly, for the case of MMSE receivers, the low-
SNR analysis presented above was taken into account. It can
be noted for the case of optimal receivers, all curves with
and without impairments converge at the minimumEb/N0

value, i.e.,Eb/N0min. The capacity gap with respect to the
case without impairments increases with the increase in the
value of Eb/N0 by means of an increase of the wideband
slope as lower quality transceiver hardware is used.
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Fig. 6. Per-antenna ergodic capacity versusEb/N0 for optimal receivers.
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Fig. 7. Per-antenna achievable sum-rate versusEb/N0 for MMSE receivers.

V. A SYMPTOTIC SUM-RATE ANALYSIS OF OPTIMAL

L INEAR RECEIVERS

In this section, we provide the asymptotic analysis in the
presence of residual additive transceiver impairments forthe
ergodic capacity and the achievable sum-rate of Rayleigh-
product MIMO channels with optimal receivers. Employing
tools from large RMT, and in particular, conducting a free
probability analysis [1], [22], [23], we shed light on the
effect of hardware imperfections on large MIMO deployments.
Contrary to existing literature that usually employs a determin-
istic equivalent analysis, we use FP because it requires just
a polynomial solution instead of fixed-point equations, and
allows us to provide a thorough characterization of the impact
of the residual transceiver impairments on the performanceof
Rayleigh-product MIMO channels in the large antenna limit.

The following variable definitions allow us to simplify the
analysis. Specifically, we denote

Ñ1 = HH

1H1 (38)

Ñ2 = H2H
H

2 (39)

K = Ñ2Ñ1, (40)
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where the number of transmit and receive antennas (M and
N ) as well as the number of scatterersK tend to infinity with
given ratiosβ = M

K and γ = K
N . Note that the study of the

Rayleigh-product does not mean necessarily thatK must be
small. However, since we examine a rank deficient channel,
whereM > K, we haves = K.

Letting the system dimensions tend to infinity while keeping
their finite ratiosβ andγ fixed, we can obtain the asymptotic
limit of the capacity per receive antenna, if we divide it byN
and write (12) as

C̃opt(ρ,β,γ,δt,δr)=C̃opt
1 (ρ,β,γ,δt,δr)−C̃opt

2 (ρ,β,γ,δt,δr), (41)

whereC̃opt
i for i = 1, 2 is expressed as

C̃opt
i =

1

N
lim

K,M,N→∞
E[log2 det(IK+fiH2H

H

2H
H

1H1)]

=
K

N
lim

K,M,N→∞
E





1

K

K
∑

j=1

log2

(

1+fiKλj

(

1

K
K

))





→γ

∫ ∞

0

log2(1+fiKx) f
∞
K

K

(x) dx. (42)

Note thatλj
(

1
KK

)

is the jth ordered eigenvalue of matrix
1
KK, andf∞

1
K

K
denotes the asymptotic eigenvalue probability

density function (a.e.p.d.f.) of1KK. In the asymptotic numbers
of antennas and scatterers limit, the per receive antenna
ergodic capacity of Rayleigh-product MIMO channels with
residual transceiver hardware impairments, is provided bythe
following theorem10.

Theorem 3:The per receive antenna ergodic capacity of
Rayleigh-product MIMO channels for optimal receivers in the
presence of additive transceiver impairments, when the number
of transmit and receive antennas (M andN ) as well as the
number of scatterersK tend to infinity with given ratiosβ
andγ, is given by

C̃opt (ρ, β, γ, δt, δr)→γ

∫ ∞

0

log2

(

1+f1Kx

1+f2Kx

)

f∞
K

K

(x)dx, (43)

whereC̃opt = Copt/N is the per receive antenna ergodic ca-
pacity, while the a.e.p.d.f. ofKK f∞

K

K

is obtained by finding the
imaginary part of its Stieltjes transformS for real arguments.

Proof: See Appendix H.
In order to validate our asymptotic analysis of the ergodic ca-

pacity of optimal linear receivers presented in SubsectionIV.A,
we plot the a.e.p.d.f. ofK in Fig. 8, where the histogram
represents the p.d.f. of the matrixK calculated numerically
based on MC simulations. Furthermore, the solid line depicts
the a.e.p.d.f. obtained by solving the polymonial (78) of the
Stieltjes transform of the corresponding a.e.p.d.f., and then
applying Lemma 3. A perfect agreement between the results
obtained from theoretical analysis and MC simulations has
been obtained, as reflected in Fig. 8.

10For the achievable rate of MMSE receivers in the asymptotic regime,
starting with (31), one can find the polymonial for the Stieltjes transform
of the involved matrix term following the procedure in [47],then find the
corresponding asymptotic eigenvalue probability densityfunction and then
derive the asymptotic capacity expression as done for the case of optimal
receivers.
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Fig. 8. A.e.p.d.f. ofK (ρ = 20 dB, K = 100, M = 300, N = 200,
δt = δr = 0.15).
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Fig. 9. Asymptotic per-antenna ergodic capacity versusρ (K = 100, M =

300, N = 200).

In Fig. 9, we plot the theoretical and simulated per-antenna
ergodic capacities versusρ consideringK = 100, M = 300,
andN = 200. Both the cases with and without impairments
are presented. From the figure, it can be observed that theo-
retical and simulated capacity curves for both the considered
cases match perfectly. Moreover, as expected, the per-antenna
capacity increases with the increase in the value ofρ in the
absence of impairments, i.e.,δt = δr = 0. However, as in the
finite case, the per-antenna capacity tends to saturate after a
certain value ofρ in the presence of impairments.

Fig. 10 depicts the per-antenna capacity versusβ andγ by
considering parameters (K = 10, ρ = 20 dB, δt = 0.15, δr =
0.15). It can be noted that the per-antenna capacity increases
with the increase in the value ofγ = K

N but decreases with the
value ofβ = M

K over the considered range. Another important
observation is that the rate of capacity variation with respect
to β is much steeper than the capacity variation withγ.
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Fig. 10. Asymptotic per-antenna ergodic capacity versusβ andγ for optimal
receivers (K = 10, ρ = 20 dB, δt = 0.15, δr = 0.15).

VI. CONCLUSIONS

In this paper, we provided an exact characterization of
the performance of double Rayleigh MIMO channels in the
presence of residual transceiver hardware impairments. In
particular, it was noted that the per-antenna ergodic capacity
with optimal receivers first increases with the SNR and then
gets saturated after a certain value of the SNR. The same
behaviour of the ergodic capacity was observed with the
increase in the number of scatterers. Furthermore, it was
demonstrated that the ergodic capacity decreases with the
increase in the severity of the impairments. Also, it was
observed that the effect of severity of transmit-side and receive-
side impairments in the considered Rayleigh-Product MIMO
system depends on the operating SNR region as well as
the finite or asymptotic regimes of the considered system
dimensions. Similar observations hold for the achievable sum-
rate with MMSE receivers. Notably, the minimum transmit
energy per information bit for optimal and MMSE receivers is
inependent on the additive impairments. Moreover, we demon-
strated the behavior of double Rayleigh MIMO channels for
optimal receivers, when the number of antennas and scatterers
is large. In our future work, we plan to extend our analysis
for the case of multiplicative transceiver impairments.

APPENDIX A
USEFUL LEMMAS

Herein, given the eigenvalue probability distribution func-
tion fX(x) of a matrix X, we provide useful definitions
and lemmas that are considered during our analysis. In the
following definitions,δ is a nonnegative real number.

Definition 1 (η-transform [48, Definition 2.11]):The η-
transform of a positive semidefinite matrixX is defined as

ηX (δ) =

∫ ∞

0

1

1 + δx
fX(x)dx. (44)

Definition 2: [S-transform [48, Definition 2.15]] TheS-
transform of a positive semidefinite matrixX is defined as

ΣX(x) = −x+ 1

x
η−1
X (x+ 1). (45)

Lemma 1 ( [48, Eqs. 2.87, 2.88]):Given a GaussianK×M
channel matrixH ∼ CN (0, I), theS-transform of the matrix
1
KHHH is expressed as

Σ 1
K

HHH (x, β) =
1

1 + βx
, (46)

while theS-transform of the matrix1KHHH is obtained as

Σ 1
K

HHH (x, β) =
1

β + x
., (47)

Lemma 2 ( [48, Eq. 2.48]):The Stieltjes-transform of
a positive semidefinite matrixX can be derived by itsη-
transform according to

SX(x) = −ηX(−1/x)

x
. (48)

Lemma 3 ( [48, Eq. 2.45]):The asymptotic eigenvalue
probability density function (a.e.p.d.f.) ofX is obtained by the
imaginary part of the Stieltjes transformS for real arguments
as

f∞
X (x) = lim

y→0+

1

π
I {SX(x+ jy)} . (49)

APPENDIX B
PROOF OFTHEOREM 1

Proof: First, we denote

W =
1

K











HH

2H
H

1H1H2 if s =M

HH

1H1H2H
H

2 if s = K

H1H2H
H

2H
H

1 if s = N,

(50)

whereH1,H2 are given by (2). We employ Corollary 2 in [49]
providing the PDF of an unordered eigenvaluep (λ) of the
matrix HH

2H
H

1H1H2, in order to write (12) in terms of the
eigenvalues ofW. Especially,p (λ) is read as

p (λ)=2K
s
∑

i=1

s
∑

j=1

λ
p+2j+t+i−2s−3

2 Kt−p+i−1

(

2
√
λ
)

Gi,j

sΓ (p− s+ j)
, (51)

whereK is given by (16), andKv (x) is the modified Bessel
function of the second kind [38, eq. 8.432.1]. Hence, we have
from (12)

Copt(ρ,M,N,K,δt,δr)=s

∫ ∞

0

log2

(

1+
ρ

KM λ
ρδ2t λ
KM +ρδ2r+ 1

)

p(λ)dλ

(52)

= s

∫ ∞

0

log2

(

(

1 + δ2t
) ρλ

KM
+ ρδ2r + 1

)

p (λ) dλ

− s

∫ ∞

0

log2

( ρ

KM
δ2tλ+ ρδ2r + 1

)

p (λ) dλ. (53)

Substitution of (51) into (53) and making use of [38, eq.
7.821.3] after expressing the logarithm in terms of a Meijer
G-function according toln(1 + x) = G 1,2

2,2

(

ax
∣

∣

1,1
0,0

)

[50, eq.
8.4.6.5] concludes the proof.
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APPENDIX C
PROOF OFPROPOSITION2

First, we write (12) as

Copt(ρ,M,N,K,δt,δr)=E

[

log2 det
(

Φ+
ρ

M
W
)

−log2det(Φ)
]

= E

[

log2 det
(

(

1 + δ2t
) ρ

M
W +

(

δ2r ρ+ 1
)

Is

)]

(54)

− log2 det
( ρ

KM
δ2tW +

(

δ2r ρ+ 1
)

Is

)

=E



log2det





1
M

(

1+δ2t
)

W+
(

δ2r +
1
ρ

)

Is

1
M δ2tW+

(

δ2r +
1
ρ

)

Is







. (55)

Note that in (54) we have considered thatW, given by (50),
hass non-zero eigenvalues. Applying to (55) the definition of
the high-SNR slope, provided by (19), we obtain

Sopt
∞ = 0. (56)

The high-SNR offset, defined by (20), can be derived by
appropriate substitution of (55). As a result,L∞ reads as

L∞ = E

[

log2 det

(

(

1 + δ2t
)

1
MW + δ2r Is

1
M δ2tW + δ2r Is

)]

. (57)

APPENDIX D
PROOF OFPROPOSITION3

In order to obtain Eb

N0min
and S0, we need to derive the

first and second derivatives of the ergodic capacity. The two
following useful lemmas generalize [44, Eqs. 210 and 211],
whenA depends onρ, andf (ρ) does not equal just toρ, but
it is a general function regarding this variable.

Lemma 4:

∂

∂ρ
ln det(I+ f (ρ)A (ρ)) |ρ=0

=tr
(

(I+f (0)A(0))
−1
(

f
′

(0)A(0)+f (0)A
′

(0)
))

. (58)

Proof: First, we obtain the derivative of the first part
of (58) with respect toρ as

∂

∂ρ
ln detG (ρ) =

∂detG(ρ)
∂ρ

detG (ρ)
(59)

= tr

(

G−1 (ρ)
∂G (ρ)

∂ρ

)

, (60)

where we have denotedG (ρ) = I+ f (ρ)A (ρ), and we have
applied [51, Eq. 46]. Note that

∂G (ρ)

∂u
= f

′

(ρ)A (ρ) + f (ρ)A
′

(ρ) . (61)

By substituting (61) into (60), and lettingρ = 0, we lead
to (58).

Lemma 5:

∂2

∂ρ2
ln detG(0)=tr

(

G−1(ρ)

(

∂2G(ρ)

∂ρ2
−
(

∂G(ρ)

∂ρ

)2
)

∣

∣

∣

ρ=0

)

, (62)

whereG
′

(0) andG
′′

(0) are obtained by settingρ = 0 to (61)
and (64), respectively.

Proof: Obtaining the second derivative oflnG (ρ)
by (59), we have

∂2

∂ρ2
ln detG(ρ)=tr

(

G−1(ρ)

(

∂2G(ρ)

∂ρ2
−
(

∂G(ρ)

∂ρ

)2
))

, (63)

where we have used [51, Eq. 48]. The first derivative ofG

is given by (61), while the second derivative is obtained after
following a similar procedure to Lemma 4 as

∂2G (ρ)

∂ρ2
=f

′′

(ρ)A(ρ)+2f
′

(ρ)A
′

(ρ)+f(ρ)A
′′

(ρ). (64)

Appropriate substitutions of (64) and (61) into (63) and simple
algebraic manipulations provide the desired redult after setting
ρ = 0.

Herein, having denotedCopt (ρ,M,N,K, δt, δr) as in (53),
we can write fori = 1, 2 that

Ci (ρ,M,N,K, δt, δr) =E[log2 det(fi (ρ)F+ Is)] . (65)

We assume thatF plays the role ofA in Lemmas 4, 5, while

f1 (ρ) =
ρ

KM (1+δ2t )
ρδ2r +1 and f2 (ρ) =

ρ
KM

δ2t
ρδ2r +1 . Whenρ → 0, we

find that f1 (0) = f2 (0) = 0, while its first and second

derivatives atρ = 0 equal tof
′

1 (0) =
δ̃2t
KM , f

′

2 (0) =
δ2t
KM ,

andf
′′

1 (0) = − 2δ2r δ̃
2
t

KM , f
′′

2 (0) = − 2δ2r δ
2
t

KM . Thus, using the fact
that Gi (ρ) = I + fi (ρ)F (ρ), we haveGi (0) = IN . By
taking the first derivative of (53), and applying Lemma 4, we
have

Ċopt (0) =
1

ln 2

∂

∂ρ
E [ln detG (ρ)] |ρ=0

=

(

f
′

1(0)− f
′

2(0)
)

ln 2
E [trF]

=
N

ln 2
, (66)

sinceE [trF] = KMN . Similarly, the second derivative of
Copt at ρ = 0 can be written by means of Lemma (5) as

C̈opt (0) =
1

ln 2

∂2

∂ρ2
E [ln detG (ρ)] |ρ=0

=

(

f
′′

1(0)−f
′′

2(0)
)

ln 2
E [trF]−

(

(

f
′

1(0)
)2

−
(

f
′

2(0)
)2
)

ln 2
E
[

trF2
]

=−
((

1+2δ2t
)

(1+MN+K (M+N))+2KMδ2r
)

N

KM ln 2
, (67)

whereE
[

trF2
]

= M2KN (K +N) +MKN (NK + 1) by
taking advantage of [52, Theorem 7]. Appropriate substitutions
and algebraic manipulations of (66) and (67), enable us to to
obtain first Eb

N0min
by means of (25), and in turn,S0 by means

of (26).

APPENDIX E
PROOF OFTHEOREM 2

We pursue a standard procedure as in [14], [45]. In par-
ticular, first, we consider the following property allowingto
express theith diagonal element of an inverse matrixZ−1 with
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regards to the determinant of the matrix and its(i, i)th minor
Zii. Specifically, we have

[

Z−1
]

ii
=

detZii

detZ
. (68)

Inserting (31) into (32), and taking into account this property,
we obtain

CMMSE (ρ,M,N,K, δt, δr)

=ME

[

log2 det
(

IM+
ρ

KM
HH

2 HH
1 Φ−1H1H2

)]

−
M
∑

i=1

E

[

log2det
(

IM−1+
ρ

KM

(

HH
2 HH

1 Φ−1H1H2

)ii
)]

. (69)

The proof is concluded by means of some algebraic manipu-
lations, and by noting that

(

HH
2 HH

1 H1Φ
−1H2

)ii
= HH

2iH
H
1 Φ−1H1H2i, (70)

whereH2i is the matrixH2 after removing itsith column.

APPENDIX F
PROOF OFPROPOSITION4

Starting from Proposition 2 and following a similar proce-
dure to its proof, we obtain the desired results after several
simple algebraic manipulations and by the property of the
expansion of a determinant to its minors.

APPENDIX G
PROOF OFPROPOSITION5

Similar to the proof of Proposition 3, the derivation of
EMMSE

b

N0min
andSMMSE

0 imposes first the calculation of the first
and second derivatives ofCMMSE (ρ,M,N,K, δt, δr) atρ = 0.
Taking the first derivative of (33) and using the property
in (70), we have

ĊMMSE (ρ,M,N,K, δt, δr) =
N

(1 + δ2t ) ln 2
. (71)

As far as the second derivative ofCMMSE (ρ,M,N,K, δt, δr),
we use the same methodology and after several algebraic
manipulations, we obtain̈CMMSE (ρ,M,N,K, δt, δr) as

C̈MMSE (ρ,M,N,K, δt, δr) = − N

(1+δ2t )

×
(

((2M−1) (N+K)+KN+1)
(

1+δ2t
)

+2KMδ2r
KM

)

. (72)

After appropriate substitutions, the proof is concluded.

APPENDIX H
PROOF OFTHEOREM 3

According to the principles of free probability, the a.e.p.d.f.
of K/K can be obtained by means of Lemma 3 that includes
its Stieltjes transformSK/K . Hence, our interest is focused
on the derivation of the Stieltjes transform ofK/K. Looking
carefully at Lemma 2, we observe thatSK/K can be obtained
by means of itsη-transform. Especially, we are going to show

how to acquire the inverseη-transform ofKα/K. Thus, we
obtain the inverse ofηK/K (x) by means of this lemma as

xη−1
K/K

(

−xSK/K (x)
)

+ 1 = 0. (73)

In particular, the following proposition providesη−1
K/K (x).

Proposition 6:The inverseη-transform ofK/K is given by

η−1
K/K(x) = − x− 1

x (β + x− 1) (γ (x− 1) + 1)
. (74)

Proof: Applying the S-transform to (40) and the free
convolution we obtainη−1

K/K(x) as

ΣK/K(x)=ΣÑ2/K
(x)ΣM̃/K(x)⇐⇒ (75)

(

−x+1

x

)

η−1
K/K(x+1)=

1

(β + x) (γx+ 1)
,

where in (75), we have applied Definition 2 and Lemmas 1,
2. Basically, ΣÑ2/K

(x) and ΣÑ1/K
(x) are given by (46)

and (47) as

ΣÑ2/K
(x) =

1

γx+ 1
(76)

and

ΣÑ1/K
(x) =

1

β + x
. (77)

In addition, in (75), we have taken into account the asymp-
totic freeness between the deterministic matrix with bounded
eigenvalues̃N2 and the unitarily invariant matrix̃N1. Setting
y = x+ 1, i.e., making a change of variables, we obtain (74).

Proposition 6 and (73) result after some tedious algebraic
manipulations to the following qubic polynomial

x2γS3
K/K − (βγ − 2γ + 1)xS2

K/K

− (βγ − β − γ + x+ 1)SK/K − 1 = 0, (78)

which providesSK/K , and thus,f∞
K

K

(x) by means of (49).
This step concludes the proof.
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