PhD-FSTC-2017-63
The Faculty of Science, Technology and Communication

DISSERTATION

Presented on 24/10/2017 in Luxembourg
to obtain the degree of

DOCTEUR DE L'UNIVERSITÉ DU LUXEMBOURG EN MATHÉMATIQUES

by
Gilles BECKER
Born on 24 March 1989 in Luxembourg

CUSP FORMS FOR LOCALLY SYMMETRIC SPACES OF INFINITE VOLUME

Dissertation defence committee

Dr Martin OLBRICH, dissertation supervisor
Professor, Université du Luxembourg
Dr Ulrich BUNKE
Professor, Universität Regensburg
Dr Colin GUILLARMOU
Research Director for CNRS,
Université Paris-Sud (Orsay)
Dr Gabor WIESE, chairman
Professor, Université du Luxembourg
Dr Salah MEHDI, vice chairman
Professor, Université de Lorraine

Abstract

Let G be a real simple linear connected Lie group of real rank one. Then, $X:=G / K$ is a Riemannian symmetric space with strictly negative sectional curvature. By the classification of these spaces, X is a real/complex/quaternionic hyperbolic space or the Cayley hyperbolic plane. We define the Schwartz space $\mathscr{C}(\Gamma \backslash G)$ on $\Gamma \backslash G$ for torsion-free geometrically finite subgroups Γ of G. We show that it has a Fréchet space structure, that the space of compactly supported smooth functions is dense in this space, that it is contained in $L^{2}(\Gamma \backslash G)$ and that the right translation by elements of G defines a representation on $\mathscr{C}(\Gamma \backslash G)$. Moreover, we define the space of cusp forms ${ }^{\circ} \mathscr{C}(\Gamma \backslash G)$ on $\Gamma \backslash G$, which is a geometrically defined subspace of $\mathscr{C}(\Gamma \backslash G)$. It consists of the Schwartz functions which have vanishing "constant term" along the ordinary set $\Omega_{\Gamma} \subset \partial X$ and along every cusp. We show that these two constant terms are in fact related by a limit formula if the cusp is of smaller rank (not of full rank). The main result of this thesis consists in proving a direct sum decomposition of the closure of the space of cusp forms in $L^{2}(\Gamma \backslash G)$ which respects the Plancherel decomposition in the case where Γ is convex-cococompact and noncocompact. For technical reasons, we exclude here that X is the Cayley hyperbolic plane.

Contents

1 Introduction 1
2 The convex-cocompact case 9
2.1 Geometric preparations 9
2.2 Convex-cocompact groups 15
2.3 The Schwartz space and the space of cusp forms on $\Gamma \backslash G$ 16
2.3.1 The Schwartz space on $\Gamma \backslash G$ 16
2.3.2 Density of $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$ in $\mathscr{C}(\Gamma \backslash G, \varphi)$ 20
2.3.3 The space of cusp forms on $\Gamma \backslash G$ 26
2.3.4 The right regular representation of G on the Schwartz space 32
2.4 Tempered distribution vectors, square-integrable distribution vec- tors and Schwartz vectors 36
2.5 Some definitions and known results 38
2.6 Invariant distributions supported on the limit set 49
2.7 Determination of the cuspidal invariant distributions supported on the limit set 51
2.8 Discrete series representations 57
2.8.1 Schwartz vectors are cuspidal 61
2.8.2 The $(A f, g)$-formula 64
2.8.3 The contribution of the discrete series representations to the closure of the space of cusp forms 74
2.8.4 Topological decomposition of $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ and of $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ 77
2.8.5 Topological decomposition of $\mathscr{C}(\Gamma \backslash G, \varphi)_{d s}(\gamma)$ and of $\mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)_{d s}(\gamma)$ 85
2.8.6 Equivalent topologies 88
2.8.7 Decomposition of the Schwartz space 89
2.9 The dual transform, Eisenstein series, Eisenstein integrals and wave packets 90
2.9.1 The dual transform 90
2.9.2 About the orthogonality of Eisenstein series to the space of cusp forms 108
2.9.3 Wave packets of Eisenstein series 114
2.9.4 Eisenstein integrals and its relation to the Poisson transform 118
2.9.5 The contribution of the wave packets of Eisenstein series to the closure of the space of cusp forms 123
3 The geometrically finite case 129
3.1 Decompositions for varying parabolic subgroups 129
3.2 Geometrically finite groups and Γ-cuspidal parabolic subgroups 134
$3.3 \quad N_{\Gamma} N^{\Gamma}$ decomposition of the unipotent radical N of a cuspidal parabolic subgroup of G 138
3.4 Generalised Siegel sets 140
3.5 Computation of the critical exponent of Γ_{Q} and definition of the rank of a cusp 149
3.6 The Schwartz space and the space of cusp forms on $\Gamma \backslash G$ 151
3.6.1 The Schwartz space on $\Gamma \backslash G$ 151
3.6.2 The space of cusp forms on $\Gamma \backslash G$ 157
3.6.3 The little constant term 162
3.6.4 $\mathrm{SU}(1,2)$-reduction 165
3.6.5 Two geometric estimates 168
3.6.6 The right regular representation of G on the Schwartz space 174
3.6.7 Partition of unity indexed over Γ 181
3.6.8 Density of $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$ in $\mathscr{C}(\Gamma \backslash G, \varphi)$ 193
3.6.9 Examples of noncompactly supported Schwartz functions 194
3.6.10 Examples of cusp forms 196
3.6.11 Series expansion of f 199
3.6.12 Rapid decay on Siegel sets 201
3.7 Relation between the constant term along Ω and the one along a smaller rank cusp 206
3.7.1 Several small results 207
3.7.2 The diffeomorphism $\Upsilon_{1, t, s}$ 212
3.7.3 The diffeomorphism $\Upsilon_{2, t, s}$ 215
3.7.4 The diffeomorphism $\Upsilon_{t, s}$ 217
3.7.5 The formula for left $N_{\Gamma} M_{\Gamma}$-invariant Schwartz functions 221
3.7.6 The formula for derivatives of Schwartz functions in the $\mathfrak{n}_{\Gamma^{-}}$ direction 224
3.7.7 The general formula 230
3.7.8 The main theorem 232
Appendices 235
A Some results about direct sum decompositions 235
B The group $\operatorname{Sp}(1, n)$ 237
C Results of independent interest about discrete series represen- tations 243
Index of notation 256
Index of terminology 257
Bibliography 259

1 Introduction

1.1 Let G be a real simple linear connected Lie group of real rank one. For these Lie groups, the abelian group A in an Iwasawa decomposition $G=N A K$ is one-dimensional. Moreover, $X:=G / K$ is then a Riemannian symmetric space with strictly negative sectional curvature. By the classification of these spaces, X is a real/complex/quaternionic hyperbolic space or the Cayley hyperbolic plane. For technical reasons, we exclude $X=\mathbb{O} H^{2}$ (Cayley hyperbolic plane) at several places.
1.2 Let Γ be a geometrically finite subgroup of G. Roughly speaking, Γ is a torsion-free discrete subgroup of G such that $\Gamma \backslash X$ is a manifold with possibly infinite volume having finitely many cusps (of smaller rank or of full rank, rational or irrational) and funnels as ends. If the ends consist only of funnels, then Γ is said to be convex-cocompact.
Here is an example of the shape of a manifold $\Gamma \backslash X$ (X : upper-half plane) of genus 3 having one cusp (of full rank) and one funnel as ends:

1.3 Since the classical Fourier analysis was so successful, one generalised it to groups (not necessarily abelian or compact) and even to homogeneous spaces. An important goal in harmonic analysis is to establish the Plancherel theorem for $L^{2}(\Gamma \backslash G)$, providing a "Fourier transform". The abstract Plancherel theorem says that we can decompose this space as a direct integral over the unitary dual \hat{G} of G. Consider now the right regular representation of G on $L^{2}(\Gamma \backslash G)$. Then, this unitary representation has a direct integral decomposition into irreducibles:

$$
L^{2}(\Gamma \backslash G) \simeq \int_{\hat{G}}^{\oplus} N_{\pi} \hat{\otimes} V_{\pi} d \kappa(\pi)
$$

where V_{π} is an irreducible unitary representation space of a representation belonging to the class of $\pi \in \hat{G}, N_{\pi}$ is a Hilbert space which is called the multiplicity space of π in $L^{2}(\Gamma \backslash G)$ and κ is a Borel measure on \hat{G} which is called the Plancherel measure.
M. Olbrich and U. Bunke determined the Plancherel decomposition quite explicitly for $L^{2}(\Gamma \backslash G)$ in the convex-cocompact case (cf. Theorem 11.1 of [BO00, p.155]). In the presence of cusps, it is in general not known. If π is however a discrete series representation, then they showed only that N_{π}, which is equal to the space
$\left(V_{\pi^{\prime},-\infty}\right)_{d}^{\Gamma}$ of Γ-invariant distribution vectors having square-integrable matrix coefficients, is infinite-dimensional. We will provide a more precise description of N_{π} (cf. (1.1) on p.7).
By Theorem 11.1 of [BO00, p.155], $L^{2}(\Gamma \backslash G)$ decomposes into a continuous and a discrete part:

$$
L^{2}(\Gamma \backslash G)=L^{2}(\Gamma \backslash G)_{a c} \oplus L^{2}(\Gamma \backslash G)_{d}
$$

Here, $L^{2}(\Gamma \backslash G)_{a c}$ is generated by wave packets of matrix coefficients and $L^{2}(\Gamma \backslash G)_{d}$ can be further decomposed with the help of representation theory:

$$
L^{2}(\Gamma \backslash G)_{d}=L^{2}(\Gamma \backslash G)_{d s} \oplus L^{2}(\Gamma \backslash G)_{r e s} \oplus L^{2}(\Gamma \backslash G)_{U}
$$

where $L^{2}(\Gamma \backslash G)_{\text {res }}$ is generated by residues of Eisenstein series, $L^{2}(\Gamma \backslash G)_{U}$ is generated by matrix coefficients of "stable" invariant distributions supported on the limit set and $L^{2}(\Gamma \backslash G)_{d s}$ is generated by square-integrable matrix coefficients of discrete series representations (it is denoted by $L^{2}(\Gamma \backslash G)_{\text {cusp }}$ in [BO00]).
Matrix coefficients give in fact the fundamental relation between representation theory and harmonic analysis.
In the group case $(\Gamma=\{e\})$, the Plancherel theorem was established by HarishChandra in 1976. He finished his work in [HC76]. It was Harish-Chandra who found out that the discrete series representations are the key to representation theory and harmonic analysis on connected semisimple Lie groups with finite center. Moreover, he classified the discrete series representations for these groups. Selberg, Gel'fand and Langlands proved the Plancherel theorem in the finite volume case $(\operatorname{vol}(\Gamma \backslash G)<\infty)$.
1.4 Let us continue by introducing some notations. Let $\left(\gamma, V_{\gamma}\right)$ be a finitedimensional representation of K. We form the homogeneous vector bundle $V(\gamma):=$ $G \times_{K} V_{\gamma}$ over X and the locally homogeneous vector bundle $V_{Y}(\gamma):=\Gamma \backslash V(\gamma)$ over $Y:=\Gamma \backslash X$. M. Olbrich and U. Bunke determined in [BO00] the spectral decomposition of the space of sections $L^{2}\left(Y, V_{Y}(\gamma)\right)$ over Y with respect to the Casimir operator and other locally invariant differential operators when Γ is convex-cocompact as a consequence of the Plancherel decomposition of $L^{2}(\Gamma \backslash G)$. Spectral decompositions of $L^{2}\left(Y, V_{Y}(\gamma)\right)$, respectively partial results, were already obtained before (sometimes cusps are allowed)

- by Patterson [Pat75], for trivial γ and surfaces,
- by Lax-Phillips [LP82, LP84-1, LP84-2, LP85] and Perry [Per87] for trivial γ and higher dimensional real hyperbolic manifolds,
- by Mazzeo-Phillips [MP90] and Epstein-Melrose-Mendoza [EMM91] for differential forms on real, respectively complex, hyperbolic manifolds.

More recent results in the presence of cusps were obtained by Guillarmou-Mazzeo [GM12] for geometrically finite real hyperbolic manifolds and by Bunke-Olbrich [BO07] for rank-one symmetric spaces.
1.5 In the group case $(\Gamma=\{e\})$ and the finite volume case, which are extreme cases of geometrically finite groups, the so-called cusp forms provide us a geometric characterisation of (most of) the discrete part of the direct integral decomposition. We define the Schwartz space $\mathscr{C}(\Gamma \backslash G)$ as well as the space of cusp forms ${ }^{\circ} \mathscr{C}(\Gamma \backslash G) \subset \mathscr{C}(\Gamma \backslash G)$ for geometrically finite groups (in fact we allow also a twist by a finite-dimensional unitary representation). For the analysis of the space of cusp forms, we restrict us however to the convex-cocompact case.
1.6 The Schwartz space $\mathscr{C}(\Gamma \backslash G)$ consists of Γ-invariant functions satisfying a certain decay behaviour (involving also derivatives) at infinity, i.e. at the cusps and at the funnels.
In order to be able to define this space, we generalise first the notion of a Siegel set (cf. Section 3.4) so that the following holds:
Let \mathfrak{S}^{\prime} be a generalised Siegel set in X at a cusp and let

$$
\pi: X \cup \Omega \rightarrow \Gamma \backslash(X \cup \Omega), \quad x \mapsto \Gamma x .
$$

Then, π restricted to \mathfrak{S}^{\prime} is a finite-to-one map and the closure of the image of \mathfrak{S}^{\prime} under π represents one end of $\Gamma \backslash(X \cup \Omega)$.
We use then these sets and sets which are "away from the limit set" to define some seminorms controlling the behaviour of the functions at the cusps and the funnels. We check that the Schwartz space is indeed a Fréchet space which is contained in $L^{2}(\Gamma \backslash G)$ and that the compactly supported smooth functions on $\Gamma \backslash G$ form a dense subspace of it (cf. Proposition 3.6.60).
Let us give now the precise definition of the seminorms controlling the behaviour at the funnels:
Let ∂X denote the boundary of X and let $\Lambda:=\Lambda_{\Gamma} \subset \partial X$ be the limit set of Γ. Let $\Omega:=\Omega_{\Gamma}=\partial X \backslash \Lambda_{\Gamma}$ be the set of ordinary points of Γ.
Let U be an open subset of X which is relatively compact in $X \cup \Omega_{\Gamma}$, i.e. the closure of U in $X \cup \Omega_{\Gamma}$ is compact.

Picture for $G=\operatorname{SL}(2, \mathbb{R})$:

Each element of $g \in G$ has a Cartan decomposition $g=k_{g} a_{g} h_{g}$ with $k_{g}, h_{g} \in$ $K, a_{g} \in \bar{A}_{+}$.
Let $\mathcal{U}(\mathfrak{g})$ be the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$ and let $\mathcal{U}(\mathfrak{g})_{l}$ be the vector subspace of $\mathcal{U}(\mathfrak{g})$ consisting of elements of order at most l.

Let $l \in \mathbb{N}_{0}$. For $r \geqslant 0, X \in \mathcal{U}(\mathfrak{g})_{l_{1}}, Y \in \mathcal{U}(\mathfrak{g})_{l_{2}}$ such that $l_{1}+l_{2} \leqslant l$ and a function $f \in C^{l}(G)$, set

$$
{ }^{U} p_{r, X, Y}(f)=\sup _{g K \in U}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho}\left|L_{X} R_{Y} f(g)\right|
$$

For the cusps, we define similarly a seminorm ${ }_{\mathfrak{G}^{\prime}} p_{r, X, Y}$ on a generalised Siegel set, controlling the behaviour of the functions at a cusp, with resembling weight functions, which depend on ρ (the half-sum of positive restricted roots) and the rank of the cusp.
The Schwartz space $\mathscr{C}(\Gamma \backslash G)$ on $\Gamma \backslash G$ consists then of those functions in $C^{\infty}(\Gamma \backslash G)$ having finite seminorms. One can show that this definition is equivalent to Definition 8.1 in [BO00, p.129] in the convex-cocompact case.
1.7 Let us in the following define the space of cusp forms on $\Gamma \backslash G$. It is a geometrically defined subspace of the Schwartz space. In the convex-cocompact case, it consists of the Schwartz functions which have vanishing integrals along all the horospheres in G over which a nonzero Schwartz function is integrable.
Fix an Iwasawa decomposition $G=N A K$. Let $M=Z_{K}(A)$ and $P=M A N$ (parabolic subgroup of G). Then, the boundary ∂X of X is given by $G / P=K / M$. All the horospheres in G / K are of the form $\operatorname{HS}_{g K, k M}:=k N k^{-1} g K$ (horosphere passing through $g K \in X$ and $k M \in \partial X)$.
Let us define now the constant term along Ω and the constant term along a cusp. For $g \in G(\Omega):=\{g \in G \mid g P \in \Omega\}, h \in G$ and for a measurable function $f: G \rightarrow \mathbb{C}$, we define

$$
f^{\Omega}(g, h)=\int_{N} f(g n h) d n
$$

whenever the integral exists. This function is called the constant term of f along Ω. It is well-defined if f is a Schwartz function by Proposition 2.3.30.
When the geometrically finite group Γ is not convex-cocompact, we define in addition the constant term at a cusp.
Let Q be a parabolic subgroup of G representing a cusp $k M \in \partial X\left(Q=k P k^{-1}\right)$. We call $Q \Gamma$-cuspidal.
We choose a Langlands decomposition $Q=M_{Q} A_{Q} N_{Q}$ so that we can construct $N_{\Gamma, Q} \subset N_{Q}$ and $M_{\Gamma, Q} \subset M_{Q}$ such that
(1) $\Gamma_{Q}:=\Gamma \cap Q$ is contained in $N_{\Gamma, Q} M_{\Gamma, Q}$, and
(2) Γ_{Q} is a cocompact lattice in $N_{\Gamma, Q} M_{\Gamma, Q}$.

For $M_{\Gamma, Q}$, we can take the smallest possible subset of M_{Q}.
For $g \in G$ and for a Γ-invariant measurable function $f: \Gamma \backslash G \rightarrow \mathbb{C}$, we define

$$
f^{Q}(g)=\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} \int_{\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}} f(n m g) d n d m
$$

whenever the integral exists. We call this function the constant term of f along Q. Again, it is well-defined if f is a Schwartz function (cf. Proposition 3.6.14).

The space of cusp forms ${ }^{\circ} \mathscr{C}(\Gamma \backslash G)$ on $\Gamma \backslash G$ consists then of the functions $f \in$ $\mathscr{C}(\Gamma \backslash G)$ for which $f^{\Omega}=0$ and f^{Q} vanishes for every Γ-cuspidal parabolic subgroup Q. In Section 3.6.10, we determine the cusp forms on $\Gamma \backslash G$ which are induced from cusp forms on G.
1.8 We define the little constant term of a Schwartz function along a cusp:

For $g \in G$ and for a Γ-invariant measurable function $f: \Gamma \backslash G \rightarrow \mathbb{C}$, we define

$$
f^{Q, l c}(g)=\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} \int_{\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}} f(n m g) d n d m
$$

whenever the integral exists. This function is called the little constant term of f along Q.
The little constant term is equal to the constant term when we consider it along a cusp of full rank. Moreover, the constant term at a cusp of a Schwartz function is zero when the little constant term vanishes at this cusp.
We show in Theorem 3.6.68 that a Schwartz function, with vanishing little constant term, decays rapidly on a (nongeneralised) Siegel set under some assumptions, which are always fulfilled in the real hyperbolic case.
1.9 We prove that the right translation by elements of G on the Schwartz space, respectively the space of cusp forms, is a representation of G (see Theorem 3.6.44). This result also implies that the Schwartz space does not depend on the choices made in its construction (cf. Proposition 3.6.45).
1.10 We show that, in the real hyperbolic case, the constant term of a Schwartz function f along a cusp of smaller rank (having not full rank as the cusps in the finite volume case) is zero if $f^{\Omega}=0$ (cf. Theorem 3.7.21). We conjecture that this result is also true beyond the real hyperbolic case. The main result we need in the proof is a limit formula:
Let $G=\mathrm{SO}(1, n)^{0}=N A K, n \geqslant 2$, be the identity component of $\mathrm{SO}(1, n)$. Let Q be a Γ-cuspidal parabolic subgroup with associated cusp of smaller rank. Without loss of generality, $Q=P$. Let $w \in K$ be a representative of the Weyl element satisfying $w^{2}=\mathrm{Id}$.
The group A can be identified with $(0, \infty)$ and the unipotent radical N of P can be identified with $\mathbb{R}^{n-1}=\mathbb{R}^{n-k-1} \times \mathbb{R}^{k}$. The group $N_{\Gamma, P}$ is identified with $\{0\} \times \mathbb{R}^{k}$. Let $n_{t}=\left(t, 0_{1, n-2}\right) \in N^{\Gamma, P} \equiv \mathbb{R}^{n-k-1} \times\{0\}$.
For simplicity, we state the result here only for right K-invariant Schwartz functions:

Theorem 3.7.20. Let $k=\operatorname{dim}\left(N_{\Gamma, P}\right) \geqslant 1$ and let $f \in \mathscr{C}(\Gamma \backslash G)_{K}$. Then,

$$
\lim _{t \rightarrow \infty} \frac{1}{t^{k}} f^{\Omega}\left(\kappa\left(n_{t} w\right), a_{s}\right) \quad(s \in(0,+\infty))
$$

is up to a constant equal to

$$
\int_{0}^{1} u^{n-\frac{k}{2}-2}(1-u)^{\frac{k}{2}-1} f^{P}\left(a_{\underline{s}}\right) d u .
$$

1.11 In the finite volume case, the closure of the space of cusp forms is contained in the discrete part of $L^{2}(\Gamma \backslash G)$ and it has a "small" complement (Gel'fand, Selberg, Langlands). In the group case, Harish-Chandra proved that the closure of the space of cusp forms is equal to the discrete part of $L^{2}(G)$.
Let us look now at the case, where Γ is convex-cocompact, noncocompact (then $\Gamma \backslash G$ has infinite volume). Famous examples, for X being the upper-half plane, are:

For such Γ 's, we show that the closure of the space of cusp forms admits the following decomposition:

Theorem 2.9.54. ${ }^{\circ} \mathscr{C}(\Gamma \backslash G)=L^{2}(\Gamma \backslash G)_{d s} \oplus L^{2}(\Gamma \backslash G)_{U}$.
This result was already conjectured by M. Olbrich in 2002 (see [Olb02, p.116]). In order to obtain this result, it was necessary to investigate the different parts appearing in the Plancherel decomposition.
In this decomposition, matrix coefficients of Γ-invariant distributions supported on the limit set appear and we determine which matrix coefficients belong to the space of cusp forms (see Theorem 2.7.11). From this, we can conclude that $L^{2}(\Gamma \backslash G)_{U}$ is contained in ${ }^{\circ} \mathscr{C}(\Gamma \backslash G)$.
We prove the following statement using the dual transform (defined in Section 2.9.1):

Theorem 2.9.21. Let $\gamma \in \hat{K}$. Then,

$$
\overline{{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)}(\gamma) \cap \mathscr{C}(\Gamma \backslash G, \varphi)={ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)(\gamma) .
$$

It follows then from this theorem and Theorem 2.7.11 (cf. Proposition 2.9.53) that the space $L^{2}(\Gamma \backslash G)_{\text {res }}$ is orthogonal to the space of cusp forms.
For the continuous part of the decomposition, we show first that no nonzero compactly supported wave packet is a cusp form (cf. Proposition 2.9.49).
Second, we show with the help of this result and Theorem 2.9.21 that $L^{2}(\Gamma \backslash G)_{a c}$ is actually orthogonal to the space of cusp forms (see Theorem 2.9.51).
A very important role in the proofs play the asymptotic expansions in the sense of N. Wallach (see Section 2.5) and the Bunke-Olbrich extension map (cf. Definition 2.5.15).
1.12 It remains to investigate $L^{2}(\Gamma \backslash G)_{d s}$:

Let π denote a discrete series representation. Recall that $\left(V_{\pi,-\infty}\right)_{d}^{\Gamma}$ consists of the Γ-invariant distribution vectors f for which the matrix coefficients $c_{f, v}\left(v \in V_{\pi^{\prime}, K}\right.$, where π^{\prime} is the dual representation of π) are square-integrable. We denote the space of Γ-invariant distribution vectors f for which the matrix coefficients $c_{f, v}$
$\left(v \in V_{\pi^{\prime}, K}\right)$ belong to $\mathscr{C}(\Gamma \backslash G)$ (resp. to $\left.{ }^{\circ} \mathscr{C}(\Gamma \backslash G)\right)$ by $\left(V_{\pi,-\infty}\right)_{\mathscr{C}}^{\Gamma}\left(\right.$ resp. $\left.\left(V_{\pi,-\infty}\right)_{\circ_{\mathscr{C}}}^{\Gamma}\right)$. By Proposition 2.8.18, $\left(V_{\pi,-\infty}\right)_{\mathscr{C}}^{\Gamma}=\left(V_{\pi,-\infty}\right)_{\circ_{\mathscr{C}}}^{\Gamma}$.
We determine in the following a more precise description of the spaces $\left(V_{\pi,-\infty}\right)_{\mathscr{C}}^{\Gamma}=$ $\left(V_{\pi,-\infty}\right)_{\circ_{\mathscr{C}}}^{\Gamma},\left(V_{\pi,-\infty}\right)_{d}^{\Gamma}$ and $\left(V_{\pi,-\infty}\right)^{\Gamma}$ from which follows that $\left(V_{\pi,-\infty}\right)_{\mathscr{C}}^{\Gamma}$ is dense in $\left(V_{\pi,-\infty}\right)_{d}^{\Gamma}$.
Let us continue with introducing some more notations. For $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$, set $\sigma_{\lambda}($ man $)=$ $\sigma(m) a^{\rho-\lambda}$. This defines a representation of P on $V_{\sigma_{\lambda}}:=V_{\sigma}$. We denote by $V\left(\sigma_{\lambda}\right):=$ $G \times{ }_{P} V_{\sigma_{\lambda}}$ the associated homogeneous bundle over $\partial X=G / P$.
We denote by $\pi^{\sigma, \lambda}$ the G-representation on the space of sections of $V\left(\sigma_{\lambda}\right)$ given by the left regular representation of G and call it a principal series representation of G.
Let us denote the dual representation of σ by $\tilde{\sigma}$. The space of distribution sections $C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)$ is defined by $C^{\infty}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right)^{\prime}$. Here, we take the strong dual. We denote the space of Γ-invariant distributions in $C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)$ which are smooth on Ω by $C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)^{\Gamma}$ and we denote the space of Γ-invariant distributions in $C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}\right)\right)$ having support on the limit set Λ by $C^{-\infty}\left(\Lambda, V\left(\sigma_{-\lambda}\right)\right)^{\Gamma}$. Let $\left(\pi, V_{\pi}\right)$ be a discrete series representation. Then, $V_{\pi,-\infty}$ can be realised in $C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}\right)\right)$. Moreover, $V_{\pi,-\infty}$ (realised) is the image of a G-intertwining operator $A: C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right) \rightarrow C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}\right)\right)$. Let

$$
D_{1}=A\left(C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)^{\Gamma}\right) \quad \text { and } \quad D_{2}=C^{-\infty}\left(\Lambda, V\left(\sigma_{-\lambda}\right)\right)^{\Gamma} \cap\left(V_{\pi,-\infty}\right)^{\Gamma} .
$$

By Bunke-Olbrich [BO00], it is known that D_{1} is an infinite-dimensional subspace of the multiplicity space $\left(V_{\pi,-\infty}\right)_{d}^{\Gamma}$.
We show that the K-finite matrix coefficients $c_{f, v}$ with $f \in D_{1} \oplus D_{2}$ and $v \in$ $C^{K}\left(\partial X, V\left(\tilde{\sigma}_{\lambda}\right)\right)$ (K-finite) are cusp forms (cf. Proposition 2.8.24). Furthermore, we prove that we have the following topological direct sum:

$$
\begin{equation*}
\left(V_{\pi,-\infty}\right)_{d}^{\Gamma}=\overline{D_{1}} \oplus D_{2} \tag{1.1}
\end{equation*}
$$

(Corollary 2.8.39). It follows from (1.1) that $\left(V_{\pi,-\infty}\right)_{\mathscr{C}}^{\Gamma}=\left(V_{\pi,-\infty}\right)_{\circ_{\mathscr{C}}}^{\Gamma}$ is dense in $\left(V_{\pi,-\infty}\right)_{d}^{\Gamma}$. So, $L^{2}(\Gamma \backslash G)_{d s}$ is contained in ${ }^{\circ} \overline{\mathscr{C}}(\Gamma \backslash G)$.
Finally, we determine a more explicit description of $\left(V_{\pi,-\infty}\right)^{\Gamma}$ and of $\left(V_{\pi,-\infty}\right)_{\mathscr{C}}^{\Gamma}$:
Theorem 2.8.51. We have the following topological direct sum decompositions:

$$
\left(V_{\pi,-\infty}\right)^{\Gamma}=A\left(C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)^{\Gamma}\right) \oplus D_{2}
$$

and

$$
\left(V_{\pi,-\infty}\right)_{\mathscr{C}}^{\Gamma}=C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}\right)\right)^{\Gamma} \cap \operatorname{im}(A)=D_{1} \oplus D_{2} .
$$

To obtain this result, it was necessary to provide an explicit formula for some scalar products (cf. Theorem 2.8.29). Our investigations provide also a direct sum decomposition of the Schwartz space (cf. Proposition 2.8.62).
1.13 Finally, I would like to thank Prof. M. Olbrich for having given me the opportunity to work in this beautiful field of research, for the many interesting discussions we had and for helping me to overcome the occurring technical difficulties. A good example is here Appendix C, which was necessary in order to complete the work about the discrete series representations. Moreover, I would not have discovered the relation between the constant term of a Schwartz function along the ordinary set and the constant term of a Schwartz function along a cusp if my supervisor had not been convinced that there is one. Last but not least, my thanks go to my family and friends who have accompanied me along the way.

2 The convex-cocompact case

2.1 Geometric preparations

Let G be a real simple linear connected Lie group of real rank one. We denote its neutral element by e. Let \mathfrak{g} be the Lie algebra of G and let $\mathfrak{g}_{\mathbb{C}}$ be its complexification.
Let \mathfrak{l} be a Lie algebra over \mathbb{R}. Let $\mathcal{U}(\mathfrak{l})$ be the universal enveloping algebra of $\mathfrak{l}_{\mathbb{C}}$ and let $\mathcal{U}(\mathfrak{l})_{l}$ be the vector subspace of $\mathcal{U}(\mathfrak{l})$ (filtered algebra) consisting of elements of order at most l.
Fix a Cartan involution θ of \mathfrak{g}, i.e. a nontrivial involutive automorphism on \mathfrak{g}. We denote the corresponding Cartan involution on G also by θ. Let \mathfrak{k} be the 1 -eigenspace of θ in \mathfrak{g} and let \mathfrak{s} be the (-1)-eigenspace of θ in \mathfrak{g}.
We have: $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{s}$ (Cartan decomposition). Let K be the analytic subgroup of G with Lie algebra \mathfrak{k} (it is a maximal compact subgroup of G).
Fix a maximal (i.e. one-dimensional) abelian Lie subalgebra \mathfrak{a} of \mathfrak{s} (it exists as \mathfrak{s} is finite-dimensional and it is unique up to the adjoint action of K by Lemma 2.1.9 of [Wal88, p.47]). Let A be the analytic subgroup of G with Lie algebra \mathfrak{a}. Let $M=Z_{K}(A) \subset K$ be the centraliser of A in K. We denote the Lie algebra of M by \mathfrak{m}.
Let $\mathfrak{a}_{\mathbb{C}}^{*}$ denote the complexified dual of \mathfrak{a}. For $\mu \in \mathfrak{a}_{\mathbb{C}}^{*}$, we set $a^{\mu}=e^{\mu(\log (a))} \in \mathbb{C}$. For $\mu \in \mathfrak{a}^{*}$, set $\mathfrak{g}_{\mu}=\{X \in \mathfrak{g} \mid[H, X]=\mu(H) X \quad \forall H \in \mathfrak{a}\}$.
We denote by $\Phi=\Phi(\mathfrak{g}, \mathfrak{a}):=\left\{\mu \in \mathfrak{a}^{*} \mid \mu \neq 0\right.$ and $\left.\mathfrak{g}_{\mu} \neq\{0\}\right\}$ the system of restricted roots and by Φ^{+}a system of positive restricted roots. The multiplicity of $\mu \in \mathfrak{a}^{*}$ is by definition $m_{\mu}:=\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{g}_{\mu}\right)$. Let $\alpha \in \Phi^{+}$be the shortest root of Φ which is in Φ^{+}.
It follows from Corollary 2.17 of Chapter VII in [Hel78, p.291] that Φ is contained in $\{ \pm \alpha, \pm 2 \alpha\}$.
Set $\mathfrak{n}=\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2 \alpha}$ and $\overline{\mathfrak{n}}=\mathfrak{g}_{-\alpha} \oplus \mathfrak{g}_{-2 \alpha}$. Put $A_{+}=\left\{a \in A \mid a^{\alpha}>1\right\}$ and $\bar{A}_{+}=\left\{a \in A \mid a^{\alpha} \geqslant 1\right\}$. Let $\mathfrak{a}_{+}=\operatorname{Lie}\left(A_{+}\right)$and $\overline{\mathfrak{a}}_{+}=\operatorname{Lie}\left(\bar{A}_{+}\right)$.
For $s>0$, put $A_{\leqslant s}=\left\{a \in A \mid a^{\alpha} \leqslant s\right\}$ and $A_{>s}=\left\{a \in A \mid a^{\alpha}>s\right\}$.
We identify \mathfrak{a} with \mathbb{R} as an abelian Lie algebra via the algebra homomorphism $H \in \mathfrak{a} \mapsto \alpha(H) \in \mathbb{R}$ and we identify A with $(0, \infty)$ as a group via the group homomorphism $a \in A \mapsto a^{\alpha}=e^{\alpha(\log (a))} \in(0, \infty)$. Thus, $\bar{A}_{+} \equiv[1, \infty)$ as a set. Hence, exp: $\mathfrak{a} \rightarrow A$ can be identified with the exponential map on \mathbb{R}.
Define $\rho \in \mathfrak{a}^{*}$ by $\rho(H)=\frac{1}{2} \operatorname{tr}\left(\left.\operatorname{ad}(H)\right|_{\mathfrak{n}}\right) \quad(H \in \mathfrak{a})$.
By construction, ρ is also equal to

$$
\frac{1}{2} \sum_{\mu \in \Phi^{+}} m_{\mu} \mu=\frac{1}{2}\left(m_{\alpha}+2 m_{2 \alpha}\right) \alpha .
$$

We have

X	$\mathbb{R} H^{n}$	$\mathbb{C} H^{n}$	$\mathbb{H} H^{n}$	$\mathbb{O} H^{2}$
ρ	$\frac{n-1}{2} \alpha$	$n \alpha$	$(2 n+1) \alpha$	11α

Let N be the analytic subgroup of G with Lie algebra \mathfrak{n}. Then, $P:=M A N$ is called a parabolic subgroup of G. Let $\bar{N}=\theta(N)$.

Each element of $g \in G$ has a Cartan decomposition $g=k_{g} a_{g} h_{g}$ with $k_{g}, h_{g} \in$ $K, a_{g} \in \bar{A}_{+}$. Moreover, if $g \neq e$, then a_{g} and $k_{g} M$ are uniquely determined.
The quotient space $X:=G / K$ is a Riemannian symmetric space of strictly negative sectional curvature. Its geodesic boundary is $\partial X:=G / P=K / M$. The Oshima compactification (cf. [Osh86]) endows the set $\bar{X}:=X \cup \partial X$ with a structure of a compact smooth G-manifold with boundary.
We know from the classification of symmetric spaces with strictly negative sectional curvature that G is a linear group finitely covering the orientation-preserving isometry group of X and that X is a real hyperbolic space $\mathbb{R} H^{n}(n \geqslant 1)$, a complex hyperbolic space $\mathbb{C} H^{n}(n \geqslant 2)$, a quaternionic hyperbolic space $\mathbb{H} H^{n}(n \geqslant 2)$ or the Cayley hyperbolic plane $\mathbb{O} H^{2}$.
Since the restricted root space decomposition is an orthogonal decomposition with respect to the Killing form (\mathfrak{g} is the orthogonal direct sum of simultaneous eigenspaces), $\mathfrak{m} \oplus \mathfrak{a}=\mathfrak{g}_{0}$ is orthogonal to \mathfrak{n} with respect to the Killing form. Moreover, $\mathfrak{m}=\mathfrak{k} \cap \mathfrak{g}_{0}$ is orthogonal to $\mathfrak{a}=\mathfrak{s} \cap \mathfrak{g}_{0}$ relative to B. See, e.g., Proposition 6.40 of Chapter VI in [Kna05, p.370]. Since $\mathfrak{a}=\mathfrak{s} \cap \mathfrak{g}_{0}$, \mathfrak{a} is also orthogonal to \mathfrak{k}.
Note that M is equal to $K \cap P$ and that \mathfrak{a} is the unique maximal abelian Lie subalgebra of $\mathfrak{m} \oplus \mathfrak{a} \oplus \mathfrak{n}$ which is orthogonal to the Lie algebra of K.
With respect to the Iwasawa decomposition $G=K A N$ (resp. $G=N A K$), we write

$$
g=\kappa(g) a(g) n(g) \quad(\text { resp. } g=\nu(g) h(g) k(g))
$$

with $\kappa(g) \in K, a(g) \in A$ and $n(g) \in N($ resp. $\nu(g) \in N, h(g) \in A$ and $k(g) \in K)$. Consider the function $G \times K \ni(g, k) \mapsto a\left(g^{-1} k\right)$. Note that this function descends to $X \times \partial X$.

Lemma 2.1.1. We can choose the normalisation of the distance function d_{X} (often simply denoted by d) on $X=G / K$ such that $a=a^{\alpha}=e^{d(e K, a K)}$ for all $a \in \bar{A}_{+} \equiv$ $[1, \infty)$. If $a \in A_{<1}$, then $a=e^{-d(e K, a K)}$.

Proof. Let d be a distance function on X (with arbitrary normalisation).
Since X is a Riemannian symmetric with strictly negative sectional curvature (in particular it is a Hadamard space), the length of a geodesic segment connecting to points $x, y \in X$ is equal to $d(x, y)$.
Let $F(H)$ be equal to $\pm d(e K, \exp (H) K)$, where the sign \pm is positive if $H \in \overline{\mathfrak{a}}_{+}$ and negative otherwise. Using that $e K, a_{1} K$ and $a_{2} K$ are on a geodesic for all $a_{1}, a_{2} \in A$ and the above fact, one easily sees that $F: \mathfrak{a} \equiv \mathbb{R} \rightarrow \mathbb{R}$ is a continuous homomorphism. Since all nonzero continuous homomorphisms from \mathbb{R} to \mathbb{R} are of the form $x \in \mathbb{R} \mapsto \lambda x \in \mathbb{R}$ for some $\lambda \neq 0, F(H)=\lambda \alpha(H)$ for some $\lambda \neq 0$. We normalise d so that $\lambda=1$. Hence, $F(H)=\alpha(H)$. So, $e^{ \pm d(e K, a K)}=e^{\alpha(\log a)}=a^{\alpha}=a$ for all $a \in A$. The lemma follows.

Consequently,

$$
\begin{equation*}
a_{g}=e^{d(e K, g K)} \quad(g \in G) \tag{2.1}
\end{equation*}
$$

due to the G-invariance of the metric.

Let B be the Killing form of \mathfrak{g}. Then, the Riemannian metric induces a $\operatorname{Ad}(K)-$ invariant inner product \tilde{B} on \mathfrak{s}. Since \mathfrak{g} is simple and of real rank one, the adjoint action of K acts irreducibly on \mathfrak{s} (K acts transitively on $\{X \in \mathfrak{s} \mid B(X, X)=1\}$). It follows now from Schur's lemma that there is a nonzero $c_{d_{X}} \in \mathbb{R}$ such that $\tilde{B}(X, Y)=c_{d_{X}} B(X, Y)$ for all $X, Y \in \mathfrak{s}$. Thus, $c_{d_{X}} B$ is an $\operatorname{Ad}(G)$-invariant nondegenerate symmetric bilinear form extending \tilde{B}. We denote this form also by \tilde{B}. As both bilinear forms are positive definite on $\mathfrak{s}, c_{d_{X}}>0$. For $X, Y \in \mathfrak{g}$, set $\langle X, Y\rangle=-\tilde{B}(X, \theta Y)$. Then, $\langle\cdot, \cdot\rangle$ is an $\operatorname{Ad}(K)$-invariant inner product on \mathfrak{g} and $|Z|:=\sqrt{\langle Z, Z\rangle}, Z \in \mathfrak{g}$, defines a norm on \mathfrak{g}.
The map $H \in \mathfrak{a} \mapsto \alpha(H) \in \mathbb{R}$ identifies \mathfrak{a} with \mathbb{R} isometrically. Hence, $\mathfrak{a}_{\mathbb{C}}$ can be isometrically identified with \mathbb{C} and $\mu \in \mathfrak{a}^{*} \mapsto\langle\alpha, \mu\rangle \in \mathbb{R}$ identifies \mathfrak{a}^{*} with \mathbb{R} isometrically. Moreover, α is identified with 1 . So, we can identify isometrically $\mathfrak{a}_{\mathbb{C}}^{*}$ with \mathbb{C}.
Let us determine now the constant $c_{d_{X}}$ explicitly. Let $H \in \mathfrak{a}$. Then,

$$
|H|^{2}=\tilde{B}(H, H)=c_{d_{X}} B(H, H)=c_{d_{X}} \operatorname{tr}(\operatorname{ad}(H) \operatorname{ad}(H)) .
$$

As $[H, Y]=0$ for all $Y \in \mathfrak{m} \oplus \mathfrak{a}$ and $[H, X]=\mu(H) X$ for all $X \in \mathfrak{g}_{\mu}$,

$$
\operatorname{tr}(\operatorname{ad}(H) \operatorname{ad}(H))=2 m_{\alpha} \alpha(H)^{2}+2 m_{2 \alpha}(2 \alpha(H))^{2}=2\left(m_{\alpha}+4 m_{2 \alpha}\right) \alpha(H)^{2}
$$

Let $H_{1} \in \mathfrak{a}$ be such that $\alpha\left(H_{1}\right)=1$. Then, $\left|H_{1}\right|=1$. Thus,

$$
1=\left|H_{1}\right|^{2}=c_{d_{X}} \operatorname{tr}\left(\operatorname{ad}\left(H_{1}\right) \operatorname{ad}\left(H_{1}\right)\right)=2 c_{d_{X}}\left(m_{\alpha}+4 m_{2 \alpha}\right) .
$$

Hence,

$$
\begin{equation*}
c_{d_{X}}=\frac{1}{2\left(m_{\alpha}+4 m_{2 \alpha}\right)} . \tag{2.2}
\end{equation*}
$$

If $\mu \in \mathfrak{a}^{*}$, then we define $H_{\mu} \in \mathfrak{a}$ by $\tilde{B}\left(H, H_{\mu}\right)=\mu(H)(H \in \mathfrak{a})$. This is welldefined as \tilde{B} is nondegenerate. We define a symmetric bilinear form $\langle\cdot, \cdot\rangle$ on \mathfrak{a}^{*} by $\langle\mu, \tau\rangle=\tilde{B}\left(H_{\mu}, H_{\tau}\right)$ for all $\mu, \tau \in \mathfrak{a}^{*}$. For $\mu \in \mathfrak{a}^{*}$, set

$$
|\mu|:=\sqrt{\langle\mu, \mu\rangle}=\sqrt{\tilde{B}\left(H_{\mu}, H_{\mu}\right)}
$$

(well-defined since the Killing form is positive definite on $\mathfrak{a} \subset \mathfrak{s}$).
The two isometries $H \in \mathfrak{a} \mapsto \alpha(H) \in \mathbb{R}$ and $\mu \in \mathfrak{a}^{*} \mapsto\langle\alpha, \mu\rangle \in \mathbb{R}$ fix the Haar measures on A and \mathfrak{a}^{*}. We normalise the Haar measures on compact groups such that the groups have total mass 1 .
The push-forward of the Lebesgue measure on \mathfrak{n} (resp. $\mathfrak{\mathfrak { n }}$), normalised by the condition

$$
\int_{N} a(\theta(n))^{-2 \rho} d n=1 \quad\left(\text { resp. } \int_{\bar{N}} a(\bar{n})^{-2 \rho} d \bar{n}=1\right)
$$

defines a Haar measure on N (resp. \bar{N}). On G we consider the Haar measure $d g=d k d x$, where $d k$ is the Haar measure on K and $d x$ is the Riemannian measure on $X=G / K$. On discrete groups, we take the counting measure.
Let $\mathrm{HS}_{g K, k M}:=k N k^{-1} g K$ be the horosphere passing through $g K \in X$ and $k M \in$ ∂X.

Lemma 2.1.2. Let $a \in A$. Then, the distance from eK to the horosphere

$$
\mathrm{HS}_{a K, e M}=\{n a K \mid n \in N\}
$$

passing through $a K \in X$ and $e M \in \partial X$ is equal to $d(e K, a K)=|\log a|$.
Proof. Let $a \in A$. As $x K \mapsto a^{-1} x K$ is an isometry of X, it suffices to prove that the distance from $a^{-1} K$ to the horosphere $\operatorname{HS}_{e K, e M}=\left\{n^{\prime} K \mid n^{\prime} \in N\right\}$ passing through $e K \in X$ and $e M \in \partial X$ is equal to $d(e K, a K)=|\log a|$.
Let $p=\frac{1}{2}(\operatorname{Id}-\theta)$. Then, $p: \mathfrak{g} \rightarrow \mathfrak{g}$ is the projection on $\mathfrak{s} \equiv T_{e K} X$. Since $B(H, X)=0$ for all $H \in \mathfrak{a}$ and $X \in \mathfrak{n} \oplus \overline{\mathfrak{n}}, \mathfrak{a} \subset \mathfrak{s}$ is orthogonal to $p(\mathfrak{n}) \subset \mathfrak{s}$ with respect to B. Thus, $\left\{a^{\prime} K \mid a^{\prime} \in A\right\}$ is orthogonal to $\left\{n^{\prime} K \mid n^{\prime} \in N\right\}$ in X. As $x K \mapsto n x K$ is an isometry of X for every $n \in N$, $\left\{n a^{\prime} K \mid a^{\prime} \in A\right\}$ is a geodesic which is orthogonal to $\left\{n^{\prime} K \mid n^{\prime} \in N\right\}$ for every $n \in N$.
Assume now that a geodesic is orthogonal to $\left\{n^{\prime} K \mid n^{\prime} \in N\right\}$. Since the latter space has codimension 1 in X, it follows from the uniqueness property of a geodesic that it is equal to the geodesic $\left\{n a^{\prime} K \mid a^{\prime} \in A\right\}$ for some $n \in N$.
Since $a^{-1} K$ must belong to the geodesic, it follows that $\left\{a^{\prime} K \mid a^{\prime} \in A\right\}$ is the unique geodesic which passes through $a^{-1} K$ and which is orthogonal to $\left\{n^{\prime} K \mid\right.$ $\left.n^{\prime} \in N\right\}$. Hence,

$$
d\left(a^{-1} K, \mathrm{HS}_{e K, e M}\right)=d\left(a^{-1} K, e K\right)=d(e K, a K)=|\log a|
$$

as the geodesic $\left\{a^{\prime} K \mid a^{\prime} \in A\right\}$ intersects $\operatorname{HS}_{e K, e M}=\left\{n^{\prime} K \mid n^{\prime} \in N\right\}$ at $e K$.
Lemma 2.1.3. We have:

$$
\begin{equation*}
a\left(g^{-1} k\right) \leqslant a_{g} \quad \text { and } \quad a\left(g^{-1} k\right)^{-1} \leqslant a_{g} \quad(g \in G, k \in K) . \tag{2.3}
\end{equation*}
$$

Proof. By Lemma 2.1.2,

$$
d\left(e K, \mathrm{HS}_{g K, e M}\right)=d\left(e K, \mathrm{HS}_{h(g) K, e M}\right)=d(e K, h(g) K)=d\left(e K, a\left(g^{-1}\right) K\right) .
$$

So,

$$
\begin{aligned}
d\left(e K, \mathrm{HS}_{g K, k M}\right)= & \inf _{n \in N} d\left(e K, k n k^{-1} g K\right)=\inf _{n \in N} d\left(e K, n k^{-1} g K\right) \\
& =d\left(e K, \mathrm{HS}_{k^{-1} g K, e M}\right)=d\left(e K, a\left(g^{-1} k\right) K\right)=\left|\log a\left(g^{-1} k\right)\right|
\end{aligned}
$$

It follows that

$$
a\left(g^{-1} k\right)=e^{ \pm d\left(e K, \mathrm{HS}_{g K, k M}\right)} \quad(g \in G, k \in K),
$$

where the sign \pm is positive (resp. negative) if $e K$ lies inside (resp. outside) the corresponding horoball. Thus,

$$
\left|\log a\left(g^{-1} k\right)\right| \leqslant d\left(e K, k e k^{-1} g K\right)=d(e K, g K)=\log a_{g} .
$$

Hence,

$$
a\left(g^{-1} k\right) \leqslant a_{g} \quad \text { and } \quad a\left(g^{-1} k\right)^{-1} \leqslant a_{g}
$$

for all $g \in G$ and $k \in K$. The lemma follows.

Lemma 2.1.4. Let $n \in N$ and $a \in A$. Then,

$$
a_{n a} \geqslant a_{a} \geqslant a, a_{n a}^{2} \geqslant a_{n} \quad \text { and } \quad \log a_{n a} \geqslant|\log a|
$$

Proof. Let $n \in N$ and $a \in A$. Then, $a_{n} \leqslant a_{n a} a_{a^{-1}}=a_{n a} a_{a}$ by the triangle inequality for d_{X}. It follows from (2.3) that $a_{n a} \geqslant a_{a} \geqslant a$. Thus, $a_{n} \leqslant a_{n a}^{2}$ and $\log a_{n a} \geqslant \log a_{a}=|\log a|$.

Lemma 2.1.5. For all $g, h \in G$,

$$
1+\log a_{g h} \leqslant\left(1+\log a_{g}\right)\left(1+\log a_{h}\right), \quad 1+\log a_{g} \leqslant\left(1+\log a_{g h}\right)\left(1+\log a_{h}\right)
$$

and

$$
1+\log a_{h} \leqslant\left(1+\log a_{g}\right)\left(1+\log a_{g h}\right) .
$$

Proof. Let $g, h \in G$. Since it follows from the triangle inequality for the Riemannian metric d on X that $a_{g h} \leqslant a_{g} a_{h}$,

$$
\log a_{g h} \leqslant \log a_{g}+\log a_{h} .
$$

Thus,

$$
\begin{aligned}
\left(1+\log a_{g}\right)\left(1+\log a_{h}\right)=1+\log a_{g}+\log a_{h} & +\log a_{g} \log a_{h} \\
& \geqslant 1+\log a_{g}+\log a_{h} \geqslant 1+\log a_{g h} .
\end{aligned}
$$

We get the second formula by replacing g by $g h$ and h by h^{-1} and the third formula by replacing g by g^{-1} and h by $g h$.

Lemma 2.1.6. If S_{1} is a relatively compact subset of G and if S_{2} is a subset of P such that $\left\{a(h) \mid h \in S_{2}\right\}$ is relatively compact in A (e.g. S_{2} is a relatively compact subset of P), then there exist constants $c_{1}, c_{2}>0$ such that

$$
c_{1} a(x) \leqslant a(g x h) \leqslant c_{2} a(x)
$$

for all $g \in S_{1}, h \in S_{2}$ and $x \in G$.
Proof. Let $g \in S_{1}, h \in S_{2}$ and $x \in G$. Then,

$$
a(g x h)=a(g \kappa(x)) a(x) a(h) .
$$

The lemma follows as $\left\{g \kappa(x) \mid g \in S_{1}, x \in G\right\}$ is contained in the compact set $\bar{S}_{1} K$ and as $\overline{\left\{a(h) \mid h \in S_{2}\right\}}$ is compact.

We write an element $g \in \bar{N} M A N$ as $\bar{n}_{B}(g) m_{B}(g) a_{B}(g) n_{B}(g)$ with $\bar{n}_{B}(g) \in \bar{N}$, $m_{B}(g) \in M, a_{B}(g) \in A$ and $n_{B}(g) \in N$ (Bruhat decomposition).
Proposition 2.1.7. Write $\bar{n} \in \bar{N}$ as $\bar{n}=\exp (X+Y)\left(X \in \mathfrak{g}_{-\alpha}, Y \in \mathfrak{g}_{-2 \alpha}\right)$. Then,
(1) $2 \cosh \left(2 \log a_{\bar{n}}\right)=1+|X|^{2}+\left(1+\frac{1}{2}|X|^{2}\right)^{2}+2|Y|^{2}$,
(2) $a(\bar{n})=\sqrt{\left(1+\frac{1}{2}|X|^{2}\right)^{2}+2|Y|^{2}}$,
(3) $a_{B}(w \bar{n})=\sqrt{\frac{1}{4}|X|^{4}+2|Y|^{2}} \quad(\bar{n} \neq e)$.

Proof. See Theorem 3.8 in Chapter IX of [Hel78, p.414] for a proof. In order to determine the appearing constant, we use that $c_{d_{X}}=\frac{1}{2\left(m_{\alpha}+4 m_{2 \alpha}\right)}$ (see (2.2)).
Definition 2.1.8. Let X be a set and let f, g be two nonnegative real-valued functions on X. Then, we write $f \prec g$ if there exists a positive constant $c>0$ such that $f(x) \leqslant c g(x)$ for all $x \in X$ and we say that f is essentially bounded by g. We use the notation $f \succ g$ if $g \prec f$ and $f \asymp g$ if $f \prec g$ and $g \prec f$.

Corollary 2.1.9. We have

$$
a_{n} \asymp a(\theta(n))=a(n w) \quad(n \in N) .
$$

Let $\varepsilon>0$. Then,

$$
a_{n} \asymp a(\theta(n)) \asymp a_{B}(n w)
$$

for all $n \in N$ such that $|\log n|>\varepsilon$.
Proof. Since

$$
\begin{aligned}
& a_{B}(n w)=a_{B}(w \underbrace{\left(w^{-1} n w\right)}_{\in \bar{N}}) \quad(n \in N), \\
& |\theta(X)|=|X|=\left|\operatorname{Ad}\left(w^{-1}\right) X\right| \quad(X \in \mathfrak{n}), \\
& \operatorname{Ad}\left(w^{-1}\right) \mathfrak{g}_{\alpha} \subset \mathfrak{g}_{-\alpha}, \operatorname{Ad}\left(w^{-1}\right) \mathfrak{g}_{2 \alpha} \subset \mathfrak{g}_{-2 \alpha}
\end{aligned}
$$

and since

$$
e^{\operatorname{arccosh}(x)}=x+\sqrt{x^{2}-1}=x\left(1+\sqrt{1-\frac{1}{x^{2}}}\right) \asymp x \quad(x \in[1,+\infty)),
$$

the corollary follows immediately from Proposition 2.1.7.

2.2 Convex-cocompact groups

In this section, we say when a torsion-free discrete subgroup Γ of G is convexcocompact.

Let us recall first of all the definition of "torsion-free":
Definition 2.2.1. Let H be a group. Then, we call $x \in H$ a torsion element if x has finite order. We call H torsion-free if it has no nontrivial torsion elements.

Definition 2.2.2 ([Bou71, I.10, III.4]).
Let H be a locally compact group and let V be a locally compact topological space. If H acts continuously on V, then we say that H acts properly if

$$
\begin{equation*}
\{h \in H \mid h . C \cap C \neq \varnothing\} \tag{2.4}
\end{equation*}
$$

is compact for any compact set C of V.
If H is discrete and acts properly, then (2.4) is finite and the action is called properly discontinuous.

Remark 2.2.3. If H acts properly on V, then the space of orbits $H \backslash V$, endowed with the quotient topology, is Hausdorff.

Let Γ be a torsion-free discrete subgroup of G. Then, the limit set Λ_{Γ} is by definition the set of accumulation points of the Γ-orbit $\bigcup_{\gamma \in \Gamma} \gamma K$ in $\bar{X}:=X \cup \partial X$ (here $X:=G / K$ and $\partial X:=G / P=K / M)$. By Proposition 1.4 of [EO73, p.88], this set is a closed and Γ-invariant subset of ∂X. Let $\Omega_{\Gamma}=\partial X \backslash \Lambda_{\Gamma}$ be the set of ordinary points of Γ. This set is open and clearly also a Γ-invariant subset of ∂X. If no confusion is possible, then we may simply write Ω (resp. Λ) for Ω_{Γ} (resp. Λ_{Γ}). By Proposition 8.5 of [EO73, p.88], Γ acts properly discontinuously on $X \cup \Omega_{\Gamma}$. As moreover Γ is torsion-free, Γ acts freely on $X \cup \Omega_{\Gamma}$.

Definition 2.2.4.

(1) We say that a left (resp. right) proper action of a group H on a topological space T is cocompact if the quotient space $H \backslash T$ is a compact space.
(2) We say that a torsion-free, discrete subgroup Γ of G is convex-cocompact if Γ acts cocompactly on $X \cup \Omega$.

2.3 The Schwartz space and the space of cusp forms on $\Gamma \backslash G$

2.3.1 The Schwartz space on $\Gamma \backslash G$

First, we define the Schwartz space on $\Gamma \backslash G$. Second, we determine some basic properties of this space.
Let $\Gamma \subset G$ be a convex-cocompact, non-cocompact $(\Omega \neq \varnothing)$, discrete subgroup.
Definition 2.3.1. Let $\left(\varphi, V_{\varphi}\right)$ be a finite-dimensional unitary representation of Γ. Define

$$
\begin{aligned}
& C^{\infty}(\Gamma \backslash G, \varphi)=\left\{f \in C^{\infty}\left(G, V_{\varphi}\right) \mid f(\gamma x)=\varphi(\gamma) f(x) \quad \forall \gamma \in \Gamma, x \in G\right\}, \\
& C_{c}^{\infty}(\Gamma \backslash G, \varphi)=\left\{f \in C^{\infty}(\Gamma \backslash G, \varphi) \mid f \text { has compact support modulo } \Gamma\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& L^{p}(\Gamma \backslash G, \varphi)=\left\{f: G \rightarrow V_{\varphi} \text { measurable } \mid\right. \\
& \left.\qquad f(\gamma x)=\varphi(\gamma) f(x) \quad \forall \gamma \in \Gamma, x \in G, \int_{\Gamma \backslash G}|f(x)|^{p} d x<\infty\right\} / \sim,
\end{aligned}
$$

with the usual identifications, for $p \geqslant 1$.
Let \mathcal{U}_{Γ} be the family of open subsets of X which are relatively compact in $X \cup \Omega$. Let $U \in \mathcal{U}_{\Gamma}$.
$\underline{\text { Picture for } G=\operatorname{SL}(2, \mathbb{R}):}$

For $Z \in \mathfrak{g}$, set $L_{Z} f(g)=\left.\frac{d}{d t}\right|_{t=0} f\left(e^{-t Z} g\right)$ and $R_{Z} f(g)=\left.\frac{d}{d t}\right|_{t=0} f\left(g e^{t Z}\right)$. These definitions are extended to $\mathcal{U}(\mathfrak{g})$ in the well-known way.
Let $l \in \mathbb{N}_{0}$. For $r \geqslant 0, X \in \mathcal{U}(\mathfrak{g})_{l_{1}}, Y \in \mathcal{U}(\mathfrak{g})_{l_{2}}$ such that $l_{1}+l_{2} \leqslant l$ and a function $f \in C^{l}\left(G, V_{\varphi}\right)$, set

$$
{ }^{U} p_{r, X, Y}(f)=\sup _{g K \in U}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho}\left|L_{X} R_{Y} f(g)\right|
$$

Definition 2.3.2. Let $\left(\varphi, V_{\varphi}\right)$ be a finite-dimensional unitary representation of Γ. Then, we define the Schwartz space $\mathscr{C}(\Gamma \backslash G, \varphi)$ on $\Gamma \backslash G$ by

$$
\left\{f \in C^{\infty}(\Gamma \backslash G, \varphi) \mid{ }^{U} p_{r, X, Y}(f)<\infty \quad \forall r \geqslant 0, X, Y \in \mathcal{U}(\mathfrak{g}), U \in \mathcal{U}_{\Gamma}\right\}
$$

We equip $\mathscr{C}(\Gamma \backslash G, \varphi)$ with the topology induced by the seminorms.
By definition, $\mathscr{C}(\Gamma \backslash G)=\mathscr{C}(\Gamma \backslash G, 1)$, where 1 is the one-dimensional trivial representation.

Remark 2.3.3.

(1) This definition is a generalisation of Harish-Chandra's Schwartz space (see 7.1.2 of [Wal88, p.230]) as we get this space when we take $\varphi=1$ and $\Gamma=\{e\}$ by Theorem 4.5.3 of [Wal88, p.126].
(2) One can show that this definition is equivalent to Definition 8.1 in [BO00, p.129].

Lemma 2.3.4. Let $U \in \mathcal{U}_{\Gamma}$, let $r \geqslant 0$ and let $f \in C^{\infty}(\Gamma \backslash G, \varphi)$ be such that ${ }^{U} p_{r, X, Y}(f)$ is finite for all $X, Y \in \mathcal{U}(\mathfrak{g})$. For all $\gamma \in \Gamma$, there is a constant $C_{r, \gamma}>0$ such that

$$
{ }^{\boldsymbol{} U} p_{r, X, Y}(f) \leqslant C_{r, \gamma}{ }^{U} p_{r, \operatorname{Ad}\left(\gamma^{-1}\right) X, Y}(f)<\infty \quad(X, Y \in \mathcal{U}(\mathfrak{g})) .
$$

Proof. Let $U \in \mathcal{U}_{\Gamma}$, let $r \geqslant 0$, let f be as above and let $X, Y \in \mathcal{U}(\mathfrak{g})$. Then,

$$
\begin{aligned}
{ }^{\gamma U} p_{r, X, Y}(f) & =\sup _{g K \in U}\left(1+\log a_{\gamma g}\right)^{r} a_{\gamma g}^{\rho}\left|L_{X} R_{Y} f(\gamma g)\right| \\
& \leqslant\left(1+\log a_{\gamma}\right)^{r} a_{\gamma}^{\rho} \sup _{g K \in U}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho}\left|L_{\operatorname{Ad}\left(\gamma^{-1}\right) X} R_{Y} f(g)\right| \\
& =\left(1+\log a_{\gamma}\right)^{r} a_{\gamma}^{\rho}{ }^{\rho} p_{r, \operatorname{Ad}\left(\gamma^{-1}\right) X, Y}(f)<\infty,
\end{aligned}
$$

where $\operatorname{Ad}: G \rightarrow \mathrm{GL}(\mathfrak{g})$ is extended in the well-known way to $\operatorname{Ad}: G \rightarrow \mathrm{GL}(\mathcal{U}(\mathfrak{g}))$. This completes the proof of the lemma.

We denote by $\operatorname{clo}(S)(\operatorname{resp} . \operatorname{int}(S))$ the closure (resp. interior) of a set S in $X \cup \Omega$.
Lemma 2.3.5. There is a set $U_{\Gamma} \in \mathcal{U}_{\Gamma}$ such that

$$
\Gamma \backslash X=\Gamma U_{\Gamma} .
$$

Proof. As the compact set $\Gamma \backslash(X \cup \Omega)$ is covered by $\bigcup_{U \in \mathcal{U}_{\Gamma}}(U \cup \operatorname{int}(\operatorname{clo}(U) \cap \partial X))$ modulo Γ, we can choose finitely many U_{i} 's in \mathcal{U}_{Γ}, say U_{1}, \ldots, U_{l}, such that the union of them covers X modulo Γ. Take $U_{\Gamma}:=\bigcup_{i=1}^{l} U_{i}$.

Fix $U_{\Gamma} \in \mathcal{U}_{\Gamma}$ such that the previous lemma holds.
Lemma 2.3.6. $\mathscr{C}(\Gamma \backslash G, \varphi)$ is equal to

$$
\begin{equation*}
\left\{\left.f \in C^{\infty}(\Gamma \backslash G, \varphi)\right|^{U_{\Gamma}} p_{r, X, Y}(f)<\infty \quad \forall r \in \mathbb{N}_{0}, X, Y \in \mathcal{U}(\mathfrak{g})\right\} \tag{2.5}
\end{equation*}
$$

as topological spaces.
Proof. Let $U \in \mathcal{U}_{\Gamma}$. Then, this set is covered by finitely many Γ-translates of U_{Γ} : There exist $\gamma_{1}, \ldots, \gamma_{s} \in \Gamma$ such that $U \subset \bigcup_{i=1}^{s} \gamma_{i} U_{\Gamma}$. Let now $\gamma \in \Gamma, X, Y \in \mathcal{U}(\mathfrak{g})$, $r \geqslant 0$ and let f be in (2.5).
Let r^{\prime} be an integer which is greater or equal than r. Then, ${ }^{U_{\Gamma}} p_{r, X, Y}(f)$ is less or equal than ${ }^{U_{\Gamma}} p_{r^{\prime}, X, Y}(f)<\infty$. Thus, there is a constant $C_{r^{\prime}, \gamma}>0$ such that

$$
{ }^{\gamma U_{\Gamma}} p_{r^{\prime}, X, Y}(f) \leqslant C_{r^{\prime}, \gamma}{ }^{U_{\Gamma}} p_{r^{\prime}, \operatorname{Ad}\left(\gamma^{-1}\right) X, Y}(f)<\infty
$$

by Lemma 2.3.4. So,

$$
{ }^{U} p_{r, X, Y}(f) \leqslant \sum_{i=1}^{s} C_{r^{\prime}, \gamma}{ }^{U_{\Gamma}} p_{r^{\prime}, \operatorname{Ad}\left(\gamma^{-1}\right) X, Y}(f)<\infty
$$

The lemma follows.
A net f_{α} in $C^{\infty}(\Gamma \backslash G, \varphi)$ converges to $f \in C^{\infty}(\Gamma \backslash G, \varphi)$ if for every compact subset C of G, f_{α} converges uniformly with all derivatives to f on C. This induces a topology on $C^{\infty}(\Gamma \backslash G, \varphi)$.

Lemma 2.3.7. The space $C^{\infty}(\Gamma \backslash G, \varphi)$ is complete.
Proof. This well-known result can be proven similarly as in 1.46 of [Rud91, pp.3435].

Proposition 2.3.8. The Schwartz space $\mathscr{C}(\Gamma \backslash G, \varphi)$ is a Fréchet space.
Remark 2.3.9. The proof is a straightforward generalisation of that for the case $\Gamma=\{e\}$ (see proof of Theorem 7.1.1 in [Wal88, pp.227-228]).

Proof. We can write $U \in \mathcal{U}_{\Gamma}$ as a (possibly infinite) union of open sets in X which are relatively compact in X. Indeed, U is equal to $\bigcup_{n \in \mathbb{N}}(U \cap B(e K, n))$.
To show that $\mathscr{C}(\Gamma \backslash G, \varphi)$ is a Fréchet space, it suffices to prove that $\mathscr{C}(\Gamma \backslash G, \varphi)$ is sequentially complete as $\mathcal{U}(\mathfrak{g})$ is countable dimensional and as it is enough to consider $r \in \mathbb{N}_{0}$ and $U=U_{\Gamma}$ by Lemma 2.3.6.
Let $\left(f_{j}\right)_{j}$ be a Cauchy sequence in $\mathscr{C}(\Gamma \backslash G, \varphi)$. Then, $\left(f_{j}\right)_{j}$ is a Cauchy sequence in $C^{\infty}(\Gamma \backslash G, \varphi)$. As $C^{\infty}(\Gamma \backslash G, \varphi)$ is complete by the previous lemma, there exists $f \in C^{\infty}(\Gamma \backslash G, \varphi)$ such that f_{j} converges uniformly with all derivatives to f on compact subsets of G.
Fix $r \geqslant 0, X, Y \in \mathcal{U}(\mathfrak{g})$ and $U \in \mathcal{U}_{\Gamma}$. We have:

$$
{ }^{U} p_{r, X, Y}(f)=\sup _{n \in \mathbb{N}} U \cap B(e K, n) p_{r, X, Y}(f)
$$

By convention, ${ }^{\varnothing} p_{r, X, Y}(f)=0$. Let $\varepsilon>0$ be given. Let $N \in \mathbb{N}$ be sufficiently large so that ${ }^{U} p_{r, X, Y}\left(f_{i}-f_{j}\right)<\frac{\varepsilon}{2}$ for all $i, j \geqslant N$. Then,

$$
{ }^{U} p_{r, X, Y}\left(f_{i}\right)<\frac{\varepsilon}{2}+{ }^{U} p_{r, X, Y}\left(f_{N}\right)
$$

for all $i \geqslant N$. Let $N_{n} \in \mathbb{N}$ be sufficiently large (maybe larger than N) so that

$$
U \cap B(e K, n) p_{r, X, Y}\left(f-f_{i}\right)<\frac{\varepsilon}{2}
$$

for all $i \geqslant N_{n}$. This is possible because for all $n \in \mathbb{N}$, there is $c_{n}>0$ such that

$$
U \cap B(e K, n) p_{r, X, Y}(h) \leqslant c_{n} \sup _{g K \in U \cap B(e K, n)}\left|L_{X} R_{Y} h(g)\right|<\infty
$$

for all $h \in C^{\infty}(\Gamma \backslash G, \varphi)$. Thus, ${ }^{U \cap B(e K, n)} p_{r, X, Y}(f)<\varepsilon+{ }^{U \cap B(e K, n)} p_{r, X, Y}\left(f_{N}\right)$. Hence,

$$
{ }^{U} p_{r, X, Y}(f) \leqslant \varepsilon+{ }^{U} p_{r, X, Y}\left(f_{N}\right)<\infty .
$$

So, $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$. Moreover,

$$
U \cap B(e K, n) p_{r, X, Y}\left(f-f_{j}\right) \leqslant{ }^{U \cap B(e K, n)} p_{r, X, Y}\left(f-f_{i}\right)+{ }^{U \cap B(e K, n)} p_{r, X, Y}\left(f_{i}-f_{j}\right)<\varepsilon
$$

for all $j \geqslant N$ and $i \geqslant N_{n}$. It follows that ${ }^{U} p_{r, X, Y}\left(f-f_{j}\right) \leqslant \varepsilon$ for all $j \geqslant N$. Consequently, $\mathscr{C}(\Gamma \backslash G, \varphi)$ is sequentially complete. The proposition follows.

Lemma 2.3.10. The integral $\int_{G} a_{g}^{-2 \rho}\left(1+\log a_{g}\right)^{-r} d g$ is finite if and only if $r>1$.
Proof. Compare with the lemma in 5.1.3 of [Wal88, p.139].
Since $g \mapsto a_{g}$ is left and right K-invariant, there exists a constant $c>0$ by Lemma 2.4.2 of [Wal88, p.61] such that

$$
\int_{G} a_{g}^{-2 \rho}\left(1+\log a_{g}\right)^{-r} d g=c \int_{A_{+}} \gamma(a) a^{-2 \rho}(1+\log a)^{-r} d a
$$

where $\gamma(a):=\prod_{\mu \in \Phi^{+}} \sinh (\mu(H))$. Since

$$
\gamma(a) \asymp \prod_{\mu \in \Phi^{+}} e^{\mu(\log a)}=e^{\sum_{\mu \in \Phi^{+}} \mu(\log a)}=e^{2 \rho(\log a)}=a^{2 \rho}
$$

on A, this integral is finite if and only if

$$
\int_{A_{+}}(1+\log a)^{-r} d a=\int_{0}^{\infty}(1+t)^{-r} d t
$$

is finite. The lemma follows as the last integral converges if and only if $r>1$.
Proposition 2.3.11. The Schwartz space $\mathscr{C}(\Gamma \backslash G, \varphi)$ is contained in $L^{2}(\Gamma \backslash G, \varphi)$. Moreover, the injection of $\mathscr{C}(\Gamma \backslash G, \varphi)$ into $L^{2}(\Gamma \backslash G, \varphi)$ is continuous.

Proof. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and let $r \geqslant 0$. Then,

$$
|f(g)| \leqslant{ }^{U_{\Gamma}} p_{r, 1,1}(f)\left(1+\log a_{g}\right)^{-r} a_{g}^{-\rho}
$$

for all $g \in S:=U_{\Gamma} K \subset G$. We have:

$$
\|f\|_{2}^{2}=\int_{\Gamma \backslash G}|f(g)|^{2} d g \leqslant \int_{S}|f(g)|^{2} d g \leqslant \leqslant^{U_{\Gamma}} p_{r, 1,1}(f)^{2} \int_{G}\left(1+\log a_{g}\right)^{-2 r} a_{g}^{-2 \rho} d g
$$

By Lemma 2.3.10, this is finite for $r>\frac{1}{2}$. The proposition follows.

2.3.2 Density of $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$ in $\mathscr{C}(\Gamma \backslash G, \varphi)$

In the following, we do some preparation needed to prove that the space $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$ of compactly supported smooth functions on $\Gamma \backslash G$ (viewed as a subspace of $\mathscr{C}(\Gamma \backslash G, \varphi))$ is dense (cf. Proposition 2.3.21).

Lemma 2.3.12. Let μ be a restricted root $(\mu \in\{ \pm \alpha, \pm 2 \alpha\})$ and let $X \in \mathfrak{g}_{\mu}$. Let $Y=\frac{1}{2}(X+\theta X) \in \mathfrak{k}$. If $a \in A \backslash\{e\}$, then

$$
X=\frac{2 a^{\mu}}{a^{2 \mu}-1}\left(a^{\mu} Y-\operatorname{Ad}(a)^{-1} Y\right)
$$

Proof. This can easily be proven by direct computation. Compare with Lemma 8.24 of [Kna86, p.227].

Let $A^{\prime}=A \backslash\{e\} \equiv(0, \infty) \backslash\{1\}$. Let us denote by $C_{b}^{\infty}\left(A_{+}\right)\left(\right.$resp. $\left.C_{b}^{\infty}\left(A^{\prime}\right)\right)$ the smooth functions f on A_{+}(resp. A^{\prime}) having uniformly bounded derivatives on $[1+\varepsilon, \infty)$ for every $\varepsilon>0$ (resp. $(0,1-\varepsilon] \cup[1+\varepsilon, \infty)$ for every $\varepsilon \in(0,1)$).
If $f \in C_{b}^{\infty}\left(A^{\prime}\right)$, then $\left.f\right|_{A_{+}}$clearly belongs to $C_{b}^{\infty}\left(A_{+}\right)$.
Let $d_{1}, d_{2} \in \mathbb{N}_{0}$ be such that $d_{1} \leqslant d_{2}$. Let p (resp. q) be a polynomial of degree d_{1} (resp. d_{2}). Let C be a closed subset of \mathbb{R} which does not meet the zeros of q. Then, $\frac{p}{q}$ has bounded derivatives of any order on C.
Thus, the following functions belong to $C_{b}^{\infty}\left(A^{\prime}\right)$:

$$
\begin{equation*}
\frac{1}{x^{2}-1}, \quad \frac{x}{x^{2}-1} \quad \text { and } \quad \frac{x^{2}}{x^{2}-1} . \tag{2.6}
\end{equation*}
$$

Lemma 2.3.13. Let $a \in A^{\prime}$. Then,

$$
\mathcal{U}(\mathfrak{g})=\mathcal{U}(\mathfrak{a}) \oplus\left(\operatorname{Ad}(a)^{-1}(\mathfrak{k}) \mathcal{U}(\mathfrak{g})+\mathcal{U}(\mathfrak{g}) \mathfrak{k}\right) .
$$

Proof. We have

$$
\mathcal{U}(\mathfrak{k})=\mathbb{C} \oplus \mathcal{U}(\mathfrak{k}) \mathfrak{k}=\mathbb{C} \oplus \mathfrak{k} \mathcal{U}(\mathfrak{k}) .
$$

Let $a \in A^{\prime}$. By Lemma 2.3.12,

$$
\mathfrak{g}_{\mathbb{C}}=\mathfrak{n}_{\mathbb{C}} \oplus \mathfrak{a}_{\mathbb{C}} \oplus \mathfrak{k}_{\mathbb{C}}=\mathfrak{a}_{\mathbb{C}} \oplus\left(\operatorname{Ad}(a)^{-1} \mathfrak{k}_{\mathbb{C}}+\mathfrak{k}_{\mathbb{C}}\right)
$$

Hence,

$$
\begin{aligned}
\mathcal{U}(\mathfrak{g})=\left(\operatorname{Ad}(a)^{-1} \mathcal{U}(\mathfrak{k})\right) \mathcal{U}(\mathfrak{a}) \mathcal{U}(\mathfrak{k})=(\mathbb{C} \oplus & \left.\operatorname{Ad}(a)^{-1}(\mathfrak{k} \mathcal{U}(\mathfrak{k}))\right) \mathcal{U}(\mathfrak{a})(\mathbb{C} \oplus \mathcal{U}(\mathfrak{k}) \mathfrak{k}) \\
& =\mathcal{U}(\mathfrak{a}) \oplus\left(\operatorname{Ad}(a)^{-1}(\mathfrak{k}) \mathcal{U}(\mathfrak{g})+\mathcal{U}(\mathfrak{g}) \mathfrak{k}\right)
\end{aligned}
$$

by the Poincaré-Birkhoff-Witt theorem.
Let $\left\{H_{i}\right\}$ be the natural basis of $\mathcal{U}(\mathfrak{a})$. Let $X \in \mathcal{U}(\mathfrak{a})$. Write

$$
X=\sum_{i} c_{i}(X) H_{i}
$$

Let $\left\{X_{a, i}\right\}$ be a basis of $\mathcal{U}(\mathfrak{g})$ induced from the above decomposition. Let $X \in$ $\mathcal{U}(\mathfrak{g})$. Write

$$
X=\sum_{i} c_{a, i}(X) X_{a, i}
$$

When we speak in the following of the coefficients of an element $X \in \mathcal{U}(\mathfrak{g})$, then we mean with this the numbers $c_{a, i}(X) \in \mathbb{C}$.
Let p_{a} denote the projection of $\mathcal{U}(\mathfrak{g})$ to $\mathcal{U}(\mathfrak{a})$ provided by the previous lemma.
Lemma 2.3.14. Let $X \in \mathcal{U}(\mathfrak{g})$. Then, $a \in A^{\prime} \mapsto c_{i}\left(p_{a}(X)\right)$ belongs to $C_{b}^{\infty}\left(A^{\prime}\right)$ for all i.

Proof. Let $l \in \mathbb{N}_{0}$. If $X \in \mathbb{C}$, there is nothing to prove. If $X \in \mathfrak{g}_{\mathbb{C}}=\mathfrak{n}_{\mathbb{C}} \oplus \mathfrak{a}_{\mathbb{C}} \oplus \mathfrak{k}_{\mathbb{C}}$, then the lemma follows from Lemma 2.3.12.
Let us prove now by induction that the lemma holds also for every $X \in \mathcal{U}(\mathfrak{g})_{l}$ $(l \geqslant 2)$. Assume that the lemma holds for every $X \in \mathcal{U}(\mathfrak{g})_{l-1}$. Since

$$
\mathcal{U}(\mathfrak{g})_{l}=\mathcal{U}(\mathfrak{g})_{l-1} \oplus \mathcal{U}(\mathfrak{g})_{l-1} \mathfrak{g},
$$

it suffices to consider the case, where $X=X_{1} X_{2}$ with $X_{1} \in \mathcal{U}(\mathfrak{g})_{l-1}$ and $X_{2} \in \mathfrak{g}$. We have

$$
\begin{aligned}
\mathcal{U}(\mathfrak{g})_{l-1} \mathfrak{g}= & \left(\mathcal{U}(\mathfrak{a})_{l-1} \oplus\left(\operatorname{Ad}(a)^{-1}(\mathfrak{k}) \mathcal{U}(\mathfrak{g})_{l-2}+\mathcal{U}(\mathfrak{g})_{l-2} \mathfrak{k}\right)\right)(\mathfrak{n} \oplus \mathfrak{a} \oplus \mathfrak{k}) \\
= & \underline{\mathcal{U}(\mathfrak{a})_{l-1} \mathfrak{n}}+\operatorname{Ad}(a)^{-1}(\mathfrak{k}) \mathcal{U}(\mathfrak{g})_{l-1}+\underline{\mathcal{U}(\mathfrak{g})_{l-2} \mathfrak{k n}} \\
& +\mathcal{U}(\mathfrak{a})_{l}+\operatorname{Ad}(a)^{-1}(\mathfrak{k}) \mathcal{U}(\mathfrak{g})_{l-1}+\underline{\mathcal{U}(\mathfrak{g})_{l-2} \mathfrak{k} \mathfrak{a}} \\
& +\mathcal{U}(\mathfrak{g})_{l-1} \mathfrak{k} .
\end{aligned}
$$

Here, the terms which are not under the desired form are underlined. In order to bring these terms in the form we want to have, we use that \mathfrak{n} is contained in $\operatorname{Ad}\left(a^{-1}\right)^{\mathfrak{k}}+\mathfrak{k}$ and the following relations:
(1) $\mathfrak{a} \operatorname{Ad}\left(a^{-1}\right) \mathfrak{k}=\operatorname{Ad}\left(a^{-1}\right)(\mathfrak{k}) \mathfrak{a}+\left[\mathfrak{a}, \operatorname{Ad}\left(a^{-1}\right) \mathfrak{k}\right]$,
(2) $\mathfrak{k} \operatorname{Ad}\left(a^{-1}\right) \mathfrak{k}=\operatorname{Ad}\left(a^{-1}\right)(\mathfrak{k}) \mathfrak{k}+\left[\mathfrak{k}, \operatorname{Ad}\left(a^{-1}\right) \mathfrak{k}\right]$,
(3) $\mathfrak{k a}=\mathfrak{a k}+[\mathfrak{k}, \mathfrak{a}]$.

For the new terms appearing containing one of these new Lie brackets, we must check that we can apply the induction hypothesis. We do this by showing that all the coefficients of terms not belonging to $\mathcal{U}(\mathfrak{g}) \mathfrak{k}$ are in $C_{b}^{\infty}\left(A^{\prime}\right)$.
Let $q=\frac{1}{2}(\operatorname{Id}+\theta)$. Then, $q: \mathfrak{g} \rightarrow \mathfrak{g}$ is the orthogonal projection on \mathfrak{k}. Since $q(\mathfrak{n})=q(\overline{\mathfrak{n}})$ and $q(\mathfrak{a})=\{0\}, q(\mathfrak{n}) \oplus \mathfrak{m}=q(\mathfrak{n} \oplus \mathfrak{m})=\mathfrak{k}$.
Let $Y \in \mathfrak{k}$ and $H \in \mathfrak{a}$. If $Y \in \mathfrak{m}$, then $\left[H, \operatorname{Ad}\left(a^{-1}\right) Y\right]=[H, Y]=0,\left[\mathfrak{k}, \operatorname{Ad}\left(a^{-1}\right) Y\right]=$ $[\mathfrak{k}, Y] \subset \mathfrak{k}$ and $[Y, \mathfrak{a}]=\{0\}$.
For $Z_{k} \in \mathfrak{g}_{k \alpha}$ and $H \in \mathfrak{a}$, we have:
(1) $\left[H, \operatorname{Ad}\left(a^{-1}\right) q\left(Z_{k}\right)\right]=\frac{1}{2} a^{-k}\left[H, Z_{k}\right]+\frac{1}{2} a^{k} \theta\left(\left[H, Z_{k}\right]\right)$, where

$$
\left[H, Z_{k}\right] \in \mathfrak{n} \subset \mathfrak{k}+\operatorname{Ad}(a)^{ \pm 1} \mathfrak{k}
$$

(2) Let $Y^{\prime} \in \mathfrak{k}$. Then,

$$
\left[Y^{\prime}, \operatorname{Ad}\left(a^{-1}\right) q\left(Z_{k}\right)\right]=\frac{1}{2} a^{-k}\left[Y^{\prime}, Z_{k}\right]+\frac{1}{2} a^{k} \theta\left(\left[Y^{\prime}, Z_{k}\right]\right)
$$

If $Y^{\prime} \in \mathfrak{m}$, then $\left[Y^{\prime}, Z_{k}\right] \in \mathfrak{n} \subset \mathfrak{k}+\operatorname{Ad}(a)^{ \pm 1} \mathfrak{k}$.
Let $Z_{k}^{\prime} \in \mathfrak{g}_{k \alpha}$. Then, $\left[q\left(Z_{k}^{\prime}\right), Z_{k}\right] \in \mathfrak{g}_{-\alpha} \oplus \mathfrak{m} \oplus \mathfrak{a} \oplus \mathfrak{n}$.
(3) $\left[q\left(Z_{k}\right), H\right] \in \mathfrak{n} \oplus \theta(\mathfrak{n}) \subset \mathfrak{k}+\operatorname{Ad}(a)^{-1} \mathfrak{k}$.

In the third case, all the coefficients are in $C_{b}^{\infty}\left(A^{\prime}\right)$. In the first and the second case, the maximal growth behaviour is exactly the growth behaviour we are allowed to have in order to have that the coefficients of the elements of $\mathfrak{a n}$, respectively $\mathfrak{k n}$, are as desired. The lemma follows now by induction.

We extend α to an algebra homomorphism from $\mathcal{U}(\mathfrak{a})$ to \mathbb{C}.
Define a homomorphism $\tilde{\alpha}: \mathcal{U}(\mathfrak{a}) \rightarrow \mathbb{C}$ of Lie algebras by the following conditions:

$$
\tilde{\alpha}(X)=0 \text { for } X \in \mathfrak{a}_{\mathbb{C}} \otimes \cdots \otimes \mathfrak{a}_{\mathbb{C}} \supset \mathfrak{a}_{\mathbb{C}} \otimes \mathfrak{a}_{\mathbb{C}}
$$

and

$$
\tilde{\alpha}(X)=\alpha(X) \quad \text { for } X \in \mathbb{C} \oplus \mathfrak{a}_{\mathbb{C}}
$$

Proposition 2.3.15. Let $X_{1}, X_{2} \in \mathcal{U}(\mathfrak{g})$ and $a \in A_{+}$. Let $f: G \backslash K \rightarrow \mathbb{C}$ be a smooth bi-K-invariant function. Then, there exist $H_{a} \in \mathcal{U}(\mathfrak{a})$ (depending both on X_{1} and X_{2}) such that $a \in A_{+} \mapsto \alpha\left(H_{a}\right)$ belongs to $C_{b}^{\infty}\left(A_{+}\right)$and

$$
\left.L_{X_{1}} R_{X_{2}} f(g)\right|_{g=a}=\left.R_{H_{a}} f(g)\right|_{g=a} .
$$

If $f(g)=a_{g}$, then $\left.L_{X_{1}} R_{X_{2}} f(g)\right|_{g=a}=\alpha\left(H_{a}\right) a$.
If $f(g)=\log \left(a_{g}\right)$, then $\left.L_{X_{1}} R_{X_{2}} f(g)\right|_{g=a}=\tilde{\alpha}\left(H_{a}\right) \log (a)$.
Remark 2.3.16. a_{g} is not differentiable at $g \in K$: Let $0 \neq H \in \mathfrak{a}$. Then,

$$
\left.\frac{d}{d t}\right|_{t=0^{ \pm}} a_{\exp (t H)}=\left.\frac{d}{d t}\right|_{t=0^{ \pm}} \max \{t \alpha(H),-t \alpha(H)\}= \pm \alpha(H) .
$$

So, $R_{H} a_{g}$ does not exist when g belongs to K.
Proof. Let $X_{1}, X_{2} \in \mathcal{U}(\mathfrak{g})$. It follows from the Poincaré-Birkhoff-Witt theorem that

$$
\mathcal{U}(\mathfrak{g})=\mathcal{U}(\mathfrak{a}) \mathcal{U}(\mathfrak{n}) \mathcal{U}(\mathfrak{k}) .
$$

By convention, this means that $X \in \mathcal{U}(\mathfrak{g})$ can be written as $\sum_{i} H_{i} Z_{i} Y_{i}$ with $H_{i} \in \mathcal{U}(\mathfrak{a}), Z_{i} \in \mathcal{U}(\mathfrak{n})$ and $Y_{i} \in \mathcal{U}(\mathfrak{k})$.
When we bring the left derivatives in $\mathcal{U}(\mathfrak{n})$ to the right-hand side, then the corresponding right derivatives have coefficients in $C_{b}^{\infty}\left(A_{+}\right)$. Thus, we may assume without loss of generality that $X_{1}=1$. The first part of the proposition follows now from Lemma 2.3.13 and Lemma 2.3.14.

The second part follows easily from the first part and the following formulas:
(1) $\left.R_{H_{1}} \cdots R_{H_{k}} a_{g}\right|_{g=a}=R_{H_{1}} \cdots R_{H_{k}} a=\prod_{j=1}^{k} \alpha\left(H_{j}\right) a$ for all $H_{j} \in \mathfrak{a}_{\mathbb{C}}$ and all $a \in A_{+} ;$
(2) $\left.R_{H} \log \left(a_{g}\right)\right|_{g=a}=R_{H} \log (a)=\alpha(H) \log (a)$ for all $H \in \mathfrak{a}_{\mathbb{C}}$ and all $a \in A_{+}$;
(3) $\left.R_{H_{1}} R_{H_{2}} \log \left(a_{g}\right)\right|_{g=a}=R_{H_{1}} R_{H_{2}} \log (a)=0$ for all $H_{1}, H_{2} \in \mathfrak{a}_{\mathbb{C}}$ and all $a \in A_{+}$.

Corollary 2.3.17. Let $X_{1}, X_{2} \in \mathcal{U}(\mathfrak{g})$ and let V be a neighbourhood of K in G. Then, there exists a constant $c>0$ (depending on X_{1}, X_{2}) such that

$$
\left|L_{X_{1}} R_{X_{2}}\left(1+\log \left(a_{g}\right)\right)\right| \leqslant c\left(1+\log \left(a_{g}\right)\right)
$$

for all $g \in G \backslash V$.
Proof. We have

$$
L_{X_{1}} R_{X_{2}} a_{g}=\left.L_{\mathrm{Ad}\left(k_{g}^{-1}\right) X_{1}} R_{\mathrm{Ad}\left(h_{g}\right) X_{2}} a_{x}\right|_{x=a_{g}} .
$$

Let $l \in \mathbb{N}$ be sufficiently large so that $X_{1}, X_{2} \in \mathcal{U}(\mathfrak{g})_{l}$. Let $\left\{Y_{i}\right\}$ be a basis of $\mathcal{U}(\mathfrak{g})_{l}$. For $k \in K$, write $\operatorname{Ad}(k) X_{j}=\sum_{i} c_{i, j}(k) Y_{i}$. Then, $\sup _{k \in K}\left|c_{i, j}(k)\right|$ is finite for all i, j. The corollary follows now from Proposition 2.3.15.

Lemma 2.3.18. Let $(V,|\cdot|)$ be a finite-dimensional normed complex vector space and let $f \in C^{\infty}(G, V)$ be such that $\sup _{g \in G}\left|L_{X} R_{Y} f(g)\right|<\infty$ for all $X \in \mathcal{U}(\mathfrak{g})$, $Y \in \mathcal{U}(\mathfrak{k})$ (resp. for all $X \in \mathcal{U}(\mathfrak{k}), Y \in \mathcal{U}(\mathfrak{g})$). Then,

$$
\sup _{g \in G}\left|L_{X} R_{Y} f(g)\right|<\infty
$$

for all $X, Y \in \mathcal{U}(\mathfrak{g})$.
Proof. Let $f \in C^{\infty}(G, V)$ be such that $\sup _{g \in G}\left|L_{X} R_{Y} f(g)\right|<\infty$ for all $X \in \mathcal{U}(\mathfrak{g})$, $Y \in \mathcal{U}(\mathfrak{k})$. Let $X, Y \in \mathcal{U}(\mathfrak{g})$. As $L_{X} f \in C^{\infty}(G)$, we may assume without loss of generality that $X=1$. For $g \in G$, we have

$$
R_{Y} f(g)=R_{\operatorname{Ad}\left(h_{g}\right) Y}\left(R_{h_{g}} f\right)\left(k_{g} a_{g}\right) .
$$

Thus, it remains to prove that $\sup _{g \in G}\left|R_{Y}\left(R_{h_{g}} f\right)\left(k_{g} a_{g}\right)\right|<\infty$ for any $Y \in \mathcal{U}(\mathfrak{g})$. Let $Y \in \mathcal{U}(g)$. By the Poincaré-Birkhoff-Witt theorem, we have

$$
\mathcal{U}(\mathfrak{g})=\mathcal{U}(\mathfrak{a}) \mathcal{U}(\overline{\mathfrak{n}}) \mathcal{U}(\mathfrak{k}) .
$$

By convention, this means that $Y \in \mathcal{U}(\mathfrak{g})$ can be written as $\sum_{i} H_{i} Z_{i} Y_{i}$ with $H_{i} \in \mathcal{U}(\mathfrak{a}), Z_{i} \in \mathcal{U}(\overline{\mathfrak{n}})$ and $Y_{i} \in \mathcal{U}(\mathfrak{k})$.
So, without loss of generality, we may assume that $Y=H Z U$ with $H \in \mathcal{U}(\mathfrak{a})$, $Z \in \mathcal{U}(\overline{\mathfrak{n}})$ and $U \in \mathcal{U}(\mathfrak{k})$. Then, $Z \in \mathcal{U}(\overline{\mathfrak{n}})_{l}$ for some $l \geqslant 0$ and $\left|R_{Y}\left(R_{h_{g}} f\right)\left(k_{g} a_{g}\right)\right|$ $(g \in G)$ is less or equal than

$$
\begin{aligned}
\left|L_{\mathrm{Ad}\left(k_{g}\right) H} R_{Z} R_{U}\left(R_{h_{g}} f\right)\left(k_{g} a_{g}\right)\right| \leqslant \mid L_{\mathrm{Ad}\left(k_{g}\right) H} & L_{\mathrm{Ad}\left(a_{g}\right) Z} R_{U}\left(R_{h_{g}} f\right)\left(k_{g} a_{g}\right) \mid \\
& =\left|L_{\mathrm{Ad}\left(k_{g}\right) H} L_{\mathrm{Ad}\left(a_{g}\right) Z} R_{\mathrm{Ad}\left(h_{g}\right)^{-1} U} f(g)\right| .
\end{aligned}
$$

Let $\left\{Z_{j}\right\}$ be a basis of $\mathcal{U}(\overline{\mathfrak{n}})_{l}$. As moreover $\sup _{g \in G}\left|L_{X} f(g)\right|<\infty$ for all $X \in \mathcal{U}(\mathfrak{g})$ and as $\operatorname{Ad}(a) Z=\sum_{j} c_{j}(a) Z_{j}$ for some coefficients $c_{j}(a)$ such that $\sup _{a \in \bar{A}_{+}}\left|c_{j}(a)\right|$ is finite, $\sup _{g \in G}\left|L_{X} R_{Y} f(g)\right|$ is finite. The second case of the lemma follows from the isomorphism $C^{\infty}(G, V) \rightarrow C^{\infty}(G, V), f \mapsto \check{f}$, where $\check{f}(g):=f\left(g^{-1}\right)$.

Recall that we endowed \bar{X} with a smooth manifold structure by using the Oshima compactification. Let Δ_{X} be the Laplace-Beltrami operator of X.

Lemma 2.3.19. There exists a cut-off function $\chi \in C_{c}^{\infty}(X \cup \Omega,[0,1])$ such that
(1) $\sum_{\gamma \in \Gamma} L_{\gamma} \chi=1$,
(2) $\sup _{g K \in X} a_{g}|d \chi(g K)|<\infty$,
(3) $\sup _{g K \in X} a_{g}\left|\Delta_{X} \chi(g K)\right|<\infty$,
(4) $\sup _{g K \in X}\left|L_{X} \chi(g K)\right|<\infty$ for all $X \in \mathcal{U}(\mathfrak{g})$,

We denote by χ_{∞} the restriction of χ to Ω.

Remark 2.3.20.

(1) It follows from Lemma 2.3.18 that $\sup _{g K \in X}\left|L_{X} R_{Y} \chi(g)\right|<\infty$ for all $X, Y \in$ $\mathcal{U}(\mathfrak{g})$.
(2) The set $\left\{\gamma \in \Gamma \mid \gamma^{-1} U \cap \operatorname{supp} \chi \neq \varnothing\right\}$ is finite for every $U \in \mathcal{U}_{\Gamma}$ since $\chi \in C_{c}^{\infty}(X \cup \Omega,[0,1])$ and since Γ acts properly discontinuous on $X \cup \Omega$.

Proof. See Lemma 6.4 of [BO00, p.113].
Let us recall now how the usual topology on $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$ is given.
A net f_{α} in $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$ converges to $f \in C_{c}^{\infty}(\Gamma \backslash G, \varphi)$ if there is a compact subset C of G and β such that supp $f_{\alpha} \cup \operatorname{supp} f \subset \Gamma C$ for all $\alpha>\beta$ and f_{α} converges uniformly with all derivatives on C.

Proposition 2.3.21. The inclusion of $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$ into $\mathscr{C}(\Gamma \backslash G, \varphi)$ is continuous with dense image.

Proof. Note first of all that $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$ is contained in $\mathscr{C}(\Gamma \backslash G, \varphi)$. Let $U \in$ $\mathcal{U}_{\Gamma}, d \geqslant 0$ and $X, Y \in \mathcal{U}(\mathfrak{g})$. It follows from the definition of the topology on $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$ that the maps ${ }^{U} p_{d, X, Y}$ are continuous seminorms on $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$. Thus, $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$ is continuously injected into $\mathscr{C}(\Gamma \backslash G, \varphi)$.
Let us prove now that $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$, viewed as a subspace of $\mathscr{C}(\Gamma \backslash G, \varphi)$, is dense in $\mathscr{C}(\Gamma \backslash G, \varphi)$. To show this we do a similar argument as in the proof of Theorem 7.1.1 in [Wal88, p.227].

Let $h \in C^{\infty}(\mathbb{R})$ be such that $h(x) \in[0,1]$ for all $x \in \mathbb{R}, h(x)=1$ if $x \in[-1,1]$ and $h(x)=0$ if $x \in \mathbb{R}:|x| \geqslant 2$. For $r>0$, set $u_{r}(g)=h\left(\frac{\log \left(a_{g}\right)}{r}\right)$. Then, there is a neighbourhood $V_{r}(r>0)$ of K such that $u_{r}(g)=1$ for all $g \in V_{r}$. Thus, u_{r} is smooth.

As every smooth function is locally Lipschitz, as $h^{(n)}(0)=0$ for all $n \in \mathbb{N}$ and as $h^{(n)}(n \in \mathbb{N})$ has compact support, there is a constant $c_{n}>0$ such that

$$
\begin{equation*}
\left|h^{(n)}(x)\right| \leqslant c_{n}|x| \tag{2.7}
\end{equation*}
$$

for all $x \in \mathbb{R}$ and all $n \in \mathbb{N}$. As $h(0)=1$, there is a constant $c_{0}>0$ such that $|h(x)-1| \leqslant c_{0}|x|$ for all $x \in[-2,2]$. As $|h(x)-1|=1$ for all $x \in \mathbb{R}:|x| \geqslant 2$, the previous estimate holds also for $x \in \mathbb{R}$ such that $|x| \geqslant 2$ if we choose $c_{0} \geqslant \frac{1}{2}$. So,

$$
\begin{equation*}
|h(x)-1| \leqslant c_{0}|x| \tag{2.8}
\end{equation*}
$$

for all $x \in \mathbb{R}$. Let $X_{1}, X_{2} \in \mathcal{U}(\mathfrak{g})$. It follows from (2.7), (2.8), Corollary 2.3.17 and the chain rule that there is a constant $c_{X_{1}, X_{2}}^{\prime}>0$ such that

$$
\begin{equation*}
\left|L_{X_{1}} R_{X_{2}}\left(u_{r}(g)-1\right)\right| \leqslant \frac{c_{X_{1}, X_{2}}^{\prime}}{r}\left(1+\log \left(a_{g}\right)\right) \quad(g \in G) \tag{2.9}
\end{equation*}
$$

By Remark 2.3.20 of Lemma 2.3.19,

$$
S:=\left\{\gamma \in \Gamma \mid \gamma^{-1} U \cap \operatorname{supp} \chi \neq \varnothing\right\}
$$

is finite. Let $g \in G$ such that $g K \in U$. Then, $\left|\sum_{\gamma \in \Gamma}\left(u_{r} \chi\right)\left(\gamma^{-1} g\right)-1\right|$ is less or equal than

$$
\sum_{\gamma \in S}\left|u_{r}\left(\gamma^{-1} g\right)-1\right| \chi\left(\gamma^{-1} g\right) .
$$

By (2.9) and as χ takes values in $[0,1]$, this is again less or equal than

$$
c_{1,1}^{\prime} \sum_{\gamma \in S} \frac{1+\log \left(a_{\gamma-1 g}\right)}{r}
$$

$\left(c_{1,1}^{\prime}=c_{0}\right)$. By Lemma 2.1.5, we can estimate this further by

$$
c_{1,1} \cdot \frac{1+\log \left(a_{g}\right)}{r}
$$

where $c_{1,1}:=c_{1,1}^{\prime} \sum_{\gamma \in S}\left(1+\log \left(a_{\gamma}\right)\right)$ (this constant depends on U).
It follows from (2.9), Corollary 2.3.17, Lemma 2.3.19 and the Leibniz rule that for all $X, Y \in \mathcal{U}(\mathfrak{g})$ such that $X \in \mathfrak{g} \mathcal{U}(\mathfrak{g})$ or $Y \in \mathfrak{g} \mathcal{U}(\mathfrak{g})$, there exists a positive constant $c_{X, Y}$ (depending also on U) such that

$$
\left|L_{X} R_{Y}\left(\sum_{\gamma \in \Gamma} L_{\gamma}\left(u_{r} \chi\right)\right)(g)\right|=\left|\sum_{\gamma \in S} L_{\operatorname{Ad}(\gamma)^{-1} X} R_{Y}\left(u_{r} \chi\right)\left(\gamma^{-1} g\right)\right| \leqslant \frac{c_{X, Y}}{r}\left(1+\log \left(a_{g}\right)\right)
$$

for all $r>0$ and all $g \in G$ such that $g K \in U$.
Since $u_{r} \chi \in C_{c}^{\infty}(G), \sum_{\gamma \in \Gamma} L_{\gamma}\left(u_{r} \chi\right) \in C_{c}^{\infty}(\Gamma \backslash G)$.
Let $X, Y \in \mathcal{U}(\mathfrak{g})_{l}$ and let $\left\{X_{i}\right\}$ be a basis of $\mathcal{U}(\mathfrak{g})_{l}$. Then, there exists a constant $c>0$ (depending on X, Y and U) such that

$$
{ }^{U} p_{d, X, Y}\left(\sum_{\gamma \in \Gamma} L_{\gamma}\left(u_{r} \chi\right) f-f\right) \leqslant \frac{c}{r} \sum_{i, j}{ }^{U} p_{d+1, X_{i}, X_{j}}(f)
$$

for all $r>0$. It follows that $\sum_{\gamma \in \Gamma} L_{\gamma}\left(u_{r} \chi\right) f$ converges to f in $\mathscr{C}(\Gamma \backslash G, \varphi)$.

2.3.3 The space of cusp forms on $\Gamma \backslash G$

In this section, we define the constant term of a Schwartz function, we show that it is well-defined and we determine some basic properties of it. The space of cusp forms is then the space of Schwartz functions having vanishing constant term. For a set U in ∂X, put

$$
G(U)=\{g \in G \mid g P \in U\} \quad \text { and } \quad K(U)=\{k \in K \mid k M \in U\} .
$$

Definition 2.3.22. For $g \in G(\Omega), h \in G$ and for a measurable function $f: G \rightarrow$ V_{φ}, we define

$$
f^{\Omega}(g, h)=\int_{N} f(g n h) d n
$$

whenever the integral exists. We call this function the constant term of f.
Remark 2.3.23. We will show in Proposition 2.3.30 that the constant term is well-defined if $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$.

Let $E=\exp \left(\mathfrak{e}_{1} \oplus \mathfrak{e}_{2}\right)$ for some vector subspaces $\mathfrak{e}_{1} \subset \mathfrak{g}_{\alpha}$ and $\mathfrak{e}_{2} \subset \mathfrak{g}_{2 \alpha}$. It follows that E is invariant under conjugation in A. Let $n_{1}=\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{e}_{1}\right)$, let $n_{2}=\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{e}_{2}\right)$ and let $\xi_{E}=\frac{n_{1}+2 n_{2}}{m_{\alpha}+2 m_{2 \alpha}}$.
Recall that m_{α} (resp. $m_{2 \alpha}$) denotes the multiplicity of the root α (resp. 2α).
For the moment we are only interested in the case where $E=N$ (then $\xi_{E}=1$). We state the following two results however in greater generality as we need it under this form in the geometrically finite case.

Lemma 2.3.24. For $x \in N$, set $\phi(x)=a_{B}(x w)$. Then, there is a volume form (a nonvanishing differential form of highest degree) $d x$ on $\{x \in E \mid \phi(x)=1\}$ such that

$$
\int_{E} f(n) d n=\int_{A} \int_{\{x \in E \mid \phi(x)=1\}} f\left(x^{a}\right) d x a^{2 \xi_{E} \rho} d a
$$

for all $f \in C_{c}(E)$.
Remark 2.3.25. It follows from standard integration theory that the above formula holds also if $f \in L^{1}(E)$ or if f is a nonnegative measurable function on E.

Proof. The lemma is standard. We provide a proof for the convenience of the reader. As hypersurfaces are orientable, $\{x \in E \mid \phi(x)=1\}$ has a volume form $d y$. Let $n \in N$ and $a \in A$. Then, $n=\bar{n}_{B}(n w) m_{B}(n w) a_{B}(n w) n_{B}(n w) w$. Thus,

$$
n^{a}=\left(a \bar{n}_{B}(n w) a^{-1}\right) m_{B}(n w) a a_{B}(n w) a\left(a^{-1} n_{B}(n w) a\right) w .
$$

Hence,

$$
\phi\left(n^{a}\right)=a_{B}\left(n^{a} w\right)=a^{2} a_{B}(n w)=a^{2} \phi(n) .
$$

The map

$$
\Phi:\{x \in E \mid \phi(x)=1\} \times A \rightarrow E \backslash\{e\},(y, a) \mapsto y^{a^{-1}}
$$

is clearly a diffeomorphism. Its inverse sends $n \in E \backslash\{e\}$ to (n^{a}, a), where $a=a_{B}(n w)^{-\frac{1}{2}}$.
So, $d n=g(y, a) d y d a$ for some positive measurable function g on $E \times A(g$ is smooth on $(E \backslash\{e\}) \times A)$. We have

$$
\begin{aligned}
& \int_{E} f\left(n^{\left(a^{\prime}\right)^{-1}}\right) d n=\int_{A} \int_{\{x \in E \mid \phi(x)=1\}} f\left(\left(y^{\left(a^{\prime}\right)^{-1}}\right)^{a}\right) g(y, a) d y d a \\
&=\int_{A} \int_{\{x \in E \mid \phi(x)=1\}} f\left(y^{a}\right) g\left(y, a a^{\prime}\right) d y d a .
\end{aligned}
$$

Let $y \in E$. Since $\left(a^{\prime}\right)^{2 \xi_{E} \rho} \int_{E} f(n) d n=\int_{E} f\left(n^{\left(a^{\prime}\right)^{-1}}\right) d n,\left(a^{\prime}\right)^{2 \xi_{E} \rho} g(y, a)=g\left(y, a a^{\prime}\right)$ for all $a, a^{\prime} \in A$. Taking $a=1$ shows that $g\left(y, a^{\prime}\right)=\left(a^{\prime}\right)^{2 \xi_{E \rho}} g(y, 1)$. The lemma follows.

Proposition 2.3.26. The integral

$$
\begin{equation*}
\int_{\theta(E)} a(\bar{n})^{-\xi_{E} \rho}(1+\log a(\bar{n}))^{-d} d \bar{n} \tag{2.10}
\end{equation*}
$$

is finite if and only if $d>1$. Here, $d \bar{n}$ denotes the push-forward of the Lebesgue measure on $\theta\left(\mathfrak{e}_{1}\right) \oplus \theta\left(\mathfrak{e}_{2}\right)$.

Remark 2.3.27.

(1) It follows from this proposition and Corollary 2.1.9 that

$$
\int_{\theta(E)} a(\bar{n})^{-\xi_{E} \rho}\left(1+\log a_{\bar{n}}\right)^{-d} d \bar{n}
$$

is also finite if and only if $d>1$.
(2) Compare with Theorem 4.5 .4 of [Wal88, p.126].

Proof. Let $S=\left\{\left.\exp (X+Y)\left|X \in \mathfrak{g}_{\alpha}, Y \in \mathfrak{g}_{2 \alpha}: \frac{1}{4}\right| X\right|^{4}+2|Y|^{2} \leqslant 1\right\}$ (compact).
Since $a(\theta(n)) \asymp a_{B}(n w)$ on $N \backslash S$ by Corollary 2.1.9, (2.10) is finite if and only if

$$
\int_{E \backslash S} a_{B}(n w)^{-\xi_{E \rho}}\left(1+\log a_{B}(n w)\right)^{-d} d n
$$

By Lemma 2.3.24, this is again finite if and only if

$$
\int_{\bar{A}_{+}} \int_{\left\{x \in E \mid a_{B}(x w)=1\right\}} a^{-2 \xi_{E} \rho}(1+2 \log a)^{-d} d x a^{2 \xi_{E} \rho} d a
$$

is finite. The above integral is again equal to

$$
\operatorname{vol}\left(\left\{x \in E \mid a_{B}(x w)=1\right\}\right) \int_{\bar{A}_{+}}(1+2 \log a)^{-d} d a
$$

The proposition follows as $\int_{\bar{A}_{+}}(1+2 \log a)^{-d} d a$ is finite if and only if $d>1$.

In order to show that the constant term is well-defined, we first need the following lemma.

Lemma 2.3.28.

(1) Let $d>1, t \geqslant 1$ and $g, h \in G$. Then, $n \mapsto a_{\text {gnh }}^{-t \rho}\left(1+\log a_{g n h}\right)^{-d}$ is integrable over N. Moreover, if $\varepsilon \in[0, d-1)$, then there exists a positive constant C, depending only on d and ε, such that

$$
\int_{N} a_{g n h}^{-t \rho}\left(1+\log a_{g n h}\right)^{-d} d n \leqslant C a(g)^{-t \rho} a\left(h^{-1}\right)^{-t \rho}\left(1+\left|\log a(g) a\left(h^{-1}\right)^{-1}\right|\right)^{-\varepsilon} .
$$

(2) Let $d>1, t \geqslant \xi_{E}$ and $g, h \in G$ be such that $n(g)=n\left(h^{-1}\right)=e$. Then, $n \mapsto a_{g n h}^{-t \rho}\left(1+\log a_{g n h}\right)^{-d}$ is integrable over E. Moreover, if $\varepsilon \in[0, d-1)$, then there exists a positive constant C, depending only on d and ε, such that

$$
\int_{E} a_{g n h}^{-t \rho}\left(1+\log a_{g n h}\right)^{-d} d n \leqslant C a(g)^{-t \rho} a\left(h^{-1}\right)^{-t \rho}\left(1+\left|\log a(g) a\left(h^{-1}\right)^{-1}\right|\right)^{-\varepsilon} .
$$

Proof. This proof is inspired by the one of Theorem 7.2.1 in [Wal88, p.231].
Fix $g, h \in G$. Let $\varepsilon \in[0, d-1), n \in N$ and $a \in A$. Put $v=\theta(n)$. By formula (2.3),

$$
a(v)=a\left(\left(v a^{-1}\right) a\right)=a\left(v a^{-1}\right) a \leqslant a_{v a^{-1}} a=a_{n a} a .
$$

Thus, $a_{n a} \geqslant a^{-1} a(v)$. As in addition $\varepsilon \in[0, d-1)$ and the following hold by Lemma 2.1.4
(1) $\log a_{n a} \geqslant|\log a|$,
(2) $1+\log a_{n a}=1+\frac{1}{2} \log a_{n a}^{2} \geqslant 1+\frac{1}{2} \log \left(a_{n}\right) \geqslant \frac{1}{2}\left(1+\log a_{v}\right)$,
we have

$$
\begin{align*}
a_{n a}^{-t \rho}\left(1+\log a_{n a}\right)^{-d} & \leqslant a^{t \rho} a(v)^{-t \rho}\left(1+\log a_{n a}\right)^{-\varepsilon}\left(1+\log a_{n a}\right)^{-d+\varepsilon} \tag{2.11}\\
& \leqslant 2^{d} a^{t \rho} a(v)^{-t \rho}(1+|\log a|)^{-\varepsilon}\left(1+\log a_{v}\right)^{-d+\varepsilon} .
\end{align*}
$$

As $g n h=\kappa(g)\left(a(g)\left(n(g) n n\left(h^{-1}\right)^{-1}\right) a(g)^{-1}\right) a(g) a\left(h^{-1}\right)^{-1} \kappa\left(h^{-1}\right)^{-1}$, as E is invariant under conjugation in A and as $n(g)=n\left(h^{-1}\right)=e$ or $E=N$,

$$
\int_{E} a_{g n h}^{-t \rho}\left(1+\log a_{g n h}\right)^{-d+\varepsilon} d n
$$

is equal to

$$
a(g)^{-2 t \rho} \int_{E} a_{n a(g) a\left(h^{-1}\right)^{-1}}^{-t \rho}\left(1+\log a_{n a(g) a\left(h^{-1}\right)^{-1}}\right)^{-d+\varepsilon} d n .
$$

By (2.11) and as $\int_{\theta(E)} a(\bar{n})^{-\rho}\left(1+\log a_{\bar{n}}\right)^{-d+\varepsilon} d \bar{n}$ is finite for all $d>1+\varepsilon$ by Proposition 2.3.26, this is less or equal than

$$
C a(g)^{t \rho} a\left(h^{-1}\right)^{-t \rho}\left(1+\left|\log a(g) a\left(h^{-1}\right)^{-1}\right|\right)^{-\varepsilon} a(g)^{-2 t \rho}
$$

for some constant $C>0$ depending only on d and ε. So,

$$
\int_{E} a_{g n h}^{-t \rho}\left(1+\log a_{g n h}\right)^{-d} d n \leqslant C a(g)^{-t \rho} a\left(h^{-1}\right)^{-t \rho}\left(1+\left|\log a(g) a\left(h^{-1}\right)^{-1}\right|\right)^{-\varepsilon} .
$$

Definition 2.3.29. Let $g \in G(\Omega)$ and $h \in G$. Then, we denote by $U_{g, h}$ an open set in X that is a relatively compact neighbourhood of $g P$ in $X \cup \Omega$ and contains the horosphere $g N h K=g N g^{-1}(g h) K$ passing through $g h K \in X$ and $g P \in \partial X$.

Proposition 2.3.30. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi), g \in G(\Omega), h \in G$ and $X, Y \in \mathcal{U}(\mathfrak{g})$. Then, $n \mapsto L_{X} R_{Y} f(g n h)$ is integrable over N. Thus, the constant term f^{Ω} is well-defined (take $X=Y=1$). Moreover, if $U \in \mathcal{U}_{\Gamma}$ and if $r>1$, then there exists $c>0$ (depending only on r) such that

$$
\int_{N}\left|L_{X} R_{Y} f(g n h)\right| d n \leqslant c^{U} p_{2 r, X, Y}(f) a(g)^{-\rho} a\left(h^{-1}\right)^{-\rho}\left(1+\left|\log a(g) a\left(h^{-1}\right)^{-1}\right|\right)^{-r}
$$

for all $g \in G(\Omega)$ and $h \in G$ such that gnh $K \in U$ for all $n \in N$.
Proof. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and $X, Y \in \mathcal{U}(\mathfrak{g})$. Let $g \in G(\Omega)$ and $h \in G$. Then, gnh $\in U_{g, h}$ for all $n \in N$. Let now $U \in \mathcal{U}_{\Gamma}, g \in G(\Omega)$ and $h \in G$ be as above. For all $d \geqslant 0$, we have

$$
\left|L_{X} R_{Y} f(x)\right| \leqslant{ }^{U} p_{d, X, Y}(f) a_{x}^{-\rho}\left(1+\log a_{x}\right)^{-d} \quad\left(x K \in U_{g, h}\right)
$$

by definition of $\mathscr{C}(\Gamma \backslash G, \varphi)$. Thus, for $r>1$,

$$
\int_{N}\left|L_{X} R_{Y} f(g n h)\right| d n \leqslant{ }^{U} p_{2 r, X, Y}(f) \int_{N} a_{g n h}^{-\rho}\left(1+\log a_{g n h}\right)^{-2 r} d n
$$

By Lemma 2.3.28 applied to $E=N$, there exists a constant $c>0$ (depending only on r) such that this is again less or equal than

$$
c^{U} p_{2 r, X, Y}(f) a(g)^{-\rho} a\left(h^{-1}\right)^{-\rho}\left(1+\left|\log a(g) a\left(h^{-1}\right)^{-1}\right|\right)^{-r} .
$$

Corollary 2.3.31. Fix $g \in G(\Omega)$ and $h \in G$. Then,

$$
f \in \mathscr{C}(\Gamma \backslash G, \varphi) \mapsto f^{\Omega}(g, h) \in V_{\varphi}
$$

is linear and continuous. Thus, ${ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$ is a closed subspace of $\mathscr{C}(\Gamma \backslash G, \varphi)$.
Proof. Observe that the map is linear. Fix $g \in G(\Omega)$ and $h \in G$. Let $f \in$ $\mathscr{C}(\Gamma \backslash G, \varphi)$ and let $r>1$. Then, by Proposition 2.3.30, there exists a constant $c>0$, depending on g and h, such that

$$
\left|f^{\Omega}(g, h)\right| \leqslant c^{U_{g, h}} p_{2 r, 1,1}(f)
$$

Hence, $f \mapsto f^{\Omega}(g, h)$ is continuous when g and h are fixed.

Corollary 2.3.32. Fix $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$. For $g \in G(\Omega), h \in G$ and $X, Y \in \mathcal{U}(\mathfrak{g})$, we have

$$
L_{X} R_{Y} \int_{N} f(g n h) d n=\int_{N} L_{X} R_{Y} f(g n h) d n
$$

In particular, $f^{\Omega}(g, h)$ depends smoothly on g and h.
Proof. Let us check the assumptions of the theorem about differentiation of parameter dependent integrals. Fix $X, Y \in \mathcal{U}(\mathfrak{g})$ and $r>1$. By Proposition 2.3.30, we know that $n \in N \mapsto f(g n h)$ is integrable. The function $g \in G \mapsto f(g n h)$ is smooth for every $n \in N, h \in G$ as f is smooth.
Let V be an open subset of G which is relatively compact in $G(\Omega)$ and let W be an open, relatively compact subset of G. Choose $U_{V, W} \in \mathcal{U}_{\Gamma}$ such that $U_{g, h} \subset U_{V, W}$ for all $g \in V$ and all $h \in W$. By the proof of Proposition 2.3.30 and of Lemma 2.3.28 applied to $E=N$, there is a constant $C>0$ such that

$$
\begin{align*}
& \left|L_{X} R_{Y} f(g n h)\right| \leqslant C^{U_{V, W}} p_{2 r, X, Y}(f) a\left(\theta n(g) \theta n \theta n\left(h^{-1}\right)^{-1}\right)^{-\rho} \tag{2.12}
\end{align*}
$$

for all $g \in V, h \in W$ and $n \in N$. By Lemma 2.1.5 and by Corollary 2.1.9, there exists a constant $C^{\prime}>0$ such that

$$
a\left(\theta n(g) \theta n \theta n\left(h^{-1}\right)^{-1}\right)^{-\rho}\left(1+\log a_{\theta n(g) \theta n \theta n\left(h^{-1}\right)^{-1}}\right)^{-r} \leqslant C^{\prime} a(\theta n)^{-\rho}\left(1+\log a_{\theta n}\right)^{-r}
$$

for all $g \in V, n \in N$ and $h \in W$. It follows that there is a constant $C^{\prime \prime}>0$, depending only on V and W, such that (2.12) is bounded by

$$
C^{\prime \prime} a(\theta n)^{-\rho}\left(1+\log a_{\theta n}\right)^{-r} \quad(n \in N) .
$$

This is integrable over N by Proposition 2.3.26. Thus, $\left|L_{X} R_{Y} f(g n h)\right|$ is uniformly bounded by an integrable function for all $g \in V$ and all $h \in W$. Hence, $L_{X} R_{Y} \int_{N} f(g n h) d n$ exists and is equal to $\int_{N} L_{X} R_{Y} f(g n h) d n$. The corollary follows.

Proposition 2.3.33. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$.
(1) For $g \in G(\Omega), h \in G, \gamma \in \Gamma$, we have

$$
f^{\Omega}(\gamma g, h)=\varphi(\gamma) f^{\Omega}(g, h)
$$

(2) For $g \in G(\Omega), h, x \in G$, we have

$$
\left(R_{x} f\right)^{\Omega}(g, h)=f^{\Omega}(g, h x) .
$$

(3) For $g \in G(\Omega), h \in G, a \in A, m \in M$, we have

$$
f^{\Omega}(g a m, h)=a^{-2 \rho} f^{\Omega}(g, a m h) .
$$

$$
\begin{equation*}
f^{\Omega}\left(g n_{1}, n_{2} h\right)=f^{\Omega}(g, h) \text { for all } g \in G(\Omega), h \in G, n_{1}, n_{2} \in N . \tag{4}
\end{equation*}
$$

Proof. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$.
(1) For $g \in G(\Omega), h \in G, \gamma \in \Gamma$, we have

$$
f^{\Omega}(\gamma g, h)=\int_{N} f(\gamma g n h) d n=\varphi(\gamma) \int_{N} f(g n h) d n=\varphi(\gamma) f^{\Omega}(g, h) .
$$

(2) For $g \in G(\Omega), h, x \in G$, we have

$$
\left(R_{x} f\right)^{\Omega}(g, h)=\int_{N} f(g n h x) d n=f^{\Omega}(g, h x) .
$$

(3) For $g \in G(\Omega), h \in G, a \in A, m \in M$, we have

$$
\begin{aligned}
f^{\Omega}(g a m, h) & =\int_{N} f\left(\operatorname{gamn}(a m)^{-1} a m h\right) d n \\
& =a^{-2 \rho} \int_{N} f(\text { gnamh }) d n=a^{-2 \rho} f^{\Omega}(g, a m h)
\end{aligned}
$$

as $n \mapsto m^{-1} n m$ is a measure-preserving diffeomorphism and as $d\left(a^{-1} n a\right)=$ $a^{-2 \rho} d n$.
(4) For $g \in G(\Omega), h \in G, n_{1}, n_{2} \in N$,

$$
f^{\Omega}\left(g n_{1}, n_{2} h\right)=\int_{N} f\left(g n_{1} n n_{2} h\right) d n=\int_{N} f(g n h) d n=f^{\Omega}(g, h)
$$

as N is unimodular.

Definition 2.3.34. Define the following subspace of $\mathscr{C}(\Gamma \backslash G, \varphi)$:

$$
{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)=\left\{f \in \mathscr{C}(\Gamma \backslash G, \varphi) \mid f^{\Omega}(g, h)=0 \quad \forall g \in G(\Omega), h \in G\right\} .
$$

We call it the space of cusp forms on $\Gamma \backslash G$.

Remark 2.3.35.

(1) This subspace may be considered as the analog of the Harish-Chandra space of cusp forms on G.
(2) Since $f^{\Omega}(\gamma g, h)=\varphi(\gamma) f^{\Omega}(g, h)$ for all $\gamma \in \Gamma, g \in G(\Omega), h \in G$ by Proposition 2.3.33 (1), it suffices to check the condition $f^{\Omega}(g, h)=0$ for g belonging to a fundamental set of $G(\Omega)$ for Γ.

2.3.4 The right regular representation of G on the Schwartz space

We show that the right translation by elements of G on the Schwartz space, respectively the space of cusp forms, is a representation of G (see Theorem 2.3.42).

Lemma 2.3.36. Let U be an open subset of X. Then, U is relatively compact in $X \cup \Omega$ if and only if $\operatorname{clo}(U) \cap \partial X$ is a compact subset of Ω.

Proof. Let U be an open subset of X. If U is relatively compact in $X \cup \Omega$, then $\operatorname{clo}(U)$ is compact in $X \cup \Omega$. Hence, $\operatorname{clo}(U) \cap \partial X$ is a compact subset of Ω.
Assume now that $\operatorname{clo}(U) \cap \partial X$ is a compact subset of Ω. Let V be an open, relatively compact neighbourhood of $\operatorname{clo}(U) \cap \partial X \subset K / M$ which is also contained in Ω. Let $\tilde{V}=\left\{k a K \mid k M \in V, a \in A_{+}\right\} \cup V$. Then, \tilde{V} is relatively compact in $X \cup \Omega$ and a neighbourhood of $\operatorname{clo}(U) \cap \partial X$ in $X \cup \Omega$. Thus, $U \backslash \tilde{V}$ is relatively compact in X. Hence, U is relatively compact in $X \cup \Omega$.

Let f be a function on G. For $g, x \in G$, set

$$
L_{g} f(x)=f\left(g^{-1} x\right) \quad \text { and } \quad R_{g} f(x)=f(x g) .
$$

For $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$, define

$$
\pi(g) f(x):=R_{g} f(x)=f(x g) \quad(g, x \in G)
$$

Clearly, $\pi(g)(\mathscr{C}(\Gamma \backslash G, \varphi)) \subset C^{\infty}(\Gamma \backslash G, \varphi)$ for all $g \in G$.
For $h \in G$ and for a subset U of X, put $U^{h}=\{g h K \mid g K \in U\}$.
Lemma 2.3.37. For every $h \in G$ and $U \in \mathcal{U}_{\Gamma}, \operatorname{clo}\left(U^{h}\right) \cap \partial X$ is equal to $\operatorname{clo}(U) \cap \partial X$ and U^{h} belongs also to \mathcal{U}_{Γ}.

Remark 2.3.38. The set $\{h g K \mid g K \in U\}(h \in G)$ belongs also to \mathcal{U}_{Γ} if h is sufficiently close to e.

Proof. Fix $h \in G$ and $U \in \mathcal{U}_{\Gamma}$. Consider a sequence $g_{i} K$ in U converging to some element $k M$ in ∂X. Without loss of generality, we may assume that $h_{g_{i}}=h_{h}$. Then, $a_{g_{i}}$ tends to ∞ and $k_{g_{i}} M$ converges to $k M \in \partial X$. So, $k_{g_{i}} a_{g_{i}} a_{h}^{-1} k_{h}^{-1} h K=$ $g_{i} K$ converges also to $k M$. Note that the limit does not change if we consider $k_{g_{i}} a_{g_{i}} k_{h}^{-1} h K$. But $\left(k_{g_{i}} a_{g_{i}} k_{h}^{-1}\right) K=k_{g_{i}} a_{g_{i}} K=g_{i} K \in U$ for all i. Thus, $k M$ belongs also to $\operatorname{clo}\left(U^{h}\right) \cap \partial X$. Hence, $\operatorname{clo}(U) \cap \partial X$ is contained in $\operatorname{clo}\left(U^{h}\right) \cap \partial X$.
As the above is also true for U^{h} instead of U and h^{-1} instead of h and as $U=$ $\left(U^{h}\right)^{h^{-1}}$,

$$
\operatorname{clo}\left(U^{h}\right) \cap \partial X=\operatorname{clo}(U) \cap \partial X \subset \Omega
$$

It follows now from Lemma 2.3.36 that U^{h} is an open subset of X which is relatively compact in $X \cup \Omega$, i.e. $U^{h} \in \mathcal{U}_{\Gamma}$.

Corollary 2.3.39. Let $U \in \mathcal{U}_{\Gamma}$ and let S be a relatively compact subset of G. Then, $\bigcup_{h \in S} U^{h}$ belongs to \mathcal{U}_{Γ}.

Remark 2.3.40. The set $\bigcup_{h \in S}\{h g K \mid g K \in U\}$ only belongs to \mathcal{U}_{Γ} if S is contained in a sufficiently small neighbourhood of e.

Proof. Let U and S be as above. Put $U^{S}=\bigcup_{h \in S} U^{h}$. As $U^{h} \in \mathcal{U}_{\Gamma}$ and as $\operatorname{clo}\left(U^{h}\right) \cap \partial X=\operatorname{clo}(U) \cap \partial X$ for all $h \in G$ by Lemma 2.3.37, $\operatorname{clo}(U) \cap \partial X$ is contained in $\operatorname{clo}\left(U^{S}\right) \cap \partial X$ and U^{S} is open in X as it is the union of open sets in X. Since $\left\{a_{h} \mid h \in S\right\}$ is bounded, the second part of the proof of Lemma 2.3.37 can be generalised to U^{S}. Thus, $\operatorname{clo}\left(U^{S}\right) \cap \partial X$ is equal to $\operatorname{clo}(U) \cap \partial X$. Hence, $U^{S} \in \mathcal{U}_{\Gamma}$ by Lemma 2.3.36.

Proposition 2.3.41. Let $U \in \mathcal{U}_{\Gamma}$, let $X, Y \in \mathcal{U}(\mathfrak{g})$, let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and let $r \geqslant 0$. Then,
(1) ${ }^{U} p_{r, X, Y}\left(R_{h} f\right)$ is finite for every $h \in G$ and ${ }^{U} p_{r, X, Y}\left(L_{h} f\right)$ is finite when $h \in G$ is sufficiently close to e;
(2) ${ }^{U} p_{r, X, Y}\left(R_{h} f-f\right),{ }^{U} p_{r, X, Y}\left(L_{h} f-f\right)$ converge to zero when h tends to e.

Proof. To prove this proposition, we do a similar argument as in Lemma 14 of [HC66, p.21].
Let $h \in G, x \in G, X, Y \in \mathcal{U}(\mathfrak{g}), U \in \mathcal{U}_{\Gamma}$, and let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$. We have

$$
\begin{aligned}
{ }^{U} p_{r, X, Y}(\pi(h) f) & =\sup _{g K \in U}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho}\left|L_{X} R_{Y}\left(R_{h} f\right)(g)\right| \\
& \leqslant\left(1+\log a_{h}\right)^{r} a_{h}^{\rho} \sup _{g K \in U}\left(1+\log a_{g h}\right)^{r} a_{g h}^{\rho}\left|L_{X} R_{\operatorname{Ad}\left(h^{-1}\right) Y} f(g h)\right| \\
& =\left(1+\log a_{h}\right)^{r} a_{h}^{\rho U^{h}} p_{r, X, \operatorname{Ad}\left(h^{-1}\right) Y}(f)<\infty .
\end{aligned}
$$

Thus, $\pi(h) f$ belongs to $\mathscr{C}(\Gamma \backslash G, \varphi)$. Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be a basis of \mathfrak{g}. Let $H \in \mathfrak{g}$. Write $H=\sum_{i=1}^{n} c_{i} X_{i}$. We clearly have

$$
\begin{aligned}
R_{\exp H} f(x)-f(x) & =\left.\int_{0}^{1} \frac{d}{d s}\right|_{s=0} f(x \exp (t H) \exp (s H)) d t \\
& =\left.\int_{0}^{1} \frac{d}{d s}\right|_{s=0} f\left(x \exp (t H) \exp \left(s \sum_{i=1}^{n} c_{i} X_{i}\right)\right) d t \\
& =\left.\sum_{i=1}^{n} c_{i} \int_{0}^{1} \frac{d}{d s}\right|_{s=0} f\left(x \exp (t H) \exp \left(s X_{i}\right)\right) d t
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left|L_{X} R_{Y}\left(R_{\exp H} f\right)(x)-L_{X} R_{Y} f(x)\right| \\
& \left.\quad \leqslant \max _{1 \leqslant i \leqslant n}\left|c_{i}\right| \cdot \sum_{i=1}^{n} \int_{0}^{1}\left|L_{X} R_{Y} \frac{d}{d s}\right|_{s=0} f\left(x \exp (t H) \exp \left(s X_{i}\right)\right) \right\rvert\, d t .
\end{aligned}
$$

Since all norms are equivalent on \mathbb{R}^{n}, there exists $c_{0}>0$ such that

$$
\max _{1 \leqslant i \leqslant n}\left|a_{i}\right| \leqslant c_{0} \cdot\left|\sum_{i=1}^{n} a_{i} X_{i}\right|
$$

for any $a_{i} \in \mathbb{R}$. So, $\left|L_{X} R_{Y}\left(R_{\exp H} f\right)(x)-L_{X} R_{Y} f(x)\right|$ is less or equal than

$$
c_{0} \cdot|H| \sum_{i=1}^{n} \int_{0}^{1}\left|L_{X} R_{Y} R_{X_{i}} f(x \exp (t H))\right| d t
$$

Consequently,

$$
{ }^{U} p_{r, X, Y}\left(R_{h} f-f\right)=\sup _{x K \in U}\left(1+\log a_{x}\right)^{r} a_{x}^{\rho}\left|L_{X} R_{Y}\left(R_{\exp H} f\right)(x)-L_{X} R_{Y} f(x)\right|
$$

is less or equal than

$$
\begin{aligned}
& c_{0} \cdot|H| \sum_{i=1}^{n} \sup _{x K \in U}\left(1+\log a_{x}\right)^{r} a_{x}^{\rho} \int_{0}^{1}\left|L_{X} R_{Y} R_{X_{i}} f(x \exp (t H))\right| d t \\
& \quad \leqslant c_{0} \cdot|H| \sum_{i=1}^{n} \sup _{t \in[0,1]} \sup _{x K \in U}\left(1+\log a_{x}\right)^{r} a_{x}^{\rho}\left|L_{X} R_{Y} R_{X_{i}} f(x \exp (t H))\right| .
\end{aligned}
$$

Put $V=\bigcup_{Z \in \mathfrak{g}:|Z| \leqslant 1} U^{\exp (Z)}=\{g \exp (Z) K|g K \in U, Z \in \mathfrak{g}:|Z| \leqslant 1\}$. Then, V belongs to \mathcal{U}_{Γ} by Corollary 2.3.39. If $|H| \leqslant 1$, then the above expression is less or equal than

$$
c \cdot|H| \sum_{i=1}^{n}{ }^{V} p_{r, X, Y+X_{i}}(f),
$$

where $c:=c_{0} \max _{Z \in \mathfrak{g}:|Z| \leqslant 1}\left(1+\log a_{\exp (Z)}\right)^{r} a_{\exp (Z)}^{\rho}$. The proof of the other assertion works analogously. The remarks 2.3.38 and 2.3.40 tell us to what one has to pay attention.

Theorem 2.3.42. $(\pi, \mathscr{C}(\Gamma \backslash G, \varphi))$ and $\left(\pi,{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)\right)$ are representations of G.
Proof. Since the constant term is G-equivariant with respect to the right translation, it is enough to prove that $(\pi, \mathscr{C}(\Gamma \backslash G, \varphi))$ is a representation of G. Fix $X, Y \in \mathcal{U}(\mathfrak{g}), r \geqslant 0$ and $U \in \mathcal{U}_{\Gamma}$. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and $h \in G$. Then, $U^{h} \in \mathcal{U}_{\Gamma}$ by Lemma 2.3.37.
By Proposition 2.3.41, $\pi(h) f$ belongs to $\mathscr{C}(\Gamma \backslash G, \varphi)$.
Assume that $h_{j} \rightarrow h$ in G and that $f_{j} \rightarrow f$ in $\mathscr{C}(\Gamma \backslash G, \varphi)$. Let N^{h} be a relatively compact neighbourhood of h in G. Put

$$
\tilde{U}^{h}=\bigcup_{\tilde{h} \in N^{h}} U^{\tilde{h}}=\left\{g \tilde{h} K \mid g K \in U, \tilde{h} \in N^{h}\right\}
$$

This set belongs also to \mathcal{U}_{Γ} by Corollary 2.3.39.
Let $\varepsilon>0$ be given. Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be a basis of \mathfrak{g}. Define X_{i}^{a} to be

$$
\underbrace{X_{i} \cdots X_{i}}_{a \text { factors }}
$$

if $a \in \mathbb{N}:=\{1,2,3, \ldots\}$ and to be 1 if $a=0$. For $m \in \mathbb{N}_{0}:=\{0,1,2, \ldots\}$, define

$$
I_{m}=\left\{\alpha:=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mid \alpha_{i} \in \mathbb{N}_{0}: \sum_{i=1}^{n} \alpha_{i} \leqslant m\right\}
$$

Let $Y \in \mathcal{U}(\mathfrak{g})_{l}$. Then, $\operatorname{Ad}\left(x^{-1}\right) Y \in \mathcal{U}(\mathfrak{g})_{l}$ as, by definition, $\operatorname{Ad}\left(x^{-1}\right)\left(Y_{1} \otimes Y_{2}\right)=$ $\operatorname{Ad}\left(x^{-1}\right)\left(Y_{1}\right) \otimes \operatorname{Ad}\left(x^{-1}\right)\left(Y_{2}\right)$. As $\operatorname{Ad}\left(x^{-1}\right) Y \in \mathcal{U}(\mathfrak{g})$ and as $\operatorname{Ad}\left(x^{-1}\right) Y$ depends smoothly on x, there are smooth functions $c_{\alpha_{1}, \ldots, \alpha_{n}}$ on G such that

$$
\operatorname{Ad}\left(x^{-1}\right) Y=\sum_{\alpha \in I_{l}} c_{\alpha_{1}, \ldots, \alpha_{n}}(x) X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}}
$$

by the Poincaré-Birkhoff-Witt theorem. As $c_{\alpha_{1}, \ldots, \alpha_{n}}\left(h_{j}\right) \rightarrow c_{\alpha_{1}, \ldots, \alpha_{n}}(h)$ when $j \rightarrow$ $\infty, \sup _{\alpha \in I_{l}}\left|c_{\alpha_{1}, \ldots, \alpha_{n}}(h)-c_{\alpha_{1}, \ldots, \alpha_{n}}\left(h_{j}\right)\right|<\frac{\varepsilon}{2}$ for j sufficiently large. We have

$$
\begin{align*}
&{ }^{U} p_{r, X, Y}\left(\pi(h) f-\pi\left(h_{j}\right) f_{j}\right) \tag{2.13}\\
& \leqslant{ }^{U} p_{r, X, Y}\left(\pi(h) f-\pi\left(h_{j}\right) f\right)+{ }^{U} p_{r, X, Y}\left(\pi\left(h_{j}\right)\left(f-f_{j}\right)\right),
\end{align*}
$$

where ${ }^{U} p_{r, X, Y}\left(\pi\left(h_{j}\right)\left(f-f_{j}\right)\right)$ is less or equal than

$$
\begin{aligned}
& \max _{\tilde{h} \in N^{h}}\left(\left(1+\log a_{\tilde{h}}\right)^{r} a_{\tilde{h}}^{\rho}\right)^{\tilde{U}^{h}} p_{r, X, \operatorname{Ad}\left(h_{j}^{-1}\right) Y}\left(f-f_{j}\right) \\
& \quad \leqslant \sum_{\alpha \in I_{l}} \max _{\tilde{h} \in N^{h}}\left(\left(1+\log a_{\tilde{h}}\right)^{r} a_{\tilde{h}}^{\rho}\left|c_{\alpha_{1}, \ldots, \alpha_{n}}(\tilde{h})\right|\right)^{\tilde{U}^{h}} p_{r, X, X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}}}\left(f-f_{j}\right)<\frac{\varepsilon}{2}
\end{aligned}
$$

for j sufficiently large. Here, we have used that $h_{j} \in N^{h}$ for j sufficiently large. By Proposition 2.3.41 applied to $\pi(h) f \in \mathscr{C}(\Gamma \backslash G, \varphi)$,

$$
{ }^{U} p_{r, X, Y}\left(\pi(h) f-\pi\left(h_{j}\right) f\right)<\frac{\varepsilon}{2}
$$

for j sufficiently large. It follows that (2.13) tends to zero when j goes to ∞. This finishes the proof of the theorem.

2.4 Tempered distribution vectors, square-integrable distribution vectors and Schwartz vectors

First, we recall the notion of matrix coefficients of a representation π of G (on a reflexive Banach space) are. Second, we use the matrix coefficient map in order to define tempered distribution vectors, square-integrable distribution vectors and Schwartz vectors.

Let $\left(\pi, V_{\pi}\right)$ be a representation of G on a reflexive Banach space with dual representation $\left(\pi^{\prime}, V_{\pi^{\prime}}\right)$. Then, we define the space of distribution vectors to be $V_{\pi,-\infty}:=\left(V_{\pi^{\prime}, \infty}\right)^{\prime}$ (strong dual). Here the subscript ∞ means that we pass to the subspace of smooth vectors and we endow $V_{\pi^{\prime}, \infty}$ with the canonical Fréchet topology. We have then the following inclusions of G-representations

$$
V_{\pi, \infty} \subset V_{\pi} \subset V_{\pi,-\infty}
$$

We denote the subspace of K-finite and smooth vectors of V_{π} by $V_{\pi, K}$. Furthermore, we denote the space of tempered distributions by $\mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)$. It is by definition the conjugate-linear strong dual of $\mathscr{C}(\Gamma \backslash G, \varphi)$.

Definition 2.4.1. Let $\left(\pi, V_{\pi}\right)$ be an admissible G-representation of finite length on a reflexive Banach space.
We say that a Γ-invariant distribution vector $f \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ is tempered (resp. square-integrable) if the function

$$
G \ni g \mapsto c_{f, v}(g):=\left\langle f, \pi^{\prime}(g) v\right\rangle \in V_{\varphi},
$$

called matrix coefficient of π, belongs to $\mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)$ (resp. $L^{2}(\Gamma \backslash G, \varphi)$) for all $v \in V_{\pi^{\prime}, K}$. We denote the linear subspace of square-integrable (resp. tempered) Γ-invariant distribution vectors by $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}\left(\right.$ resp. $\left.\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\text {temp }}^{\Gamma}\right)$.

Remark 2.4.2.

(1) This definition is equivalent to Definition 8.3 in [BO00, p.130] by Lemma 8.4 of [BO00, p.130].
(2) If $f \in V_{\pi,-\infty} \otimes V_{\varphi}$ and $v \in V_{\pi^{\prime}, \infty}$, then $c_{f, v}$ is smooth as $G \rightarrow V_{\pi^{\prime}, \infty}, g \mapsto$ $\pi^{\prime}(g) v$ is smooth and as $f: V_{\pi^{\prime}, \infty} \rightarrow V_{\varphi}$ is continuous and linear.
(3) As $L^{2}(\Gamma \backslash G, \varphi) \subset \mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)$, we have

$$
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \subset\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{t e m p}^{\Gamma} \subset\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}
$$

We equip $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ with the subspace topology.
Lemma 2.4.3. Let $v \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$. If π is irreducible and if $c_{v, v^{\prime}} \in L^{2}(\Gamma \backslash G, \varphi)$ for some $0 \neq v^{\prime} \in V_{\pi^{\prime}, \infty}$, then $c_{v, v^{\prime}} \in L^{2}(\Gamma \backslash G, \varphi)$ for all $v^{\prime} \in V_{\pi^{\prime}, \infty}$.

Proof. The proof works completely analogously to the proof of Lemma 1.3.2 in [Wal88, p.23].

Definition 2.4.4. Let $\left(\pi, V_{\pi}\right)$ be an admissible G-representation of finite length on a reflexive Banach space.
We say that $f \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ is a Schwartz vector (resp. cuspidal Schwartz vector) if $c_{f, v} \in \mathscr{C}(\Gamma \backslash G, \varphi)$ (resp. $c_{f, v} \in{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$) for all $v \in V_{\pi^{\prime}, K}$. We denote the space of Schwartz vectors (resp. space of cuspidal Schwartz vectors) by $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}\left(\right.$ resp. $\left.\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}\right)$.

Remark 2.4.5.

(1) Assume further that π is irreducible. Since K is connected, $V_{\pi^{\prime}, K}=\mathcal{U}(\mathfrak{g}) v$ for any nonzero $v \in V_{\pi^{\prime}, K}$. It follows that $f \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ is a Schwartz vector (resp. cuspidal Schwartz vector) if and only if there is a nonzero $v \in V_{\pi^{\prime}, K}$ such that $c_{f, v} \in \mathscr{C}(\Gamma \backslash G, \varphi)$ (resp. $\left.c_{f, v} \in{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)\right)$.
(2) The space $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{G}}^{\Gamma}$ is clearly contained in $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}$.

Assume that π is irreducible. Fix $0 \neq v \in V_{\pi^{\prime}, K}$. We equip $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ with the coarsest topology such that the map $f \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \mapsto c_{f, v} \in \mathscr{C}(\Gamma \backslash G, \varphi)$ is continuous. Analogously, we equip $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}$ with the coarsest topology such that the map $f \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \mapsto c_{f, v} \in L^{2}(\Gamma \backslash G, \varphi)$ is continuous.
As $\mathcal{U}(\mathfrak{g}) v$ is equal to $V_{\pi^{\prime}, K}$ and as $\mathscr{C}(\Gamma \backslash G, \varphi) \rightarrow \mathscr{C}(\Gamma \backslash G, \varphi), f \mapsto R_{Y} f$ and $L^{2}(\Gamma \backslash G, \varphi) \rightarrow L^{2}(\Gamma \backslash G, \varphi), f \mapsto R_{Y} f$ are continuous for every $Y \in \mathcal{U}(\mathfrak{g})$, it follows that the above two maps are continuous for every $v \in V_{\pi^{\prime}, K}$. This shows that the topologies on $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ and on $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}$ do not depend on the choice of v.

Lemma 2.4.6. The inclusions

$$
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \subset\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}, \quad\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \subset V_{\pi,-\infty} \otimes V_{\varphi}
$$

are continuous injections.
Proof.
(1) Consider the following commutative diagram:

Let us view $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ (resp. $\left.\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}\right)$ as a subspace of $\mathscr{C}(\Gamma \backslash G, \varphi)$ (resp. $\left.L^{2}(\Gamma \backslash G, \varphi)\right)$. The first assertion follows as $\mathscr{C}(\Gamma \backslash G, \varphi) \hookrightarrow L^{2}(\Gamma \backslash G, \varphi)$ is continuous.
(2) Since we consider on $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ the subspace topology, $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \hookrightarrow$ $V_{\pi,-\infty} \otimes V_{\varphi}$ is also continuous.

The lemma follows.

2.5 Some definitions and known results

We consider the right regular representation of G on $L^{2}(\Gamma \backslash G, \varphi)$. By the abstract Plancherel theorem (see for example Theorem 14.10.5 of [Wal92, p.336]), this unitary representation has a direct integral decomposition into irreducibles:

$$
\begin{equation*}
L^{2}(\Gamma \backslash G, \varphi) \stackrel{\mathcal{\mathcal { L }}}{\simeq} \int_{\hat{G}}^{\oplus} N_{\pi} \hat{\otimes} V_{\pi} d \kappa(\pi), \tag{2.14}
\end{equation*}
$$

where \hat{G} denotes the unitary dual of G, V_{π} is an irreducible unitary representation space of a representation belonging to the class of $\pi \in \hat{G}, N_{\pi}$ is a Hilbert space which is called the multiplicity space of π in $L^{2}(\Gamma \backslash G, \varphi)$ and κ is a Borel measure on \hat{G} which is called the Plancherel measure. The isomorphism \mathcal{F} is a unitary equivalence of representations, called "Fourier transform". The action of G on the right-hand side is given by $\operatorname{Id}_{N_{\pi}} \otimes \pi$.

Definition 2.5.1. We say that a bounded linear operator $\Phi: L^{2}(\Gamma \backslash G, \varphi) \rightarrow$ $L^{2}(\Gamma \backslash G, \varphi)$ is decomposable if there is a measurable family of bounded linear maps $L_{\pi}: N_{\pi} \rightarrow N_{\pi}(\pi \in \hat{G})$ such that

$$
\Phi(f)=\mathcal{F}^{-1}\left(\left(L_{\pi} \otimes \operatorname{Id}\right)\left(\mathcal{F}_{\pi}(f)\right)_{\pi \in \hat{G}}\right)
$$

for all $f \in L^{2}(\Gamma \backslash G, \varphi)$.
Proposition 2.5.2. Any G-intertwining operator on $L^{2}(\Gamma \backslash G, \varphi)$ is decomposable.
Proof. If G is a so-called type I group (e.g. an abelian (resp. compact, semisimple) connected Lie group), then a unitary representation of G admits by the abstract Plancherel theorem a direct integral decomposition over \hat{G}, which is similar to the one of $\left(\pi, L^{2}(\Gamma \backslash G, \varphi)\right)$. Theorem 3.24 of [Fu05, p.77] shows moreover that the G-intertwining operators are decomposable.

Bunke-Olbrich [BO00] give a much more precise description of the direct integral decomposition (2.14):
By Corollary 8.7 of [BO00, p.132], N_{π} can be realised as a subspace of $\left(V_{\pi^{\prime},-\infty} \otimes\right.$ $\left.V_{\varphi}\right)_{\text {temp }}^{\Gamma}, \pi \in \hat{G}$, such that we have the following:
(1) The matrix coefficient map $c:\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)^{\Gamma} \otimes V_{\pi, \infty} \rightarrow \mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)$ induces a map

$$
c_{\pi}: N_{\pi} \hat{\otimes} V_{\pi} \rightarrow \mathscr{C}^{\prime}(\Gamma \backslash G, \varphi) .
$$

We denote the adjoint of c_{π} by $\mathcal{F}_{\pi}: \mathscr{C}(\Gamma \backslash G, \varphi) \rightarrow N_{\pi} \hat{\otimes} V_{\pi}$.
(2) The maps \mathcal{F}_{π} satisfy $\mathcal{F}(f)(\pi)=\mathcal{F}_{\pi}(f)$ for all $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$.
(3) The space N_{π} is equal to $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}$ if $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \neq\{0\}$.

In particular, the Plancherel measure κ has support on

$$
\left\{\pi \in \hat{G} \mid\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\text {temp }}^{\Gamma} \neq\{0\}\right\}
$$

and $\kappa(\{\pi\}) \neq 0$ if and only if $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \neq\{0\}$. If $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \neq\{0\}$, then we choose the Plancherel measure and the scalar product on $N_{\pi}=\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}$ such that
(1) $\kappa(\{\pi\})=1$,
(2) the matrix coefficient map c_{π} induces an isometric embedding of $N_{\pi} \hat{\otimes} V_{\pi}$ into $L^{2}(\Gamma \backslash G, \varphi)$.

In particular, \mathcal{F}_{π} extends then to a map from $L^{2}(\Gamma \backslash G, \varphi)$ to $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \hat{\otimes} V_{\pi}$. The unitary dual \hat{G} is the disjoint union of the discrete series representations, the unitary principal series representations and the complementary series representations:

$$
\hat{G}=\hat{G}_{d} \cup \hat{G}_{u} \cup \hat{G}_{c},
$$

where

$$
\begin{aligned}
& \hat{G}_{d}:=\left\{\pi \in \hat{G} \mid V_{\pi} \text { is square-integrable }\right\} ; \\
& \hat{G}_{u}:=\left\{\pi \in \hat{G} \mid V_{\pi} \text { is tempered }\right\} \backslash \hat{G}_{d} ; \\
& \hat{G}_{c}:=\left\{\pi \in \hat{G} \mid V_{\pi} \text { is not tempered }\right\} .
\end{aligned}
$$

By Theorem 11.1 of [BO00, p.155], $L^{2}(\Gamma \backslash G, \varphi)$ decomposes into a continuous and a discrete part:

$$
\begin{equation*}
L^{2}(\Gamma \backslash G, \varphi)=L^{2}(\Gamma \backslash G, \varphi)_{a c} \oplus L^{2}(\Gamma \backslash G, \varphi)_{d} \tag{2.15}
\end{equation*}
$$

Here, the space $L^{2}(\Gamma \backslash G, \varphi)_{a c}$ is generated by wave packets of matrix coefficients and $L^{2}(\Gamma \backslash G)_{d}$ can be further decomposed with the help of representation theory:

$$
L^{2}(\Gamma \backslash G, \varphi)_{d}=L^{2}(\Gamma \backslash G, \varphi)_{d s} \oplus L^{2}(\Gamma \backslash G, \varphi)_{\text {res }} \oplus L^{2}(\Gamma \backslash G, \varphi)_{U},
$$

where $L^{2}(\Gamma \backslash G, \varphi)_{\text {res }}$ is generated by residues of Eisenstein series, $L^{2}(\Gamma \backslash G, \varphi)_{U}$ is generated by matrix coefficients of "stable" invariant distributions supported on the limit set and $L^{2}(\Gamma \backslash G, \varphi)_{d s}$ is generated by square-integrable matrix coefficients of discrete series representations (it is denoted by $L^{2}(\Gamma \backslash G, \varphi)_{\text {cusp }}$ in [BO00]).
The space $L^{2}(\Gamma \backslash G, \varphi)_{a c}$ corresponds essentially to \hat{G}_{u} and $L^{2}(\Gamma \backslash G, \varphi)_{d}$ corresponds essentially to $\hat{G}_{d} \cup \hat{G}_{c}: L^{2}(\Gamma \backslash G, \varphi)_{d s}$ corresponds to \hat{G}_{d} and $L^{2}(\Gamma \backslash G, \varphi)_{\text {res }} \oplus$ $L^{2}(\Gamma \backslash G, \varphi)_{U}$ corresponds essentially to \hat{G}_{c}.
In the following sections, we determine the contribution of the space of cusp forms to each of the appearing spaces.
Let us denote the orthogonal projection on $L^{2}(\Gamma \backslash G, \varphi)_{a c}\left(\operatorname{resp} . L^{2}(\Gamma \backslash G, \varphi)_{\text {res }}\right.$, $L^{2}(\Gamma \backslash G, \varphi)_{U}, L^{2}(\Gamma \backslash G, \varphi)_{d s}$ by $p_{a c}$ (resp. $p_{\text {res }}, p_{U}, p_{d s}$).

Proposition 2.5.3. Let I be a G-intertwining operator on $L^{2}(\Gamma \backslash G, \varphi)$. Then, I commutes with $p_{a c}, p_{d s}$ and $p_{\text {res }}+p_{U}$.

Proof. As I is decomposable by Proposition 2.5.2,

$$
p(f)=\mathcal{F}^{-1}\left(\left(L_{\pi} \otimes \mathrm{Id}\right)\left(\mathcal{F}_{\pi}(f)\right)_{\pi \in \hat{G}}\right)
$$

Let $p=p_{a c}\left(\right.$ resp. $\left.p=p_{d s}, p=p_{\text {res }}+p_{U}\right)$. By the proof of Theorem 11.1 of [BO00, p.155],

$$
p(f)=\mathcal{F}^{-1}\left(\left(L_{\pi}^{\prime} \otimes \operatorname{Id}\right)\left(\mathcal{F}_{\pi}(f)\right)_{\pi \in \hat{G}}\right)
$$

with $L_{\pi}^{\prime}=0$ or $L_{\pi}^{\prime}=\mathrm{Id}$ for almost all $\pi \in \hat{G}$. As $L_{\pi} \circ L_{\pi}^{\prime}=L_{\pi}^{\prime} \circ L_{\pi}$ for almost all $\pi \in \hat{G}$, the proposition follows.

Let us continue with some elementary consequences of the Plancherel decomposition.

Lemma 2.5.4. Let $\pi \in \hat{G}$ be such that $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \neq\{0\}$. Then, $\mathcal{F}_{\pi} \circ c_{\pi}$ is the identity on $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \hat{\otimes} V_{\pi}$ and

$$
\left(c_{\pi} \circ \mathcal{F}_{\pi}\right)^{2}=c_{\pi} \circ \mathcal{F}_{\pi}
$$

Proof. Let π be as above.
(1) For all $f, g \in \mathcal{F}_{\pi}\left(L^{2}(\Gamma \backslash G, \varphi)\right)=\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \hat{\otimes} V_{\pi}$, we have

$$
\left(\mathcal{F}_{\pi}\left(c_{\pi}(f)\right), g\right)=\left(c_{\pi}(f), c_{\pi}(g)\right)=(f, g) .
$$

Since f and $\mathcal{F}_{\pi}\left(c_{\pi}(f)\right)$ belong to the Hilbert space $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \hat{\otimes} V_{\pi}$, it follows that $f=\mathcal{F}_{\pi}\left(c_{\pi}(f)\right)$.
(2) Let $f, g \in L^{2}(\Gamma \backslash G, \varphi)$. As $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \neq\{0\},\left(c_{\pi} \circ \mathcal{F}_{\pi}\right)(f) \in L^{2}(\Gamma \backslash G, \varphi)$. Thus, $\left(c_{\pi} \circ \mathcal{F}_{\pi}\right)^{2}(f)$ is well-defined. Moreover, we have

$$
\left(\left(c_{\pi} \circ \mathcal{F}_{\pi}\right)^{2}(f), g\right)=\left(\mathcal{F}_{\pi}\left(\left(c_{\pi} \circ \mathcal{F}_{\pi}\right)(f)\right), \mathcal{F}_{\pi}(g)\right)_{N_{\pi} \otimes V_{\pi}}=\left(\left(c_{\pi} \circ \mathcal{F}_{\pi}\right)(f), g\right)
$$

As (\cdot, \cdot) is nondegenerate, $\left(c_{\pi} \circ \mathcal{F}_{\pi}\right)^{2}=c_{\pi} \circ \mathcal{F}_{\pi}$.

Corollary 2.5.5. Let $\pi \in \hat{G}$ be such that $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \neq\{0\}$. Then, $c_{\pi} \circ \mathcal{F}_{\pi}$ is the orthogonal projection on $c_{\pi}\left(\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \hat{\otimes} V_{\pi}\right)$. Thus,

$$
p_{d}: f \in L^{2}(\Gamma \backslash G, \varphi) \mapsto \sum_{\pi \in \hat{G}:\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \neq\{0\}} c_{\pi}\left(\mathcal{F}_{\pi}(f)\right) \in L^{2}(\Gamma \backslash G, \varphi)_{d}
$$

is the orthogonal projection on $L^{2}(\Gamma \backslash G, \varphi)_{d}$.
Proof. The corollary follows from the previous lemma and the equality $\left(c_{\pi} \circ \mathcal{F}_{\pi}\right)^{*}=$ $c_{\pi} \circ \mathcal{F}_{\pi}$.

Corollary 2.5.6. Let $\pi \in \hat{G}$ be such that $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \neq\{0\}$, let $\gamma \in \hat{K}$ and let F be a subspace of $V_{\pi}(\gamma)$. Then,

$$
\begin{equation*}
c_{\pi}\left(\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \hat{\otimes} V_{\pi}\right) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\pi, F}:=c_{\pi}\left(\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \otimes F\right) \tag{2.17}
\end{equation*}
$$

are closed in $L^{2}(\Gamma \backslash G, \varphi)$.
Proof. Let $p=\operatorname{Id}-c_{\pi} \circ \mathcal{F}_{\pi}$. Then, p is a continuous orthogonal projection on the orthogonal complement of (2.16). Thus, (2.16) is equal to ker p and hence closed. So, $S_{\pi, V_{\pi}(\gamma)}=c_{\pi}\left(\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \otimes V_{\pi}(\gamma)\right)=c_{\pi}\left(\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \hat{\otimes} V_{\pi}\right)(\gamma)$ is closed, too.
Let $\gamma \in \hat{K}$ and let F be a subspace of $V_{\pi}(\gamma)$ (finite-dimensional). Let F^{\perp} denote the orthogonal complement of F in $V_{\pi}(\gamma)$. Then, $S_{\pi, F}$ is the orthogonal complement of $S_{\pi, F^{\perp}}$ in $S_{\pi, V_{\pi}(\gamma)}$ and is hence closed.

Fix $0 \neq v \in V_{\pi, K}$. It follows from Corollary 2.5.6 and the open mapping theorem that the topology on N_{π} is the coarsest such that

$$
f \in N_{\pi} \mapsto c_{\pi}(f \otimes v)
$$

is continuous. Recall that this topology does not depend on the choice of v.
Let us define now some representations and some bundles playing an important role in the following.
Let (σ, V_{σ}) be a finite-dimensional unitary representation of M. Then, we define its Weyl-conjugate σ^{w} by $\sigma^{w}(m):=\sigma\left(w^{-1} m w\right)$, where $w \in N_{K}(\mathfrak{a})$ is a representative of the nontrivial Weyl group element.
We say that σ is Weyl-invariant if σ is equivalent to σ^{w}. We assume that σ denotes a Weyl-invariant representation of M from now on. It is either irreducible or of the form $\sigma^{\prime} \oplus \sigma^{\prime w}$ with σ^{\prime} irreducible and not Weyl-invariant and it can be extended in both cases to a representation of $N_{K}(\mathfrak{a})$. We denote this extension also by σ. As $\sigma(w)$ is only unique up to a sign, we fix such an extension. We denote the dual representation of σ by $\tilde{\sigma}$.
Let $\left(\gamma, V_{\gamma}\right)$ be a finite-dimensional representation of K. We form the homogeneous vector bundle $V(\gamma):=G \times_{K} V_{\gamma}$ over X and the locally homogeneous vector bundle $V_{Y}(\gamma):=\Gamma \backslash G \times_{K} V_{\gamma}$ over $Y:=\Gamma \backslash X$. Set $V(\gamma, \varphi)=V(\gamma) \otimes V_{\varphi}$ and $V_{Y}(\gamma, \varphi)=$ $V_{Y}(\gamma) \otimes V_{\varphi}$.
Let W be a vector space which is equipped with a left K-action. Let

$$
W^{K}=\{v \in W \mid k \cdot v=v \quad \forall k \in K\} .
$$

Consider the tensor product action of K on $L^{2}(\Gamma \backslash G, \varphi) \otimes V_{\gamma}$. Using the isomorphism $L^{2}\left(Y, V_{Y}(\gamma, \varphi)\right) \simeq\left[L^{2}(\Gamma \backslash G, \varphi) \otimes V_{\gamma}\right]^{K}$, we define

$$
\mathscr{C}\left(Y, V_{Y}(\gamma, \varphi)\right):=\left[\mathscr{C}(\Gamma \backslash G, \varphi) \otimes V_{\gamma}\right]^{K} \subset L^{2}\left(Y, V_{Y}(\gamma, \varphi)\right) .
$$

For $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$, set $\sigma_{\lambda}($ man $)=\sigma(m) a^{\rho-\lambda}$. This defines a representation of P on $V_{\sigma_{\lambda}}:=V_{\sigma}$. We denote by $V\left(\sigma_{\lambda}\right):=G \times_{P} V_{\sigma_{\lambda}}$ the associated homogeneous bundle over $\partial X=G / P$. Let $B=\Gamma \backslash \Omega$. Then, $V_{B}\left(\sigma_{\lambda}\right):=\left.\Gamma \backslash V\left(\sigma_{\lambda}\right)\right|_{\Omega}$ defines a bundle over B.
Recall that $\left(\varphi, V_{\varphi}\right)$ is a finite-dimensional unitary representation of Γ. We denote its dual by $\left(\tilde{\varphi}, V_{\tilde{\varphi}}\right)$.
On the space of sections of $V\left(\sigma_{\lambda}\right)$, we consider the left regular representation of G. We denote it by $\pi^{\sigma, \lambda}$ and call it a principal series representation of G. We define the bundle $V\left(\sigma_{\lambda}, \varphi\right):=V\left(\sigma_{\lambda}\right) \otimes V_{\varphi}$ on ∂X carrying the tensor product action of Γ and we define $V_{B}\left(\sigma_{\lambda}, \varphi\right):=\left.\Gamma \backslash\left(V\left(\sigma_{\lambda}\right) \otimes V_{\varphi}\right)\right|_{\Omega}$.
The space of distribution sections $C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)$ (resp. $\left.C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)\right)$ is defined by $C^{\infty}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right)^{\prime}$ (resp. $\left.C^{\infty}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}, \varphi\right)\right)^{\prime}\right)$. Here, we take the strong dual. Analogously, we define $C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}\right)\right)$ (resp. $\left.C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)\right)$ by $C^{\infty}\left(B, V_{B}\left(\tilde{\sigma}_{-\lambda}\right)\right)^{\prime}\left(\right.$ resp. $\left.C^{-\infty}\left(B, V_{B}\left(\tilde{\sigma}_{-\lambda}, \varphi\right)\right)^{\prime}\right)$. Here, we take also the strong dual. We denote the space of Γ-invariant distribution sections by $C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)^{\Gamma}$ (resp. $\left.C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right)$.
We denote the subspace of K-finite functions of $C^{\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)$ by $C^{K}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)$. Note that we can identify distribution sections of $V_{B}\left(\sigma_{\lambda}, \varphi\right)$ with Γ-invariant sections of $\left.V\left(\sigma_{\lambda}, \varphi\right)\right|_{\Omega}$. By a slight abuse of notation, we denote the subspace of $C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$ consisting of Γ-invariant distributions supported on the limit set by $C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$.
Let W be a vector space and let $A \in \operatorname{End}(W)$. If we write $A(f \otimes v)(f \in W$, $\left.v \in V_{\varphi}\right)$, then this means that we consider simply the trivial action on V_{φ} :

$$
A(f \otimes v):=A(f) \otimes v \quad\left(f \in W, v \in V_{\varphi}\right) .
$$

In contrast to bilinear parings $\langle\cdot, \cdot\rangle$, we will always denote sesquilinear pairings by (\cdot, \cdot). By convention, these pairings are complex linear with respect to the first variable.

Definition 2.5.7 (10.1.2 of [Wa192, p.5], [BO00, p.96]).
Let us consider $f \in C^{\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)$ as a function on G taking values in $V_{\sigma_{\lambda}}$ and satisfying

$$
f(g p)=\sigma_{\lambda}(p)^{-1} f(g)
$$

for all $g \in G$ and $p \in P$. If $\operatorname{Re}(\lambda)<0$, then the Knapp-Stein intertwining operator

$$
\hat{J}_{\sigma, \lambda}^{w}: C^{\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right) \rightarrow C^{\infty}\left(\partial X, V\left(\sigma_{-\lambda}^{w}\right)\right)
$$

is defined by the convergent integral

$$
\left(\hat{J}_{\sigma, \lambda}^{w} f\right)(g):=\int_{N} f(g n w) d n
$$

Its continuous extension to distributions is obtained by duality.
Set $\hat{J}_{\sigma, \lambda}=\sigma(w) \hat{J}_{\sigma, \lambda}^{w}$. Then, this operator from $C^{\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)$ to $C^{\infty}\left(\partial X, V\left(\sigma_{-\lambda}\right)\right)$ does not depend on the choice of w.

Remark 2.5.8.

(1) The convergence of the integral follows easily from Proposition 2.3.26 applied to $E=N$.
(2) We denote $\hat{J}_{\sigma, \lambda}^{w} \otimes \operatorname{Id}: C^{*}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right) \rightarrow C^{*}\left(\partial X, V\left(\sigma_{-\lambda}^{w}, \varphi\right)\right)$ also by $\hat{J}_{\sigma, \lambda}^{w}$.
(3) If $\operatorname{Re}(\lambda) \geqslant 0$, then it is defined by meromorphic continuation (see [KS71] or Lemma 5.2 of [BO00, p.97]).

The following is a well-known result, which we use in several proofs:
Lemma 2.5.9. Let f be a continuous right M-invariant function on K. Then,

$$
\int_{K} f(k) d k=\int_{\bar{N}} f(\kappa(\bar{n})) a(\bar{n})^{-2 \rho} d \bar{n}=\int_{N} f(\kappa(n w)) a(n w)^{-2 \rho} d n .
$$

Remark 2.5.10. The map $\bar{n} \mapsto \kappa(\bar{n}) M$ is a diffeomorphism of \bar{N} onto $K / M \backslash$ $\{w M\}$.

Proof. Let f be a continuous right M-invariant function on K. Then,

$$
\int_{K} f(k) d k=\int_{\bar{N}} f(\kappa(\bar{n})) a(\bar{n})^{-2 \rho} d \bar{n}
$$

by Proposition 8.46 of [Kna05, p.542]. The normalisation is correct as

$$
\int_{K} 1 d k=1=\int_{\bar{N}} a(\bar{n})^{-2 \rho} d \bar{n}
$$

Thus,

$$
\int_{K} f(k) d k=\int_{K} f(w k) d k=\int_{\bar{N}} f(w \kappa(\bar{n})) a(\bar{n})^{-2 \rho} d \bar{n} .
$$

Since $n \in N \mapsto w^{-1} n w \in \bar{N}$ is a diffeomorphism transforming $d n$ into $d \bar{n}$, this is again equal to

$$
\int_{N} f(\kappa(n w)) a(n w)^{-2 \rho} d n
$$

Let $\partial X=U \cup Q$, where U is open and Q is the complement of U. Let $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ and $f \in C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$ with support in Q. Fix $g P \in U$. Let $1_{N}: N \rightarrow \mathbb{R}, n \mapsto 1$. As f has support in Q and as the open set $G \backslash\{g P\}=g N w P$ is diffeomorphic to N, we can identify f with a distribution f_{N} in $C^{-\infty}\left(N, V_{\sigma} \otimes V_{\varphi}\right)$ such that $\int_{N} f(g n w) d n:=\left\langle f_{N}, 1_{N}\right\rangle_{N}$ is equal to $\hat{J}_{\sigma, \lambda}^{w} f(g)$.
We show next that matrix coefficients have under certain assumptions an asymptotic expansion in the sense of N. Wallach. The following two lemmas are proven in [BO00, p.110] in the setting of the Poisson transform. For the convenience of the reader, we redo here the proof for matrix coefficients.

Lemma 2.5.11. Let $\partial X=U \cup Q$, where U is open and Q is the complement of U. Let $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$. Let $f \in C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$ with support in Q, let $v \in$ $C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right)$ be a K-finite function, let $a \in A_{+}$and let $k \in K(U), h \in K$. Then, there exist smooth functions $\psi_{h, j}(j \in \mathbb{N})$ on $K(U)$ such that

$$
\begin{equation*}
c_{f, v}(k a h)=a^{-(\lambda+\rho)}\left\langle\left(\hat{J}_{\sigma, \lambda}^{w} f\right)(k), v\left(h^{-1} w\right)\right\rangle+\sum_{j=1}^{\infty} a^{-(\lambda+\rho+j \alpha)} \psi_{h, j}(k) . \tag{2.18}
\end{equation*}
$$

For $a \gg 0$ and k in a compact subset of $K(U)$, the series converges uniformly. In particular, for $a \rightarrow \infty$, we have

$$
\begin{equation*}
c_{f, v}(k a h)=a^{-(\lambda+\rho)}\left\langle\left(\hat{J}_{\sigma, \lambda}^{w} f\right)(k), v\left(h^{-1} w\right)\right\rangle+O\left(a^{-\operatorname{Re}(\lambda)-\rho-\alpha}\right) \tag{2.19}
\end{equation*}
$$

uniformly for k varying in a compact subset of $K(U)$.
Proof. Let U, Q, v and f as above. For $k \in K(U), h \in K$ and $a \in A_{+}$, we have

$$
c_{f, v}(k a h)=\int_{K}\left\langle f(l), \pi^{\tilde{\sigma},-\lambda}(k a h) v(l)\right\rangle d l=\int_{K}\left\langle f(l), v\left(h^{-1} a^{-1} k^{-1} l\right)\right\rangle d l
$$

where the integral is a formal notation meaning that the distribution f has to be applied to the smooth integral kernel. Since K is unimodular, this yields

$$
\int_{K}\left\langle f(k w l), v\left(h^{-1} a^{-1} w l\right)\right\rangle d l .
$$

By Lemma 2.5.9, this is equal to

$$
\int_{\bar{N}}\left\langle f(k w \kappa(\bar{n})), v\left(h^{-1} a^{-1} w \kappa(\bar{n})\right)\right\rangle a(\bar{n})^{-2 \rho} d \bar{n} .
$$

As $\bar{n}=\kappa(\bar{n}) a(\bar{n}) n(\bar{n}), \kappa(\bar{n})=\bar{n} n(\bar{n})^{-1} a(\bar{n})^{-1}$. So,

$$
\begin{aligned}
& \kappa\left(h^{-1} a^{-1} w \kappa(\bar{n})\right)=h^{-1} \kappa\left(a^{-1} w \bar{n} n(\bar{n})^{-1} a(\bar{n})^{-1}\right) \\
& \quad=h^{-1} w \kappa(\underbrace{\left(a \bar{n} a^{-1}\right)}_{\in \bar{N}} \underbrace{\left(a a(\bar{n})^{-1}\right)}_{\in A} \underbrace{\left(a(\bar{n}) n(\bar{n})^{-1} a(\bar{n})^{-1}\right)}_{\in N})=h^{-1} w \kappa\left(a \bar{n} a^{-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
a\left(h^{-1} a^{-1} w \kappa(\bar{n})\right)=a(a \kappa(\bar{n})) & =a\left(a \bar{n} n(\bar{n})^{-1} a(\bar{n})^{-1}\right) \\
& =a\left(\left(a \bar{n} a^{-1}\right) a n(\bar{n})^{-1}\right) a(\bar{n})^{-1}=a\left(a \bar{n} a^{-1}\right) a a(\bar{n})^{-1}
\end{aligned}
$$

Thus, $c_{f, v}(k a h)$ is equal to

$$
\begin{equation*}
a^{-(\lambda+\rho)} \int_{\bar{N}} a(\bar{n})^{\lambda-\rho} a\left(a \bar{n} a^{-1}\right)^{-(\lambda+\rho)}\left\langle f(k w \kappa(\bar{n})), v\left(h^{-1} w \kappa\left(a \bar{n} a^{-1}\right)\right)\right\rangle d \bar{n} \tag{2.20}
\end{equation*}
$$

For $t>0$, define $a_{t} \in A$ by $t=a_{t}^{-\alpha}$. Define

$$
\Phi:(0, \infty) \times \bar{N} \rightarrow \bar{N}, \quad(t, \bar{n}) \mapsto a_{t} \bar{n} a_{t}^{-1}
$$

As $\overline{\mathfrak{n}}=\mathfrak{g}_{-\alpha} \oplus \mathfrak{g}_{-2 \alpha}$, this can be written as

$$
\Phi(t, \exp (X+Y))=\exp \left(t X+t^{2} Y\right) \quad\left(X \in \mathfrak{g}_{-\alpha}, Y \in \mathfrak{g}_{-2 \alpha}\right) .
$$

Thus, we can extend Φ and hence

$$
(t, \bar{n}) \mapsto a\left(a_{t} \bar{n} a_{t}^{-1}\right)^{-(\lambda+\rho)} v\left(h^{-1} w \kappa\left(a_{t} \bar{n} a_{t}^{-1}\right)\right)=v\left(h^{-1} w a_{t} \bar{n} a_{t}^{-1}\right)
$$

to a function on $\mathbb{R} \times \bar{N}$ that has a Taylor expansion relative to t at $t=0$ converging in the space of smooth functions on \bar{N} with values in $V\left(\tilde{\sigma}_{-\lambda}\right)$. As $\lim _{t \rightarrow 0} a_{t} \bar{n} a_{t}^{-1}=$ $e \in G$, it is given by

$$
a\left(a_{t} \bar{n} a_{t}^{-1}\right)^{-(\lambda+\rho)} v\left(h^{-1} w \kappa\left(a_{t} \bar{n} a_{t}^{-1}\right)\right)=v\left(h^{-1} w\right)+\sum_{j=1}^{\infty} A_{h, j}(\bar{n}) t^{j},
$$

where $A_{h, j}: \bar{N} \rightarrow V\left(\tilde{\sigma}_{-\lambda}\right)$ are analytic. Inserting this expansion into (2.20) yields

$$
\begin{aligned}
c_{f, v}(k a h)=a^{-(\lambda+\rho)} & \int_{\bar{N}}\langle\overbrace{a(\bar{n})^{\lambda-\rho} f(k w \kappa(\bar{n}))}^{=f(k w \bar{n})}, v\left(h^{-1} w\right)\rangle d \bar{n} \\
& +\sum_{j=1}^{\infty} a^{-(\lambda+\rho+j \alpha)} \underbrace{\int_{\bar{N}} a(\bar{n})^{\lambda-\rho}\left\langle f(k w \kappa(\bar{n})), A_{h, j}(\bar{n})\right\rangle d \bar{n}}
\end{aligned}=: \psi_{h, j}(k) .
$$

Since $K(U)$ is open and since $k \in K(U)$, there exists a neighbourhood N_{e} of e in K such that $k N_{e}$ is still contained in $K(U)$. As $k w \kappa(\bar{n}) \in K(Q)$ if $f(k w \kappa(\bar{n})) \neq$ $0, w \kappa(\bar{n}) \in k^{-1} K(Q)$ for all $\bar{n} \in \bar{N}$ such that $f(k w \kappa(\bar{n})) \neq 0$. Note that the intersection of N_{e} with $k^{-1} K(Q)$ is empty since $U \cap Q=\varnothing$ and that the set $\left\{\bar{n} \in \bar{N} \mid w \kappa(\bar{n}) \notin N_{e}\right\}$ is relatively compact. Thus, $k \mapsto f(k w \kappa(\cdot))$ is a smooth family of distributions with compact support in \bar{N}. Hence, the $\psi_{h, j}$'s are smooth. Since $\int_{\bar{N}}\left\langle f(k w \bar{n}), v\left(h^{-1} w\right)\right\rangle d \bar{n}$ is equal to

$$
\int_{N}\left\langle f(k n w), v\left(h^{-1} w\right)\right\rangle d n=\left\langle\left(\hat{J}_{\sigma, \lambda}^{w} f\right)(k), v\left(h^{-1} w\right)\right\rangle
$$

we have finally

$$
c_{f, v}(k a h)=a^{-(\lambda+\rho)}\left\langle\left(\hat{J}_{\sigma, \lambda}^{w} f\right)(k), v\left(h^{-1} w\right)\right\rangle+\sum_{j=1}^{\infty} a^{-(\lambda+\rho+j \alpha)} \psi_{h, j}(k) .
$$

Let U be an open subset of ∂X. Let V be a relatively compact subset of U. For any $l \in \mathbb{N}_{0}$, any bounded subset A of $\mathcal{U}(\mathfrak{g})_{l}$ and any $f \in C^{\infty}\left(U, V\left(\sigma_{\lambda}, \varphi\right)\right.$) (viewed as a function on G with values in $V_{\sigma} \otimes V_{\varphi}$), set

$$
\rho_{l, A}(f)=\sup _{X \in A, k M \in V}\left|R_{X} f(\kappa(k .))\right| .
$$

Then, $\rho_{l, A}$ is a seminorm on $C^{\infty}\left(U, V\left(\sigma_{\lambda}, \varphi\right)\right)$. As it suffices to take countably many seminorms, the seminorms induce a Fréchet space structure on $C^{\infty}\left(U, V\left(\sigma_{\lambda}, \varphi\right)\right)$. Define

$$
C_{U}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)=\left\{f \in C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)|f|_{U} \in C^{\infty}\left(U, V\left(\sigma_{\lambda}, \varphi\right)\right)\right\} .
$$

We put on $C_{U}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$ the coarsest topology such that the inclusion map $C_{U}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right) \rightarrow C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$ and the restriction map

$$
\operatorname{res}_{U}: C_{U}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right) \rightarrow C^{\infty}\left(U, V\left(\sigma_{\lambda}, \varphi\right)\right)
$$

are continuous.

Lemma 2.5.12.

(1) Let $f \in C^{\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right), v \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right)$ and $k, h \in K$.

If $\operatorname{Re}(\lambda)>0$, then there is $\varepsilon>0$ (depending on λ but not on f) such that, for $a \rightarrow \infty, c_{f, v}(k a h)$ is equal to

$$
a^{\lambda-\rho}\left\langle f(k), \hat{J}_{\tilde{\sigma},-\lambda}^{w} v\left(h^{-1} w^{-1}\right)\right\rangle+O\left(a^{\operatorname{Re}(\lambda)-\rho-\varepsilon}\right)
$$

uniformly in $k \in K$.
If $|\operatorname{Re}(\lambda)|<\frac{1}{2}$ and $\lambda \neq 0$, then there is $\varepsilon>0$ (depending on λ but not on f) such that, for $a \rightarrow \infty, c_{f, v}(k a h)$ is equal to

$$
a^{\lambda-\rho}\left\langle f(k), \hat{J}_{\tilde{\sigma},-\lambda}^{w} v\left(h^{-1} w^{-1}\right)\right\rangle+a^{-\lambda-\rho}\left\langle\left(\hat{J}_{\sigma, \lambda}^{w} f\right)(k), v\left(h^{-1} w\right)\right\rangle+O\left(a^{-\frac{\alpha}{2}-\rho-\varepsilon}\right)
$$

uniformly in $k \in K$. The remainder depends jointly on λ and f.
(2) Let $f \in C^{\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)$ with $\operatorname{Re}(\lambda)>0, v \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{\lambda}\right)\right)$ and $k, h \in$ K. Then, there is $\varepsilon>0$ (depending on λ but not on f) such that, for $a \rightarrow \infty$, $c_{f, v}(k a h)$ is equal to

$$
a^{\lambda-\rho}\left\langle\left(\hat{J}_{-\lambda}^{w} f\right)(k), v\left(h^{-1} w\right)\right\rangle+O\left(a^{\operatorname{Re}(\lambda)-\rho-\varepsilon}\right)
$$

uniformly in $k \in K$.
(3) Let $\partial X=U \cup Q$, where U is open and Q is the complement of U, and let $f \in C_{U}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$ and let $v \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right)$.
If $\operatorname{Re}(\lambda)>0$, then there exists $\varepsilon>0$ (depending on λ but not on f) such that, for $a \rightarrow \infty, c_{f, v}(k a h)$ is equal to

$$
a^{\lambda-\rho}\left\langle f(k), \hat{J}_{\tilde{\sigma},-\lambda}^{w} v\left(h^{-1} w^{-1}\right)\right\rangle+O\left(a^{\operatorname{Re}(\lambda)-\rho-\varepsilon}\right)
$$

uniformly in $k M \in \partial X$ varying in a compact subset of U.
If $|\operatorname{Re}(\lambda)|<\frac{1}{2}$ and $\lambda \neq 0$, then there is $\varepsilon>0$ (depending on λ but not on f) such that, for $a \rightarrow \infty, c_{f, v}(k a h)$ is equal to

$$
a^{\lambda-\rho}\left\langle f(k), \hat{J}_{\tilde{\sigma},-\lambda}^{w} v\left(h^{-1} w^{-1}\right)\right\rangle+a^{-\lambda-\rho}\left\langle\left(\hat{J}_{\sigma, \lambda}^{w} f\right)(k), v\left(h^{-1} w\right)\right\rangle+O\left(a^{-\frac{\alpha}{2}-\rho-\varepsilon}\right)
$$

uniformly in $k M \in \partial X$ varying in a compact subset of U. The remainder depends jointly on λ and f.

Proof.
(1) Let $f \in C^{\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$ with $\operatorname{Re}(\lambda)>0, v \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right)$ and $k, h \in$ K. By Theorem 5.3.4 of [Wal88, p.146],

$$
\lim _{a \rightarrow \infty} a^{\rho-\lambda} c_{f, v}(a)=\int_{\bar{N}}\langle f(e), v(\bar{n})\rangle d \bar{n}=\int_{N}\left\langle f(e), v\left(w^{-1} n w\right)\right\rangle d n .
$$

Thus,

$$
\lim _{a \rightarrow \infty} a^{\rho-\lambda} c_{f, v}(k a h)=\left\langle f(k), \hat{J}_{\tilde{\sigma},-\lambda}^{w} v\left(h^{-1} w^{-1}\right)\right\rangle
$$

as $c_{f, v}(k a h)=c_{\pi^{\sigma, \lambda}\left(k^{-1}\right) f, \pi^{\tilde{\sigma},-\lambda}(h) v}(a)$. The above integral exists by Lemma 5.3 .1 of [Wal88, p.144]. The first part of the assertion now follows by Theorem 4.4.3 of [Wal88, p.119].
(2) Let $f \in C^{\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)$ with $\operatorname{Re}(\lambda)>0, v \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{\lambda}\right)\right)$ and $k, h \in$ K. By Theorem 5.3.4 of [Wal88, p.146],

$$
\begin{aligned}
\lim _{a \rightarrow \infty} a^{\rho-\lambda} c_{f, v}(k a h)= & \lim _{a \rightarrow \infty} a^{\rho-\lambda} c_{v, f}\left(h^{-1} w a w^{-1} k^{-1}\right) \\
& =\left\langle v\left(h^{-1} w\right),\left(\hat{J}_{-\lambda}^{w} f\right)(k)\right\rangle=\left\langle\left(\hat{J}_{-\lambda}^{w} f\right)(k), v\left(h^{-1} w\right)\right\rangle .
\end{aligned}
$$

The above integral exists by Lemma 5.3.1 of [Wal88, p.144]. The second assertion follows now from Theorem 4.4.3 of [Wal88, p.119].
The second part of the first assertion follows from the two assertions we have just shown and the fact that the leading term in an asymptotic expansion depends holomorphically on $\lambda \in\left\{\mu \in \mathfrak{a}_{\mathbb{C}}^{*}| | \operatorname{Re}(\mu) \left\lvert\,<\frac{1}{2}\right., \mu \neq 0\right\}$ (see sections 12.4, 12.5 and 12.6 of [Wal92]).
(3) Let W, W^{\prime} be compact subsets of U such that $W \subset \operatorname{int}\left(W^{\prime}\right)$. Let $\chi \in C_{c}^{\infty}(U)$ be such that $\left.\chi\right|_{W_{1}} \equiv 1$. Then, $f=\chi f+(1-\chi) f$ with χf smooth and $\operatorname{supp}((1-\chi) f) \subset \partial X \backslash \operatorname{int}\left(W^{\prime}\right)$. The third assertion follows by applying (1) to χf and Lemma 2.5.11 to $(1-\chi) f$ for $k M \in W$.

Definition 2.5.13. We call the smallest element $\delta_{\Gamma} \in \mathfrak{a}^{*}$ such that $\sum_{\gamma \in \Gamma} a_{\gamma}^{-(\lambda+\rho)}$ converges for all $\lambda \in \mathfrak{a}^{*}$ with $\lambda>\delta_{\Gamma}$ the critical exponent of Γ. We set $\delta_{\Gamma}=-\infty$ if Γ is the trivial group.

Remark 2.5.14.

(1) If Γ is nontrivial, then $\delta_{\Gamma} \in[-\rho, \rho)$.
(2) It follows from (2.1) that this definition differs only by a ρ-shift from the one defined in [Cor90].

Let us now introduce the push-down

$$
\pi_{*}: C^{\infty}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}, \tilde{\varphi}\right)\right) \rightarrow C^{\infty}\left(B, V_{B}\left(\tilde{\sigma}_{-\lambda}, \tilde{\varphi}\right)\right)
$$

needed to define the extension map that we will define in a moment. Let $\pi(\gamma)=$ $\pi^{\tilde{\sigma},-\lambda}(\gamma) \otimes \tilde{\varphi}(\gamma)(\gamma \in \Gamma)$. By using the identification

$$
C^{\infty}\left(B, V_{B}\left(\tilde{\sigma}_{-\lambda}, \tilde{\varphi}\right)\right)=C^{\infty}\left(\Omega, V\left(\tilde{\sigma}_{-\lambda}, \tilde{\varphi}\right)\right)^{\Gamma},
$$

we define π_{*} by

$$
\pi_{*}(f)(k M)=\sum_{\gamma \in \Gamma}(\pi(\gamma) f)(k M) \quad\left(f \in C^{\infty}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}, \tilde{\varphi}\right)\right), k M \in \Omega\right)
$$

if the sum converges [BO00, p.88]. By Lemma 4.2 of [BO00, p.89], this is the case when $\operatorname{Re}(\lambda)>\delta_{\Gamma}$.

Definition 2.5.15 ([BO00, p.91]). For $\operatorname{Re}(\lambda)>\delta_{\Gamma}$, the Bunke-Olbrich extension map

$$
\text { ext: } C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right) \rightarrow C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}
$$

is defined to be the adjoint of π_{*}.
Remark 2.5.16. When we want to make our notation more precise, we denote ext by ext ${ }_{\lambda}$.

If $X \neq \mathbb{O} H^{2}$, then ext has a meromorphic continuation to all of $\mathfrak{a}_{\mathbb{C}}^{*}$ (see Theorem 5.10 of [BO00, p.103]).

Definition 2.5.17 ([BO00, p.92]). We define the restriction map

$$
\text { res: } C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma} \rightarrow C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)
$$

as the composition of the identification map

$$
C^{-\infty}\left(\Omega, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma} \rightarrow C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)
$$

with the restriction

$$
\operatorname{res}_{\Omega}: C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right) \rightarrow C^{-\infty}\left(\Omega, V\left(\sigma_{\lambda}, \varphi\right)\right)
$$

By Lemma 4.5 of [BO00, p.92], it is the left-inverse of ext:

$$
\begin{equation*}
\text { res o ext }=I d \tag{2.21}
\end{equation*}
$$

2.6 Invariant distributions supported on the limit set

Recall that we denote the space of Γ-invariant distributions supported on the limit set by $C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$. In the following, we provide some information about these spaces. For further details, see [BO00]. They are important because $L^{2}(\Gamma \backslash G, \varphi)_{U} \oplus L^{2}(\Gamma \backslash G, \varphi)_{\text {res }}$ is generated by matrix coefficients coming from Γ invariant distributions supported on the limit set.
By Theorem 4.7 of [BO00, p.93], $C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}=\{0\}$ for all $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ such that $\operatorname{Re}(\lambda)>\delta_{\Gamma}$.
Assume that $X \neq \mathbb{O} H^{2}$. Then, $C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ is finite-dimensional for all $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ by Theorem 6.1 of [BO00, p.109].

Definition 2.6.1 ([BO00, p.126]). For $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$, define

$$
U_{\Lambda}\left(\sigma_{\lambda}, \varphi\right):=\left\{\phi \in C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma} \mid \operatorname{res} \circ \hat{J}_{\sigma, \lambda}^{w}(\phi)=0\right\}
$$

We call it the space of "stable" Γ-invariant distributions supported on the limit set.
Remark 2.6.2. The operator res $\circ \hat{J}_{\sigma, \lambda}^{w}$ is well-defined on $C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ by Lemma 5.3 of [BO00, p.98].

We denote the space of germs at $\lambda\left(\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}\right)$ of holomorphic families

$$
\mu \mapsto f_{\mu} \in C^{-\infty}\left(\partial X, V\left(\sigma_{\mu}, \varphi\right)\right) \quad\left(\text { resp. } \mu \mapsto f_{\mu} \in C^{-\infty}\left(B, V_{B}\left(\sigma_{\mu}, \varphi\right)\right)\right)
$$

by

$$
\mathcal{O}_{\lambda} C^{-\infty}\left(\partial X, V\left(\sigma_{.}, \varphi\right)\right) \quad\left(\operatorname{resp} . \mathcal{O}_{\lambda} C^{-\infty}\left(B, V_{B}(\sigma ., \varphi)\right)\right) .
$$

Let $\mathcal{O}_{\lambda}^{0} C^{-\infty}\left(B, V_{B}(\sigma ., \varphi)\right)$ be defined by

$$
\left\{f_{\mu} \in \mathcal{O}_{\lambda} C^{-\infty}\left(B, V_{B}\left(\sigma_{.}, \varphi\right)\right) \mid(\mu-\lambda) \operatorname{ext} f_{\mu} \in \mathcal{O}_{\lambda} C^{-\infty}\left(\partial X, V\left(\sigma_{.}, \varphi\right)\right)\right\}
$$

Definition 2.6.3 ([BO00, p.119]). Let

$$
E_{\Lambda}\left(\sigma_{\lambda}, \varphi\right)=\left\{\operatorname{Res}_{\mu=\lambda} \operatorname{ext}_{\mu}\left(f_{\mu}\right) \mid f_{\mu} \in \mathcal{O}_{\lambda}^{0} C^{-\infty}\left(B, V_{B}\left(\sigma_{.}, \varphi\right)\right)\right\}
$$

$\left(\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}\right)$ be the space of Γ-invariant distributions on the limit set generated by the singular parts of ext.

Proposition 2.6.4. For any $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}, E_{\Lambda}\left(\sigma_{\lambda}, \varphi\right)$ is contained in $C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$.
Proof. This follows from the identity res o ext = Id. See Proposition 6.11 of [BO00, p.119] for a detailed proof.

By Proposition 7.6 of [BO00, p.126], we have

$$
C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}=E_{\Lambda}\left(\sigma_{\lambda}, \varphi\right) \oplus U_{\Lambda}\left(\sigma_{\lambda}, \varphi\right)
$$

for all $\operatorname{Re}(\lambda) \geqslant 0$.

Proposition 2.6.5. Let $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ be such that $\operatorname{Re}(\lambda) \geqslant 0$. Then,

$$
C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma} \neq\{0\}
$$

implies that $\lambda \in \mathfrak{a}^{*}$.
Remark 2.6.6. Proposition 7.8 of [BO00, p.127] provides even more information. It shows for example that $\left\{\lambda \in \mathfrak{a}_{\mathbb{C}}^{*} \mid \operatorname{Re}(\lambda) \geqslant 0, C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma} \neq\{0\}\right\}$ is a finite subset of $\left[0, \delta_{\Gamma}\right]$.

Proof. The proposition follows from Lemma 7.2 and Proposition 7.3 of [BO00, p.123].

For $\sigma \in \hat{M}$ and $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ with $\operatorname{Re}(\lambda)>0$, we denote by $\left(\bar{\pi}^{\sigma, \lambda}, I_{ \pm \infty}^{\sigma, \lambda}\right)$ the unique irreducible subrepresentation of the principal series representation $\pi^{\sigma, \lambda}$ acting on $C^{ \pm \infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)$. We denote the underlying ($\left.\mathfrak{g}, K\right)$-module of $I_{\infty}^{\sigma, \lambda}$ by $I^{\sigma, \lambda}$.
The Langlands classification (cf. Chapter 5 of [Wal88]), a unique Langlands parameter $(\sigma, \lambda), \sigma \in \hat{M}, \lambda \in \mathfrak{a}_{\mathbb{C}}^{*}: \operatorname{Re}(\lambda)>0$, is associated to any irreducible nontempered representation $\left(\pi, V_{\pi}\right)$ such that $V_{\pi, \pm \infty}$ is equivalent to ($\bar{\pi}^{\sigma, \lambda}, I_{ \pm \infty}^{\sigma, \lambda}$). Let $\sigma \in \hat{M}, \lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ with $\operatorname{Re}(\lambda)>0$. By Proposition 9.2 of [BO00, p.135], we have

$$
\begin{aligned}
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}=\left(I_{-\infty}^{\sigma, \lambda} \otimes V_{\varphi}\right)_{d}^{\Gamma} & =\left(I_{-\infty}^{\sigma, \lambda} \otimes V_{\varphi}\right)_{t e m p}^{\Gamma} \\
& =C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}=E_{\Lambda}\left(\sigma_{\lambda}, \varphi\right) \oplus U_{\Lambda}\left(\sigma_{\lambda}, \varphi\right),
\end{aligned}
$$

where $\pi:=\bar{\pi}^{\sigma, \lambda}$. If one of these spaces is nontrivial, then $\pi \in \hat{G}_{c}$. For $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$, set

$$
C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)_{d}^{\Gamma}=C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)_{d}^{\Gamma} \cap C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}
$$

Lemma 2.6.7. We have

$$
C^{-\infty}\left(\partial X, V\left(\sigma_{0}, \varphi\right)\right)_{d}^{\Gamma}=C^{-\infty}\left(\Lambda, V\left(\sigma_{0}, \varphi\right)\right)_{d}^{\Gamma}=U_{\Lambda}\left(\sigma_{0}, \varphi\right)
$$

Proof. It follows from Lemma 2.5.11 that $f \in C^{-\infty}\left(\Lambda, V\left(\sigma_{0}, \varphi\right)\right)^{\Gamma}$ is squareintegrable if and only if res o $\hat{J}_{0} f=0$. Thus, $C^{-\infty}\left(\Lambda, V\left(\sigma_{0}, \varphi\right)\right)_{d}^{\Gamma}=U_{\Lambda}\left(\sigma_{0}, \varphi\right)$.
See Proposition 9.5 of [BO00, p.138] for a complete proof.
If $\pi=\bar{\pi}^{\sigma, \lambda} \in \hat{G}_{c}$, then $\sigma=\sigma^{w}$ and $\lambda \in \mathfrak{a}^{*}$ (see e.g. Theorem 16.6 in [Kna86, p.656]).

Let (\cdot, \cdot) be the scalar product on $\left(I_{-\infty}^{\sigma, \lambda} \otimes V_{\varphi}\right)_{d}^{\Gamma}$ induced by the matrix coefficient map to $L^{2}(\Gamma \backslash G, \varphi)$.
By Corollary 10.5 of [BO00, p.145], $E_{\Lambda}\left(\sigma_{\lambda}, \varphi\right) \oplus U_{\Lambda}\left(\sigma_{\lambda}, \varphi\right)$ is orthogonal with respect to (\cdot, \cdot) if $\operatorname{Re}(\lambda)>0$. By Proposition 4.23 of [Olb02, p.45], $C^{-\infty}\left(\Lambda, V\left(\sigma_{0}, \varphi\right)\right)^{\Gamma}$ is either $E_{\Lambda}\left(\sigma_{0}, \varphi\right)$ or $U_{\Lambda}\left(\sigma_{0}, \varphi\right)$.

2.7 Determination of the cuspidal invariant distributions supported on the limit set

In this section, we determine the cuspidal invariant distribution vectors among the invariant distributions supported on the limit set.
Recall that we assume that $X \neq \mathbb{O} H^{2}$. Because of Proposition 2.6.5, we consider in the following only $\lambda \in \overline{\mathfrak{a}}_{+}^{*}$.

Lemma 2.7.1. If $\lambda \in \mathfrak{a}_{+}^{*}, f \in C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ or if $f \in C^{-\infty}\left(\Lambda, V\left(\sigma_{0}, \varphi\right)\right)_{d}^{\Gamma}$, then f is a Schwartz vector.

Remark 2.7.2. If $\lambda \in \mathfrak{a}_{+}^{*}$, then the lemma shows in particular that $E_{\Lambda}\left(\sigma_{\lambda}, \varphi\right)$ is contained in the space of Schwartz vectors by Proposition 2.6.4.

Proof. By assumption, $\lambda \geqslant 0$. Let f be as above and let $v \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right)$. Let $U \in \mathcal{U}_{\Gamma}, X, Y \in \mathcal{U}(\mathfrak{g}), k \in K(\Omega), h \in K$ and $a \in \bar{A}_{+}$. There exists an open relatively compact subset W of Ω such that U is contained in $\{k a K \mid k \in$ $\left.K(W), a \in \bar{A}_{+}\right\}$modulo a relatively compact subset of X. Indeed, we can choose any W strictly containing U. Thus, we may assume without loss of generality that U is of the form $\left\{k a K \mid k \in K(W), a \in \bar{A}_{+}\right\}$. Hence, there exist smooth functions $\psi_{h, X, Y, j}(j \in \mathbb{N})$ on $K(\Omega)$ such that

$$
\begin{aligned}
& L_{X} R_{Y} c_{f, v}(k a h)=c_{\pi^{\sigma, \lambda}(X) f, \pi^{\tilde{\sigma},-\lambda}(Y) v}(k a h) \\
& \quad=a^{-(\lambda+\rho)}\left\langle\left(\hat{J}_{\sigma, \lambda}^{w} \pi^{\sigma, \lambda}(X) f\right)(k), \pi^{\tilde{\sigma},-\lambda}(Y) v\left(h^{-1} w\right)\right\rangle+\sum_{j=1}^{\infty} a^{-(\lambda+\rho+j \alpha)} \psi_{h, X, Y, j}(k)
\end{aligned}
$$

by Lemma 2.5.11. If $\lambda=0$, then $f \in U_{\Lambda}\left(\sigma_{0}, \varphi\right)$ by Lemma 2.6.7. So, if $\lambda=0$, then the real part of the leading exponent of the asymptotic expansion for $a \rightarrow \infty$ of $L_{X} R_{Y} c_{f, v}(k a h)$ is less or equal than $-\rho-\alpha<-\rho$ as $f \in U_{\Lambda}\left(\sigma_{0}, \varphi\right)$ implies that res $\circ \hat{J}_{\sigma, \lambda}^{w} \pi^{\sigma, \lambda}(X) f=\operatorname{res} \circ \pi^{\sigma^{w},-\lambda}(X) \hat{J}_{\sigma, \lambda}^{w} f=0$. If $\lambda>0$, then it is less or equal than $-\lambda-\rho<-\rho$. As in any case the real part of the leading exponent is less than $\rho, c_{f, v} \in \mathscr{C}(\Gamma \backslash G, \varphi)$.

Proposition 2.7.3.

If $f \in C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ with $\lambda \in \mathfrak{a}_{+}^{*}$, then

$$
\begin{equation*}
c_{f, v}^{\Omega}(g, h)=\left\langle\hat{J}_{\sigma, \lambda}^{w} f(g), \hat{J}_{\tilde{\sigma},-\lambda}^{w} v\left(h^{-1}\right)\right\rangle \tag{2.22}
\end{equation*}
$$

for all $g \in G(\Omega), h \in G$ and $v \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right)$. If $f \in C^{-\infty}\left(\Lambda, V\left(\sigma_{0}, \varphi\right)\right)_{d}^{\Gamma}=U_{\Lambda}\left(\sigma_{0}, \varphi\right)$, then $c_{f, v}^{\Omega}=0$ for all $v \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{0}\right)\right)$.

Remark 2.7.4. The expression $\hat{J}_{\sigma, \lambda}^{w} f(g)$ is well-defined for all $g \in G(\Omega)$ and all $f \in C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ by Lemma 5.3 of [BO00, p.98].

Proof. Fix $g \in G(\Omega)$ and $h \in G$. Let f, v be as above. By Lemma 2.7.1, $c_{f, v}$ belongs to $\mathscr{C}(\Gamma \backslash G, \varphi)$. So, $\left(c_{f, v}\right)^{\Omega}(g, h)$ is well-defined.

Without loss of generality, we may assume that $h=e$ (replace v by $\pi^{\tilde{\sigma},-\lambda}(h) v$ in order to get the general formula). Then, $c_{f, v}(g n)(n \in N)$ is equal to

$$
\begin{equation*}
\left\langle f, \pi^{\tilde{\sigma},-\lambda}(g n) v\right\rangle=\int_{K}\langle f(g n k), v(k)\rangle d k . \tag{2.23}
\end{equation*}
$$

By Lemma 2.5.9, this yields

$$
\begin{equation*}
\int_{N}\left\langle f\left(g n n^{\prime} w\right), v\left(n^{\prime} w\right)\right\rangle d n^{\prime}=\int_{N}\left\langle f\left(g n^{\prime} w\right), v\left(n^{-1} n^{\prime} w\right)\right\rangle d n^{\prime} . \tag{2.24}
\end{equation*}
$$

Let $1_{N}: N \rightarrow \mathbb{R}, n \mapsto 1$. Since f has support in Q and since the open set $G \backslash\{g P\}=g N w P$ is diffeomorphic to N, we can identify f with a distribution f_{N} in $C_{c}^{-\infty}\left(N, V_{\sigma} \otimes V_{\varphi}\right)$ such that $\int_{N} f(g n w) d n:=f_{N}\left(1_{N}\right)$ is equal to $\hat{J}_{\sigma, \lambda}^{w} f(g)$. Let $u(n)=v\left(n^{-1} w\right)(n \in N)$. Then, (2.24) is again equal to

$$
\left(f_{N} * \breve{u}\right)(n),
$$

where $\check{u}(n):=u\left(n^{-1}\right)$ and $*$ denotes the convolution on N. We have

$$
|u(n)|=a(n w)^{-\lambda-\rho}|v(\kappa(n w))| \leqslant C a(n w)^{-\lambda-\rho},
$$

where $C:=\|v\|_{\infty, K}=\sup _{k \in K}|v(k)|$. Let $\left\{X_{j}\right\}$ be a basis of $\mathcal{U}(\mathfrak{n})_{l}$, where l denotes the order of f_{N}. As f_{N} is a distribution on N having compact support, there exists a compact subset S of N such that

$$
\left|\left(f_{N} * \check{u}\right)(n)\right| \prec \sum_{j}\left\|L_{X_{j}} u\right\|_{\infty, S} \prec \sup _{n^{\prime} \in S} a\left(n^{-1} n^{\prime} w\right)^{-\lambda-\rho} \prec a(n w)^{-\lambda-\rho}
$$

by Proposition 2.1.7. Thus, $f_{N} * \check{u}$ is integrable over N if $\lambda \in \mathfrak{a}_{+}^{*}$.
For $\lambda \in \mathfrak{a}_{+}^{*}$, it remains to prove the following:
Claim 2.7.5. If $\lambda \in \mathfrak{a}_{+}^{*}$, then

$$
\int_{N}\left(f_{N} * \check{u}\right)(n) d n=\left\langle f_{N}\left(1_{N}\right), \int_{N} \check{u}(n) d n\right\rangle .
$$

In other words, $c_{f, v}^{\Omega}(g, e)$ is equal to $\left\langle\hat{J}_{\sigma, \lambda}^{w} f(g), \hat{J}_{\tilde{\sigma},-\lambda}^{w} v(e)\right\rangle$.
Proof. If f_{N} were a compactly supported regular distribution of N with values in $V\left(\sigma_{\lambda}, \varphi\right)$, then the claim would directly follow by Fubini's theorem. Since this is not the case, we take the convolution with a test function in order to be able to apply Fubini.
Let $\varphi \in C_{c}^{\infty}(N)$ be such that $\int_{N} \varphi(n) d n=1$. Since f_{N} and φ have compact support and since $\varphi * f_{N}$ is a smooth compactly supported function on N with values in $V_{\sigma} \otimes V_{\varphi}$,

$$
\begin{aligned}
& \int_{N}\left(f_{N} * \check{u}\right)(n) d n=\int_{N} \varphi(n) d n \cdot \int_{N}\left(f_{N} * \check{u}\right)(n) d n=\int_{N}\left(\varphi *\left(f_{N} * \check{u}\right)\right)(n) d n \\
= & \int_{N}\left(\left(\varphi * f_{N}\right) * u\right)(n) d n=\left\langle\int_{N}\left(\varphi * f_{N}\right)(n) d n, \int_{N} \check{u}(n) d n\right\rangle=\left\langle\left(\varphi * f_{N}\right)\left(1_{N}\right), \int_{N} \check{u}(n) d n\right\rangle
\end{aligned}
$$

and

$$
\begin{array}{r}
\left(\varphi * f_{N}\right)\left(1_{N}\right)=\left(\left(\varphi * f_{N}\right) * 1_{N}\right)(e)=\left(\varphi *\left(f_{N} * 1_{N}\right)\right)(e)=\left(\varphi * f_{N}\left(1_{N}\right) 1_{N}\right)(e) \\
=f_{N}\left(1_{N}\right)\left(\varphi * 1_{N}\right)(e)=f_{N}\left(1_{N}\right) \int_{N} \varphi(n) d n=f_{N}\left(1_{N}\right) .
\end{array}
$$

Thus,

$$
\int_{N}\left(f_{N} * \check{u}\right)(n) d n=\left\langle f_{N}\left(1_{N}\right), \int_{N} \check{u}(n) d n\right\rangle .
$$

Here, $f_{N}\left(1_{N}\right)=\hat{J}_{\sigma, \lambda}^{w} f(g)$ and

$$
\int_{N} \check{u}(n) d n=\int_{N} u\left(n^{-1}\right) d n=\int_{N} v(n w) d n=\hat{J}_{\tilde{\sigma},-\lambda}^{w} v(e) .
$$

Let us now look at the case $\lambda=0$.
De Rham theory asserts that we have the following assertions:
Lemma 2.7.6. Let M be a connected, oriented smooth manifold of dimension n. Let $\Omega_{c, \infty}^{*}(M)$ denote the de Rham complex of compactly supported smooth complexvalued functions on M. Then,

$$
H^{n}\left(\Omega_{c, \infty}^{*}(M)\right) \simeq \mathbb{C}
$$

The isomorphism is given by $[\omega] \mapsto \int \omega \in \mathbb{C}$.
Proof. For a proof, see for example Corollary 5.8 of [BT82, p.47].
Lemma 2.7.7. Let M be a connected, oriented smooth manifold of dimension n and let $\Omega_{c,-\infty}^{*}(M)$ be the de Rham complex of distributional forms (of compact support) on M. Then,

$$
\Omega_{c, \infty}^{*}(M) \hookrightarrow \Omega_{c,-\infty}^{*}(M)
$$

induces an isomorphism in cohomology.
Proof. See Theorem 14 of [Rha73, p.94].
It follows from the two lemmas that $H^{n}\left(\Omega_{c,-\infty}^{*}(M)\right) \simeq \mathbb{C}$. The isomorphism is given by

$$
[\omega] \mapsto \omega\left(1_{M}\right) \quad\left(\omega \in \Omega_{c,-\infty}^{*}(M)\right) .
$$

In particular, if $\omega\left(1_{M}\right)=0$ for some $\omega \in \Omega_{c,-\infty}^{n}(M)$, then

$$
\begin{equation*}
\omega=d \eta \tag{2.25}
\end{equation*}
$$

for some $\eta \in \Omega_{c,-\infty}^{n-1}(M)$.
Claim 2.7.8. Let $X \in \mathfrak{n}$. Then,

$$
\left|\left(L_{X} v\right)(n w)\right| \prec a(n w)^{-\left(\frac{\alpha}{2}+\rho\right)}
$$

for all $n \in N$.

Proof. Let $n \in N$. Write n as $a \tilde{n} a^{-1}$ with $\tilde{n} \in N$ and $a \in A$ such that $a_{B}(\tilde{n} w)=1$. Since

$$
a \tilde{n} a^{-1} w=a \tilde{n} w a=\left(a \bar{n}_{B}(\tilde{n} w) a^{-1}\right) m_{B}(\tilde{n} w)\left(a_{B}(\tilde{n} w) a^{2}\right)\left(a^{-1} n_{B}(\tilde{n} w) a\right)
$$

$$
\bar{n}_{B}(n w)=\bar{n}_{B}\left(\tilde{n}^{a} w\right)=a \bar{n}_{B}(\tilde{n} w) a^{-1} \text { and } a_{B}(n w)=a_{B}\left(\tilde{n}^{a} w\right)=a_{B}(\tilde{n} w) a^{2}=a^{2} . \text { So, }
$$

$$
a=a_{B}(n w)^{\frac{1}{2}}
$$

Let $S=\{n \in N| | \log (n) \mid \geqslant 1\}$. Let $X \in \mathfrak{n}$. Since $\bar{n} \in \bar{N} \mapsto v(\bar{n})$ belongs to $C^{1}\left(\bar{N}, V_{\tilde{\sigma}}\right)$,

$$
v(\bar{n})=v(e)+O(|\log \bar{n}|)
$$

and $L_{X} v(\bar{n})=O(|\log \bar{n}|)$. Let

$$
c=\sup \left\{\left|\log \bar{n}_{B}(n w)\right| \mid n \in N: a_{B}(n w)=1\right\}<\infty
$$

Then, there is $c^{\prime}>0$ such that

$$
\begin{aligned}
& \left|L_{X} v(n w)\right|=\left|L_{X} v\left(\bar{n}_{B}(n w)\right)\right| a_{B}(n w)^{-\rho}=\left|L_{X} v\left(a \bar{n}_{B}(\tilde{n} w) a^{-1}\right)\right| a^{-2 \rho} \\
& \\
& \quad \leqslant c^{\prime} a^{-2 \rho}\left|\log a \bar{n}_{B}(\tilde{n} w) a^{-1}\right| \leqslant c c^{\prime} a^{-\alpha-2 \rho}=c c^{\prime} a_{B}(n w)^{-\left(\frac{\alpha}{2}+\rho\right)}
\end{aligned}
$$

for every $n \in S$. The claim follows as $\{n \in N||\log (n)| \leqslant 1\}$ is compact and as $a_{B}(n w) \asymp a(n w)$ for every $n \in S$, by Proposition 2.1.7.
By Lemma 2.6.7, $C^{-\infty}\left(\Lambda, V\left(\sigma_{0}, \varphi\right)\right)_{d}^{\Gamma}=U_{\Lambda}\left(\sigma_{0}, \varphi\right)$. Then, $f_{N}\left(1_{N}\right)=0$.
Let $\left\{Z_{j}\right\}$ be a basis of \mathfrak{n} respecting the decomposition $\mathfrak{n}=\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2 \alpha}$. By (2.25), there exist finitely many $S_{j} \in C_{c}^{-\infty}\left(N, V_{\sigma} \otimes V_{\varphi}\right)$ such that

$$
f_{N}=\sum_{j} R_{Z_{j}} S_{j}
$$

Thus,

$$
f_{N} * \check{u}=\sum_{j}\left(R_{Z_{j}} S_{j}\right) * \check{u}=-\sum_{j} S_{j} *\left(L_{Z_{j}} \check{u}\right) .
$$

Hence,

$$
\int_{N}\left(f_{N} * \check{u}\right)(n) d n=-\sum_{j}\left\langle S_{j}\left(1_{N}\right), \int_{N}\left(L_{Z_{j}} v\right)(n w) d n\right\rangle
$$

It remains to show that $\int_{N}\left(L_{Z_{j}} v\right)(n w) d n=0$ for all j.
Consider first the case $\operatorname{dim} \mathfrak{n}=1$. Since $\left|\left(L_{Z_{j}} v\right)(n w)\right| \prec a(n w)^{-\left(\frac{\alpha}{2}+\rho\right)}$ and since $v(n w)$ converges to zero when $|\log n|$ tends to ∞, it follows that $\int_{N}\left(L_{Z_{j}} v\right)(n w) d n=$ 0 for any j, by partial integration.
Assume in the following that $\operatorname{dim} \mathfrak{n} \geqslant 2$. Let $\mathfrak{n}_{j}=\mathbb{R} Z_{j}$ and $\tilde{\mathfrak{n}}_{j}=\bigoplus_{i \neq j} \mathbb{R} Z_{i}$. Then, $\mathfrak{n}=\mathfrak{n}_{j} \oplus \tilde{\mathfrak{n}}_{j}$ is an A-invariant decomposition with $\operatorname{dim} \tilde{\mathfrak{n}}_{j} \geqslant 1$.
Let $N_{j}=\exp \left(\mathfrak{n}_{j}\right)$ and $\tilde{N}_{j}=\exp \left(\tilde{n}_{j}\right)$. We normalise the Haar measure $d n_{j}$ on $N_{j} \equiv \mathbb{R}$ such that

$$
\int_{N_{j}} F\left(n_{j}\right) d n_{j}=\int_{\mathbb{R}} F\left(\exp \left(x Z_{j}\right)\right) d x
$$

for all $F_{\tilde{\sim}} \in L^{1}\left(N_{j}\right)$. By 4.A.2.1 of [Wal88, p.133], we can normalise the measure $d \tilde{n}_{j}$ on \tilde{N}_{j}, given by the push-forward of the Lebesgue measure on $\tilde{\mathfrak{n}}_{j}$, such that

$$
\int_{N} F(n) d n=\int_{N_{j}} \int_{\tilde{N}_{j}} F\left(n_{j} \tilde{n}_{j}\right) d \tilde{n}_{j} d n_{j}
$$

for all $F \in L^{1}(N)$. Thus, if $L_{Z_{j}} F$ is integrable over N, then $\int_{N} L_{Z_{j}} F(n) d n$ is equal to

$$
\int_{\mathbb{R}} \int_{\tilde{N}_{j}} L_{Z_{j}} F\left(\exp \left(x Z_{j}\right) \tilde{n}_{j}\right) d \tilde{n}_{j} d x=\lim _{r \rightarrow \infty} \int_{-r}^{r} \int_{\tilde{N}_{j}} L_{Z_{j}} F\left(\exp \left(x Z_{j}\right) \tilde{n}_{j}\right) d \tilde{n}_{j} d x
$$

Since $\left|\left(L_{Z_{j}} v\right)(n w)\right| \prec a(n w)^{-\left(\frac{\alpha}{2}+\rho\right)},\left(L_{Z_{j}} v\right)(\cdot w)$ is integrable over N by Claim 2.7.8. As moreover $F\left(n_{j} \tilde{n}_{j}\right)$ is integrable over \tilde{N}_{j} when n_{j} varies in a compact subset of N_{j}, the above is again equal to

$$
-\left.\lim _{r \rightarrow \infty} \int_{-r}^{r} \frac{d}{d t}\right|_{t=0} \int_{\tilde{N}_{j}} F\left(\exp \left((x+t) Z_{j}\right) \tilde{n}_{j}\right) d \tilde{n}_{j} d x
$$

by the theorem about differentiation of parameter dependent integrals. This yields

$$
-\lim _{r \rightarrow \infty} \int_{\tilde{N}_{j}} F\left(\exp \left(r Z_{j}\right) \tilde{n}_{j}\right) d \tilde{n}_{j} d x+\lim _{r \rightarrow \infty} \int_{\tilde{N}_{j}} F\left(\exp \left(-r Z_{j}\right) \tilde{n}_{j}\right) d \tilde{n}_{j} d x
$$

by partial integration. This limit is equal to zero as $\int_{\tilde{N}_{j}} v\left(\exp \left(x Z_{j}\right) \tilde{n}_{j} w\right) d \tilde{n}_{j}$ converges to zero when $|x|$ tends to ∞ by the following claim.

Claim 2.7.9. $\int_{\tilde{N}_{j}} a\left(n_{j} \tilde{n}_{j} w\right)^{-\rho} d \tilde{n}_{j}$ converges to zero when $\left|\log \tilde{n}_{j}\right|$ converges to ∞.
Proof. Let $E_{j}=\left\{\left.\exp (X+Y)\left|X \in \mathfrak{g}_{\alpha}, Y \in \mathfrak{g}_{2 \alpha}: \frac{1}{4}\right| X\right|^{4}+2|Y|^{2} \leqslant 1\right\} \cap \tilde{N}_{j}$ (compact). Since $\int_{E_{j}} a\left(n_{j} \tilde{n}_{j} w\right)^{-\rho} d \tilde{n}_{j}$ converges to zero when $\left|\log \tilde{n}_{j}\right|$ converges to ∞ and since $a(n w) \asymp a_{B}(n w)$ on $N \backslash E_{j}$ by Corollary 2.1.9, it suffices to show that

$$
\begin{equation*}
\lim _{t \rightarrow \pm \infty} \int_{\tilde{N}_{j} \backslash E_{j}} a_{B}\left(\exp \left(t Z_{j}\right) \tilde{n}_{j} w\right)^{-\rho} d \tilde{n}_{j}=0 \tag{2.26}
\end{equation*}
$$

As $a_{B}\left(n_{j} \tilde{n}_{j} w\right) \asymp \sqrt{a_{B}\left(n_{j} w\right)^{2}+a_{B}\left(\tilde{n}_{j} w\right)^{2}}$ for all $n_{j} \in N_{j}$ with $\left|\log n_{j}\right| \geqslant 1$ and all $\tilde{n}_{j} \in E_{j}$. Let $m_{j}=1$ if $Z_{j} \in \mathfrak{g}_{\alpha}$ and $m_{j}=2$ if $Z_{j} \in \mathfrak{g}_{2 \alpha}$. By Lemma 2.3.24, we have (2.26) if and only if

$$
\begin{aligned}
& \lim _{t \rightarrow \pm \infty} \int_{\bar{A}_{+}} \int_{\left\{x \in \tilde{N}_{j} \mid a_{B}(x w)=1\right\}}\left(a_{B}\left(\exp \left(t Z_{j}\right) w\right)^{2}+a^{4} a_{B}(x w)^{2}\right)^{-\rho} d x a^{2 \rho-m_{j}} d a=0 \\
& \Longleftrightarrow \lim _{t \rightarrow \infty} \int_{\bar{A}_{+}}\left(t^{\frac{2}{m_{j}}}+a^{4}\right)^{-\frac{\rho}{2}} a^{2 \rho-m_{j}} d a=0 \Longleftrightarrow \lim _{t \rightarrow \infty} \int_{\bar{A}_{+}} \frac{a^{2 \rho-m_{j}}}{t^{\frac{\rho}{m_{j}}}+a^{2 \rho}} d a=0 .
\end{aligned}
$$

But

$$
\begin{align*}
\int_{\bar{A}_{+}} \frac{a^{2 \rho-m_{j}}}{t^{\frac{\rho}{m_{j}}}+a^{2 \rho}} d a=\int_{1}^{\infty} & \frac{x^{2 \rho-m_{j}-1}}{t^{\frac{\rho}{m_{j}}}+x^{2 \rho}} d x=\int_{1}^{\infty} x^{-m_{j}-1} \cdot \frac{x^{2 \rho}}{t^{\frac{\rho}{m_{j}}}+x^{2 \rho}} d x \tag{2.27}\\
& =\int_{1}^{\infty} x^{-m_{j}-1} d x-\int_{1}^{\infty} x^{-m_{j}-1} \cdot \frac{t^{\frac{\rho}{m_{j}}}}{t^{\frac{\rho}{m_{j}}}+x^{2 \rho}} d x
\end{align*}
$$

Since

$$
x^{-m_{j}-1} \cdot \frac{t^{\frac{\rho}{m_{j}}}}{t^{\frac{\rho}{m_{j}}}+x^{2 \rho}} \leqslant x^{-m_{j}-1} \leqslant \frac{1}{x^{2}}
$$

for all $x \geqslant 1$ and all $t \geqslant 0,(2.27)$ converges to

$$
\int_{1}^{\infty} x^{-m_{j}-1} d x-\int_{1}^{\infty} x^{-m_{j}-1} d x=0
$$

by Lebesgue's theorem of dominated convergence.
So, $c_{f, v}^{\Omega}(g, e)=\int_{N}(T * \check{u})(n) d n$ vanishes. This finishes the proof of the proposition.

Proposition 2.7.10. If $f \in U_{\Lambda}\left(\sigma_{\lambda}, \varphi\right)$ with $\lambda \in \mathfrak{a}_{+}^{*}$ or $\lambda=0$, then f is a cuspidal Schwartz vector.

Proof. Let $v \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right)\left(\lambda \in \overline{\mathfrak{a}}_{+}^{*}\right)$. By Lemma 2.7.1, $c_{f, v} \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and, by Proposition 2.7.3, $c_{f, v}^{\Omega}(g, h)$ is equal to zero as $f \in U_{\Lambda}\left(\sigma_{\lambda}, \varphi\right)$ implies that $\hat{J}_{\sigma, \lambda}^{w} f(g)=0$ for all $g \in G(\Omega)$. Hence, $c_{f, v} \in{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$.

Theorem 2.7.11.

If $f \in C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ with $\lambda \in \mathfrak{a}_{+}^{*}$ or if $f \in C^{-\infty}\left(\Lambda, V\left(\sigma_{0}, \varphi\right)\right)_{d}^{\Gamma}$, then f is a cuspidal Schwartz vector if and only if f belongs to $U_{\Lambda}\left(\sigma_{\lambda}, \varphi\right)$.

Proof. The implication from the right to the left follows by Proposition 2.7.10. As the implication in the other direction is trivial for $\lambda=0$ by Lemma 2.6.7. Let now $\lambda \in \mathfrak{a}_{+}^{*}$. Without loss of generality, we may assume that $C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma} \neq\{0\}$. Let f be as above such that $c_{f, v} \in{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$. Let us assume now that there is $x \in G(\Omega)$ such that $\hat{J}_{\sigma, \lambda}^{w} f(x) \neq 0$. Then, there is $v^{\prime} \in V\left(\tilde{\sigma}_{\lambda}^{w}\right)$ such that

$$
\begin{equation*}
\left\langle\hat{J}_{\sigma, \lambda}^{w} f(x), v^{\prime}\right\rangle \neq 0 \tag{2.28}
\end{equation*}
$$

Let $C=\int_{\bar{N}} a(\bar{n})^{-\lambda-\rho} d \bar{n}>0$ (finite by Proposition 2.3.26 applied to $E=N$) and let $g \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}^{w}\right)\right)$ be such that $g(k)=\frac{1}{C} v^{\prime}$ for all $k \in K$. Then, $\hat{J}_{\tilde{\sigma},-\lambda}^{w} g(k)=v^{\prime}$ for all $k \in K$ by construction. By Proposition 2.7.3, we have

$$
\left\langle\hat{J}_{\sigma, \lambda}^{w} f(x), v^{\prime}\right\rangle=\left\langle\hat{J}_{\sigma, \lambda}^{w} f(x), \hat{J}_{\tilde{\sigma},-\lambda}^{w} g(k)\right\rangle=0
$$

for all $k \in K$. This contradicts (2.28). So, $\hat{J}_{\sigma, \lambda}^{w} f(x)=0$ for all $x \in G(\Omega)$. In other words, $f \in U_{\Lambda}\left(\sigma_{\lambda}, \varphi\right)$. This finishes the proof of the theorem.

2.8 Discrete series representations

We recall how a discrete series representation can be embedded into a principal series representation and we show how the embedding map is related to the Poisson transform, which can be viewed as sum of matrix coefficients.

Definition 2.8.1.

(1) We say that a representation $\left(\pi, V_{\pi}\right)$ is square-integrable if all the matrix coefficients $c_{v, \tilde{v}}\left(v \in V_{\pi, \infty}, \tilde{v} \in V_{\pi^{\prime}, K}\right)$ belong to $L^{2}(G)$.
(2) A representation $\left(\pi, V_{\pi}\right)$ is called a discrete series representation if it is an irreducible square-integrable representation of G.
(3) A representation $\left(\pi, V_{\pi}\right)$ is said to be tempered if all the matrix coefficients $c_{v, \tilde{v}}\left(v \in V_{\pi, \infty}, \tilde{v} \in V_{\pi^{\prime}, K}\right)$ belong to $\mathscr{C}^{\prime}(G)$.

Remark 2.8.2.

(1) It follows from the previous definition that a discrete series representation is tempered.
(2) By Lemma 9.4 of [BO00, p.137], we know the following:

If $\left(\pi, V_{\pi}\right) \in \hat{G}$ is tempered, then $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\text {temp }}^{\Gamma}=\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$. Moreover,

$$
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \ni f \mapsto c_{f, v} \in \mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)
$$

is continuous.
(3) π is a discrete series representation (resp. tempered representation) if and only if π^{\prime} is a discrete series representation (resp. tempered representation).

Let $\left(\gamma, V_{\gamma}\right)$ be a finite-dimensional representation of K. Recall that $V(\gamma):=$ $G \times_{K} V_{\gamma}$ (homogeneous vector bundle over X) and that $V(\gamma, \varphi):=V(\gamma) \otimes V_{\varphi}$. Sections of $V(\gamma)$ will be viewed as functions from G to V_{γ} satisfying

$$
f(g k)=\gamma(k)^{-1} f(g)
$$

for all $g \in G$ and $k \in K$.
Definition 2.8.3 ([BO00, p.93]). Let $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$ and $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$. Then, the Poisson transform

$$
P_{\lambda}^{T}: C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right) \rightarrow C^{\infty}(X, V(\gamma))
$$

is defined by

$$
\left(P_{\lambda}^{T} f\right)(g):=\int_{K} a\left(g^{-1} k\right)^{-(\lambda+\rho)} \gamma\left(\kappa\left(g^{-1} k\right)\right) T f(k) d k
$$

where the integral is a formal notation meaning that the distribution f has to be applied to the smooth integral kernel.

Remark 2.8.4. We denote $P_{\lambda}^{T \otimes \mathrm{Id}} \otimes \mathrm{Id}: C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right) \rightarrow C^{\infty}(X, V(\gamma, \varphi))$ also by P_{λ}^{T}.

Definition 2.8.5. Let $\left(\pi, V_{\pi}\right)$ be an admissible representation of G of finite length on a reflexive Banach space. Let $\Lambda_{V_{\pi, K}} \in \mathfrak{a}^{*}$ be the real part of the highest leading exponent appearing in an asymptotic expansion for $a \rightarrow \infty$ of $c_{v, \tilde{v}}(k a)\left(v \in V_{\pi, \infty}\right.$, $\left.\tilde{v} \in V_{\pi^{\prime}, K}\right)$.

Remark 2.8.6. Alternatively, one could define $\Lambda_{V_{\pi, K}}$ as in 4.3 .5 of [Wal88, p.116]. For any $v \in V_{\tilde{\gamma}}, \mu \in \mathfrak{a}_{\mathbb{C}}^{*}$ and $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$, define $v_{T, \mu} \in C^{\infty}\left(\partial X, V_{\tilde{\sigma}_{\mu}}\right)$ by

$$
\begin{equation*}
v_{T, \mu}(k)={ }^{t} T \tilde{\gamma}\left(k^{-1}\right) v \quad(k \in K) . \tag{2.29}
\end{equation*}
$$

Here, $\tilde{\gamma}$ denotes the dual representation of γ.
For the rest of this section, $\left(\pi, V_{\pi}\right)$ will denote a discrete series representation unless stated otherwise. Let us recall in the following the construction of an embedding $\operatorname{map} \beta: V_{\pi,-\infty} \rightarrow C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}\right)\right)$.
Casselman's subrepresentation theorem provides an injective G-intertwining operator from $V_{\pi, \infty}$ to $C^{\infty}\left(\partial X, V\left(\sigma_{-\lambda}\right)\right)$. Let us give the explicit construction.
Let $\lambda \in \mathfrak{a}^{*}$ be such that $-(\lambda+\rho)=\Lambda_{V_{\pi, K}}$. As $\left(\pi, V_{\pi}\right)$ is a discrete series representation, $0<\lambda \in \mathfrak{a}^{*}$.
Let $\gamma \in \hat{K}$ and $V_{\gamma} \subset V_{\pi}(\gamma)$ be such that V_{γ} is a nonzero irreducible submodule of $V_{\pi}(\gamma)$ (e.g. take the minimal K-type $\left(\gamma, V_{\gamma}\right)$ of V_{π}) and choose an embedding $0 \neq \tilde{t} \in \operatorname{Hom}_{K}\left(V_{\tilde{\gamma}}, V_{\pi^{\prime}}\right)$. For $v \in V_{\pi,-\infty}$, define $F_{v} \in C^{\infty}\left(G, V_{\gamma}\right)$ by

$$
\left\langle F_{v}(g), \tilde{v}\right\rangle=\left\langle\pi\left(g^{-1}\right) v, \tilde{t} \tilde{v}\right\rangle \quad\left(\tilde{v} \in V_{\tilde{\gamma}}\right) .
$$

Then, $F_{v}(k a)$ has an asymptotic expansion for $v \in V_{\pi, \infty}$ by Theorem 4.4.3 of [Wal88, p.119]. So, there exists a nonzero map $\tilde{\beta}: V_{\pi, \infty} \rightarrow C^{\infty}\left(\partial X, V\left(\left(\left.\gamma\right|_{M}\right)_{-\lambda}\right)\right.$ (which is a G-intertwining operator) such that

$$
F_{v}(k a)=a^{-\lambda-\rho}(\tilde{\beta} v)(k)+O\left(a^{-\lambda-\rho-\varepsilon}\right) .
$$

Choose $\sigma \in \hat{M}$ such that $\operatorname{Hom}_{M}\left(V_{\gamma}, V_{\sigma}\right) \neq\{0\}$. Let $t \in \operatorname{Hom}_{M}\left(V_{\gamma}, V_{\sigma}\right)$ be such that $t \tilde{\beta} v$ is nonzero for some $v \in V_{\pi, \infty}$.
For $v \in V_{\pi, \infty}$, set $\beta v=t \tilde{\beta} v \in C^{\infty}\left(\partial X, V\left(\sigma_{-\lambda}\right)\right)$.
It follows from [Col85] that V_{π} appears with multiplicity one in $L^{2}\left(\partial X, V\left(\sigma_{-\lambda}\right)\right)$. Hence, β is unique up to a constant when σ is fixed.

Definition 2.8.7. Let X_{1} and X_{2} be two topological spaces. We say that $f: X_{1} \rightarrow$ X_{2} is a topological embedding if it is a homeomorphism onto its image (equipped with the subspace topology).

It follows from Casselman-Wallach globalisation theory (cf. Chapter 11 in [Wal92]) that the image of β is closed in $C^{\infty}\left(\partial X, V\left(\sigma_{-\lambda}\right)\right)$. Thus, β is a topological embedding. We get a projection

$$
q: C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right) \rightarrow V_{\pi,-\infty}
$$

by forming the adjoint with respect to Hermitian scalar products. We can extend β to a map between the corresponding spaces of distribution vectors by functoriality and get a G-intertwining operator

$$
A:=\beta \circ q: C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right) \rightarrow C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}\right)\right) .
$$

Thus, we have the following commutative diagram:

$$
C^{-\infty}(\partial X, \underbrace{\left.V\left(\sigma_{\lambda}\right)\right)}_{q} \xrightarrow[V_{\pi,-\infty}]{A:=\beta \circ q} \underbrace{C^{-\infty}}_{\beta}\left(\partial X, V\left(\sigma_{-\lambda}\right)\right)
$$

Let us denote the operator $\beta \otimes \mathrm{Id}$ (resp. $q \otimes \mathrm{Id}, A \otimes \mathrm{Id}$) also by β (resp. q, A).
Lemma 2.8.8. The maps $\beta: V_{\pi,-\infty} \otimes V_{\varphi} \rightarrow C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right), \beta:\left(V_{\pi,-\infty} \otimes\right.$ $\left.V_{\varphi}\right)^{\Gamma} \rightarrow C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$ are topological embeddings.
Proof. Since $\beta: V_{\pi,-\infty} \otimes V_{\varphi} \rightarrow C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)$ is a continuous injection and since it follows from the globalisation theory of Casselman and Wallach that im (β) is closed in $C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right), \beta: V_{\pi,-\infty} \otimes V_{\varphi} \rightarrow \operatorname{im}(\beta)$ is a homeomorphism when we endow $\operatorname{im}(\beta)$ with the subspace topology. The first assertion follows. The second assertion follows as $\beta(v)\left(v \in V_{\pi,-\infty} \otimes V_{\varphi}\right)$ is Γ-invariant if and only if v is Γ-invariant.

Let us recall now the relation between the Poisson transform P_{λ}^{T} and the matrix coefficients of principal series representations. It is proven by a standard computation using integral formulas.
Lemma 2.8.9. Let σ (resp. γ) be a finite-dimensional representation of M (resp. K) and let $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$. Consider the Poisson transform

$$
P_{\lambda}^{T}: C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right) \rightarrow C^{\infty}(X, V(\gamma, \varphi)) \simeq\left[C^{\infty}\left(G, V_{\varphi}\right) \otimes V_{\gamma}\right]^{K} .
$$

Then, for any $v \in V_{\tilde{\gamma}}, f \in C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$ and $g \in G$, we have

$$
\left\langle P_{\lambda}^{T} f(g), v\right\rangle=c_{f, v_{T,-\lambda}}(g) \in V_{\varphi} .
$$

Let us show in the following how the Poisson transform and $\tilde{\beta} \circ q$ are related.
Let $v \in V_{\pi,-\infty} \otimes V_{\varphi}$ and $f \in C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$ be such that $q f=v$. Then,

$$
\begin{equation*}
\left\langle F_{v}(g), \tilde{v}\right\rangle:=\left\langle\pi\left(g^{-1}\right) v, \tilde{t} \tilde{v}\right\rangle=c_{v, \tilde{t} \tilde{v}}(g)=c_{f, q(\tilde{t} \tilde{v})}(g) \tag{2.30}
\end{equation*}
$$

for all $g \in G$ and $\tilde{v} \in V_{\tilde{\gamma}}$. Define $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$ by

$$
\begin{equation*}
\left.\langle T(v), \tilde{v}\rangle=\left\langle v,{ }^{t} q \circ \tilde{t}(\tilde{v})\right](e)\right\rangle \quad\left(v \in V_{\sigma}, \tilde{v} \in V_{\tilde{\gamma}}\right) . \tag{2.31}
\end{equation*}
$$

Observe that $\tilde{v}_{T,-\lambda}={ }^{t} q(\tilde{t}(\tilde{v}))$ for all $\tilde{v} \in V_{\tilde{\gamma}}$. Thus,

$$
\begin{equation*}
F_{v}(g)=P_{\lambda}^{T} f(g) \quad(g \in G) \tag{2.32}
\end{equation*}
$$

by Lemma 2.8.9. Hence, we have the following:
Let $f \in C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$ be such that $q f \in V_{\pi, \infty} \otimes V_{\varphi}$ and let $k \in K$. Then,

$$
\begin{equation*}
\lim _{a \rightarrow \infty} a^{\lambda+\rho} P_{\lambda}^{T} f(k a)=(\tilde{\beta}(q f))(k) . \tag{2.33}
\end{equation*}
$$

Lemma 2.8.10. The map

$$
C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right) / \operatorname{ker}(q) \rightarrow C^{\infty}(X, V(\gamma, \varphi)), \quad f \mapsto P^{T} f
$$

is well-defined and injective.
Proof. By (2.32), $F_{q f}=P_{\lambda}^{T} f$. Thus, the above map is well-defined. As $\left\langle F_{q f}(g), \tilde{v}\right\rangle=$ $c_{q f, \tilde{\tilde{v}}}(g)$ for all $g \in G$ and $\tilde{v} \in V_{\tilde{\gamma}}$, by (2.30) and as $v \in V_{\pi,-\infty} \otimes V_{\varphi} \mapsto c_{v, \tilde{t} \tilde{v}}$ is injective for every nonzero $\tilde{v} \in V_{\tilde{\gamma}}$, the lemma follows.

2.8.1 Schwartz vectors are cuspidal

The main result, which we prove in this section, is that a Schwartz vector of a discrete series representation is cuspidal (see Proposition 2.8.18).
It follows from Definition 2.4.4 that $q f \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ is a Schwartz vector (resp. cuspidal Schwartz vector) if $c_{f, v} \in \mathscr{C}(\Gamma \backslash G, \varphi)$ (resp. $\left.c_{f, v} \in{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)\right)$ for all $v \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right) \cap \operatorname{im}\left({ }^{t} q\right)$.

Definition 2.8.11 ([Bor97, p.14]). We say that a sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ in $C_{c}^{\infty}(G, \mathbb{R})$ is a Dirac sequence if
(1) $\varphi_{n} \geqslant 0 \quad \forall n \in \mathbb{N}$;
(2) $\operatorname{supp}\left(\varphi_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow}\{e\}$: For any neighbourhood U of e, there is $N \in \mathbb{N}$ such that $\operatorname{supp}\left(\varphi_{n}\right) \stackrel{n \rightarrow \infty}{\subset}$ for all $n \geqslant N$;
(3) $\int_{G} \varphi_{n}(g) d g=1 \quad \forall n \in \mathbb{N}$.

Remark 2.8.12. Let $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ be a Dirac sequence in $C_{c}^{\infty}(G, \mathbb{R})$ and let $f \in$ $C^{\infty}\left(G, V_{\varphi}\right)$. Then, $\varphi_{n} * f$ converges to f.
Lemma 2.8.13. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$. Let $U, U^{\prime} \in \mathcal{U}_{\Gamma}$ such that $U^{\prime} \subset U$. Let V be a symmetric, open, relatively compact neighbourhood of the neutral element $e \in G$. We assume that $V U^{\prime} \subset U$. Let $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ be a Dirac sequence, let $X, Y \in \mathcal{U}(\mathfrak{g})$ and let $r \geqslant 0$. Then, ${ }^{U} p_{r, X, Y}\left(\varphi_{n} * f-f\right)$ converges to zero when n goes to ∞.

Proof. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and let U, U^{\prime} and V be as above.
Let $\varepsilon>0$ be given. Let $X \in \mathcal{U}(\mathfrak{g})_{l}$ and $Y \in \mathcal{U}(\mathfrak{g})$. Let $\left\{X_{i}\right\}$ be a basis of $\mathcal{U}(\mathfrak{g})_{l}$. By the proof of Proposition 2.3.41, there exists a symmetric, open, relatively compact neighbourhood $W \subset V$ of e such that

$$
\begin{equation*}
\sup _{x \in W}^{U^{\prime}} p_{r, X, Y}\left(L_{x} f-f\right) \leqslant \frac{\varepsilon}{2}, \quad \sup _{x \in W} U^{\prime} p_{r, X_{i}, Y}\left(L_{x} f-f\right) \leqslant \frac{\varepsilon}{2} \tag{2.34}
\end{equation*}
$$

for all i. Because of Property (2) of Definition 2.8.11, there exists $N \in \mathbb{N}$ such that $\operatorname{supp}\left(\varphi_{j}\right) \subset W$ for all $j \geqslant N$.
Consequently, for $j \geqslant N$ and $g K \in U^{\prime}$, we have by Property (3) of Definition 2.8.11 that

$$
\begin{aligned}
& \left|L_{X} R_{Y}\left(\varphi_{j} * f\right)(g)-L_{X} R_{Y} f(g)\right| \\
= & \left|\int_{G} \varphi_{j}(x) L_{\mathrm{Ad}\left(x^{-1}\right) X} R_{Y}\left(L_{x} f\right)(g) d x-\int_{G} L_{X} R_{Y} f(g) \varphi_{j}(x) d x\right| \\
\leqslant & \int_{G}\left|L_{\operatorname{Ad}\left(x^{-1}\right) X} R_{Y}\left(L_{x} f\right)(g)-L_{X} R_{Y} f(g)\right| \varphi_{j}(x) d x \\
\leqslant & \int_{G}\left|L_{\operatorname{Ad}\left(x^{-1}\right) X-X} R_{Y}\left(L_{x} f\right)(g)\right| \varphi_{j}(x) d x \\
& \quad+\int_{G}\left|L_{X} R_{Y}\left(L_{x} f\right)(g)-L_{X} R_{Y} f(g)\right| \varphi_{j}(x) d x .
\end{aligned}
$$

Let us look now at the two integrals separately:
(1) The first integral is less or equal than

$$
\begin{aligned}
& \sup _{x \in \operatorname{supp}\left(\varphi_{j}\right)}\left|L_{\operatorname{Ad}\left(x^{-1}\right) X-X} R_{Y}\left(L_{x} f\right)(g)\right| \\
& \leqslant \sum_{i}\left(\sup _{x \in \operatorname{supp}\left(\varphi_{j}\right)}\left|c_{i}(x)\right|\right) \sup _{i} \sup _{x \in W}\left|L_{X_{i}} R_{Y}\left(L_{x} f\right)(g)\right|
\end{aligned}
$$

where c_{i} are smooth functions on G such that

$$
\operatorname{Ad}\left(x^{-1}\right) X-X=\sum_{i} c_{i}(x) X_{i}
$$

As moreover $c_{i}(e)=0$ for any $i, \sup _{x \in \operatorname{supp}\left(\varphi_{j}\right)}\left|c_{i}(x)\right|$ converges to zero when j tends to ∞, for every i. So, there is $N^{\prime} \geqslant N$ such that

$$
\begin{equation*}
\sum_{i}\left(\sup _{x \in \operatorname{supp}\left(\varphi_{j}\right)}\left|c_{i}(x)\right|\right) \sup _{i} \sup _{x \in W} U^{\prime} p_{r, X_{i}, Y}\left(L_{x} f-f\right)<\frac{\varepsilon}{2} \tag{2.35}
\end{equation*}
$$

for every $j \geqslant N^{\prime}$.
(2) By Property (1) of Definition 2.8 .11 and $\operatorname{as} \operatorname{supp}\left(\varphi_{j}\right) \subset W$, the second integral is less or equal than

$$
\begin{aligned}
& \int_{W}\left|L_{X} R_{Y}\left(L_{x} f\right)(g)-L_{X} R_{Y} f(g)\right| \varphi_{j}(x) d x \\
\leqslant & \sup _{x \in W}\left|L_{X} R_{Y}\left(L_{x} f\right)(g)-L_{X} R_{Y} f(g)\right|
\end{aligned}
$$

Thus,

$$
U^{\prime} p_{r, X, Y}\left(\varphi_{j} * f-f\right) \leqslant \sup _{x \in W} U^{\prime} p_{r, X, Y}\left(L_{x} f-f\right)<\varepsilon
$$

for every $j \geqslant N^{\prime}$, by (2.34) and (2.35). The lemma follows.
Let $g \in G(\Omega)$ and $h \in G$. Recall that $U_{g, h}$ denotes an open set in X that is a relatively compact neighbourhood of $g P$ in $X \cup \Omega$ and contains the horosphere $g N h K=g N g^{-1}(g h) K$ passing through $g h K \in X$ and $g P \in \partial X$. Let U be an open subset of X containing $U_{g, h}$ that is relatively compact in $X \cup \Omega$. Let V be a symmetric, open, relatively compact neighbourhood of the neutral element $e \in G$ such that $V U_{g, h} \subset U$.
The following two results are due to Harish-Chandra.
Theorem 2.8.14. Let $f \in \mathscr{C}(G)$ and assume that $\operatorname{dim} Z_{G}(\mathfrak{g}) f<\infty$. Then, $f \in{ }^{\circ} \mathscr{C}(G)$.

Proof. For a proof, see Theorem 7.2.2 of [Wal88, p.233].
Corollary 2.8.15. Let $f \in V_{\pi, \infty}$ and $v \in V_{\pi^{\prime}, K}$. Then, $c_{f, v} \in{ }^{\circ} \mathscr{C}(G)$.

Proof. Let $k, h \in K, a \in A$ and $X, Y \in \mathcal{U}(\mathfrak{g})$. Since π is a discrete series representation of $G, \operatorname{dim} Z_{G}(\mathfrak{g}) f<\infty$ and the leading exponent of the asymptotic expansion of $L_{X} R_{Y} c_{f, v}(k a h)=c_{\pi(X) f, \pi^{\prime}(Y) v}(k a h)$ for $a \rightarrow \infty$ is less or equal than $-\lambda-\rho$. Thus, $c_{f, v} \in \mathscr{C}(G)$. Hence, $c_{f, v} \in{ }^{\circ} \mathscr{C}(G)$ by Theorem 2.8.14.

Definition 2.8.16. Let $\left(\pi, V_{\pi}\right)$ be a representation of G on a reflexive Banach space. Let $f \in C_{c}(G), v \in V_{\pi}$. Then,

$$
\pi(f) v:=\int_{G} f(g) \pi(g) v d g \in V_{\pi}
$$

For $f \in C_{c}(G)$ and $v \in V_{\pi} \otimes V_{\varphi}$, we set $\pi(f) v=(\pi(f) \otimes \mathrm{Id}) v$.
Remark 2.8.17. Let $f \in C_{c}^{\infty}(G)$ and $v \in V_{\pi,-\infty}$. Then, $\pi(f) v \in V_{\pi, \infty}$ (see, e.g., [Dij09, p.136]).
Proposition 2.8.18. If $f \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ is a Schwartz vector, then f is cuspidal.
Proof. Let $\left(\varphi_{j}\right)_{j}$ be a Dirac sequence in $C_{c}^{\infty}(G, \mathbb{R})$. Let $v \in V_{\pi^{\prime}, K}$. As $c_{f, v} \in$ $\mathscr{C}(\Gamma \backslash G, \varphi) \subset C^{\infty}(\Gamma \backslash G, \varphi) \subset C^{\infty}\left(G, V_{\varphi}\right), c_{\pi\left(\varphi_{j}\right) f, v}=\varphi_{j} * c_{f, v}$ converges to $c_{f, v}$ in $C^{\infty}\left(G, V_{\varphi}\right)$ and in particular pointwise. Moreover, as $\varphi_{j} \in C_{c}^{\infty}(G), \pi\left(\varphi_{j}\right) f \in$ $V_{\pi, \infty} \otimes V_{\varphi}$. Since furthermore π is a discrete series representation, $\varphi_{j} * c_{f, v}=c_{\pi\left(\varphi_{j}\right) f, v}$ belongs to ${ }^{\circ} \mathscr{C}\left(G, V_{\varphi}\right)$ by Corollary 2.8.15. So, $\int_{N} \varphi_{j} * c_{f, v}(g n h) d n=0$.
Fix $r>1$. Then, $\int_{N}\left|\varphi_{j} * c_{f, v}(g n h)-c_{f, v}(g n h)\right| d n$ is less or equal than

$$
{ }^{U} p_{r, 1,1}\left(\varphi_{j} * c_{f, v}-c_{f, v}\right) \int_{N} a_{g n h}^{-\rho}\left(1+\log a_{g n h}\right)^{-r} d n
$$

where $\int_{N} a_{g n h}^{-\rho}\left(1+\log a_{g n h}\right)^{-r} d n$ is finite by Lemma 2.3.28 applied to $E=N$. By Lemma 2.8.13, this converges to zero. Hence,

$$
\left(c_{f, v}\right)^{\Omega}(g, h)=\int_{N} c_{f, v}(g n h) d n=\lim _{j \rightarrow \infty} \int_{N} \varphi_{j} * c_{f, v}(g n h) d n=0 .
$$

Lemma 2.8.19. Fix $0 \neq v \in V_{\pi, K}$. Then, $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ is a Fréchet space which is topologically isomorphic to $\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}\right\}$.
Moreover, $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \otimes V_{\pi}(\gamma)(\gamma \in \hat{K})$ is topologically isomorphic to

$$
\begin{equation*}
\operatorname{span}\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}, v \in V_{\pi}(\gamma)\right\} \tag{2.36}
\end{equation*}
$$

Proof. It follows from Corollary 2.5.6 combined with the first part of Lemma A. 2 that $\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}\right\}$ and (2.36) are closed.
Fix $0 \neq v \in V_{\pi, K}$. Since moreover we take the coarsest topology on $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ such that $f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \mapsto c_{\pi}(f \otimes v) \in \mathscr{C}(\Gamma \backslash G, \varphi)$ is continuous and since $f \mapsto c_{\pi}(f \otimes v)$ is injective, $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ is topologically isomorphic to $\left\{c_{\pi}(f \otimes v) \mid\right.$ $\left.f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}\right\}$. Hence, $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ is a Fréchet space, too. This shows the first part. As it follows from this part that $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \otimes V_{\pi}(\gamma)$ is a Fréchet space and as

$$
c_{\pi}: V_{\pi^{\prime},-\infty} \otimes V_{\varphi} \rightarrow \mathscr{C}^{\prime}\left(G, V_{\varphi}\right), f \mapsto c_{\pi}(f \otimes v)
$$

is injective, one can prove the second part similarly.

2.8.2 The $(A f, g)$-formula

The ($A f, g$)-formula (see Theorem 2.8.29) is an explicit formula for the pairing between certain invariant distributions. This formula is absolutely necessary in order to be, for example, able to describe the space of Schwartz vectors more explicitly.
Assume that $X \neq \mathbb{O} H^{2}$ or that $\delta_{\Gamma}<0$ and $\lambda \in\left(0,-\delta_{\Gamma}\right)$ for the remaining part about the discrete series representations. Then, ext ${ }_{\lambda}$ and ext ${ }_{-\lambda}$ are defined. Recall that ext_{μ} is only defined if $\operatorname{Re}(\mu)>\delta_{\Gamma}$, when $X=\mathbb{O} H^{2}$.
Define ${ }^{`}: C^{\infty}(K) \rightarrow C^{\infty}(K)$ by $\check{\psi}(k)=\psi\left(k^{-1}\right)$.
Recall that $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$ is defined by (2.31).
Lemma 2.8.20. Let $f \in C^{\infty}\left(\partial X, V\left(\left(\left.\gamma\right|_{M}\right)_{\lambda}, \varphi\right)\right)$ and $g \in C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$. Then, there exists $\varepsilon>0$ such that for $a \rightarrow \infty$ we have

$$
\int_{K}\left(f(k),\left(P_{\lambda}^{T} g\right)(k a)\right) d k=a^{-\lambda-\rho} \int_{K}(f(k),(\tilde{\beta}(q g))(k)) d k+O\left(a^{-\lambda-\rho-\varepsilon}\right) .
$$

Proof. We prove this lemma by doing a similar argument as in the proof of Corollary 6.3 of [BO00, p.112], which itself is adapted from [Schl84, 5.1].
Let f and g be as above. Let $\left\{v_{i}\right\}$ be a basis of $V_{\gamma} \otimes V_{\varphi}$. So, there are smooth functions f_{i} on K such that $f(k)=\sum_{i} f_{i}(k) v_{i}$. Then, $\int_{K}\left(f(k),\left(P_{\lambda}^{T} g\right)(k a)\right) d k$ is equal to

$$
\begin{aligned}
& \sum_{i}\left(v_{i}, \int_{K} P_{\lambda}^{T} g(k a) \overline{f_{i}(k)} d k\right) \\
&=\sum_{i}\left(v_{i}, \int_{K}\left(\int_{K} a\left(a^{-1} h\right)^{\lambda-\rho} \gamma\left(\kappa\left(a^{-1} h\right)\right) T g(k h) d h\right) \overline{f_{i}(k)} d k\right)
\end{aligned}
$$

as K is unimodular. By Fubini's theorem, this yields
$\sum_{i}\left(v_{i}, \int_{K} a\left(a^{-1} h\right)^{\lambda-\rho} \gamma\left(\kappa\left(a^{-1} h\right)\right) T \int_{K} \overline{f_{i}(k)} g(k h) d k d h\right)=\sum_{i}\left(v_{i}, P_{\lambda}^{T}\left(\tilde{f}_{i} *_{K} g\right)(a)\right)$,
where $*_{K}$ denotes the convolution on K. Since $\check{\overline{f_{i}}} *_{K} g \in C^{\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$, the above is equal to

$$
\begin{equation*}
a^{-\lambda-\rho} \sum_{i}\left(v_{i}, \tilde{\beta}\left(q\left(\check{\tilde{f}}_{i} *_{K} g\right)\right)(e)\right)+O\left(a^{-\lambda-\rho-\varepsilon}\right) \tag{2.37}
\end{equation*}
$$

by (2.33). Here, e denotes the neutral element of G. The lemma follows by doing similar computations as before backwards: Since

$$
\tilde{\beta}\left(q\left(\check{f}_{i} *_{K} g\right)\right)(e)=\int_{K} \overline{f_{i}(k)}\left(\pi^{\sigma,-\lambda}\left(k^{-1}\right) \tilde{\beta}(q g)\right)(e) d k=\int_{K} \overline{f_{i}(k)}(\tilde{\beta}(q g))(k) d k
$$

(2.37) is again equal to

$$
\begin{aligned}
& a^{-\lambda-\rho} \sum_{i} \int_{K} f_{i}(k)\left(v_{i},(\tilde{\beta}(q g))(k)\right) d k+O\left(a^{-\lambda-\rho-\varepsilon}\right) \\
= & a^{-\lambda-\rho} \int_{K}(f(k),(\tilde{\beta}(q g))(k)) d k+O\left(a^{-\lambda-\rho-\varepsilon}\right)
\end{aligned}
$$

Lemma 2.8.21. The map A is off-diagonally smoothing:

$$
A\left(C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)\right) \subset C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)
$$

Proof. This is shown in the proof of Lemma 9.6 of [BO00, p.139].

Lemma 2.8.22.

Let $f \in C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$ be such that $A f \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)$, let $v \in$ $C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right) \cap \operatorname{im}\left({ }^{t} q\right)$ and let $h \in K$. Then, there exist $\varepsilon>0$ and $g_{h} \in$ $C^{\infty}\left(K(\Omega), V_{\varphi}\right)$ such that for $a \rightarrow \infty$ we have

$$
c_{f, v}(k a h)=a^{-\lambda-\rho} g_{h}(k)+O\left(a^{-\lambda-\rho-\varepsilon}\right)
$$

uniformly as $k M$ varies in a compact subset of Ω.
Proof. Fix $f, v={ }^{t} A \tilde{v}$ and h as above. Without loss of generality, we may assume that there is $k \in K(\Omega)$ such that $c_{f, v}(k a h)$ is nonzero for $a \in A_{+}$sufficiently large (otherwise the assertion of the lemma is trivial).
Let W be a compact subset of Ω and let W_{1} be a compact subset of Ω such that $W \subset \operatorname{int}\left(W_{1}\right)$. Let $\chi \in C_{c}^{\infty}(\Omega)$ be such that $\left.\chi\right|_{W_{1}} \equiv 1$. Then, $A f=\chi A f+(1-$ $\chi) A f$ with $(1-\chi) A f$ having support in $\partial X \backslash \operatorname{int}\left(W_{1}\right)$ and with $\chi A f$ belonging to $C^{\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)$ by Lemma 2.8.21. By Lemma 2.5.12 and by Lemma 2.5.11, $c_{\chi A f, \tilde{v}}(k a h)$ and $c_{(1-\chi) A f, \tilde{v}}(k a h)$ have an asymptotic expansion for $a \rightarrow \infty$ and $k M \in W$. Since moreover we can choose W arbitrarily, $c_{f, v}(k a h)=c_{A f, \tilde{v}}(k a h)$, $k M \in \Omega$, has an asymptotic expansion for $a \rightarrow \infty$, too. Let $\mu-\rho$ be its leading exponent. As discrete series representations have regular infinitesimal characters, there are functions $0 \not \equiv g_{1, h} \in C^{\infty}\left(K(\Omega), V_{\varphi}\right), g_{2} \in C^{\infty}\left(K(\Omega) A_{>t} K, V_{\varphi}\right)$ for some $t \geqslant 1$ and $\varepsilon>0$ such that

$$
c_{f, v}(k a h)=a^{\mu-\rho} g_{1, h}(k)+g_{2}(k a h),
$$

where $\left|g_{2}(k a h)\right| \leqslant C a^{\mu-\rho-\varepsilon}\left(k M \in W, a \in A_{>t}\right)$ for some constant $C>0$. Choose W sufficiently big so that $g_{1, h}$ is not identically zero.
Let us now prove that $\mu \leqslant-\lambda$. We denote the convolution on K by $*_{K}$. Let $\psi: K \rightarrow \mathbb{R}$ be a smooth function with compact support in $W M \subset K$ such that $\int_{K} g_{1, h}(k) \psi(k) d k \neq 0$. Then, on one hand $\breve{\psi} *_{K} c_{f, v}(a h)$ is equal to

$$
\int_{K} \psi(k) c_{f, v}(k a h) d k=a^{\mu-\rho} \int_{K} \psi(k) g_{1, h}(k) d k+\int_{K} \psi(k) g_{2}(k a h) d k
$$

and $\int_{K}\left|\psi(k) g_{2}(k a h)\right| d k \leqslant \sup _{k \in W M}\left|g_{2}(k a h)\right| \leqslant C a^{\mu-\rho-\varepsilon}$.
On the other hand, $\check{\psi} *_{K} c_{f, v}(a h)$ is equal to $c_{\pi^{\sigma, \lambda}(\breve{\psi}) f, v}(a h)$.
As $\psi \in C^{\infty}(K), \pi(\check{\psi}) q(f) \in V_{\pi, \infty} \otimes V_{\varphi}$. Thus, $c_{\pi^{\sigma, \lambda}(\tilde{\psi}) f, v}=c_{\pi(\tilde{\psi}) q(f),{ }^{t} \beta(\tilde{v})}$ is a matrix coefficient of the discrete series representation V_{π}. It follows now from the definition of λ that $\mu \leqslant-\lambda$. This completes the proof of the lemma.

Corollary 2.8 .23 . We also have the following analogous statement:
There exists $\varepsilon>0$ such that for $a \rightarrow \infty$ we have

$$
\left(P_{\lambda}^{T} f\right)(k a)=a^{-\lambda-\rho}(\tilde{\beta}(q f))(k)+O\left(a^{-\lambda-\rho-\varepsilon}\right)
$$

uniformly as $k M$ varies in a compact subset of Ω.

Proof. The corollary follows from the previous lemma. That the leading term of $\left(P_{\lambda}^{T} f\right)(k a)$ is equal to $(\tilde{\beta}(q f))(k)$ follows from Lemma 2.8.20.

Proposition 2.8.24. For every distribution $f \in C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$ such that Af $\in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$, qf is a cuspidal Schwartz vector.

Proof. Let f be as above and let $v={ }^{t} A \tilde{v} \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right) \cap \operatorname{im}\left({ }^{t} q\right)$. Then, $c_{f, v}=c_{A f, \tilde{v}}$ is left Γ-equivariant since $A f \in C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$. For all $X, Y \in$ $\mathcal{U}(\mathfrak{g})$,

$$
L_{X} R_{Y} c_{f, v}(k a h)=c_{\pi^{\sigma, \lambda}(X) f, \pi^{\tilde{\sigma},-\lambda}(Y) v}(k a h) .
$$

Since the G-intertwining operator $A: C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right) \rightarrow C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)$ induces a \mathfrak{g}-intertwining operator between the same spaces and since the G operator ${ }^{t} A: C^{\infty}\left(\partial X, V\left(\tilde{\sigma}_{\lambda}\right)\right) \rightarrow C^{\infty}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right)$ induces a ($\left.\mathfrak{g}, K\right)$-intertwining operator between $C^{K}\left(\partial X, V\left(\tilde{\sigma}_{\lambda}\right)\right)$ and $C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right)$,

$$
A\left(\pi^{\sigma, \lambda}(X) f\right)=\pi^{\sigma,-\lambda}(X) A f \in \operatorname{im}(A) \cap C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)
$$

and

$$
\pi^{\tilde{\sigma},-\lambda}(Y) v=\pi^{\tilde{\sigma},-\lambda}(Y)^{t} A \tilde{v}={ }^{t} A\left(\pi^{\tilde{\sigma}, \lambda}(Y) \tilde{v}\right) \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right) \cap \operatorname{im}\left({ }^{t} q\right) .
$$

Thus, $c_{f, v} \in \mathscr{C}(\Gamma \backslash G, \varphi)$ by Lemma 2.8.22. Hence, $q f$ is a Schwartz vector. It follows by Proposition 2.8 .18 that $q f$ is cuspidal.

Let $\left(\sigma, V_{\sigma}\right)$ be a finite-dimensional unitary representation of M and let $\mu \in \mathfrak{a}_{\mathbb{C}}^{*}$.
As σ and φ are unitary representations, we have a natural positive definite sesquilinear pairing on $V_{\sigma} \otimes V_{\varphi}$, which we denote by (\cdot, \cdot).
For $p \in P, v_{1} \in V_{\sigma_{\mu}} \otimes V_{\varphi}, v_{2} \in V_{\sigma_{-\bar{\mu}}} \otimes V_{\varphi}$, set $p .\left(v_{1}, v_{2}\right)=\left(\sigma_{\mu}(p) v_{1}, \sigma_{-\bar{\mu}}(p) v_{2}\right)$. This defines a left P-action on $\left(V_{\sigma_{\mu}} \otimes V_{\varphi}\right) \times\left(V_{\sigma_{-\bar{\mu}}} \otimes V_{\varphi}\right)$.
Then, (\cdot, \cdot) is a P-equivariant map from $\left(V_{\sigma_{\mu}} \otimes V_{\varphi}\right) \otimes\left(V_{\sigma_{-\bar{\mu}}} \otimes V_{\varphi}\right)$ to $\mathbb{C}_{1_{-\rho}}$.
Indeed, for $p \in P, v_{1} \in V_{\sigma_{\mu}} \otimes V_{\varphi}$ and $v_{2} \in V_{\sigma_{-\bar{\mu}}} \otimes V_{\varphi}$, we have

$$
\left(\sigma_{\mu}(p) v_{1}, \sigma_{-\bar{\mu}}(p) v_{2}\right)=a(p)^{\rho-\mu} \overline{a(p)^{\rho+\bar{\mu}}}\left(v_{1}, v_{2}\right)=a(p)^{2 \rho}\left(v_{1}, v_{2}\right)=1_{-\rho}(p)\left(v_{1}, v_{2}\right) .
$$

Let $f_{1} \in C^{\infty}\left(B, V_{B}\left(\sigma_{\mu}, \varphi\right)\right)$ and $f_{2} \in C^{\infty}\left(B, V_{B}\left(\sigma_{-\bar{\mu}}, \varphi\right)\right)$. Then, $\left(f_{1}(x), f_{2}(x)\right)$ belongs to $V_{B}\left(1_{-\rho}\right) \simeq \Lambda^{\max } T^{*} B$. In other words, it is a volume form on $B=\Gamma \backslash \Omega$. So,

$$
\begin{equation*}
\left(f_{1}, f_{2}\right)_{B}:=\int_{\Gamma \backslash \Omega}\left(f_{1}(x), f_{2}(x)\right) \tag{2.38}
\end{equation*}
$$

defines a natural pairing between $C^{\infty}\left(B, V_{B}\left(\sigma_{\mu}, \varphi\right)\right)$ and $C^{\infty}\left(B, V_{B}\left(\sigma_{-\bar{\mu}}, \varphi\right)\right)$.
Recall that χ_{∞} denotes the restriction of χ to Ω.
Lemma 2.8.25. Let $f_{1} \in C^{\infty}\left(B, V_{B}\left(\sigma_{\mu}, \varphi\right)\right)$ and $f_{2} \in C^{\infty}\left(B, V_{B}\left(\sigma_{-\bar{\mu}}, \varphi\right)\right)$. Then,

$$
\int_{\Gamma \backslash \Omega}\left(f_{1}(x), f_{2}(x)\right)=\int_{K} \chi_{\infty}(k M)\left(f_{1}(k), f_{2}(k)\right) d k
$$

Proof. We have:

$$
\begin{aligned}
\int_{K} \chi_{\infty}(k M)\left(f_{1}(k), f_{2}(k)\right) d k=\int_{\Omega} & \chi_{\infty}(k M)\left(f_{1}(k), f_{2}(k)\right) d k_{M} \\
& =\int_{\Gamma \backslash \Omega} \sum_{\gamma \in \Gamma} \gamma^{*}\left(\chi_{\infty}(k M)\left(f_{1}(k), f_{2}(k)\right) d k_{M}\right) .
\end{aligned}
$$

Since $\left(f_{1}(k), f_{2}(k)\right) d k$ is a Γ-invariant form and since $\sum_{\gamma \in \Gamma} \chi_{\infty}(\kappa(\gamma k) M)=1$ for all $k M \in \Omega$, this is again equal to

$$
\int_{\Gamma \backslash \Omega}\left(f_{1}(k), f_{2}(k)\right) d k_{M}=\int_{\Gamma \backslash \Omega}\left(f_{1}(x), f_{2}(x)\right) .
$$

For $f_{1} \in C^{-\infty}\left(B, V_{B}\left(\sigma_{\mu}, \varphi\right)\right), f_{2} \in C^{\infty}\left(B, V_{B}\left(\sigma_{-\bar{\mu}}, \varphi\right)\right)$, we define $\left(f_{1}, f_{2}\right)_{B}$ by

$$
\left\langle f_{1}, I\left(f_{2}\right)\right\rangle:=f_{1}\left(I\left(f_{2}\right)\right),
$$

where $I: C^{\infty}\left(B, V_{B}\left(\sigma_{-\bar{\mu}}, \varphi\right)\right) \rightarrow C^{\infty}\left(B, V_{B}\left(\tilde{\sigma}_{-\mu}, \varphi\right)\right)$ is the canonical conjugatelinear isomorphism. Then, $(\cdot, \cdot)_{B}$ is a sesquilinear pairing between

$$
C^{-\infty}\left(B, V_{B}\left(\sigma_{\mu}, \varphi\right)\right) \quad \text { and } \quad C^{\infty}\left(B, V_{B}\left(\sigma_{-\bar{\mu}}, \varphi\right)\right)
$$

We define $\left(f_{2}, f_{1}\right)_{B}=\overline{\left(f_{1}, f_{2}\right)_{B}}$. Note that if the pairing between two distributions f_{1} and f_{2} is well-defined for two of the three pairings, then they give the same result. By abuse of notation, we write always $\left(f_{1}, f_{2}\right)_{B}=\int_{\Gamma \backslash \Omega}\left(f_{1}(x), f_{2}(x)\right)$. By Corollary 8.7 of [BO00, p.132] (see Section 2.5 for details),

$$
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \hat{\otimes} V_{\pi^{\prime}} \hookrightarrow L^{2}(\Gamma \backslash G, \varphi), \quad f \otimes v \mapsto c_{f, v}
$$

induces an isometric embedding of $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \hat{\otimes} V_{\pi^{\prime}}$ into $L^{2}(\Gamma \backslash G, \varphi)$. Thus,

$$
\left(f_{1}, f_{2}\right)\left(v_{1}, v_{2}\right)=\left(f_{1} \otimes v_{1}, f_{2} \otimes v_{2}\right)=\left(c_{f_{1}, v_{1}}, c_{f_{2}, v_{2}}\right)_{L^{2}(\Gamma \backslash G, \varphi)}
$$

for all $f_{1}, f_{2} \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}$ and $v_{1}, v_{2} \in V_{\pi^{\prime}}$. Let $\zeta \in V_{\pi^{\prime}, K}$ be of norm 1. Then,

$$
\left(f_{1}, f_{2}\right)=\left(c_{f_{1}, \zeta}, c_{f_{2}, \zeta}\right)_{L^{2}(\Gamma \backslash G, \varphi)} \quad\left(f_{1}, f_{2} \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}\right)
$$

induces a sesquilinear pairing (\cdot, \cdot) between the tempered (thus all, by Remark 2.8.2) Γ-invariant distribution vectors and the Schwartz vectors:

$$
\left(f_{1}, f_{2}\right):=\left(c_{f_{1}, \zeta}, c_{f_{2}, \zeta}\right) \quad\left(f_{1} \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}, f_{2} \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}\right),
$$

where the pairing on the right-hand side is simply the pairing between $\mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)$ and $\mathscr{C}(\Gamma \backslash G, \varphi)$.
This new sesquilinear pairing does not depend on the choice of ζ. Indeed, if f_{1} and f_{2} are fixed, then $F\left(v_{1}, v_{2}\right):=c_{f_{1}, v_{1}}\left(c_{f_{2}, v_{2}}\right)$ is a (\mathfrak{g}, K)-invariant sesquilinear form on $V_{\pi^{\prime}, K}$. It follows from Schur's lemma that there exists a constant $C\left(f_{1}, f_{2}\right)$,
depending on f_{1} and f_{2}, such that $c_{f_{1}, v_{1}}\left(c_{f_{2}, v_{2}}\right)=C\left(f_{1}, f_{2}\right)\left(v_{1}, v_{2}\right)$ for all $v_{1}, v_{2} \in$ $V_{\pi^{\prime}, K}$. Thus, $c_{f_{1}, v}\left(c_{f_{2}, v}\right)=C\left(f_{1}, f_{2}\right)$ for all $v \in V_{\pi^{\prime}, K}$ of norm 1. For $f_{1} \in\left(V_{\pi,-\infty} \otimes\right.$ $\left.V_{\varphi}\right)^{\Gamma}$ and $f_{2} \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$, define

$$
\left(f_{2}, f_{1}\right)=\overline{\left(f_{1}, f_{2}\right)} .
$$

Note again that there is no ambiguity.
Fix $\zeta \in V_{\pi^{\prime}, K} \cap \operatorname{im} \tilde{t}$ of norm 1. Fix $0 \neq u \in V_{\tilde{\gamma}}$ such that $\tilde{t}(u)=\zeta$. Then, ${ }^{t} q(\zeta)=u_{T,-\lambda}$.
It follows from the definition of (\cdot, \cdot), the topologies on $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ and $\left(V_{\pi,-\infty} \otimes\right.$ $\left.V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ and Remark 2.8.2 (2) that $\left(f_{1}, f_{2}\right)$ depends continuously on f_{1} (resp. f_{2}) when f_{2} (resp. f_{1}) is fixed.
If $f \in C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$ with $A f \in C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$ and $g \in$ $C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(\beta)$, then, as β is injective, set

$$
\begin{equation*}
(A f, g)=\left(q(f), \beta^{-1}(g)\right) \tag{2.39}
\end{equation*}
$$

whenever the right-hand side is well-defined.
Lemma 2.8.26. The Bunke-Olbrich extension map

$$
\text { ext: } C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right) \rightarrow C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}
$$

is regular at λ.
Proof. We must show that $C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)$ is reducible. Then, ext is regular at λ by Proposition 4.21 of [Olb02, p.44].
It follows from Casselman's subrepresentation theorem and the functorial properties of smooth globalisation that $V_{\pi,-\infty} \otimes V_{\varphi}$ is a quotient of $C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)$ and a nontrivial G-submodule of $C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)$ (By a G-submodule we always mean a representation on a closed subspace.). As moreover the Langlands quotient is contained in $\operatorname{ker} q$, the latter space is a nontrivial G-invariant submodule of $C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)$. The lemma follows.

Lemma 2.8.27. $C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ is contained in $\operatorname{ker} q$.
Proof. $C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ is contained in the Langlands quotient by Proposition 4.21 of [Olb02, p.44], which is again contained in $\operatorname{ker}(q)$.

Theorem 2.8.28.

(1) The space $A\left(C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right)\left(\right.$ resp. $\left.A\left(C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right)\right)$ has f_{i-} nite codimension in

$$
\operatorname{im}(A) \cap C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \quad\left(\text { resp. } \quad \operatorname{im}(A) \cap C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}\right) .
$$

(2) The space $\operatorname{im}(A) \cap C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$ is dense in

$$
\operatorname{im}(A) \cap C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}
$$

Proof. This is the content of Theorem C. 1 in the appendix.
Theorem 2.8.29. There exists a real constant $C \neq 0$ such that

$$
(A f, g)=C(\operatorname{res}(f), \operatorname{res}(g))_{B} \in \mathbb{C}
$$

for all $f \in C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ and $g \in C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(\beta)$ such that f or g is smooth on Ω.

Remark 2.8.30. ($A f, g$) is well-defined by Proposition 2.8 .24 and as A is offdiagonally smoothing by Lemma 2.8.21.

Proof. The argument is adapted from Proposition 10.4 of [BO00, p.144]. Let $f \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ and $g=A \tilde{g} \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(\beta)$. Since ext is regular at λ by Lemma 2.8.26, there is a holomorphic family $\mu \mapsto f_{\mu} \in$ $C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\mu}, \varphi\right)\right)^{\Gamma}$ defined in a neighbourhood of λ such that $\operatorname{res}(f)=\operatorname{res}\left(f_{\lambda}\right)$. Since $C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ is contained in ker q by Lemma 2.8.27, we may assume without loss of generality that $f=f_{\lambda}$.
Let B_{R} be the ball in X with center $e K$ and radius R. Let $\chi \in C_{c}^{\infty}(X \cup \Omega)$ be as in Lemma 2.3.19.
Let us denote the scalar product in $L^{2}\left(B_{R}, V(\gamma, \varphi)\right)$ by $(\cdot, \cdot)_{B_{R}}$. Set

$$
S_{R}(\mu)=\left(P_{\mu}^{T} f_{\mu}, \chi P_{\lambda}^{T} \tilde{g}\right)_{B_{R}} .
$$

Then, $P_{\lambda}^{T} f$ and $P_{\lambda}^{T} \tilde{g}$ belongs to $L^{2}\left(Y, V_{Y}(\gamma, \varphi)\right)$ by Lemma 6.2, 3., of [BO00, p.110] (asymptotic expansions for the Poisson transform, compare with Lemma 2.5.12) and by Corollary 2.8.23. Thus,

$$
\left(P_{\lambda}^{T} f, P_{\lambda}^{T} \tilde{g}\right)_{L^{2}\left(Y, V_{Y}(\gamma, \varphi)\right)}=\lim _{R \rightarrow \infty} \lim _{\mu \rightarrow \lambda} S_{R}(\mu) .
$$

By [BO95], there exists $c(\sigma) \in \mathbb{R}$ such that $\left(-\Omega_{G}+c(\sigma)+\mu^{2}\right) \circ P_{\mu}^{S}=0$ for all $S \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$ and all $\mu \in \mathfrak{a}_{\mathbb{C}}^{*}$. Let $D=-\Omega_{G}+c(\sigma)+\lambda^{2}$ be the shifted Casimir operator. Then, $D P_{\mu}^{T} f_{\mu}=\left(\lambda^{2}-\mu^{2}\right) P_{\mu}^{T} f_{\mu}$. So,

$$
S_{R}(\mu)=\frac{1}{\lambda^{2}-\mu^{2}}\left(D P_{\mu}^{T} f_{\mu}, \chi P_{\lambda}^{T} \tilde{g}\right)_{B_{R}}
$$

for all $\mu \in \mathfrak{a}_{\mathbb{C}}^{*}$ such that $\operatorname{Re}(\mu)>0$ and $\mu \neq \lambda$. Observe that there exists a selfadjoint endomorphism \mathcal{R} such that $D=\nabla^{*} \nabla+\mathcal{R}$, where $\nabla^{*} \nabla$ is the Bochner Laplacian associated to the invariant connection ∇ of $V(\gamma, \varphi)$. As $\mu \mapsto P_{\mu}^{T} f_{\mu}$ is holomorphic, we can write

$$
P_{\mu}^{T} f_{\mu}=F_{0}+F_{1}(\mu-\lambda)+\cdots
$$

with $F_{i} \in C^{\infty}(X, V(\gamma, \varphi))^{\Gamma}$. We have:

$$
\begin{aligned}
& D F_{0}+D F_{1}(\mu-\lambda)+\cdots=D P_{\mu}^{T} f_{\mu} \\
& \quad=\left(\lambda^{2}-\mu^{2}\right) P_{\mu}^{T} f_{\mu}=-(\mu+\lambda)\left(F_{0}(\mu-\lambda)+F_{1}(\mu-\lambda)^{2}+\cdots\right) .
\end{aligned}
$$

Thus, $D F_{0}=0$ and $\lim _{\mu \rightarrow \lambda} D\left(\frac{P_{\mu}^{T} f_{\mu}}{\mu-\lambda}\right)=D F_{1}$. Hence, $\lim _{\mu \rightarrow \lambda} S_{R}(\mu)$ is equal to

$$
\begin{aligned}
& \frac{1}{2 \lambda}\left(D F_{1}, \chi P_{\lambda}^{T} \tilde{g}\right)_{B_{R}}=\frac{1}{2 \lambda}\left(\left(D F_{1}, \chi P_{\lambda}^{T} \tilde{g}\right)_{B_{R}}-\left(F_{1}, \chi D P_{\lambda}^{T} \tilde{g}\right)_{B_{R}}\right) \\
& \quad=\frac{1}{2 \lambda}\left(\left(D F_{1}, \chi P_{\lambda}^{T} \tilde{g}\right)_{B_{R}}-\left(F_{1}, D \chi P_{\lambda}^{T} \tilde{g}\right)_{B_{R}}+\left(F_{1},[D, \chi] P_{\lambda}^{T} \tilde{g}\right)_{B_{R}}\right)
\end{aligned}
$$

By applying Green's formula, this yields

$$
\frac{1}{2 \lambda}\left(\left(\nabla_{n} F_{1}, \chi P_{\lambda}^{T} \tilde{g}\right)_{\partial B_{R}}-\left(F_{1}, \nabla_{n} \chi P_{\lambda}^{T} \tilde{g}\right)_{\partial B_{R}}+\left(F_{1},[D, \chi] P_{\lambda}^{T} \tilde{g}\right)_{B_{R}}\right)
$$

where n is the exterior unit normal vector field at ∂B_{R}. By Lemma 6.2, 3., of [BO00, p.110] (compare with Lemma 2.5.12), there exists $\varepsilon>0$ such that for $a \rightarrow \infty$ we have

$$
P_{\mu}^{T} f_{\mu}(k a)=a^{\mu-\rho} c_{\gamma}(\mu) T f(k)+O\left(a^{\operatorname{Re}(\mu)-\rho-\varepsilon}\right)
$$

uniformly as $k M$ varies in compact subsets of Ω. Here, $c_{\gamma}(\mu) \in \operatorname{End}_{M}\left(V_{\gamma}\right)$ is the Harish-Chandra c-function. This meromorphic function is given by

$$
c_{\gamma}(\mu):=\int_{\bar{N}} a(\bar{n})^{-(\mu+\rho)} \gamma(\kappa(\bar{n})) d \bar{n}
$$

for $\operatorname{Re}(\mu)>0$. Since the above formula also holds for $\mu=\lambda$ and any $f \in$ $C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$, it follows from Corollary 2.8.23 that $c_{\gamma}(\lambda)=0$. As

$$
a^{\mu-\rho}=a^{\mu-\lambda} a^{\lambda-\rho}=a^{\lambda-\rho} e^{(\mu-\lambda) \log (a)}=a^{\lambda-\rho} \sum_{j=0}^{\infty} \frac{\log (a)^{j}}{j!}(\mu-\lambda)^{j}
$$

and as
$c_{\gamma}(\mu)=\sum_{j=0}^{\infty}(-1)^{j}(\mu-\lambda)^{j} \int_{\bar{N}} \frac{\log (a(\bar{n}))^{j}}{j!} a(\bar{n})^{-\lambda-\rho} \gamma(\kappa(\bar{n})) d \bar{n}=: \sum_{j=0}^{\infty}(\mu-\lambda)^{j} c_{\gamma}^{j}(\lambda)$,
we have for $a \rightarrow \infty$
$P_{\mu}^{T} f_{\mu}(k a)=a^{\lambda-\rho} c_{\gamma}(\lambda)+(\mu-\lambda)\left(a^{\lambda-\rho}\left(\log (a) c_{\gamma}(\lambda)+c_{\gamma}^{1}(\lambda)\right) T f(k)\right)+\cdots+O\left(a^{\lambda-\rho-\varepsilon}\right)$
uniformly as $k M$ varies in compact subsets of Ω, for all $\mu \in \mathfrak{a}_{\mathbb{C}}^{*}$ such that $\operatorname{Re}(\mu)<\lambda$. Assume from now on that $\mu \in \mathfrak{a}_{\mathbb{C}}^{*}$ satisfies $0<\operatorname{Re}(\mu)<\lambda$.
By Cauchy's integral formula and as $c_{\gamma}(\lambda)=0$, we have for $a \rightarrow \infty$

$$
\begin{equation*}
F_{1}(k a)=a^{\lambda-\rho} c_{\gamma}^{1}(\lambda) T f(k)+O\left(a^{\lambda-\rho-\varepsilon}\right) \tag{2.40}
\end{equation*}
$$

uniformly as $k M$ varies in compact subsets of Ω, as $c_{\gamma}(\lambda)=0$.
Let $\omega_{X}=\frac{\omega_{n}}{2^{r}}$, where $n=\operatorname{dim} X, \omega_{n}=\operatorname{vol}\left(S^{n-1}\right)=\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}$ and $r \in \mathbb{N}$ is such that $r \alpha=2 \rho$. It follows from (2.40) and Corollary 2.8.23 combined with properties
(2) and (3) of Lemma 2.3.19 that $\left|\left(F_{1},[D, \chi] P_{\lambda}^{T} \tilde{g}\right)\right|$ is integrable over X. Thus, $\left(F_{1},[D, \chi] P_{\lambda}^{T} \tilde{g}\right)_{X}$ is equal to

$$
\int_{\Gamma \backslash X} \sum_{\gamma \in \Gamma}\left(F_{1}(\gamma x), D\left(\chi(\gamma x) P_{\lambda}^{T} \tilde{g}(\gamma x)\right)\right) d x=\int_{\Gamma \backslash X}\left(F_{1}(x), D\left(\sum_{\gamma \in \Gamma} \chi(\gamma x) P_{\lambda}^{T} \tilde{g}(x)\right)\right) d x
$$ as $\sum_{\gamma \in \Gamma} \chi(\gamma x)=1$, as $D \circ P_{\lambda}^{T}=0$ and as F_{1} and $P_{\lambda}^{T} \tilde{g}$ belong to $C^{\infty}(X, V(\gamma, \varphi))^{\Gamma}$. Hence,

$$
\begin{equation*}
\left(F_{1},[D, \chi] P_{\lambda}^{T} \tilde{g}\right)_{X}=0 \tag{2.41}
\end{equation*}
$$

Recall that χ_{∞} denotes the restriction of χ to Ω. Then, $\chi_{\infty}(k)=\lim _{a \rightarrow \infty} \chi(k a K)$ as χ is continuous. As χ has compact support in $X \cup \Omega, \chi_{\infty}$ has compact support in Ω. So, by (2.40), (2.41) and by Lemma 2.8.20, $\left(P_{\lambda}^{T} f, P_{\lambda}^{T} \tilde{g}\right)_{L^{2}\left(Y, V_{Y}(\gamma, \varphi)\right)}$ is equal to

$$
\begin{aligned}
\frac{\omega_{X}}{2 \lambda}\left((\lambda - \rho) \int _ { \partial X } \left(c_{\gamma}^{1}(\lambda) T f\right.\right. & \left.(k), \chi_{\infty}(k)(\tilde{\beta}(q \tilde{g}))(k)\right) d k \\
& \left.-(-\lambda-\rho) \int_{\partial X}\left(c_{\gamma}^{1}(\lambda) T f(k), \chi_{\infty}(k)(\tilde{\beta}(q \tilde{g}))(k)\right) d k\right)
\end{aligned}
$$

as $\lim _{R \rightarrow \infty} e^{-2 \rho R} \operatorname{vol}\left(\partial B_{R}\right)=\omega_{X}$. This is again equal to

$$
\frac{\omega_{X}}{(t, t)} \int_{\partial X} \chi_{\infty}(k)\left(\left(t \circ c_{\gamma}^{1}(\lambda) T\right) f(k), g(k)\right) d k
$$

where $\left(T_{1}, T_{2}\right) \operatorname{Id}_{V_{\sigma}}=T_{2}^{*} \circ T_{1}$ (since $\sigma \in \hat{M}$ this is well-defined by Schur's lemma). By Lemma 2.8.25, this yields

$$
\frac{\left(c_{\gamma}^{1}(\lambda) T, t^{*}\right) \omega_{X}}{(t, t)}(\operatorname{res}(f), \operatorname{res}(g))_{B}
$$

We have just shown that

$$
\begin{equation*}
\left(P_{\lambda}^{T} f, P_{\lambda}^{T} \tilde{g}\right)_{L^{2}\left(Y, V_{Y}(\gamma, \varphi)\right)}=\frac{\left(c_{\gamma}^{1}(\lambda) T, t^{*}\right) \omega_{X}}{(t, t)}(\operatorname{res}(f), \operatorname{res}(g))_{B} \tag{2.42}
\end{equation*}
$$

Thus, by Lemma 2.8.9, we have

$$
\left(c_{f, u_{T,-\lambda}}, c_{\tilde{g}, u_{T,-\lambda}}\right)_{L^{2}(\Gamma \backslash G)}=\int_{\Gamma \backslash G}\left(\left\langle P_{\lambda}^{T} f(x), u\right\rangle,\left\langle P_{\lambda}^{T} \tilde{g}(x), u\right\rangle\right) d x .
$$

By Fubini's theorem, this yields

$$
\begin{aligned}
& \int_{\Gamma \backslash G} \int_{K}\left\langle P_{\lambda}^{T} f(x k), u\right\rangle \overline{\left\langle P_{\lambda}^{T} \tilde{g}(x k), u\right\rangle} d k d x \\
= & \int_{\Gamma \backslash G} \int_{K}\left\langle\gamma\left(k^{-1}\right) P_{\lambda}^{T} f(x), u\right\rangle \overline{\left\langle\gamma\left(k^{-1}\right) P_{\lambda}^{T} \tilde{g}(x), u\right\rangle} d k d x .
\end{aligned}
$$

By Schur's lemma, this is again equal to

$$
\frac{\|u\|^{2}}{\operatorname{dim}\left(V_{\tilde{\gamma}}\right)} \int_{\Gamma \backslash G}\left(P_{\lambda}^{T} f(x), P_{\lambda}^{T} \tilde{g}(x)\right) d x=\frac{\|u\|^{2}\left(c_{\gamma}^{1}(\lambda) T, t^{*}\right) \omega_{X}}{(t, t) \operatorname{dim}\left(V_{\tilde{\gamma}}\right)} \cdot(\operatorname{res}(f), \operatorname{res}(g))_{B} .
$$

Thus, by $(2.42),(A f, g)$ is equal to

$$
C(\operatorname{res}(f), \operatorname{res}(g))_{B}
$$

where

$$
C:=\frac{\|u\|^{2}\left(c_{\gamma}^{1}(\lambda) T, t^{*}\right) \omega_{X}}{(t, t) \operatorname{dim}\left(V_{\tilde{\gamma}}\right)}=\frac{\left(c_{\gamma}^{1}(\lambda) T, t^{*}\right) \omega_{X}}{(t, t)(\tilde{t}, \tilde{t}) \operatorname{dim}\left(V_{\tilde{\gamma}}\right)}
$$

as $\tilde{t}(u)=\xi$ and as ξ has norm 1 . Since (\cdot, \cdot) is positive definite,

$$
0<(A f, A f)=C(\operatorname{res}(f), \operatorname{res}(A f))_{B} \quad\left(f \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma} \backslash \operatorname{ker} A\right)
$$

shows that $C \in \mathbb{R} \backslash\{0\}$.
This proves the formula in the case where f and g are smooth on Ω. Let us show now that we can extend this formula.
Since $\beta^{-1}: \operatorname{im}(A) \rightarrow V_{\pi,-\infty} \otimes V_{\varphi}$ is continuous (β is a topological embedding),

$$
\left\{v \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \mid \beta v \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)\right\}
$$

is dense in $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ by Theorem 2.8.28.
Let $g=\beta(\tilde{g}) \in C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)$. Then, there exist $\tilde{g}_{j} \in\left(V_{\pi,-\infty} \otimes\right.$ $\left.V_{\varphi}\right)^{\Gamma}$ with $\beta\left(\tilde{g}_{j}\right) \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \mathrm{im}(A)$ such that \tilde{g}_{j} converges to \tilde{g} in $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$. Thus,

$$
\begin{aligned}
&(A f, g)=(q f, \tilde{g})=\lim _{j \rightarrow \infty}\left(q f, \tilde{g}_{j}\right)=\lim _{j \rightarrow \infty}\left(A f, \beta\left(\tilde{g}_{j}\right)\right) \\
&=C \lim _{j \rightarrow \infty}\left(\operatorname{res}(f), \operatorname{res}\left(\beta\left(\tilde{g}_{j}\right)\right)\right)_{B}=C(\operatorname{res}(f), \operatorname{res}(g))_{B}
\end{aligned}
$$

Since $C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ is dense in $C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ by Lemma 6.6 of [BO00, p.114], one can show similarly that the formula holds when $f \in$ $C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ and $g \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)$.
This completes the proof of the theorem.
Proposition 2.8.31. If $q f\left(f \in C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)\right)$ is a Schwartz vector, then $A f \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$.
Proof. Let f be as above. By Theorem 2.8.29, there exists $C \neq 0$ such that

$$
(q(\operatorname{ext} \phi), q f)=(A(\operatorname{ext} \phi), A f)=C(\phi, \operatorname{res}(A f))_{B}
$$

for all $\phi \in C^{\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$. Recall that $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \ni f \mapsto c_{f, v} \in \mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)$ is continuous by Remark 2.8.2 (2).
Thus, the left-hand side is also well-defined for $\phi \in C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$ and depends continuously on ϕ. Hence, we can define a continuous conjugate-linear map

$$
g: C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right) \rightarrow \mathbb{C}
$$

by $g(\phi)=\frac{1}{C} \overline{(q(\operatorname{ext} \phi), q f)}$. Since B is compact, we can identify $C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)^{\prime}$ with $C^{\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right)$. So, g is given by a smooth function. By construction, $g=\operatorname{res}(A f)$ as distributions. Consequently, res $(A f)$ is smooth.

For the definition of the maps $\mathcal{F}_{\pi}(\pi \in \hat{G})$, see Section 2.5.

Proposition 2.8.32.

(1) Let $\gamma \in \hat{K}$. If $f \in \mathscr{C}(\Gamma \backslash G, \varphi)(\gamma)$, then $\mathcal{F}_{\pi}(f) \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)^{\Gamma}{ }_{\circ} \mathscr{C}^{\Gamma} \otimes V_{\pi}(\gamma)$ and $c_{\pi}\left(\mathcal{F}_{\pi}(f)\right) \in{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)(\gamma)$.
(2) If $f \in \mathscr{C}(\Gamma \backslash G, \varphi)_{K}$ (K-finite element), then $c_{\pi}\left(\mathcal{F}_{\pi}(f)\right) \in{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)_{K}$.

Remark 2.8.33.

(1) $c_{\pi} \circ \mathcal{F}_{\pi}$ is the orthogonal projection on $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \hat{\otimes} V_{\pi}$ by Corollary 2.5.5.
(2) It follows from this proposition and Lemma 2.5.4 that

$$
\mathcal{F}_{\pi}(\mathscr{C}(\Gamma \backslash G, \varphi)(\gamma)) \quad(\gamma \in \hat{K})
$$

is equal to $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \otimes V_{\pi}(\gamma)$ and that $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \otimes V_{\pi, K}$ is equal to $\mathcal{F}_{\pi}\left(\mathscr{C}(\Gamma \backslash G, \varphi)_{K}\right)$.

Proof. Let π be as above and $f \in \mathscr{C}(\Gamma \backslash G, \varphi)_{K}$. The construction of the embedding $\operatorname{map} \beta_{\pi^{\prime}}$ provides $\sigma \in \hat{M}$ and $\lambda>0$. We may assume without loss of generality that f is nonzero and belongs to a K-isotypic component $L^{2}(\Gamma \backslash G, \varphi)(\gamma)$ for some $\gamma \in$ \hat{K}. Let $\left\{v_{1}, \ldots, v_{l}\right\}$ be an orthonormal basis of $V_{\pi}(\gamma)$. Write $\mathcal{F}_{\pi}(f)=\sum_{j=1}^{l} \tilde{f}_{j} \otimes v_{j}$ with $\tilde{f}_{j} \in N_{\pi}$. Let $\phi \in C^{\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$. Then, for all $i \in\{1, \ldots, l\}$, we have

$$
\begin{aligned}
\left(c_{\pi}\left(q_{\pi^{\prime}}(\operatorname{ext}(\phi)) \otimes v_{i}\right), f\right) & =\left(q_{\pi^{\prime}}(\operatorname{ext}(\phi)) \otimes v_{i}, \mathcal{F}_{\pi}(f)\right)_{N_{\pi} \hat{\otimes} V_{\pi}} \\
& =\sum_{j=1}^{l}\left(q_{\pi^{\prime}}(\operatorname{ext}(\phi)), \tilde{f}_{j}\right)\left(v_{i}, v_{j}\right)=\left(q_{\pi^{\prime}}(\operatorname{ext}(\phi)), \tilde{f}_{i}\right)\left(v_{i}, v_{i}\right) .
\end{aligned}
$$

By Theorem 2.8.29 and as $\left(v_{i}, v_{i}\right)=1$, there exists a constant $C \neq 0$ such that the last part is equal to

$$
C\left(\phi, \operatorname{res}\left(\beta_{\pi^{\prime}} \tilde{f}_{i}\right)\right)_{B} .
$$

Recall that $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \ni f \mapsto c_{f, v} \in \mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)$ is continuous by Remark 2.8.2 (2). Thus, one can show similarly as in the proof of Proposition 2.8.31 that $\beta_{\pi^{\prime}}\left(\tilde{f}_{i}\right)$ is smooth on Ω for all i. Hence, $\mathcal{F}_{\pi}(f) \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}_{\mathscr{C}}}^{\Gamma^{\circ}} \otimes V_{\pi}(\gamma)$ by Proposition 2.8.24. So, $c_{\pi}\left(\mathcal{F}_{\pi}(f)\right) \in{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$.

Proposition 2.8.34. The space $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\circ_{\mathscr{C}}}^{\Gamma}$ is dense in $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$.
Proof. It follows from Proposition 2.8.24, Proposition 2.8.31 and Proposition 2.8.18 that $\beta\left(\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\odot}^{\Gamma}\right)$ is equal to $\operatorname{im}(A) \cap C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$.
The proposition follows now immediately from Theorem 2.8.28 and the fact that

$$
\beta:\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \rightarrow \operatorname{im}(A) \cap C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}
$$

is a homeomorphism by Lemma 2.8.8.

2.8.3 The contribution of the discrete series representations to the closure of the space of cusp forms

In this section, we show that cuspidal Schwartz vectors are dense in the multiplicity space of the discrete series representation π. For this, we compute first the annihilator of certain subspaces of the space of Schwartz vectors. We will reuse these results in the following sections.
From now on we identify V_{π} (resp. $V_{\pi^{\prime}}$) and $\beta\left(V_{\pi}\right)$ (resp. ${ }^{t} q\left(V_{\pi^{\prime}}\right)$), equipped with the topology induced by V_{π}, as topological spaces. So, we view β and ${ }^{t} q$ as the identity map and $V_{\pi,-\infty}$ as a subspace of $C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}\right)\right)$.
Let

$$
D_{1}=A\left(C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right)
$$

and

$$
D_{2}=C^{-\infty}\left(\Lambda, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} .
$$

Then, D_{1} and D_{2} are contained in $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \cap C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$, consisting of cuspidal Schwartz vectors by Proposition 2.8.24. We endow D_{1} and D_{2} with the subspace topology induced from $C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$.
It follows from the proof of Proposition 9.8 of [BO00, p.141] that D_{1} is infinitedimensional, contrary to D_{2} which is finite-dimensional by Theorem 6.1 of [BO00, p.109] if $X \neq \mathbb{O} H^{2}$. There is also an alternative proof which does not use the meromorphy of ext and which is hence also valid in the exceptional case (see [BO00, pp.121-122]).
Let $D_{1,-\infty}=A\left(C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right) \subset\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$.
By Theorem 2.8.28,

$$
D_{1} \subset \operatorname{im}(A) \cap C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}
$$

and

$$
D_{1,-\infty} \subset \operatorname{im}(A) \cap C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}
$$

have finite codimension.
The intersection of $D_{1,-\infty}$ with D_{2} is trivial by Theorem 2.8.29.

Definition 2.8.35.

(1) For a vector subspace S of $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$, we define the annihilator of S by

$$
\operatorname{Ann}_{\mathscr{C}}(S):=\left\{v \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \mid\left(v, v^{\prime}\right)=0 \quad \forall v^{\prime} \in S\right\}
$$

(2) For a vector subspace S of $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$, we define the annihilator of S by

$$
\operatorname{Ann}(S):=\left\{v \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \mid\left(v, v^{\prime}\right)=0 \quad \forall v^{\prime} \in S\right\} .
$$

(3) For a vector subspace S of $\operatorname{im}(A) \cap C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$, we define the annihilator of S by

$$
\operatorname{Ann}_{\Omega}(S):=\left\{g \in \operatorname{im}(A) \cap C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \mid(g, h)=0 \quad \forall h \in S\right\}
$$

Remark 2.8.36.

(1) We endow $\operatorname{Ann}_{\mathscr{C}}(S), \operatorname{Ann}(S)$ and $\operatorname{Ann}_{\Omega}(S)$ with the subspace topology.
(2) If $\operatorname{Ann}(S)$ is contained in $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}$, then it is equal to the orthogonal complement of S in $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}$.
(3) Let S be a vector subspace of $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$. Then, $\operatorname{Ann}_{\mathscr{C}}(S)=\operatorname{Ann}_{\Omega}(S)$ (as vector spaces) by Proposition 2.8.24 and Proposition 2.8.31.

Lemma 2.8.37. The annihilator of D_{1} is equal to D_{2}.

Remark 2.8.38.

(1) It follows that the annihilator of $D_{1} \oplus D_{2}$ is zero. Indeed,

$$
\operatorname{Ann}\left(D_{1} \oplus D_{2}\right) \subset \operatorname{Ann}\left(D_{1}\right) \cap \operatorname{Ann}\left(D_{2}\right)=D_{2} \cap \operatorname{Ann}\left(D_{2}\right)=D_{2} \cap\left(D_{2}\right)^{\perp}=\{0\}
$$

(2) It follows that $\operatorname{Ann}_{\mathscr{C}}\left(D_{1}\right)=D_{2}$ and $\operatorname{Ann}_{\Omega}\left(D_{1}\right)=D_{2}$.

The full strength of Theorem 2.8.29 is not needed to prove that $\operatorname{Ann}_{\Omega}\left(D_{1}\right)$ is equal to D_{2}.

Proof.
$\supseteq:$ For all $A f \in D_{1}$ and $v \in D_{2}$,

$$
(A f, v)=C(\operatorname{res}(f), \operatorname{res}(v))=0
$$

by Theorem 2.8.29. Thus, $D_{2} \subset \operatorname{Ann}\left(D_{1}\right)$.
\subseteq : The annihilator $\operatorname{Ann}\left(D_{1}\right)$ of D_{1} is equal to

$$
\left\{v \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \mid(A f, v)=0 \quad \forall f \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right\} .
$$

By Theorem 2.8.29, this space is equal to

$$
\begin{equation*}
\left\{v \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \mid(\operatorname{res}(f), \operatorname{res}(v))_{B}=0 \quad \forall f \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right\} \tag{2.43}
\end{equation*}
$$

By Lemma 2.8.26, ext is regular at λ. Thus, the continuous map res is surjective. Hence, (2.43) is equal to

$$
\left\{v \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \mid \operatorname{res}(v)=0\right\}=\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \cap C^{-\infty}\left(\Lambda, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}=D_{2} .
$$

So, the annihilator of D_{1} is contained in D_{2}. Consequently, $\operatorname{Ann}\left(D_{1}\right)=D_{2}$.
Corollary 2.8.39. We have the following topological direct sum:

$$
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}=\overline{D_{1}} \oplus D_{2}
$$

In other words, the cuspidal Schwartz vectors are dense in $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}$ (with respect to the Hilbert space topology on $\left.\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}\right)$. In particular, the multiplicity space $N_{\pi^{\prime}}:=\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}$ of π^{\prime} is the completion of $D_{1} \oplus D_{2}$ with respect to the norm on $N_{\pi^{\prime}}$. It can be realised in $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$.

Remark 2.8.40.

(1) It follows already from the proof of Proposition 9.8 of [BO00, p.141] that D_{1} is an infinite-dimensional subspace of $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}$. This corollary provides us with more precise information about the multiplicity space $N_{\pi^{\prime}}$.
(2) The above decomposition depends on the choice of the principal series in which the discrete series is embedded into (choice of $\sigma \in \hat{M}$).

Proof. It follows from Lemma 2.8.37 that D_{2} is the orthogonal complement of D_{1} in $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}$. Thus,

$$
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}=\overline{D_{1}} \oplus D_{1}^{\perp}=\overline{D_{1}} \oplus D_{2} .
$$

The last assertion is now obvious as D_{1} and D_{2} are contained in $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\circ}^{\Gamma}$.
Corollary 2.8.41. The space $c_{\pi}\left(\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \otimes V_{\pi, K}\right)$ is dense in $c_{\pi}\left(N_{\pi} \hat{\otimes} V_{\pi}\right)$.
Proof. By Corollary 2.8.39, $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ is dense in N_{π}.
Since c_{π} is continuous and since we have the following dense inclusions

$$
\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \otimes V_{\pi, K} \subset N_{\pi} \otimes V_{\pi, K} \subset N_{\pi} \hat{\otimes} V_{\pi}
$$

$c_{\pi}\left(\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \otimes V_{\pi, K}\right)$ is dense in $c_{\pi}\left(N_{\pi} \hat{\otimes} V_{\pi}\right)$.

2.8.4 Topological decomposition of $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ and of $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$

In this section, we show that we have the following topological decompositions:

$$
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}=D_{1,-\infty} \oplus D_{2}
$$

and

$$
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}=D_{1} \oplus D_{2}
$$

(see Theorem 2.8.51).
Lemma 2.8.42. We have the following topological decompositions:

$$
C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)=\operatorname{Ann}\left(D_{2}\right) \oplus D_{2}
$$

and

$$
C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)=\operatorname{Ann}_{\Omega}\left(D_{2}\right) \oplus D_{2} .
$$

Proof. Since $\operatorname{Ann}\left(D_{2}\right) \oplus D_{2} \supset D_{1,-\infty} \oplus D_{2}$ is closed and finite-codimensional, $\operatorname{Ann}\left(D_{2}\right) \oplus D_{2}$ is a topological direct sum by Lemma A.1.
Assume that $\left(C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)\right) /\left(\operatorname{Ann}\left(D_{2}\right) \oplus D_{2}\right)$ (endowed with the quotient topology) is nontrivial. It follows from the Hahn-Banach theorem that there exists a nonzero continuous linear functional T from

$$
\left(C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)\right) /\left(\operatorname{Ann}\left(D_{2}\right) \oplus D_{2}\right)
$$

to \mathbb{C}. It induces a nonzero functional on $C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)$. This is impossible since the annihilator of $D_{1} \oplus D_{2}$ is zero by Remark 2.8.38. Thus,

$$
C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)=\operatorname{Ann}\left(D_{2}\right) \oplus D_{2} .
$$

The second assertion is proven completely similarly.
Let \star be ∞ (or $-\infty$, resp.) and let \sharp be \varnothing (or Ω, resp.). Fix a trivialisation

$$
C^{-\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right) \hookrightarrow \mathcal{O}_{-\lambda} C^{-\infty}\left(B, V_{B}\left(\sigma_{.}, \varphi\right)\right), \quad \phi \mapsto \phi_{\mu} .
$$

Recall that here $\mathcal{O}_{-\lambda} C^{-\infty}\left(B, V_{B}(\sigma, \varphi)\right)$ is the space of germs at $-\lambda$ of holomorphic families $\left.\mu \mapsto \phi_{\mu} \in C^{-\infty}\left(B, V_{B}\left(\sigma_{\mu}, \varphi\right)\right)\right)$. Define $E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)$ by

$$
\left\{\phi \in \operatorname{res}\left(C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)\right) \mid \operatorname{ext}_{\mu} \phi_{\mu} \text { is regular in } \mu=-\lambda\right\} .
$$

Since ext has at most finite-dimensional singularities by Theorem 5.10 of [BO00, p.103], $E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)$ is finite-codimensional in $\operatorname{res}\left(C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)\right)$. Let $S_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)$ be a finite-dimensional complement.
Define $\operatorname{ext}(\phi)=\left.\operatorname{ext}_{-\mu} \phi_{-\mu}\right|_{\mu=\lambda}$ for $\phi \in E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)$. Then, (res $\left.\circ \operatorname{ext}\right)(\phi)=\phi$ for all $\phi \in E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)$ as res o ext ${ }_{-\mu}=$ Id by (2.21). We have:

$$
\begin{equation*}
\operatorname{res}\left(C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)\right)=E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right) \oplus S_{\sharp}\left(\sigma_{-\lambda}, \varphi\right) . \tag{2.44}
\end{equation*}
$$

The following is the crucial result needed in the proof of Lemma 2.8.44.
Lemma 2.8.43. The map

$$
\left.\operatorname{ext}\right|_{E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)}: E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right) \rightarrow \operatorname{ext}\left(E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)\right)
$$

is a topological isomorphism with continuous linear inverse res.
Proof. Let $f \in E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)$. Then, $($ resoext $)(f)=f$ by (2.21). Let now $g \in$ $\operatorname{ext}\left(E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)\right)$. Then, there exists $f \in E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)$ such that $g=\operatorname{ext}(f)$. Thus, $\operatorname{res}(g)=f \in E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)$ and $($ extores $)(g)=\operatorname{ext}(f)=g$. Hence, extores $=$ Id on $\operatorname{ext}\left(E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)\right)$. So,

$$
\left.\operatorname{ext}\right|_{E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)}: E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right) \rightarrow \operatorname{ext}\left(E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)\right)
$$

is a linear isomorphism and a homeomorphism with continuous linear inverse res as res is continuous and linear and as ext is continuous and linear on $E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)$ by Theorem 5.10 of [BO00, p.103].

Let $\left\{s_{1}, \ldots, s_{n}\right\}$ be a basis of $S_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)$ (here n may depend on \sharp).
Choose $f_{j} \in C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)$ such that $s_{j}=\operatorname{res}\left(f_{j}\right)$. For $s=$ $\sum_{j=1}^{n} a_{j} s_{j} \in S_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)$, set $\imath_{\sharp}(s)=\sum_{j=1}^{n} a_{j} f_{j}$. Then, \imath_{\sharp} is a continuous linear bijective map from $S_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)$ to $\imath_{\sharp}\left(S_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)\right) \subset C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)$ having res as continuous inverse.

Lemma 2.8.44. The maps

$$
\left.\operatorname{res}\right|_{\operatorname{Ann}\left(D_{2}\right)}: \operatorname{Ann}\left(D_{2}\right) \rightarrow C^{-\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right)
$$

and

$$
\left.\operatorname{res}\right|_{\operatorname{Ann}_{\Omega}\left(D_{2}\right)}: \operatorname{Ann}_{\Omega}\left(D_{2}\right) \rightarrow C^{\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right)
$$

are topological embeddings. It follows that
(1) $\operatorname{res}\left(C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)\right)$ is closed in $C^{-\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right)$, and that
(2) $\operatorname{res}\left(C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)\right)$ is closed in $C^{\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right)$.

Proof. As $\left(\operatorname{im}(A) \cap C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}\right) / D_{2} \simeq \operatorname{Ann}_{\sharp}\left(D_{2}\right)$, it remains to prove the following:
The map res induces a topological isomorphism from $\operatorname{Ann}_{\sharp}\left(D_{2}\right)$ to

$$
\operatorname{res}\left(C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)\right) .
$$

Let us prove this now. By (2.44), we have

$$
\operatorname{res}\left(C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \mathrm{im}(A)\right)=E_{\sharp}\left(\sigma_{-\lambda}, \varphi\right) \oplus S_{\sharp}\left(\sigma_{-\lambda}, \varphi\right) .
$$

As the sum of two continuous linear maps between topological vector spaces is a continuous linear map,

$$
\left.\operatorname{ext}\right|_{\tilde{E}_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)} \oplus \imath_{\sharp}: \operatorname{res}\left(C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)\right) \rightarrow W_{\sharp},
$$

where

$$
W_{\sharp}:=C^{-\infty}\left(\Lambda, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}+C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A),
$$

is a continuous linear map when we equip the space W_{\sharp} with the subspace topology. As $\operatorname{Ann}_{\sharp}\left(D_{2}\right)$ is a closed finite-codimensional subspace of W_{\sharp} (this is a consequence of Lemma 2.8.42), there is a continuous projection p_{\sharp} from W_{\sharp} to $\operatorname{Ann}_{\sharp}\left(D_{2}\right)$ by Lemma A.1. It follows from this and Lemma 2.8.43 that

$$
\begin{equation*}
p_{\sharp} \circ\left(\operatorname{ext}_{\tilde{E}_{\sharp}\left(\sigma_{-\lambda}, \varphi\right)} \oplus \imath_{\sharp}\right) \tag{2.45}
\end{equation*}
$$

is the continuous linear inverse map of res.

Proposition 2.8.45.

(1) The linear map
$v+D_{2} \in\left(\operatorname{im}(A) \cap C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}\right) / D_{2} \mapsto\left(v^{\prime} \in D_{1} \mapsto\left(v^{\prime}, v\right)\right) \in D_{1}^{\prime}$
is well-defined and injective.
(2) For every linear functional T on $\operatorname{Ann}\left(D_{2}\right)\left(\right.$ resp. $\left.\operatorname{Ann}_{\Omega}\left(D_{2}\right)\right)$ that is continuous with respect to the strong topology, there exists $\psi_{T} \in C^{\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$ (resp. $\left.\psi_{T} \in C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)\right)$, depending on T, such that

$$
T=\left(\operatorname{res}(\cdot), \psi_{T}\right)_{B}
$$

(3) If $v \in \operatorname{Ann}_{\Omega}\left(D_{2}\right)\left(\right.$ resp. $\left.v \in \operatorname{Ann}\left(D_{2}\right)\right)$, then $v=A\left(\operatorname{ext}\left(\psi_{T}\right)\right)$, where $T: g \in$ $\operatorname{Ann}\left(D_{2}\right) \mapsto(g, v)\left(r e s p . T: g \in \operatorname{Ann}_{\Omega}\left(D_{2}\right) \mapsto(g, v)\right)$.
(4) The space $\operatorname{Ann}\left(D_{2}\right)\left(\right.$ resp. $\left.\operatorname{Ann}_{\Omega}\left(D_{2}\right)\right)$ is equal to $D_{1,-\infty}\left(\right.$ resp. $\left.D_{1}\right)$.

In particular, $D_{1,-\infty}\left(\right.$ resp. $\left.D_{1}\right)$ is closed in

$$
\operatorname{im}(A) \cap C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \quad\left(\text { resp. } \quad \operatorname{im}(A) \cap C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}\right) .
$$

Thus, $D_{1,-\infty}$ is the closure of D_{1} in $C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$.
Proof. Recall that \star is ∞ (or $-\infty$, resp.) and that \sharp is \varnothing (or Ω, resp.).
Let E be $\operatorname{Ann}\left(D_{2}\right)\left(\right.$ resp. $\left.\operatorname{Ann}_{\Omega}\left(D_{2}\right)\right)$ and let F be $\operatorname{Ann}_{\Omega}\left(D_{2}\right)\left(\right.$ resp. $\left.\operatorname{Ann}\left(D_{2}\right)\right)$.
(1) It follows from Theorem 2.8.29 that the map considered in (1) is well-defined. Let now $v_{1}, v_{2} \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ be such that

$$
\left(g, v_{1}\right)=\left(g, v_{2}\right)
$$

for all $g \in D_{1}$. Thus, $v_{1}-v_{2} \in \operatorname{Ann}\left(D_{1}\right)=D_{2}$ by Lemma 2.8.37.
(2) Let $T: E \rightarrow \mathbb{C}$ be a continuous linear functional.

For $\phi=\operatorname{res}(f) \in \operatorname{res}(E)$, define $\tilde{T}(\phi)=T(f)$. Since

$$
\text { res }: E \rightarrow \operatorname{res}(E) \subset C^{-\star}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right)
$$

is a topological embedding map by Lemma 2.8.44, this defines a continuous linear functional from $\operatorname{res}(E)$ to \mathbb{C}.
By the Hahn-Banach theorem, there exists $\tilde{\tilde{T}}$ a continuous linear functional from $C^{-\star}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right)$ to \mathbb{C} such that $\left.\tilde{\tilde{T}}\right|_{\mathrm{res}(E)}=\tilde{T}$. Thus, $\tilde{\tilde{T}} \in$ $C^{\star}\left(B, V_{B}\left(\tilde{\sigma}_{-\lambda}, \varphi\right)\right)$. Hence, by using the canonical conjugate-linear isomorphism $I: C^{\star}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right) \rightarrow C^{\star}\left(B, V_{B}\left(\tilde{\sigma}_{\lambda}, \varphi\right)\right)$, one gets

$$
\psi_{T} \in C^{\star}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)
$$

(depending on T) such that

$$
\tilde{\tilde{T}}(\phi)=\left(\phi, \psi_{T}\right)_{B} \quad(\phi \in \operatorname{res}(E))
$$

So, for $g \in E$, we have

$$
T(g)=\tilde{T}(\operatorname{res}(g))=\tilde{\tilde{T}}(\operatorname{res}(g))=\left(\operatorname{res}(g), \psi_{T}\right)_{B}
$$

(3) Let v and T be as above. Then, $\left(v, v^{\prime}\right)=\left(\psi_{T}, \operatorname{res}\left(v^{\prime}\right)\right)_{B}$ for all $v^{\prime} \in E$. Since $\beta v \in \operatorname{Ann}\left(D_{2}\right)$, this holds even for all $v^{\prime} \in \operatorname{im}(A) \cap C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$ (resp. $v^{\prime} \in \operatorname{im}(A) \cap C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$) by Lemma 2.8.42. By Theorem 2.8.29, there exists a real constant $C \neq 0$ such that

$$
\left(v^{\prime}, v\right)=\left(\operatorname{res}\left(v^{\prime}\right), \psi_{T}\right)_{B}=\frac{1}{C}\left(v^{\prime}, A\left(\operatorname{ext}\left(\psi_{T}\right)\right)\right)
$$

for all $v^{\prime} \in D_{1}$. Thus, $\frac{1}{C} A\left(\operatorname{ext}\left(\psi_{T}\right)\right)-v \in \operatorname{Ann}\left(D_{1}\right)=D_{2}$. But on the other hand, $\frac{1}{C} A\left(\operatorname{ext}\left(\psi_{T}\right)\right)-v \in \operatorname{Ann}\left(D_{2}\right)$. Thus, $v=\frac{1}{C} A\left(\operatorname{ext}\left(\psi_{T}\right)\right)$.
(4) By Theorem 2.8.29, $D_{1,-\infty}$ is contained in $\operatorname{Ann}\left(D_{2}\right)$ and D_{1} is contained in $\operatorname{Ann}_{\Omega}\left(D_{2}\right)$. Let $v \in \operatorname{Ann}\left(D_{2}\right)\left(\right.$ resp. $\left.\operatorname{Ann}_{\Omega}\left(D_{2}\right)\right)$. Then, $(\cdot, v) \in \operatorname{Ann}_{\Omega}\left(D_{2}\right)^{\prime}$ (resp. $\left.\operatorname{Ann}\left(D_{2}\right)^{\prime}\right)$.
It follows from (1) and (2) that there exist $\phi \in C^{-\star}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$ and $g \in D_{2}$ such that $v=A(\operatorname{ext}(\phi))+g$. Then,

$$
g=v-A(\operatorname{ext}(\phi)) \in D_{2} \cap \operatorname{Ann}\left(D_{2}\right)=\{0\}
$$

So, $\operatorname{Ann}\left(D_{2}\right)$ (resp. $\operatorname{Ann}_{\Omega}\left(D_{2}\right)$) is equal to $D_{1,-\infty}$ (resp. D_{1}). In particular, $D_{1,-\infty}\left(\right.$ resp. $\left.D_{1}\right)$ is closed in $C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$. As moreover D_{1} is dense in $D_{1,-\infty}$, the assertion follows.

Corollary 2.8.46. The conjugate-linear strong dual $D_{1}^{\prime}\left(\right.$ resp. $\left.\left(D_{1,-\infty}\right)^{\prime}\right)$ of D_{1} (resp. $D_{1,-\infty}$) is equal to $D_{1,-\infty}\left(\right.$ resp. $\left.D_{1}\right)$ as topological spaces.

Proof. It follows from Proposition 2.8.45 that D_{1}^{\prime} is equal to $D_{1,-\infty}$ as a vector space. Moreover, $D_{1,-\infty} \rightarrow D_{1}^{\prime}, g \mapsto(g, \cdot)$ is continuous.
Let T be a continuous linear functional on D_{1}. For $\phi \in C^{\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$, set

$$
\Psi_{T}(\phi)=T(A(\operatorname{ext}(\phi))) .
$$

Then, Ψ_{T} is a conjugate-linear functional on $C^{\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$.
Since $C^{\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)^{\prime}$ is topologically isomorphic to $C^{-\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right)$, we can view Ψ_{T} as an element in $C^{-\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right)$. But it follows from Proposition 2.8.45 that $\Psi_{T} \in \operatorname{res}\left(D_{1,-\infty}\right)$. Set $f_{T}=\operatorname{res}^{-1}\left(\Psi_{T}\right) \in D_{1,-\infty}$. It follows from Lemma 2.8.44 that $T \mapsto f_{T}$ is continuous. This map is by construction the inverse of the above map. Thus, $D_{1}^{\prime}=D_{1,-\infty}$ as topological spaces. One can show similarly that $\left(D_{1,-\infty}\right)^{\prime}=D_{1}$ as topological spaces.

Corollary 2.8.47. $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ is equal to $\operatorname{im}(A) \cap C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$ as topological spaces.

Proof. The corollary follows by the open mapping theorem as $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ can be continuously injected into $\left(\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}\right)^{\prime}$ and as the latter space is topologically isomorphic to $D_{1} \oplus D_{2}=\operatorname{im}(A) \cap C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$ as topological spaces, by Corollary 2.8.46 and the open mapping theorem.

Proposition 2.8.48. The conjugate-linear strong dual $\left(\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}\right)^{\prime}$ of $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ is topologically isomorphic to $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$.

Remark 2.8.49. It follows that $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ is a DF-space.
Proof. By Lemma 2.8.42 and Proposition 2.8.45, $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}=D_{1} \oplus D_{2}$ (topological direct sum). As D_{2} is finite-dimensional, the conjugate-linear strong dual D_{2}^{\prime} of D_{2} is topologically isomorphic to D_{2}. By Corollary 2.8.46 combined with Corollary 2.8.47, the conjugate-linear dual D_{1}^{\prime} of D_{1} is topologically isomorphic to

$$
D_{1,-\infty}=A\left(C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right) .
$$

The proposition follows now from Lemma A.1.
Proposition 2.8.50. The inclusions

$$
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \subset\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \subset\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \subset V_{\pi,-\infty} \otimes V_{\varphi}
$$

are continuous injections.
Proof. By Lemma 2.4.6, it remains to show that

$$
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \hookrightarrow\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}
$$

is continuous. This follows from Proposition 2.8.48 and the fact that dual map is continuous (see Lemma A.4).

Theorem 2.8.51. We have the following topological direct sums

$$
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}=A\left(C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right) \oplus\left(C^{-\infty}\left(\Lambda, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)\right)
$$

and

$$
\begin{aligned}
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} & =C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A) \\
& =A\left(C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right) \oplus\left(C^{-\infty}\left(\Lambda, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)\right)
\end{aligned}
$$

Remark 2.8.52.

(1) The space $A\left(C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right)$ is infinite-dimensional by Lemma 9.6 of [BO00, p.139] combined with Lemma 6.6 of [BO00, p.114] and it is contained in $C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$. Thus, $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}$ is infinite-dimensional. Hence, $N_{\pi^{\prime}}$ is also infinite-dimensional - a result that was already proven by M. Olbrich and U. Bunke (see Proposition 9.8 of [BO00, p.141]).
(2) By Theorem 4.7 of [BO00, p.93], $C^{-\infty}\left(\Lambda, V\left(\sigma_{\mu}, \varphi\right)\right)^{\Gamma}=\{0\}$ for $\operatorname{Re}(\mu)>\delta_{\Gamma}$. Hence, $C^{-\infty}\left(\Lambda, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma} \cap \operatorname{im}(A)=\{0\}$ for $\lambda \in\left(0,-\delta_{\Gamma}\right)$.
(3) The above decompositions depends on the choice of the principal series in which the discrete series is embedded into (choice of $\sigma \in \hat{M}$).

Proof. By Corollary 2.8.39, we have

$$
\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \underset{\text { dense }}{\subset} N_{\pi^{\prime}}=\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \subset C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}
$$

The theorem follows now directly from Lemma 2.8.42, Proposition 2.8.45 and Corollary 2.8.47.

Let $\left(\pi, V_{\pi}\right)$ be an admissible representation of G of finite length on a reflexive Banach space. Recall that for $f \in C_{c}(G)$ and $v \in V_{\pi}$, we defined

$$
\begin{equation*}
\pi(f) v=\int_{G} f(g) \pi(g) v d g \in V_{\pi} \tag{2.46}
\end{equation*}
$$

(cf. Definition 2.8.16). Let $f \in C_{c}^{\infty}(G)$ and $v \in V_{\pi,-\infty}$. Then, $\pi(f) v \in V_{\pi, \infty}$ (see, e.g., [Dij09, p.136]).

If V is a complex vector space, then we denote by \bar{V} the vector space having the same elements and the same additive group structure as V but which is equipped with the following scalar multiplication:

$$
\lambda \cdot \underline{v}:=\bar{\lambda} \underline{v}
$$

for all $\lambda \in \mathbb{C}$ and $\underline{v} \in \bar{V}$. Let $:: V \rightarrow \bar{V}, v \mapsto \underline{v}$ be the natural isomorphism between these two vector spaces.
For $\phi \in V_{\bar{\pi}^{\prime},-\infty}, f \in \mathscr{C}(G)$ and $v \in V_{\pi, \infty}$, set

$$
\begin{equation*}
(\phi, \pi(f) v)=\left(c_{\phi, \underline{v}}, f\right)_{G} \tag{2.47}
\end{equation*}
$$

Here, $(\cdot, \cdot)_{G}$ denotes the pairing between $\mathscr{C}^{\prime}(G)$ and $\mathscr{C}(G)$. The right-hand side is well-defined as $c_{\phi, \underline{v}} \in \mathscr{C}^{\prime}(G)$ by Lemma 8.4 of [BO00, p.130]. By Lemma 8.5 of [BO00, p.131], the matrix coefficient map

$$
\phi \in V_{\bar{\pi}^{\prime},-\infty} \mapsto c_{\phi, \underline{v}} \in \mathscr{C}^{\prime}(G)
$$

is continuous. Thus,

$$
(\cdot, \pi(f) v):=\left(c_{,, v}, f\right)_{G}
$$

is a continuous functional on $V_{\bar{\pi}^{\prime},-\infty}$. If $f \in C_{c}^{\infty}(G)$ and $\phi \in V_{\bar{\pi}^{\prime}, \infty}$, then

$$
\left(c_{\phi, \underline{v}}, f\right)_{G}=\int_{G} c_{\phi, \underline{v}}(g) \overline{f(g)} d g=\int_{G} \int_{K}\langle\phi(k), \bar{\pi}(g) \underline{v}\rangle d k \overline{f(g)} d g .
$$

By Fubini's theorem, this is again equal to

$$
\int_{K}\left\langle\phi(k), \int_{G} \overline{f(g) \pi(g) v} d g\right\rangle d k=(\phi, \pi(f) v) .
$$

Since $\left(c_{\cdot, \underline{v}}, f\right)_{G}$ and $(\cdot, \pi(f) v)$ are continuous functionals on $V_{\bar{\pi}^{\prime},-\infty}$, this holds also for every $\phi \in V_{\bar{\pi}^{\prime},-\infty}$. So, (2.46) is compatible with (2.47).
As $(F, \cdot)_{G}\left(F \in \mathscr{C}^{\prime}(G)\right.$ fixed $)$ is a continuous functional on $\mathscr{C}\left(G, V_{\varphi}\right),(\phi, \pi(f) v)$ depends continuously on f when ϕ and v are fixed. So, if $\left(f_{j}\right)_{j}$ is a sequence in $C_{c}^{\infty}(G)$ converging to f, then $\pi\left(f_{j}\right) v$ converges to $\pi(f) v$ in $V_{\pi,-\infty}$.
For $f \in \mathscr{C}(G)$ and $v \in V_{\pi, \infty} \otimes V_{\varphi}$, we set $\pi(f) v=(\pi(f) \otimes \mathrm{Id}) v$.
Let us give now a formula for the projection of a Schwartz function onto $D_{1} \otimes$ $V_{\pi^{\prime}}(\gamma)$.

Lemma 2.8.53. Let f be a Schwartz vector and let $v \in V_{\pi^{\prime}, K}$ be of norm 1. Then, $\operatorname{res}(f)$ is up to a constant equal to

$$
\overline{\pi_{*}\left(\pi^{\prime}\left(\chi \overline{c_{f, v}}\right) v\right)} \in C^{\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right) .
$$

Proof. Let $v \in V_{\pi^{\prime}, K}$ be of norm 1 .
For $\phi \in C^{\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$ and a Schwartz vector f, we have

$$
\begin{align*}
C(\phi, \operatorname{res}(f))_{B}=(A(\operatorname{ext}(\phi)), f)=\int_{\Gamma \backslash G} & c_{q(\operatorname{ext}(\phi)), v}(g) \overline{c_{f, v}(g)} d g \tag{2.48}\\
& =\int_{G} c_{\operatorname{ext}(\phi), v}(g) \chi(g K) \overline{c_{f, v}(g)} d g
\end{align*}
$$

Since $\chi \overline{c_{f, v}} \in \mathscr{C}\left(G, V_{\varphi}\right)$ by Lemma 2.9.26, $C_{c}^{\infty}\left(G, V_{\varphi}\right)$ is dense in $\mathscr{C}\left(G, V_{\varphi}\right)$ by Proposition 2.3.21, there is a sequence $\left(F_{j}\right)_{j}$ in $C_{c}^{\infty}\left(G, V_{\varphi}\right)$ converging to $\chi \overline{c_{f, v}}$ in $\mathscr{C}\left(G, V_{\varphi}\right)$. Thus, (2.48) is again equal to

$$
\lim _{j \rightarrow \infty} \int_{G} c_{\operatorname{ext}(\phi), v}(g) F_{j}(g) d g=\lim _{j \rightarrow \infty} \int_{G} \int_{B}\left\langle\phi(x), \pi_{*}\left(\pi^{\prime}(g) v\right)(x)\right\rangle F_{j}(g) d g
$$

by Theorem 2.8.29. Let $F \in C_{c}^{\infty}\left(G, V_{\varphi}\right)$. Then, $\pi^{\prime}(F) v$ is well-defined, belongs to $V_{\pi^{\prime}, \infty} \otimes V_{\varphi}$ and $g \in G \mapsto F(g) \pi^{\prime}(g) v$ is integrable. Thus, $\pi_{*}\left(\pi^{\prime}(F) v\right)$ is well-defined and belongs to $C^{\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right)$. Moreover, the above integral is again equal to

$$
\lim _{j \rightarrow \infty} \int_{B} \int_{G}\left\langle\phi(x), \pi_{*}\left(F_{j}(g) \pi^{\prime}(g) v\right)(x)\right\rangle d g=\lim _{j \rightarrow \infty}\left(\phi, \overline{\pi_{*}\left(\pi^{\prime}\left(F_{j}\right) v\right)}\right)_{B}
$$

by Fubini's theorem. Since $(\phi, \cdot)_{B}$ is continuous on $C^{-\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right)$, since $\pi^{\prime}\left(F_{j}\right) v$ converges to $\pi^{\prime}\left(\chi \overline{c_{f, v}}\right) v$ in $V_{\pi,-\infty} \otimes V_{\varphi}$ and since π_{*} is continuous on $C^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)$ (ext is continuous by Theorem 5.10 of [BO00, p.103]), this is again equal to

$$
\left(\phi, \overline{\pi_{*}\left(\pi^{\prime}\left(\chi \overline{c_{f, v}}\right) v\right)(x)}\right)_{B} .
$$

So, $C \operatorname{res}(f)=\overline{\pi_{*}\left(\pi^{\prime}\left(\chi \overline{c_{f, v}}\right) v\right)} \in C^{\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right)$.
Corollary 2.8.54. Let $\left\{v_{i}\right\}$ be an orthonormal basis of $V_{\pi^{\prime}}(\gamma)$, let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and let $\phi_{i}=\frac{1}{C} \overline{\pi_{*}\left(\pi^{\sigma,-\lambda}(\chi \bar{f}) v_{i}\right)}$. Let $p_{D_{1} \otimes V_{\pi^{\prime}}(\gamma)}$ be the projection onto $D_{1} \otimes V_{\pi^{\prime}}(\gamma)$ provided by Theorem 2.8.51. Then, $p_{D_{1} \otimes V_{\pi^{\prime}}(\gamma)}\left(\mathcal{F}_{\pi^{\prime}}(f)\right)$ is equal to

$$
\sum_{i}\left(\left.\operatorname{res}\right|_{D_{1}}\right)^{-1}\left(\phi_{i}\right) \otimes v_{i}
$$

Remark 2.8.55.

(1) When $\lambda>\delta_{\Gamma}$, then the above formula is quite explicit as π_{*} is then also defined without meromorphic extension.
(2) Since ext is regular at $\mu=\lambda$ by Lemma 2.8.26, π_{*} is regular at $\mu=-\lambda$.
(3) As we have seen, one can construct $\left(\left.\operatorname{res}\right|_{D_{1}}\right)^{-1}$ with the help of ext, see (2.45) in the proof of Lemma 2.8.44 (p.78).

Proof. Let $\left\{v_{i}\right\}$ be an orthonormal basis of $V_{\pi^{\prime}}(\gamma)$, let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and let $\phi_{i}=\frac{1}{C} \pi_{*}\left(\pi^{\prime}(\chi \bar{f}) v_{i}\right)$. Then, it follows from the proof of the previous lemma that $p_{D_{1} \otimes V_{\pi^{\prime}}(\gamma)}\left(\mathcal{F}_{\pi^{\prime}}(f)\right)$ is equal to $\sum_{i}\left(\operatorname{res}_{D_{1}}\right)^{-1}\left(\phi_{i}\right) \otimes v_{i}$.

2.8.5 Topological decomposition of $\mathscr{C}(\Gamma \backslash G, \varphi)_{d s}(\gamma)$ and of $\mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)_{d s}(\gamma)$

For $\gamma \in \hat{K}$, set

$$
\mathscr{C}(\Gamma \backslash G, \varphi)_{d s}(\gamma)=\mathscr{C}(\Gamma \backslash G, \varphi)(\gamma) \cap L^{2}(\Gamma \backslash G, \varphi)_{d s}
$$

and

$$
\mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)_{d s}(\gamma)=\left(\mathscr{C}(\Gamma \backslash G, \varphi) \cap L^{2}(\Gamma \backslash G, \varphi)_{d s}\right)^{\prime}(\gamma)
$$

Proposition 2.8.56. Let $\gamma \in \hat{K}$. Then, $c_{\pi}\left(\mathcal{F}_{\pi}(\mathscr{C}(\Gamma \backslash G, \varphi)(\gamma))\right)$ is equal to

$$
\begin{aligned}
& \operatorname{span}\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)^{\Gamma}, v \in V_{\pi}(\gamma)\right\} \cap \mathscr{C}(\Gamma \backslash G, \varphi) \\
&=\operatorname{span}\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}, v \in V_{\pi}(\gamma)\right\}
\end{aligned}
$$

Moreover, we have

$$
\begin{align*}
& \mathscr{C}(\Gamma \backslash G, \varphi)_{d s}(\gamma) \tag{2.49}\\
& =\bigoplus_{\pi \in \hat{G}:\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \neq\{0\}} \operatorname{span}\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}, v \in V_{\pi}(\gamma)\right\}
\end{align*}
$$

(finite topological direct sum).
Proof. Let

$$
S_{\pi}=c_{\pi}\left(\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \otimes V_{\pi}(\gamma)\right)
$$

This space is closed in $L^{2}(\Gamma \backslash G, \varphi)$ by Lemma 2.5.6.
Set $\tilde{S}_{\pi}=S_{\pi} \cap \mathscr{C}(\Gamma \backslash G, \varphi)$ (closed in $\mathscr{C}(\Gamma \backslash G, \varphi)$ by Lemma A.2).
Let $p_{S_{\pi}}$ denote the orthogonal projection of $L^{2}(\Gamma \backslash G, \varphi)$ onto S_{π}. Then, $p_{S_{\pi}}(g) \in$ $\mathscr{C}(\Gamma \backslash G, \varphi)$ for all $g \in \mathscr{C}(\Gamma \backslash G, \varphi), p_{S_{\pi}}=c_{\pi} \circ \mathcal{F}_{\pi}$ on $L^{2}(\Gamma \backslash G, \varphi)(\gamma)$ and

$$
p_{S_{\pi}}(\mathscr{C}(\Gamma \backslash G, \varphi)(\gamma))=\tilde{S}_{\pi}=\operatorname{span}\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}, v \in V_{\pi}(\gamma)\right\}
$$

by Proposition 2.8.32. The first part follows now from the above combined with the following fact:

$$
\begin{aligned}
& \operatorname{span}\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)^{\Gamma}, v \in V_{\pi}(\gamma)\right\} \cap L^{2}(\Gamma \backslash G, \varphi) \\
&=\operatorname{span}\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}, v \in V_{\pi}(\gamma)\right\}
\end{aligned}
$$

Indeed, one can easily show this by using an orthonormal basis of $V_{\pi}(\gamma)$ and by using the natural topological isomorphism between $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}$ and $\left(\left(V_{\pi^{\prime},-\infty} \otimes\right.\right.$ $\left.\left.V_{\varphi}\right)_{d}^{\Gamma}\right)^{\prime}($ compare with the proof of Proposition 2.8.32).
As for a fixed K-type only finitely many terms are nonzero in the above direct sum, (2.49) follows by Proposition 2.3.11 and Lemma A. 3 applied to $H=$ $L^{2}(\Gamma \backslash G, \varphi)_{d s}(\gamma)$.

Lemma 2.8.57. Let V be a closed subspace of $\mathscr{C}(\Gamma \backslash G, \varphi)$ and let V_{1}, \ldots, V_{d} $(d \in \mathbb{N})$ be closed vector subspaces of V such that $V=\bigoplus_{j=1}^{d} V_{j}$ is a (topological)
orthogonal direct sum decomposition. Let \bar{V}_{j} be the closure of V_{j} in $\mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)$. Then,

$$
V^{\prime}=\bigoplus_{j=1}^{d} \bar{V}_{j}
$$

(topological direct sum). Moreover, the space V_{i}, viewed as a subspace of V_{i}^{\prime}, is dense in V_{i}^{\prime} and $\bar{V}_{i}(i \in\{1, \ldots, d\})$ is topologically isomorphic to V_{i}^{\prime}. Hence, \bar{V}_{i} is a DF-space if V is a Fréchet space.
Proof. Since $\mathscr{C}(\Gamma \backslash G, \varphi)$ is dense in $\mathscr{C}^{\prime}(\Gamma \backslash G, \varphi), V$ is also dense in V^{\prime}. Indeed, this follows by the arguments below applied to

$$
\mathscr{C}(\Gamma \backslash G, \varphi)=\underbrace{V}_{=: V_{1}} \oplus \underbrace{\left(V^{\perp} \cap \mathscr{C}(\Gamma \backslash G, \varphi)\right)}_{=: V_{2}}
$$

(topological orthogonal direct sum by Lemma A.2).
As $V=\bigoplus_{j=1}^{d} V_{j}$ is a topological direct sum,

$$
V^{\prime}=\bar{V}=\bar{V}_{1}+\cdots+\bar{V}_{d}
$$

Assume now that $f \in \bar{V}_{k} \cap \bar{V}_{l}(k \neq l)$. Then, there exist $f_{j}^{(k)} \in V_{k}$ converging to f and $f_{j}^{(l)} \in V_{l}$ converging to f, too. Let $v \in \bigoplus_{j \neq k} V_{j}$. Then, $(f, v)=$ $\lim _{j \rightarrow \infty}\left(f_{j}^{(k)}, v\right)=0$. So, $f \in \operatorname{Ann}\left(\bigoplus_{j \neq k} V_{j}\right)$. Using the other sequence, one shows that f belongs also to the annihilator of V_{k}. Thus, $f \in \operatorname{Ann}(V)$. Hence, $f=0$. The first part follows.
Let $\iota_{j}: V_{j}^{\prime} \rightarrow V^{\prime}$ be the natural topological embeddings. It follows from Lemma A. 5 that $V^{\prime}=\bigoplus_{j=1}^{d} \iota_{j}\left(V_{j}^{\prime}\right)$ (topological direct sum). Thus, $\bar{V}_{i}=\iota_{i}\left(V_{i}^{\prime}\right) \simeq V_{i}^{\prime}$ and V_{i}, viewed as a subspace of V_{i}^{\prime}, is dense in V_{i}^{\prime}. Hence, \bar{V}_{i} is a DF-space if V is a Fréchet space.
Proposition 2.8.58. Let $\gamma \in \hat{K}$. Then, the space

$$
\operatorname{span}\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)^{\Gamma}, v \in V_{\pi}(\gamma)\right\}
$$

is closed in $\mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)$ and topologically isomorphic to $\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)^{\Gamma} \otimes V_{\pi}(\gamma)$. Moreover, we have

$$
\begin{gather*}
\mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)_{d s}(\gamma) \tag{2.50}\\
=\bigoplus_{\pi \in \hat{G}:\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma} \neq\{0\}} \operatorname{span}\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)^{\Gamma}, v \in V_{\pi}(\gamma)\right\}
\end{gather*}
$$

(topological direct sum).
Proof. By Proposition 2.8.48, Lemma 2.8.19 and as c_{π} is injective, we have

$$
\begin{align*}
& \operatorname{span}\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)^{\Gamma}, v \in V_{\pi}(\gamma)\right\} \tag{2.51}\\
\simeq & \left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)^{\Gamma} \otimes V_{\pi}(\gamma) \simeq\left(\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \otimes V_{\pi}(\gamma)\right)^{\prime} \\
\simeq & \left(\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}, v \in V_{\pi}(\gamma)\right\}\right)^{\prime}
\end{align*}
$$

as vector spaces. It follows from Proposition 2.8.34 that $\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes\right.\right.$ $\left.\left.V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}, v \in V_{\pi}(\gamma)\right\}$ is dense in $\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)^{\Gamma}, v \in V_{\pi}(\gamma)\right\}$. Thus, $\operatorname{span}\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)^{\Gamma}, v \in V_{\pi}(\gamma)\right\}$ is closed and (2.50) holds by Proposition 2.8.56 and Lemma 2.8.57. Moreover,

$$
\operatorname{span}\left\{c_{\pi}(f \otimes v) \mid f \in\left(V_{\pi^{\prime},-\infty} \otimes V_{\varphi}\right)^{\Gamma}, v \in V_{\pi}(\gamma)\right\}
$$

is a DF-space when we equip the space with the subspace topology. It follows now from the open mapping theorem that the isomorphisms in (2.51) are topological.

2.8.6 Equivalent topologies

We finish our investigations on the discrete series representations by determining an equivalent topology on the space of invariant distribution vectors, respectively on the space of Schwartz vectors.

Lemma 2.8.59. Let $0 \neq v \in V_{\pi^{\prime}, K}$. Then, the subspace topology on $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ is the coarsest topology such that the map

$$
f \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \mapsto c_{f, v} \in \mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)
$$

is continuous.
Proof. Denote the subspace topology on $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ by τ_{1} and the coarsest topology such that the above map is continuous by τ_{2}.
Similarly as for $V_{\pi}(\gamma)$ in the proof of Proposition 2.8.58, one can show that $\left\{c_{f, v} \mid\right.$ $\left.f \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}\right\}$ is closed and a DF-space when we equip the space with the subspace topology. So, $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ is topologically isomorphic to $\left\{c_{f, v} \mid f \in\right.$ $\left.\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}\right\}$ for any $0 \neq v \in V_{\pi^{\prime}, K}$ by the open mapping theorem.
It follows that $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$, equipped with the topology τ_{2}, is topologically isomorphic to $\left\{c_{f, v} \mid f \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}\right\}$. But $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$, equipped with the topology τ_{1}, is also topologically isomorphic to $\left\{c_{f, v} \mid f \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}\right\}$. The lemma follows.

Corollary 2.8.60. The topology on $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}$ is the coarsest topology such that the map

$$
f \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma} \mapsto(f, \cdot) \in\left(\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}\right)^{\prime}
$$

is continuous.
Proof. The corollary follows from Proposition 2.8.56, Lemma 2.8.59 and the fact that

$$
\mathscr{C}(\Gamma \backslash G, \varphi)(\gamma)=\mathscr{C}(\Gamma \backslash G, \varphi)_{d s}(\gamma) \oplus\left(\mathscr{C}(\Gamma \backslash G, \varphi) \cap L^{2}(\Gamma \backslash G, \varphi)_{d s}(\gamma)^{\perp}\right)
$$

(topological direct sum), by Proposition 2.8.32 and by Lemma A.2.
Corollary 2.8.61. The topology on $\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{G}}^{\Gamma}$ is the coarsest topology such that the map

$$
f \in\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma} \mapsto(f, \cdot) \in\left(\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)^{\Gamma}\right)^{\prime}
$$

is continuous.
Proof. The corollary follows from Proposition 2.8.58 and the fact that

$$
\mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)(\gamma)=\mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)_{d s}(\gamma) \oplus\left(\mathscr{C}(\Gamma \backslash G, \varphi) \cap L^{2}(\Gamma \backslash G, \varphi)_{d s}^{\perp}\right)^{\prime}(\gamma)
$$

(topological direct sum), by the proof of Corollary 2.8.60 and by Lemma A.5.

2.8.7 Decomposition of the Schwartz space

Proposition 2.8.62. Fix $\gamma \in \hat{K}$. Then,

$$
\begin{aligned}
\mathscr{C}(\Gamma \backslash G, \varphi)(\gamma)=L^{2}(\Gamma \backslash G, \varphi)_{d s}(\gamma) \cap{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi) \oplus L^{2}(\Gamma \backslash G, \varphi)_{U}(\gamma) \\
\oplus L^{2}(\Gamma \backslash G, \varphi)_{r e s}(\gamma) \oplus L^{2}(\Gamma \backslash G, \varphi)_{a c}(\gamma) \cap \mathscr{C}(\Gamma \backslash G, \varphi)
\end{aligned}
$$

(topological direct sum).
Remark 2.8.63. We have for the appearing spaces a precise description except for $L^{2}(\Gamma \backslash G, \varphi)_{a c}(\gamma) \cap \mathscr{C}(\Gamma \backslash G, \varphi)$. The space $L^{2}(\Gamma \backslash G, \varphi)_{d s}(\gamma) \cap{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$ is described in Proposition 2.8.56. The spaces $L^{2}(\Gamma \backslash G, \varphi)_{U}$ and $L^{2}(\Gamma \backslash G, \varphi)_{\text {res }}$ are described in [BO00].

Proof. Fix $\gamma \in \hat{K}$. Note first that the right-hand side is contained in the left-hand side. Let now $f \in \mathscr{C}(\Gamma \backslash G, \varphi)(\gamma)$. By the Plancherel decomposition (see (2.15) on p.39), we can write

$$
f=f_{1}+f_{2}+f_{3}+f_{4}
$$

with $f_{1} \in L^{2}(\Gamma \backslash G, \varphi)_{d s}(\gamma), f_{2} \in L^{2}(\Gamma \backslash G, \varphi)_{U}(\gamma), f_{3} \in L^{2}(\Gamma \backslash G, \varphi)_{\text {res }}(\gamma)$ and $f_{4} \in L^{2}(\Gamma \backslash G, \varphi)_{a c}(\gamma)$. By Proposition 2.8.32 and by Proposition 2.7.10, f_{1} and f_{2} belong to ${ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$. As $f_{3} \in \mathscr{C}(\Gamma \backslash G, \varphi)$ by Lemma 2.7.1,

$$
f_{4}=f-f_{1}-f_{2}-f_{3} \in \mathscr{C}(\Gamma \backslash G, \varphi) .
$$

The proposition follows now from Lemma A.3.

2.9 The dual transform, Eisenstein series, Eisenstein integrals and wave packets

2.9.1 The dual transform

In this section we define the dual transform and we show how it is related to the constant term. This allows us then to show that

$$
\overline{{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)}(\tau) \cap \mathscr{C}(\Gamma \backslash G, \varphi)={ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)(\tau)
$$

for every $\tau \in \hat{K}$ (cf. Theorem 2.9.21).
Lemma 2.9.1. The set $\{k \in K \mid g k \in G(\Omega)\}$ is open and dense in K.
Proof. Let $g \in G$. Then, $S:=\{k \in K \mid g k \in G(\Omega)\}=K \cap g^{-1} G(\Omega)$ is open in K. Let $k \in K$. Since $G(\Omega)$ is dense in G, there is a sequence $\left(h_{j}\right)_{j}$ in $G(\Omega)$ such that h_{j} converges to $g k$.
Thus, $g^{-1} h_{j}$ converges to k. Hence, $\kappa\left(g^{-1} h_{j}\right)$ converges to k, too. Since

$$
g \kappa\left(g^{-1} h_{j}\right) P=h_{j} P \in \Omega,
$$

$g \kappa\left(g^{-1} h_{j}\right) \in G(\Omega)$. So, $\kappa\left(g^{-1} h_{j}\right) \in S$. The lemma follows.
Let $\tau \in \hat{K}$. Let us denote the space of functions $\phi \in C^{\infty}\left(\Gamma \backslash G(\Omega) / N \times N \backslash G, V_{\tau} \otimes\right.$ V_{φ}) which satisfy

$$
\phi\left(\gamma g m a, a^{-1} m^{-1} h k\right)=a^{-2 \rho} \tau(k)^{-1} \otimes \varphi(\gamma) \phi(g, h)
$$

$(\gamma \in \Gamma, g \in G(\Omega), m \in M, a \in A, h \in G, k \in K)$ and which are compactly supported modulo the A-equivariance by $C_{c}^{\infty}\left(\Gamma \backslash G(\Omega) / N \times_{M A} N \backslash G / K, V_{\mathcal{H}}(\tau, \varphi)\right)$. Set $\mathcal{H}=\Gamma \backslash G(\Omega) / N \times_{M A} N \backslash G / K$. For $\phi \in C_{c}^{\infty}\left(\mathcal{H}, V_{\mathcal{H}}(\tau, \varphi)\right)$ and $g \in G$, set

$$
R^{*} \phi(g)=\int_{\{k \in K \mid g k \in G(\Omega)\}} \phi\left(g k, k^{-1}\right) d k
$$

Then, $R^{*} \phi(g h)=\tau(h)^{-1} R^{*} \phi(g)$ for all $g \in G$ and $h \in K$.
For measurable functions ϕ, ψ from \mathcal{H} to $V_{\mathcal{H}}(\tau, \varphi)$ (such functions are defined analogously as above), define

$$
(\phi, \psi)=\int_{\Gamma \backslash G(\Omega) / M N}(\phi(g, e), \psi(g, e)) d g,
$$

where $\Gamma \backslash G(\Omega) / M N$ is equipped with its invariant volume form, whenever the integral exists.

Lemma 2.9.2.

(1) $R^{*} \phi$ is well-defined and belongs to $C^{\infty}\left(Y, V_{Y}(\tau, \varphi)\right)$.
(2) Let $f \in C_{c}^{\infty}\left(Y, V_{Y}(\tau, \varphi)\right)$. Then,

$$
\left(\phi, f^{\Omega}\right)=\left(R^{*} \phi, f\right) .
$$

Proof. Let f be as above. Then,

$$
\left(\phi, f^{\Omega}\right)=\int_{\Gamma \backslash G(\Omega) / M N}\left(\phi(g, e), \int_{N} f(g n) d n\right) d g .
$$

Since $\Gamma \backslash G(\Omega) / M$ fibers over $\Gamma \backslash G(\Omega) / M N$, this is again equal to

$$
\int_{\Gamma \backslash G(\Omega) / M}(\phi(g, e), f(g)) d g
$$

Since $\Gamma \backslash G(\Omega) / M$ fibers over $\Gamma \backslash G / K$ with fiber $\{k \in K \mid g k \in G(\Omega)\}$, this yields

$$
\begin{aligned}
& \int_{\Gamma \backslash G / K} \int_{\{k \in K \mid g k \in G(\Omega)\}}\left(\phi(g k, e), \tau(k)^{-1} f(g)\right) d k d g \\
= & \int_{\Gamma \backslash G / K}\left(\int_{\{k \in K \mid g k \in G(\Omega)\}} \phi\left(g k, k^{-1}\right) d k, f(g)\right) d g=\left(R^{*} \phi, f\right) .
\end{aligned}
$$

As $\int_{\Gamma \backslash G(\Omega) / M}|(\phi(g, e), f(g))| d g$ is clearly finite for all $f \in C_{c}^{\infty}\left(Y, V_{Y}(\tau, \varphi)\right)$,

$$
k \in\{h \in K \mid g h \in G(\Omega)\} \mapsto \phi\left(g k, k^{-1}\right)
$$

is integrable for almost all $g \in G$, by Fubini's theorem and the above computations. It follows by the theorem about differentiation of parameter dependent integrals that $R^{*} \phi(g)$ is well-defined for all $g \in G$ and that $R^{*} \phi \in C^{\infty}\left(Y, V_{Y}(\tau, \varphi)\right)$.

Let σ be a finite-dimensional representation of M. Define $\sigma_{M N}(m n)=\sigma(m)$. We denote V_{σ} endowed with this action by $V_{\sigma_{M N}}$. Set $V_{M N}(\sigma)=G \times_{M N} V_{\sigma_{M N}}$, $V_{M N}(\sigma, \varphi)=V_{M N}(\sigma) \otimes V_{\varphi}$ (carrying the tensor product action of Γ) and

$$
V_{B^{\prime}}(\sigma, \varphi)=\left.\Gamma \backslash V_{M N}(\sigma, \varphi)\right|_{G(\Omega) / M N}
$$

(bundle on $\left.B^{\prime}:=\Gamma \backslash G(\Omega) / M N\right)$. Then, $C_{c}^{\infty}\left(\Gamma \backslash G(\Omega) / M N, V_{B^{\prime}}(\sigma, \varphi)\right.$) is equal to

$$
\begin{aligned}
& \left\{\phi \in C_{c}^{\infty}\left(\Gamma \backslash G(\Omega) / N, V_{\sigma} \otimes V_{\varphi}\right) \mid\right. \\
& \left.\quad \phi(\gamma g m)=\left(\sigma(m)^{-1} \otimes \varphi(\gamma)\right) \phi(g) \quad \forall \gamma \in \Gamma, g \in G(\Omega), m \in M\right\}
\end{aligned}
$$

Let $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right)(\sigma \in \hat{M}, \tau \in \hat{K})$ and let $\phi \in C_{c}^{\infty}\left(\Gamma \backslash G(\Omega) / M N, V_{B^{\prime}}(\sigma, \varphi)\right)$. For $g \in G(\Omega), n \in N, a \in A$ and $k \in K$, define

$$
F(g, n a k)=a^{2 \rho} \tau(k)^{-1} T \phi(g a) .
$$

Then, F is well-defined and belongs to $F \in C_{c}^{\infty}\left(\mathcal{H}, V_{\mathcal{H}}(\tau, \varphi)\right)$.
By abuse of notation, we denote F also by $T \phi$.
Let $e \neq \bar{n} \in \bar{N}$. Write $\bar{n} \in \bar{N}$ as $\bar{n}=\exp (X+Y)\left(X \in \mathfrak{g}_{-\alpha}, Y \in \mathfrak{g}_{-2 \alpha}\right)$.
By Proposition 2.1.7, $a_{B}(w \bar{n})=\sqrt{\frac{1}{4}|X|^{4}+2|Y|^{2}}=\frac{\sqrt{|X|^{4}+8|Y|^{2}}}{2}$. Let $\varepsilon>0$. Then,

$$
a_{B}(w \bar{n}) \asymp a(\bar{n})
$$

for all $\bar{n} \in \bar{N}$ such that $|\log \bar{n}|>\varepsilon$ by Corollary 2.1.9.
For $t>0$, set $a_{t}=\exp \left(\log (t) H_{\alpha}\right)$.

Lemma 2.9.3.

(1) Let $e \neq \bar{n} \in \bar{N}$ and $a \in A$. Then,

$$
a a\left(\bar{n}^{a^{-\frac{1}{2}}}\right)^{-1} \leqslant a_{B}(w \bar{n})^{-1} .
$$

(2) Let $r>0, R>0$ and let $\varepsilon>0$. Then, there is a constant $c>0$ (depending on R and ε) such that

$$
\left|a^{r} a\left(\bar{n}^{a-\frac{1}{2}}\right)^{-r}-a_{B}(w \bar{n})^{-r}\right| \leqslant \frac{c}{a} \cdot a(\bar{n})^{-r-1}
$$

for all $r \in[0, R], a \in \bar{A}_{+}$and $\bar{n} \in \bar{N}$ such that $|\log \bar{n}|>\varepsilon$.
(3) Let $r>0, R>0$ and let $\varepsilon>0$. Then, there is a constant $c>0$ (depending on r and ε) such that

$$
\left|a\left(n^{a} w\right)^{-r}-a_{B}\left(n^{a} w\right)^{-r}\right| \leqslant \frac{c}{a^{2(r+1)}} \cdot a(n w)^{-r-1}
$$

for all $r \in[0, R], a \in \bar{A}_{+}$and $n \in N$ such that $|\log n|>\varepsilon$.
Proof. Let $e \neq \bar{n} \in \bar{N}$ and $t>0$. By Proposition 2.1.7 (we use the notation preceding the lemma),

$$
a_{t} a\left(\bar{n}^{a_{t}^{-\frac{1}{2}}}\right)^{-1}=\frac{t}{\sqrt{\left(1+\frac{t}{2}|X|^{2}\right)^{2}+2 t^{2}|Y|^{2}}}=\frac{1}{\sqrt{\left(\frac{1}{t}+\frac{1}{2}|X|^{2}\right)^{2}+2|Y|^{2}}}
$$

Thus, the first assertion holds.
Let $r \geqslant 0, t>0$ and let $e \neq \bar{n} \in \bar{N}$. Since

$$
\begin{aligned}
& \frac{a^{r} a\left(\bar{n}^{-\frac{1}{2}}\right)^{-r}}{a_{B}(w \bar{n})^{-r}}-1=\frac{\left(\frac{1}{4}|X|^{4}+2|Y|^{2}\right)^{\frac{r}{2}}}{\left(\left(\frac{1}{t}+\frac{1}{2}|X|^{2}\right)^{2}+2|Y|^{2}\right)^{\frac{r}{2}}}-1 \\
& \quad=\frac{a_{B}(w \bar{n})^{r}}{\left(\frac{1}{t^{2}}+\frac{1}{t}|X|^{2}+a_{B}(w \bar{n})^{2}\right)^{\frac{r}{2}}}-1=\frac{1}{\left(\left(\frac{1}{t^{2}}+\frac{1}{t}|X|^{2}\right) a_{B}(w \bar{n})^{-2}+1\right)^{\frac{r}{2}}}-1 .
\end{aligned}
$$

Let $t \geqslant 1$ and let $\bar{n} \in \bar{N}$ be such that $|\log \bar{n}|>\varepsilon$. Then,

$$
\left(\frac{1}{t^{2}}+\frac{1}{t}|X|^{2}\right) a_{B}(w \bar{n})^{-2} \leqslant \frac{1}{t} \cdot \frac{1+|X|^{2}}{a_{B}(w \bar{n})^{2}}
$$

is uniformly bounded by a constant $C>0$. As $s \in(-1, \infty) \mapsto \frac{1}{(s+1)^{\frac{r}{2}}}-1$ is analytic, there are coefficients $a_{k}(r)$ such that

$$
\frac{1}{(s+1)^{\frac{r}{2}}}-1=\sum_{k=0}^{\infty} a_{k}(r) s^{k}
$$

As the function vanishes at $s=0, a_{0}(r)=0$. Hence, $\frac{1}{s}\left|\frac{1}{(s+1)^{\frac{r}{2}}}-1\right|$ is uniformly bounded when s varies in $(0, C]$. Moreover,

$$
0 \leqslant \frac{1}{s}\left(1-\frac{1}{(s+1)^{\frac{r_{1}}{2}}}\right) \leqslant \frac{1}{s}\left(1-\frac{1}{(s+1)^{\frac{r_{2}}{2}}}\right)
$$

for all $s \in(0, \infty)$ and all $0 \leqslant r_{1} \leqslant r_{2}$. Let $R>0$. Then, the above estimate is also uniform when r varies in $[0, R]$. So,

$$
\left|\frac{a^{r} a\left(\bar{n} a^{-\frac{1}{2}}\right)^{-r}}{a_{B}(w \bar{n})^{-r}}-1\right| \prec\left(\frac{1}{t^{2}}+\frac{1}{t}|X|^{2}\right) a_{B}(w \bar{n})^{-2} \prec \frac{1}{t} a_{B}(w \bar{n})^{-1}
$$

for $r \in[0, R], t \geqslant 1$ and $\bar{n} \in \bar{N}$ such that $|\log \bar{n}|>\varepsilon$. The second assertion follows. We have

$$
\begin{aligned}
& a\left(n^{a} w\right)^{-r}-a_{B}\left(n^{a} w\right)^{-r}=a\left(n^{a} w\right)^{-r}-a^{-r} a_{B}\left(n^{a^{\frac{1}{2}}} w\right)^{-r} \\
&=a^{-r}\left(a^{r} a\left(\left(w n^{a^{\frac{1}{2}}} w\right)^{a^{-\frac{1}{2}}}\right)^{-r}-a_{B}\left(w\left(w n^{a^{\frac{1}{2}}} w\right)\right)^{-r}\right) .
\end{aligned}
$$

It follows from the previous assertion that there is $c>0$, depending only on R, such that this is again less or equal than

$$
\frac{c a^{-r}}{a} \cdot a_{B}\left(n^{a^{\frac{1}{2}}} w\right)^{-r-1} \leqslant \frac{c}{a^{2(r+1)}} \cdot a_{B}(n w)^{-r-1}
$$

for all $r \in[0, R], a \in \bar{A}_{+}$and $n \in N$ such that $|\log n|>\varepsilon$. The third assertion follows.

Let $N_{0} A_{0} K_{0}$ be the standard Iwasawa decomposition of $\operatorname{SU}(1,2)$. Write $g=$ $\kappa_{0}(g) a_{0}(g) n_{0}(g)(g \in \mathrm{SU}(1,2))$ with $\kappa_{0}(g) \in K_{0}, a_{0}(g) \in A_{0}$ and $n_{0}(g) \in N_{0}$. Set

$$
w_{0}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \in K_{0} \cap \mathrm{SO}(1,2)^{0}
$$

Let $N_{0}^{1}=\left\{n_{v, 0} \mid v \in \mathbb{R}\right\}$ and $N_{0}^{2}=\left\{n_{0, r} \mid r \in \mathbb{R}\right\}$ (we use here the notations of Appendix B).

Lemma 2.9.4.

(1) Let $X_{1} \in \mathfrak{g}_{\alpha}$ be nonzero. Then, there is a Lie group homomorphism

$$
\Phi: \operatorname{Spin}(1,2) \rightarrow G
$$

respecting the Iwasawa decompositions such that $\exp \left(X_{1}\right) \in \operatorname{im} \Phi$.
(2) Assume that $\mathfrak{g}_{2 \alpha} \neq\{0\}$. Let $X_{1} \in \mathfrak{g}_{\alpha}$ and $X_{2} \in \mathfrak{g}_{2 \alpha}$ be nonzero. Then, there is a Lie group homomorphism $\Phi: \mathrm{SU}(1,2) \rightarrow G$ respecting the Iwasawa decompositions such that $\exp \left(X_{1}\right) \in \Phi\left(N_{0}^{1}\right), \exp \left(X_{2}\right) \in \Phi\left(N_{0}^{2}\right)$.

Remark 2.9.5. Let Φ be as above. Then, a standard representative of the Weyl element of $\operatorname{Spin}(1,2)$ (resp. $\operatorname{SU}(1,2))$ provides a representative $w \in K$ of the Weyl element of G satisfying $w^{2} \in Z(G)$ and $w^{4}=e$ when Φ is provided by the first assertion (resp. $w^{2}=e$ when Φ is provided by the second assertion).

Proof. Assume that $\mathfrak{g}_{2 \alpha} \neq\{0\}$. Let $X_{1} \in \mathfrak{g}_{\alpha}$ and $X_{2} \in \mathfrak{g}_{2 \alpha}$ be nonzero. Let θ_{0} be the Cartan involution on $\mathfrak{s u}(1,2)$ associated to $\operatorname{Lie}\left(K_{0}\right)$. It follows from Theorem 3.1, Chapter IX, of [Hel78, p.409] (SU(2, 1)-reduction) and Lemma 3.7, Chapter IX, of [Hel78, p.413] that the Lie subalgebra $\mathfrak{g}^{*} \subset \mathfrak{g}$ generated by $X_{1}, X_{2}, \theta\left(X_{1}\right)$, $\theta\left(X_{2}\right)$ is isomorphic to $\mathfrak{s u}(1,2)$ via a map ϕ preserving Iwasawa decompositions (compare with the proof of Theorem 3.6.30). Let G^{*} be the analytic subgroup of G with Lie algebra \mathfrak{g}^{*}. Since $G^{*} \subset G$ is linear, there is a Lie group homomorphism

$$
\Phi: \mathrm{SU}(1,2) \rightarrow G
$$

respecting the Iwasawa decompositions such that $\exp \left(X_{1}\right) \in \Phi\left(N_{0}^{1}\right), \exp \left(X_{2}\right) \in$ $\Phi\left(N_{0}^{2}\right)$. The first assertion is proven similarly. One may use that $\operatorname{Spin}(1,2)$ is isomorphic to $\operatorname{SL}(2, \mathbb{R})$.

Let us continue with some preparations for Proposition 2.9.13.
Lemma 2.9.6. Let $G=\mathrm{SU}(1,2)$. Let $n \in N_{0}$. Then, $\lim _{a \rightarrow \infty} \kappa_{0}\left(n^{a} w_{0}\right)$ exists and belongs to $M_{0}:=Z_{K_{0}}\left(A_{0}\right)$. Moreover,

$$
(0, \infty) \times\left(N_{0} \backslash\{e\}\right) \rightarrow K_{0}, \quad(u, n) \mapsto \kappa_{0}\left(n^{a^{\frac{1}{u}}} w_{0}\right)
$$

extends analytically to $\mathbb{R} \times\left(N_{0} \backslash\{e\}\right)$.
Proof. Let $G=\mathrm{SU}(1,2)$. Let $e \neq n_{v, r} \in N_{0}$. Direct computation shows that

$$
\kappa_{0}\left(n_{v, r} w_{0}\right)=\left(\begin{array}{ccc}
\frac{v^{2}+1+2 i r}{\sqrt{\left(v^{2}+1\right)^{2}+4 r^{2}}} & 0 & 0 \\
0 & \frac{v^{2}-1+2 i r}{\sqrt{\left(v^{2}+1\right)^{2}+4 r^{2}}} & -\frac{2 v}{v^{2}+1+2 i r} \\
0 & \frac{2 v}{\sqrt{\left(v^{2}+1\right)^{2}+4 r^{2}}} & \frac{v^{2}-1-2 i r}{v^{2}+1+2 i r}
\end{array}\right) \in K_{0}
$$

Thus,

$$
\kappa_{0}\left(n_{v, r}^{a_{1}} w_{0}\right)=\left(\begin{array}{ccc}
\frac{v^{2}+u^{2}+2 i r}{\sqrt{\left(v^{2}+u^{2}\right)^{2}+4 r^{2}}} & 0 & 0 \\
0 & \frac{v^{2}-u^{2}+2 i r}{\sqrt{\left(v^{2}+u^{2}\right)^{2}+4 r^{2}}} & -\frac{2 u v}{v^{2}+u^{2}+2 i r} \\
0 & \frac{2 v v}{\sqrt{\left(v^{2}+u^{2}\right)^{2}+4 r^{2}}} & \frac{v^{2}-u^{2}-2 i r}{v^{2}+u^{2}+2 i r}
\end{array}\right)
$$

(here $n^{a}:=a n a^{-1}$) and

$$
\lim _{a \rightarrow \infty} \kappa_{0}\left(n_{v, r}^{a} w_{0}\right)=\lim _{u \rightarrow 0^{+}} \kappa_{0}\left(n_{v, r}^{a_{1}} w_{0}\right)=\left(\begin{array}{ccc}
\frac{v^{2}+2 i r}{\sqrt{v^{4}+4 r^{2}}} & 0 & 0 \\
0 & \frac{v^{2}+2 i r}{\sqrt{v^{4}+4 r^{2}}} & 0 \\
0 & 0 & \frac{v^{2}-2 i r}{v^{2}+2 i r}
\end{array}\right) \in M_{0}
$$

Remark: This matrix is equal to the identity when $r=0$.
The lemma follows.

Set

$$
N_{1}=\left\{n_{x}: \left.=\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\}, \quad A_{1}=\left\{a_{t}: \left.=\left(\begin{array}{cc}
\sqrt{t} & 0 \\
0 & \frac{1}{\sqrt{t}}
\end{array}\right) \right\rvert\, t>0\right\}
$$

and

$$
K_{1}=\left\{\left.\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right) \right\rvert\, \varphi \in[0,2 \pi]\right\}
$$

Then, $N_{1} A_{1} K_{1}$ is an Iwasawa decomposition of $\operatorname{SL}(2, \mathbb{R})$. This induces an Iwasawa decomposition $N_{2} A_{2} K_{2}$ of $\operatorname{Spin}(1,2)$.
Put $w_{1}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \in K_{1}$.
Lemma 2.9.7. Let $G=\mathrm{SL}(2, \mathbb{R}) \simeq \operatorname{Spin}(1,2)$. Let $n \in N_{1}$. Then, $\lim _{a \rightarrow \infty} \kappa\left(n^{a} w_{1}\right)$ exists and belongs to $M_{1}:=Z_{K_{1}}\left(A_{1}\right)$. Moreover,

$$
(0, \infty) \times\left(N_{1} \backslash\{e\}\right) \rightarrow K_{1}, \quad(u, n) \mapsto \kappa\left(n^{\frac{a_{1}}{u}} w_{1}\right)
$$

extends analytically to $\mathbb{R} \times\left(N_{1} \backslash\{e\}\right)$.
Proof. Let $G=\mathrm{SL}(2, \mathbb{R})$. Direct computation shows that

$$
\kappa\left(n_{x} w_{1}\right)=\left(\begin{array}{cc}
-\frac{x}{\sqrt{x^{2}+1}} & \frac{1}{\sqrt{x^{2}+1}} \\
-\frac{1}{\sqrt{x^{2}+1}} & -\frac{x}{\sqrt{x^{2}+1}}
\end{array}\right) \in K_{1} .
$$

Thus,

$$
\kappa\left(n_{x}^{a_{1}{ }^{\frac{1}{u}}} w_{0}\right)=\left(\begin{array}{cc}
-\frac{x}{\sqrt{x^{2}+u^{2}}} & \frac{u}{\sqrt{x^{2}+u^{2}}} \\
-\frac{x}{\sqrt{x^{2}+u^{2}}} & -\frac{x}{\sqrt{x^{2}+u^{2}}}
\end{array}\right)
$$

and

$$
\lim _{a \rightarrow \infty} \kappa\left(n_{x}^{a} w_{1}\right)=\lim _{u \rightarrow 0^{+}} \kappa\left(n_{x}^{a^{\frac{1}{u}}} w_{1}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \in M_{1} .
$$

The lemma follows.
Let $X_{1} \in \mathfrak{g}_{\alpha}$ be nonzero and let $X_{2} \in \mathfrak{g}_{2 \alpha}$. If $\mathfrak{g}_{2 \alpha}$ is nonzero, then we choose also $X_{2} \neq 0$. Let $H=\operatorname{Spin}(1,2) \simeq \operatorname{SL}(2, \mathbb{R})$ if $X_{2}=0$ and let $H=\mathrm{SU}(1,2)$ otherwise. Let $\Phi: H \rightarrow G$ the Lie group homomorphism provided by Lemma 2.9.4. Let $N^{\prime}=\Phi\left(N_{2} \cap H\right)$ if $H=\operatorname{Spin}(1,2)$ and let $N^{\prime}=\Phi\left(N_{0} \cap H\right)$ if $H=\operatorname{SU}(1,2)$.

Lemma 2.9.8. We have

$$
\bigcup_{m \in M} m N^{\prime} m^{-1}=N .
$$

Proof. If $X=\mathbb{O} H^{2}$, then $\mathfrak{g}_{\alpha}=\mathbb{O}$ and $\mathfrak{g}_{2 \alpha}=\operatorname{Im}(\mathbb{O})$ and $M=\operatorname{Spin}(7)$.
By Lemma 8.8 of [Wol75, p.30], $\left(\left.\operatorname{Ad}\right|_{M}, \mathbb{O}\right)$ is isomorphic to the real 8-dimensional spin representation Δ and $\left(\left.\operatorname{Ad}\right|_{M}, \operatorname{Im}(\mathbb{O})\right)$ is isomorphic to the standard representation on \mathbb{R}^{7}.
By Corollary 5.4 of [Ada96, p.32], $M=\operatorname{Spin}(7)$ acts transitively on

$$
\left\{X+Y\left|X \in \mathfrak{g}_{\alpha}, Y \in \mathfrak{g}_{2 \alpha}:|X|=|Y|=1\right\}\right.
$$

Let $r_{1}>0$ and $r_{2}>0$. By the proof of the mentioned corollary, M acts also transitively on

$$
\left\{X+Y\left|X \in \mathfrak{g}_{\alpha}, Y \in \mathfrak{g}_{2 \alpha}:|X|=r_{1},|Y|=r_{2}\right\}\right.
$$

Thus,

$$
\bigcup_{m \in M} \operatorname{Ad}(m) \mathfrak{n}^{\prime}=\mathfrak{n},
$$

where $\mathfrak{n}^{\prime}=\operatorname{Lie}\left(N^{\prime}\right)$. The lemma follows in the exceptional case.
If $X \neq \mathbb{O} H^{2}$, then we may assume that G is equal to $\operatorname{SO}(1, n)^{0}$ (resp. $\operatorname{SU}(1, n)$, $\operatorname{Sp}(1, n))$ for some $n \geqslant 2$. Indeed, let $\Psi: \tilde{G} \rightarrow G$ be a covering of G. Then, $\Psi_{*}=\operatorname{Id}$ and $\tilde{G}=N A \tilde{K}$ as N and A are simply connected. Moreover,

$$
\operatorname{Ad}(m) X=\Psi_{*}(\operatorname{Ad}(m) X)=\operatorname{Ad}(\Psi(m)) \Psi_{*}(X)=\operatorname{Ad}(\Psi(m))(X)
$$

for all $m \in \tilde{M}$ and $X \in \mathfrak{n}$.
Let $\mathbb{F}=\mathbb{R}($ resp. $\mathbb{F}=\mathbb{C}, \mathbb{F}=\mathbb{H})$. If $\mathbb{F}=\mathbb{R}$, then

$$
m_{A} n_{v} m_{A}^{-1}=n_{A v}
$$

for all $A \in \mathrm{SO}(n-1)$ and $v \in \mathbb{R}^{n-1}$, by (B.3) of Appendix B. Thus, $M=\mathrm{SO}(n-1)$ acts transitively on spheres of $\mathfrak{n}=\mathbb{R}^{n-1}$ in this case.
Let us consider now the two other cases: For all $v \in \mathbb{F}^{n-1}, r \in \operatorname{Im}(\mathbb{F})(\operatorname{Im}(\mathbb{C})=i \mathbb{R}$ by convention), $A \in \operatorname{SU}(n-1)$ (resp. $\operatorname{Sp}(n-1)), q \in \mathrm{SU}(1)$ (resp. $q \in \operatorname{Sp}(1))$,

$$
m_{A, q} n_{v, r} m_{A, q}^{-1}=n_{A v \bar{q}, q r \bar{q}}=n_{A v \bar{q}, q r q^{-1}}=n_{A v \bar{q}, \mathrm{Ad}(q) r}
$$

by (B.2) of Appendix B. For $R>0$, set $S_{1}(0, R)=\left\{v \in \mathbb{F}^{n-1} \mid\|v\|=R\right\}$ and $S_{2}(0, R)=\{r \in \operatorname{Im}(\mathbb{F})| | r \mid=R\}$. If $\mathbb{F}=\mathbb{C}$, then $(q, r) \in \mathrm{SU}(1) \times S_{2}(0, R) \mapsto$ $q r \bar{q} \in S_{2}(0, R)$ is transitive. As moreover

$$
(A, v) \in \mathrm{SU}(n-1) \times S_{1}(0, R) \mapsto A v \in S_{1}(0, R)
$$

is also transitive, M acts transitive on $S_{1}(0, R) \times S_{2}(0, R)$.
Similarly, one shows that M acts transitively on $S_{1}(0, R) \times S_{2}(0, R)$ if $\mathbb{F}=\mathbb{H}$. Thus,

$$
\bigcup_{m \in M} m N^{\prime} m^{-1}=N
$$

For $x \in N$, set $m_{x}=\lim _{a \rightarrow \infty} \kappa\left(x^{a} w\right)$. It follows from the previous corollary that $x \in N \backslash\{e\} \mapsto m_{x} \in M$ is a well-defined function. Note that m_{x} has the following two properties:
(1) $m_{x^{a}}=m_{x}$ for all $x \in N$ and $a \in A$.
(2) $m_{m_{1} x m_{2}}=m_{1} m_{x} w^{-1} m_{2} w$ for all $x \in N$ and $m_{1}, m_{2} \in M$.

Corollary 2.9.9. Let $\tau \in \hat{K}$ and C be a compact subset of $N \backslash\{e\}$. Then,

$$
t\left|\tau\left(\kappa\left(n^{a_{t}} w\right)\right)-\tau\left(m_{n}\right)\right|
$$

is uniformly bounded when $t \geqslant 1$ and $n \in C$.
Proof. Let \tilde{w} be the Weyl element provided by Lemma 2.9.4. Let $m \in M$ be such that $\tilde{w}=w m$. Since moreover $\kappa(n w)=\kappa(n w m) m^{-1}=\kappa(n \tilde{w}) m^{-1}$ and $\left|\tau\left(m^{-1}\right)\right|=1$, we may assume without loss of generality that $w=\tilde{w}$.
For $G=\operatorname{SU}(1,2)$, the corollary follows now immediately from Lemma 2.9.6 and the fact that a finite-dimensional representation on an arbitrary Lie group is real analytic.
For the general case, we need also Lemma 2.9.8, Lemma 2.9.7 and the fact that

$$
\tau\left(\kappa\left(\left(m n m^{-1}\right)^{a} w\right)\right)-\tau\left(m_{m n m^{-1}}\right)=\tau(m)\left(\tau\left(\kappa\left(n^{a} w\right)\right)-\tau\left(m_{n}\right)\right) \tau\left(w^{-1} m w\right)
$$

for all $n \in N$ and $m \in M$.
Lemma 2.9.10. $\operatorname{Res}_{0} \int_{A} a\left(x^{a} w\right)^{-\lambda-\rho} a^{2 \rho} d a$ is equal to $\operatorname{Res}_{0} \int_{A} a^{-2 \lambda} d a=\frac{1}{2}$ for every $x \in N$ with $a_{B}(x w)=1$.

Proof. Let $r \in \mathbb{R}$. Then, $\operatorname{Res}_{0} \int_{A} a\left(x^{a} w\right)^{-\lambda-\rho} a^{2 \rho} d a=\operatorname{Res}_{0} \int_{A_{\geqslant e^{r}}} a\left(x^{a} w\right)^{-\lambda-\rho} a^{2 \rho} d a$. By Lemma 2.9.3, there is a constant $c>0$ such that

$$
\left|a\left(x^{a} w\right)^{-(\lambda+\rho)}-a_{B}\left(x^{a} w\right)^{-(\lambda+\rho)}\right| \leqslant \frac{c}{a^{2(\lambda+\rho+\alpha)}}
$$

for all $\lambda \in[0,2], a \in \bar{A}_{+}$and $n \in N$ such that $a_{B}(x w)=1$. But

$$
\operatorname{Res}_{0} \int_{A \geqslant e^{r}} a^{-2(\lambda+\alpha)} d a=\lim _{\lambda \rightarrow 0^{+}} \frac{\lambda}{2(\lambda+1)} e^{-2(\lambda+1) r}=0
$$

So,

$$
\operatorname{Res}_{0} \int_{A} a\left(x^{a} w\right)^{-\lambda-\rho} a^{2 \rho} d a=\operatorname{Res}_{0} \int_{A \geqslant e^{r}} a_{B}\left(x^{a} w\right)^{-\lambda-\rho} a^{2 \rho} d a=\operatorname{Res}_{0} \int_{A} a^{-2 \lambda} d a=\frac{1}{2}
$$

for every $x \in N$ with $a_{B}(x w)=1$. The lemma follows.
Recall that we denote the Harish-Chandra c-function by $c_{\gamma}(\mu) \in \operatorname{End}_{M}\left(V_{\gamma}\right)(\gamma \in$ $\hat{K})$. This meromorphic function is given by

$$
c_{\gamma}(\mu):=\int_{\bar{N}} a(\bar{n})^{-(\mu+\rho)} \gamma(\kappa(\bar{n})) d \bar{n}
$$

for $\operatorname{Re}(\mu)>0$.
Proposition 2.9.11. Let $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right)(\sigma \in \hat{M}, \tau \in \hat{K})$. Then, $\operatorname{Res}_{0} c_{\tau}(\lambda) \circ$ T is equal to $\frac{1}{2} \tau(w) \int_{\left\{x \in N \mid a_{B}(x w)=1\right\}} \tau\left(m_{x}\right) d x \circ T$.

Proof. Let $\varepsilon>0$. Let $r \in \mathbb{R}$ be sufficiently large so that $\left|\tau\left(\kappa\left(x^{a} w\right)\right)-\tau\left(m_{x}\right)\right|<\varepsilon$ for every $a \in A_{e^{r}}$ and $x \in N$ with $a_{B}(x w)=1$. By Lemma 2.3.24 applied to $E=N$,

$$
\begin{aligned}
& \int_{\bar{N}} a(\bar{n})^{-(\lambda+\rho)} \tau(\kappa(\bar{n})) d \bar{n} \circ T=\tau(w) \int_{N} a(n w)^{-(\lambda+\rho)} \tau(\kappa(n w)) d n \circ T \\
&=\tau(w) \int_{\left\{x \in N \mid a_{B}(x w)=1\right\}} \int_{A} a\left(x^{a} w\right)^{-(\lambda+\rho)} \tau\left(\kappa\left(x^{a} w\right)\right) a^{2 \rho} d a d x \circ T
\end{aligned}
$$

for every $\lambda>0$. Thus, $\operatorname{Res}_{0} c_{\tau}(\lambda) \circ T$ is equal to

$$
\lim _{\lambda \rightarrow 0^{+}} \lambda \tau(w) \int_{\left\{x \in N \mid a_{B}(x w)=1\right\}} \int_{A_{\geqslant e^{r}}} a\left(x^{a} w\right)^{-(\lambda+\rho)} \tau\left(\kappa\left(x^{a} w\right)\right) a^{2 \rho} d a d x \circ T .
$$

Let $M_{r}=\sup _{x \in N: a_{B}(x w)=1, a \in A_{\geqslant e^{r}, \lambda \in[0,2]} \frac{a\left(x^{a} w\right)^{-\lambda-\rho}}{a_{B}\left(x^{a} w\right)^{-\lambda-\rho}}<\infty \text {. Then, }}^{\text {. }}$

$$
\lambda a\left(x^{a} w\right)^{-(\lambda+\rho)} a^{2 \rho} \leqslant \lambda M_{r} a_{B}\left(x^{a} w\right)^{-\lambda-\rho} a^{2 \rho}=\lambda M_{r} a^{-2 \lambda}
$$

for every $x \in N$ with $a_{B}(x w)=1, a \in A_{\geqslant e^{r}}$ and $\lambda \in(0,2]$. This is integrable on $\left\{x \in N \mid a_{B}(x w)=1\right\} \times A_{\geqslant e^{r}}$. Since moreover $\int_{A_{\geqslant e^{r}}} \lambda a^{-2 \lambda} d a=\frac{1}{2} e^{-2 \lambda r} \leqslant \frac{1}{2}$ for every $\lambda \in(0,2]$ and since we can choose $\varepsilon>0$ arbitrarily small, $\operatorname{Res}_{0} c_{\tau}(\lambda) \circ T$ is equal to

$$
\lim _{\lambda \rightarrow 0^{+}} \lambda \tau(w) \int_{\left\{x \in N \mid a_{B}(x w)=1\right\}} \tau\left(m_{x}\right) \int_{A} a\left(x^{a} w\right)^{-(\lambda+\rho)} a^{2 \rho} d a d x \circ T .
$$

It follows from the proof of Lemma 2.9.10 that this is again equal to

$$
\frac{1}{2} \tau(w) \int_{\left\{x \in N \mid a_{B}(x w)=1\right\}} \tau\left(m_{x}\right) d x \circ T .
$$

The proposition follows.
Proposition 2.9.12. Let $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right)(\sigma \in \hat{M}, \tau \in \hat{K})$. Then:
(1) $\operatorname{Res}_{0} c_{\tau}(\lambda) T$ is up to a constant equal to T^{w}. Hence, $\operatorname{Res}_{0} c_{\tau}(\lambda) T$ is injective if and only if T is nonzero and $\operatorname{Res}_{0} c_{\tau}(\lambda)$ is nonzero on $V_{\tau}(\sigma)$.
(2) $\operatorname{Res}_{0} c_{\tau}(\lambda) T=0 \Longleftrightarrow T=0$ or $p_{\sigma}(0) \neq 0$.

Proof.
(1) By Theorem 14.16 of [Kna86, p.541], $C^{-\infty}\left(\partial X, V\left(\sigma_{0}\right)\right)$ is irreducible if and only if
(a) σ is not Weyl-invariant, or
(b) σ is Weyl-invariant and $p_{\sigma}(0)=0$.

If $p_{\sigma}(0) \neq 0$, then $\hat{J}_{\sigma, 0}$ is regular by Proposition 7.3, 3., of [BO00, p.123].
Since moreover $\operatorname{Res}_{0} \hat{J}_{\sigma, \lambda}$ is an intertwining operator, it follows from Schur's lemma and the above that

$$
\operatorname{Res}_{0} \hat{J}_{\sigma, \lambda}=c \mathrm{Id}
$$

for some constant $c \in \mathbb{C}$. Let $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right)$ and $f \in C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)$. Then,

$$
\int_{K} \tau(k) T \hat{J}_{\sigma, \lambda} f(k) d k=\int_{K} \tau(k) \tau(w) c_{\tau}(\lambda) T \sigma(w)^{-1} f(k) d k
$$

by Lemma 5.5, 1., of [BO00, p.100]. Thus,

$$
c \int_{K} \tau(k) T f(k) d k=\int_{K} \tau(k) \tau(w) \operatorname{Res}_{0} c_{\tau}(\lambda) T \sigma(w)^{-1} f(k) d k .
$$

Taking $f=\delta_{e} v\left(v \in V_{\sigma}\right)$ on K yields

$$
c T^{w}=c \tau(w) T \sigma(w)^{-1}=\operatorname{Res}_{0} c_{\tau}(\lambda) T
$$

Thus, c is nonzero if and only if $\operatorname{Res}_{0} c_{\tau}(\lambda)$ is nonzero on $V_{\tau}(\sigma)$.
Assume that $T \neq 0$. Then, it follows from Schur's lemma that T is injective. Hence, T^{w} is also injective. The first assertion follows.
(2) Let $\mu \in \mathfrak{a}_{\mathbb{C}}^{*}$. By (20) of [BO00, p.100],

$$
c_{\tau}(-\mu)^{w} c_{\tau}(\mu) T=\frac{1}{p_{\sigma}(\mu)} T
$$

$\mathrm{By}(21)$ of [BO00, p.100], $c_{\tau}(\mu)^{*}=c_{\tau}(\bar{\mu})^{w}$.
Let $\lambda \in \mathfrak{a}_{+}^{*}$. Then, it follows from the above that

$$
c_{\tau}(i \lambda)^{*} c_{\tau}(i \lambda) T=\frac{1}{p_{\sigma}(i \lambda)} T .
$$

Since $c_{\tau}(\mu)$ is meromorphic and has poles of order at most 1, there exist $F_{i} \in \operatorname{End}_{M}\left(V_{\tau}\right)$ such that

$$
c_{\tau}(i \lambda)=\frac{1}{i \lambda} F_{-1}+F_{0}+i \lambda F_{1}+\cdots
$$

on $V_{\tau}(\sigma)$, for all λ in a punctured neighbourhood of 0 in \mathfrak{a}^{*}. Assume that $T \neq 0$. Let $v \in V_{\sigma}$ be such that $T v \neq 0$. Then, $T^{w} v$ is also nonzero as T^{w} is injective. We have

$$
\left\|c_{\tau}(i \lambda) T v\right\|^{2}=\frac{1}{p_{\sigma}(i \lambda)}\|T v\|^{2}
$$

The left-hand side is again equal to

$$
\begin{aligned}
& \frac{1}{\lambda^{2}}\left\|F_{-1}(T v)\right\|^{2}+\frac{1}{i \lambda}\left(\left(F_{-1}(T v), F_{0}(T v)\right)-\left(F_{0}(T v), F_{-1}(T v)\right)\right) \\
& \quad+\left(\left\|F_{0}(T v)\right\|^{2}-\left(F_{-1}(T v), F_{1}(T v)\right)-\left(F_{1}(T v), F_{-1}(T v)\right)+O(\lambda) .\right.
\end{aligned}
$$

Hence, if $\operatorname{Res}_{\mu=0} c_{\tau}=F_{-1}=0$, then

$$
\frac{1}{p_{\sigma}(i \lambda)}\|T v\|^{2}=\left\|F_{0}(T v)\right\|^{2}+O(\lambda) .
$$

So, $p_{\sigma}(0) \neq 0$. If $\operatorname{Res}_{\mu=0} c_{\tau}=F_{-1} \neq 0$, then $p_{\sigma}(0)=0$. Consequently, $\operatorname{Res}_{\mu=0} c_{\tau} T=0$ if and only if $p_{\sigma}(0) \neq 0$.

The proposition follows.
For $\sigma \in \hat{M}$, set

$$
\begin{aligned}
& W_{\sigma}=\left\{\phi \in C_{c}^{\infty}\left(\Gamma \backslash G(\Omega) / M N, V_{B^{\prime}}(\sigma, \varphi)\right) \mid\right. \\
& \left.p_{\sigma}(0) \neq 0 \quad \text { or } \quad \int_{A} \phi(k a) a^{\rho} d a=0 \quad \forall k \in K(\Omega)\right\} .
\end{aligned}
$$

For a finite-dimensional representation σ of M, set

$$
\tilde{W}_{\sigma}=\left\{\phi \in C_{c}^{\infty}\left(\Gamma \backslash G(\Omega) / M N, V_{B^{\prime}}(\sigma, \varphi)\right) \mid \int_{A} \phi(k a) a^{\rho} d a=0 \quad \forall k \in K(\Omega)\right\} .
$$

Let $0 \neq T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right)(\sigma \in \hat{M}, \tau \in \hat{K})$. Then, $\phi \in W_{\sigma}$ if and only if

$$
\operatorname{Res}_{0} c_{\tau}(\lambda) \int_{A} T \phi(k a, e) a^{\rho} d a=0
$$

for all $k \in K(\Omega)$, by Proposition 2.9.12. By the Peter-Weyl theorem,

$$
\begin{equation*}
C_{c}^{\infty}\left(\mathcal{H}, V_{\mathcal{H}}(\tau, \varphi)\right)=\bigoplus_{\sigma \in \hat{M}} \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right) \otimes C_{c}^{\infty}\left(\Gamma \backslash G(\Omega) / M N, V_{B^{\prime}}(\sigma, \varphi)\right) \tag{2.52}
\end{equation*}
$$

Let

$$
W_{\tau}=\bigoplus_{\sigma \in \hat{M}} \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right) \otimes W_{\sigma}
$$

and

$$
\tilde{W}_{\tau}=\left\{\phi \in C_{c}^{\infty}\left(\mathcal{H}, V_{\mathcal{H}}(\tau, \varphi)\right) \mid \int_{A} \phi(k a, e) a^{\rho} d a=0 \quad \forall k \in K(\Omega)\right\} .
$$

Then, \tilde{W}_{τ} is contained in W_{τ}. Let $\sigma \in \hat{M}$. Let T_{i} be a basis of $\operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right)$. Since the sum of $\operatorname{Im}\left(T_{i}\right)$ over i is direct, \tilde{W}_{τ} is equal to $\bigoplus_{\sigma \in \hat{M}} \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right) \otimes \tilde{W}_{\sigma}$.

Proposition 2.9.13. Let $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right)(\sigma \in \hat{M}, \tau \in \hat{K})$.
(1) Let $k \in K(\Omega)$ and $\phi \in C_{c}^{\infty}\left(\Gamma \backslash G(\Omega) / M N, V_{B^{\prime}}(\sigma, \varphi)\right)$. Then, $\lim _{t \rightarrow \infty} a_{t}^{\rho}\left(R^{*}(T \phi)\right)\left(k a_{t}\right)$ converges to

$$
\int_{N} T \phi\left(k a_{B}(y w)^{-1}, m_{y}^{-1}\right) a_{B}(y w)^{-2 \rho} d y=\operatorname{Res}_{0} c_{\tau}(\lambda) \int_{A} T \phi(k a, e) a^{\rho} d a .
$$

(2) Let V be a relatively compact subset of $K(\Omega)$ and let $\phi \in W_{\sigma}$. Then,

$$
a^{\rho+\frac{\alpha}{2}}\left(R^{*}(T \phi)\right)(k a)
$$

is uniformly bounded when $a \in \bar{A}_{+}$and $k \in V$.
Proof. Let $k \in K(\Omega), t \geqslant 1$, let T and ϕ be as above. We have

$$
\begin{aligned}
a_{t}^{\rho}\left(R^{*}(T \phi)\right)\left(k a_{t}\right)=a_{t}^{\rho} & \int_{\left\{h \in K \mid k a_{t} h \in G(\Omega)\right\}} T \phi\left(k a_{t} h, h^{-1}\right) d h \\
& =a_{t}^{\rho} \int_{\left\{\bar{n} \in \bar{N} \mid k a_{t} \kappa(\bar{n}) \in G(\Omega)\right\}} T \phi\left(k a_{t} \kappa(\bar{n}), \kappa(\bar{n})^{-1}\right) a(\bar{n})^{-2 \rho} d \bar{n} .
\end{aligned}
$$

Since $\kappa(\bar{n})=\bar{n} n(\bar{n})^{-1} a(\bar{n})^{-1}=\bar{n} a(\bar{n})^{-1}\left(a(\bar{n}) n(\bar{n})^{-1} a(\bar{n})^{-1}\right)$, this is again equal to

$$
a_{t}^{\rho} \int_{\left\{\bar{n} \in \bar{N} \mid k a_{t} \kappa(\bar{n}) \in G(\Omega)\right\}} T \phi\left(k a_{t} \bar{n} a(\bar{n})^{-1}, \kappa(\bar{n})^{-1}\right) a(\bar{n})^{-2 \rho} d \bar{n} .
$$

By the change of variables $\bar{n}=y^{a_{t}^{-\frac{1}{2}}}\left(d \bar{n}=a_{t}^{\rho} d y\right)$, this yields

Let V_{k} be an open relatively compact neighbourhood of $k M$ in Ω. Let

$$
U_{k}=\left\{h a K \mid h M \in V_{k}, a \in A_{+}\right\} \in \mathcal{U}_{\Gamma} .
$$

As ϕ has compact support in $\Gamma \backslash G(\Omega) / N$, as $\left\{\gamma \in \Gamma \mid \gamma U_{k} \cap U_{k} \neq \varnothing\right\}$ is finite and as there is $s>0$ such that $h a n K \in U_{k}$ for all $h M \in V_{k}, a \in A_{\geqslant s}$ and $n \in N$, there is $s^{\prime}>0$ (depending only on V_{k}) such that $\phi(h a n)=0$ for all $h \in V_{k}, a \in A_{\geqslant s^{\prime}}$ and $n \in N$.
Thus, ϕ is bounded on $\left\{k_{1} a k_{2} \mid k_{1} M \in V_{k}, a \in \bar{A}_{+}, k_{2} \in K\right\}$. When a tends to ∞, then $y^{a^{\frac{1}{2}}}$ converges pointwise to $e \in \bar{N}$.
Let $\varepsilon>0$. Choose $s^{\prime \prime} \geqslant s^{\prime}>0$ sufficiently large so that we also have $k \kappa\left(y^{a^{\frac{1}{2}}}\right) M \in$ V_{k} for all $y \in \bar{N}$ such that $|\log y| \leqslant \varepsilon$ and all $a \in A_{\geqslant s^{\prime \prime}}$.
Let $y \in \bar{N}$ be such that $|\log y| \leqslant \varepsilon$. As $a(\bar{n}) \geqslant 1$ for all $\bar{n} \in \bar{N}$,

$$
k \bar{n} a=k \kappa(\bar{n}) \underbrace{(a(\bar{n}) a)}_{\in A \geqslant s^{\prime \prime}}\left(a^{-1} n(\bar{n}) a\right)
$$

for all $\bar{n} \in \bar{N}$ and $a \in A_{\geqslant s^{\prime \prime}}$. Let $\varepsilon>0$ be sufficiently small so that

$$
\inf _{a \in \bar{A}_{+}, y \in \bar{N}:|\log y| \leqslant \varepsilon} a a\left(y^{-\frac{1}{2}}\right)^{-1} \geqslant \inf _{y \in \bar{N}:|\log y| \leqslant \varepsilon} a(y)^{-1}
$$

is greater or equal than $s^{\prime \prime}$. Thus,

$$
\phi\left(k y^{a^{\frac{1}{2}}} a a\left(y^{a^{-\frac{1}{2}}}\right)^{-1}\right)=0
$$

for all $y \in \bar{N}$ such that $|\log y| \leqslant \varepsilon$ and $a \in \bar{A}_{+}$. Hence, there is a constant $c>0$ such that

$$
\left|T \phi\left(k y^{a^{\frac{1}{2}}} a a\left(y^{a^{-\frac{1}{2}}}\right)^{-1}, \kappa\left(y^{a^{-\frac{1}{2}}}\right)^{-1}\right)\right| a^{2 \rho} a\left(y^{a^{-\frac{1}{2}}}\right)^{-2 \rho}
$$

is less or equal than $c a(y)^{-2 \rho}$ for all $a \in \bar{A}_{+}$, by Lemma 2.9.3.
By Lemma 2.9.4, there is a representative of the Weyl element $w \in K$ such that $w^{2}=e$.
It follows from Lebesgue's theorem of dominated convergence that

$$
\lim _{t \rightarrow \infty} a_{t}^{\rho}\left(R^{*}(T \phi)\right)\left(k a_{t}\right)
$$

is equal to

$$
\int_{N} T \phi\left(k a_{B}(y w)^{-1}, m_{y}^{-1} w\right) a_{B}(y w)^{-2 \rho} d y
$$

By Lemma 2.3.24 applied to $E=N$, we obtain

$$
\int_{A} \int_{\left\{x \in N \mid a_{B}(x w)=1\right\}} T \phi\left(k a_{B}\left(x^{a} w\right)^{-1}, m_{y}^{-1} w\right) a_{B}\left(x^{a} w\right)^{-2 \rho} a^{2 \rho} d x d a .
$$

Since $a_{B}\left(y^{a} w\right)=a^{2} a_{B}(y w)=a^{2}$, this is again equal to

$$
\int_{A} \int_{\left\{x \in N \mid a_{B}(x w)=1\right\}} T \phi\left(k a^{-2}, m_{x}^{-1} w\right) a^{-2 \rho} d x d a .
$$

By the change of variables $a \mapsto a^{-\frac{1}{2}}$, this yields

$$
\frac{1}{2} \int_{A} \int_{\left\{x \in N \mid a_{B}(x w)=1\right\}} T \phi\left(k a, m_{x}^{-1} w\right) a^{\rho} d x d a .
$$

The first assertion follows now by Proposition 2.9.11.
Let V be a relatively compact subset of $K(\Omega)$ and let $0<p<q$. For $y \in \bar{N} \backslash\{e\}$, set $\bar{m}_{y}=\lim _{a \rightarrow \infty} \tau\left(\kappa\left(y^{a^{-1}}\right)\right)$. It remains to show that

$$
\begin{gathered}
\left.t^{\frac{1}{2}} \left\lvert\, \int_{\left\{y \in \bar{N}| | \log y \mid \in[p, q], k a_{t} \kappa\left(y^{a_{t}}\right.\right.}{ }^{-\frac{1}{2}}{ }_{) \in G(\Omega)\}} \tau\left(\kappa\left(y^{a_{t}}\right)\right) T \phi\left(k y^{\frac{1}{2}} a_{t} a_{t} a^{-\frac{1}{2}}\right)^{-1}\right., e\right) a_{t}^{2 \rho} a\left(y^{a_{t}^{-\frac{1}{2}}}\right)^{-2 \rho} d y \\
-\int_{\{y \in \bar{N}| | \log y \mid \in[p, q]\}} \tau\left(\bar{m}_{y}\right) T \phi\left(k a_{B}(w y)^{-1}, e\right) a_{B}(w y)^{-2 \rho} d y \mid
\end{gathered}
$$

is uniformly bounded when $t \geqslant 1$ and $k \in V$. Indeed, by the above and as $a_{t} a\left(y^{a_{t}}\right)^{-\frac{1}{2}} \leqslant a_{B}(w y)^{-1}$ for all $t>0$ and $y \in \bar{N} \backslash\{e\}$, we can choose p and q so that the integrand is zero on $\{y \in \bar{N}||\log y| \notin[p, q]\}$. Note that we could have
used this argument already above in order to show that we can apply Lebesgue's theorem of dominated convergence.
For $Y \in \bar{n}, H \in \mathfrak{a}$, define

$$
F_{k}(Y, H)=T \phi(k \exp (Y) \exp (H), e) .
$$

Then, $\lim _{t \rightarrow \infty} F_{k}\left(\log \left(y^{a_{t}^{\frac{1}{2}}}\right), \log \left(a_{t} a\left(y^{a_{t}^{-\frac{1}{2}}}\right)^{-1}\right)\right)=F_{k}\left(0, \log \left(a_{B}(w y)^{-1}\right)\right)$.
Since a C^{1}-function is locally Lipschitz, there is a constant $L>0$ such that

$$
\begin{aligned}
& \left|F_{k}\left(\log \left(y^{a_{t}^{\frac{1}{2}}}\right), \log \left(a_{t} a\left(y^{a_{t}^{-\frac{1}{2}}}\right)^{-1}\right)\right)-F_{k}\left(0, \log \left(a_{B}(w y)^{-1}\right)\right)\right| \\
& \quad \leqslant L\left(\left|\log \left(y^{a_{t}^{\frac{1}{2}}}\right)\right|+\left|\log \left(a_{t} a\left(y^{a_{t}}\right)^{-\frac{1}{2}}\right)-\log \left(a_{B}(w y)^{-1}\right)\right|\right)
\end{aligned}
$$

for all $y \in \bar{N}$ with $|\log y| \in[p, q]$ and all t sufficiently large (then $\left.y^{a_{t}^{\frac{1}{2}}} a_{t} a\left(y^{a_{t}}\right)^{-\frac{1}{2}}\right)^{-1} \in$ $G(\Omega))$.
For $t \geqslant 1,\left|\log y^{a_{t}}\right| \leqslant \frac{1}{\sqrt{t}}|\log y|$.
Using the Taylor expansion of $\log (1+x)$ at $x=0$, one can show that

$$
\left|\log \left(a_{t} a\left(y^{a_{t}}\right)^{-1}\right)-\log \left(a_{B}(w y)^{-1}\right)\right| \prec \frac{1}{t} \quad(t \geqslant 1, y \in \bar{N}:|\log y|>\varepsilon)
$$

By Corollary 2.9.9,

$$
\sqrt{t}\left|\tau\left(\kappa\left(y^{a_{t}^{-\frac{1}{2}}}\right)\right)-\tau\left(\bar{m}_{y}\right)\right|=\sqrt{t}\left|\tau\left(\kappa\left(\left(w y w^{-1}\right)^{\frac{1}{a_{t}}}\right)\right)-\tau\left(w \bar{m}_{y}\right)\right|
$$

is uniformly bounded when $t \geqslant 1$ and $y \in \bar{N}$ such that $|\log y| \in[p, q]$.
The proposition follows now easily from these estimates and Lemma 2.9.3.
Lemma 2.9.14. If $\phi \in W_{\tau}$, then $R^{*} \phi \in L^{2}\left(Y, V_{Y}(\tau, \varphi)\right)$.
Remark 2.9.15. It follows that ($R^{*} \phi, f$) is well-defined for all $\phi \in W_{\tau}$ and $f \in$ $L^{2}\left(Y, V_{Y}(\tau, \varphi)\right)$.
If, in addition, $f \in \mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right)$, then $\left(\phi, f^{\Omega}\right)$ is also well-defined (recall that ϕ has compact support) and

$$
\left(R^{*} \phi, f\right)=\left(\phi, f^{\Omega}\right)
$$

by Lemma 2.9.2, as $C_{c}^{\infty}\left(Y, V_{Y}(\tau, \varphi)\right)$ is dense in $\mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right)$ and as

$$
f \in \mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right) \mapsto\left(\phi, f^{\Omega}\right)
$$

is continuous.
Proof. Let $\phi \in C_{c}^{\infty}\left(\mathcal{H}, V_{\mathcal{H}}(\tau, \varphi)\right)$. Since $\left(R^{*} \phi(g), R^{*} \phi(g)\right) \geqslant 0$ for all $g \in G$,

$$
\int_{\Gamma \backslash G}\left(R^{*} \phi(g), R^{*} \phi(g)\right) d g
$$

is equal to

$$
\begin{aligned}
& \int_{G} \chi(g K)\left(\int_{\{k \in K \mid g k \in G(\Omega)\}} \phi\left(g k, k^{-1}\right) d k, \int_{\{k \in K \mid g k \in G(\Omega)\}} \phi\left(g k, k^{-1}\right) d k\right) d g \\
= & \int_{K} \int_{A_{+}} \chi(h a K)\left(a^{\rho} \int_{K} \phi\left(h a k, k^{-1}\right) d k, a^{\rho} \int_{K} \phi\left(h a k, k^{-1}\right) d k\right) \underbrace{\gamma(a) a^{-2 \rho}}_{\text {bounded }} d a d h,
\end{aligned}
$$

where $\gamma(a):=\prod_{\mu \in \Phi^{+}} \sinh (\mu(H))$, by Fubini's theorem. If $\phi \in W_{\tau}$, then this is finite by Proposition 2.9.13 combined with (2.52).

Lemma 2.9.16. Let $f \in \overline{{ }^{\circ}} \mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right)$. Then,

$$
\left(f, R^{*} \phi\right)=0
$$

for all $\phi \in W_{\tau}$.
Remark 2.9.17. The pairing is well-defined as $R^{*} \phi$ is square-integrable by Lemma 2.9.14 combined with (2.52).

Proof. Let $f \in{ }^{\circ} \mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right)$ and let ϕ be as above. Then,

$$
\left(f, R^{*} \phi\right)=\left(f^{\Omega}, \phi\right)=0 .
$$

Let now $f \in{ }^{{ }^{\circ}} \bar{C}\left(Y, V_{Y}(\tau, \varphi)\right)$. Then, there is a sequence $\left(f_{j}\right)_{j}$ in ${ }^{\circ} \mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right)$ such that f_{j} converges to f in $L^{2}\left(Y, V_{Y}(\tau, \varphi)\right)$. Since $R^{*} \phi$ is square-integrable,

$$
\left(f, R^{*} \phi\right)=\lim _{j \rightarrow \infty}\left(f_{j}, R^{*} \phi\right)=0 .
$$

Proposition 2.9.18. Let $f \in \mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right)$ be such that

$$
\left(f, R^{*} \phi\right)=0
$$

for all $\phi \in \tilde{W}_{\tau}$. Then, $f^{\Omega}=0$.
Remark 2.9.19. Again the pairing is well-defined as $R^{*} \phi$ is square-integrable by Lemma 2.9.14 combined with (2.52).

Proof. Note that it suffices to prove the following:
Let $\sigma=\left.\tau\right|_{M}$ (finite-dimensional representation of M). Let $f \in \mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right)$ be such that

$$
\int_{\Gamma \backslash G(\Omega) / M N}\left(f^{\Omega}(g, e), \phi(g)\right) d g=0
$$

for all $\phi \in \tilde{W}_{\sigma}$. Then, $f^{\Omega}=0$.
Let $\phi \in C_{c}^{\infty}\left(G(\Omega) / M N, V\left(\sigma_{M N}\right) \otimes V_{\varphi}\right)$ (smooth section of $V\left(\sigma_{M N}\right) \otimes V_{\varphi}$ with compact support in $G(\Omega) / M N)$ be such that $\int_{A} \phi(k a) a^{\rho} d a=0$ for all $k \in K(\Omega)$.

Then, $\int_{A} \phi(g a) a^{\rho} d a$ vanishes also for all $g \in G(\Omega)$. Let $\pi^{\sigma_{M N}}$ denote the G representation on the space of sections $V\left(\sigma_{M N}\right)$. Let $\pi(\gamma)$ be the induced action of $\pi^{\sigma_{M N}}(\gamma) \otimes \varphi(\gamma)(\gamma \in \Gamma)$. Then,

$$
\Phi(g):=\sum_{\gamma \in \Gamma}(\pi(\gamma) \phi)(g M N)=\sum_{\gamma \in \Gamma} \phi\left(\gamma^{-1} g\right) \quad(g \in G(\Omega))
$$

is well-defined and Φ belongs to \tilde{W}_{σ}. Indeed, since Γ acts properly discontinuously on Ω, it acts also properly continuously on $G(\Omega) / M N$. So, the above sum is locally finite as ϕ has compact support in $G(\Omega) / M N$. Thus,

$$
\begin{align*}
0 & =\int_{\Gamma \backslash G(\Omega) / M N}\left(f^{\Omega}(g, e), \Phi(g)\right) d g \tag{2.54}\\
& =\int_{G(\Omega) / M N}\left(f^{\Omega}(g, e), \phi(g)\right) d g \\
& =\int_{K(\Omega) / M} \int_{A}\left(f^{\Omega}(k a, e), \phi(k a)\right) a^{2 \rho} d a d k \\
& =\int_{K(\Omega)} \int_{A}\left(f^{\Omega}(k, a), \phi(k a)\right) d a d k .
\end{align*}
$$

Here, we view ϕ also as a function on $K(\Omega) / M \times A$.
Let $V(\sigma)=K \times_{M} V_{\sigma}$. Let us denote the space of conjugate-linear continuous functionals on $C^{\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right)$ with compact support by $C_{c}^{-\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right)$.
For $h \in K(\Omega), a \in A$ and $v \in V_{\sigma} \otimes V_{\varphi}$, define

$$
\delta_{(h, a)} v \in C_{c}^{-\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right)
$$

via

$$
\left(\delta_{(h, a)} v, \psi\right)=(v, \psi(h, a))
$$

$\left(\psi \in C^{\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right)\right)$.
Define the partial Fourier transform $\hat{T}(0)$ of $T \in C_{c}^{-\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right)$ at $\lambda=0$ by

$$
(\hat{T}(0), \psi)=\left(T, a^{\rho} \psi\right)
$$

$\left(\psi \in C^{\infty}\left(K(\Omega) / M, V(\sigma) \otimes V_{\varphi}\right)\right)$. Let $f \in C_{c}^{\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right)$. Then,

$$
\begin{aligned}
\left(\hat{T}_{f}(0), \psi\right)=\left(T_{f}, a^{\rho} \psi\right)=\int_{K(\Omega)} & \int_{A} \\
\quad & (f(k, a), \psi(k)) a^{\rho} d a d k \\
& =\int_{K(\Omega)}\left(\int_{A} f(k, a) a^{\rho} d a, \psi(k)\right) d k=:(\hat{f}(0), \psi)
\end{aligned}
$$

for all $\psi \in C^{\infty}\left(K(\Omega) / M, V(\sigma) \otimes V_{\varphi}\right)$. Let $h \in K(\Omega), a_{1}, a_{2} \in A$ and $v \in V_{\sigma} \otimes V_{\varphi}$. Let

$$
S=a_{1}^{-\rho} \delta_{\left(h, a_{1}\right)} v-a_{2}^{-\rho} \delta_{\left(h, a_{2}\right)} v \in C_{c}^{-\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right) .
$$

Then, $\hat{S}(0)$ vanishes. Indeed, $\hat{S}(0)(\psi)\left(\psi \in C^{\infty}\left(K(\Omega) / M, V(\sigma) \otimes V_{\varphi}\right)\right)$ is equal to

$$
a_{1}^{-\rho}\left(\delta_{\left(h, a_{1}\right)} v, a^{\rho} \psi\right)-a_{2}^{-\rho}\left(\delta_{\left(h, a_{2}\right)} v, a^{\rho} \psi\right)=a_{1}^{-\rho}\left(v, a_{1}^{\rho} \psi(h)\right)-a_{2}^{-\rho}\left(v, a_{2}^{\rho} \psi(h)\right)=0 .
$$

Claim 2.9.20. There is a sequence $\left(f_{j}\right)_{j}$ in $C_{c}^{\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right)$ such that
(1) f_{j} converges to $S=a_{1}^{-\rho} \delta_{\left(h, a_{1}\right)} v-a_{2}^{-\rho} \delta_{\left(h, a_{2}\right)} v$ in $C_{c}^{-\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right)$, and
(2) $\int_{A} f_{j}(k, a) a^{\rho} d a=0$ for all $k \in K(\Omega)$.

Proof. Choose $\left(\chi_{n}\right)_{n \in \mathbb{N}}$ in $C_{c}^{\infty}(K(\Omega) / M,[0,1])$ such that

$$
\operatorname{supp}\left(\chi_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow}\{h M\} \quad \text { and } \quad \int_{K} \chi_{n}(k M) d k=1 \quad \text { for all } n \in \mathbb{N} .
$$

Let $\left\{v_{i}\right\}$ be an orthonormal basis of $V_{\sigma} \otimes V_{\varphi}$. Let $g_{0,1}^{(i)}(k)=\tau\left(k^{-1} h\right) v_{i}$. Then, $g_{0,1}^{(i)} \in$ $C^{\infty}\left(K(\Omega) / M, V(\sigma) \otimes V_{\varphi}\right)$. Choose $g_{0,2} \in C_{c}^{\infty}(A, \mathbb{R})$ such that $\int_{A} g_{0,2}(a) a^{-\rho} d a=1$. For $k \in K(\Omega)$ and $a \in A$, set $g_{0}^{(i)}(k, a)=g_{0,1}^{(i)}(k) g_{0,2}(a)$. Then,

$$
g_{0}^{(i)} \in C^{\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right)
$$

is such that

$$
\int_{A}\left(g_{0}^{(i)}(k, a), \tau\left(k^{-1} h\right) v_{i}\right) a^{\rho} d a=1
$$

for all $k \in K(\Omega)$. Let $\left(g_{j, 1}\right)_{j}$ (resp. $\left.\left(g_{j, 2}\right)_{j}\right)$ be a Dirac sequence in $C_{c}^{\infty}(A, \mathbb{R})$ such that $\operatorname{supp}\left(g_{j, 1}\right)$ (resp. $\left.\operatorname{supp}\left(g_{j, 2}\right)\right)$ converges to $\left\{a_{1}\right\}$ (resp. $\left.\left\{a_{2}\right\}\right)$. Set

$$
g_{j}(k, a)=\chi_{j}(k M)\left(a_{1}^{-\rho} g_{j, 1}(a) \tau\left(k^{-1} h\right) v-a_{2}^{-\rho} g_{j, 2}(a) \tau\left(k^{-1} h\right) v\right) .
$$

Then, $g_{j} \in C_{c}^{\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right)$ converges to S in $C_{c}^{-\infty}(K(\Omega) / M \times$ $\left.A, V(\sigma) \otimes V_{\varphi}\right)$. For $v^{\prime} \in V_{\tau} \otimes V_{\varphi}$, set

$$
\lambda_{i, j}(k)=\int_{A}\left(g_{j}(k, a), \tau\left(k^{-1} h\right) v_{i}\right) a^{\rho} d a .
$$

Then, $k \in K(\Omega) \mapsto \lambda_{i, j}(k)$ belongs to $C_{c}^{\infty}(K(\Omega) / M, \mathbb{C})$. For $k \in K(\Omega)$ and $a \in A$, set

$$
f_{j}(k, a)=g_{j}(k, a)-\sum_{l} \lambda_{l, j}(k) g_{0}^{(l)}(k, a) .
$$

Then,

$$
f_{j} \in C_{c}^{\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right) \quad\left(\operatorname{supp} f_{j} \subset \operatorname{supp} \chi_{j}\right)
$$

For all $k \in K(\Omega)$ and all i, we have

$$
\int_{A}\left(f_{j}(k, a), \tau\left(k^{-1} h\right) v_{i}\right) a^{\rho} d a=\lambda_{i, j}(k)-\sum_{l} \lambda_{l, j}(k)\left(v_{l}, v_{i}\right)=0 .
$$

Thus, $\tau\left(h^{-1} k\right) \int_{A} f_{j}(k, a) a^{\rho} d a=0$ for all $k \in K(\Omega)$. Hence, $\int_{A} f_{j}(k, a) a^{\rho} d a$ vanishes for all $k \in K(\Omega)$, too. Let $\psi \in C^{\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right)$. Then,

$$
\begin{aligned}
& \int_{K(\Omega)} \int_{A}\left(f_{j}(k, a), \psi(k, a)\right) d a d k \\
= & \underbrace{\int_{K(\Omega)} \int_{A}\left(g_{j}(k, a), \psi(k, a)\right) d a d k}_{\rightarrow S(\Omega)}-\sum_{l} \underbrace{\int_{K(\Omega)} \lambda_{j}\left(k, v_{l}\right) \int_{A}\left(g_{0}^{(l)}(k, a), \psi(k, a)\right) d a d k}_{=: I_{j, l}(\psi)}
\end{aligned}
$$

and

$$
\begin{aligned}
I_{j, l}(\psi) & =\int_{K(\Omega)} \int_{A}\left(g_{j}(k, a), a^{\rho} \int_{A}\left(\psi\left(k, a^{\prime}\right), g_{0}^{(l)}\left(k, a^{\prime}\right)\right) d a^{\prime} \tau\left(k^{-1} h\right) v_{l}\right) d a d k \\
& =\left(\hat{g}_{j}(0), \int_{A}\left(\psi\left(k, a^{\prime}\right), g_{0}^{(l)}\left(k, a^{\prime}\right)\right) d a^{\prime} \tau\left(k^{-1} h\right) v_{l}\right)
\end{aligned}
$$

converges to 0 as $\hat{g}_{j}(0)$ converges to $\hat{S}(0)$ in $C_{c}^{-\infty}\left(K(\Omega) / M \times A, V(\sigma) \otimes V_{\varphi}\right)$. The claim follows.

It follows from the claim, applied to $\left\{v_{i}\right\}$, and (2.54) that

$$
\begin{equation*}
a_{1}^{-\rho} f^{\Omega}\left(k, a_{1}\right)=a_{2}^{-\rho} f^{\Omega}\left(k, a_{2}\right) \tag{2.55}
\end{equation*}
$$

Consequently, the right-hand side of (2.55) converges to zero when a_{2} tends to ∞. So, $f^{\Omega}\left(k, a_{1}\right)=0$. The proposition follows.

Theorem 2.9.21. Let $\tau \in \hat{K}$. Then,

$$
\overline{{ }^{\circ} \mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right)} \cap \mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right)={ }^{\circ} \mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right) .
$$

Thus, we also have

$$
{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)(\tau) \cap \mathscr{C}(\Gamma \backslash G, \varphi)={ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)(\tau) .
$$

Proof. As ${ }^{\circ} \mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right)$ is clearly contained in the left-hand side, it suffices to prove the other inclusion.
Let $f \in{ }^{\bar{o}} \mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right) \cap \mathscr{C}\left(Y, V_{Y}(\tau, \varphi)\right)$. Then, $\left(f, R^{*} \phi\right)=0$ for all $\phi \in W_{\tau}$, by Lemma 2.9.16. It follows by Proposition 2.9.18 that $f^{\Omega}=0$.

2.9.2 About the orthogonality of Eisenstein series to the space of cusp forms

We show in this section that the Eisenstein series are orthogonal to the space of cusp forms when the critical exponent δ_{Γ} is negative. The proof without making this assumption is much more complicated (see Theorem 2.9.51 in Section 2.9.5).

Definition 2.9.22 ([BO00, p.143]).
For $\phi \in C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$ and $v \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right)$, we define the Eisenstein series $E(\lambda, \phi, v) \in C^{\infty}(\Gamma \backslash G, \varphi)$ by

$$
E(\lambda, \phi, v)=c_{\mathrm{ext}(\phi), v}
$$

(well-defined as a meromorphic function).
Lemma 2.9.23. Let $\lambda \in \mathfrak{a}^{*}$ and $x \in G(\Omega)$. Then,

$$
\sum_{\gamma \in \Gamma} a\left(\gamma^{-1} x\right)^{-\lambda-\rho}<\infty \Longleftrightarrow \lambda>\delta_{\Gamma} .
$$

Proof. Let us assume that $\lambda \geqslant-\rho$. The proof for $\lambda<-\rho$ works completely similarly and is left to the reader. Let $U \subset K$ be an open neighbourhood of $\kappa(x)$ such that \bar{U} is a compact subset of $K(\Omega)$. Let W be a compact subset of $(\partial X \backslash \bar{U} M) M$ containing ΛM in its interior. Then, by Lemma 2.3 of [BO00, p.84], there is a constant $C>0$ such that $C a_{\gamma} \leqslant a\left(\gamma^{-1} \kappa(x)\right)$ for all $\gamma \in \Gamma$ with $k_{\gamma} \in W$. Since the closure of $\partial X \backslash W M$ is a compact subset of Ω and since Γ acts properly discontinuously on $X \cup \Omega, S:=\left\{\gamma K \mid \gamma \in \Gamma: k_{\gamma} M \in \partial X \backslash W M\right\}$ is finite. Since moreover $\sum_{\gamma \in \Gamma} a\left(\gamma^{-1} x\right)^{-\lambda-\rho}=\sum_{g K \in\{\gamma K \mid \gamma \in \Gamma\}} a\left(g^{-1} x\right)^{-\lambda-\rho}$, we may assume without loss of generality that $k_{\gamma} \in W$. Since on one hand

$$
\sum_{\gamma \in \Gamma} a\left(\gamma^{-1} x\right)^{-\lambda-\rho}=a(x)^{-\lambda-\rho} \sum_{\gamma \in \Gamma} a\left(\gamma^{-1} \kappa(x)\right)^{-\lambda-\rho} \leqslant C a(x)^{-\lambda-\rho} \sum_{\gamma \in \Gamma} a_{\gamma}^{-\lambda-\rho}
$$

and on the other hand

$$
\sum_{\gamma \in \Gamma} a\left(\gamma^{-1} x\right)^{-\lambda-\rho}=a(x)^{-\lambda-\rho} \sum_{\gamma \in \Gamma} a\left(\gamma^{-1} \kappa(x)\right)^{-\lambda-\rho} \geqslant a(x)^{-\lambda-\rho} \sum_{\gamma \in \Gamma} a_{\gamma}^{-\lambda-\rho},
$$

the lemma follows by definition of δ_{Γ} and by the fact that $\sum_{\gamma \in \Gamma} a_{\gamma}^{-\lambda-\rho}$ diverges for $\lambda=\delta_{\Gamma}$.

Definition 2.9.24. Define the Schwartz space on G by

$$
\mathscr{C}\left(G, V_{\varphi}\right)=\left\{f \in C^{\infty}\left(G, V_{\varphi}\right) \mid p_{r, X, Y}(f)<\infty \quad \forall r \geqslant 0, X, Y \in \mathcal{U}(\mathfrak{g})\right\}
$$

where $p_{r, X, Y}(f)={ }^{X} p_{r, X, Y}(f)$. We equip $\mathscr{C}\left(G, V_{\varphi}\right)$ with the topology induced by the seminorms.

Remark 2.9.25. This Schwartz space is just the vector-valued version of $\mathscr{C}(G, 1)$. So, instead of the absolute value, we take here the norm on V_{φ}.

The following results are of independent interest.
Lemma 2.9.26. Let $\chi \in C_{c}^{\infty}(X \cup \Omega)$ be as in Lemma 2.3.19.
Let $f \in C^{\infty}(\Gamma \backslash G, \varphi)$. Then,

$$
f \in \mathscr{C}(\Gamma \backslash G, \varphi) \Longleftrightarrow \chi f \in \mathscr{C}\left(G, V_{\varphi}\right) .
$$

Remark 2.9.27. Here $\chi f(g)(g \in G)$ is by definition equal to $\chi(g K) f(g)$.
Proof. Let $X, Y \in \mathfrak{g}, r \geqslant 0$ and let $f \in C^{\infty}(\Gamma \backslash G, \varphi)$.
\Rightarrow : Assume that $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$. Since $\Lambda_{\{e\}}=\varnothing, \Omega_{\{e\}}=\partial X$. So, $U_{\mathcal{F}_{\{e\}}}$ is equal to \bar{X}. Let U be an open subset of X, containing $\operatorname{supp}(\chi) \cap X$, that is relatively compact in $X \cup \Omega$. Then, $U \in \mathcal{U}_{\Gamma}$. By the Leibniz rule,

$$
\sup _{g K \in X}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho}\left|L_{X} \chi f(g)\right|=\sup _{g K \in U}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho}\left|L_{X} \chi f(g)\right|
$$

is less or equal than

$$
\begin{aligned}
& \sup _{g K \in X}\left|L_{X} \chi(g K)\right| \sup _{g K \in U}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho}|f(g)| \\
&+\sup _{g K \in X}|\chi(g K)| \sup _{g K \in U}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho}\left|L_{X} f(g)\right|
\end{aligned}
$$

This is finite by Lemma 2.3.19 and as $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$. The assertion for $Y \in \mathfrak{g}$, respectively $X, Y \in \mathfrak{g}$, can be shown similarly.
$\Leftarrow:$ Assume that $\chi f \in \mathscr{C}\left(G, V_{\varphi}\right)$. As $\operatorname{clo}(U)$ is compact in $X \cup \Omega$ and since supp χ contains by construction an open set $V \subset X \cup \Omega$ such that $\bigcup_{\gamma \in \Gamma} \gamma V=X \cup \Omega$, there exist $\gamma_{1}:=e, \ldots, \gamma_{n} \in \Gamma$ such that $U \subset \bigcup_{i=1}^{n} \gamma_{i} \operatorname{supp} \chi=: C$. Since Γ acts properly discontinuously on $X \cup \Omega$,

$$
\{\gamma \in \Gamma \mid \gamma U \cap \operatorname{supp} \chi \neq \varnothing\} \subset\{\gamma \in \Gamma \mid \gamma C \cap C \neq \varnothing\}
$$

is finite. Thus, we have

$$
|f(g)|=\sum_{\gamma \in \Gamma}|\chi f(\gamma g)| \leqslant p_{r, 1,1}(\chi f) \sum_{i=1}^{n} a_{\gamma_{i} g}^{-\rho}\left(1+\log a_{\gamma_{i} g}\right)^{-r}
$$

for all $g K \in U$. By Lemma 2.1.5, this is less or equal than

$$
p_{r, 1,1}(\chi f) \sum_{i=1}^{n} a_{\gamma_{i}}^{\rho}\left(1+\log a_{\gamma_{i}}\right)^{r} a_{g}^{-\rho}\left(1+\log a_{g}\right)^{-r} .
$$

Hence, ${ }^{U} p_{r, 1,1}(f)$ is finite. Since $\{\gamma \in \Gamma \mid \gamma U \cap \operatorname{supp} \chi \neq \varnothing\}$ is finite, we have

$$
\begin{aligned}
\left|L_{X} f(g)\right|=\sum_{i=1}^{n}\left|\chi L_{X} f\left(\gamma_{i} g\right)\right| & =\sum_{i=1}^{n}\left|L_{X}(\chi f)\left(\gamma_{i} g\right)-\left(L_{X} \chi\left(\gamma_{i} g K\right)\right) f\left(\gamma_{i} g\right)\right| \\
& \leqslant \sum_{i=1}^{n}\left|L_{X}(\chi f)\left(\gamma_{i} g\right)\right|+\left(\sum_{i=1}^{n}\left|L_{X} \chi\left(\gamma_{i} g K\right)\right|\right)|f(g)|
\end{aligned}
$$

for all $g K \in U$. As $\chi f \in \mathscr{C}\left(G, V_{\varphi}\right)$,

$$
\sum_{i=1}^{n}\left|L_{X}(\chi f)\left(\gamma_{i} g\right)\right| \leqslant p_{r, X, 1}(\chi f) \sum_{i=1}^{n} a_{\gamma_{i}}^{\rho}\left(1+\log {a_{\gamma_{i}}}\right)^{r} a_{g}^{-\rho}\left(1+\log a_{g}\right)^{-r}
$$

with $p_{r, X, 1}(\chi f)<\infty$. As in addition $\sup _{x K \in X}\left|L_{X} \chi(x K)\right|<\infty$ by (4) of Lemma 2.3.19,

$$
{ }^{U} p_{r, X, 1}(f) \leqslant p_{r, X, 1}(\chi f) \sum_{i=1}^{n} a_{\gamma_{i}}^{\rho}\left(1+\log a_{\gamma_{i}}\right)^{r}+\left(\sum_{i=1}^{n} \sup _{g K \in X}\left|L_{X} \chi\left(\gamma_{i} g K\right)\right|\right)^{U} p_{r, 1,1}(f)
$$

is finite. The assertion for $Y \in \mathfrak{g}$, respectively $X, Y \in \mathfrak{g}$, is proven similarly. In that case, one must use Remark 2.3.20 of Lemma 2.3.19 instead of (4). The assertion for $X, Y \in \mathcal{U}(\mathfrak{g})$ follows by induction. This completes the proof of the lemma.

Lemma 2.9.28. Let $\chi \in C_{c}^{\infty}(X \cup \Omega)$ be as in Lemma 2.3.19.
Let $f \in C^{\infty}(\Gamma \backslash G, \varphi)$. Then,

$$
f \in C_{c}^{\infty}(\Gamma \backslash G, \varphi) \Longleftrightarrow \chi f \in C_{c}^{\infty}\left(G, V_{\varphi}\right)
$$

Proof. Let $f \in C^{\infty}(\Gamma \backslash G, \varphi)$.
\Rightarrow : Assume that $f \in C_{c}^{\infty}(\Gamma \backslash G, \varphi)$. Then, there is a compact subset C of X such that $\operatorname{supp}(f) K \subset \Gamma C$. As in the proof of the previous lemma, we can show that there exist $\gamma_{1}:=e, \ldots, \gamma_{n} \in \Gamma$ such that $C \subset \bigcup_{i=1}^{n} \gamma_{i} \operatorname{supp} \chi=: C^{\prime}$. Since Γ acts properly discontinuously on $X \cup \Omega$,

$$
\Gamma_{C^{\prime}}:=\{\gamma \in \Gamma \mid \gamma \operatorname{supp}(\chi) \cap \gamma C \neq \varnothing\} \subset\left\{\gamma \in \Gamma \mid \gamma C^{\prime} \cap C^{\prime} \neq \varnothing\right\}
$$

is finite. $\operatorname{So}, \operatorname{supp}(\chi f) K \subset \operatorname{supp}(\chi) \cap \operatorname{supp}(f) K \subset \operatorname{supp}(\chi) \cap \Gamma C \subset \bigcup_{\gamma \in \Gamma_{C^{\prime}}} \gamma C$ and this set is compact.
\Leftrightarrow : Assume that $\chi f \in C_{c}^{\infty}\left(G, V_{\varphi}\right)$. For $g \in G$, we have

$$
f(g)=\sum_{\gamma \in \Gamma} \chi f(\gamma g)
$$

Thus, $\operatorname{supp} f \subset \Gamma \operatorname{supp}(\chi f)$. This completes the proof of the lemma.
Lemma 2.9.29. Let $\chi \in C_{c}^{\infty}(X \cup \Omega)$ be as in Lemma 2.3.19, let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and let $\left(f_{j}\right)_{j}$ be a sequence in $\mathscr{C}(\Gamma \backslash G, \varphi)$. Then,

$$
f_{j} \rightarrow f \text { in } \mathscr{C}(\Gamma \backslash G, \varphi) \quad \Longleftrightarrow \quad \chi f_{j} \rightarrow \chi f \text { in } \mathscr{C}\left(G, V_{\varphi}\right)
$$

Proof. The lemma follows from the proof of Lemma 2.9.26.
Definition 2.9.30. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$. Define

$$
\widehat{f^{\Omega}}(\lambda, x, k):=\int_{A} a^{\lambda-\rho} f^{\Omega}(x, a k) d a \quad(x \in G(\Omega), k \in K)
$$

whenever the integral converges.

Let us show now that $\widehat{f^{\Omega}}(\lambda, x, k)(x \in G(\Omega), k \in K)$ is well-defined for $\lambda \in i \mathfrak{a}^{*}$ and $\delta_{\Gamma}<0$.

Lemma 2.9.31. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$. Then,

$$
\int_{A} \int_{N}\left|a^{\lambda-\rho} f(x n a k)\right| d n d a<\infty \quad(x \in G(\Omega), k \in K)
$$

for $\lambda \in i \mathfrak{a}^{*}$ and $\delta_{\Gamma}<0$.
Proof. Let $\chi \in C_{c}^{\infty}(X \cup \Omega)$ be as in Lemma 2.3.19 and let $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$. Since

$$
|f(g)|=\sum_{\gamma \in \Gamma} \chi(\gamma g K)|f(g)|=\sum_{\gamma \in \Gamma}|\chi f(\gamma g)|
$$

and since $\chi \geqslant 0, \int_{N}\left|a^{\lambda-\rho} f(x n a k)\right| d n(x \in G(\Omega))$ is equal to

$$
\begin{equation*}
\sum_{\gamma \in \Gamma} a^{\operatorname{Re}(\lambda)-\rho} \int_{N}|\chi f(\gamma x n a k)| d n \tag{2.56}
\end{equation*}
$$

by Fubini's theorem. By Lemma 2.9.26, $\chi f \in \mathscr{C}\left(G, V_{\varphi}\right)$. Fix $d>1$. By Proposition 2.3.30 with $\Gamma=\{e\},(2.56)$ is less or equal than

$$
c p_{2 d, 1,1}(f) \sum_{\gamma \in \Gamma} a^{\operatorname{Re}(\lambda)-\rho} a(\gamma x)^{-\rho} a^{\rho}(1+|\log a(\gamma x) a|)^{-d}
$$

for some constant $c>0$. Thus,

$$
\begin{aligned}
& \sum_{\gamma \in \Gamma} \int_{A} a^{\operatorname{Re}(\lambda)} a(\gamma x)^{-\rho}(1+|\log a(\gamma x) a|)^{-d} d a \\
= & \sum_{\gamma \in \Gamma} a(\gamma x)^{-\rho} a(\gamma x)^{-\operatorname{Re}(\lambda)} \int_{A} a^{\operatorname{Re}(\lambda)}(1+|\log a|)^{-d} d a \\
= & \sum_{\gamma \in \Gamma} a(\gamma x)^{-\operatorname{Re}(\lambda)-\rho}\left(\int_{-\infty}^{0} e^{\operatorname{Re}(\lambda) t}(1-t)^{-d} d t+\int_{0}^{\infty} e^{\operatorname{Re}(\lambda) t}(1+t)^{-d} d t\right) .
\end{aligned}
$$

The integrals converge if and only if $\operatorname{Re}(\lambda)=0$ and, by Lemma 2.9.23, the series converges if and only if $\operatorname{Re}(\lambda)>\delta_{\Gamma}$. Thus, $\int_{A} \int_{N}\left|a^{\lambda-\rho} f(x n a k)\right| d n d a$ is finite by Fubini's theorem if $\operatorname{Re}(\lambda)=0$ and $\delta_{\Gamma}<0$.

Recall that the pairing between $C^{\infty}\left(B, V_{B}\left(\sigma_{\mu}, \varphi\right)\right)\left(\mu \in \mathfrak{a}_{\mathbb{C}}^{*}\right)$ and $C^{\infty}\left(B, V_{B}\left(\sigma_{-\bar{\mu}}, \varphi\right)\right)$ is defined by

$$
\int_{B}\left(f_{1}(x), f_{2}(x)\right)
$$

where (\cdot, \cdot) denotes the scalar product on $V_{\sigma} \otimes V_{\varphi}$ (see (2.38)). This pairing induces in a natural way a pairing between $C^{-\infty}\left(B, V_{B}\left(\sigma_{\mu}, \varphi\right)\right)$ and $C^{\infty}\left(B, V_{B}\left(\sigma_{-\bar{\mu}}, \varphi\right)\right)$.

Proposition 2.9.32. Let $\lambda \in i \mathfrak{a}^{*}$. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi), \phi \in C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$ and $v \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-\lambda}\right)\right)$. Assume $\delta_{\Gamma}<0$. Then, $\int_{K} \overline{v\left(k^{-1}\right)} \otimes \widehat{f^{\Omega}}(-\lambda, \cdot, k) d k \in$ $C^{\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$ and

$$
(E(\lambda, \phi, v), f)_{L^{2}(\Gamma \backslash G, \varphi)}:=\int_{\Gamma \backslash G}(E(\lambda, \phi, v)(g), f(g)) d g
$$

is equal to

$$
\left(\phi, \int_{K} \overline{v\left(k^{-1}\right)} \otimes \widehat{f^{\Omega}}(-\lambda, \cdot, k) d k\right)_{B}
$$

In particular, $\int_{\Gamma \backslash G}(E(\lambda, \phi, v)(g), f(g)) d g=0$ if $f \in{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$. In other words, the Eisenstein series are orthogonal to the space of cusp forms.
Remark 2.9.33. If $\phi \notin C^{\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$, then the integral

$$
\int_{\Gamma \backslash G}(E(\lambda, \phi, v)(g), f(g)) d g
$$

is in general only a formal notation meaning that the tempered distribution $E(\lambda, \phi, v) \in \mathscr{C}^{\prime}(\Gamma \backslash G, \varphi)$ (see Remark 2.8.2 (2)) has to be applied to the Schwartz function f.
Proof. Let $\lambda \in i \mathfrak{a}^{*}$ and $\phi \in C^{\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$. Let f and v be as above. As $C^{\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$ is dense in $C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$ and as the pairings depend continuously on ϕ, we may assume without loss of generality that $\phi \in C^{\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$. Let $\left\{v_{i}\right\}$ be an orthonormal basis of V_{φ} and let $\tilde{v}_{j} \in V_{\tilde{\varphi}}$ be such that $\left\langle v_{i}, \tilde{v}_{j}\right\rangle=\delta_{i, j}$. We identify V_{φ} with $\mathbb{C}^{\operatorname{dim}\left(V_{\varphi}\right)}$ via the basis $\left\{v_{i}\right\}$. Then,

$$
\left(v, v^{\prime}\right)=\sum_{j} \overline{\left\langle v, \tilde{v}_{j}\right\rangle} v_{j}^{\prime}
$$

for all $v, v^{\prime} \in V_{\varphi}$. Note that $\int_{K} \overline{v\left(k^{-1}\right)} \otimes \widehat{f^{\Omega}}(-\lambda, \cdot, k) d k \in C^{\infty}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$. Let $\chi_{\infty} \in C_{c}^{\infty}(\Omega)$ be as in Lemma 2.3.19. Assume $\delta_{\Gamma}<0$. By Lemma 2.9.31,

$$
\begin{aligned}
& \int_{\Gamma \backslash \Omega}\left(\phi(x), \int_{K} \overline{v\left(k^{-1}\right)} \otimes \widehat{f^{\Omega}}(-\lambda, x, k) d k\right) \\
&=\int_{\Gamma \backslash \Omega} \int_{K} \int_{A} \int_{N}\left(\phi(x), \overline{v\left(k^{-1}\right)} \otimes f(x n a k) a^{-2 \rho} a^{-\lambda+\rho}\right) d n d a d k
\end{aligned}
$$

is well-defined and it is equal to

$$
\begin{equation*}
\int_{\Gamma \backslash \Omega} \int_{G}\left(\phi(x), \overline{v\left(\kappa\left(g^{-1}\right)\right)} \otimes f(x g) a\left(g^{-1}\right)^{\lambda-\rho}\right) d g \tag{2.57}
\end{equation*}
$$

Moreover, we can apply Fubini's theorem. Thus, (2.57) is equal to

$$
\begin{aligned}
& \int_{G} \int_{K} \chi_{\infty}(x M)\left(a\left(g^{-1} x\right)^{-\lambda-\rho} \phi(x), \overline{v\left(\kappa\left(g^{-1} x\right)\right)} \otimes f(g)\right) d x d g \\
= & \int_{G} \int_{K} \chi_{\infty}(x M)\left(\left\langle\phi(x), \pi^{\tilde{\sigma},-\lambda}(g) v(x)\right\rangle, f(g)\right) d x d g \\
= & \sum_{j} \int_{\Gamma \backslash G} \sum_{\gamma \in \Gamma} \int_{K} \chi_{\infty}(x M) \overline{\left\langle\phi(x), \pi^{\tilde{\sigma},-\lambda}(\gamma g) v(x) \otimes \tilde{v}_{j}\right\rangle} f_{j}(\gamma g) d x d g .
\end{aligned}
$$

Since (\cdot, \cdot) is unitary, this is equal to

$$
\sum_{j} \int_{\Gamma \backslash G} \sum_{\gamma \in \Gamma} \int_{K} \chi_{\infty}(x M) \overline{\left\langle\phi(x), \pi^{\tilde{\sigma},-\lambda}(\gamma g) v(x) \otimes \tilde{\varphi}(\gamma) \tilde{v}_{j}\right\rangle} f_{j}(g) d x d g .
$$

By definition of $\pi(\gamma)$, this yields

$$
\sum_{j} \int_{\Gamma \backslash G} \sum_{\gamma \in \Gamma} \int_{K} \chi_{\infty}(x M) \overline{\left\langle\phi(x), \pi(\gamma)\left(\pi^{\tilde{\sigma},-\lambda}(g) v(x) \otimes \tilde{v}_{j}\right)\right\rangle} f_{j}(g) d x d g
$$

By Lemma 2.8.25, this is again equal to

$$
\begin{aligned}
& \sum_{j} \int_{\Gamma \backslash G} \overline{\left\langle\phi, \pi_{*}\left(\pi^{\tilde{\sigma},-\lambda}(g) v \otimes \tilde{v}_{j}\right)\right\rangle_{B}} f_{j}(g) d g \\
= & \sum_{j} \int_{\Gamma \backslash G} \overline{\left.\operatorname{ext}(\phi), \pi^{\tilde{\sigma},-\lambda}(g) v \otimes \tilde{v}_{j}\right\rangle_{B}} f_{j}(g) d g \\
= & \int_{\Gamma \backslash G}\left(\left\langle\operatorname{ext}(\phi), \pi^{\tilde{\sigma},-\lambda}(g) v\right\rangle_{\partial X}, f(g)\right) d g .
\end{aligned}
$$

The proposition follows.

2.9.3 Wave packets of Eisenstein series

We show that a compactly supported wave packet belongs to the Schwartz space. Until the end of this section, we assume again that $X \neq \mathbb{O} H^{2}$.
By [BO00, p.86], we can consider holomorphic, smooth or continuous families of sections $\mathfrak{a}_{\mathbb{C}}^{*} \ni \mu \mapsto f_{\mu} \in C^{ \pm \infty}\left(B, V_{B}\left(\sigma_{\mu}, \varphi\right)\right)$. We denote the linear space of smooth families $\mathfrak{a}_{+}^{*} \ni \mu \mapsto \phi_{i \mu} \in C^{\infty}\left(B, V_{B}\left(\sigma_{i \mu}, \varphi\right)\right)$ with compact support in \mathfrak{a}_{+}^{*} by $\mathcal{H}_{0}^{\sigma}(\varphi)$ and the linear space of smooth families $\mathfrak{a}_{+}^{*} \ni \mu \mapsto v_{-i \mu} \in C^{K}\left(\partial X, V\left(\tilde{\sigma}_{-i \mu}\right)\right)$ by $\mathcal{H}^{\tilde{\sigma}, K}$.
Definition 2.9.34. Let $\phi \in \mathcal{H}_{0}^{\sigma}(\varphi)$ and $v \in \mathcal{H}^{\tilde{\sigma}, K}$. Then, the wave packet transform

$$
E(\phi, v): \mathcal{H}_{0}^{\sigma}(\varphi) \times \mathcal{H}^{\tilde{\sigma}, K} \rightarrow C^{\infty}(\Gamma \backslash G, \varphi)
$$

is defined by

$$
E(\phi, v):=\int_{\mathfrak{a}_{+}^{*}} c_{\operatorname{ext}\left(\phi_{i \mu}\right), v-i \mu} p_{\sigma}(i \mu) d \mu
$$

The section $E(\phi, v)$ is called a compactly supported wave packet (of Eisenstein series).

Proposition 2.9.35. If $\phi \in \mathcal{H}_{0}^{\sigma}(\varphi)$ and $v \in \mathcal{H}^{\tilde{\sigma}, K}$, then $E(\phi, v)$ belongs to $\mathscr{C}(\Gamma \backslash G, \varphi)$.
Proof. Compare with Lemma 10.7 of [BO00, p.147]. Let $U \in \mathcal{U}_{\Gamma}$ and let $g K \in U$. Fix $X, Y \in \mathcal{U}(\mathfrak{g})$. Then, $L_{X} R_{Y} E(\phi, v)(g)$ is equal to

$$
\int_{\mathfrak{a}_{+}^{*}} c_{\pi^{\sigma, i \mu}(X) \operatorname{ext}\left(\phi_{i \mu}\right), \pi^{\tilde{\sigma},-i \mu}(Y) v_{-i \mu}}(g) p_{\sigma}(i \mu) d \mu
$$

By Lemma 2.5.12, there exists $\varepsilon>0$ such that we have

$$
\begin{align*}
& c_{\pi^{\sigma, i \mu}(X) \operatorname{ext}\left(\phi_{i \mu}\right), \pi^{\tilde{\sigma},-i \mu}(Y) v_{-i \mu}}(\text { kah }) \tag{2.58}\\
& =a^{i \mu-\rho}\left\langle\operatorname{ext}\left(\phi_{i \mu}\right)(k),\left(\hat{J}_{\tilde{\sigma},-i \mu}^{w} \pi^{\tilde{\sigma},-i \mu}(Y) v_{-i \mu}\right)\left(h^{-1} w^{-1}\right)\right\rangle \\
& \quad+a^{-(i \mu+\rho)}\left\langle\left(\hat{J}_{\sigma, i \mu}^{w} \pi^{\sigma, i \mu}(X) \operatorname{ext}\left(\phi_{i \mu}\right)\right)(k), \pi^{\tilde{\sigma},-i \mu}(Y) v_{-i \mu}\left(h^{-1} w\right)\right\rangle \\
& \quad+a^{-(\rho+\varepsilon)} R\left(i \mu, \pi^{\sigma, i \mu}(X) \operatorname{ext}\left(\phi_{i \mu}\right), k a h\right)
\end{align*}
$$

for $k M$ varying in a compact subset of Ω and for a sufficiently large and $h \in K$, where the remainder function $(\mu, k a h) \mapsto R\left(i \mu, \pi^{\tilde{\sigma},-i \mu}(Y) v_{-i \mu}, k a h\right)$ is uniformly bounded. Let us write U as the union of a relatively compact set U_{1} in X and a set $U_{2} \subset X$ that is relatively compact in $X \cup \Omega$ such that (2.58) holds for any $k a K \in U_{2}$ and $h \in K$. As $\mu \mapsto\left\langle\operatorname{ext}\left(\phi_{i \mu}\right)(k),\left(\hat{J}_{\tilde{\sigma},-i \mu}^{w} \pi^{\tilde{\sigma},-i \mu}(Y) v_{-i \mu}\right)\left(h^{-1} w^{-1}\right)\right\rangle$ has compact support with respect to μ and is smooth with respect to (μ, k, h) (as long as $k M$ varies in a compact subset of Ω), for all $N \in \mathbb{N}_{0}$ there exists a constant C_{N} such that

$$
\begin{aligned}
\mid \int_{\mathfrak{a}_{+}^{*}} e^{i \mu \log a}\left\langle\operatorname{ext}\left(\phi_{i \mu}\right)(k),\left(\hat{J}_{\tilde{\sigma},-i \mu}^{w} \mu^{\tilde{\sigma},-i \mu}(Y) v_{-i \mu}\right)\left(h^{-1} w^{-1}\right)\right\rangle & p_{\sigma}(i \mu) d \mu \mid \\
& \leqslant C_{N}(1+|\log a|)^{-N}
\end{aligned}
$$

as the Fourier transform of a Schwartz function on \mathbb{R}^{n} (here $n=1$) is again a Schwartz function on \mathbb{R}^{n}. Let W be a compact subset of Ω. Let $\chi \in C_{c}^{\infty}(\Omega)$ be a cut-off function which is equal to one on W. Then,

$$
\chi \hat{J}_{\sigma, i \mu}^{w} \pi^{\sigma, i \mu}(X)(1-\chi) \operatorname{ext}\left(\phi_{i \mu}\right)
$$

is a smoothing operator by Lemma 5.3 of [BO00, p.98]. Since $\operatorname{ext}\left(\phi_{i \mu}\right)(x)=\phi_{i \mu}(x)$ for all $x \in K(\Omega)$,

$$
\chi \hat{J}_{\sigma, i \mu}^{w} \pi^{\sigma, i \mu}(X) \operatorname{ext}\left(\phi_{i \mu}\right)
$$

is also a smoothing operator. So,

$$
\mu \mapsto\left\langle\left(\hat{J}_{\sigma, i \mu}^{w} \pi^{\sigma, i \mu}(X) \operatorname{ext}\left(\phi_{i \mu}\right)\right)(k), \pi^{\tilde{\sigma},-i \mu}(Y) v_{-i \mu}\left(h^{-1} w\right)\right\rangle
$$

is smooth with respect to k as long as $k M$ varies in a compact subset of Ω. Since in addition it has compact support with respect to μ and is also smooth with respect to (μ, k, h) (as long as $k M$ varies in a compact subset of Ω), for all $N \in \mathbb{N}_{0}$ there exists a constant C_{N}^{\prime} such that

$$
\begin{aligned}
&\left|\int_{\mathfrak{a}_{+}^{*}} e^{-i \mu \log a}\left\langle\left(\hat{J}_{\sigma, i \mu}^{w} \pi^{\sigma, i \mu}(X) \operatorname{ext}\left(\phi_{i \mu}\right)\right)(k), \pi^{\tilde{\sigma},-i \mu}(Y) v_{-i \mu}\left(h^{-1} w\right)\right\rangle p_{\sigma}(i \mu) d \mu\right| \\
& \leqslant C_{N}^{\prime}(1+|\log a|)^{-N}
\end{aligned}
$$

Thus,

$$
{ }^{U} p_{N, X, Y}(E(\phi, v)) \leqslant{ }^{U_{1}} p_{N, X, Y}(E(\phi, v))+{ }^{U_{2}} p_{N, X, Y}(E(\phi, v))<\infty
$$

for all $N \in \mathbb{N}_{0}$. Hence, $E(\phi, v)$ belongs to $\mathscr{C}(\Gamma \backslash G, \varphi)$ as the seminorms ${ }^{V} p_{N, X, Y}$ $\left(V \in \mathcal{U}_{\Gamma}, X, Y \in \mathcal{U}(\mathfrak{g}), N \in \mathbb{N}_{0}\right)$ are sufficient to define the topology on $\mathscr{C}(\Gamma \backslash G, \varphi)$.

Recall the definition of $v_{T, \lambda}$: For $v \in V_{\tilde{\gamma}}(\gamma \in \hat{K}), \lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ and $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$, we defined $v_{T, \lambda} \in C^{\infty}\left(\partial X, V\left(\tilde{\sigma}_{\lambda}\right)\right)\left(\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}\right)$ by

$$
v_{T, \lambda}(k)={ }^{t} T \tilde{\gamma}\left(k^{-1}\right) v \quad(k \in K) .
$$

Let $v_{T}: \mathfrak{a}_{+}^{*} \ni \mu \mapsto v_{T,-i \mu}$. Set

$$
\left\|v_{T}\right\|=\left(\int_{K}\left({ }^{t} T \tilde{\gamma}\left(k^{-1}\right) v(k),{ }^{t} T \tilde{\gamma}\left(k^{-1}\right) v(k)\right) d k\right)^{\frac{1}{2}}
$$

Let $\sigma \in \hat{M}$ and let $\lambda \in i \mathfrak{a}^{*} \backslash\{0\}$. Recall that we defined $\pi^{\sigma, \lambda}(f)\left(f \in \mathscr{C}\left(G, V_{\varphi}\right)\right)$ such that

$$
\pi^{\sigma, \lambda}(F) v=\int_{G} F(g) \pi^{\sigma, \lambda}(g) v d g
$$

for all $F \in C_{c}\left(G, V_{\varphi}\right)$ and $v \in C^{\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)$ (cf. (2.46) and (2.47)).

Lemma 2.9.36. Let $\sigma \in \hat{M}, \gamma \in \hat{K}, \mathfrak{a}_{+}^{*} \ni \mu \mapsto \phi_{i \mu} \in L^{2}\left(B, V_{B}\left(\sigma_{i \mu}, \varphi\right)\right)$ be a measurable family, $v \in V_{\tilde{\gamma}}$ and $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$. Let $E\left(\phi, v_{T}\right) \in \mathscr{C}(\Gamma \backslash G, \varphi)$. Then,

$$
\phi_{i \mu}=\frac{1}{\left\|v_{T}\right\|^{2}} \overline{\pi_{*}\left(\pi^{\tilde{\sigma},-i \mu}\left(\chi \overline{E\left(\phi, v_{T}\right)}\right)\left(v_{T,-i \mu}\right)\right)} \in C^{\infty}\left(B, V_{B}\left(\sigma_{i \mu}, \varphi\right)\right)
$$

Thus, $\mathfrak{a}_{+}^{*} \ni \mu \mapsto \phi_{i \mu}$ is a smooth family.
Proof. Let $\sigma \in \hat{M}, \psi \in \mathcal{H}_{0}^{\sigma}(\varphi)$. Let ϕ and v_{T} be as above. By [BO00, p.156], $\left(E\left(\psi, v_{T}\right), E\left(\phi, v_{T}\right)\right)_{L^{2}(\Gamma \backslash G, \varphi)}$ is equal to

$$
\left\|v_{T}\right\|^{2} \cdot \int_{\mathfrak{a}_{+}^{*}}\left(\psi_{i \mu}, \phi_{i \mu}\right)_{B} p_{\sigma}(i \mu) d \mu
$$

But it is also equal to

$$
\begin{aligned}
& \int_{\Gamma \backslash G} E\left(\psi, v_{T}\right)(g) \overline{E\left(\phi, v_{T}\right)(g)} d g \\
= & \int_{G} E\left(\psi, v_{T}\right)(g) \overline{\left(\chi E\left(\phi, v_{T}\right)\right)(g)} d g \\
= & \int_{G} \int_{\mathfrak{a}_{+}^{*}} \int_{K}\left\langle\operatorname{ext}\left(\psi_{i \mu}\right)(k), \pi^{\tilde{\sigma},-i \mu}(g) v_{T,-i \mu}(k)\right\rangle d k p_{\sigma}(i \mu) d \mu \overline{\left(\chi E\left(\phi, v_{T}\right)\right)(g)} d g \\
= & \int_{\mathfrak{a}_{+}^{*}} \int_{K}\left\langle\operatorname{ext}\left(\psi_{i \mu}\right)(k), \int_{G} \overline{\left(\chi E\left(\phi, v_{T}\right)\right)(g)} \pi^{\tilde{\sigma},-i \mu}(g) v_{T,-i \mu}(k) d g\right\rangle d k p_{\sigma}(i \mu) d \mu \\
= & \int_{\mathfrak{a}_{+}^{*}} \int_{\Gamma \backslash \Omega}\left\langle\psi_{i \mu}(x), \pi_{*}\left(\pi^{\tilde{\sigma},-i \mu}\left(\chi \overline{E\left(\phi, v_{T}\right)}\right)\left(v_{T,-i \mu}\right)\right)(x)\right\rangle p_{\sigma}(i \mu) d \mu .
\end{aligned}
$$

Since $\mathcal{H}_{0}^{\sigma}(\varphi)$ is dense in the Hilbert space $\int_{\mathfrak{a}_{+}^{*}}^{\oplus} L^{2}\left(B, V_{B}\left(\sigma_{i \lambda}, \varphi\right)\right) p_{\sigma}(i \lambda) d \lambda$,

$$
\phi_{i \mu}=\frac{1}{\left\|v_{T}\right\|^{2}} \overline{\pi_{*}\left(\pi^{\tilde{\sigma},-i \mu}\left(\chi \overline{E\left(\phi, v_{T}\right)}\right)\left(v_{T,-i \mu}\right)\right)} .
$$

The lemma follows.
Corollary 2.9.37. Let $\gamma \in \hat{K}$ and $f \in \mathscr{C}(\Gamma \backslash G, \varphi)(\gamma)$. Then, $p_{a c}(f)$, where $p_{a c}$ denotes the orthogonal projection on $L^{2}(\Gamma \backslash G, \varphi)_{a c}$, is a finite sum of wave packets of the form $E\left(\phi, v_{T}\right) \in L^{2}(\Gamma \backslash G, \varphi)$ with $v \in V_{\tilde{\gamma}}, \sigma \in \hat{M}, T \in \operatorname{Hom}_{M}\left(V_{\tilde{\sigma}}, V_{\tilde{\gamma}}\right)$ and

$$
\phi_{i \mu}:=\frac{1}{\left\|v_{T}\right\|^{2}} \overline{\pi_{*}\left(\pi^{\tilde{\sigma},-i \mu}(\chi \bar{f})\left(v_{T,-i \mu}\right)\right)} \in C^{\infty}\left(B, V_{B}\left(\sigma_{i \mu}, \varphi\right)\right)
$$

Proof. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)(\gamma)$. Then, $p_{a c}(f)$ is a finite sum of wave packets of the form

$$
E\left(\phi, v_{T}\right):=\int_{\mathfrak{a}_{+}^{*}} c_{\operatorname{ext}\left(\phi_{i \mu}\right), v_{T,-i \mu}} p_{\sigma}(i \mu) d \mu \in L^{2}(\Gamma \backslash G, \varphi),
$$

where $v \in V_{\tilde{\gamma}}, \sigma \in \hat{M}, T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$ and $\mathfrak{a}_{+}^{*} \ni \mu \mapsto \phi_{i \mu} \in L^{2}\left(B, V_{B}\left(\sigma_{i \mu}, \varphi\right)\right)$ is a measurable family. Write

$$
p_{a c}(f)=\sum_{i} E\left(\phi^{(i)}, v_{T_{i}}^{(i)}\right)
$$

with $T_{i} \in \operatorname{Hom}_{M}\left(V_{\sigma^{(i)}}, V_{\gamma}\right)\left(\sigma^{(i)} \in \hat{M}\right),\left(v_{T_{k}}^{(k)}, v_{T_{l}}^{(l)}\right)=0$ if $k \neq l$. Let $\psi^{(j)} \in \mathcal{H}_{0}^{\sigma^{(j)}}(\varphi)$. By [BO00, p.156], $\left(E\left(\psi^{(j)}, v_{T_{j}}^{(j)}\right), p_{a c}(f)\right)_{L^{2}(\Gamma \backslash G, \varphi)}$ is equal to

$$
\left\|v_{T_{j}}^{(j)}\right\|^{2} \cdot \int_{\mathfrak{a}_{+}^{*}}\left(\psi_{i \mu}^{(j)}, \phi_{i \mu}^{(j)}\right)_{B} p_{\sigma}(i \mu) d \mu
$$

But it is also equal to

$$
\int_{\Gamma \backslash G} E\left(\psi^{(j)}, v_{T_{j}}^{(j)}\right)(g) \overline{f(g)} d g .
$$

As in the proof of the previous lemma, one can show that this is again equal to

$$
\int_{\mathfrak{a}_{+}^{*}} \int_{\Gamma \backslash \Omega}\left\langle\psi_{i \mu}^{(j)}(x), \pi_{*}\left(\pi^{\tilde{\sigma}^{(j)},-i \mu}(\chi \bar{f})\left(v_{T_{j},-i \mu}^{(j)}\right)\right)(x)\right\rangle p_{\sigma^{(j)}}(i \mu) d \mu .
$$

The corollary follows as $\mathcal{H}_{0}^{\sigma}(\varphi)$ is dense in the Hilbert space

$$
\int_{\mathfrak{a}_{+}^{*}}^{\oplus} L^{2}\left(B, V_{B}\left(\sigma_{i \lambda}, \varphi\right)\right) p_{\sigma}(i \lambda) d \lambda .
$$

2.9.4 Eisenstein integrals and its relation to the Poisson transform

In this section, we recall the definition of Eisenstein integrals and we show how the Poisson transform and the Eisenstein integrals are related. Moreover, we state several known results about Eisenstein integrals.

Definition 2.9.38. For $A \in \operatorname{Hom}_{M}\left(V_{\gamma}, V_{\tau}(\sigma)\right)(\sigma \in \hat{M}, \gamma, \tau \in \hat{K})$ and $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$, set

$$
E_{\gamma, \tau, \sigma, \lambda, A}(g)=\int_{K} a\left(g^{-1} k\right)^{-(\lambda+\rho)} \tau\left(\kappa\left(g^{-1} k\right)\right) A \gamma\left(k^{-1}\right) d k .
$$

These are the so-called Eisenstein integrals.
Let $\gamma \in \hat{K}, d_{\gamma}=\operatorname{dim}\left(V_{\gamma}\right)$ and $\left\{v_{1}^{(\gamma)}, \ldots, v_{d_{\gamma}}^{(\gamma)}\right\}$ be an orthonormal basis of V_{γ}. For $k \in K$, set $\chi_{\gamma}(k)=\operatorname{tr} \gamma(k)\left(\chi_{\gamma}\right.$ is called the character of $\left.\gamma\right)$. Let

$$
E_{\gamma}=d_{\gamma} \int_{K} \overline{\chi_{\gamma}(k)} \pi(k) d k
$$

Lemma 2.9.39. Let (π, W) be a Fréchet representation of K and let $\gamma \in \hat{K}$. Then, there are $F_{\gamma, j, w} \in \operatorname{Hom}_{K}\left(V_{\gamma}, W\right)$ such that

$$
E_{\gamma} w=\sum_{j=1}^{d_{\gamma}} F_{\gamma, j, w}\left(v_{j}^{(\gamma)}\right) .
$$

Proof. We identify V_{γ} with $\mathbb{C}^{d_{\gamma}}$ via this basis. Then, $\overline{v_{j}^{(\gamma)}}=v_{j}^{(\gamma)}$ for all j. Let $\left\{\left(v_{1}^{(\gamma)}\right)^{*}, \ldots,\left(v_{d_{\gamma}}^{(\gamma)}\right)^{*}\right\}$ be the dual basis of $\left\{v_{1}^{(\gamma)}, \ldots, v_{d_{\gamma}}^{(\gamma)}\right\}$.
Then, $\left(v_{i}^{(\gamma)}\right)^{*}\left(v_{j}^{(\gamma)}\right)=\left(v_{i}^{(\gamma)}, v_{j}^{(\gamma)}\right)=\delta_{i, j}$.
Let (π, W) be a Fréchet representation of K. For $\gamma \in \hat{K}, j=1, \ldots, d_{\gamma}, w \in W$ and $v \in V_{\tilde{\gamma}}$, set

$$
F_{\gamma, j, w}(v)=d_{\gamma} \int_{K} \pi(k) w\left(v_{j}^{(\gamma)}\right)^{*}\left(\gamma(k)^{-1} v\right) d k \in W
$$

(W is a complete, locally convex, Hausdorff topological vector space). Since

$$
\begin{gathered}
\left(v_{j}^{(\gamma)}\right)^{*}\left(\gamma(k)^{-1} v_{j}^{(\gamma)}\right)=\left(v_{j}^{(\gamma)}, \gamma(k)^{-1} v_{j}^{(\gamma)}\right)=\overline{\left(v_{j}^{(\gamma)}, \gamma(k) v_{j}^{(\gamma)}\right)}=\overline{\operatorname{tr} \gamma(k)} \\
\sum_{j=1}^{d_{\gamma}} F_{\gamma, j, w}\left(v_{j}^{(\gamma)}\right)=d_{\gamma} \int_{K} \overline{\operatorname{tr} \gamma(k)} \pi(k) w d k=E_{\gamma} w
\end{gathered}
$$

The lemma follows.
For $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}, \sigma \in \hat{M}$, let $H_{\infty}^{\sigma, \lambda}=C^{\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)$.
Proposition 2.9.40. Let $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}, \sigma \in \hat{M}, \gamma, \tau \in \hat{K}, f \in H_{\infty}^{\sigma, \lambda}$ and $T \in$ $\operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right)$. Then, there are $A_{j} \in \operatorname{Hom}_{M}\left(V_{\gamma}, V_{\tau}(\sigma)\right)$ such that

$$
E_{\gamma}\left(P_{\lambda}^{T} f\right)(g)=\sum_{j=1}^{d_{\gamma}} E_{\gamma, \tau, \sigma, \lambda, A_{j}}(g) v_{j}^{(\gamma)}
$$

Proof. Let $g \in G$. Define $F_{\gamma, j, P_{\lambda}^{T} f}(g)$ by

$$
\begin{aligned}
& d_{\gamma} \int_{K}\left(P_{\lambda}^{T} f\right)\left(k^{-1} g\right)\left(v_{j}^{(\gamma)}\right)^{*}\left(\gamma(k)^{-1} \cdot\right) d k \\
= & d_{\gamma} \int_{K} a\left(g^{-1} h\right)^{-(\lambda+\rho)} \tau\left(\kappa\left(g^{-1} h\right)\right) \int_{K} T f\left(k^{-1} h\right)\left(v_{j}^{(\gamma)}\right)^{*}\left(\gamma(k)^{-1} \cdot\right) d h d k \\
= & d_{\gamma} \int_{K} a\left(g^{-1} h\right)^{-(\lambda+\rho)} \tau\left(\kappa\left(g^{-1} h\right)\right) \int_{K} T f\left(k^{-1}\right)\left(v_{j}^{(\gamma)}\right)^{*}\left(\gamma(h k)^{-1} \cdot\right) d k d h .
\end{aligned}
$$

Set $A_{j}:=d_{\gamma} \int_{K} T f\left(k^{-1}\right)\left(v_{j}^{(\gamma)}\right)^{*}\left(\gamma(k)^{-1}.\right) d k$. Let $m \in M$ and $v \in V_{\gamma}$. Then,

$$
\begin{aligned}
A_{j}(\gamma(m) v) & =d_{\gamma} \int_{K} T f\left(k^{-1}\right)\left(v_{j}^{(\gamma)}\right)^{*}\left(\gamma\left(k^{-1} m\right) v\right) d k \\
& =d_{\gamma} \int_{K} T \sigma(m) f\left(k^{-1}\right)\left(v_{j}^{(\gamma)}\right)^{*}\left(\gamma(k)^{-1} v\right) d k=\tau(m) A_{j}(v) .
\end{aligned}
$$

Thus, $A_{j} \in \operatorname{Hom}_{M}\left(V_{\gamma}, V_{\tau}(\sigma)\right)$. Hence, $E_{\gamma, \tau, \sigma, \lambda, A_{j}}=F_{\gamma, j, P_{\lambda}^{T} f}$ is an Eisenstein integral and

$$
E_{\gamma}\left(P_{\lambda}^{T} f\right)(g)=\sum_{j=1}^{d_{\gamma}} E_{\gamma, \tau, \sigma, \lambda, A_{j}}(g) v_{j}^{(\gamma)}
$$

by the proof of Lemma 2.9.39.
Let Φ be the canonical isomorphism between the principal series representation $L^{2}\left(K \times_{M} V_{\sigma}\right)$ and $H^{\sigma, \lambda}$. Then, $\Phi(f)(k a n)=a^{\lambda-\rho} f(k)\left(f \in L^{2}\left(K \times_{M} V_{\sigma}\right)\right)$ and Φ^{-1} sends $f \in H^{\sigma, \lambda}$ to $\left.f\right|_{K}$.
Let us give in the following an explicit description of the isomorphism

$$
C^{\infty}\left(K \times_{M} V_{\tau}(\sigma)\right) \simeq \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right) \otimes H_{\infty}^{\sigma, \lambda} .
$$

Let $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right)$ and let $f \in H_{\infty}^{\sigma, \lambda}$. Then,

$$
\left.T f\right|_{K} \in C^{\infty}\left(K \times_{M} V_{\tau}(\sigma)\right) .
$$

Let now $F \in C^{\infty}\left(K \times_{M} V_{\tau}(\sigma)\right)$. Let $V_{\tau}(\sigma)=V_{\sigma_{1}} \oplus \cdots \oplus V_{\sigma_{k}}$ be an orthogonal direct sum decomposition of irreducible M-representations. Let p_{i} be the canonical projection from V_{τ} to $V_{\sigma_{i}}$ and let ι_{i} be the canonical inclusion from $V_{\sigma_{i}}$ to V_{τ}. Since $V_{\sigma} \simeq V_{\sigma_{i}}$, there is a M-intertwining operator S_{i} from V_{σ} to $V_{\sigma_{i}}$. Let $T_{i}=\iota_{i} \circ S_{i} \in$ $\operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right)$. Define $f_{i} \in H_{\infty}^{\sigma, \lambda}$ by $f_{i}(k)=S_{i}^{-1}\left(p_{i}(F(k))\right)(k \in K)$. Then,

$$
F=\left.\sum_{i=1}^{k} T_{i} f_{i}\right|_{K}
$$

as $\operatorname{Id}=\sum_{i=1}^{k} \iota_{i} \circ p_{i}$ on $V_{\tau}(\sigma)$. So, the isomorphism maps F to $\sum_{i=1}^{k} T_{i} \otimes f_{i}$.
Lemma 2.9.41. Let $E_{\gamma, \tau, \sigma, \lambda, A}$ be an Eisenstein integral and $v \in V_{\gamma}$. Then, there are $T_{i} \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right)$ and $f_{i, v} \in H_{\infty}^{\sigma, \lambda}$ such that

$$
E_{\gamma, \tau, \sigma, \lambda, A}(m a) v=\sum_{i} P_{\lambda}^{T_{i}} f_{i, v}(m a) \quad(m \in M, a \in A)
$$

Proof. For $v \in V_{\gamma}$ and $k \in K$, set $F(k)=A \gamma\left(k^{-1}\right) v$. Then,

$$
F \in C^{\infty}\left(K \times_{M} V_{\tau}(\sigma)\right) \simeq \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right) \otimes H_{\infty}^{\sigma, \lambda}
$$

Let $f_{i, v}=S_{i}^{-1} \circ p_{i} \circ F$ and let $T_{i}=\iota_{i} \circ S_{i} \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right)$. It follows from the above that

$$
\sum_{i} T_{i} f_{i, v}(k)=A\left(\gamma(k)^{-1} v\right) .
$$

The lemma follows now easily from this.
Let $\left(\gamma, V_{\gamma}\right)$ be a finite-dimensional representation of K. Let $c_{\gamma}: \mathfrak{a}_{\mathbb{C}}^{*} \rightarrow \operatorname{End}_{M}\left(V_{\gamma}\right)$ be the meromorphic function which is given by

$$
c_{\gamma}(\lambda):=\int_{\bar{N}} a(\bar{n})^{-(\lambda+\rho)} \gamma(\kappa(\bar{n})) d \bar{n}
$$

for $\operatorname{Re}(\lambda)>0$. It is the Harish-Chandra c-function.
Proposition 2.9.42. Let $E_{\gamma, \tau, \sigma, i \lambda, A}$ be an Eisenstein integral with $\lambda \in \mathfrak{a}^{*} \backslash\{0\}$ and let $v \in V_{\gamma}$. Then, there is $\varepsilon>0$ such that, for $a \rightarrow \infty$,
$E_{\gamma, \tau, \sigma, i \lambda, A}(m a) v=a^{i \lambda-\rho} c_{\tau}(i \lambda) A\left(\gamma(m)^{-1} v\right)+a^{-i \lambda-\rho} A^{w}\left(c_{\gamma}(-i \lambda) \gamma(m)^{-1} v\right)+O\left(a^{-\alpha-\rho-\varepsilon}\right)$
uniformly in $m \in M$.
Proof. For $\gamma \in \hat{K}$ and $\operatorname{Re}(\mu)<0$, define

$$
j_{\gamma, \mu}=\int_{\bar{N}} a(\bar{n})^{\mu-\rho} \gamma(\kappa(\bar{n}))^{-1} d \bar{n} \in \operatorname{End}_{M} V_{\gamma}
$$

(this corresponds to Definition 2.17 in [Olb94, p.31]). By analytic continuation, we get a meromorphic family on $\mathfrak{a}_{\mathbb{C}}^{*}$. By the previous lemma,

$$
E_{\gamma, \tau, \sigma, \lambda, A}(m a) v=\sum_{i} P_{\lambda}^{T_{i}} f_{i, v}(m a) \quad(m \in M, a \in A)
$$

Let $\lambda \in \mathfrak{a}^{*} \backslash\{0\}$. Then, there is $\varepsilon>0$ such that, for $a \rightarrow \infty$,
$\sum_{j} P^{T_{j}} f_{j, v}(k a)=a^{i \lambda-\rho} c_{\tau}(i \lambda) \sum_{j} T_{j} f_{j, v}(k)+a^{-i \lambda-\rho} \sum_{j} T_{j}^{w}\left(\hat{J}_{\sigma, i \lambda} f_{j, v}\right)(k)+O\left(a^{-\alpha-\rho-\varepsilon}\right)$
uniformly in $k M \in \partial X$, by Lemma $6.2,1$., of [BO00, p.110] (compare with Lemma 2.5.12). If $k=m \in M$, then

$$
\sum_{j} T_{j}^{w}\left(\hat{J}_{\sigma, i \lambda} f_{j, v}\right)(m)
$$

is equal to

$$
\tau(m)^{-1} \tau(w) \sum_{j} T_{j}\left(\hat{J}_{\sigma, i \lambda}^{w} f_{j, v}\right)(e)=\tau(m)^{-1} \tau(w) \sum_{j} \iota_{j}\left(\hat{J}_{\sigma_{j}, i \lambda}^{w}\left(p_{j}(F)\right)\right)(e) .
$$

This is again equal to

$$
\tau(m)^{-1} \tau(w) A\left(j_{\gamma, i \lambda} \gamma(w)^{-1} v\right)=A^{w}\left(j_{\gamma, i \lambda}^{w} \gamma(m)^{-1} v\right) .
$$

By Proposition 3.13 of [Olb94, p.31],

$$
\begin{equation*}
j_{\gamma,-\mu}^{w}=c_{\gamma}(\mu) \quad\left(\mu \in \mathfrak{a}_{\mathbb{C}}^{*}\right) . \tag{2.59}
\end{equation*}
$$

The proposition follows.
Corollary 2.9.43. Let $\gamma, \tau \in \hat{K}, \sigma \in \hat{M}$. Let $\left\{v_{j}^{(\gamma)}\right\}$ is an orthonormal basis of V_{γ}. Let $\lambda \in \mathfrak{a}^{*} \backslash\{0\}, \psi_{i \lambda} \in H_{\infty}^{\sigma, i \lambda}$ and $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\tau}\right)$. Let $k \in K$. Then, there are $A_{k, \gamma, j} \in \operatorname{Hom}_{M}\left(V_{\gamma}, V_{\tau}(\sigma)\right)$ such that

$$
c_{\tau}(i \lambda) T\left(E_{\gamma} \pi^{\sigma, i \lambda}\left(k^{-1}\right) \psi_{i \lambda}\right)(e)=c_{\tau}(i \lambda) \sum_{j=1}^{d_{\gamma}} A_{k, \gamma, j} v_{j}^{(\gamma)}
$$

and

$$
T^{w} \hat{J}_{\sigma,-i \lambda}\left(E_{\gamma} \pi^{\sigma, i \lambda}\left(k^{-1}\right) \psi_{i \lambda}\right)(e)=\sum_{j=1}^{d_{\gamma}} A_{k, \gamma, j}^{w} c_{\gamma}(i \lambda) v_{j}^{(\gamma)}
$$

Remark 2.9.44. Let $E_{\gamma, \tau, \sigma, \lambda, A}$ be an Eisenstein integral. Then, one can show that

$$
E_{\gamma, \tau, w \sigma,-\lambda, c_{\tau}(\lambda)^{w} A^{w}}=E_{\gamma, \tau, \sigma, \lambda, A c_{\gamma}(\lambda)}
$$

whenever $c_{\tau}(\mu)$ and $c_{\gamma}(\mu)$ are regular in $\mu=\lambda$. Compare with Theorem 13.2.9 of [Wal92, p.232].

Proof. Let $\lambda \in \mathfrak{a}^{*} \backslash\{0\}$ and let $\psi_{i \lambda} \in H_{\infty}^{\sigma, i \lambda}$. Let $k \in K$. Then, there are $A_{k, \gamma, j} \in \operatorname{Hom}_{M}\left(V_{\gamma}, V_{\tau}(\sigma)\right)$ such that

$$
E_{\gamma}\left(P_{i \lambda}^{T} \pi^{\sigma, i \lambda}\left(k^{-1}\right) \psi_{i \lambda}\right)(g)=\sum_{j=1}^{d_{\gamma}} E_{\gamma, \tau, \sigma, i \lambda, A_{k, \gamma, j}}(g) v_{j}^{(\gamma)} \quad(g \in G)
$$

by Proposition 2.9.40. By Lemma 6.1, 1., of [BO00, p.110], Proposition 2.9.42 (applied twice) and by uniqueness of asymptotic expansions,

$$
c_{\tau}(i \lambda) T\left(E_{\gamma} \pi^{\sigma, i \lambda}\left(k^{-1}\right) \psi_{i \lambda}\right)(e)=c_{\tau}(i \lambda) \sum_{j=1}^{d_{\gamma}} A_{k, \gamma, j} v_{j}^{(\gamma)}
$$

and

$$
T^{w} \hat{J}_{\sigma,-i \lambda}\left(E_{\gamma} \pi^{\sigma, i \lambda}\left(k^{-1}\right) \psi_{i \lambda}\right)(e)=\sum_{j=1}^{d_{\gamma}} A_{k, \gamma, j}^{w} c_{\gamma}(i \lambda) v_{j}^{(\gamma)} .
$$

Theorem 2.9.45. Let $E_{\gamma, \tau, \sigma, i \nu, A}$ be an Eisenstein integral and let $m \in M$. Then,

$$
\int_{A} \int_{N} \int_{\mathfrak{a}_{+}^{*}} E_{\gamma, \tau, \sigma, i \nu, A}(n m a) p_{\sigma}(i \nu) d \nu a^{-i \mu-\rho} d n d a \quad\left(\mu \in \mathfrak{a}^{*}\right)
$$

is equal to

$$
\frac{1}{2 \pi} c_{\tau}(i \mu)^{-1}\left(a^{i \mu-\rho} c_{\tau}(i \mu) A \gamma(m)^{-1}+a^{-i \mu-\rho} A^{w} c_{\gamma}(i \mu) \gamma(m)^{-1}\right)
$$

Remark 2.9.46. It follows from the proof (look in particular at the formula for $\Phi(P, \alpha)^{Q}(m a)$ on p. 239 of [Wal92]) that the above formula is deduced from the following equality:

$$
\begin{aligned}
& a^{-\rho} \int_{N} \int_{\mathfrak{a}_{+}^{*}} E_{\gamma, \tau, \sigma, i \mu, A}(n m a) p_{\sigma}(i \mu) d \mu d n \\
& \quad=\int_{\mathfrak{a}_{+}^{*}}\left(c_{\tau}(i \mu)^{-1}\left(c_{\tau}(i \mu) A \gamma(m)^{-1}+A^{w} c_{\gamma}(i \mu) \gamma(m)^{-1}\right) a^{i \mu}\right) d \mu \quad(a \in A)
\end{aligned}
$$

Proof. For $m \in M$, set $\varphi(m)=A\left(\gamma(m)^{-1} \cdot\right)$. For $\phi \in \operatorname{Hom}\left(V_{\gamma}, V_{\tau}\right)$, set
(1) $C_{P \mid P}(e, \lambda) \phi=c_{\tau}(\lambda) \phi$,
(2) $C_{P \mid P}(w, \lambda) \phi=\phi^{w} c_{\gamma}(-\lambda)$,
(3) $C_{P \mid P}\left(e, w^{-1} \lambda\right) \phi=c_{\tau}(-\lambda) \phi$, and
(4) $C_{P \mid P}\left(w, w^{-1} \lambda\right) \phi=\phi^{w} c_{\gamma}(\lambda)$
whenever this is well-defined. This notation makes it easier to compare N. Wallach's results with ours.
Assume now that $\lambda \in i \mathfrak{a}^{*} \backslash\{0\}$. By Proposition 2.9.42, there is $\varepsilon>0$ such that, for $a \rightarrow \infty$,
(2.60) $\quad E_{\gamma, \tau, \sigma, \lambda, A}(m a) v=a^{\lambda-\rho}\left(C_{P \mid P}(e, \lambda) \varphi(m)\right) v$

$$
+a^{-\lambda-\rho}\left(C_{P \mid P}(w, \lambda) \varphi(m)\right) v+O\left(a^{-\alpha-\rho-\varepsilon}\right)
$$

and

$$
\begin{align*}
E_{\gamma, \tau, \sigma,-\lambda, A}(m a) v=a^{\lambda-\rho}(& \left.C_{P \mid P}\left(w, w^{-1} \lambda\right) \varphi(m)\right) v \tag{2.61}\\
& +a^{-\lambda-\rho}\left(C_{P \mid P}\left(e, w^{-1} \lambda\right) \varphi(m)\right) v+O\left(a^{-\alpha-\rho-\varepsilon}\right)
\end{align*}
$$

uniformly in $m \in M$. Compare this with Theorem 13.2.6 of [Wal92, p.230]. Set ${ }^{0} C_{P \mid P}(e, \lambda)=C_{P \mid P}(e, \lambda)^{-1} C_{P \mid P}(e, \lambda)=\operatorname{Id}$ and, for $\phi \in \operatorname{Hom}\left(V_{\gamma}, V_{\tau}\right)$, set

$$
{ }^{0} C_{P \mid P}(w, w \lambda) \phi=C_{P \mid P}(e, \lambda)^{-1} C_{P \mid P}\left(w, w^{-1} \lambda\right) \phi=c_{\tau}(\lambda)^{-1} \phi^{w} c_{\gamma}(\lambda) .
$$

The theorem follows now from Theorem 13.3.2 of [Wal92, p.236].
Since $\int_{\bar{N}} a(\bar{n})^{-2 \rho} d \bar{n}=1$ and

$$
2 \pi \int_{A} \int_{\mathfrak{a}^{*}} f(\nu) a^{i \nu} d \nu a^{-i \mu} d a=f(\mu)
$$

for all $\mu \in \mathfrak{a}^{*}$ and $f \in C_{c}^{\infty}\left(\mathfrak{a}^{*}\right)$, the appearing multiplicative constant is $\frac{1}{2 \pi}$.

2.9.5 The contribution of the wave packets of Eisenstein series to the closure of the space of cusp forms

We show in this section that the wave packets of Eisenstein series are orthogonal to the space of cusp forms (cf. Theorem 2.9.51). We conclude from this and our previous results that

$$
\overline{{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)}=L^{2}(\Gamma \backslash G, \varphi)_{d s} \oplus L^{2}(\Gamma \backslash G, \varphi)_{U}
$$

(Theorem 2.9.54).
Assume that $X \neq \mathbb{O} H^{2}$.
Lemma 2.9.47. Fix $g \in G(\Omega), \sigma \in \hat{M}$ and $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$. Then,

$$
f \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma} \mapsto \hat{J}_{\sigma, \lambda} f(g)
$$

is continuous.
Proof. Fix $g \in G(\Omega)$ and $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$. Let Q be an open neighbourhood of Λ that does not contain $g P$ and let $U=\partial X \backslash Q$. Let U^{\prime} be a compact subset of U containing $g P$ and let $\chi \in C_{c}^{\infty}(U)$ be such that $\left.\chi\right|_{U^{\prime}} \equiv 1$. Then,

$$
f \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma} \mapsto \hat{J}_{\sigma, \lambda}(\chi f)(g)
$$

is continuous as multiplication with χ is a smooth operation and as

$$
\hat{J}_{\sigma, \lambda}: C^{\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right) \rightarrow C^{\infty}\left(\partial X, V\left(\sigma_{-\lambda}^{w}, \varphi\right)\right)
$$

is continuous by Lemma 5.1 and Lemma 5.2 of [BO00, pp.96-97]. The map

$$
f \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma} \mapsto \hat{J}_{\sigma, \lambda}((1-\chi) f)(g)
$$

is also continuous by Lemma 5.3 of [BO00, p.98] and as multiplication with $1-\chi$ is a continuous operation. Thus,

$$
f \in C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma} \mapsto \hat{J}_{\sigma, \lambda} f(g)
$$

is continuous. This completes the proof of the lemma.
For $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$, define $T^{w}=\gamma(w) T \sigma(w)^{-1}$. Then, T^{w} belongs also to $\operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$. Note that T^{w} does not depend on the choice of w.

Theorem 2.9.48. Let $\phi \in \mathcal{H}_{0}^{\sigma}(\varphi)$ and let $k \in K(\Omega)$. Let $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$. Then,

$$
\begin{equation*}
\int_{A} \int_{N} \int_{\mathfrak{a}_{+}^{*}} P_{i \nu}^{T} \operatorname{ext}\left(\phi_{i \nu}\right)(k n a) p_{\sigma}(i \nu) d \nu a^{-i \mu-\rho} d n d a \quad\left(\mu \in \mathfrak{a}^{*}\right) \tag{2.62}
\end{equation*}
$$

is equal to

$$
\begin{equation*}
\frac{1}{2 \pi} c_{\gamma}(i \mu)^{-1}\left(c_{\gamma}(i \mu) T \phi_{i \mu}(k)+T^{w} \hat{J}_{\sigma,-i \mu} \operatorname{ext}\left(\phi_{-i \mu}\right)(k)\right) \tag{2.63}
\end{equation*}
$$

Proof. Fix $\mu \in \mathfrak{a}^{*}$ and $k \in K(\Omega)$. Put $\psi_{i \nu}=\operatorname{ext}\left(\phi_{i \nu}\right)$. It suffices to show that

$$
\begin{align*}
& a^{-\rho} \int_{N} \int_{\mathfrak{a}_{+}^{*}} P_{i \nu}^{T} \psi_{i \nu}(k n a) p_{\sigma}(i \nu) d \nu d n \tag{2.64}\\
&=\int_{\mathfrak{a}^{*}} c_{\gamma}(i \nu)^{-1}\left(c_{\gamma}(i \nu) T \phi_{i \nu}(k)+T^{w} \hat{J}_{\sigma,-i \nu} \psi_{-i \nu}(k)\right) a^{i \nu} d \nu
\end{align*}
$$

Indeed,

$$
\begin{equation*}
2 \pi \int_{A} \int_{\mathfrak{a}^{*}} f(\nu) a^{i \nu} d \nu a^{-i \mu} d a=f(\mu) \tag{2.65}
\end{equation*}
$$

for all $\mu \in \mathfrak{a}^{*}$ and $f \in C_{c}^{\infty}\left(\mathfrak{a}^{*}\right)$. It follows from (2.64) that (2.62) is equal to

$$
\int_{A} \int_{\mathfrak{a}^{*}} c_{\gamma}(i \nu)^{-1}\left(c_{\gamma}(i \nu) T \phi_{i \nu}(k)+T^{w} \hat{J}_{\sigma,-i \nu} \psi_{-i \nu}(k)\right) a^{i \nu} d \nu a^{-i \mu} d a .
$$

By (2.65) and as $\phi \in \mathcal{H}_{0}^{\sigma}(\varphi)$, this is equal to (2.63).
Let us prove first (2.64) for $\Gamma=\{e\}$. Then, $\psi_{i \nu} \in C^{\infty}\left(\partial X, V\left(\sigma_{i \nu}, \varphi\right)\right)$ for all $\nu \in \mathfrak{a}_{+}^{*}$. Let $\gamma_{1}, \gamma_{2}, \ldots$ be the elements of \hat{K}. Then,

$$
\begin{aligned}
& \int_{N} \mid \int_{\mathfrak{a}_{+}^{*}} P_{i \nu}^{T}\left(\sum_{j=1}^{l} E_{\gamma_{j}} \pi^{\sigma, i \nu}\left(k^{-1}\right) \psi_{i \nu}\right)(n a) p_{\sigma}(i \nu) d \nu \\
&-\int_{\mathfrak{a}_{+}^{*}} P_{i \nu}^{T} \pi^{\sigma, i \nu}\left(k^{-1}\right) \psi_{i \nu}(n a) p_{\sigma}(i \nu) d \nu \mid d n
\end{aligned}
$$

is equal to

$$
\int_{N}\left|\sum_{j=1}^{l} E_{\gamma_{j}} \int_{\mathfrak{a}_{+}^{*}} P_{i \nu}^{T} \psi_{i \nu}(k n a) p_{\sigma}(i \nu) d \nu-\int_{\mathfrak{a}_{+}^{*}} P_{i \nu}^{T} \psi_{i \nu}(k n a) p_{\sigma}(i \nu) d \nu\right| d n .
$$

By Theorem 7.1.1 of [Wal88, p.227] and by the proof of Proposition 2.3.30, there exist constants $C_{r, l}$ converging to zero when $r>1$ is fixed and l goes to ∞ such that this is less or equal than

$$
C_{r, l} a^{\rho}(1+|\log a|)^{-r} .
$$

Thus, the left-hand side of (2.64) is equal to

$$
\begin{equation*}
\lim _{l \rightarrow \infty} a^{-\rho} \int_{N} \int_{\mathfrak{a}_{+}^{*}} P_{i \nu}^{T}\left(\sum_{j=1}^{l} E_{\gamma_{j}} \pi^{\sigma, i \nu}\left(k^{-1}\right) \psi_{i \nu}\right)(n a) p_{\sigma}(i \nu) d \nu \tag{2.66}
\end{equation*}
$$

Let $\left\{v_{i}^{\left(\gamma_{j}\right)}\right\}$ be an orthonormal basis of $V_{\gamma_{j}}$. By Corollary 2.9.43, there are $A_{k, j, j j^{\prime}} \in$ $\operatorname{Hom}_{M}\left(V_{\gamma_{j}}, V_{\gamma}(\sigma)\right)$ such that

$$
c_{\gamma}(i \nu) T\left(E_{\gamma_{j}} \pi^{\sigma, i \nu}\left(k^{-1}\right) \psi_{i \nu}\right)(e)=c_{\gamma}(i \nu) \sum_{j^{\prime}=1}^{d_{\gamma_{j}}} A_{k, j, j^{\prime}} v_{j^{\prime}}^{\left(\gamma_{j}\right)}
$$

and

$$
T^{w} \hat{J}_{\sigma,-i \nu}\left(E_{\gamma_{j}} \pi^{\sigma, i \nu}\left(k^{-1}\right) \psi_{i \nu}\right)(e)=\sum_{j^{\prime}=1}^{d_{\gamma_{j}}} A_{k, j, j^{\prime}}^{w} c_{\gamma_{j}}(i \nu) v_{j^{\prime}}^{\left(\gamma_{j}\right)}
$$

for every $j \in \mathbb{N}, \nu \in \mathfrak{a}^{*} \backslash\{0\}$ and $k \in K$. By Theorem 2.9.45, (2.66) yields

$$
\begin{aligned}
& \lim _{l \rightarrow \infty} \int_{\mathfrak{a}^{*}} c_{\gamma}(i \nu)^{-1}\left(c_{\gamma}(i \nu) T\left(\sum_{j=1}^{l} E_{\gamma_{j}} \pi^{\sigma, i \nu}\left(k^{-1}\right) \psi_{i \nu}\right)(e)\right. \\
&\left.+T^{w} \hat{J}_{\sigma,-i \nu}\left(\sum_{j=1}^{l} E_{\gamma_{j}} \pi^{\sigma, i \nu}\left(k^{-1}\right) \psi_{i \nu}\right)(e)\right) a^{i \nu} d \nu
\end{aligned}
$$

(2.64) now follows.

Let us now show (2.64) for $\Gamma \neq\{e\}$. Let $\left(\varphi_{j}\right)_{j}$ be a Dirac sequence in $C_{c}^{\infty}(G, \mathbb{R})$. As $P_{i \mu}^{T} \pi^{\sigma, i \mu}\left(\varphi_{j}\right) \psi_{i \mu}$ converges to $P_{i \mu}^{T} \psi_{i \mu}$ and as $\pi^{\sigma, i \mu}\left(\varphi_{j}\right) \psi_{i \mu} \in C^{\infty}\left(\partial X, V\left(\sigma_{i \mu}, \varphi\right)\right)$ (since $\left.\varphi_{j} \in C_{c}^{\infty}(G)\right)$ and as it depends smoothly on $\mu \in \mathfrak{a}_{+}^{*}$, the function

$$
\int_{\mathfrak{a}_{+}^{*}} P_{i \mu}^{T} \pi^{\sigma, i \mu}\left(\varphi_{j}\right) \psi_{i \mu} p_{\sigma}(i \mu) d \mu
$$

is a wave packet in X and belongs therefore to $\mathscr{C}\left(X, V_{X}(\gamma, \varphi)\right)$. By the proven case $\Gamma=\{e\}$,

$$
\begin{equation*}
a^{-\rho} \int_{N} \int_{\mathfrak{a}_{+}^{*}} P_{i \nu}^{T} \pi^{\sigma, i \nu}\left(\varphi_{j}\right) \psi_{i \nu}(k n a) p_{\sigma}(i \nu) d \nu d n \tag{2.67}
\end{equation*}
$$

is equal to

$$
\begin{equation*}
\int_{\mathfrak{a}^{*}} c_{\gamma}(i \nu)^{-1}\left(c_{\gamma}(i \nu) T \pi^{\sigma, i \nu}\left(\varphi_{j}\right) \phi_{i \nu}(k)+T^{w} \hat{J}_{\sigma,-i \nu} \pi^{\sigma,-i \nu}\left(\varphi_{j}\right) \psi_{-i \nu}(k)\right) a^{i \nu} d \nu \tag{2.68}
\end{equation*}
$$

One can show that (2.67) converges to

$$
a^{-\rho} \int_{N} \int_{\mathfrak{a}_{+}^{*}} P_{i \nu}^{T} \psi_{i \nu}(k n a) p_{\sigma}(i \nu) d \nu d n
$$

by using Lemma 2.8.13 and the proof of Proposition 2.3.30. As $\phi \in \mathcal{H}_{0}^{\sigma}(\varphi),(2.68)$ converges to

$$
\int_{\mathbf{a}^{*}} c_{\gamma}(i \nu)^{-1}\left(c_{\gamma}(i \nu) T \phi_{i \nu}(k)+T^{w} \hat{J}_{\sigma,-i \nu} \psi_{-i \nu}(k)\right) a^{i \nu} d \nu
$$

by Lemma 2.9.47. The theorem follows.
The following is the crucial result needed to prove that $L^{2}(\Gamma \backslash G, \varphi)_{a c}$ is orthogonal to the space of cusp forms (Theorem 2.9.51).

Proposition 2.9.49. No non nonzero compactly supported wave packet is cuspidal.

Proof. The main result we need in order to prove this proposition is Theorem 2.9.48, providing an explicit formula for the Fourier transform of the constant term of a compactly supported wave packet.
Let $f \in L^{2}(\Gamma \backslash G, \varphi)_{a c} \cap{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$ be a cuspidal, compactly supported wave packet. Since the projection of a function $g \in{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$ to $L^{2}(\Gamma \backslash G, \varphi)(\gamma)$ belongs still to ${ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$ for any $\gamma \in \hat{K}$, we may assume without loss of generality that $f \in\left(L^{2}(\Gamma \backslash G, \varphi)_{a c}\right)(\gamma) \cap{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$ for some $\gamma \in \hat{K}$. We have

$$
{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)(\gamma) \simeq\left[{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi) \otimes V_{\tilde{\gamma}}\right]^{K} \otimes V_{\gamma}={ }^{\circ} \mathscr{C}\left(Y, V_{Y}(\tilde{\gamma}, \varphi)\right) \otimes V_{\gamma},
$$

where $V_{Y}(\tilde{\gamma}, \varphi):=V_{Y}(\tilde{\gamma}) \otimes V_{\varphi}$. The isomorphism

$$
{ }^{\circ} \mathscr{C}\left(Y, V_{Y}(\tilde{\gamma}, \varphi)\right) \otimes V_{\gamma} \rightarrow{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)(\gamma)
$$

maps $F \otimes v$ to $\langle F, v\rangle$. Thus, f is a finite sum of wave packets of the form $\langle E(\phi, T), v\rangle$ with $T \in \operatorname{Hom}_{M}\left(V_{\tilde{\sigma}}, V_{\tilde{\gamma}}\right)$ for some $\sigma \in \hat{M}, v \in V_{\gamma}, \phi: \lambda \mapsto \phi_{i \lambda} \in L^{2}\left(B, V_{B}\left(\tilde{\sigma}_{i \lambda}, \varphi\right)\right)$ is a measurable family with compact support in λ and $E(\phi, T) \in{ }^{\circ} \mathscr{C}\left(Y, V_{Y}(\tilde{\gamma}, \varphi)\right)$. Let $\left\{T_{1}^{(r)}, \ldots, T_{n_{r}}^{(r)}\right\}$ be an orthonormal basis of $\operatorname{Hom}_{M}\left(V_{\tilde{\sigma}(r)}, V_{\tilde{\gamma}}\right)$ and let v_{1}, \ldots, v_{s} be a basis of V_{γ}. Write

$$
f=\sum_{r=1}^{s} \sum_{q=1}^{n_{r}}\left\langle\int_{\mathfrak{a}_{+}^{*}} P_{i \nu}^{T_{q}^{(r)}} \operatorname{ext}\left(\phi_{i \nu}^{(q, r)}\right) p_{\sigma^{(r)}}(i \nu) d \nu, v_{r}\right\rangle .
$$

Since the sum of $\operatorname{Im}\left(T_{i}^{(r)}\right)$ over i is direct for r fixed,

$$
\begin{equation*}
\sum_{q=1}^{n_{r}} \int_{\mathfrak{a}_{+}^{*}} P_{i \nu}^{T_{q}^{(r)}} \operatorname{ext}\left(\phi_{i \nu}^{(q, r)}\right) p_{\sigma^{(r)}}(i \nu) d \nu \tag{2.69}
\end{equation*}
$$

belongs also to ${ }^{\circ} \mathscr{C}\left(Y, V_{Y}(\tilde{\gamma}, \varphi)\right)$ for $r=1, \ldots, s$. It follows from Lemma 2.9.36 that $\phi_{i \nu}^{(q, r)} \in C^{\infty}\left(B, V_{B}\left(\tilde{\sigma}_{i \nu}^{(r)}, \varphi\right)\right)$ for all $\nu \in \mathfrak{a}_{+}^{*}$ and that $\nu \in \mathfrak{a}_{+}^{*} \mapsto \phi_{i \nu}^{(q, r)}$ is smooth. By Theorem 2.9.48, the Fourier transform of the constant term of (2.69) at $i \mu$ ($\mu \in \mathfrak{a}_{+}^{*}$) is equal to

$$
\frac{1}{2 \pi} \sum_{q=1}^{n_{r}} T_{q}^{(r)} \phi_{i \mu}^{(q, r)}(k)
$$

for all $k \in K(\Omega)$, since $\phi_{-i \mu}^{(q, r)}=0$ for all $\mu \in \mathfrak{a}_{+}^{*}$. By (2.69),

$$
\sum_{q=1}^{n_{r}} T_{q}^{(r)} \phi_{i \mu}^{(q, r)}(k)=0
$$

for all $k \in K(\Omega)$. Applying $\left(T_{q}^{(r)}\right)^{*}$ yields $\phi_{i \mu}^{(q, r)}=0$ for $q=1, \ldots, n_{r}$. Hence,

$$
f=\sum_{r=1}^{s} \sum_{q=1}^{n_{r}}\left\langle\int_{\mathfrak{a}_{+}^{*}} P_{i \nu}^{T_{q}^{(r)}} \operatorname{ext}\left(\phi_{i \nu}^{(q, r)}\right) p_{\sigma^{(r)}}(i \nu) d \nu, v_{r}\right\rangle=0 .
$$

The proposition follows.

Let $\sigma \in \hat{M}$. Define $N_{\pi}^{\sigma}(\pi \in \hat{G})$ by $\left\{\begin{array}{ll}N_{\pi} & \text { if } \pi=\pi^{\sigma, i \lambda} \text { for some } \lambda \in \mathfrak{a}_{+}^{*} \\ \{0\} & \text { otherwise }\end{array}\right.$. Let \mathcal{F}_{σ} be the restriction of \mathcal{F} to the closed G-invariant space $\mathcal{F}^{-1}\left(\int_{\hat{G}}^{\oplus} N_{\pi}^{\sigma} \hat{\otimes} V_{\pi} d \kappa(\pi)\right)$. Let $\sigma \in \hat{M}$ and $\chi_{\sigma} \in C_{c}^{\infty}\left(\mathfrak{a}_{+}^{*}\right)$ be a cut-off function. For $f \in L^{2}(\Gamma \backslash G, \varphi)$, define

$$
\Psi_{\sigma}(f)=\mathcal{F}_{\sigma}^{-1}\left(\left(\chi_{\sigma}(\lambda) \mathcal{F}_{\pi^{\sigma}, i \lambda}(f)\right)_{\lambda \in \mathfrak{a}_{+}^{*}}\right) .
$$

Note that Ψ_{σ} is a G-intertwining operator. For $f \in L^{2}(\Gamma \backslash G, \varphi)(\gamma)(\gamma \in \hat{K})$, define

$$
\Psi(f)=\sum_{\sigma \in \hat{M}} \Psi_{\sigma}(f)
$$

Then, the map Ψ is well-defined as only finitely many maps Ψ_{σ} are nonzero. We call such a function a spectral cut-off function.
Let $\sigma \in \hat{M}$ and let W be a closed G-invariant subspace of $L^{2}(\Gamma \backslash G, \varphi)_{a c}$.
Let us denote the orthogonal projection of $L^{2}(\Gamma \backslash G, \varphi)$ to W by p_{W}. This is clearly a G-intertwining operator.

Lemma 2.9.50. If $f \in W(\gamma)(\gamma \in \hat{K})$, then $\Psi(f) \in W(\gamma)$.
Proof. Since p_{W} is decomposable by Proposition 2.5.2, there is a measurable family of maps $L_{\pi}: N_{\pi} \rightarrow N_{\pi}(\pi \in \hat{G})$ such that

$$
p_{W}(f)=\mathcal{F}^{-1}\left(\left(L_{\pi} \otimes \operatorname{Id}\right)\left(\mathcal{F}_{\pi}(f)\right)_{\pi \in \hat{G}}\right)
$$

for every $f \in L^{2}(\Gamma \backslash G, \varphi)$. For $f \in W$, we have

$$
\begin{aligned}
\Psi_{\sigma}(f) & =\Psi_{\sigma}\left(p_{W}(f)\right)=\mathcal{F}_{\sigma}^{-1}\left(\left(\chi_{\sigma}(\lambda) \mathcal{F}_{\pi^{\sigma, i \lambda}}\left(p_{W}(f)\right)\right)_{\lambda \in \mathfrak{a}_{+}^{*}}\right) \\
& =\mathcal{F}_{\sigma}^{-1}\left(\left(\chi_{\sigma}(\lambda) \mathcal{F}_{\pi^{\sigma, i \lambda}}\left(\mathcal{F}_{\sigma}^{-1}\left(\left(L_{\pi^{\sigma, i \mu}} \otimes \operatorname{Id}\right)\left(\mathcal{F}_{\pi^{\sigma, i \mu}}(f)\right)_{\mu \in \mathfrak{a}_{+}^{*}}\right)\right)\right)_{\lambda \in \mathfrak{a}_{+}^{*}}\right) \\
& =\mathcal{F}_{\sigma}^{-1}\left(\left(L_{\pi^{\sigma, i \lambda}} \otimes \operatorname{Id}\right)\left(\chi_{\sigma}(\lambda) \mathcal{F}_{\pi^{\sigma, i \lambda}}(f)\right)_{\lambda \in \mathfrak{a}_{+}^{*}}\right) \\
& =\mathcal{F}_{\sigma}^{-1}\left(\left(L_{\pi^{\sigma, i \lambda}} \otimes \operatorname{Id}\right)\left(\mathcal{F}_{\pi^{\sigma, i \lambda}}\left(\mathcal{F}_{\sigma}^{-1}\left(\left(\chi_{\sigma}(\mu) \mathcal{F}_{\pi^{\sigma, i \mu}}(f)\right)_{\mu \in \mathfrak{a}_{+}^{*}}\right)\right)_{\lambda \in \mathfrak{a}_{+}^{*}}\right)\right. \\
& =p_{W}\left(\Psi_{\sigma}(f)\right) \in W .
\end{aligned}
$$

The lemma follows.
Theorem 2.9.51. $L^{2}(\Gamma \backslash G, \varphi)_{a c}$ is orthogonal to the space of cusp forms.
Remark 2.9.52. If $\delta_{\Gamma}<0$, then the orthogonality of $L^{2}(\Gamma \backslash G, \varphi)_{a c}$ to ${ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$ follows directly from Proposition 2.9.32.

Proof. Assume that $L^{2}(\Gamma \backslash G, \varphi)_{a c}$ is not orthogonal to the space of cusp forms. Then, there is $f \in{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)(\tau)(\tau \in \hat{K})$ and $g \in L^{2}(\Gamma \backslash G, \varphi)_{a c}$ such that

$$
\left(p_{a c}(f), g\right)=(f, g) \neq 0
$$

In particular, $p_{a c}(f)$ is nonzero. Let q be the orthogonal projection on ${ }^{\circ} \overline{\mathscr{C}}(\Gamma \backslash G, \varphi)$. Since $p_{a c} \circ q=q \circ p_{a c}$ by Proposition 2.5.3, $p_{a c}(f) \in \overline{{ }^{\circ}} \mathscr{C}(\Gamma \backslash G, \varphi)(\tau)$.

Let Ψ be a spectral cut-off function. Then, $\Psi\left(p_{a c}(f)\right)$ belongs to ${ }^{\circ} \overline{\mathscr{C}}(\Gamma \backslash G, \varphi)(\tau)$ by Lemma 2.9.50 and it is a finite sum of compactly supported wave packets by construction and by Corollary 2.9.37 and hence a Schwartz function by Proposition 2.9.35. It follows now from Theorem 2.9.21 that $\Psi\left(p_{a c}(f)\right)$ is a cusp form. Thus, $\Psi\left(p_{a c}(f)\right)=0$ by Proposition 2.9.49. As we can choose Ψ arbitrarily, it follows that $p_{a c}(f)=0$. This is a contradiction! The theorem follows.
Proposition 2.9.53. $L^{2}(\Gamma \backslash G, \varphi)_{\text {res }}$ is orthogonal to the space of cusp forms.
Proof. Let p be the orthogonal projection on $L^{2}(\Gamma \backslash G, \varphi)_{\text {res }} \oplus L^{2}(\Gamma \backslash G, \varphi)_{U}$ and let q be the orthogonal projection on ${ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$. Since $p \circ q=q \circ p$ by Proposition 2.5.3,

$$
p\left(\overline{{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)}\right)=\left(L^{2}(\Gamma \backslash G, \varphi)_{\text {res }} \oplus L^{2}(\Gamma \backslash G, \varphi)_{U}\right) \cap^{\circ} \overline{\mathscr{C}(\Gamma \backslash G, \varphi)} .
$$

As $L^{2}(\Gamma \backslash G, \varphi)_{U}$ is contained in $\overline{\mathscr{C}}(\Gamma \backslash G, \varphi)$ by Theorem 2.7.11, this is again equal to

$$
\left(L^{2}(\Gamma \backslash G, \varphi)_{\text {res }} \cap \overline{\mathscr{C}(\Gamma \backslash G, \varphi)}\right) \oplus L^{2}(\Gamma \backslash G, \varphi)_{U}
$$

Let $f \in L^{2}(\Gamma \backslash G, \varphi)_{\text {res }}$ and $g \in{ }^{\overline{\mathscr{C}}(\Gamma \backslash G, \varphi)}$. Then,

$$
(f, g)_{L^{2}(\Gamma \backslash G, \varphi)}=(f, p(g))_{L^{2}(\Gamma \backslash G, \varphi)}
$$

As moreover $L^{2}(\Gamma \backslash G, \varphi)_{U}$ is orthogonal to $L^{2}(\Gamma \backslash G, \varphi)_{\text {res }}$, it suffices to show that

$$
L^{2}(\Gamma \backslash G, \varphi)_{\text {res }} \cap \overline{{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)}=\{0\} .
$$

Since the orthogonal projection on $\left(L^{2}(\Gamma \backslash G, \varphi)_{\text {res }} \oplus L^{2}(\Gamma \backslash G, \varphi)_{U}\right) \cap{ }^{\circ} \overline{\mathscr{C}}(\Gamma \backslash G, \varphi)$ is decomposable by Proposition 2.5.2, there are subspaces $S_{\pi}\left(\pi \in \hat{G}_{c}\right)$ of N_{π} such that

$$
L^{2}(\Gamma \backslash G, \varphi)_{\text {res }} \cap \overline{{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)}=\bigoplus_{\pi \in \hat{G}_{c}} c_{\pi}\left(S_{\pi} \hat{\otimes} V_{\pi}\right)
$$

Since in particular $c_{\pi}\left(S_{\pi} \hat{\otimes} V_{\pi}\right) \subset L^{2}(\Gamma \backslash G, \varphi)_{\text {res }}$, every S_{π} must be contained in some $E_{\Lambda}\left(\sigma_{\lambda}, \varphi\right)$. Assume now that some space S_{π} is nontrivial. Then, it contained also a nonzero K-finite matrix coefficient $c_{\pi}(f \otimes v)$. Thus, $c_{\pi}(f \otimes v) \in^{{ }^{\circ}} \mathscr{C}(\Gamma \backslash G, \varphi) \cap$ $\mathscr{C}(\Gamma \backslash G, \varphi)$ by Lemma 2.7.1. Hence, $c_{\pi}(f \otimes v) \in{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$ by Theorem 2.9.21. This is a contradiction by Theorem 2.7.11.

Theorem 2.9.54. We have:

$$
\begin{equation*}
\overline{{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)}=L^{2}(\Gamma \backslash G, \varphi)_{d s} \oplus L^{2}(\Gamma \backslash G, \varphi)_{U} . \tag{2.70}
\end{equation*}
$$

Remark 2.9.55. The decomposition (2.70) was already conjectured by M. Olbrich in 2002 (see [Olb02, p.116]).
Proof. As the spaces $L^{2}(\Gamma \backslash G, \varphi)_{U}$ and $L^{2}(\Gamma \backslash G, \varphi)_{d s}$ are contained in ${ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$ by Proposition 2.7.10 and Corollary 2.8.39, we have

$$
\begin{aligned}
\overline{{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)}=\left(L^{2}(\Gamma \backslash G, \varphi)_{a c} \oplus L^{2}(\Gamma \backslash G, \varphi)_{r e s}\right) & \cap^{\overline{ }} \mathscr{C}(\Gamma \backslash G, \varphi) \\
& \oplus L^{2}(\Gamma \backslash G, \varphi)_{d s} \oplus L^{2}(\Gamma \backslash G, \varphi)_{U} .
\end{aligned}
$$

The theorem follows now from Theorem 2.9.51 and from Proposition 2.9.53.

3 The geometrically finite case

3.1 Decompositions for varying parabolic subgroups

For notations, see Section 2.1.
Since we may have several cusps, it is in general no longer sufficient to work only with one fixed parabolic subgroup of G. We investigate in the following what happens when we pass from one parabolic subgroup of G to another.
For a Cartan involution θ^{\prime} of $\mathfrak{g}, h \in G$ and $X \in \mathfrak{g}$, set ${ }^{h} \theta^{\prime}(X)=\operatorname{Ad}(h) \theta^{\prime}\left(\operatorname{Ad}(h)^{-1} X\right)$. For a Cartan involution θ^{\prime} of G and $g, h \in G$, set ${ }^{h} \theta^{\prime}(g)=h \theta^{\prime}\left(h^{-1} g h\right) h^{-1}$.
Note that ${ }^{h} \theta^{\prime}$ is again a Cartan involution if θ^{\prime} is a Cartan involution.
We denote the maximal compact subgroup of G associated to a Cartan involution θ^{\prime} by $K_{\theta^{\prime}}$. Let θ^{\prime} be a Cartan involution of G. Then,

$$
\left\{\left.g \in G\right|^{h} \theta^{\prime}(g)=g\right\}=\left\{g \in G \mid h \theta^{\prime}\left(h^{-1} g h\right) h^{-1}=g\right\}=h K_{\theta^{\prime}} h^{-1} \quad(h \in G) .
$$

Moreover, there exists $h \in G$ such that $\theta^{\prime}={ }^{h} \theta$ by, e.g., Lemma 2.3.2 of [Wal88, p.57]. Thus, the maximal compact subgroups of G are conjugate.

For $X, Y \in \mathfrak{g}$, set $\langle X, Y\rangle_{\theta^{\prime}}=\left\langle\operatorname{Ad}(h)^{-1} X, \operatorname{Ad}(h)^{-1} Y\right\rangle$. Note that this definition is independent of the choice of h and that $\langle\cdot, \cdot\rangle_{\theta^{\prime}}$ is an $\operatorname{Ad}\left(K_{\theta^{\prime}}\right)$-invariant inner product on \mathfrak{g}.
By abuse of notation, we denote the norm $\mathfrak{g} \rightarrow[0, \infty), X \mapsto \sqrt{\langle X, X\rangle_{\theta^{\prime}}}$ also by $|\cdot|$. It will be clear from the context which norm is meant.

Definition 3.1.1.

(1) A subgroup Q of G is called a parabolic subgroup of G if there exists $g \in G$ such that $Q=g P g^{-1}$.
(2) Let Q be a parabolic subgroup of G. We say that $Q=M_{Q} A_{Q} N_{Q}$ is a Langlands decomposition if there exists $g \in G$ such that $M_{Q}=g M g^{-1}$, $A_{Q}=g A g^{-1}$ and $N_{Q}=g N g^{-1}$.

Remark 3.1.2. This definition does not depend on the choice of P. It follows from the uniqueness property of the Cartan involutions, we have seen above, the fact that all the maximal abelian Lie subalgebras in \mathfrak{s} are conjugate under the adjoint action of K by Lemma 2.1.9 of [Wal88, p.47] and the construction of P that the above definition does not depend on the choice of P.

Let Q be a parabolic subgroup of G with Langlands decomposition $M_{Q} A_{Q} N_{Q}$. Let $\mathfrak{m}_{Q}\left(\right.$ resp. $\left.\mathfrak{a}_{Q}, \mathfrak{n}_{Q}\right)$ be the Lie algebra of $M_{Q}\left(\right.$ resp. $\left.A_{Q}, N_{Q}\right)$. Since the Killing form B is invariant under the adjoint action of G, it follows from the previous definition and Section 2.1 that $\mathfrak{m}_{Q} \oplus \mathfrak{a}_{Q} \oplus \mathfrak{n}_{Q}$ is an orthogonal decomposition relative to B.

Lemma 3.1.3. Let $g \in G$. Then, $g K g^{-1} \cap K$ is equal to K if $g \in K$ and equal to a conjugate of M in K (which is strictly contained in K) otherwise.
Moreover, if K^{\prime} is a maximal compact subgroup of G, then there exists a unique element $h K \in X$ such that $K^{\prime}=h K h^{-1}$.

Proof. If $g \in K$, then $g K g^{-1} \cap K$ is clearly equal to K. Assume that there exists $g \in G \backslash K$ such that $g K g^{-1} \cap K \neq\{e\}$. Let h be a nontrivial element of $g K g^{-1} \cap K$. Then, $a_{g} \neq e$ and $h g K=g K$. Thus, $h k_{g} a_{g} K=k_{g} a_{g} K$. Hence, $h k_{g} M=k_{g} M$, by the uniqueness property of the Cartan decomposition. So, $k_{g}^{-1} h k_{g} \in M \Longleftrightarrow h \in k_{g} M k_{g}^{-1}$. The first assertion follows.
Let $h_{1}, h_{2} \in G$ be such that $K^{\prime}=h_{1} K h_{1}^{-1}=h_{2} K h_{2}^{-1}$. Then, $h_{2}^{-1} h_{1} K h_{1}^{-1} h_{2}=K$. It follows from the first assertion that $h_{2}^{-1} h_{1}$ belongs to K. Thus, $h_{1} K=h_{2} K$. The lemma follows.

Lemma 3.1.4. Let θ^{\prime} be a Cartan involution of \mathfrak{g} and let $Q=M_{Q} A_{Q} N_{Q}$ be a parabolic subgroup of G. The following conditions are equivalent:
(1) M_{Q} is contained in $K_{\theta^{\prime}}$;
(2) \mathfrak{a}_{Q} is orthogonal to the Lie algebra of $K_{\theta^{\prime}}$.

Assume now that one of two conditions is satisfied. Let $k \in K$ be such that $Q=$ $k P k^{-1}$ ($k M$ is unique). Then, there exists a unique $h \in N_{Q} A_{Q}$ such that $K_{\theta^{\prime}}=$ $h K h^{-1}$. Moreover, $N_{Q}=k N k^{-1}, A_{Q}=h k A k^{-1} h^{-1}$ and $M_{Q}=h k M k^{-1} h^{-1}=$ $Z_{K_{\theta^{\prime}}}\left(A_{Q}\right) \subset K_{\theta^{\prime}}$.

Remark 3.1.5.

(1) When we take the Cartan involution ${ }^{h} \theta$ and $\operatorname{Lie}\left(h k A k^{-1} h^{-1}\right)$ for \mathfrak{a} in Section 2.1 (note that this is indeed possible), then the constructed parabolic subgroup of G in Section 2.1 is equal to Q.
(2) Let $g \in G$ and let $M_{Q}=g M g^{-1}, A_{Q}=g A g^{-1}, N_{Q}=g N g^{-1}$ and $Q=$ $M_{Q} A_{Q} N_{Q}$. Let k, h be as in the statement of the lemma. Then, it follows from the lemma that $g M=h k M$. In particular, $g K g^{-1}=h K h^{-1}$.

Proof. Let θ^{\prime}, k and $Q=M_{Q} A_{Q} N_{Q}$ be as above. Then, $N_{Q}=k N k^{-1}$. Let $g \in G$ be such that $A_{Q}=g A g^{-1}$ and $M_{Q}=g M g^{-1}$.
(1) Assume that M_{Q} is contained in $K_{\theta^{\prime}}$.

As $m a=a m$ for all $a \in A$ and $m \in M, m a=a m$ for all $a \in A_{Q}$ and $m \in M_{Q}$. So, $M_{Q}=Z_{K_{\theta^{\prime}}}\left(A_{Q}\right)$.
Let $h \in G$ be such that $K_{\theta^{\prime}}=h K h^{-1}$.
Since $K_{\theta^{\prime}} A_{Q} N_{Q}=\left(h k K k^{-1} h^{-1}\right)\left(h k A k^{-1} h^{-1}\right)\left(h k N k^{-1} h^{-1}\right)$ is an Iwasawa decomposition of G, we can choose $h \in N_{Q} A_{Q}=A_{Q} N_{Q}$ such that $K_{\theta^{\prime}}=$ $h K h^{-1}$. h is unique by Lemma 3.1.3.
As the Killing form is invariant under the adjoint action of G, as \mathfrak{a} is orthogonal to \mathfrak{k} and as M is equal to $K \cap P, \operatorname{Lie}\left(h k A k^{-1} h^{-1}\right)$ is orthogonal to the Lie algebra of $K_{\theta^{\prime}}=h k K k^{-1} h^{-1}$ and $M_{Q}=h k M k^{-1} h^{-1} \subset K_{\theta^{\prime}} \cap Q$.

Thus, $A_{Q}=h k A k^{-1} h^{-1}$. Hence, $\operatorname{Lie}\left(A_{Q}\right)=\operatorname{Lie}\left(h k A k^{-1} h^{-1}\right)$ is also orthogonal to the Lie algebra of $K_{\theta^{\prime}}$.
(2) Assume that \mathfrak{a}_{Q} is orthogonal to the Lie algebra of $K_{\theta^{\prime}}$. As the Killing form is invariant under the adjoint action of G, as $\operatorname{Lie}\left(h k A k^{-1} h^{-1}\right)$ is also orthogonal to the Lie algebra of $K_{\theta^{\prime}}$ and as \mathfrak{a} is the unique maximal abelian Lie subalgebra of $\mathfrak{m} \oplus \mathfrak{a} \oplus \mathfrak{n}$ whose Lie algebra is orthogonal to that of K, $A_{Q}=h k A k^{-1} h^{-1}$. Hence, $M_{Q}=h k M k^{-1} h^{-1}$.

The lemma follows.
Let us also introduce some more notation.
Let θ^{\prime} be a Cartan involution of \mathfrak{g}. Let $Q=\tilde{M}_{Q} \tilde{A}_{Q} N_{Q}$ be a parabolic subgroup of G. Let \tilde{K}_{Q} be a maximal compact subgroup of G containing the compact group \tilde{M}_{Q} (other choices are $\left.a \tilde{K}_{Q} a^{-1}\left(e \neq a \in \tilde{A}_{Q}\right)\right)$.
Since $G=N A K$ is an Iwasawa decomposition, it follows from Lemma 3.1.4 that $G=N_{Q} \tilde{A}_{Q} \tilde{K}_{Q}$ is an other Iwasawa decomposition.
Let h be the unique element in $N_{Q} \tilde{A}_{Q}$ such that $K_{\theta^{\prime}}=h \tilde{K}_{Q} h^{-1}$. Then, $M_{\theta^{\prime}, Q}:=$ $h \tilde{M}_{Q} h^{-1}$ is contained in $K_{\theta^{\prime}}$. Let $A_{\theta^{\prime}, Q}=h \tilde{A}_{Q} h^{-1}$.
When it is clear which Cartan involution is meant, then we often use the simplified notations M_{Q} and A_{Q}. We do the same for the notations which we introduce below. Let $k \in K$ be such that $Q=k P k^{-1}$ and let $h^{\prime} \in N_{Q} A_{\theta^{\prime}, Q}$ be the element provided by Lemma 3.1.4. Then, $K_{\theta^{\prime}}=h^{\prime} K h^{\prime-1}$.
Let $\bar{N}_{\theta^{\prime}, Q}=\theta^{\prime}\left(N_{Q}\right)$. We denote the Lie algebra of $M_{\theta^{\prime}, Q}\left(\right.$ resp. $\left.A_{\theta^{\prime}, Q}, N_{Q}, \bar{N}_{\theta^{\prime}, Q}\right)$ by $\mathfrak{m}_{\theta^{\prime}, Q}$ (resp. $\mathfrak{a}_{\theta^{\prime}, Q}, \mathfrak{n}_{Q}, \overline{\mathfrak{n}}_{\theta^{\prime}, Q}$).
Define $\alpha_{\theta^{\prime}, Q} \in \mathfrak{a}_{\theta^{\prime}, Q}^{*}$ (resp. $\rho_{\theta^{\prime}, Q} \in \mathfrak{a}_{\theta^{\prime}, Q}^{*}$) by
$\alpha_{\theta^{\prime}, Q}(H)=\alpha\left(\operatorname{Ad}\left(h^{\prime} k\right)^{-1}(H)\right) \quad\left(\right.$ resp. $\left.\rho_{\theta^{\prime}, Q}(H)=\rho\left(\operatorname{Ad}\left(h^{\prime} k\right)^{-1}(H)\right)\right)\left(H \in \mathfrak{a}_{\theta^{\prime}, Q}\right)$.
Put $A_{\theta^{\prime}, Q,+}=\left\{a \in A_{\theta^{\prime}, Q} \mid a^{\alpha_{\theta^{\prime}, Q}}>1\right\}$ and $\bar{A}_{\theta^{\prime}, Q,+}=\left\{a \in A_{\theta^{\prime}, Q} \mid a^{\alpha_{\theta^{\prime}, Q}} \geqslant 1\right\}$.
For $s>0$, put $A_{\theta^{\prime}, Q, \leqslant s}=\left\{a \in A_{\theta^{\prime}, Q} \mid a^{\alpha_{\theta^{\prime}, Q}} \leqslant s\right\}$ and $A_{\theta^{\prime}, Q,>s}=\left\{a \in A_{\theta^{\prime}, Q} \mid\right.$ $\left.a^{\alpha_{\theta^{\prime}, Q}}>s\right\}$.
If $\mu \in \mathfrak{a}_{\theta^{\prime}, Q}^{*}$, then we define $H_{\theta^{\prime}, Q, \mu} \in \mathfrak{a}_{\theta^{\prime}, Q}$ by

$$
H_{\theta^{\prime}, Q, \mu}=\left(\operatorname{Ad}\left(h^{\prime} k\right)^{-1}(H)\right)_{\mu} \quad\left(H \in \mathfrak{a}_{\theta^{\prime}, Q}\right) .
$$

For $H \in \mathfrak{a}$ and $\mu \in \mathfrak{a}_{\theta^{\prime}, Q}^{*}$, set $\left(h^{\prime} k\right)^{-1} . \mu(H)=\mu\left(\operatorname{Ad}\left(h^{\prime} k\right) H\right)$. Then, $\left(h^{\prime} k\right)^{-1} . \mu \in \mathfrak{a}^{*}$ for all $\mu \in \mathfrak{a}_{\theta^{\prime}, Q}^{*}$.
We define a symmetric bilinear form $\langle\cdot, \cdot\rangle_{\theta^{\prime}, Q}$ on $\mathfrak{a}_{\theta^{\prime}, Q}^{*}$ by

$$
\langle\mu, \tau\rangle_{\theta^{\prime}, Q}=\left\langle\left(h^{\prime} k\right)^{-1} \cdot \mu,\left(h^{\prime} k\right)^{-1} \cdot \tau\right\rangle
$$

for all $\mu, \tau \in \mathfrak{a}_{\theta^{\prime}, Q}^{*}$. For $\mu \in \mathfrak{a}_{\theta^{\prime}, Q}^{*}$, set $|\mu|:=\sqrt{\langle\mu, \mu\rangle_{\theta^{\prime}, Q}}$.
Thus, $H \in \mathfrak{a}_{\theta^{\prime}, Q} \mapsto \alpha_{\theta^{\prime}, Q}(H) \in \mathbb{R}$ identifies $\mathfrak{a}_{\theta^{\prime}, Q}$ with \mathbb{R} isometrically and that $\mu \in \mathfrak{a}_{\theta^{\prime}, Q}^{*} \mapsto\langle\alpha, \mu\rangle_{\theta^{\prime}, Q} \in \mathbb{R}$ identifies $\mathfrak{a}_{\theta^{\prime}, Q}^{*}$ with \mathbb{R} isometrically. Moreover, $\alpha_{\theta^{\prime}, Q}$ is identified with 1.
For $g \in G$, we set

$$
\kappa_{\theta^{\prime}, Q}(g)=h^{\prime} k \kappa\left(k^{-1} h^{\prime-1} g h^{\prime} k\right) k^{-1} h^{\prime-1} .
$$

Define $a_{\theta^{\prime}, Q}, a_{\theta^{\prime}, Q}, n_{\theta^{\prime}, Q}, \nu_{\theta^{\prime}, Q}, h_{\theta^{\prime}, Q}$ and $k_{\theta^{\prime}, Q}, k_{\theta^{\prime}, Q,,}, a_{\theta^{\prime}, Q, \cdot}, h_{\theta^{\prime}, Q}$, analogously.

By abuse of notation, we will often write for $a_{\theta^{\prime}, Q, g}^{\alpha_{\prime^{\prime}, Q}}$ simply a_{g}.
Then,

$$
g=\kappa_{\theta^{\prime}, Q}(g) a_{\theta^{\prime}, Q}(g) n_{\theta^{\prime}, Q}(g)=\nu_{\theta^{\prime}, Q}(g) h_{\theta^{\prime}, Q}(g) k_{\theta^{\prime}, Q}(g) \quad(g \in G)
$$

(Iwasawa decomposition of G with respect to $N_{Q} A_{\theta^{\prime}, Q} K_{\theta^{\prime}}$) and

$$
g=k_{\theta^{\prime}, Q, g} a_{\theta^{\prime}, Q, g} h_{\theta^{\prime}, Q, g} \quad(g \in G)
$$

(Cartan decomposition of G). These decompositions are independent of the choice of k. Since

$$
\begin{gather*}
a_{k^{-1} h^{\prime-1} g h^{\prime} k}=a_{h^{\prime-1} g h^{\prime}} \quad(g \in G, k \in K), \\
a_{\theta^{\prime}, Q, g}^{\alpha_{\theta^{\prime}, Q}}=a_{h^{\prime-1} g h^{\prime}}^{\alpha}=a_{h^{\prime-1} g h^{\prime}} . \tag{3.1}
\end{gather*}
$$

Note that

$$
\begin{equation*}
a_{\theta^{\prime}, Q}(g)^{\alpha_{\theta^{\prime}, Q}}=a\left(k^{-1} h^{\prime-1} g h^{\prime} k\right)^{\alpha} \quad(g \in G) . \tag{3.2}
\end{equation*}
$$

The Haar measure on $N($ resp. $\bar{N}, A)$ induces a Haar measure on N_{Q} (resp. $\bar{N}_{\theta^{\prime}, Q}$, $A_{\theta^{\prime}, Q}$) so that

$$
\int_{N_{Q}} a_{\theta^{\prime}, Q}\left(\theta^{\prime}(n)\right)^{-2 \rho_{\theta^{\prime}, Q}} d n=1 \quad\left(\text { resp. } \quad \int_{\bar{N}_{\theta^{\prime}, Q}} a_{\theta^{\prime}, Q}(\bar{n})^{-2 \rho_{\theta^{\prime}, Q}} d \bar{n}=1\right)
$$

Let $\theta^{\prime \prime}$ be an other Cartan involution. Let $h^{\prime \prime} \in N_{Q} A_{\theta^{\prime}, Q}$ be the element provided by Lemma 3.1.4 for $\theta^{\prime}=\theta^{\prime \prime}$. Let $\tilde{h}=h^{\prime \prime} h^{\prime-1} \in N_{Q} A_{\theta^{\prime}, Q}$. Then, $K_{\theta^{\prime \prime}}=h^{\prime \prime} K h^{\prime \prime-1}=$ $\tilde{h} K_{\theta^{\prime}} \tilde{h}^{-1}$. Since

$$
\begin{aligned}
& a_{\theta^{\prime \prime}, Q}(g)^{\alpha_{\theta^{\prime \prime}, Q}}=a\left(k^{-1} h^{\prime \prime-1} g h^{\prime \prime} k\right)^{\alpha} \\
&=a\left(k^{-1} h^{\prime-1}\left(h^{\prime} h^{\prime \prime-1} g h^{\prime \prime} h^{\prime-1}\right) h^{\prime} k\right)^{\alpha}=a_{\theta^{\prime}, Q}\left(\tilde{h}^{-1} g \tilde{h}\right)^{\alpha_{\theta^{\prime}, Q}}
\end{aligned}
$$

by (3.2), it follows that

$$
\begin{equation*}
a_{\theta^{\prime \prime}, Q}(g)^{\alpha_{\theta^{\prime \prime}, Q}}=a_{\theta^{\prime}, Q}\left(\tilde{h}^{-1} g \tilde{h}\right)^{\alpha_{\theta^{\prime}, Q}} . \tag{3.3}
\end{equation*}
$$

Similarly, one shows, using (3.1), that

$$
\begin{equation*}
a_{\theta^{\prime}, Q, g}^{\alpha_{\theta^{\prime \prime}, Q}}=a_{\tilde{h}^{-1}, g \tilde{h}}^{\alpha_{\theta^{\prime}}} . \tag{3.4}
\end{equation*}
$$

Let us show now how we can compare spaces constructed from different Cartan involutions.
Let K^{\prime} be a maximal compact subgroup of G. Let $h \in G$ be such that $K^{\prime}=h K h^{-1}$. Then, K^{\prime} is the stabiliser of $h K$. So,

$$
X^{\prime}:=G / K^{\prime} \rightarrow X=G / K, \quad g K^{\prime} \mapsto g h K
$$

is a natural isomorphism between X^{\prime} and X. Let P^{\prime} be a parabolic subgroup of G. Let $h \in G$ be such that $P^{\prime}=h P h^{-1}$. Then, P^{\prime} is the stabiliser of $h P$. So,

$$
\partial X^{\prime}:=G / P^{\prime} \rightarrow \partial X=G / P, \quad g P^{\prime} \mapsto g h P
$$

is a natural isomorphism between ∂X^{\prime} and ∂X.
If $h \in G$ is such that $K^{\prime}=h K h^{-1}$ and $P^{\prime}=h P h^{-1}$, then

$$
\bar{X}=X \cup \partial X=G / K \cup G / P
$$

is canonically isomorphic to

$$
\bar{X}^{\prime}:=X^{\prime} \cup \partial X^{\prime}=G / K^{\prime} \cup G / P^{\prime}
$$

To shorten notations, we simply write $g K^{\prime}=g h K$ and $g P^{\prime}=g h P$.
Let us come now to the impact on functions of the change of the Cartan involution. If $f: G \rightarrow \mathbb{C}$ is a right K-invariant function, then $R_{h} f$ is a right K^{\prime}-invariant function on G as

$$
R_{h} f(g k)=f\left((g h)\left(h^{-1} k h\right)\right)=f(g h)=R_{h} f(g)
$$

for all $g \in G$ and all $h \in K^{\prime}$.

3.2 Geometrically finite groups and Γ-cuspidal parabolic subgroups

We define geometrically finite groups and Γ-cuspidal parabolic subgroups of G, which are the representatives of the cusps of the space $\Gamma \backslash X=\Gamma \backslash G / K$.

Let Γ be a torsion-free discrete subgroup of G. Recall that Λ_{Γ} denotes the limit set (closed and Γ-invariant set) and Ω_{Γ} the set of ordinary points (open and Γ invariant set). Moreover, $\partial X=\Omega_{\Gamma} \cup \Lambda_{\Gamma}$ and Γ acts properly discontinuously on $X \cup \Omega_{\Gamma}$. As moreover Γ is torsion-free, Γ acts freely on $X \cup \Omega_{\Gamma}$. See Section 2.2 for further details.

Definition 3.2.1. We say that a parabolic subgroup $Q=M_{Q} A_{Q} N_{Q}$ of G is Γ cuspidal if $\Gamma_{Q}:=\Gamma \cap Q$ is an infinite subgroup of G which is contained in $N_{Q} M_{Q}$.

Remark 3.2.2.

(1) This definition does not depend on the chosen Langlands decomposition as $N_{Q} M_{Q}=N_{Q} n M_{Q} n^{-1}$ for all $n \in N_{Q}$.
(2) If Q is Γ-cuspidal, then $\gamma Q \gamma^{-1}$ is Γ-cuspidal for all $\gamma \in \Gamma$.

Let Q_{1}, Q_{2} be two Γ-cuspidal parabolic subgroups of G. Then, we say that Q_{1} is Γ-equivalent to Q_{2} if there exists $\gamma \in \Gamma$ such that $Q_{2}=\gamma Q_{1} \gamma^{-1}$. We write $Q_{1} \sim_{\Gamma} Q_{2}$ in this case.
Let \mathcal{P}_{Γ} be the set of Γ-conjugacy classes of Γ-cuspidal parabolic subgroups of G.
Definition 3.2.3. We say that $u \in \partial X$ is a cusp for Γ if its stabiliser is a Γ cuspidal parabolic subgroup of G.
Let $[Q]_{\Gamma} \in \mathcal{P}_{\Gamma}$. Then, there exists $k \in K$ such that $Q=k P k^{-1}$. Let $\tilde{M}_{Q}=k M k^{-1}$ and let $\tilde{A}_{Q}=k A k^{-1}$.
For a Γ-cuspidal parabolic subgroup $Q=\tilde{M}_{Q} \tilde{A}_{Q} N_{Q}$ of G, we consider the exact sequence

$$
\begin{equation*}
0 \rightarrow N_{Q} \rightarrow N_{Q} \tilde{M}_{Q} \xrightarrow{l_{\tilde{M}_{Q}}} \tilde{M}_{Q} \rightarrow 0 \tag{3.5}
\end{equation*}
$$

where $l_{\tilde{M}_{Q}}: N_{Q} \tilde{M}_{Q} \rightarrow \tilde{M}_{Q}$ is the projection onto \tilde{M}_{Q}. Put $\tilde{M}_{\Gamma, Q}=\overline{l_{\tilde{M}_{Q}}\left(\Gamma_{Q}\right)} \subset \tilde{M}_{Q}$. By Auslander's theorem (Theorem 3.1 of [BO07, p.25]), we have the following:
(1) There exist a connected subgroup $\tilde{N}_{\Gamma, Q} \subset N_{Q}$ and $n \in N_{Q}$ such that $n \Gamma_{Q} n^{-1}$ normalises $\tilde{N}_{\Gamma, Q}$ and such that $n \Gamma_{Q} n^{-1}$ is a cocompact lattice in the unimodular group $\tilde{Q}_{\Gamma}:=\tilde{N}_{\Gamma, Q} \tilde{M}_{\Gamma, Q}$.
(2) Fix $n \in N_{Q}$ as above and $a \in \tilde{A}_{Q}$. Let $N_{\Gamma, Q}=n^{-1} \tilde{N}_{\Gamma, Q} n \subset N_{Q}, M_{\Gamma, Q}=$ $n^{-1} \tilde{M}_{\Gamma, Q} n$ and $Q_{\Gamma}=N_{\Gamma, Q} M_{\Gamma, Q}$.
Let us introduce the following notations according to the appearing case:
(a) $\tilde{M}_{\Gamma, Q} \neq\{e\}$: Let $\theta_{Q}=n^{-1} a^{-1} \theta a n, K_{Q}=n^{-1} a^{-1} \mathrm{Kan}, A_{Q}=n^{-1} \tilde{A}_{Q} n$ and $M_{Q}=n^{-1} \tilde{M}_{Q} n$. Then, $M_{\Gamma, Q} \subset M_{Q} \subset K_{Q}$.
(b) $\tilde{M}_{\Gamma, Q}=\{e\}\left(\Gamma_{Q} \subset N_{Q}\right)$: We can define the groups as previously (we want to allow a maximum of freedom) or we use the following definitions: Let $\theta_{Q}=\theta, K_{Q}=K, A_{Q}=\tilde{A}_{Q}, M_{Q}=\tilde{M}_{Q}$. Then, $M_{\Gamma, Q}=\{e\} \subset M_{Q} \subset K_{Q}$ and $Q_{\Gamma}=N_{\Gamma, Q}$.

For $e \neq \gamma \in \Gamma$, we set $A_{\gamma Q \gamma^{-1}}=\gamma A_{Q} \gamma^{-1}$. We define $N_{\gamma Q \gamma^{-1}}, N_{\Gamma, \gamma Q \gamma^{-1}}$, $K_{\gamma Q \gamma^{-1}}, A_{\gamma Q \gamma^{-1}}, M_{\gamma Q \gamma^{-1}}, M_{\Gamma, \gamma Q \gamma^{-1}}$ and $\left(\gamma Q \gamma^{-1}\right)_{\Gamma}$ analogously. Then,

$$
\theta_{\gamma Q \gamma^{-1}}={ }^{\gamma} \theta .
$$

These definitions fix uniquely the above n and a for $\gamma Q \gamma^{-1}$.
Moreover, there exists a normal subgroup of finite index Γ^{\prime} of Γ_{Q} such that $M_{\Gamma^{\prime}, Q}:=\overline{l_{M_{Q}}\left(\Gamma^{\prime}\right)} \subset M_{Q}$ is a torus (commutative, compact, connected Lie group).
(3) We can write any element $\gamma \in \Gamma^{\prime}$ (resp. $\gamma \in \Gamma_{Q}$) as $n_{\gamma} m_{\gamma}$ with $n_{\gamma} \in N_{\Gamma, Q}$ and $m_{\gamma} \in M_{\Gamma, Q}$ such that m_{γ} centralises (resp. normalises) $N_{\Gamma, Q}$.
(4) The group $\left\{n_{\gamma} \mid \gamma \in \Gamma^{\prime}\right\}$ is a lattice in $N_{\Gamma, Q}$.

As Definition 3.2.1 does not depend on the chosen Langlands decomposition, Γ_{Q} is also an infinite subgroup of G which is contained in $N_{Q} M_{Q}$.
When we write in the following $Q=M_{Q} A_{Q} N_{Q}$, then we mean with this that we consider the Langlands decomposition for which M_{Q} and A_{Q} are given as above. Let $w_{Q} \in N_{K_{Q}}\left(A_{Q}\right)$ denote a representative of the nontrivial element of the Weyl group of $\left(\mathfrak{g}, \mathfrak{a}_{Q}\right)$.
By abuse of notation, we will write for $a_{Q, g}^{\alpha_{Q}}$ simply a_{g}.
Let $\phi:\left\{n_{\gamma} \mid \gamma \in \Gamma^{\prime}\right\} \rightarrow M_{\Gamma^{\prime}, Q}, n_{\gamma} \mapsto m_{\gamma}$. This defines a group homomorphism from $\left\{n_{\gamma} \mid \gamma \in \Gamma^{\prime}\right\}$ to $M_{\Gamma^{\prime}, Q}$. Indeed:
(1) This map is well-defined: Let $\gamma_{1}, \gamma_{2} \in \Gamma^{\prime}$ be such that $n_{\gamma_{1}}=n_{\gamma_{2}}$. Then,

$$
\gamma_{1} \gamma_{2}^{-1}=n_{\gamma_{1}} m_{\gamma_{1}} m_{\gamma_{2}}^{-1} n_{\gamma_{1}}^{-1}=m_{\gamma_{1}} m_{\gamma_{2}}^{-1} \in \Gamma \cap K_{Q}
$$

since $m_{\gamma_{1}}$ and $m_{\gamma_{2}}$ centralise $N_{\Gamma, Q}$. As Γ is torsion-free, it follows that $\gamma_{1} \gamma_{2}^{-1}=e$. Thus, $\gamma_{1}=\gamma_{2}$. Hence, $m_{\gamma_{1}}=m_{\gamma_{2}}$.
(2) It is a group homomorphism: The neutral element is clearly mapped to the neutral element. Let $\gamma_{1}, \gamma_{2} \in \Gamma^{\prime}$. Then,

$$
\gamma_{1} \gamma_{2}=n_{\gamma_{1}} m_{\gamma_{1}} n_{\gamma_{2}} m_{\gamma_{2}}=\left(n_{\gamma_{1}} n_{\gamma_{2}}\right)\left(m_{\gamma_{1}} m_{\gamma_{2}}\right)
$$

as $m_{\gamma_{1}}$ centralises $N_{\Gamma, Q}$. Thus, $n_{\gamma_{1}} n_{\gamma_{2}}=n_{\gamma_{1} \gamma_{2}}$ is mapped to $m_{\gamma_{1} \gamma_{2}}=m_{\gamma_{1}} m_{\gamma_{2}}$.
By Lemma 3.2 of [BO07, p.26], there exists a subgroup V of finite index in $\left\{n_{\gamma} \mid\right.$ $\left.\gamma \in \Gamma^{\prime}\right\}$ such that the restriction of ϕ to V extends to a group homomorphism from $N_{\Gamma, Q}$ to $M_{\Gamma, Q}$, which we denote by abuse of notation also by ϕ.
By 3.1.5 of [BO07, p.26], we can choose Γ^{\prime} with the following properties:
(1) $\left\{n_{\gamma} \mid \gamma \in \Gamma^{\prime}\right\}$ is contained in V;
(2) $M_{\Gamma^{\prime}, Q}$ coincides with $\overline{\phi\left(N_{\Gamma, Q}\right)}$;
(3) $M_{\Gamma^{\prime}, Q}$ has finite index in $M_{\Gamma, Q}$.

Let $Y_{\Gamma}\left(\right.$ resp. $\left.Y_{\Gamma_{Q}}\right)$ denote the manifold without boundary $\Gamma \backslash X\left(\right.$ resp. $\left.\Gamma_{Q} \backslash X\right)$.
Let $g \in G$ be such that $Q=g P g^{-1}$. Let $\Lambda_{Q}=\{e Q\}=\{g P\} \subset \partial X$ (limit set of Γ_{Q}) and let $\Omega_{Q}=\partial X \backslash \Lambda_{Q} \subset \partial X$ (ordinary set of Γ_{Q}).
Let \bar{Y}_{Γ} (resp. $\bar{Y}_{\Gamma_{Q}}, \bar{Y}_{\Omega, \Gamma_{Q}}$) denote the manifold with boundary $\Gamma \backslash\left(X \cup \Omega_{\Gamma}\right)$ (resp. $\left.\Gamma_{Q} \backslash\left(X \cup \Omega_{Q}\right), \Gamma_{Q} \backslash\left(X \cup \Omega_{\Gamma}\right)\right)$.

Definition 3.2.4. We say that a torsion-free discrete subgroup Γ of G is geometrically finite if the following conditions hold:
(1) The set \mathcal{P}_{Γ} of Γ-conjugacy classes of Γ-cuspidal parabolic subgroups of G is finite. We denote the elements of \mathcal{P}_{Γ} by $\left[P_{1}\right]_{\Gamma}, \ldots,\left[P_{m}\right]_{\Gamma}$.
(2) There exists a compact subset C of \bar{Y}_{Γ} such that the set of connected components of $\bar{Y}_{\Gamma} \backslash C$ is in bijection with \mathcal{P}_{Γ}.
(3) For each connected component $Y_{i} \subset \bar{Y}_{\Gamma} \backslash C$ corresponding to $\left[P_{i}\right]_{\Gamma}(i=$ $1, \ldots, m)$, there exists a subset \tilde{Y}_{i} of $\bar{Y}_{\Omega, \Gamma_{P_{i}}}$ such that
(a) $\bar{Y}_{\Gamma_{P_{i}}} \backslash \tilde{Y}_{i}$ is compact in $\bar{Y}_{\Gamma_{P_{i}}}$,
(b) the map $\pi_{i}: \bar{Y}_{\Omega, \Gamma_{P_{i}}} \rightarrow \bar{Y}_{\Gamma}, \Gamma_{P_{i}} x \mapsto \Gamma x$ is injective on \tilde{Y}_{i} and $Y_{i}=\pi_{i}\left(\tilde{Y}_{i}\right)$.

Remark 3.2.5.

(1) If $\Gamma \subset G$ is geometrically finite, then the spaces $Y_{\Gamma}, Y_{\Gamma_{P_{i}}}$ are Riemannian manifolds in a natural way and the maps π_{i} restricted to $\tilde{Y}_{i} \cap Y_{\Gamma_{P_{i}}}$ are isometric embeddings.
(2) If $\Gamma \subset G$ is geometrically finite and if $\mathcal{P}_{\Gamma}=\varnothing$, then Γ is convex-cocompact.
(3) Our definition is equivalent to Bowditch's definition [Bow95] (he gives several definitions and proves that they are all equivalent).

From now on we will assume $\Gamma \subset G$ is geometrically finite unless stated otherwise. Let $e_{i}: Y_{i} \rightarrow \tilde{Y}_{i} \subset \bar{Y}_{\Gamma_{P_{i}}}$ be the inverse map of $\left.\pi_{i}\right|_{\tilde{Y}_{i}}$. As π_{i} is an open map, e_{i} is continuous.
Let Q be a Γ-cuspidal parabolic subgroup of G.
Let $w_{Q} \in N_{K_{Q}}\left(\mathfrak{a}_{Q}\right)$ be a representative of the nontrivial Weyl group element. Let $w_{i}=w_{P_{i}}$.
Lemma 3.2.6. $\Gamma_{Q} \backslash\left(\Lambda_{\Gamma} \backslash\{e Q\}\right)$ is a compact subset of $\Gamma_{Q} \backslash \Omega_{Q}$.
Proof. Since Λ_{Γ} is closed in $\partial X, \Lambda_{i}=\Lambda_{\Gamma} \cap \Omega_{P_{i}}$ is closed in $\Omega_{P_{i}}$. Thus, $\Gamma_{P_{i}} \backslash \Lambda_{i}$ is closed in $\Gamma_{P_{i}} \backslash \Omega_{P_{i}}$ by definition of the quotient topology.
As $e_{i}\left(Y_{i}\right)$ is contained in $\bar{Y}_{\Omega, \Gamma_{P_{i}}}, e_{i}\left(Y_{i}\right) \cap \Gamma_{P_{i}} \backslash \Lambda_{i}=\varnothing$. Moreover, it follows from Definition 3.2.4 that $C_{i}:=\bar{Y}_{\Gamma_{P_{i}}} \backslash e_{i}\left(Y_{i}\right)$ is a compact subset of $\bar{Y}_{\Gamma_{P_{i}}}$. Thus, $\Gamma_{P_{i}} \backslash \Lambda_{i}$ is contained in $C_{i} \cap\left(\Gamma_{P_{i}} \backslash \Omega_{P_{i}}\right)$, which is a compact subset of $\Gamma_{P_{i}} \backslash \Omega_{P_{i}}$. The lemma follows for $Q=P_{i}$. Hence, it holds also for $Q=\gamma P_{i} \gamma^{-1}(\gamma \in \Gamma)$.

Lemma 3.2.7. Γ_{Q} is a geometrically finite subgroup of G. Moreover, $\mathcal{P}_{\Gamma_{Q}}=\{Q\}$.
Proof. Let Q^{\prime} be another parabolic subgroup of G (different from Q). As all parabolic subgroups of G are conjugate, there exists $g \in G$ such that $Q^{\prime}=g \bar{Q} g^{-1}$. Since \bar{Q} is the stabiliser of $w_{Q} Q, Q^{\prime}$ is the stabiliser of $g w_{Q} Q$.
It follows from the Bruhat decomposition $\left(G=N_{Q} w_{Q} Q \cup Q\right)$, that there exists also $n \in N_{Q}$ such that Q^{\prime} is the stabiliser of $n w_{Q} Q$. Thus, $Q^{\prime}=n \bar{Q} n^{-1}$. Hence,

$$
\begin{aligned}
& Q \cap Q^{\prime}=M_{Q} A_{Q} N_{Q} \cap\left(n M_{Q} n^{-1}\right)\left(n A_{Q} n^{-1}\right)\left(n \bar{N}_{Q} n^{-1}\right) \\
&=\left(n M_{Q} n^{-1}\right)\left(n A_{Q} n^{-1}\right)=: \tilde{M} \tilde{A} .
\end{aligned}
$$

$\mathrm{So}_{\tilde{M}}, \Gamma_{Q} \cap Q^{\prime} \subset \tilde{M} \tilde{A} \cap M_{Q} N_{Q}=\tilde{M} \tilde{A} \cap \tilde{M} N_{Q}=\tilde{M}$ as the Langlands decomposition of $\tilde{M} \tilde{A} N_{Q}$ is unique. Since \tilde{M} is compact and Γ_{Q} is discrete, it follows that $\Gamma_{Q} \cap Q^{\prime}$ is finite (in fact it is trivial as Γ is torsion-free). Consequently, $\mathcal{P}_{\Gamma_{Q}}=\left\{[Q]_{\Gamma_{Q}}\right\}=\{Q\}$. The lemma follows now easily from this.

$3.3 N_{\Gamma} N^{\Gamma}$ decomposition of the unipotent radical N of a cuspidal parabolic subgroup of G

We show in this section how the unipotent radical N_{Q} of a Γ-cuspidal parabolic subgroup Q of G can be decomposed.
From now on, we assume that Q is a Γ-cuspidal parabolic subgroup of G unless stated otherwise.
Let $\mathfrak{n}_{\Gamma, Q}$ be the Lie algebra of $N_{\Gamma, Q}$. Since

$$
0 \rightarrow \mathfrak{g}_{2 \alpha_{Q}} \cap \mathfrak{n}_{\Gamma, Q} \underset{\iota}{\longrightarrow} \mathfrak{n}_{\Gamma, Q} \underset{p}{\longrightarrow} p_{\mathfrak{g}_{\alpha_{Q}}}\left(\mathfrak{n}_{\Gamma, Q}\right) \rightarrow 0,
$$

where ι is the canonical injection and p is the canonical projection, is a short exact sequence,

$$
\operatorname{dim}\left(\mathfrak{n}_{\Gamma, Q}\right)=\operatorname{dim}\left(p_{\mathfrak{g}_{\alpha_{Q}}}\left(\mathfrak{n}_{\Gamma, Q}\right)\right)+\operatorname{dim}\left(\mathfrak{g}_{\alpha_{Q}} \cap \mathfrak{n}_{\Gamma, Q}\right) .
$$

Let $\mathfrak{n}_{1}^{\Gamma, Q}$ (resp. $\mathfrak{n}_{2}^{\Gamma, Q}$) be the orthogonal complement of $p_{\mathfrak{g}_{\alpha_{Q}}}\left(\mathfrak{n}_{\Gamma, Q}\right)$ in $\mathfrak{g}_{\alpha_{Q}}$ (resp. $\mathfrak{g}_{2 \alpha_{Q}} \cap \mathfrak{n}_{\Gamma, Q}$ in $\left.\mathfrak{g}_{2 \alpha_{Q}}\right)$ with respect to $\langle\cdot, \cdot\rangle_{\theta_{Q}}$. Set $\mathfrak{n}^{\Gamma, Q}=\mathfrak{n}_{1}^{\Gamma, Q} \oplus \mathfrak{n}_{2}^{\Gamma, Q}$. This space is invariant under the adjoint action of A_{Q} as so are $\mathfrak{n}_{1}^{\Gamma, Q}$ and $\mathfrak{n}_{2}^{\Gamma, Q}$. Assume that $X \in \mathfrak{n}_{\Gamma, Q} \cap \mathfrak{n}^{\Gamma, Q}$. Write $X=X_{1}+X_{2}$ with $X_{j} \in \mathfrak{g}_{j \alpha_{Q}}$. Then, $X_{1} \in$ $p_{\mathfrak{g}_{\alpha}}\left(\mathfrak{n}_{\Gamma, Q}\right) \cap \mathfrak{n}_{1}^{\Gamma, Q}=\{0\}$. Thus, $X=X_{2} \in \mathfrak{g}_{2 \alpha_{Q}} \cap \mathfrak{n}_{\Gamma, Q} \cap \mathfrak{n}_{2}^{\Gamma, Q}=\{0\}$. Hence, $X=0$. Since in addition $\operatorname{dim}\left(\mathfrak{n}_{\Gamma, Q}\right)+\operatorname{dim}\left(\mathfrak{n}^{\Gamma, Q}\right)=\operatorname{dim}\left(\mathfrak{n}_{Q}\right)$ by construction,

$$
\begin{equation*}
\mathfrak{n}_{Q}=\mathfrak{n}_{\Gamma, Q} \oplus \mathfrak{n}^{\Gamma, Q} . \tag{3.6}
\end{equation*}
$$

Set $N^{\Gamma, Q}=\exp \left(\mathfrak{n}^{\Gamma, Q}\right)$ (invariant under conjugation in $\left.A_{Q}\right)$.
Let $N_{1}^{\Gamma, Q}=\exp \left(\mathfrak{n}_{1}^{\Gamma, Q}\right)$ and $N_{2}^{\Gamma, Q}=\exp \left(\mathfrak{n}_{2}^{\Gamma, Q}\right)$.
We put as measure on all measurable subsets S of N_{Q} the push-forward of the Lebesgue measure on $\log (S)$ (with an appropriate normalisation). Here, \log is the inverse map of the exponential map exp: $\mathfrak{n}_{Q} \rightarrow N_{Q}$.
Since $\mathfrak{n}_{\Gamma, Q}$ and $\mathfrak{g}_{2 \alpha_{Q}}$ are invariant under the adjoint action of $M_{\Gamma, Q}$ and since $p_{\mathfrak{g}_{\alpha}}$ is clearly M_{Q}-equivariant, $\mathfrak{g}_{2 \alpha_{Q}} \cap \mathfrak{n}_{\Gamma, Q}$ and $p_{\mathfrak{g}_{\alpha_{Q}}}\left(\mathfrak{n}_{\Gamma, Q}\right)$ are also invariant under the adjoint action of $M_{\Gamma, Q}$.
As $\langle\cdot, \cdot\rangle_{\theta_{Q}}$ is invariant under the adjoint action of K_{Q}, it follows that $\mathfrak{n}_{1}^{\Gamma, Q}, \mathfrak{n}_{2}^{\Gamma, Q}$ and $\mathfrak{n}^{\Gamma, Q}$ are invariant under the adjoint action of $M_{\Gamma, Q}$, too. Thus, $N^{\Gamma, Q}$ is invariant under conjugation in $M_{\Gamma, Q}$.

Lemma 3.3.1. For all $X, Y \in \mathfrak{n}_{Q}$, $\exp (X) \exp (Y)=\exp (X+Y) \exp \left(\frac{1}{2}[X, Y]\right)$.
Proof. By the Baker-Campbell-Hausdorff formula, we have

$$
\log (\exp (X) \exp (Y))=X+Y+\frac{1}{2}[X, Y] \quad\left(X, Y \in \mathfrak{n}_{Q}\right)
$$

and

$$
\log (\exp (X) \exp (Y))=X+Y \quad\left(X \in \mathfrak{n}_{Q}, Y \in \mathfrak{g}_{2 \alpha_{Q}}\right)
$$

Thus, $\exp (X) \exp (Y)=\exp (X+Y) \exp \left(\frac{1}{2}[X, Y]\right)$ for all $X, Y \in \mathfrak{n}_{Q}$. The lemma follows.

Proposition 3.3.2. We have: $N_{Q}=N_{\Gamma, Q} N^{\Gamma, Q}$. Moreover, every $n \in N_{Q}$ writes uniquely as $n_{1} n_{2}$ with $n_{1} \in N_{\Gamma, Q}$ and $n_{2} \in N^{\Gamma, Q}$.

Remark 3.3.3. As $N^{\Gamma, Q}$ may be no Lie group, the $N_{\Gamma, Q} N^{\Gamma, Q}$ decomposition of $n n^{\prime}\left(n, n^{\prime} \in N^{\Gamma, Q}\right)$ can have a nontrivial $N_{\Gamma, Q}$-part!

Proof. As $N_{\Gamma, Q}$ (resp. $N^{\Gamma, Q}$) is isomorphic to $\mathfrak{n}_{\Gamma, Q}$ (resp. $\mathfrak{n}^{\Gamma, Q}$), as $\mathfrak{n}_{Q}=\mathfrak{n}_{\Gamma, Q} \oplus \mathfrak{n}^{\Gamma, Q}$ and as $\mathfrak{g}_{2 \alpha_{Q}}=\left(\mathfrak{n}_{\Gamma, Q} \cap \mathfrak{g}_{2 \alpha_{Q}}\right) \oplus\left(\mathfrak{n}^{\Gamma, Q} \cap \mathfrak{g}_{2 \alpha_{Q}}\right)$,

$$
N_{\Gamma, Q} \times N^{\Gamma, Q} \rightarrow N_{Q},\left(n_{1}, n_{2}\right) \mapsto n_{1} n_{2}
$$

is a diffeomorphism by Proposition 17 of Chapter III of [Bou06, p.237]. The proposition follows.

Let $n \in N_{Q}$. Write $n=n_{1} n_{2}$ with $n_{1} \in N_{\Gamma, Q}$ and $n_{2} \in N^{\Gamma, Q}$.
Set

$$
p_{N_{\Gamma, Q}}(n)=n_{1} \in N_{\Gamma, Q}
$$

and

$$
p_{N^{\Gamma, Q}}(n)=n_{2} \in N^{\Gamma, Q} .
$$

Then, $p_{N_{\Gamma, Q}}: N_{Q} \rightarrow N_{\Gamma, Q}$ and $p_{N^{\Gamma}, Q}: N_{Q} \rightarrow N^{\Gamma, Q}$ are analytic maps by the proof of the previous proposition.

3.4 Generalised Siegel sets

In the following, we generalise the notions of a Siegel set. Moreover, we use these sets to get a cover of the quotient space $\Gamma \backslash X$.

Definition 3.4.1. Let S, T be sets, $k \in \mathbb{N}$ and f a map from S to T. Then, f is said to be at most k-to-one if, for all $y \in T, f^{-1}(y)$ contains at most k elements.

Definition 3.4.2.

(1) Let $Q=M_{Q} A_{Q} N_{Q}$ be a Γ-cuspidal parabolic subgroup of G. Recall that $w_{Q} \in N_{K_{Q}}\left(A_{Q}\right)$ denotes a representative of the nontrivial element of the Weyl group of $\left(\mathfrak{g}, \mathfrak{a}_{Q}\right)$. Let V be a connected subset of N_{Q}, which is the closure of an open subset of N_{Q}, such that

$$
\Phi: V M_{\Gamma, Q} \rightarrow \Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}, \quad n m \mapsto \Gamma_{Q} n m
$$

is surjective and at most k-to-one for some $k \in \mathbb{N}$. Let V^{\prime} be a subset of $V \subset N_{Q}$, which is relatively compact in N_{Q}, such that $V \backslash V^{\prime}$ is closed and such that

$$
\left\{n \in N_{Q} \mid n w_{Q} Q \in N_{\Gamma, Q}\left(\Lambda_{\Gamma} \backslash\{e Q\}\right)\right\} M_{\Gamma, Q}
$$

is contained in $\Gamma_{Q} V^{\prime} M_{\Gamma, Q}$.
We say that a subset $\mathfrak{S}_{Q, t, V, V^{\prime}}$ of G is a generalised Siegel set with respect to Q if it is of the form

$$
V A_{Q} K_{Q} \backslash V^{\prime} A_{Q,<t} K_{Q},
$$

where $A_{Q,<t}:=\left\{a \in A_{Q} \mid a^{\alpha_{Q}}<t\right\}$ (here $t>0$ is fixed).
(2) We denote often $\mathfrak{S}_{Q, t, V, V^{\prime}}$ simply by \mathfrak{S}_{Q} or \mathfrak{S}.
(3) We call $\mathfrak{S}^{\prime}:=\left\{g K_{Q} \mid g \in \mathfrak{S}\right\}$ a generalised Siegel set in G / K_{Q}.
(4) Let K^{\prime} be a maximal compact subgroup of G and let $h \in G$ be such that $K_{Q}=h K^{\prime} h^{-1}$. Set $X^{\prime}=G / K^{\prime}$. Then, we say that

$$
\mathfrak{S}_{X^{\prime}}^{\prime}:=\left\{g h K^{\prime} \mid g K_{Q} \in \mathfrak{S}^{\prime}\right\}
$$

is a generalised Siegel set in X^{\prime}.
(5) We say that \mathfrak{S}^{\prime} is a generalised Siegel set at $e Q$. Moreover, if u is Γ-cuspidal, then \mathfrak{S}^{\prime} is also called Γ-cuspidal.

Remark 3.4.3.

(1) We use here the convention that $\varnothing A_{Q,<t} K_{Q}=\varnothing$. We can take $V^{\prime}=\varnothing$ if $\Gamma=\Gamma_{Q}$.
(2) As Γ_{Q} is a cocompact lattice in $N_{\Gamma, Q} M_{\Gamma, Q}$ and as $N_{Q}=N_{\Gamma, Q} N^{\Gamma, Q}$ by Proposition 3.3.2, it is indeed possible to choose V as above.
(3) It follows from Lemma 3.2.6 that the set $\Gamma_{Q} \backslash\left\{n \in N_{Q} \mid n w_{Q} Q \in \Lambda_{\Gamma} \backslash\{e Q\}\right\}$ is compact. Thus, V^{\prime} exists since moreover Φ is surjective and at most k-toone.
(4) If \mathfrak{S} is a generalised Siegel set at a cusp of full rank, then $N^{\Gamma, Q}=\{e\}$. Thus, we can take $V^{\prime}=V$. So, \mathfrak{S} is of the form

$$
V A_{Q, \geqslant t} K_{Q}
$$

where $A_{Q,>t}:=\left\{a \in A_{Q} \mid a^{\alpha_{Q}} \geqslant t\right\}$ (here $t>0$ is fixed). We call such a set a Siegel set with respect to Q.
(5) Let \mathfrak{S}_{1} and \mathfrak{S}_{2} be two generalised Siegel sets with respect to Q. Then, $\Gamma_{Q} \mathfrak{S}_{1}^{\prime}$ is equal to $\Gamma_{Q} \mathfrak{S}_{2}^{\prime}$ up to a relatively compact subset of $\Gamma_{Q} \backslash\left(X \cup \Omega_{\Gamma}\right)$.

Definition 3.4.4.

(1) Let $Q=M_{Q} A_{Q} N_{Q}$ be a Γ-cuspidal parabolic subgroup of G. Let ω be a compact subset of $N_{\Gamma, Q}$ such that the map

$$
\omega M_{\Gamma, Q} \rightarrow \Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}, \quad n m \mapsto \Gamma_{Q} n m
$$

is surjective and at most k-to-one for some $k \in \mathbb{N}$. Let ω^{\prime} be an open relatively compact subset of $N^{\Gamma, Q}$ such that the compact set

$$
\left\{n \in N^{\Gamma, Q} \mid n w_{Q} Q \in N_{\Gamma, Q}\left(\Lambda_{\Gamma} \backslash\{e Q\}\right)\right\}
$$

is contained in ω^{\prime}.
We say that a subset $\mathfrak{S}_{\text {std, } Q, t, \omega, \omega^{\prime}}$ of G is a generalised standard Siegel set with respect to Q if it is of the form

$$
\omega N^{\Gamma, Q} A_{Q} K_{Q} \backslash \omega \omega^{\prime} A_{Q,<t} K_{Q}
$$

where $A_{Q,<t}:=\left\{a \in A_{Q} \mid a^{\alpha_{Q}}<t\right\}$ (here $t>0$ is fixed).
(2) We call $\mathfrak{S}^{\prime}:=\left\{g K_{Q} \mid g \in \mathfrak{S}\right\}$ a generalised standard Siegel set in G / K_{Q}.
(3) Let K^{\prime} be a maximal compact subgroup of G and let $h \in G$ be such that $K_{Q}=h K^{\prime} h^{-1}$. Set $X^{\prime}=G / K^{\prime}$. Then, we say that

$$
\mathfrak{S}_{X^{\prime}}^{\prime}:=\left\{g h K^{\prime} \mid g K_{Q} \in \mathfrak{S}^{\prime}\right\}
$$

is a generalised standard Siegel set in X^{\prime}.
(4) We say that \mathfrak{S}^{\prime} is a generalised standard Siegel set at $e Q$. Moreover, if u is Γ-cuspidal, then \mathfrak{S}^{\prime} is also called Γ-cuspidal.

Remark 3.4.5.

(1) We use here the convention that $\omega \varnothing A_{Q,<t} K_{Q}=\varnothing$. We can take $\omega^{\prime}=\varnothing$ if $\Gamma=\Gamma_{Q}$.
(2) As Γ_{Q} is a cocompact lattice in $N_{\Gamma, Q} M_{\Gamma, Q}$ and as $N_{Q}=N_{\Gamma, Q} N^{\Gamma, Q}$ by Proposition 3.3.2, it is indeed possible to choose ω as above.
(3) It follows from Lemma 3.2.6 and the fact that the image of a compact set by a continuous map between metric spaces (here $p_{N^{\Gamma}, Q}: \Gamma_{Q} \backslash N_{Q} \rightarrow N^{\Gamma, Q}$, the canonical projection) is compact that the set $\left\{n \in N^{\Gamma, Q} \mid n w_{Q} Q \in\right.$ $\left.N_{\Gamma, Q}\left(\Lambda_{\Gamma} \backslash\{e Q\}\right)\right\}=p_{N^{\Gamma, Q}}\left(\Gamma_{Q} \backslash\left\{n \in N_{Q} \mid n w_{Q} Q \in \Lambda_{\Gamma} \backslash\{e Q\}\right\}\right)$ is compact. Thus, ω^{\prime} exists.
(4) A generalised standard Siegel set is of course a generalised Siegel set and every generalised Siegel set in X is clearly contained in the union of a generalised standard Siegel set in X and an open subset of X which is relatively compact in $X \cup \Omega$.
(5) If \mathfrak{S} is a generalised standard Siegel set at a cusp of full rank, then $N^{\Gamma, Q}=$ $\{e\}$. Thus, we can take $\omega^{\prime}=\{e\}$. So, \mathfrak{S} is of the form

$$
\omega A_{Q, \geqslant t} K_{Q}
$$

where $A_{Q, \geqslant t}:=\left\{a \in A_{Q} \mid a^{\alpha_{Q}} \geqslant t\right\}$ (here $t>0$ is fixed). We call such a set a standard Siegel set with respect to Q.
(6) If $\gamma \in \Gamma_{Q}$, then $\gamma \omega$ is of the same form than ω.

Example of a generalised standard Siegel set when X is the upper half-space:

N.B. Only $\omega N^{\Gamma, Q} A_{Q} K_{Q}$ is drawn on the picture.

Let \mathfrak{S}^{\prime} be a generalised (standard) Siegel set in G / K_{Q} with respect to Q and let $\gamma \in \Gamma$. Then, $\gamma \mathfrak{S}^{\prime} \gamma^{-1}$ is a generalised (standard) Siegel set in $G /\left(\gamma K_{Q} \gamma^{-1}\right)$ with respect to $\gamma Q \gamma^{-1}$ and $\gamma \mathfrak{S}^{\prime}$ is a generalised Siegel set in G / K_{Q} with respect to Q.

Let $\omega_{s t d, i}$ be a subset of $N_{\Gamma, P_{i}}$ and let $\omega_{s t d, i}^{\prime}$ be a subset of $N^{\Gamma, P_{i}}$ such that Definition 3.4.4 for a generalised standard Siegel set with respect to P_{i} holds for $\omega=\omega_{\text {std }, i}$ and $\omega^{\prime}=\omega_{s t d, i}^{\prime}$.
Set $\mathfrak{S}_{s t d, i}=\omega_{s t d, i} N^{\Gamma, P_{i}} A_{i} K_{i} \backslash \omega_{s t d, i} \omega_{s t d, i}^{\prime}\left(A_{i}\right)_{<1} K_{i}$ (generalised standard Siegel set in G with respect to P_{i}).
Let $h_{i} \in N_{i} A_{i}$ be such that $K_{i}=h_{i} K h_{i}^{-1}$. Set

$$
\mathfrak{S}_{X, s t d, i}^{\prime}=\left\{g h_{i} K \in X \mid g K_{i} \in \mathfrak{S}_{s t d, i}^{\prime}\right\} .
$$

Recall that $e_{i}: Y_{i} \rightarrow \bar{Y}_{\Gamma_{P_{i}}}$ is the inverse map of $\left.\pi_{i}\right|_{\tilde{Y}_{i}}$ (see Definition 3.2.4 for notations).

Lemma 3.4.6. There are generalised standard Siegel sets $\mathfrak{S}_{X, i, 1}^{\prime}, \mathfrak{S}_{X, i, 2}^{\prime}$ in X with respect to P_{i} such that

$$
\Gamma_{P_{i}} \operatorname{clo}\left(\mathfrak{S}_{X, i, 1}^{\prime}\right) \subset e_{i}\left(Y_{i}\right) \subset \Gamma_{P_{i}} \operatorname{clo}\left(\mathfrak{S}_{X, i, 2}^{\prime}\right)
$$

Proof. Let $C_{i}=\bar{Y}_{\Gamma_{P_{i}}} \backslash e_{i}\left(Y_{i}\right)$. By the proof of Lemma 3.2.6, $\Gamma_{P_{i}} \backslash \Lambda_{i}$ is contained in C_{i}. Thus, $e_{i}\left(Y_{i}\right)$ is relatively compact in $\Gamma_{P_{i}} \backslash\left(X \cup \Omega_{\Gamma} \cup\left\{e P_{i}\right\}\right)$.
Since $\Gamma_{P_{i}} \operatorname{clo}\left(\mathfrak{S}_{X, s t d, i}^{\prime}\right) \cup\left\{e P_{i}\right\}$ is a compact subset of $\Gamma_{P_{i}} \backslash\left(X \cup \Omega_{\Gamma} \cup\left\{e P_{i}\right\}\right)$,

$$
C_{i, 1}:=\Gamma_{P_{i}} \operatorname{clo}\left(\mathfrak{S}_{X, s t d, i}^{\prime}\right) \backslash e_{i}\left(Y_{i}\right) \quad \text { and } \quad C_{i, 2}:=e_{i}\left(Y_{i}\right) \backslash \Gamma_{P_{i}} \operatorname{clo}\left(\mathfrak{S}_{X, s t d, i}^{\prime}\right)
$$

are compact in $\Gamma_{P_{i}} \backslash\left(X \cup \Omega_{\Gamma}\right)$. Thus, $C_{i, 1} \cap \Gamma_{P_{i}} \backslash \Omega_{\Gamma}$ and $C_{i, 2} \cap \Gamma_{P_{i}} \backslash \Omega_{\Gamma}$ are compact in $\Gamma_{P_{i}} \backslash \Omega_{\Gamma}$.
Let $h_{i} \in G$ be such that $K_{i}=h_{i} K h_{i}^{-1}$ and $P_{i}=h_{i} P h_{i}^{-1}$. As moreover

$$
\Omega_{P_{i}}=\left\{n w_{i} P_{i} \mid n \in N_{i}\right\}=\left\{n w_{i} h_{i} P \mid n \in N_{i}\right\} \subset \partial X,
$$

$\Gamma_{P_{i}} \operatorname{clo}\left(\mathfrak{S}_{\left.X, s t d, P_{i}, t_{1}, \omega_{i}, \omega_{i, 1}^{\prime}\right)}^{\prime}\right)$ is contained in $\bar{Y}_{\Gamma_{P_{i}}} \backslash C_{i, 1}$ for some $t_{1} \geqslant 1$ and some $\omega_{i, 1}^{\prime}$ containing ω_{i}^{\prime} and $C_{i, 2}$ is contained in

$$
\Gamma_{P_{i}} \operatorname{clo}\left(\mathfrak{S}_{X, s t d, P_{i}, t_{2}, \omega_{i}, \omega_{i, 2}^{\prime}}^{\prime}\right)
$$

for some $t_{2} \leqslant 1$ and $\omega_{i, 2}^{\prime}$ which is contained in ω_{i}^{\prime}. Set $\mathfrak{S}_{X, i, 1}^{\prime}=\mathfrak{S}_{X, s t d, P_{i}, t_{1}, \omega_{i}, \omega_{i, 1}^{\prime}}^{\prime}$ and $\mathfrak{S}_{X, i, 2}^{\prime}=\mathfrak{S}_{X, s t d, P_{i}, t_{2}, \omega_{i}, \omega_{i, 2}^{\prime}}^{\prime}$. The lemma follows.

Proposition 3.4.7.

(1) Let $\mathfrak{S}_{X, i}^{\prime}$ be generalised Siegel sets in X with respect to $P_{i}(i=1, \ldots, m)$. Then, there is an open relatively compact subset U of $X \cup \Omega_{\Gamma}$ such that

$$
\begin{equation*}
\Gamma \backslash\left(X \cup \Omega_{\Gamma}\right)=\Gamma U \cup \bigcup_{i=1}^{m} \Gamma \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \tag{3.7}
\end{equation*}
$$

(2) There are generalised Siegel sets \mathfrak{S}_{i} at $P_{i}(i=1, \ldots, m)$ and an open relatively compact subset U of $X \cup \Omega_{\Gamma}$ such that

$$
\begin{equation*}
\Gamma \backslash\left(X \cup \Omega_{\Gamma}\right)=\Gamma U \cup \Gamma \operatorname{clo}\left(\mathfrak{S}_{X, 1}^{\prime}\right) \cup \Gamma \operatorname{clo}\left(\mathfrak{S}_{X, 2}^{\prime}\right) \cup \cdots \cup \Gamma \operatorname{clo}\left(\mathfrak{S}_{X, m}^{\prime}\right) \tag{3.8}
\end{equation*}
$$

(disjoint union),

$$
\begin{equation*}
\left\{\gamma \in \Gamma \mid \gamma \operatorname{clo}\left(\mathfrak{S}_{X, k}^{\prime}\right) \cap \operatorname{clo}\left(\mathfrak{S}_{X, l}^{\prime}\right) \neq \varnothing\right\}=\varnothing \tag{3.9}
\end{equation*}
$$

for all $k \neq l$, and

$$
\begin{equation*}
\left\{\gamma \in \Gamma \mid \gamma \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \cap \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \neq \varnothing\right\} \subset \Gamma_{P_{i}} \tag{3.10}
\end{equation*}
$$

for all i.
Proof.
(1) By Definition 3.2.4, there is a compact C in \bar{Y}_{Γ} such that

$$
\begin{equation*}
\bar{Y}_{\Gamma}=C \cup \bigcup_{i=1}^{m} Y_{i} . \tag{3.11}
\end{equation*}
$$

Let \mathfrak{S}_{i} be generalised Siegel sets with respect to $P_{i}(i=1, \ldots, m)$. Without loss of generality, we may assume that $\mathfrak{S}_{i}=\mathfrak{S}_{s t d, i}$. By Lemma 3.4.6, there is an open relatively compact subset V of $X \cup \Omega$ such that

$$
e_{i}\left(Y_{i}\right) \subset \Gamma_{P_{i}} V \cup \Gamma_{P_{i}} \operatorname{clo}\left(\mathfrak{S}_{X, s t d, i}^{\prime}\right) \subset \bar{Y}_{\Omega, \Gamma_{P_{i}}}
$$

for all i. Applying π_{i} to this inclusion shows that Y_{i} is contained in $\Gamma V \cup$ $\Gamma \operatorname{clo}\left(\mathfrak{S}_{X, s t d, i}^{\prime}\right)$. Let $U \in \mathcal{U}_{\Gamma}$ be such that $C \cup \Gamma V$ is contained in ΓU. The first assertion follows.
(2) By Lemma 3.4.6, there are generalised Siegel sets $\mathfrak{S}_{X, i}^{\prime}$ in X with respect to P_{i} such that $e_{i}\left(Y_{i}\right)$ is contained in $\Gamma_{P_{i}} \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right)$. Thus, Y_{i} is contained in $\Gamma \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right)$. Hence, $V:=\bar{Y}_{\Gamma} \backslash \bigcup_{i=1}^{m} \Gamma \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right)$ is relatively compact in \bar{Y}_{Γ} by (3.11). Let $U^{\prime} \in \mathcal{U}_{\Gamma}$ be such that V is contained in ΓU^{\prime}. Set $U=U^{\prime} \backslash \bigcup_{i=1}^{m} \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right)$ (open). The disjoint decomposition in (3.8) follows as $Y_{i} \cap Y_{j}=\varnothing$ if $i \neq j$.
As $\Gamma \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right)$ is contained in Y_{i} for all i and as $Y_{k} \cap Y_{l}=\varnothing$ for $k \neq l$,

$$
\Gamma \operatorname{clo}\left(\mathfrak{S}_{X, k}^{\prime}\right) \cap \Gamma \operatorname{clo}\left(\mathfrak{S}_{X, l}^{\prime}\right)=\varnothing
$$

for all $k \neq l$. Thus, (3.9) holds.
Let $p_{i}: X \cup \Omega_{\Gamma} \rightarrow \Gamma_{P_{i}} \backslash\left(X \cup \Omega_{\Gamma}\right), x \mapsto \Gamma_{P_{i}} x$.
The set $\left\{\gamma \in \Gamma \mid \gamma \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \cap \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \neq \varnothing\right\}$ is contained in

$$
\left\{\gamma \in \Gamma \mid \gamma p_{i}^{-1}\left(e_{i}\left(Y_{i}\right)\right) \cap p_{i}^{-1}\left(e_{i}\left(Y_{i}\right)\right) \neq \varnothing\right\}
$$

and this set is contained in $\Gamma_{P_{i}}$ as $\pi_{i}: \bar{Y}_{\Omega, \Gamma_{P_{i}}} \rightarrow \bar{Y}_{\Gamma}, \Gamma_{P_{i}} x \mapsto \Gamma x$ is injective on $e_{i}\left(Y_{i}\right)=\tilde{Y}_{i}$. This shows (3.10).

Corollary 3.4.8.

(1) Let $\mathfrak{S}_{X, i}$ be generalised Siegel sets in X with respect to $P_{i}(i=1, \ldots, m)$. Then, there is $U \in \mathcal{U}_{\Gamma}$ such that

$$
\begin{equation*}
\Gamma \backslash X=\Gamma U \cup \bigcup_{i=1}^{m} \Gamma \mathfrak{S}_{X, i}^{\prime} \tag{3.12}
\end{equation*}
$$

(2) There are generalised Siegel sets \mathfrak{S}_{i} at $P_{i}(i=1, \ldots, m)$ and $U \in \mathcal{U}_{\Gamma}$ such that

$$
\begin{equation*}
\Gamma \backslash X=\Gamma U \cup \Gamma \mathfrak{S}_{X, 1}^{\prime} \cup \cdots \cup \Gamma \mathfrak{S}_{X, m}^{\prime} \tag{3.13}
\end{equation*}
$$

(disjoint union),

$$
\left\{\gamma \in \Gamma \mid \gamma \mathfrak{S}_{X, k}^{\prime} \cap \mathfrak{S}_{X, l}^{\prime} \neq \varnothing\right\}=\varnothing
$$

for all $k \neq l$, and

$$
\left\{\gamma \in \Gamma \mid \gamma \mathfrak{S}_{X, i}^{\prime} \cap \mathfrak{S}_{X, i}^{\prime} \neq \varnothing\right\} \subset \Gamma_{P_{i}}
$$

for all i.
Proof. By the previous proposition, we have a decomposition of the form

$$
\Gamma \backslash\left(X \cup \Omega_{\Gamma}\right)=\Gamma V \cup \Gamma \operatorname{clo}\left(\mathfrak{S}_{X, 1}^{\prime}\right) \cup \cdots \cup \Gamma \operatorname{clo}\left(\mathfrak{S}_{X, m}^{\prime}\right)
$$

with V an open relatively compact subset of $X \cup \Omega_{\Gamma}$ and $\mathfrak{S}_{X, i}^{\prime}$ generalised Siegel sets in X with respect to P_{i}.
Set $U=V \cap X \in \mathcal{U}_{\Gamma}$. Since $\mathfrak{S}_{X, i}^{\prime}$ is closed in $X, \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \cap X=\mathfrak{S}_{X, i}^{\prime}$. Thus,

$$
\Gamma \backslash X=\Gamma U \cup \bigcup_{i=1}^{m} \Gamma \mathfrak{S}_{X, i}^{\prime}
$$

The corollary follows.
Proposition 3.4.9. Let $U \in \mathcal{U}_{\Gamma}$ and let $\mathfrak{S}_{X, i}^{\prime}$ be generalised Siegel sets in X with respect to $P_{i}(i=1, \ldots, m)$. Then,

$$
\begin{equation*}
\left\{\gamma \in \Gamma \mid \gamma\left(\operatorname{clo}(U) \cup \bigcup_{i=1}^{m} \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right)\right) \cap\left(\operatorname{clo}(U) \cup \bigcup_{i=1}^{m} \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right)\right) \neq \varnothing\right\} \tag{3.14}
\end{equation*}
$$

is finite.
Proof. By Proposition 3.4.7, there are generalised Siegel sets \mathfrak{S}_{i} at $P_{i}(i=1, \ldots, m)$ and an open relatively compact subset V of $X \cup \Omega_{\Gamma}$ such that

$$
\Gamma \backslash\left(X \cup \Omega_{\Gamma}\right)=\Gamma V \cup \Gamma \operatorname{clo}\left(\mathfrak{S}_{X, 1}^{\prime}\right) \cup \Gamma \operatorname{clo}\left(\mathfrak{S}_{X, 2}^{\prime}\right) \cup \cdots \cup \Gamma \operatorname{clo}\left(\mathfrak{S}_{X, m}^{\prime}\right)
$$

(disjoint union),

$$
\begin{equation*}
\left\{\gamma \in \Gamma \mid \gamma \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \cap \operatorname{clo}\left(\mathfrak{S}_{X, j}^{\prime}\right) \neq \varnothing\right\}=\varnothing \tag{3.15}
\end{equation*}
$$

for all $i \neq j$, and

$$
\begin{equation*}
\left\{\gamma \in \Gamma \mid \gamma \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \cap \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \neq \varnothing\right\} \subset \Gamma_{P_{i}} \tag{3.16}
\end{equation*}
$$

for all i.
Let $U \in \mathcal{U}_{\Gamma}$. It follows from Definition 3.2.4, Definition 3.4.2 and Remark 3.4.3
(5) that we may assume without loss of generality that the $\mathfrak{S}_{X, i}^{\prime}$'s are the given generalised Siegel sets by adding V to U. Thus, (3.14) is equal to

$$
\begin{aligned}
\{\gamma \in \Gamma \mid \gamma \operatorname{clo}(U) \cap \operatorname{clo}(U) \neq \varnothing\} \cup \bigcup_{i=1}^{m} & \left\{\gamma \in \Gamma \mid \gamma \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \cap \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \neq \varnothing\right\} \\
& \cup \bigcup_{i=1}^{m}\left\{\gamma \in \Gamma \mid \gamma \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \cap \operatorname{clo}(U) \neq \varnothing\right\}
\end{aligned}
$$

By the proof of Lemma 3.4.6, there is a generalised Siegel set $\mathfrak{S}_{X, i, 2}^{\prime}$ of the form $\mathfrak{S}_{X, s t d, P_{i}, t_{2}, \omega_{i, 2}, \omega_{i, 2}^{\prime}}^{\prime}$ in X such that

$$
\begin{equation*}
\operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \subset \operatorname{int}\left(\operatorname{clo}\left(\mathfrak{S}_{X, i, 2}^{\prime}\right)\right) \subset e_{i}\left(Y_{i}\right) \tag{3.17}
\end{equation*}
$$

Here, $\operatorname{int}\left(\operatorname{clo}\left(\mathfrak{S}_{X, i, 2}^{\prime}\right)\right)$ is equal to

$$
\omega_{i, 2}^{\circ} N^{\Gamma, P_{i}} A_{i} h_{i} K \backslash \omega_{i, 2}^{\circ} \overline{\omega_{i, 2}^{\prime}} A_{i, \leqslant t_{2}} h_{i} K \cup\left\{n_{1} n_{2} w_{i} h_{i} P \mid n_{1} \in \omega_{i, 2}^{\circ}, n_{2} \in N^{\Gamma, P_{i}} \backslash \overline{\omega_{i, 2}^{\prime}}\right\}
$$

where $h_{i} \in G$ is such that $K_{i}=h_{i} K h_{i}^{-1}$ and $P_{i}=h_{i} P h_{i}^{-1}, \omega_{i, 2}^{\circ} \supset \omega_{i}$ is the interior of $\omega_{i, 2}$ in $N_{\Gamma, P_{i}}$ and $\overline{\omega_{i, 2}^{\prime}}$ denotes the closure of $\omega_{i, 2}^{\prime}$ in $N^{\Gamma, P_{i}}$.
Thus, $\operatorname{clo}(U)$ is contained in $\bigcup_{\gamma \in \Gamma} \gamma\left(V \cup \bigcup_{j=1}^{m} \operatorname{int}\left(\operatorname{clo}\left(\mathfrak{S}_{X, j, 2}^{\prime}\right)\right)\right)$. Hence, there are $\gamma_{1}, \ldots, \gamma_{r} \in \Gamma$ such that $\operatorname{clo}(U)$ is contained in

$$
\bigcup_{k=1}^{r} \gamma_{k}\left(V \cup \bigcup_{j=1}^{m} \operatorname{int}\left(\operatorname{clo}\left(\mathfrak{S}_{X, j, 2}^{\prime}\right)\right)\right)
$$

By (3.15) and since moreover $\Gamma V \cap \Gamma \operatorname{clo}\left(\mathfrak{S}_{X, j}^{\prime}\right)=\varnothing$ for all j,

$$
\left\{\gamma \in \Gamma \mid \operatorname{clo}(U) \cap \gamma \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \neq \varnothing\right\}
$$

is contained in

$$
\left\{\gamma \in \Gamma \mid\left(\bigcup_{k=1}^{r} \gamma_{k} \operatorname{clo}\left(\mathfrak{S}_{X, i, 2}^{\prime}\right)\right) \cap \gamma \operatorname{clo}\left(\mathfrak{S}_{X, i}^{\prime}\right) \neq \varnothing\right\}
$$

It follows from (3.17) and Definition 3.2.4 that this set is again contained in $\Gamma_{P_{i}}$. Hence, the above set is finite.
Since Γ acts properly continuous on $X \cup \Omega,\{\gamma \in \Gamma \mid \gamma \operatorname{clo}(U) \cap \operatorname{clo}(U) \neq \varnothing\}$ is finite for all i. Thus, the proposition follows by (3.16).

Lemma 3.4.10. Let $\mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}}$ be a generalised standard Siegel set with respect to Q and let S be a relatively compact subset of G. Then, there exists a generalised standard Siegel set $\mathfrak{S}_{s t d, Q, \tilde{t}, \omega, \tilde{\omega}^{\prime}}$ such that

$$
\gamma_{g, h} g h \in \mathfrak{S}_{s t d, Q, \tilde{t}, \omega, \tilde{\omega}^{\prime}}
$$

for some $\gamma_{g, h} \in \Gamma_{Q}$, for all $g \in \mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}}$ and all $h \in S$.
Proof. Let $\mathfrak{S}:=\mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}}$ and S be as above and let $h \in S$. Let $g \in G$. We have

$$
\begin{aligned}
g h & =\nu_{Q}(g h) h_{Q}(g h) k_{Q}(g h) \\
& =\left(\nu_{Q}(g) h_{Q}(g) \nu_{Q}\left(k_{Q}(g) h\right) h_{Q}(g)^{-1}\right) h_{Q}(g) h_{Q}\left(k_{Q}(g) h\right) k_{Q}(g h) .
\end{aligned}
$$

Let $\tilde{\omega}^{\prime}$ be such that its closure in $N^{\Gamma, Q}$ is strictly contained in ω^{\prime} and such that $\mathfrak{S}_{s t d, Q, t, \omega, \tilde{\omega}^{\prime}}$ is a generalised standard Siegel set with respect to Q.
Let $D=\overline{\tilde{\omega}^{\prime}}$ (compact) and $U=N_{\Gamma, Q} \omega^{\prime}$ (open).
Then, $V=\left\{n \in N_{Q} \mid D n \subset U, D n^{-1} \subset U\right\}$ is an open neighbourhood of e. Moreover, $N_{\Gamma, Q} D V \subset U$.
By definition of $V, N_{\Gamma, Q} D$ is contained in $U n$ for all $n \in V$. Hence, $N_{Q} \backslash U n$ is contained in $N_{Q} \backslash N_{\Gamma, Q} D$ for all $n \in V$.
Let $n \in V$. Then, N_{Q} is the disjoint union of $U n$ and $\left(N_{Q} \backslash U\right) n$.
Thus, $\left(N_{Q} \backslash U\right) n=N_{Q} \backslash U n$. Hence, $V\left(N_{Q} \backslash U\right)=\bigcup_{n \in V}\left(N_{Q} \backslash U n\right) \subset N_{Q} \backslash N_{\Gamma, Q} D$. Let $\delta \in(0, t)$ be such that

$$
\nu_{Q}(g) a \nu_{Q}(k h) a^{-1} \in V\left(N_{Q} \backslash N_{\Gamma, Q} \omega^{\prime}\right) \subset N_{Q} \backslash N_{\Gamma, Q} \overline{\tilde{\omega}^{\prime}}
$$

for all $a \in A_{Q, \leqslant \delta}, k \in K_{Q}, h \in S$ and $g \in G$ such that $p_{N^{\Gamma, Q}}\left(\nu_{Q}(g)\right) \in N^{\Gamma, Q} \backslash \omega^{\prime}$. Let $\tilde{t}=\delta \inf _{k \in K_{Q}, h \in S} h_{Q}(k h)^{\alpha_{Q}}>0$. Then,

$$
g h \in N_{Q} A_{Q, \geqslant \tilde{t}} K_{Q} \subset \Gamma_{Q} \mathfrak{S}_{s t d, Q, \tilde{t}, \omega, \tilde{\omega}^{\prime}}
$$

for all $g \in \omega N^{\Gamma, Q} A_{Q, \geqslant \delta} K_{Q}$ and all $h \in S$.
Proposition 3.4.11. There is $U_{\Gamma} \in \mathcal{U}_{\Gamma}$ such that

$$
\Gamma \backslash G=\Gamma U_{\Gamma} K \cup \bigcup_{i=1}^{m} \mathfrak{S}_{s t d, i} .
$$

Proof. By Corollary 3.4.8, there is $U \in \mathcal{U}_{\Gamma}$ such that

$$
\Gamma \backslash X=\Gamma U \cup \bigcup_{i=1}^{m} \Gamma \mathfrak{S}_{X, s t d, i}^{\prime}
$$

Let $h_{i} \in G$ be such that $K_{i}=h_{i} K h_{i}^{-1}$ and $P_{i}=h_{i} P h_{i}^{-1}$. Thus,

$$
\Gamma \backslash G=\Gamma U K \cup \bigcup_{i=1}^{m} \Gamma\left\{g h_{i} k \mid g \in \mathfrak{S}_{s t d, i}, k \in K\right\} .
$$

By Lemma 3.4.10, there exists a generalised standard Siegel set $\mathfrak{S}_{s t d, P_{i}, \tilde{t}_{i}, \omega_{i}, \tilde{\omega}_{i}^{\prime}}$ such that

$$
\left\{g h_{i} k \mid g \in \mathfrak{S}_{s t d, i}, k \in K\right\} \subset \bigcup_{\gamma \in \Gamma_{P_{i}}} \gamma \mathfrak{S}_{s t d, P_{i}, \tilde{t}_{i}, \omega_{i}, \tilde{\omega}_{i}^{\prime}}
$$

Hence,

$$
\Gamma \backslash G=\Gamma U K \cup \bigcup_{i=1}^{m} \Gamma \mathfrak{S}_{s t d, P_{i}, \tilde{i}_{i}, \omega_{i}, \tilde{\omega}_{i}^{\prime}}
$$

Let U_{i} be an open subset of G / K_{i} such that U_{i} is relatively compact in

$$
G / K_{i} \cup\left\{g P_{i} \mid g h_{i} P \in \Omega_{\Gamma}\right\}
$$

and such that $\mathfrak{S}_{s t d, P_{i}, \tilde{t}_{i}, \omega_{i}, \tilde{\omega}_{i}^{\prime}}$ is contained in

$$
U_{i} K_{i} \cup \mathfrak{S}_{s t d, i} \subset\left\{g k \in G \mid g K_{i} \in U_{i}, k \in K\right\} \cup \mathfrak{S}_{s t d, i}
$$

Then, $U_{i}^{\prime}:=\left\{g h_{i} K \mid g K_{i} \in U_{i}\right\}$ is an open subset of X which is relatively compact in $X \cup \Omega_{\Gamma}\left(U_{i}^{\prime} \in \mathcal{U}_{\Gamma}\right)$. By Corollary 2.3.39,

$$
\left\{g K \mid g K_{i} \in U_{i}\right\}=\left\{g h_{i}^{-1} K \mid g K \in U_{i}^{\prime}\right\}
$$

belongs also to \mathcal{U}_{Γ}. The proposition follows.

3.5 Computation of the critical exponent of Γ_{Q} and definition of the rank of a cusp

We define the rank of a cusp and we determine an explicit formula for the critical exponent of Γ_{Q} (see Proposition 3.5.2).

Definition 3.5.1.

(1) The rank of the cusp associated to $[Q]_{\Gamma} \in \mathcal{P}_{\Gamma}$ is by definition $\operatorname{dim} N_{\Gamma, Q}$.
(2) We say that the cusp associated to $[Q]_{\Gamma} \in \mathcal{P}_{\Gamma}$ is of full rank if its rank is equal to $\operatorname{dim} N_{Q}$, or equivalently, if $\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}$ is compact. Otherwise we say that the cusp associated to $[Q]_{\Gamma}$ is of smaller rank.

Let $r_{1}=\operatorname{dim} p_{\mathfrak{g}_{\alpha_{Q}}}\left(\mathfrak{n}_{\Gamma, Q}\right)$ and $r_{2}=\operatorname{dim}\left(\mathfrak{g}_{2 \alpha_{Q}} \cap \mathfrak{n}_{\Gamma, Q}\right)$.
Proposition 3.5.2. The critical exponent $\delta_{\Gamma_{Q}}$ of Γ_{Q} is equal to

$$
\left(\frac{r_{1}}{2}+r_{2}\right) \alpha_{Q}-\rho_{Q}=\left(\frac{r_{1}-m_{\alpha_{Q}}}{2}+r_{2}-m_{2 \alpha_{Q}}\right) \alpha_{Q} .
$$

Remark 3.5.3. A direct consequence of this proposition is that the critical exponent $\delta_{\Gamma_{Q}}$ of Γ_{Q} belongs to $\left(-\rho_{Q}, 0\right]$.
If $e Q$ is of smaller rank, then $\delta_{\Gamma_{Q}}$ belongs even to $\left(-\rho_{Q}, 0\right)$.
Proof. Let $\lambda_{Q} \in \mathfrak{a}_{Q}^{*} \equiv \mathbb{R}$. If $\gamma \in \Gamma_{Q}:=\Gamma \cap N_{Q} M_{Q}$, then $a_{\gamma}=a_{\nu_{Q}(\gamma)}$. Thus, $\sum_{\gamma \in \Gamma_{Q}} a_{\gamma}^{-\left(\lambda_{Q}+\rho_{Q}\right)}$ is finite if and only if

$$
\begin{equation*}
\sum_{\gamma \in \Gamma_{Q}} a\left(\theta_{Q} \nu_{Q}(\gamma)\right)^{-\left(\lambda_{Q}+\rho_{Q}\right)} \tag{3.18}
\end{equation*}
$$

is finite, by Corollary 2.1.9.
Let $n \in N_{Q}$. Write $n=\exp (X+Y)\left(X \in \mathfrak{g}_{\alpha_{Q}}, Y \in \mathfrak{g}_{2 \alpha_{Q}}\right)$. By Proposition 2.1.7,

$$
a\left(\theta_{Q} n\right)=\sqrt{\left(1+\frac{1}{2}|X|^{2}\right)^{2}+2|Y|^{2}}
$$

Since $(x, y) \mapsto\left(\left(1+\frac{1}{2} x^{2}\right)^{2}+2 y^{2}\right)^{-\frac{\lambda_{Q}+\rho_{Q}}{2}}$ is a continuous, nonnegative function that is decreasing in both variables, (3.18) is finite if and only if

$$
\int_{N_{\Gamma, Q}} a\left(\theta_{Q} n\right)^{-\left(\lambda_{Q}+\rho_{Q}\right)} d n
$$

is finite. Let $N_{1}^{\prime}=\exp \left(p_{\mathfrak{g}_{\alpha}}\left(\mathfrak{n}_{\Gamma, Q}\right)\right)$ and $N_{2}^{\prime}=\exp \left(\mathfrak{g}_{2 \alpha_{Q}} \cap \mathfrak{n}_{\Gamma, Q}\right)$. Then, it follows from the explicit formulas that the above integral is finite if and only if

$$
\int_{N_{1}^{\prime} N_{2}^{\prime}} a\left(\theta_{Q} n\right)^{-\left(\lambda_{Q}+\rho_{Q}\right)} d n
$$

is finite (we will prove a much more general formula in Lemma 3.6.35). By Proposition 2.3.26, this is case if and only if $\lambda_{Q}>\left(\frac{r_{1}}{2}+r_{2}\right) \alpha_{Q}-\rho_{Q}$.

For $H \in \mathfrak{a}_{Q}$, set

$$
\rho^{\Gamma_{Q}}(H)=\frac{1}{2} \operatorname{tr}\left(\left.\operatorname{ad}(H)\right|_{\mathfrak{n}^{\mathrm{r}}, Q}\right)
$$

and

$$
\rho_{\Gamma_{Q}}(H)=\rho_{Q}(H)-\rho^{\Gamma_{Q}}(H) .
$$

Lemma 3.5.4. We have:

$$
\rho_{\Gamma_{Q}}=\delta_{\Gamma_{Q}} .
$$

Proof. For $H \in \mathfrak{a}_{Q}$, we have

$$
\begin{aligned}
\rho^{\Gamma_{Q}}(H) & =\frac{1}{2}\left(\operatorname{dim}\left(\mathfrak{n}_{1}^{\Gamma, Q}\right) \alpha_{Q}(H)+2 \operatorname{dim}\left(\mathfrak{n}_{2}^{\Gamma, Q}\right) \alpha_{Q}(H)\right) \\
& =\frac{1}{2}\left(\left(m_{\alpha_{Q}}-r_{1}\right) \alpha_{Q}(H)+2\left(m_{2 \alpha_{Q}}-r_{2}\right) \alpha_{Q}(H)\right) \\
& =\rho_{Q}(H)-\left(\frac{1}{2} r_{1}+r_{2}\right) \alpha_{Q}(H) .
\end{aligned}
$$

Thus, $\rho_{\Gamma_{Q}}=\delta_{\Gamma_{Q}}$ by the previous proposition.

3.6 The Schwartz space and the space of cusp forms on $\Gamma \backslash G$

3.6.1 The Schwartz space on $\Gamma \backslash G$

In this section, we define the Schwartz space on $\Gamma \backslash G$ (in the geometrically finite case) and we show that a Schwartz function is indeed square-integrable.
Let $E=\exp \left(\mathfrak{e}_{1} \oplus \mathfrak{e}_{2}\right)$ for some vector subspaces $\mathfrak{e}_{1} \subset \mathfrak{g}_{\alpha_{Q}}$ and $\mathfrak{e}_{2} \subset \mathfrak{g}_{2 \alpha_{Q}}$. Let $n_{1}=\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{e}_{1}\right)$, let $n_{2}=\operatorname{dim}_{\mathbb{R}}\left(\mathfrak{e}_{2}\right)$ and let $\xi_{Q, E}=\frac{n_{1}+2 n_{2}}{m_{\alpha_{Q}}+2 m_{2 \alpha} \alpha_{Q}}$.
Recall that we put as measure on all measurable subsets S of N_{Q} the push-forward of the Lebesgue measure on $\log (S)$ (with an appropriate normalisation).
The following two lemmas are needed to ensure that the Schwartz space on $\Gamma \backslash G$, which we will define in a moment, lies in $L^{2}(\Gamma \backslash G, \varphi)$.

Lemma 3.6.1. Let $t \geqslant \xi_{Q, E}$ and let C be a compact subset of N_{Q}. For $a \in A_{Q}$, $d>1, n \mapsto a_{n a}^{-t \rho_{Q}}\left(1+\log a_{n a}\right)^{-d}$ is integrable over $C E$ and for all $\varepsilon \in[0, d-1)$, there exists a positive constant c depending only on d such that

$$
\int_{C E} a_{n a}^{-t \rho_{Q}}\left(1+\log a_{n a}\right)^{-d} d n \leqslant c a^{t \rho_{Q}}(1+|\log a|)^{-\varepsilon}
$$

Remark 3.6.2. $\rho^{\Gamma Q}$ is equal to $\xi_{Q, N^{\Gamma}, Q} \rho_{Q}$. Indeed:
$\xi_{Q, N^{\Gamma, Q}} \rho_{Q}=\frac{\operatorname{dim}\left(\mathfrak{n}_{1}^{\Gamma, Q}\right)+2 \operatorname{dim}\left(\mathfrak{n}_{2}^{\Gamma, Q}\right)}{m_{\alpha_{Q}}+2 m_{2 \alpha_{Q}}} \rho_{Q}=\frac{1}{2}\left(\operatorname{dim}\left(\mathfrak{n}_{1}^{\Gamma, Q}\right)+2 \operatorname{dim}\left(\mathfrak{n}_{2}^{\Gamma, Q}\right)\right) \alpha_{Q}=\rho^{\Gamma Q}$.
Proof. Let $\varepsilon \in[0, d-1)$ and $a \in A_{Q}$. We have

$$
\int_{C E} a_{n a}^{-t \rho_{Q}}\left(1+\log a_{n a}\right)^{-d} d n=\int_{C E} a_{x y a}^{-t \rho_{Q}}\left(1+\log a_{x y a}\right)^{-d} d y d x
$$

By the proof of Lemma 2.3.28, this is less or equal than

$$
c a^{t \rho_{Q}}(1+|\log a|)^{-\varepsilon} \int_{C} \int_{E} a_{Q}\left(\theta_{Q}(x y)\right)^{-t \rho_{Q}}\left(1+\log a_{\theta_{Q}(x y)}\right)^{-d+\varepsilon} d y d x
$$

for some constant $c>0$. The lemma follows now from Lemma 2.1.6, Lemma 2.1.5 and Proposition 2.3.26.

Lemma 3.6.3. Let $r>1$ and $\lambda_{Q} \in \mathfrak{a}_{Q}^{*}$. Let C be a compact subset of N_{Q}. Then,

$$
\int_{C E A_{Q} K_{Q}} a_{Q}\left(g^{-1}\right)^{-2\left(1-\xi_{Q, E}\right) \rho_{Q}}\left(1+\log a_{g}\right)^{-2 r} a_{g}^{-2 \xi_{Q, E} \rho_{Q}} d g<\infty .
$$

Proof. It follows from our choice of $\xi_{Q, E}$ that $\xi_{Q, E} \in[0,1]$. We have

$$
\begin{aligned}
& \int_{C E A_{Q} K_{Q}} a_{Q}\left(g^{-1}\right)^{-2\left(1-\xi_{Q, E}\right) \rho_{Q}}\left(1+\log a_{g}\right)^{-2 r} a_{g}^{-2 \xi_{Q, E} \rho_{Q}} d g \\
&=\int_{C E A_{Q}} a^{2\left(1-\xi_{Q, E}\right) \rho_{Q}}\left(1+\log a_{n a}\right)^{-2 r} a_{n a}^{-2 \xi_{Q, E} \rho_{Q}} a^{-2 \rho_{Q}} d n d a .
\end{aligned}
$$

By Lemma 3.6.1, this is again less or equal than

$$
c \int_{A_{Q}} a^{-2 \xi_{Q, E} \rho_{Q}} a^{2 \xi_{Q, E} \rho_{Q}}(1+|\log a|)^{-r} d a=2 c \int_{0}^{\infty}(1+t)^{-r} d t
$$

The lemma follows as the last integral is finite for $r>1$.
As in the convex cocompact case, we denote the family of open subsets of X which are relatively compact in $X \cup \Omega_{\Gamma}$ by \mathcal{U}_{Γ} and for $f \in C^{\infty}\left(G, V_{\varphi}\right), X, Y \in \mathcal{U}(\mathfrak{g}), r \geqslant 0$, $U \in \mathcal{U}_{\Gamma}$, we set

$$
{ }^{U} p_{r, X, Y}(f)=\sup _{g K \in U}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho}\left|L_{X} R_{Y} f(g)\right|
$$

Let P_{1}, \ldots, P_{m} be representatives of the Γ-conjugacy classes of Γ-cuspidal parabolic subgroups of G.
Let $\theta_{i}=\theta_{P_{i}}, K_{i}=K_{P_{i}}, N_{i}=N_{P_{i}}, \bar{N}_{i}=\bar{N}_{P_{i}}, M_{i}=M_{P_{i}}$ and $A_{i}=A_{P_{i}}$.
Let us denote the family of generalised Siegel sets (resp. generalised standard Siegel sets) in G / K_{i} with respect to $P_{i}(i=1, \ldots, m)$ by \mathcal{V}_{Γ} (resp. $\mathcal{V}_{s t d, \Gamma}$). Let $l \in \mathbb{N}_{0}$. For a generalised Siegel set $\mathfrak{S}^{\prime} \in \mathcal{V}_{\Gamma}$ in G / K_{Q} with respect to $Q, r \geqslant 0$, $X \in \mathcal{U}(\mathfrak{g})_{l_{1}}, Y \in \mathcal{U}(\mathfrak{g})_{l_{2}}$ such that $l_{1}+l_{2} \leqslant l$ and a function $f \in C^{l}\left(G, V_{\varphi}\right)$, put

$$
\mathfrak{s}^{\prime} p_{r, X, Y}(f)=\sup _{g K_{Q} \in \mathfrak{G}^{\prime}} a_{Q}\left(g^{-1}\right)^{\rho_{\Gamma}}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho^{\Gamma} Q}\left|L_{X} R_{Y} f(g)\right|
$$

Set $\xi_{i}:=\xi_{P_{i}, N^{\Gamma, P_{i}}}$.

Remark 3.6.4.

(1) We recall that we write for $a_{Q, g}^{\alpha_{Q}}$ simply a_{g} by abuse of notation.
(2) Let $\xi=\xi_{Q, N^{\Gamma}, Q}$. Then, $\rho_{\Gamma_{Q}}=(1-\xi) \rho_{Q}=\delta_{\Gamma_{Q}}$ and $\rho^{\Gamma_{Q}}=\xi \rho_{Q}=\rho_{Q}-\delta_{\Gamma_{Q}}$ by definition of $\rho_{\Gamma_{Q}}$, by Remark 3.6.2 and by Lemma 3.5.4.

Lemma 3.6.5.

(1) There exists $c \in(0,1]$ such that

$$
c a_{n} a^{-1} \leqslant a_{n a}
$$

for all $n \in N_{Q}$ and $a \in A_{Q}$.
(2) Let $r>0$. Then, there exists $c \geqslant 1$ such that

$$
a_{n a} \leqslant c a_{n} a^{-1}
$$

for all $n \in N_{Q}$ and $a \in A_{Q, \leqslant r}$. Moreover, if $r \leqslant 1$, then we can take $c=1$.

Proof.
(1) Let $n \in N_{Q}$ and $a \in A_{Q}$. Let W be a compact subset of ∂X containing all $k_{n} M_{Q}, n \in N_{Q}$, but not $w_{Q} M_{Q}$. This is possible as N_{Q} is the horosphere passing through $e K \in X$ and $e M_{Q} \in \partial X$. Let U be a neighbourhood of $k_{0}:=w_{Q}$ in K satisfying $\bar{U} M_{Q} \cap W=\varnothing$. Then, by Corollary 2.4 of [BO00, p.85], there exists $c>0$ such that

$$
a_{n a}=a_{n w_{Q} a^{-1}} \geqslant c a_{n} a^{-1} .
$$

(2) Let $r>0$. For $a \in A_{Q, \leqslant r}$, we have

$$
a_{n a} \leqslant a_{n} a_{a} \leqslant \max \left\{1, r^{2}\right\} a_{n} a^{-1}
$$

as $a_{h} h \leqslant h^{2} \leqslant r^{2}$ for all $h \in A_{Q, \geqslant 1} \cap A_{Q, \leqslant r}$ and $a_{h}=h^{-1}$ for all $h \in A_{Q, \leqslant 1}$. In particular, $\max \left\{1, r^{2}\right\}$ is equal to 1 if $r \leqslant 1$.

This completes the proof of the lemma.
Proposition 3.6.6. Let $f \in C^{\infty}(\Gamma \backslash G, \varphi)$, \mathfrak{S}^{\prime} be a generalised Siegel set with respect to $Q, X, Y \in \mathcal{U}(\mathfrak{g}), r \geqslant 0$ and $U \in \mathcal{U}_{\Gamma}$ be such that U is also contained in \mathfrak{S}^{\prime}. Then, there exists a constant $c \in(0,1]$ such that

$$
c^{U} p_{r, X, Y}(f) \leqslant \mathfrak{G}^{\prime} p_{r, X, Y}(f) .
$$

Proof. As $e M_{Q} \notin \operatorname{clo}(U) \cap \partial X \subset G / P, \sup _{g K \in U} a_{n_{Q}\left(g^{-1}\right)}$ is bounded. Thus, there exists a constant $c \in(0,1]$ such that

$$
c^{\rho_{\Gamma_{Q}}} a_{g}^{\rho_{\Gamma_{Q}}} \leqslant a_{Q}\left(g^{-1}\right)^{\rho_{\Gamma_{Q}}}
$$

by Lemma 3.6.5 applied to $n=n_{Q}\left(g^{-1}\right)^{-1}$ and $a=a_{Q}\left(g^{-1}\right)^{-1}$. Hence,

$$
c^{\rho_{\Gamma_{Q}} U} p_{r, X, Y}(f) \leqslant \mathfrak{G}^{\prime} p_{r, X, Y}(f) .
$$

This finishes the proof of the proposition.
Lemma 3.6.7. Let $(V,|\cdot|)$ be a finite-dimensional normed complex vector space, let $f \in C^{\infty}(G, V), X \in \mathcal{U}(\mathfrak{g})_{l_{1}}, Y \in \mathcal{U}(\mathfrak{g})_{l_{2}}$ and $U \in \mathcal{U}_{\Gamma}$.
Let $\left\{Z_{1}, \ldots, Z_{d_{l_{1}}}\right\}$ be a basis of $\mathcal{U}\left(\mathfrak{n}_{Q}\right)_{l_{1}},\left\{Y_{1}, \ldots, Y_{d_{l_{2}}}\right\}$ be a basis of $\mathcal{U}(\mathfrak{g})_{l_{2}}$. If $\Gamma \backslash X$ has a cusp, then we can write

$$
L_{X} R_{Y} f(g)=\sum_{i=1}^{d_{l_{1}}} \sum_{j=1}^{d_{l_{2}}} c_{i, j}(g) L_{Z_{i}} R_{Y_{j}} f(g) \quad(g K \in U)
$$

with $\sup _{g K \in U}\left|c_{i, j}(g)\right|<\infty$.

Proof. Let $f \in C^{\infty}(G, V), X \in \mathfrak{g}, Y \in \mathcal{U}(\mathfrak{g})$ and U as above. Without loss of generality, we may assume that $Y=1$.
Since $U \in \mathcal{U}_{\Gamma}$ and since $\Gamma \backslash X$ has a cusp, there is a generalised standard Siegel set \mathfrak{S}^{\prime} with respect to Q such that U is contained in \mathfrak{S}^{\prime}.
It follows that there exist $c_{1}>0$ and $c_{2}>0$ such that $\left|\log \left(\nu_{Q}(g)\right)\right| \leqslant c_{1}$ and $h_{Q}(g)^{\alpha_{Q}} \leqslant c_{2}$ for all $g K \in U$.
Let $\left\{X_{1}, \ldots, X_{d}\right\}$ be a basis of $\mathfrak{g}=\mathfrak{n}_{Q} \oplus \mathfrak{m}_{Q} \oplus \mathfrak{a}_{Q} \oplus \overline{\mathfrak{n}}_{Q}$ induced by the inclusions

$$
0 \subset \mathfrak{n}_{Q} \subset \mathfrak{n}_{Q} \oplus \mathfrak{m}_{Q} \oplus \mathfrak{a}_{Q} \subset \mathfrak{n}_{Q} \oplus \mathfrak{m}_{Q} \oplus \mathfrak{a}_{Q} \oplus \mathfrak{g}_{-\alpha_{Q}} \subset \mathfrak{g}
$$

Write $\operatorname{Ad}(n) X=\sum_{j=1}^{d} a_{j}(n) X_{j}\left(n \in N_{Q}\right)$. Since $\operatorname{Ad}(n) X$ depends smoothly on $n \in N_{Q}$, all the functions a_{j} are smooth. Thus,

$$
\sup _{j} \sup _{g K \in U}\left|a_{j}\left(\nu_{Q}(g)^{ \pm 1}\right)\right| \leqslant \sup _{j} \sup _{n \in N_{Q}:|\log (n)| \leqslant c_{1}}\left|a_{j}(n)\right|<\infty .
$$

Since

$$
\begin{aligned}
& \operatorname{Ad}\left(g^{-1}\right) X=\operatorname{Ad}\left(k_{Q}(g)^{-1}\right) \operatorname{Ad}\left(h_{Q}(g)^{-1}\right) \operatorname{Ad}\left(\nu_{Q}(g)^{-1}\right) X \\
&=\sum_{j=1}^{d} a_{j}\left(\nu_{Q}(g)^{-1}\right) \operatorname{Ad}\left(k_{Q}(g)^{-1}\right) \operatorname{Ad}\left(h_{Q}(g)^{-1}\right) X_{j}, \\
& L_{X} f(g)=\left.\frac{d}{d t}\right|_{t=0} f(\exp (-t X) g)=\left.\frac{d}{d t}\right|_{t=0} f\left(g \exp \left(-t \operatorname{Ad}\left(g^{-1}\right) X\right)\right)
\end{aligned}
$$

is equal to

$$
\begin{aligned}
& \left.\sum_{j=1}^{\operatorname{dim}\left(\mathfrak{n}_{Q}\right)} a_{j}\left(\nu_{Q}(g)^{-1}\right) \frac{d}{d t}\right|_{t=0} f\left(\exp \left(-t \operatorname{Ad}\left(\nu_{Q}(g)\right) X_{j}\right) g\right) \\
& \quad+\left.\sum_{j=\operatorname{dim}\left(\mathfrak{n}_{Q}\right)+1}^{d} a_{j}\left(\nu_{Q}(g)^{-1}\right) \frac{d}{d t}\right|_{t=0} f\left(g \exp \left(-t \operatorname{Ad}\left(k_{Q}(g)^{-1}\right) \operatorname{Ad}\left(h_{Q}(g)^{-1}\right) X_{j}\right)\right) .
\end{aligned}
$$

Since $\left.\operatorname{Ad}(a)\right|_{\mathfrak{m}_{Q} \oplus \mathfrak{a}_{Q}}=I d$ for all $a \in A_{Q}$ and $\operatorname{Ad}(a) Z=a^{r \alpha_{Q}} Z$ for all $a \in A_{Q}$ and $Z \in g_{r \alpha_{Q}}(r \in\{ \pm 1, \pm 2\})$, this is again equal to

$$
\begin{aligned}
& \sum_{j: X_{j} \in \mathfrak{n}_{Q}} a_{j}\left(\nu_{Q}(g)^{-1}\right) a_{j}\left(\nu_{Q}(g)\right) L_{X_{j}} f(g)-\sum_{j: X_{j} \in \mathfrak{m}_{Q} \oplus \mathfrak{a}_{Q}} a_{j}\left(\nu_{Q}(g)^{-1}\right) R_{\operatorname{Ad}\left(k_{Q}(g)^{-1}\right) X_{j}} f(g) \\
& \quad-\sum_{j: X_{j} \in \mathfrak{g}_{-\alpha}} a_{j}\left(\nu_{Q}(g)^{-1}\right) h_{Q}(g)^{\alpha_{Q}} R_{\operatorname{Ad}\left(k_{Q}(g)^{-1}\right) X_{j}} f(g) \\
& \quad-\sum_{j: X_{j} \in \mathfrak{g}-2 \alpha_{Q}} a_{j}\left(\nu_{Q}(g)^{-1}\right) h_{Q}(g)^{2 \alpha_{Q}} R_{\operatorname{Ad}\left(k_{Q}(g)^{-1}\right) X_{j}} f(g) .
\end{aligned}
$$

Since $\operatorname{Ad}(g) X(g \in G, X \in \mathfrak{g})$ depends smoothly on g, K_{Q} is compact, $\sup _{g K \in U} h_{Q}(g)^{\alpha_{Q}} \leqslant c_{2}$ and $\sup _{g K \in U} h_{Q}(g)^{2 \alpha_{Q}} \leqslant c_{2}^{2}$, the assertion of the lemma holds for $X \in \mathfrak{g}$. The lemma follows now by induction.

Corollary 3.6.8. Let $f \in C^{\infty}(\Gamma \backslash G, \varphi), X, Y \in \mathcal{U}(\mathfrak{g}), r \geqslant 0$ and $U \in \mathcal{U}_{\Gamma}$. If $\Gamma \backslash X$ has a cusp, then ${ }^{U} p_{r, X, Y}(f)$ is finite if ${ }^{U} p_{r, Z_{1}, Z_{2}}(f)$ is finite for all $Z_{1} \in \mathcal{U}\left(\mathfrak{n}_{Q}\right)$ and $Z_{2} \in \mathcal{U}(\mathfrak{g})$.

Proof. The corollary follows directly from Lemma 3.6.7.
Definition 3.6.9. Let $\left(\varphi, V_{\varphi}\right)$ be a finite-dimensional unitary representation of Γ. Then, we define the Schwartz space on $\Gamma \backslash G$ by

$$
\begin{aligned}
& \mathscr{C}(\Gamma \backslash G, \varphi)=\left\{f \in C^{\infty}(\Gamma \backslash G, \varphi) \mid{ }^{U} p_{r, X, Y}(f)<\infty \forall r \geqslant 0, X, Y \in \mathcal{U}(\mathfrak{g}),\right. \\
& \left.\quad \mathfrak{S}_{Q}^{\prime} p_{r, X, Y}(f)<\infty \forall U \in \mathcal{U}_{\Gamma}, \mathfrak{S}_{Q}^{\prime} \in \mathcal{V}_{s t d, \Gamma}, X \in \mathcal{U}\left(\mathfrak{n}_{Q}\right), Y \in \mathcal{U}(\mathfrak{g}), r \geqslant 0\right\} .
\end{aligned}
$$

We equip $\mathscr{C}(\Gamma \backslash G, \varphi)$ with the topology induced by the seminorms.
By definition, $\mathscr{C}(\Gamma \backslash G)=\mathscr{C}(\Gamma \backslash G, 1)$, where 1 is the one-dimensional trivial representation.

Remark 3.6.10.

(1) It will follow from Proposition 3.6.45 that the Schwartz space does not depend on made choices.
(2) By Lemma 2.3.4, Proposition 3.4.11, Proposition 3.4.9, Proposition 3.6.6 and Corollary 3.6 .8 , the space $\mathscr{C}(\Gamma \backslash G, \varphi)$ is also equal to (resp. topologically isomorphic to)

$$
\begin{aligned}
& \left\{\left.f \in C^{\infty}(\Gamma \backslash G, \varphi)\right|^{U_{\Gamma}} p_{r, X, Y}(f)<\infty \forall r \in \mathbb{N}_{0}, X, Y \in \mathcal{U}(\mathfrak{g}),\right. \\
& \left.\quad \mathfrak{G}_{s t d, i}^{\prime} \quad p_{r, X, Y}(f)<\infty \forall r \geqslant 0, X \in \mathcal{U}\left(\mathfrak{n}_{P_{i}}\right), Y \in \mathcal{U}(\mathfrak{g}), i \in\{1, \ldots, m\}\right\}
\end{aligned}
$$

where U_{Γ} is provided by Proposition 3.4.11. Compare with Lemma 2.3.6.
(3) The $\mathscr{C}(\Gamma \backslash G, \varphi)$ has a Fréchet space structure. This follows by the proof of Proposition 2.3.8. Indeed, one uses in the proof the seminorms we have here and the previous remark instead of Lemma 2.3.6.
(4) This definition is an extension of Definition 2.3.2 as $m=0$ gives the old definition.

Proposition 3.6.11. The Schwartz space $\mathscr{C}(\Gamma \backslash G, \varphi)$ is contained in $L^{2}(\Gamma \backslash G, \varphi)$. Moreover, the injection of $\mathscr{C}(\Gamma \backslash G, \varphi)$ into $L^{2}(\Gamma \backslash G, \varphi)$ is continuous.

Proof. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$. Fix $r>1$. Set $S_{0}=U_{\Gamma} K$, where U_{Γ} is provided by Proposition 3.4.11. Put $l_{0}(f)={ }^{U_{\Gamma}} p_{r, 1,1}(f)$ and $l_{i}(f)=\mathfrak{S}_{\mathfrak{S}_{s t d i}^{\prime}} p_{r, 1,1}(f)$. Then,

$$
|f(g)| \leqslant l_{0}(f)\left(1+\log a_{g}\right)^{-r} a_{g}^{-\rho}
$$

for all $g \in S_{0} \subset G$ and

$$
|f(g)| \leqslant l_{i}(f) a_{P_{i}}\left(g^{-1}\right)^{-\left(1-\xi_{i}\right) \rho_{P_{i}}}\left(1+\log a_{g}\right)^{-r} a_{g}^{-\xi_{i} \rho_{P_{i}}}
$$

for all $g \in \mathfrak{S}_{s t d, i} \subset G$. We have:

$$
\begin{aligned}
\int_{\Gamma \backslash G}|f(g)|^{2} d g \leqslant & \int_{S_{0}}|f(g)|^{2} d g+\sum_{i=1}^{m} \int_{\mathfrak{S}_{s t d, i}}|f(g)|^{2} d g \\
\leqslant & l_{0}(f)^{2} \int_{G}\left(1+\log a_{g}\right)^{-2 r} a_{g}^{-2 \rho} d g \\
& \quad+\sum_{i=1}^{m} l_{i}(f)^{2} \int_{\mathfrak{S}_{s t d, i}} a_{P_{i}}\left(g^{-1}\right)^{-2\left(1-\xi_{i}\right) \rho_{P_{i}}}\left(1+\log a_{g}\right)^{-2 r} a_{g}^{-2 \xi_{i} \rho_{P_{i}}} d g .
\end{aligned}
$$

This is finite by Lemma 2.3 .10 and by Lemma 3.6 .3 with $E=N^{\Gamma, P_{i}}$ and $A=A_{i}$ $(i=1, \ldots, m)$. The proposition follows.

3.6.2 The space of cusp forms on $\Gamma \backslash G$

We define the constant term of a Schwartz function along a cuspidal parabolic subgroup of G. We show that it is well-defined and that it has some basic properties. Furthermore, we define the space of cusp forms.

Define

$$
V_{\varphi}^{\Gamma_{Q}}=\left\{v \in V_{\varphi} \mid \varphi(\gamma) v=v \quad \forall \gamma \in \Gamma_{Q}\right\}
$$

Let $f: G \rightarrow V_{\varphi}$ be a measurable function. Let p_{Q} be the orthogonal projection on $V_{\varphi}^{\Gamma_{Q}}$. Put

$$
f^{0}(g)=p_{Q} f(g) \quad(g \in G)
$$

The function f^{0} is a left Γ_{Q}-invariant function from G to $V_{\varphi}^{\Gamma_{Q}}$. Since p_{Q} has operator norm $1,\left|f^{0}(g)\right| \leqslant|f(g)|$ for all $g \in G$.
As p_{Q} is continuous, $L_{X} R_{Y} f^{0}(g)=\left(L_{X} R_{Y} f\right)^{0}(g)$ for all $g \in G$ and $X, Y \in \mathcal{U}(\mathfrak{g})$. We will use the projection p_{Q} in the definition of the constant term along a cusp (cf. Definition 3.6.13).

Lemma 3.6.12. Let $Q^{\prime}=\gamma Q \gamma^{-1}(\gamma \in \Gamma)$. Then,
(1) $V_{\varphi}^{\Gamma_{Q^{\prime}}}=\varphi(\gamma) V_{\varphi}^{\Gamma_{Q}}$;
(2) the orthogonal complement of $V_{\varphi}^{\Gamma} Q^{\prime}$ is equal to $\varphi(\gamma)\left(V_{\varphi}^{\Gamma Q}\right)^{\perp}$;
(3) $p_{Q^{\prime}} \circ \varphi(\gamma)=\varphi(\gamma) \circ p_{Q}$.

Proof.
(1) We have:

$$
\begin{aligned}
v \in V_{\varphi}^{\Gamma_{Q^{\prime}}} & \Longleftrightarrow \varphi\left(\gamma \gamma_{Q} \gamma^{-1}\right) v=v \quad \forall \gamma_{Q} \in \Gamma_{Q} \\
& \Longleftrightarrow \varphi(\gamma)^{-1} v \in V_{\varphi}^{\Gamma_{Q}} .
\end{aligned}
$$

Thus, $V_{\varphi}^{\Gamma_{Q^{\prime}}}=\varphi(\gamma) V_{\varphi}^{\Gamma Q}$.
(2) Since $V_{\varphi}=V_{\varphi}^{\Gamma_{Q}} \oplus\left(V_{\varphi}^{\Gamma_{Q}}\right)^{\perp}$ and since φ is unitary, we have

$$
\begin{aligned}
\left(V_{\varphi}^{\Gamma_{Q^{\prime}}}\right)^{\perp} & =\left\{v \in V_{\varphi} \mid\left(v, v^{\prime}\right)=0 \quad \forall v^{\prime} \in V_{\varphi}^{\Gamma_{Q^{\prime}}}\right\} \\
& =\left\{v \in V_{\varphi} \mid\left(\varphi(\gamma)^{-1} v, v^{\prime}\right)=0 \quad \forall v^{\prime} \in V_{\varphi}^{\Gamma_{Q}}\right\} \\
& =\varphi(\gamma)\left\{v \in V_{\varphi} \mid\left(v, v^{\prime}\right)=0 \quad \forall v^{\prime} \in V_{\varphi}^{\Gamma_{Q}}\right\}=\varphi(\gamma)\left(V_{\varphi}^{\Gamma_{Q}}\right)^{\perp}
\end{aligned}
$$

by the previous assertion.
(3) Let $v \in V_{\varphi}$. Write $v=v_{1}+v_{2}$ with $v_{1} \in V_{\varphi}^{\Gamma_{Q}}$ and $v_{2} \in\left(V_{\varphi}^{\Gamma_{Q}}\right)^{\perp}$. Then, $\varphi(\gamma) v=\varphi(\gamma) v_{1}+\varphi(\gamma) v_{2}$ with $\varphi(\gamma) v_{1} \in V_{\varphi}^{\Gamma_{Q^{\prime}}}$ and $\left.\varphi(\gamma) v_{2} \in\left(V_{\varphi}^{\Gamma}\right)^{Q^{\prime}}\right)^{\perp}$ by the two previous assertions. Thus, $p_{Q^{\prime}}(\varphi(\gamma) v)=\varphi(\gamma) p_{Q}(v)$.

Definition 3.6.13. For $g \in G$ and for a Γ-equivariant measurable function $f: G \rightarrow V_{\varphi}$, we define

$$
f^{Q}(g)=\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} \int_{\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}} f^{0}(n m g) d n d m
$$

whenever the integral exists. We call this function the constant term of f along Q. Recall that we defined $f^{0}(x)(x \in G)$ by $p_{Q} f(x)$, where p_{Q} is the orthogonal projection on V_{φ}^{Γ}.

Proposition 3.6.14. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi), Y \in \mathcal{U}(\mathfrak{g})$ and $g \in G$. Then, $n m \mapsto$ $R_{Y} f^{0}(n m g)$ is integrable over $\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}$. Thus, the constant term f^{Q} along Q is well-defined (take $Y=1$). Moreover, if $\mathfrak{S}:=\mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}}$ is a generalised standard Siegel set in G with respect to Q and if $r>1$, then there exists a constant $C>0$ (depending on ω and r) such that

$$
\begin{aligned}
\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} \int_{\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}} & \left|R_{Y} f(n m g)\right| d n d m \\
& \leqslant C_{\mathfrak{S}^{\prime}} p_{2 r, 1, Y}(f) a_{Q}\left(g^{-1}\right)^{-\rho_{Q}}\left(1+\left|\log a_{Q}\left(g^{-1}\right)\right|\right)^{-r}
\end{aligned}
$$

for all $g \in G$ with $h_{Q}(g) \geqslant t$.
Proof. Let $\mathfrak{S}:=\mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}}$ be a generalised standard Siegel set in G with respect to Q and let $g \in G$ be as above.
Note that there is a generalised standard Siegel set containing all $g \in G$ with $h_{Q}(g) \geqslant t$.
By definition, the map

$$
\omega M_{\Gamma, Q} \rightarrow \Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}, \quad n m \mapsto \Gamma_{Q} n m
$$

is surjective and at most k-to-one for some $k \in \mathbb{N}$. For $g=\nu_{Q}(g) h_{Q}(g) k_{Q}(g) \in G$, we have

$$
\int_{\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}}\left|R_{Y} f(n m g)\right| d n d m=\int_{\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}}\left|R_{Y} f\left(n m h_{Q}(g) k_{Q}(g)\right)\right| d n d m
$$

as N_{Q} is unimodular. This divided by $\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)$ is less or equal than

$$
c \int_{\omega N^{\Gamma, Q_{M_{\Gamma}, Q}}}\left|R_{Y} f\left(n m h_{Q}(g) k_{Q}(g)\right)\right| d n d m
$$

for some constant $c>0$.
Let $r>1$. As $f \in \mathscr{C}(\Gamma \backslash G, \varphi), \int_{M_{\Gamma, Q}} \int_{\omega N^{\Gamma, Q}}\left|R_{Y} f\left(n h_{Q}(g) m k_{Q}(g)\right)\right| d n d m$ is less or equal than

$$
\mathfrak{G}^{\prime} p_{2 r, 1, Y}(f) \int_{M_{\Gamma, Q}} \int_{\omega N^{\Gamma, Q}} h_{Q}(g)^{(1-\xi) \rho_{Q}}\left(1+\log a_{n h_{Q}(g)}\right)^{-2 r} a_{n h_{Q}(g)}^{-\xi \rho_{Q}} d n d m
$$

where $\xi:=\xi_{Q, N^{\Gamma, Q}}$. But as $\operatorname{vol}\left(M_{\Gamma, Q}\right)=1$, this is less or equal than

$$
\mathfrak{S}^{\prime} p_{2 r, 1, Y}(f) h_{Q}(g)^{(1-\xi) \rho_{Q}} \int_{\omega N^{\Gamma, Q}}\left(1+\log a_{n h_{Q}(g)}\right)^{-2 r} a_{n h_{Q}(g)}^{-\xi \rho_{Q}} d n .
$$

So, $I:=\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right.} \int_{\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}}\left|R_{Y} f(n m g)\right| d n d m$ is finite by Fubini's theorem as the last integral is finite by Lemma 3.6.1. Moreover, there exists a constant $c^{\prime}>0$ (depending on ω and r) such that

$$
\int_{\omega N^{\Gamma}, Q} a_{n h_{Q}(g)}^{-\xi \rho_{Q}}\left(1+\log a_{n h_{Q}(g)}\right)^{-2 r} d n \leqslant c_{\mathfrak{G}^{\prime}} p_{2 r, 1, Y}(f) h_{Q}(g)^{\xi \rho_{Q}}\left(1+\left|\log h_{Q}(g)\right|\right)^{-r} .
$$

Hence,

$$
I \leqslant c c_{\mathfrak{S}^{\prime}}^{\prime} p_{2 r, 1, Y}(f) h_{Q}(g)^{\rho_{Q}}\left(1+\left|\log h_{Q}(g)\right|\right)^{-r} .
$$

The proposition follows.
Corollary 3.6.15. Fix $g \in G$. Then, $f \in \mathscr{C}(\Gamma \backslash G, \varphi) \mapsto f^{Q}(g)$ is linear and continuous.

Proof. Observe that the map is linear. Fix $g \in G$ and let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$. Then, by Proposition 3.6.14, we have

$$
\left|f^{Q}(g)\right| \leqslant C_{g}(f)
$$

where $C_{g}(f)$ is a constant depending on g and linearly on f. Hence, $f \mapsto f^{Q}(g)$ is continuous.

Corollary 3.6.16. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and let $Y \in \mathcal{U}(\mathfrak{g})$. Then, f^{Q} is smooth and for $g \in G$, we have

$$
R_{Y}\left(f^{Q}\right)(g)=\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} \int_{\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}} R_{Y} f^{0}(n m g) d n d m
$$

Proof. The proof is analogue to the proof of Corollary 2.3.32.
Proposition 3.6.17. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$. Then, the constant of f along Q has the following properties:
(1) $f \mapsto f^{Q}$ is equivariant with respect to right translation:

$$
\left(R_{x} f\right)^{Q}=R_{x} f^{Q} \quad(x \in G)
$$

(2) f^{Q} is left $N_{Q} M_{\Gamma, Q \text {-invariant; }}$
(3) Let $Q^{\prime}=\gamma Q \gamma^{-1}(\gamma \in \Gamma)$. Then, $f^{Q^{\prime}}$ is well-defined and

$$
f^{Q^{\prime}}(g)=\varphi(\gamma) f^{Q}\left(\gamma^{-1} g\right)
$$

Proof. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$.
(1) For $g \in G, x \in G$, we have

$$
\left(R_{x} f\right)^{Q}(g)=\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} \int_{\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}} f^{0}(n m g x) d n d m=R_{x} f^{Q}(g) .
$$

(2) For $g \in G, n^{\prime} \in N_{Q}, m^{\prime} \in M_{\Gamma, Q}$, we have

$$
\begin{aligned}
f^{Q}\left(n^{\prime} m^{\prime} g\right) & =\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} \int_{\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}} f^{0}\left(n m n^{\prime} m^{\prime} g\right) d n d m \\
& =\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} \int_{\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}} f^{0}(n m g) d n d m=f^{Q}(g)
\end{aligned}
$$

as $N_{Q} M_{\Gamma, Q}$ is unimodular.
(3) This part is similarly proven than the corresponding assertion in [Bor97, p.74].

Let $\gamma \in \Gamma$ and let $Q^{\prime}=\gamma Q \gamma^{-1}$. The unipotent radical $N_{Q^{\prime}}$ of Q^{\prime} is clearly equal to $\gamma N_{Q} \gamma^{-1}, N_{\Gamma, Q^{\prime}}=\gamma N_{\Gamma, Q} \gamma^{-1}$ and $M_{\Gamma, Q^{\prime}}=\gamma M_{\Gamma, Q} \gamma^{-1}$.
By Remark 3.6.4 and by the proof of Proposition 3.6.14, $f^{Q^{\prime}}$ is well-defined. Consider now

$$
\Phi: \Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q} \rightarrow \Gamma_{Q^{\prime}} \backslash N_{\Gamma, Q^{\prime}} M_{\Gamma, Q^{\prime}}, \Gamma_{Q} n m \mapsto \Gamma_{Q^{\prime}} \operatorname{Int} \gamma(n m),
$$

where $\operatorname{Int} g(x)=g x g^{-1}$. This map is well-defined as for any $\gamma_{Q} \in \Gamma_{Q}$ and $n \in N_{Q}, m \in M_{\Gamma, Q}$, we have

$$
\begin{aligned}
\Phi\left(\Gamma_{Q} \gamma_{Q} n m\right)= & \Gamma_{Q^{\prime}} \operatorname{Int} \gamma\left(\gamma_{Q} n m\right) \\
& =\Gamma_{Q^{\prime}} \operatorname{Int} \gamma\left(\gamma_{Q}\right) \operatorname{Int} \gamma(n m)=\Gamma_{Q^{\prime}} \operatorname{Int} \gamma(n m)=\Phi\left(\Gamma_{Q} n m\right)
\end{aligned}
$$

since $\operatorname{Int} \gamma\left(\gamma_{Q}\right) \in \Gamma \cap N_{\Gamma, Q^{\prime}} M_{Q^{\prime}}=\Gamma_{Q^{\prime}}$. The map Φ is clearly an isomorphism as Int γ is an automorphism transforming $\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} d n d m$ into $\frac{1}{\operatorname{vol}\left(\Gamma_{Q^{\prime}} \backslash N_{\Gamma, Q^{\prime}} M_{\Gamma, Q^{\prime}}\right)} d n^{\prime} d m^{\prime}$. Here, $d n d m$ (resp. $d n^{\prime} d m^{\prime}$) is the Haar measure on $N_{\Gamma, Q} M_{\Gamma, Q}$ (resp. on $N_{\Gamma, Q^{\prime}} M_{\Gamma, Q^{\prime}}$). Since moreover $N_{Q}=N_{\Gamma, Q} N^{\Gamma, Q}$,

$$
\begin{aligned}
f^{Q^{\prime}}(g)= & \frac{1}{\operatorname{vol}\left(\Gamma_{Q^{\prime}} \backslash N_{\Gamma, Q^{\prime}} M_{\Gamma, Q^{\prime}}\right)} \int_{\Gamma_{Q^{\prime}} \backslash N_{Q^{\prime}} M_{\Gamma, Q^{\prime}}} p_{Q^{\prime}} f\left(n^{\prime} m^{\prime} g\right) d n^{\prime} d m^{\prime} \\
& =\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} \cdot \int_{\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}} p_{Q^{\prime}} f\left(\gamma n m \gamma^{-1} g\right) d n d m
\end{aligned}
$$

for all $g \in G$. By Lemma 3.6.12, this is equal to

$$
\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} \cdot \varphi(\gamma) \int_{\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}} f^{0}\left(n m \gamma^{-1} g\right) d n d m=\varphi(\gamma) f^{Q}\left(\gamma^{-1} g\right)
$$

Definition 3.6.18. For $g \in G(\Omega), h \in G$ and for a measurable function $f: G \rightarrow$ V_{φ}, we define

$$
f^{\Omega}(g, h)=\int_{N} f(g n h) d n
$$

whenever the integral exists. We call this function the constant term of f along Ω.

Remark 3.6.19.

(1) If $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$, then the constant term of f along Ω is well-defined by Proposition 2.3.30.
(2) You can use your favorite parabolic subgroup of G to define $G(\Omega)$. If $\Gamma \backslash X$ has a cusp, then you can define $G(\Omega)$ for example by $\left\{g \in G \mid g P_{1} \in \Omega\right\}$.

Definition 3.6.20. Define the following subspace of $\mathscr{C}(\Gamma \backslash G, \varphi)$:

$$
{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)=\left\{f \in \mathscr{C}(\Gamma \backslash G, \varphi) \mid f^{\Omega}=0, f^{Q}=0 \quad \forall[Q]_{\Gamma} \in \mathcal{P}_{\Gamma}\right\} .
$$

We call it the space of cusp forms on $\Gamma \backslash G$.

Remark 3.6.21.

(1) This subspace may be considered as the analog of the Harish-Chandra space of cusp forms on G and is an extension of Definition 3.6.20.
(2) By Proposition 3.6.17 (3), it suffices to check the condition $f^{Q}=0$ for $Q=P_{i}$ $(i=1, \ldots, m)$.

3.6.3 The little constant term

In the following, we define the little constant term, we determine its basic properties and we relate it to the constant term.

Definition 3.6.22. For $g \in G$ and for a Γ-equivariant measurable function $f: G \rightarrow V_{\varphi}$, we define

$$
f^{Q, l c}(g)=\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} \int_{\Gamma_{Q} \backslash N_{\mathrm{\Gamma}, Q} M_{\Gamma, Q}} f^{0}(n m g) d n d m
$$

whenever the integral exists. We call this function the little constant term of f along Q. Recall that we defined $f^{0}(x)(x \in G)$ by $p_{Q} f(x)$.

Remark 3.6.23.

(1) Recall that $\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}$ is compact.
(2) The little constant term exists for example if $f: G \rightarrow V_{\varphi}$ is a Γ-equivariant continuous function.

Proposition 3.6.24. Let $f: G \rightarrow V_{\varphi}$ be a Γ-equivariant measurable function such that $|f|^{Q, l c}$ is finite. Then, we have the following:
(1) $f \mapsto f^{Q, l c}$ is equivariant with respect to right translation:

$$
\left(R_{x} f\right)^{Q, l c}=R_{x} f^{Q, l c} \quad(x \in G) ;
$$

(2) $f^{Q, l c}$ is left $N_{\Gamma, Q} M_{\Gamma, Q}$-invariant;
(3) Let $Q^{\prime}=\gamma Q \gamma^{-1}(\gamma \in \Gamma)$. Then, $|f|^{Q^{\prime}, l c}$ is finite and

$$
f^{Q^{\prime}, l c}(g)=\varphi(\gamma) f^{Q, l c}\left(\gamma^{-1} g\right) \quad(g \in G)
$$

(4) $\left(f^{Q, l c}\right)^{Q, l c}=f^{Q, l c}$;
(5) $(f * \varphi)^{Q, l c}=f^{Q, l c} * \varphi$ for all $\varphi \in C_{c}(G)$;
(6) $R_{Y}\left(f^{Q, l c}\right)=\left(R_{Y} f\right)^{Q, l c}$ for all $f \in C^{\infty}(\Gamma \backslash G, \varphi)$ and $Y \in \mathcal{U}(\mathfrak{g})$.

Proof. The first three assertions can be proven similarly as the corresponding assertions in Proposition 3.6.17. The remaining assertions can be easily checked by direct computation.

Lemma 3.6.25. Let $\mathfrak{S}:=\mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}}$ be a generalised standard Siegel set in G with respect to Q. Then,

$$
n m p_{N^{\Gamma}, Q}\left(\nu_{Q}(g)\right) h_{Q}(g) K_{Q} \in \mathfrak{S}^{\prime}
$$

for all $n \in \omega$ and $m \in M_{\Gamma, Q}$.

Proof. Let $n \in \omega$ and $m \in M_{\Gamma, Q}$. Let \mathfrak{S} be as above. Then,

$$
\begin{equation*}
n m p_{N^{\Gamma}, Q}\left(\nu_{Q}(g)\right) h_{Q}(g) K_{Q} \in \mathfrak{S}^{\prime} \tag{3.19}
\end{equation*}
$$

for all $g \in \mathfrak{S}$ with $p_{N^{\Gamma}, Q}\left(\nu_{Q}(g)\right) \in N^{\Gamma, Q} \backslash \omega^{\prime}$ as ω^{\prime} is invariant under conjugation in $M_{\Gamma, Q}$. For $g \in \mathfrak{S}$ with $p_{N^{\Gamma}, Q}\left(\nu_{Q}(g)\right) \in \omega^{\prime}, h_{Q}(g) \geqslant t$. Hence, (3.19) holds also for $g \in \mathfrak{S}$ with $p_{N^{\Gamma}, Q}\left(\nu_{Q}(g)\right) \in \omega^{\prime}$.

Definition 3.6.26. We say that $f \in C^{\infty}(\Gamma \backslash G, \varphi)$ is a Schwartz function near eQ if there exists $s^{\prime} \geqslant 0$ such that

$$
\mathfrak{s}^{\prime} p_{r, X, Y}(f)
$$

is finite for every $r \geqslant 0, X \in \mathcal{U}\left(\mathfrak{n}_{Q}\right), Y \in \mathcal{U}(\mathfrak{g})$ and $\mathfrak{S}:=\mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}} \in \mathcal{V}_{s t d, \Gamma_{Q}}$ with ω^{\prime} containing $\left\{n \in N^{\Gamma, Q}| | \log (n) \mid<s^{\prime}\right\}$. We call \mathfrak{S} as above admissible (for f).

Remark 3.6.27. Every element of $\mathscr{C}\left(\Gamma_{Q} \backslash G, \varphi\right)$ is clearly a Schwartz function near $e Q$.

Lemma 3.6.28. Let f be a Schwartz function near $e Q, X \in \mathcal{U}\left(\mathfrak{n}_{Q}\right)$ and $Y \in \mathcal{U}(\mathfrak{g})$. If $\mathfrak{S}:=\mathfrak{S}_{\text {std,Q,t,w, } \omega^{\prime}}$ is an admissible generalised standard Siegel set in G with respect to Q and if $r \geqslant 0$, then there exists a constant $C>0$ (depending on ω and $r)$ such that

$$
\begin{align*}
& \left|L_{X} R_{Y} f^{Q, l c}(g)\right| \tag{3.20}\\
& \quad \leqslant C_{\mathfrak{S}^{\prime}} p_{r, X, Y}(f) h_{Q}(g)^{\rho_{\Gamma}}\left(1+\log a_{p_{N^{\Gamma}, Q}\left(\nu_{Q}(g)\right) h_{Q}(g)}\right)^{-r} a_{p_{N \Gamma}, Q}^{-\rho^{\Gamma}\left(\nu_{Q}(g)\right) h_{Q}(g)}
\end{align*}
$$

for all $g \in \mathfrak{S}$. Thus, $f^{Q, l c}$ is a Schwartz function near $e Q$.
Proof. Let f and \mathfrak{S} be as above, $X \in \mathcal{U}\left(\mathfrak{n}_{Q}\right), Y \in \mathcal{U}(\mathfrak{g})$ and $g \in \mathfrak{S}$. Then,

$$
\int_{\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}}\left|L_{X} R_{Y}(f(n m \cdot))(g)\right| d n d m
$$

is equal to

$$
\int_{\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}}\left|L_{\mathrm{Ad}\left(p_{N_{\Gamma}, Q}\left(\nu_{Q}(g)\right)\right)^{-1} X} R_{Y}(f(n m \cdot))\left(p_{N^{\Gamma, Q}}\left(\nu_{Q}(g)\right) h_{Q}(g) k_{Q}(g)\right)\right| d n d m
$$

as $\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}$ is unimodular. Then, this is less or equal than

$$
\int_{M_{\Gamma, Q}} \int_{\omega}\left|L_{\operatorname{Ad}(n m) \operatorname{Ad}\left(p_{N_{\Gamma}, Q}\left(\nu_{Q}(g)\right)\right)^{-1} X} R_{Y} f\left(n m p_{N^{\Gamma}, Q}\left(\nu_{Q}(g)\right) h_{Q}(g) k_{Q}(g)\right)\right| d n d m .
$$

Since we can write $\operatorname{Ad}(n m) X\left(n \in \omega, m \in M_{\Gamma, Q}\right)$ as finite linear combination of elements in $\mathcal{U}\left(\mathfrak{n}_{Q}\right)$ with bounded coefficients, it suffices to show that

$$
\int_{M_{\Gamma, Q}} \int_{\omega}\left|L_{X} R_{Y} f\left(n m p_{N^{\Gamma, Q}}\left(\nu_{Q}(g)\right) h_{Q}(g) k_{Q}(g)\right)\right| d n d m
$$

has the required estimate. By Lemma 3.6.25 and as f is a Schwartz function near $e Q$, there exists $c>0$ such that this divided by $\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)$ is less or equal than

$$
\begin{gathered}
c_{\mathfrak{G}^{\prime}} p_{r, X, Y}(f) \int_{M_{\Gamma, Q}} \int_{\omega} h_{Q}(g)^{\rho_{\Gamma_{Q}}}\left(1+\log a_{n m p_{N}{ }^{\Gamma}, Q}\left(\nu_{Q}(g)\right) h_{Q}(g)\right)^{-r} \\
a_{n m p_{N \Gamma}, Q}^{\left.-\rho_{Q} \nu_{Q}(g)\right) h_{Q}(g)} d n d m .
\end{gathered}
$$

But as $\operatorname{vol}\left(M_{\Gamma, Q}\right)=1$, this is less or equal than

$$
c^{\prime} \operatorname{vol}(\omega)_{\mathfrak{S}^{\prime}} p_{r, X, Y}(f) h_{Q}(g)^{\rho_{\Gamma}}\left(1+\log a_{p_{N}{ }^{\Gamma}, Q}\left(\nu_{Q}(g)\right) h_{Q}(g)\right)^{-r} a_{p_{N \Gamma}, Q}^{-\rho_{Q}\left(\nu_{Q}(g)\right) h_{Q}(g)}
$$

for some constant $c^{\prime}>0$ as $\sup _{n \in \omega} a_{n}$ is finite. (3.20) follows. Thus, $f^{Q, l c}$ is a Schwartz function near $e Q$.

Proposition 3.6.29. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$. Then, $f^{Q}=0$ if $f^{Q, l c}$ vanishes.
Proof. Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ be such that $f^{Q, l c}=0$ and $g \in G$. By Fubini's theorem applied to $R_{g} f$ which is integrable over $\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}$ by Proposition 3.6.14, we have

$$
\begin{aligned}
f^{Q}(g)= & \frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} \int_{\Gamma_{Q} \backslash N_{Q} M_{\Gamma, Q}} f(n m g) d n d m \\
& =\frac{1}{\operatorname{vol}\left(\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}\right)} \int_{N_{\Gamma, Q} \backslash N_{Q}} \underbrace{\int_{\Gamma_{Q} \backslash N_{\Gamma, Q} M_{\Gamma, Q}} f\left(n m n^{\prime} g\right) d n d m}_{=0} d n^{\prime}=0 .
\end{aligned}
$$

3.6.4 $\mathrm{SU}(1,2)$-reduction

In the following, we generalise some formulas obtained in Appendix B for $G=$ $\mathrm{Sp}(1, n)$ by using $\mathrm{SU}(1,2)$-reduction.
For $t>0$, set $a_{t}=\exp \left(\log (t) H_{\alpha}\right)$. This is a generalisation of the a_{t} defined in Appendix B.
For $X \in \mathfrak{g}_{\alpha}, Y \in \mathfrak{g}_{2 \alpha}$ and $r \in \mathbb{R}$, set $X \cdot r=r X$ and $X \cdot Y=-\frac{1}{2}[\theta X, Y] \in \mathfrak{g}_{\alpha}$.
Note that $X \cdot Y$ is simply the natural multiplication induced from the multiplication on \mathbb{H} if $G=\operatorname{Sp}(1, n)(n \geqslant 2)$.

Theorem 3.6.30. We have:
(1) Write $\bar{n} \in \bar{N}$ as $\bar{n}=\exp (X+Y)\left(X \in \mathfrak{g}_{-\alpha}, Y \in \mathfrak{g}_{-2 \alpha}\right)$. Then,
(a) $\nu(\bar{n})=\exp \left(-X \cdot \frac{1+\frac{1}{2}|X|^{2}-2 Y}{\left(1+\frac{1}{2}|X|^{2}\right)^{2}+2|Y|^{2}}-\frac{Y}{\left(1+\frac{1}{2}|X|^{2}\right)^{2}+2|Y|^{2}}\right)$, and
(b) $h(\bar{n})=\frac{1}{\sqrt{\left(1+\frac{1}{2}|X|^{2}\right)^{2}+2|Y|^{2}}}$.
(2) Let $n \in N$ and $a \in A$. Write $n \in N$ as $n=\exp (X+Y)\left(X \in \mathfrak{g}_{\alpha}, Y \in \mathfrak{g}_{2 \alpha}\right)$ and $a=a_{t}(t>0)$. Then,

$$
a_{n a}=e^{\operatorname{arccosh}\left(\sqrt{\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{4 t}|X|^{2}\right)^{2}+\frac{|Y|^{2}}{2 t^{2}}}\right)} .
$$

Remark 3.6.31.

(1) The second formula was already established by S. Helgason and the third formula is a generalisation of a formula obtained by S. Helgason (cf. Proposition 2.1.7).
(2) One can show that the formula for $a_{n}(n \in N)$ is indeed equal to the one provided by Proposition 2.1.7.

Proof. The subgroups N, A, M and K of $\operatorname{Sp}(1, n)$, defined in Appendix B, induce Lie groups N_{0}, A_{0}, M_{0} and K_{0} of $\operatorname{SU}(1,2)$. Let $\mathfrak{n}_{0}, \mathfrak{a}_{0}, \mathfrak{m}_{0}, \mathfrak{k}_{0}$ be the Lie algebras of N_{0}, A_{0}, M_{0} respectively K_{0}. Let θ_{0} the Cartan involution associated to \mathfrak{k}_{0}. The Lie algebra \mathfrak{n}_{0} is given by $\left\{X_{z, i t} \mid z \in \mathbb{C}, t \in \mathbb{R}\right\}\left(X_{v, r}\right.$ is defined in Appendix B). So, $\mathfrak{n}_{0}=\mathbb{C} X_{1,0} \oplus \mathbb{R} X_{0, i}$. We denote $\nu_{\theta_{0}, P_{0}}, h_{\theta_{0}, P_{0}}, k_{\theta_{0}, P_{0}}$ simply by ν_{0}, h_{0}, k_{0}. Let $Z^{*}=Z_{1}^{*}+Z_{2}^{*} \in \mathfrak{n}\left(Z_{i}^{*} \in \mathfrak{g}_{i \alpha}, Z_{1}^{*} \neq 0\right)$. If $Z_{i}^{*} \neq 0$, set $X_{i \alpha}=\frac{1}{\left|Z_{i}^{*}\right|} \cdot Z_{i}^{*}$. Otherwise, set $X_{i \alpha}=0$. By construction, $Z^{*} \in \mathbb{R} X_{\alpha} \oplus \mathbb{R} X_{2 \alpha}$.
Let $a \in A$ and let $H^{*} \in \mathfrak{a}$ be such that $a=\exp \left(H^{*}\right)$.
We distinguish the following two cases:
(1) $X_{2 \alpha} \neq 0$: Let $\mathfrak{l}=\mathfrak{s u}(1,2)$ and let $L=\operatorname{SU}(1,2)$. Then, it follows from Theorem 3.1, Chapter IX, of [Hel78, p.409] (SU(2,1)-reduction) that the Lie subalgebra $\mathfrak{g}^{*} \subset \mathfrak{g}$ generated by $X_{\alpha}, X_{2 \alpha}, \theta\left(X_{\alpha}\right), \theta\left(X_{2 \alpha}\right)$ is isomorphic to \mathfrak{l} via a map $\Phi: \mathfrak{l} \rightarrow \mathfrak{g}^{*}$ (The isomorphism from \mathfrak{g}^{*} to $\mathfrak{s u}(2,1)$ is explicitly described in [Hel78, p.413]. Note that it is norm preserving.) satisfying $\Phi\left(\log \left(a_{e}\right)\right)=H_{\alpha}\left(\alpha\left(H_{\alpha}\right)=1\right), \Phi\left(X_{1,0}\right)=\sqrt{2} X_{\alpha}, \Phi\left(X_{0, i}\right)=\sqrt{2} X_{2 \alpha}$ and $\Phi \circ \theta_{0}=\theta \circ \Phi$.
(2) $X_{2 \alpha}=0$: Let $\mathfrak{l}=\mathfrak{s o}(1,2) \subset \mathfrak{s u}(1,2)$ and let $L=\operatorname{SU}(1,2)$. Then, \mathfrak{l} is the Lie subalgebra of $\mathfrak{s u}(1,2)$ which is generated by $X_{1,0}$ and $\theta\left(X_{1,0}\right)$ (\mathfrak{l} is isomorphic to $\mathfrak{s u}(1,1))$. The Lie subalgebra $\mathfrak{g}^{*} \subset \mathfrak{g}$ generated by $X_{\alpha}, \theta\left(X_{\alpha}\right)$ is isomorphic to \mathfrak{l} via a map $\Phi: \mathfrak{l} \rightarrow \mathfrak{g}^{*}$ satisfying $\Phi\left(X_{1,0}\right)=\sqrt{2} X_{\alpha}, \Phi\left(\log \left(a_{e}\right)\right)=H_{\alpha}$ and $\Phi \circ \theta_{0}=\theta \circ \Phi$.

Let us show in the following that the isomorphism Φ is norm-preserving when we put on \mathfrak{g}^{*} the norm $|\cdot|$ of \mathfrak{g} restricted to \mathfrak{g}^{*}.
Let G^{*} be the analytic subgroup of G with Lie algebra \mathfrak{g}^{*} and let B^{*} be the Killing form of \mathfrak{g}^{*}. Then, B^{*} is up to a positive constant equal to the restriction of the Killing form on \mathfrak{g} to $\mathfrak{g}^{*} \times \mathfrak{g}^{*}$. Since the map

$$
\mathfrak{g}^{*} \times \mathfrak{g}^{*} \rightarrow \mathbb{R}, \quad(X, Y) \mapsto B\left(\Phi^{-1}(X), \Phi^{-1}(Y)\right):=\operatorname{tr}\left(\operatorname{ad}_{\mathfrak{g}}\left(\Phi^{-1}(X)\right) \operatorname{ad}_{\mathfrak{g}}\left(\Phi^{-1}(Y)\right)\right)
$$

is an $\operatorname{Ad}\left(G^{*}\right)$-invariant bilinear form on \mathfrak{g}^{*} and as

$$
\begin{aligned}
B\left(\Phi^{-1}\left(H_{\alpha}\right), \Phi^{-1}\left(H_{\alpha}\right)\right)=B\left(\log \left(a_{e}\right), \log \left(a_{e}\right)\right)=\frac{1}{c_{d_{X}}} \tilde{B}\left(\log \left(a_{e}\right), \log \left(a_{e}\right)\right)=\frac{1}{c_{d_{X}}} \\
=\frac{1}{c_{d_{X}}} \alpha\left(H_{\alpha}\right)=\frac{1}{c_{d_{X}}} \tilde{B}\left(H_{\alpha}, H_{\alpha}\right)=B\left(H_{\alpha}, H_{\alpha}\right),
\end{aligned}
$$

this map is equal to the Killing form on \mathfrak{g} restricted to $\mathfrak{g}^{*} \times \mathfrak{g}^{*}$. Thus, $|\Phi(X)|=|X|$ for all $X \in \mathfrak{l}$.
Let $K^{*}=G^{*} \cap K, A^{*}=G^{*} \cap A=A, M^{*}=G^{*} \cap M, N^{*}=G^{*} \cap N$ and $\bar{N}^{*}=G^{*} \cap \bar{N}$. Then, it follows from Lemma 3.7, Chapter IX, of [Hel78, p.413] and the construction of his Lie groups K^{*}, A^{*}, M^{*} and N^{*} that $P^{*}:=M^{*} A^{*} N^{*} \subset P$ is a parabolic subgroup of G^{*} and that $G^{*}=N^{*} A^{*} K^{*}$ is an Iwasawa decomposition of G^{*} and that $G^{*}=K^{*} A_{+}^{*} K^{*}$ is a Cartan decomposition of G^{*}.
Moreover, $g \in G^{*}$ is equal to $\nu(g) h(g) k(g)$ (resp. $k_{g} a_{g} h_{g}$) with $\nu(g) \in N^{*}, h(g) \in$ A^{*} and $k(g) \in K^{*}\left(\right.$ resp. $\left.k_{g}, h_{g} \in K^{*}, a_{g} \in A^{*}\right)$.
The Lie algebra homomorphism $\Phi: \mathfrak{l} \rightarrow \mathfrak{g}^{*} \hookrightarrow \mathfrak{g}$ induces a Lie group isomorphism $\tilde{\Phi}$ from the universal cover \tilde{L} of L to G such that $\tilde{\Phi}_{*}=\Phi$. Since $N_{0}, \bar{N}_{0}:=\theta_{0}\left(N_{0}\right)$ and A_{0} are simply connected,

$$
\begin{gathered}
\tilde{\Phi}(\exp (Z))=\exp \left(\tilde{\Phi}_{*}(Z)\right)=\exp (\Phi(Z)) \in N \quad\left(Z \in \mathfrak{n}_{0}\right), \\
\tilde{\Phi}(\exp (Z))=\exp \left(\tilde{\Phi}_{*}(Z)\right)=\exp (\Phi(Z)) \in \bar{N} \quad\left(Z \in \overline{\mathfrak{n}}_{0}:=\theta_{0}\left(\mathfrak{n}_{0}\right)\right),
\end{gathered}
$$

and

$$
\tilde{\Phi}(\exp (H))=\exp \left(\tilde{\Phi}_{*}(H)\right)=\exp (\Phi(H)) \in A \quad\left(H \in \mathfrak{a}_{0}\right) .
$$

Let \tilde{K}_{0} be the universal cover of K_{0}. Then, $\tilde{\Phi}\left(\tilde{K}_{0}\right)=K$. Thus, $N_{0} A_{0} \tilde{K}_{0}$ is an Iwasawa decomposition of \tilde{L} and $\tilde{K}_{0}\left(A_{0}\right)_{+} \tilde{K}_{0}$ is a Cartan decomposition of \tilde{L}. The Lie group homomorphism $\tilde{\Phi}$ respects these Iwasawa decompositions and these KAK-decompositions.
Thus, $\nu(\bar{n})=\tilde{\Phi}\left(\nu_{0}\left(\tilde{\Phi}^{-1}(\bar{n})\right)\right), h(\bar{n})=\tilde{\Phi}\left(h_{0}\left(\tilde{\Phi}^{-1}(\bar{n})\right)\right)$ for all $\bar{n} \in \bar{N}^{*}$ and

$$
a_{n a}=\tilde{\Phi}\left(a_{\tilde{\Phi}^{-1}(n) \tilde{\Phi}^{-1}(a)}\right)
$$

for all $n \in N^{*}$ and $a \in A^{*}$.

There are $z \in \mathbb{C}, u \in \mathbb{R}$ and $t>0$ such that $Z:=\Phi^{-1}\left(Z^{*}\right)=z X_{1,0}+u X_{0, i}=X_{z, i u}$ $\left(Z^{*} \in \mathfrak{n}^{*}\right)$ and $H^{*}=\log (t) H_{\alpha}$.
Let $X=z X_{1,0}, Y=u X_{0, i}$ and $H=\log (t) \log \left(a_{e}\right)$. Then, $|H|=|\log (t)|$. $\left|\log \left(a_{e}\right)\right|=|\log (t)|$. Since

$$
\begin{gathered}
\left|X_{z, i u}\right|=\frac{\sqrt{2}}{2}\left\|X_{z, i u}\right\|=\sqrt{2} \sqrt{|z|^{2}+u^{2}}, \\
|X|=|z| \cdot\left|X_{1,0}\right|=\sqrt{2}|z| \quad \text { and } \quad|Y|=|u| \cdot\left|X_{0, i}\right|=\sqrt{2}|u| .
\end{gathered}
$$

As $h_{0}\left(\bar{n}_{z, i u}\right)=a_{\frac{1}{\sqrt{\left(1+|z|^{2}\right)^{2}+4 u^{2}}}}, \nu_{0}\left(\bar{n}_{z, i u}\right)=n_{\left(-z \cdot \frac{1+|z|^{2}-2 i u}{\left(1+|z|^{2}\right)^{2}+4 u^{2}},-\frac{i u}{\left(1+|z|^{2}\right)^{2}+4 u^{2}}\right)}$ and as

$$
a_{n_{z, i u} a_{t}}=e^{\operatorname{arccosh}}\left(\sqrt{\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{2 t}|z|^{2}\right)^{2}+\frac{u^{2}}{t^{2}}}\right),
$$

the theorem follows.

3.6.5 Two geometric estimates

Let us prove now the following statement:
There exist $c, c^{\prime}>0$ such that

$$
a_{n_{1} n_{2} a} \geqslant c a_{n_{1} a}, \quad a_{n_{1} n_{2} a} \geqslant c^{\prime} a_{n_{2} a}
$$

for all $n_{1} \in N_{\Gamma, Q}, n_{2} \in N^{\Gamma, Q}$ and $a \in A_{Q}$.
We need the second estimate in order to be able to show that the right translation induces also in the geometrically finite case a representation on the Schwartz space. We start by doing some preparations.

Lemma 3.6.32. Let X be a set. Let f, g be two real-valued functions on X.
(1) If f is nonnegative (resp. positive) and if $f \prec g$, then g is nonnegative (resp. positive).
(2) If $f \asymp g(\asymp$ was defined in Definition 2.1.8), then f is nonnegative (resp. positive) if and only if g is nonnegative (resp. positive).
(3) If f and $g_{\tilde{f}}$ are nonnegative and if $\underset{\tilde{g}}{ } \asymp \tilde{f}$ and $g \asymp \tilde{g}$ for some real-valued functions \tilde{f}, \tilde{g} on X, then $f+g \asymp \tilde{f}+\tilde{g}$.
(4) If f and g are positive, then $f \asymp g$ implies that $\frac{1}{f} \asymp \frac{1}{g}$.

Proof. Obvious.
Lemma 3.6.33. Let $N \geqslant 2, \varepsilon>0, p_{i} \geqslant 0$ and $q_{i}>0(i \in\{1, \ldots, N\})$ be such that $\sum_{k=1}^{N} \frac{p_{k}}{q_{k}} \leqslant 1$. Let $D_{\varepsilon}=\left\{x \in \mathbb{R}^{N} \mid \sum_{i=1}^{N} x_{i}^{q_{i}} \geqslant \varepsilon^{2}\right\}$ and let $D_{\varepsilon}^{\prime}=D_{\varepsilon} \cap\{x \in$ $\left.\mathbb{R}^{N} \mid x_{i} \geqslant 0 \quad \forall i\right\}$. Then,

$$
\sup _{x \in D_{\varepsilon}^{\prime}} \frac{x_{1}^{p_{1}} \cdots x_{N}^{p_{N}}}{\sum_{i=1}^{N} x_{i}^{q_{i}}}
$$

is less or equal than $\varepsilon^{2\left(\sum_{k=1}^{N} \frac{p_{k}}{q_{k}}-1\right)}$.
Proof. Let $N \geqslant 2$ and $\varepsilon>0$. Let p_{i}, q_{i} and D_{ε}^{\prime} be as above.
Let $\tilde{N}=\#\left\{i \in\{1, \ldots, N\} \mid p_{i} \neq 0\right\}$
We may assume without loss of generality that all the q_{i} 's are equal to 2 . Indeed, if this is not the case set $q_{i}^{\prime}=2$ and $p_{i}^{\prime}=\frac{2 p_{i}}{q_{i}}$.
By reordering the variables if necessary, we may assume without loss of generality that $p_{i}=0$ for all $i>\tilde{N}$ and $p_{i} \neq 0$ for all $i \leqslant \tilde{N}$.
By the change of variables $\left(x_{1}, \ldots, x_{N}\right)=r \Phi_{N}\left(\phi, \psi_{1}, \ldots, \psi_{N-2}\right)$ (spherical coordinates),

$$
\sup _{x \in D_{\varepsilon}^{\prime}} \frac{x_{1}^{p_{1}} \cdots x_{\tilde{N}}^{p_{\tilde{N}}}}{\sum_{i=1}^{N} x_{i}^{2}}
$$

is equal to

$$
\sup _{r \in[\varepsilon, \infty),\left(\phi, \psi_{j}\right) \in E} \frac{\left(r \Phi_{N}\left(\phi, \psi_{1}, \ldots, \psi_{N-2}\right)_{1}\right)^{p_{1}} \cdots\left(r \Phi_{N}\left(\phi, \psi_{1}, \ldots, \psi_{N-2}\right)_{\tilde{N}}\right)^{p_{\tilde{N}}}}{r^{2}}
$$

where $E=[0, \pi] \times\left[0, \frac{\pi}{2}\right]^{N-2}$. As $\sum_{k=1}^{N} p_{k} \leqslant 2$ and as $\Phi_{N}\left(\phi, \psi_{1}, \ldots, \psi_{N-2}\right)_{i} \leqslant 1$ for all i, this is less or equal than

$$
\varepsilon^{\sum_{k=1}^{N} p_{k}-2}
$$

The lemma follows.
Next we give a criterion for polynomials in N variables to have the same growth behaviour.

Corollary 3.6.34. Let $c>0, N \in \mathbb{N}$ and $N^{\prime} \in \mathbb{N}$.
(1) Let $q_{i}>0$ and let $p_{j, i} \geqslant 0\left(i \in\{1, \ldots, N\}, j \in\left\{1, \ldots, N^{\prime}\right\}\right)$ be such that $\sum_{k=1}^{N} \frac{p_{j, k}}{q_{k}} \leqslant 1$ for all j. Let $D^{\prime}=\left\{x \in \mathbb{R}^{N} \mid x_{i} \geqslant 0, \sum_{i=1}^{N} x_{i}^{q_{i}} \geqslant 1\right\}$. If $c_{j} \in(0,+\infty)$, then

$$
\left(c \sum_{i=1}^{N} x_{i}^{q_{i}}+\sum_{j=1}^{N^{\prime}} c_{j} x_{1}^{p_{j, 1}} \cdots x_{N}^{p_{j, N}}\right) \asymp \sum_{i=1}^{N} x_{i}^{q_{i}} \quad\left(x \in D^{\prime}\right)
$$

(2) Let $q_{i} \in 2 \mathbb{N}$ and let $p_{j, i} \in \mathbb{N}_{0}\left(i \in\{1, \ldots, N\}, j \in\left\{1, \ldots, N^{\prime}\right\}\right)$ be such that $\sum_{k=1}^{N} \frac{p_{j, k}}{q_{k}} \leqslant 1$ for all j. Let $D_{\varepsilon}=\left\{x \in \mathbb{R}^{N} \mid \sum_{i=1}^{N} x_{i}^{q_{i}} \geqslant \varepsilon^{2}\right\}$. Let

$$
S=\left\{j \in\left\{1, \ldots, N^{\prime}\right\} \mid\left(\exists k: p_{j, k} \text { is odd or } c_{j}<0\right) \text { and } \sum_{k=1}^{N} \frac{p_{j, k}}{q_{k}}=1\right\}
$$

If $c_{j} \in \mathbb{R}$ satisfies $\left|c_{j}\right|<\frac{c}{\# S}$ for all $j \in S$, then there exists $\varepsilon \geqslant 1$ such that

$$
\left(c \sum_{i=1}^{N} x_{i}^{q_{i}}+\sum_{j=1}^{N^{\prime}} c_{j} x_{1}^{p_{j, 1}} \cdots x_{N}^{p_{j, N}}\right) \asymp \sum_{i=1}^{N} x_{i}^{q_{i}} \quad\left(x \in D_{\varepsilon}\right)
$$

Moreover, we can choose $\varepsilon=1$ if for all j either $\sum_{k=1}^{N} \frac{p_{j, k}}{q_{k}}=1$ or ($p_{j, k}$ is even for all k and $c_{j} \geqslant 0$).

Proof. Let $N \in \mathbb{N}, N^{\prime} \in \mathbb{N}, c>0$ and $\varepsilon>0$. Let $p_{j, i}, q_{i}, m_{j}, c_{j}, D_{\varepsilon}, D^{\prime}$ and S be as above and let $x \in D_{\varepsilon}$. We have

$$
\sum_{i=1}^{N} x_{i}^{q_{i}}+\sum_{j=1}^{N^{\prime}} \frac{c_{j}}{c} x_{1}^{p_{j, 1}} \cdots x_{N}^{p_{j, N}}=\left(\sum_{i=1}^{N} x_{i}^{q_{i}}\right)\left(1+\sum_{j=1}^{N^{\prime}} \frac{c_{j}}{c} \cdot \frac{x_{1}^{p_{j, 1}} \cdots x_{N}^{p_{j, N}}}{\sum_{i=1}^{N} x_{i}^{q_{i}}}\right)
$$

If x vary in D^{\prime}, then it follows from the previous lemma that

$$
\frac{c_{j}}{c} \cdot \frac{x_{1}^{p_{j, 1}} \cdots x_{N}^{p_{j, N}}}{\sum_{i=1}^{N} x_{i}^{q_{i}}}
$$

belongs to a compact subset of $[0,+\infty)$ for all j. The corollary follows in this case. Let us consider now the other case. We have the following subcases.
(1) Case: $j \in S$

It follows from the previous lemma that

$$
\frac{c_{j}}{c} \cdot \frac{x_{1}^{p_{j, 1}} \cdots x_{N}^{p_{j, N}}}{\sum_{i=1}^{N} x_{i}^{q_{i}}} \quad\left(x \in D_{1}\right)
$$

belongs to a compact subset of $\left(-\frac{1}{\# S}, \frac{1}{\# S}\right)$.
(2) Case: $j \in\left\{1, \ldots, N^{\prime}\right\}$ such that $p_{j, k}$ are all even and $c_{j} \geqslant 0$

It follows from the previous lemma that

$$
\frac{c_{j}}{c} \cdot \frac{x_{1}^{p_{j, 1}} \cdots x_{N}^{p_{j, N}}}{\sum_{i=1}^{N} x_{i}^{q_{i}}} \quad\left(x \in D_{1}\right)
$$

belongs to a compact subset of $[0,+\infty)$.
(3) Case: $j \in\left\{1, \ldots, N^{\prime}\right\}$ such that $\sum_{k=1}^{N} \frac{p_{j, k}}{q_{k}}<1$

Let $\delta_{j}>0$. It follows from the previous lemma that

$$
\frac{c_{j}}{c} \cdot \frac{x_{1}^{p_{j, 1}} \cdots x_{N}^{p_{j, N}}}{\sum_{i=1}^{N} x_{i}^{q_{i}}} \quad\left(x \in D_{\varepsilon}\right)
$$

belongs to $\left[-\delta_{j}, \delta_{j}\right]$ for $\varepsilon \geqslant 1$ sufficiently large.
The corollary follows by combining the different cases and by choosing the δ_{j} 's sufficiently small.

Assume that P is a Γ-cuspidal parabolic subgroup of G.
Let $\mathfrak{n}_{2,2}^{\Gamma, P}$ be the orthogonal complement of $\mathfrak{n}_{2,1}^{\Gamma, P}:=p_{\mathfrak{g}_{2_{\alpha}}}\left(\mathfrak{n}_{\Gamma, P}\right) \cap \mathfrak{n}_{2}^{\Gamma, P}$ in $\mathfrak{n}_{2}^{\Gamma, P}$.
It follows from the above that $p_{\mathfrak{g}_{2 \alpha_{P}}}\left(\mathfrak{n}_{\Gamma, P}\right)$ is equal to $\mathfrak{n}_{2,1}^{\Gamma, P} \oplus\left(\mathfrak{g}_{2 \alpha_{P}} \cap \mathfrak{n}_{\Gamma, P}\right)$.
We denote by p the canonical projection from $p_{\mathfrak{g}_{2 \alpha_{P}}}\left(\mathfrak{n}_{\Gamma, P}\right)$ to $\mathfrak{g}_{2 \alpha_{P}} \cap \mathfrak{n}_{\Gamma, P}$.
Let $\left\{Z_{1}, Z_{2}, \ldots, Z_{m_{\alpha_{P}}+m_{2 \alpha_{P}}}\right\}$ be an orthonormal basis of

$$
\mathfrak{n}=\mathfrak{g}_{\alpha_{P}} \oplus\left(\left(\mathfrak{g}_{2 \alpha_{P}} \cap \mathfrak{n}_{\Gamma, P}\right) \oplus \mathfrak{n}_{2,1}^{\Gamma, P} \oplus \mathfrak{n}_{2,2}^{\Gamma, P}\right)
$$

which respects this decomposition. For $v \in \mathbb{R}^{m_{\alpha_{P}}}$ and $r \in \mathbb{R}^{m_{2 \alpha_{P}}}$, set

$$
X_{v, r}=\sum_{j=1}^{m_{\alpha_{P}}} v_{j} Z_{j}+\sum_{j=1}^{m_{2 \alpha_{P}}} r_{j} Z_{m_{\alpha_{P}}+j}
$$

and $n_{v, r}=\exp \left(X_{v, r}\right)$. Let $\iota: \mathbb{R}^{m_{\alpha_{P}}} \times \mathbb{R}^{m_{2 \alpha_{P}}} \rightarrow \mathfrak{n},(v, r) \mapsto X_{v, r}$. Then, ι is an isomorphism of vector spaces. For $v, v^{\prime} \in \mathbb{R}^{m_{\alpha_{P}}}$ and $r, r^{\prime} \in \mathbb{R}^{m_{2 \alpha_{P}}}$, set

$$
\left[(v, r),\left(v^{\prime}, r^{\prime}\right)\right]=\iota^{-1}\left(\left[X_{v, r}, X_{v^{\prime}, r^{\prime}}\right]\right)
$$

To simplify notations, we don't write the isomorphism ι in the following.

Lemma 3.6.35. Under the above assumptions, there exists a compact set C in \mathfrak{n} such that

$$
a_{n_{v, r} n_{v^{\prime}, r^{\prime}}} \asymp a_{n_{v+v^{\prime}, p(r)+r^{\prime}} a}
$$

for a varying in A and $n_{v, r}$ (resp. $n_{v^{\prime}, r^{\prime}}$) varying in $N_{\Gamma, P}$ (resp. $N^{\Gamma, P}$) such that $\log \left(n_{v, r}\right)+\log \left(n_{v^{\prime}, r^{\prime}}\right) \notin C$.

Proof. If $e P$ has full rank, then the assertion of the lemma is trivial. So, we may assume without loss of generality that $e P$ is of smaller rank.
Let $n_{1}=n_{v, r} \in N_{\Gamma, P}, n_{2}=n_{v^{\prime}, r^{\prime}} \in N^{\Gamma, P}$ and $a=a_{t} \in A$. Then

$$
n_{1} n_{2}=n_{v, r} n_{v^{\prime}, r^{\prime}}=n_{v+v^{\prime}, r+r^{\prime}+\frac{1}{2}\left[(v, 0),\left(v^{\prime}, 0\right)\right]}
$$

by Lemma 3.3.1. For $x \geqslant 1$, we have

$$
e^{\operatorname{arccosh}(x)}=x+\sqrt{x^{2}-1}=x \cdot\left(1+\sqrt{1-\frac{1}{x^{2}}}\right) \asymp x
$$

as $\left\{\left.1+\sqrt{1-\frac{1}{x^{2}}} \right\rvert\, x \geqslant 1\right\}$ is bounded by positive constants.
Let $\|v\|=\frac{\sqrt{2}}{2}\left|X_{v, 0}\right|$ and $|r|=\frac{\sqrt{2}}{2}\left|X_{0, r}\right|$. Then, these norms are up to a constant (the constant is 1 for $G=\operatorname{Sp}(1, n), n \geqslant 2$) equal to the 2-norm and

$$
a_{n_{v, r} a_{t}}=e^{\operatorname{arccosh}}\left(\sqrt{\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{2 t}\|v\|^{2}\right)^{2}+\frac{|r|^{2}}{t^{2}}}\right)
$$

(Theorem 3.6.30 or (B.4) when $G=\operatorname{Sp}(1, n), n \geqslant 2$). So, we must show that

$$
\begin{align*}
\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{2 t}\left\|v+v^{\prime}\right\|^{2}\right)^{2}+\frac{\left|r+r^{\prime}+\frac{1}{2}\left[(v, 0),\left(v^{\prime}, 0\right)\right]\right|^{2}}{t^{2}} & \tag{3.21}\\
& \asymp\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{2 t}\left\|v+v^{\prime}\right\|^{2}\right)^{2}+\frac{\mid p(r)+r^{\prime} \|^{2}}{t^{2}}
\end{align*}
$$

for t varying in $(0, \infty)$ and $\left(v+v^{\prime}, r+r^{\prime}\right)$ varying in a subset of \mathfrak{n} having compact complement (we still assume that $n_{v, r} \in N_{\Gamma, P}$ and $n_{v^{\prime}, r^{\prime}} \in N^{\Gamma, P}$). Note that a constant times the left hand side or the right hand side of (3.21) is then greater or equal than 1 for all $t \in(0,+\infty)$ and for $\left(v+v^{\prime}, r+r^{\prime}\right)$ varying in an appropriate subset of \mathfrak{n} having compact complement. Since $p_{\mathfrak{g}_{\alpha_{P}}}\left(\mathfrak{n}_{\Gamma, P}\right)$ is orthogonal to $\mathfrak{n}_{1}^{\Gamma, P}$, $\left\|v+v^{\prime}\right\|^{2}=\|v\|^{2}+\left\|v^{\prime}\right\|^{2}$. Thus, the above is equivalent to show that

$$
\begin{aligned}
\frac{1}{4}\left(t^{2}+1+\|v\|^{2}+\left\|v^{\prime}\right\|^{2}\right)^{2}+ & \left|r+r^{\prime}+\frac{1}{2}\left[(v, 0),\left(v^{\prime}, 0\right)\right]\right|^{2} \\
& \asymp\left(\frac{1}{2}\left(t^{2}+1\right)+\frac{1}{2}\left(\|v\|^{2}+\left\|v^{\prime}\right\|^{2}\right)\right)^{2}+|p(r)|^{2}+\left|r^{\prime}\right|^{2}
\end{aligned}
$$

for t varying in $(0, \infty)$ and $\left(v+v^{\prime}, r+r^{\prime}\right)$ varying in a subset of \mathfrak{n} having compact complement. If $\mathfrak{g}_{2 \alpha_{P}}$ is trivial (real hyperbolic case), then the lemma follows already.
Let $c>0$. If $\|v\|^{4}+\left\|v^{\prime}\right\|^{4} \geqslant 1$, then this is again equivalent to show that

$$
\begin{aligned}
& t^{4}+c\left(\|v\|^{4}+\left\|v^{\prime}\right\|^{4}\right)+1+\left|r+r^{\prime}+\frac{1}{2}\left[(v, 0),\left(v^{\prime}, 0\right)\right]\right|^{2} \\
& \asymp 1+t^{4}+\|v\|^{4}+\left\|v^{\prime}\right\|^{4}+|p(r)|^{2}+\left|r^{\prime}\right|^{2}
\end{aligned}
$$

for t varying in $(0, \infty)$ and $\left(v+v^{\prime}, r+r^{\prime}\right)$ varying in a subset of \mathfrak{n} having compact complement, by Lemma 3.6.32 combined with Corollary 3.6.34.
Write $v=\left(v_{1}, v_{2}, \ldots, v_{m_{\alpha}}\right)$ and $v^{\prime}=\left(v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m_{\alpha}}^{\prime}\right)$. Write $r=\left(r_{1}, \ldots, r_{m_{2 \alpha}}\right)$ and $r^{\prime}=\left(r_{1}^{\prime}, \ldots, r_{m_{2 \alpha}}^{\prime}\right)$. For $\varepsilon>0$, set

$$
\begin{aligned}
& D_{\varepsilon}=\left\{\left(v, r, v^{\prime}, r^{\prime}\right)\right. \in \mathbb{R}^{m_{\alpha}} \times \mathbb{R}^{m_{2 \alpha}} \times \mathbb{R}^{m_{\alpha}} \times \mathbb{R}^{m_{2 \alpha}} \\
& \quad\left|n_{v, r} \in N_{\Gamma, P}, n_{v^{\prime}, r^{\prime}} \in N^{\Gamma, P},\left|v_{i}\right|^{4}+\left|v_{i}^{\prime}\right|^{4}+\left|r_{j}\right|^{2}+\left|r_{j}^{\prime}\right|^{2}>\varepsilon \quad \forall i, j\right\}
\end{aligned}
$$

Since the Lie bracket is bilinear, $\left[(v, 0),\left(v^{\prime}, 0\right)\right]$ is a polynomial in

$$
v_{1}, v_{2}, \ldots, v_{m_{\alpha}}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{m_{\alpha}}^{\prime} .
$$

Moreover, for every $k \in\left\{1, \ldots, m_{2 \alpha}\right\}$,

$$
\left[(v, 0),\left(v^{\prime}, 0\right)\right]_{k}=\sum_{i=1}^{m_{\alpha}} \sum_{j=1}^{m_{\alpha}} a_{i, j}^{(k)} v_{i} v_{j}^{\prime}
$$

for some constants $a_{i, j}^{(k)} \in \mathbb{R}$. For $c>0$ sufficiently large and $\left(v, r, v^{\prime}, r^{\prime}\right)$ varying in D_{c}, we have

$$
\begin{aligned}
& c\left(\|v\|^{4}+\left\|v^{\prime}\right\|^{4}\right)+\left|r+r^{\prime}+\frac{1}{2}\left[(v, 0),\left(v^{\prime}, 0\right)\right]\right|^{2} \\
\asymp & c\left(\sum_{i=1}^{m_{\alpha}} v_{i}^{4}+\sum_{i=1}^{m_{\alpha}}\left(v_{i}^{\prime}\right)^{4}\right)+\left|r+r^{\prime}+\frac{1}{2}\left[(v, 0),\left(v^{\prime}, 0\right)\right]\right|^{2} \\
\asymp & c\left(\sum_{i=1}^{m_{\alpha}} v_{i}^{4}+\sum_{i=1}^{m_{\alpha}}\left(v_{i}^{\prime}\right)^{4}\right)+\sum_{j=1}^{m_{2 \alpha}}\left(r_{j}+r_{j}^{\prime}+\frac{1}{2}\left(\left[(v, 0),\left(v^{\prime}, 0\right)\right]\right)_{j}\right)^{2} \\
= & c\left(\sum_{i=1}^{m_{\alpha}} v_{i}^{4}+\sum_{i=1}^{m_{\alpha}}\left(v_{i}^{\prime}\right)^{4}+\sum_{j=1}^{m_{2 \alpha}}\left(\frac{r_{j}}{\sqrt{c}}+\frac{r_{j}^{\prime}}{\sqrt{c}}\right)^{2}\right. \\
\quad & \left.\quad \sum_{j=1}^{m_{2 \alpha}}\left(\frac{1}{\sqrt{c}} \cdot \frac{r_{j}+r_{j}^{\prime}}{\sqrt{c}} \cdot\left(\left[(v, 0),\left(v^{\prime}, 0\right)\right]\right)_{j}+\frac{1}{4}\left(\left[(v, 0),\left(v^{\prime}, 0\right)\right]\right)_{j}^{2}\right)\right) \\
\asymp & \sum_{i=1}^{m_{\alpha}}\left(v_{i}^{4}+\left(v_{i}^{\prime}\right)^{4}\right)+\sum_{j=1}^{m_{2 \alpha}}\left(r_{j}+r_{j}^{\prime}\right)^{2} \asymp\|v\|^{4}+\left\|v^{\prime}\right\|^{4}+\left|r+r^{\prime}\right|^{2}
\end{aligned}
$$

by Lemma 3.6 .32 combined with Corollary 3.6 .34 . Thus, for $\varepsilon>0$ sufficiently large and $\left(v, r, v^{\prime}, r^{\prime}\right) \in D_{\varepsilon}$, we have

$$
\begin{aligned}
t^{4}+c\left(\|v\|^{4}+\left\|v^{\prime}\right\|^{4}\right)+1+\left\lvert\, r+r^{\prime}+\frac{1}{2}[(v, 0),\right. & \left.\left(v^{\prime}, 0\right)\right]\left.\right|^{2} \\
& \asymp t^{4}+\|v\|^{4}+\left\|v^{\prime}\right\|^{4}+1+\left|r+r^{\prime}\right|^{2} .
\end{aligned}
$$

For each $v \in p_{\mathfrak{g}_{\alpha_{P}}}\left(\mathfrak{n}_{\Gamma, P}\right)$, there exists $r \in p_{\mathfrak{g}_{2_{\alpha}}}\left(\mathfrak{n}_{\Gamma, P}\right)$ such that $n_{v, r} \in N_{\Gamma, P}$. Write $r=u+z$ with $u \in \mathfrak{n}_{2,1}^{\Gamma, P}$ and $z \in \mathfrak{g}_{2 \alpha_{P}} \cap \mathfrak{n}_{\Gamma, P}$. Set $\varphi(v)=u$ and set $\varphi=0$ on $\mathfrak{n}_{1}^{\Gamma, P}$. This defines an \mathbb{R}-linear map φ from $\mathbb{R}^{m_{\alpha}}$ to $\mathbb{R}^{m_{2 \alpha}}$. One checks easily that this map is well-defined. So, there exist $c_{i} \in \mathbb{R}^{m_{2 \alpha}}$ such that

$$
\varphi\left(\left(x_{1}, x_{2}, \ldots, x_{m_{\alpha}}\right)\right)=\sum_{i=1}^{m_{\alpha}} c_{i} x_{i} \quad\left(x_{i} \in \mathbb{R}\right) .
$$

It follows from Lemma 3.6.32 combined with Corollary 3.6.34 that

$$
\|v\|^{4}+\left|r+r^{\prime}\right|^{2} \asymp\|v\|^{4}+|p(r)|^{2}+\left|r^{\prime}\right|^{2}
$$

for $\left(v, r, r^{\prime}\right)$ such that $\|v\|^{4}+|p(r)|^{2}+\left|r^{\prime}\right|^{2}>1$. Indeed, the terms that are on the left but not on the right hand side are either of the form $\lambda v_{a}^{2}(\lambda \in \mathbb{R})$ or of the form $\lambda v_{a} r_{b}^{\prime}\left(\lambda \in \mathbb{R}, r_{b}^{\prime} \in \mathfrak{n}_{2,2}^{\Gamma, P}\right)$.
Since moreover, for $\varepsilon \geqslant 1$,

$$
\left\{\left(v+v^{\prime}, r+r^{\prime}\right) \mid n_{v, r} \in N_{\Gamma, P}, n_{v^{\prime}, r^{\prime}} \in N^{\Gamma, P},\left(v, r, v^{\prime}, r^{\prime}\right) \notin D_{\varepsilon}\right\}
$$

is contained

$$
\left\{\left(v+v^{\prime}, r+r^{\prime}\right) \mid \max \left\{\left|v_{i}\right|,\left|v_{i}^{\prime}\right|,\left|r_{j}\right|,\left|r_{j}^{\prime}\right|\right\} \leqslant \varepsilon \quad \forall i, j\right\}
$$

(compact), the lemma follows.
Proposition 3.6.36. There exist $c, c^{\prime}>0$ such that

$$
a_{n_{1} n_{2} a} \geqslant c a_{n_{1} a}, \quad a_{n_{1} n_{2} a} \geqslant c^{\prime} a_{n_{2} a}
$$

for all $n_{1} \in N_{\Gamma, Q}, n_{2} \in N^{\Gamma, Q}$ and $a \in A_{Q}$.
Proof. If $e Q$ has full rank, then the proposition follows from Lemma 2.1.4.
Without loss of generality, we may assume that $Q=P$ and that P is a Γ-cuspidal parabolic subgroup with associated cusp of smaller rank.
It follows from the proof of the previous lemma that there exists a compact set C in \mathfrak{n} such that

$$
a_{n_{v, r} n_{v^{\prime}, r^{\prime}} a_{t}} \asymp \frac{1}{t} \sqrt{1+t^{4}+\|v\|^{4}+\left\|v^{\prime}\right\|^{4}+|p(r)|^{2}+\left|r^{\prime}\right|^{2}}
$$

for t varying in $(0,+\infty)$ and $n_{v, r}$ (resp. $n_{v^{\prime}, r^{\prime}}$) varying in $N_{\Gamma, P}$ (resp. $N^{\Gamma, P}$) such that $\log \left(n_{v, r}\right)+\log \left(n_{v^{\prime}, r^{\prime}}\right) \notin C$. In particular,

$$
a_{n_{v, r} a_{t}} \asymp \frac{1}{t} \sqrt{1+t^{4}+\|v\|^{4}+|p(r)|^{2}}
$$

and

$$
a_{n_{v^{\prime}, r^{\prime}} a_{t}} \asymp \frac{1}{t} \sqrt{1+t^{4}+\left\|v^{\prime}\right\|^{4}+\left|r^{\prime}\right|^{2}}
$$

for t varying in $(0,+\infty)$ and $n_{v^{\prime}, r^{\prime}}$ varying in $N^{\Gamma, P}$ such that $\log \left(n_{v^{\prime}, r^{\prime}}\right) \notin C$. The proposition follows.

3.6.6 The right regular representation of G on the Schwartz space

In this section, we show that the right translation by elements of G defines a representation on the Schwartz space (see Theorem 3.6.44). Some more preparations are needed to be able to show this result. After this, we are finally also able to show that the Schwartz space does not depend on choices (see Proposition 3.6.45). For a parabolic subgroup P^{\prime} of G, set $N_{\alpha_{P^{\prime}}}=\exp \left(\mathfrak{g}_{\alpha_{P^{\prime}}}\right)$ and $N_{2 \alpha_{P^{\prime}}}=\exp \left(\mathfrak{g}_{2 \alpha_{P^{\prime}}}\right)$. Let

$$
p_{i}: N_{Q} \rightarrow N_{i \alpha_{Q}}, \quad n \mapsto \exp \left(p_{\mathfrak{g}_{i \alpha_{Q}}}(\log (n))\right) \quad(i \in\{1,2\}) .
$$

Then, $\log \circ p_{i}=p_{\mathfrak{g}_{i \alpha}} \circ \log$ and for every $n \in N_{Q}$

$$
n=p_{1}(n) p_{2}(n)
$$

by Lemma 3.3.1. Hence, p_{1} and p_{2} are projections.
Let $p_{N_{i}^{\Gamma, Q}}=p_{i} \circ p_{N^{\Gamma}, Q}$. Then, this defines a projection from N_{Q} to $N_{i}^{\Gamma, Q}$.
Clearly, $p_{i} \circ p_{N_{i}^{\Gamma}, Q}=p_{N_{i}^{\Gamma, Q}}$. Let $\mathfrak{n}_{2,1}^{\Gamma, Q}=p_{\mathfrak{g}_{2_{\alpha}}}\left(\mathfrak{n}_{\Gamma, Q}\right) \cap \mathfrak{n}_{2}^{\Gamma, Q}$. We denote the projection on $\mathfrak{n}_{2,1}^{\Gamma, Q}$ by $p_{\mathfrak{n}_{2,1}^{\Gamma, Q}}$. Let $X \in p_{\mathfrak{g}_{\alpha_{Q}}}\left(\mathfrak{n}_{\Gamma, Q}\right)$. Then, there exists $Y \in \mathfrak{n}_{\Gamma, Q}$ such that $p_{\mathfrak{g}_{\alpha}}(Y)=X$. Let $\varphi(X)=p_{n_{2,1}, Q}(Y)$. Then, φ is a well-defined \mathbb{R}-linear map from $p_{\mathfrak{g}_{\alpha_{Q}}}\left(\mathfrak{n}_{\Gamma, Q}\right)$ to $\mathfrak{n}_{2,1}^{\Gamma, Q}$. Indeed, let $Y^{\prime} \in \mathfrak{n}_{\Gamma, Q}$ be such that $p_{\mathfrak{g}_{\alpha}}\left(Y^{\prime}\right)=X$. Then, $p_{\mathfrak{g}_{\alpha}}\left(Y-Y^{\prime}\right)=0$. Thus, $Y-Y^{\prime} \in \mathfrak{n}_{\Gamma, Q} \cap \mathfrak{g}_{2 \alpha_{Q}}$. Hence, $p_{\mathfrak{n}_{2,1}^{\Gamma, Q}}\left(Y-Y^{\prime}\right)=0$. So, $p_{\mathbf{n}_{2,1}^{\Gamma}, \mathcal{Q}}(Y)=p_{\mathbf{n}_{2,1}^{\Gamma, Q}}\left(Y^{\prime}\right)$.
By construction, $p_{\mathfrak{n}_{2,1}^{\Gamma, Q}}(X)=\varphi\left(p_{\mathfrak{g}_{\alpha}}(X)\right)$ for all $X \in \mathfrak{n}_{\Gamma, Q}$.

Lemma 3.6.37.

(1) $N_{Q}=p_{1}\left(N_{\Gamma, Q}\right) N_{1}^{\Gamma, Q} N_{2 \alpha_{Q}}$ is a decomposition of N_{Q}. Moreover, for every $n \in N_{Q}$, there exists a unique $n^{\prime} \in N_{2 \alpha_{Q}}$ such that

$$
n=\left(p_{1} \circ p_{N_{\Gamma, Q}}\right)(n) p_{N_{1}^{\Gamma, Q}}(n) n^{\prime} .
$$

It follows that $p_{1} \circ p_{N_{\Gamma, Q}}: N_{Q} \rightarrow p_{1}\left(N_{\Gamma, Q}\right)$ is a projection.
Moreover, the above decomposition induces an A_{Q}-invariant Lie group decomposition on $N_{Q} / N_{2 \alpha_{Q}}$.
(2) For every $n \in N_{Q}, \log (n)$ is equal to

$$
\log \left(\left(p_{1} \circ p_{N_{\Gamma, Q}}\right)(n)\right)+\log \left(p_{N_{1}^{\Gamma}, Q}(n)\right)+\log \left(p_{2}(n)\right)
$$

Thus,

$$
\log \circ p_{1} \circ p_{N_{\Gamma, Q}}=p_{\mathfrak{g}_{\alpha} Q} \circ p_{\mathfrak{n}_{\Gamma, Q}} \circ \log , \quad \log \circ p_{N_{1}^{\Gamma}, Q}=p_{\mathbf{n}_{1}^{\Gamma}, Q} \circ \log
$$

(3) $p_{1} \circ p_{N_{\Gamma, Q}}$ is a projection from N_{Q} to $p_{1}\left(N_{\Gamma, Q}\right)=\exp \left(p_{\mathfrak{g}_{\alpha_{Q}}}\left(\mathfrak{n}_{\Gamma, Q}\right)\right)$.

Remark 3.6.38. In general, we don't have $\log \circ p_{N_{\Gamma, Q}}=p_{n_{\Gamma}, Q} \circ \log , \log \circ p_{N_{\Gamma, Q}}=$ $p_{\mathfrak{n}^{\Gamma}, Q} \circ \log , \log \circ p_{2} \circ p_{N_{\Gamma, Q}}=p_{\mathfrak{g}_{2_{\alpha}}} \circ p_{\mathfrak{n}_{\Gamma, Q}} \circ \log$ or $\log \circ p_{N_{2}^{\Gamma, Q}}=p_{n_{2}^{\Gamma}, Q} \circ \log$.

Proof. Let $n \in N_{Q}$. By Proposition 3.3.2, by Lemma 3.3.1, we have

$$
n=p_{1}(n) p_{2}(n)=p_{1}\left(p_{N_{\mathrm{\Gamma}, Q}}(n) p_{N^{\Gamma}, Q}(n)\right) p_{2}(n)=\left(p_{1} \circ p_{N_{\Gamma}, Q}\right)(n) p_{N_{1}^{\Gamma}, Q}(n) n^{\prime},
$$

where $n^{\prime}:=p_{2}(n) \exp \left(-\frac{1}{2}\left[\log \left(p_{1}\left(p_{N_{\Gamma, Q}}(n)\right)\right), \log \left(p_{N_{1}^{\Gamma, Q}}(n)\right)\right]\right) \in N_{2 \alpha_{Q}}$.
It follows that $N_{Q}=p_{1}\left(N_{\Gamma, Q}\right) N_{1}^{\Gamma, Q} N_{2 \alpha_{Q}}$.
Let $n_{1}, n_{1}^{\prime} \in p_{1}\left(N_{\Gamma, Q}\right), n_{2}, n_{2}^{\prime} \in N_{1}^{\Gamma, Q}, n_{3}, n_{3}^{\prime} \in N_{2 \alpha_{Q}}$ be such that $n_{1} n_{2} n_{3}=n_{1}^{\prime} n_{2}^{\prime} n_{3}^{\prime}$. Let $X_{1}, X_{1}^{\prime} \in p_{\mathfrak{g}_{\alpha}}\left(\mathfrak{n}_{\Gamma, Q}\right)$ be such that $n_{1}=\exp \left(X_{1}\right), n_{1}^{\prime}=\exp \left(X_{1}^{\prime}\right)$.
Let $X_{2}, X_{2}^{\prime} \in \mathfrak{n}_{1}^{\Gamma, Q}$ be such that $n_{2}=\exp \left(X_{2}\right), n_{2}^{\prime}=\exp \left(X_{2}^{\prime}\right)$.
It follows from the Baker-Campbell-Hausdorff formula and the fact that every element of $\mathfrak{n}_{Q}=\mathfrak{g}_{\alpha_{Q}} \oplus \mathfrak{g}_{2 \alpha_{Q}}$ admits a unique decomposition that

$$
X_{1}+X_{2}=X_{1}^{\prime}+X_{2}^{\prime}
$$

Thus, $X_{1}=X_{1}^{\prime}$ and $X_{2}=X_{2}^{\prime}$ as $\mathfrak{g}_{\alpha_{Q}}=p_{\mathfrak{g}_{\alpha_{Q}}}\left(\mathfrak{n}_{\Gamma, Q}\right) \oplus \mathfrak{n}_{1}^{\Gamma, Q}$. Hence, $n_{1}=n_{1}^{\prime}$ and $n_{2}=n_{2}^{\prime}$. So, n_{3} is also equal to n_{3}^{\prime}.
The first assertion follows now easily from this.
The first part of the second assertion follows now from the Baker-CampbellHausdorff formula and the second part follows from the fact that $\left(p_{\mathfrak{g}_{\alpha}} \circ p_{\mathfrak{n}_{\Gamma, Q}}\right)(X)+$ $p_{\mathfrak{n}_{1}^{\Gamma}, Q}(X)+p_{\mathfrak{g}_{2} \alpha_{Q}}(X)$ gives a unique decomposition of $X \in \mathfrak{n}_{Q}$.
We have

$$
p_{1}\left(N_{\Gamma, Q}\right)=\exp \left(p_{\mathfrak{g}_{\alpha_{Q}}}\left(\log \left(N_{\Gamma, Q}\right)\right)\right)=\exp \left(p_{\mathfrak{g}_{\alpha_{Q}}} \mathfrak{n}_{\Gamma, Q}\right) .
$$

Let $n \in p_{1}\left(N_{\Gamma, Q}\right)$. Then, by the previous assertion and by uniqueness of the decomposition of $\mathfrak{n}_{Q}=p_{\mathfrak{g}_{\alpha}}\left(\mathfrak{n}_{\Gamma, Q}\right) \oplus \mathfrak{n}_{1}^{\Gamma, Q} \oplus \mathfrak{g}_{2 \alpha_{Q}}$, we have

$$
\left(p_{1} \circ p_{N_{\Gamma, Q}}\right)(n)=\exp \left(\log \left(\left(p_{1} \circ p_{N_{\Gamma, Q}}\right)(n)\right)\right)=\exp \left(\left(p_{\mathfrak{g}_{\alpha}} \circ p_{\mathfrak{n}_{\Gamma, Q}}\right)(\log (n))\right)=n
$$

The last assertion follows.
Lemma 3.6.39. There exists a constant $c>0$ such that $|[X, Y]| \leqslant c|X| \cdot|Y|$ for all $X, Y \in \mathfrak{g}$.

Proof. Let $X, Y \in \mathfrak{g}$. Without loss of generality, we may assume that X and Y are nonzero. Then,

$$
[X, Y]=|X| \cdot|Y| \cdot\left[\frac{X}{|X|}, \frac{Y}{|Y|}\right] .
$$

Let $S=\{Z \in \mathfrak{g}| | Z \mid=1\}$ (compact) and let $c=\sup _{Z_{1}, Z_{2} \in S}\left|\left[Z_{1}, Z_{2}\right]\right|$. Since $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ is continuous and as $S \times S$ is compact, c is finite. The lemma follows.

Proposition 3.6.40. Let $\mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}}$ be a generalised standard Siegel set with respect to Q and let S be a relatively compact subset of G. Then, there exists a generalised standard Siegel set $\mathfrak{S}_{\text {std, } Q, \tilde{,}, \omega, \tilde{\omega}^{\prime}}$ such that

$$
\gamma_{g, h} g h \in \mathfrak{S}_{s t d, Q, \tilde{t}, \omega, \tilde{\omega}^{\prime}}
$$

for some $\gamma_{g, h} \in \Gamma_{Q}$, for all $g \in \mathfrak{S}_{\text {std,Q,t, }, \omega^{\prime}}$ and all $h \in S$. Moreover, we have the following:
(1) There exist constants $c>0, c^{\prime}>0$ such that

$$
\sup _{h \in S}\left|\log \left(p_{1}\left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right)\right| \leqslant c+c^{\prime} h_{Q}(g)^{\alpha_{Q}}
$$

for all $g \in \mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}}$.
(2) There exist constants $c>0, c^{\prime}>0, c^{\prime \prime}>0$ such that

$$
\sup _{h \in S}\left|\log \left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right| \leqslant c+c^{\prime} h_{Q}(g)^{\alpha_{Q}}\left(1+\left|\log \left(p_{N_{1}^{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right)\right|\right)+c^{\prime \prime} h_{Q}(g)^{2 \alpha_{Q}}
$$

for all $g \in \mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}}$.

Remark 3.6.41.

(1) It follows from the above lemma that

$$
\left\{\left|\log \left(p_{1}\left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right)\right| \mid h \in S, g \in \mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}}: h_{Q}(g)^{\alpha_{Q}} \leqslant T\right\}
$$

is bounded for all $T>0$.
(2) Let $\left\{X_{j}\right\}$ be an orthonormal basis of \mathfrak{n}_{Q}. Then, the proof of the proposition provides estimates of the absolute value of the coefficients of $\log \left(p_{1}\left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right)$ and of $\log \left(\nu_{Q}\left(\gamma_{g, h}\right)\right)(h \in S)$ with respect to the basis $\left\{X_{j}\right\}$.
Proof. Let $\mathfrak{S}:=\mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}}$ and S be as above and let $h \in S$. Let $g \in G$.
We have

$$
\begin{align*}
g h & =\nu_{Q}(g h) h_{Q}(g h) k_{Q}(g h) \tag{3.22}\\
& =\left(\nu_{Q}(g) h_{Q}(g) \nu_{Q}\left(k_{Q}(g) h\right) h_{Q}(g)^{-1}\right) h_{Q}(g) h_{Q}\left(k_{Q}(g) h\right) k_{Q}(g h) .
\end{align*}
$$

By Lemma 3.4.10, there exists a generalised Siegel standard set $\mathfrak{S}_{s t d, Q, \tilde{,}, \omega, \tilde{\omega}^{\prime}}$ such that

$$
\gamma_{g, h} g h \in \mathfrak{S}_{s t d, Q, \tilde{t}, \omega, \tilde{\omega}^{\prime}}
$$

for some $\gamma_{g, h} \in \Gamma_{Q}$, for all $g \in \mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}}$ and all $h \in S$.
Note that (3.22) is again equal to

$$
\begin{aligned}
&\left(p_{1}\left(\nu_{Q}(g)\right) h_{Q}(g)^{\alpha} p_{1}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right) p_{2}\left(\nu_{Q}(g)\right) h_{Q}(g)^{2 \alpha_{Q}} p_{2}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right) \\
& h_{Q}(g) h_{Q}\left(k_{Q}(g) h\right) k_{Q}(g h) .
\end{aligned}
$$

Thus, by Lemma 3.3.1, $\nu_{Q}(g h)$ is equal to

$$
\begin{gathered}
p_{1}\left(p_{N_{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right) p_{N_{1}^{\Gamma, Q}}\left(\nu_{Q}(g)\right) \exp \left(-\frac{1}{2}\left[p_{1}\left(p_{N_{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right), p_{N_{1}^{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right]\right) \\
h_{Q}(g)^{\alpha} p_{1}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right) p_{2}\left(\nu_{Q}(g)\right) h_{Q}(g)^{2 \alpha_{Q}} p_{2}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right) .
\end{gathered}
$$

Hence, by the Baker-Campbell-Hausdorff formula, $\log \left(\nu_{Q}(g h)\right)$ is equal to

$$
\begin{aligned}
& \log \left(p_{1}\left(p_{N_{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right)\right)+\log \left(p_{N_{1}^{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right)+h_{Q}(g)^{\alpha_{Q}} \log \left(p_{1}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right) \\
& \quad+\frac{1}{2} h_{Q}(g)^{\alpha_{Q}}\left[\log \left(p_{1}\left(p_{N_{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right)\right), \log \left(p_{1}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right)\right] \\
& \quad+\frac{1}{2} h_{Q}(g)^{\alpha_{Q}}\left[\log \left(p_{N_{1}^{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right), \log \left(p_{1}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right)\right] \\
& \left.\quad+\log \left(p_{2}\left(\nu_{Q}(g)\right)\right)+h_{Q}(g)^{2 \alpha_{Q}} \log \left(p_{2}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right)\right) .
\end{aligned}
$$

By Lemma 3.6.37, this yields

$$
\begin{align*}
& \log \left(\nu_{Q}(g)\right)+h_{Q}(g)^{\alpha_{Q}} \log \left(p_{1}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right) \tag{3.23}\\
& \quad+\frac{1}{2} h_{Q}(g)^{\alpha_{Q}}\left[\log \left(p_{1}\left(p_{N_{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right)\right), \log \left(p_{1}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right)\right] \\
& \quad+\frac{1}{2} h_{Q}(g)^{\alpha_{Q}}\left[\log \left(p_{N_{1}^{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right), \log \left(p_{1}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right)\right] \\
& \quad+h_{Q}(g)^{2 \alpha_{Q}} \log \left(p_{2}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right) .
\end{align*}
$$

So, $\log \left(p_{N_{1}^{\Gamma, Q}}\left(\nu_{Q}(g h)\right)\right)=p_{\mathfrak{g}_{\alpha}}\left(p_{\mathbf{n}^{\Gamma}, Q} \log \left(\nu_{Q}(g h)\right)\right)$ is equal to

$$
\log \left(p_{N_{1}^{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right)+h_{Q}(g)^{\alpha}{ }^{\alpha} \log \left(p_{N_{1}^{\Gamma, Q}}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right)
$$

One can also use these computations in order to prove the first assertion.
Let us estimate in the following $\left|\log \left(p_{1}\left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right)\right|=\left|p_{\mathfrak{g}_{\alpha_{Q}}}\left(\log \left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right)\right|$.
By (3.23) and by Lemma 3.3.1, $\log \left(p_{1}\left(p_{N_{\Gamma, Q}}\left(\nu_{Q}\left(\gamma_{g, h} g h\right)\right)\right)\right)$ is equal to

$$
\begin{aligned}
& \log \left(p_{1}\left(p_{N_{\Gamma, Q}}\left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right)\right)+\log \left(p_{1}\left(p_{N_{\Gamma, Q}}\left(\nu_{Q}\left(l_{M_{Q}}\left(\gamma_{g, h}\right) g\right)\right)\right)\right) \\
&+h_{Q}(g)^{\alpha}{ }^{\alpha} \log \left(p_{1}\left(p_{N_{\Gamma, Q}}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right)\right) .
\end{aligned}
$$

Since ω is relatively compact, there exists a constant $c>0$ such that

$$
\sup _{h \in S, m \in M_{\Gamma, Q}}\left|\log \left(p_{1}\left(p_{N_{\Gamma, Q}}\left(\nu_{Q}\left(\gamma_{g, h} g h\right)\right)\right)\right)-\log \left(p_{1}\left(p_{N_{\Gamma, Q}}\left(\nu_{Q}(m g)\right)\right)\right)\right| \leqslant c
$$

for all $g \in \mathfrak{S}$. Thus,

$$
\sup _{h \in S}\left|\log \left(p_{1}\left(p_{N_{\Gamma, Q}}\left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right)\right)\right| \leqslant c+c^{\prime} h_{Q}(g)^{\alpha_{Q}}
$$

where $c^{\prime}:=\sup _{k \in K_{Q}, h \in S}\left|\log \left(p_{1}\left(p_{N_{\Gamma, Q}}\left(\nu_{Q}(k h)\right)\right)\right)\right|$.
Let us estimate now $\left|\log \left(p_{N_{2 \alpha_{Q}} \cap N_{\Gamma, Q}}\left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right)\right|$.
By (3.23) and by Lemma 3.3.1, $p_{\mathfrak{g}_{\alpha_{Q}} \cap \mathfrak{n}_{\Gamma, Q}} \log \left(\nu_{Q}\left(\gamma_{g, h} g h\right)\right)$ is equal to

$$
\begin{aligned}
& p_{\mathfrak{g}_{2 \alpha Q}} \cap \mathfrak{n}_{\Gamma, Q}\left(\log \left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right)+\log \left(p_{N_{2 \alpha_{Q}} \cap N_{\Gamma, Q}}\left(\nu_{Q}\left(l_{M_{Q}}\left(\gamma_{g, h}\right) g\right)\right)\right) \\
& \quad+h_{Q}(g)^{2 \alpha_{Q}} p_{\mathfrak{g}_{2_{\alpha}} \cap \mathfrak{n}_{\Gamma, Q}}\left(\log \left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right) \\
& \quad+\frac{1}{2} h_{Q}(g)^{\alpha_{Q}} p_{\mathfrak{g}_{2_{\alpha}}} \cap \mathfrak{n}_{\Gamma, Q}\left(\left[\log \left(p_{1}\left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right), \log \left(p_{1}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right)\right]\right) \\
& \quad+\frac{1}{2} h_{Q}(g)^{\alpha_{Q}} p_{\mathfrak{g}_{2_{\alpha}} \cap \mathfrak{n}_{\Gamma, Q}}\left(\left[\log \left(p_{1}\left(\operatorname{Ad}\left(l_{M_{Q}}\left(\gamma_{g, h}\right)\right) p_{N_{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right)\right), \log \left(p_{1}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right)\right]\right) \\
& \quad+\frac{1}{2} h_{Q}(g)^{\alpha_{Q}} p_{\mathfrak{g}_{2_{\alpha}} \cap \mathfrak{n}_{\Gamma, Q}}\left(\left[\log \left(p_{N_{1}^{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right), \log \left(p_{1}\left(\nu_{Q}\left(k_{Q}(g) h\right)\right)\right]\right) .\right.
\end{aligned}
$$

Since ω is relatively compact, there exists a constant $c>0$ such that

$$
\sup _{h \in S, m \in M_{\Gamma, Q}}\left|p_{\mathfrak{g}_{2 \alpha} \cap \mathfrak{n}_{\Gamma, Q}}\left(\log \left(\nu_{Q}\left(\gamma_{g, h} g h\right)\right)\right)-p_{\mathfrak{g}_{2 \alpha} \cap \mathfrak{n}_{\Gamma, Q}}\left(\log \left(\nu_{Q}(m g)\right)\right)\right| \leqslant c
$$

for all $g \in \mathfrak{S}$. Similar as above and by using that result and Lemma 3.6.39, one shows that there exist constants $c^{\prime}>0, c^{\prime \prime}>0$ such that

$$
\begin{align*}
\sup _{h \in S} \mid p_{\mathfrak{g}_{2} \alpha_{Q} \cap \mathfrak{n}_{\Gamma, Q}} & \left(\log \left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right) \mid \tag{3.24}\\
& \leqslant c+c^{\prime} h_{Q}(g)^{\alpha_{Q}}\left(1+\left|\log \left(p_{N_{1}^{\Gamma, Q}}\left(\nu_{Q}(g)\right)\right)\right|\right)+c^{\prime \prime} h_{Q}(g)^{2 \alpha_{Q}}
\end{align*}
$$

Since $\left|p_{n_{2,1}, \boldsymbol{Q}}\left(\log \left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right)\right|=\left|\varphi\left(p_{\mathfrak{g}_{\alpha_{Q}}}\left(\log \left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right)\right)\right|$ and since any linear map between finite-dimensional vector spaces is bounded, $\sup _{h \in S}\left|p_{\mathfrak{n}_{2,1}^{\Gamma}}\left(\log \left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right)\right|$ has an estimate as in (3.24). The last assertion follows now from the previous one's as

$$
X=p_{\mathfrak{g}_{\alpha}}(X)+p_{\mathfrak{g}_{2} \alpha_{Q} \cap \mathfrak{n}_{\Gamma, Q}}(X)+p_{\mathfrak{n}_{2,1}^{\Gamma, Q}}(X)
$$

for all $X \in \mathfrak{n}_{\Gamma, Q}$.
Lemma 3.6.42. Let $\gamma \in \Gamma_{Q}$.
(1) If $X \in \mathfrak{n}_{Q}$, then

$$
\operatorname{Ad}(\gamma) X-X=\left[\log \left(p_{1}\left(\nu_{Q}(\gamma)\right)\right), \operatorname{Ad}\left(l_{M_{Q}}(\gamma)\right) X\right] \in \mathfrak{g}_{2 \alpha_{Q}} \subset \mathfrak{n}_{Q}
$$

(2) If $X \in \mathfrak{a}_{Q}$, then $\operatorname{Ad}(\gamma) X-X$ is equal to

$$
\left[\log \left(\nu_{Q}(\gamma)\right), X\right]+\frac{1}{2}\left[\log \left(p_{1}\left(\nu_{Q}(\gamma)\right)\right),\left[\log \left(p_{1}\left(\nu_{Q}(\gamma)\right)\right), X\right]\right] \in \mathfrak{n}_{\Gamma, Q} \oplus \mathfrak{g}_{2 \alpha_{Q}} \subset \mathfrak{n}_{Q}
$$

(3) If $X \in \mathfrak{m}_{Q}$, then $\operatorname{Ad}(\gamma) X-X$ is equal to

$$
\begin{aligned}
& {\left[\log \left(\nu_{Q}(\gamma)\right), \operatorname{Ad}\left(l_{M_{Q}}(\gamma)\right) X\right]} \\
& \quad+\frac{1}{2}\left[\log \left(p_{1}\left(\nu_{Q}(\gamma)\right)\right),\left[\log \left(p_{1}\left(\nu_{Q}(\gamma)\right)\right), \operatorname{Ad}\left(l_{M_{Q}}(\gamma)\right) X\right]\right] \in \mathfrak{n}_{Q}
\end{aligned}
$$

Proof. The lemma follows by direct computation.
For $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$, define

$$
\pi(g) f(x)=R_{g} f(x)=f(x g) \quad(g, x \in G)
$$

Proposition 3.6.43. Let \mathfrak{S} be a generalised standard Siegel set in G with respect to Q, let $X \in \mathcal{U}\left(\mathfrak{n}_{Q}\right)$, let $Y \in \mathcal{U}(\mathfrak{g})$, let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and let $r \geqslant 0$. Then, for each relatively compact subset S of G, there exists a seminorm $p: \mathscr{C}(\Gamma \backslash G, \varphi) \rightarrow \mathbb{R}$ such that $\sup _{h \in S} \mathfrak{\mathfrak { G }}^{\prime} p_{r, X, Y}(\pi(h) f)$ is less or equal than $p(f)<\infty$ and $_{\mathfrak{S}^{\prime}} p_{r, X, Y}\left(R_{h} f-\right.$ f) converges to zero when h tends to e.

Proof. To prove this proposition, we do a similar argument as in Proposition 2.3.41, which itself was proven in a similar way as Lemma 14 of [HC66, p.21].

Let $h \in G, x \in G, X \in \mathcal{U}\left(\mathfrak{n}_{Q}\right), Y \in \mathcal{U}(\mathfrak{g}), \mathfrak{S}^{\prime}$ as above and let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$. By Proposition 3.6.36, there exists $C>0$ such that

$$
a_{\gamma g} \geqslant C a_{p_{N^{\Gamma}, Q}\left(\nu_{Q}(g)\right) h_{Q}(g)} \quad\left(\gamma \in \Gamma_{Q}, g \in \mathfrak{S}\right) .
$$

This is again greater or equal than $C^{\prime} a_{g}$ for all $g \in \mathfrak{S}$. We have

$$
\begin{aligned}
\mathfrak{S}^{\prime} p_{r, X, Y}(\pi(h) f) & =\sup _{g K_{Q} \in \mathfrak{G}^{\prime}} a_{Q}\left(g^{-1}\right)^{\rho_{\Gamma} Q}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho_{Q}}\left|L_{X} R_{Y}\left(R_{h} f\right)(g)\right| \\
& \leqslant \sup _{g K_{Q} \in \mathfrak{G}^{\prime}} a_{Q}\left(g^{-1}\right)^{\rho_{\Gamma}}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho_{Q}}\left|L_{X} R_{\operatorname{Ad}\left(h^{-1}\right) Y} f(g h)\right| .
\end{aligned}
$$

Let S be a relatively compact subset of G. By Proposition 3.6.40, there exists a generalised standard Siegel set $\tilde{\mathfrak{S}}$ with respect to Q such that

$$
\gamma_{g, h} g h \in \tilde{\mathfrak{S}}
$$

for some $\gamma_{g, h} \in \Gamma_{Q}$, for all $g \in \mathfrak{S}$ and all $h \in S$.
By Lemma 2.1.5, Lemma 2.1.6 and the estimates $C^{\prime} a_{g} \leqslant a_{\gamma_{g, h} g}(g \in \mathfrak{S}), a_{x} \leqslant a_{x h} a_{h}$ $(x \in G)$, the above is again less or equal than

$$
C^{\prime \prime} \sup _{g K_{Q} \in \mathfrak{S}^{\prime}} a_{Q}\left(\left(\gamma_{g, h} g h\right)^{-1}\right)^{\rho_{\Gamma}}\left(1+\log a_{\gamma_{g, h} g h}\right)^{r} a_{\gamma_{g, h} h}^{\rho_{Q}}\left|L_{\mathrm{Ad}\left(\gamma_{g, h}\right) X} R_{\operatorname{Ad}\left(h^{-1}\right) Y} f\left(\gamma_{g, h} g h\right)\right|
$$

for some constant $C^{\prime \prime}>0$. Assume now that $X \in \mathfrak{n}_{Q}$. The case $X \in \mathcal{U}\left(\mathfrak{n}_{Q}\right)_{l}$ will then follow by induction. Let $t>0$ and let $g \in \mathfrak{S}$ be such that $h_{Q}(g) \geqslant t$. Set $Z_{g, h}=\left[\log \left(p_{1}\left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right), \operatorname{Ad}\left(l_{M_{Q}}\left(\gamma_{g, h}\right)\right) X\right] \in \mathfrak{g}_{2 \alpha_{Q}}$. Then, for $x \in G$, we have

$$
\begin{aligned}
L_{\operatorname{Ad}\left(\gamma_{g, h}\right) X-X} R_{\operatorname{Ad}\left(h^{-1}\right) Y} f(x) & =L_{Z_{g, h}} R_{\operatorname{Ad}\left(h^{-1}\right) Y} f(x) \\
& =-R_{\operatorname{Ad}\left(k_{Q}(g)^{-1}\right) h_{Q}(g)^{-2 \alpha_{Q}} Z_{g, h}} R_{\operatorname{Ad}\left(h^{-1}\right) Y} f(x) .
\end{aligned}
$$

Since K_{Q} is compact and since the coefficients of $h_{Q}(g)^{-2 \alpha_{Q}} Z_{g, h}$ with respect to $\left\{X_{i}\right\}$ are bounded by Proposition 3.6.40 and Lemma 3.6.39 and since

$$
\left\{\left|\log \left(p_{1}\left(\nu_{Q}\left(\gamma_{g, h}\right)\right)\right)\right| \mid h \in S, g \in \mathfrak{S}_{s t d, Q, t, \omega, \omega^{\prime}}: h_{Q}(g) \leqslant t\right\}
$$

is finite by Remark 3.6.41 of Proposition 3.6.40,

$$
\begin{aligned}
& \sup _{h \in S} \sup _{g K_{Q} \in \mathfrak{S}^{\prime}} a_{Q}\left(\left(\gamma_{g, h} g h\right)^{-1}\right)^{\rho_{\Gamma}}\left(1+\log a_{\gamma_{g, h} g h}\right)^{r} a_{\gamma_{g, h} g h}^{\rho_{Q}} \\
&\left|L_{\mathrm{Ad}\left(\gamma_{g, h}\right) X-X} R_{\mathrm{Ad}\left(h^{-1}\right) Y} f\left(\gamma_{g, h} g h\right)\right|
\end{aligned}
$$

is less or equal than $l_{1}(f)$ for some seminorm $l_{1}: \mathscr{C}(\Gamma \backslash G, \varphi) \rightarrow \mathbb{R}$.
Thus, $\sup _{h \in S} \mathfrak{s}^{\prime} p_{r, X, Y}(\pi(h) f)$ is less or equal than

$$
l_{2}(f):=l_{1}(f)+\sup _{h \in S} \sup _{x K_{Q} \in \tilde{\mathfrak{G}}^{\prime}} a_{Q}\left(x^{-1}\right)^{\rho_{\Gamma}}\left(1+\log a_{x}\right)^{r} a_{x}^{\rho^{\Gamma} Q}\left|L_{X} R_{\operatorname{Ad}\left(h^{-1}\right) Y} f(x)\right| .
$$

In particular, $\pi(h) f$ belongs to $\mathscr{C}(\Gamma \backslash G, \varphi)$. The remaining argument is very similar to the one in Proposition 2.3.41.

Theorem 3.6.44. $(\pi, \mathscr{C}(\Gamma \backslash G, \varphi))$ and $\left(\pi,{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)\right)$ are representations of G.

Proof. The theorem follows from Proposition 3.6.43 for the ${ }_{\mathfrak{G}^{\prime}} p_{r, X, Y}$ seminorms and the proof of Theorem 2.3.42 for the ${ }^{U} p_{r, X, Y}$ seminorms. Indeed, the cocompact action of Γ on $X \cup \Omega_{\Gamma}$ is only needed to show that the Schwartz space lies in $L^{2}(\Gamma \backslash G, \varphi)$. The detailed proof is very similar to the one of Theorem 2.3.42.

Proposition 3.6.45. The Schwartz space does not depend on made choices.
Proof. Since the Schwartz space is a representation space by Proposition 3.6.43, it suffices to prove that alternative seminorms are finite for Schwartz functions.
Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and $r \geqslant 0$.
(1) We can choose an other Cartan involution θ_{Q}^{\prime} of \mathfrak{g} in order to get A_{Q} and M_{Q}. Indeed, let K_{Q}^{\prime} be the maximal compact subgroup of G corresponding to θ_{Q}^{\prime}. Let $\tilde{h} \in N_{Q} A_{Q}$ be such that $K_{Q}^{\prime}=\tilde{h} K_{Q} \tilde{h}^{-1}$.
Let $\mathfrak{S}_{\theta_{Q}^{\prime}, Q}^{\prime}$ be a generalised Siegel set in $G / K_{\theta_{Q}^{\prime}}$ with respect to Q. Set $\mathfrak{S}_{Q}^{\prime}=\left\{g \tilde{h} K_{Q} \mid g K_{\theta_{Q}^{\prime}} \in \mathfrak{S}_{\theta_{Q}^{\prime}, Q}^{\prime}\right\}$. Then, this is a generalised Siegel set in G / K_{Q} with respect to Q.
Let $X \in \mathcal{U}\left(\mathfrak{n}_{Q}\right)$ and $Y \in \mathcal{U}(\mathfrak{g})$. By (3.3), (3.4), Lemma 2.1.6 and as

$$
\begin{gathered}
g K_{Q}^{\prime} \in \mathfrak{S}_{\theta_{Q}^{\prime}, Q}^{\prime} \Longleftrightarrow g \tilde{h} K_{Q} \in \mathfrak{S}_{Q}^{\prime}, \\
\sup _{g K_{Q}^{\prime} \in \mathfrak{S}_{\theta_{Q}^{\prime}, Q}^{\prime}} a_{\theta_{Q}^{\prime}, Q}\left(g^{-1}\right)^{\rho_{\Gamma_{Q}}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho^{\Gamma_{Q}}}\left|L_{X} R_{Y} f(g)\right|}
\end{gathered}
$$

is finite if and only if

$$
\sup _{g K_{Q} \in \mathfrak{S}_{Q}^{\prime}} a_{\theta_{Q}, Q}\left(g^{-1}\right)^{\rho_{\Gamma Q}}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho^{\Gamma}}\left|L_{X} R_{\operatorname{Ad}\left(\tilde{h}^{-1}\right) Y}\left(R_{\tilde{h}^{-1}} f\right)(g)\right|
$$

is finite. It follows from Proposition 3.6.43 that this is finite.
(2) We can choose an other representative of the Γ-cuspidal parabolic subgroup of G. Indeed, let $\gamma \in \Gamma$ and let $Q^{\prime}=\gamma Q \gamma^{-1}$. Then, $N_{Q^{\prime}}=\gamma N_{Q} \gamma^{-1}$, $A_{Q^{\prime}}=\gamma A_{Q} \gamma^{-1}, M_{Q^{\prime}}=\gamma M_{Q} \gamma^{-1}$ and $K_{Q^{\prime}}=\gamma K_{Q} \gamma^{-1}$.
Let $\mathfrak{S}_{Q^{\prime}}$ be a generalised Siegel set in G with respect to $Q^{\prime}\left(\theta_{Q^{\prime}}={ }^{\gamma} \theta_{Q}\right)$. Set $\mathfrak{S}_{Q}^{\prime}=\gamma^{-1} \mathfrak{S}_{Q^{\prime}}^{\prime} \gamma$. Let $K_{Q^{\prime}}=\gamma K_{Q} \gamma^{-1}$. Let $X \in \mathcal{U}\left(\operatorname{Ad}(\gamma) \mathfrak{n}_{Q} \oplus \operatorname{Ad}(\gamma) \mathfrak{a}_{Q} \oplus\right.$ $\left.\operatorname{Ad}(\gamma) \mathfrak{m}_{Q}\right)$ and $Y \in \mathcal{U}(\mathfrak{g})$. By (3.3), (3.4) and as $g K_{Q^{\prime}} \in \mathfrak{S}_{Q^{\prime}}^{\prime} \Longleftrightarrow$ $g \gamma K_{Q} \gamma^{-1} \in \gamma \mathfrak{S}_{Q}^{\prime} \gamma^{-1} \Longleftrightarrow \gamma^{-1} g \gamma K_{Q} \in \mathfrak{S}_{Q}^{\prime}, \mathfrak{S}_{Q^{\prime}} p_{r, X, Y}(f)$ is equal to

$$
\begin{aligned}
& \sup _{g K_{Q^{\prime}} \in \mathfrak{S}_{Q^{\prime}}^{\prime}} a_{Q^{\prime}}\left(g^{-1}\right)^{\rho_{\Gamma} Q^{\prime}}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho^{\Gamma} Q^{\prime}}\left|L_{X} R_{Y} f(g)\right| \\
= & \sup _{g K_{Q} \in \mathfrak{S}_{Q}^{\prime}} a_{Q}\left(g^{-1}\right)^{\rho_{\Gamma}}\left(1+\log a_{g}\right)^{r} a_{g}^{\rho^{\rho_{Q}}}\left|L_{\mathrm{Ad}\left(\gamma^{-1}\right) X} R_{\mathrm{Ad}\left(\gamma^{-1}\right) Y}\left(R_{\gamma^{-1}} f\right)(g)\right| .
\end{aligned}
$$

Thus, it follows from Proposition 3.6.43 that this is finite as $\operatorname{Ad}\left(\gamma^{-1}\right) X \in$ $\mathcal{U}\left(\mathfrak{n}_{Q}\right)$.

The proposition follows.

3.6.7 Partition of unity indexed over Γ

In this section, we construct a partition of unity indexed over Γ. See Theorem 3.6.53 on p.185. In the convex-cocompact case, Lemma 2.3.19 (lemma providing the χ-function) provides such a partition of unity.
We need this function in order to prove that the compactly supported smooth functions are dense in the Schwartz space (cf. Proposition 3.6.60 on p.193).
In the following, we do some preparations for the proof of this result.
Lemma 3.6.46. Let g be a positive, bounded function on a topological space Y and $n \in \mathbb{N}, n^{\prime} \in \mathbb{N}_{0}, k \in \mathbb{N}$, $k^{\prime} \in \mathbb{N}$. By convention, $\mathbb{R}^{0}=\mathbb{Z}^{0}=\{0\}$. Let $f: \mathbb{R}^{n} \times \mathbb{R}^{n^{\prime}} \times Y \rightarrow \mathbb{R}$ be a positive, measurable function such that

$$
f\left(\left(x, x^{\prime}\right), y\right) \asymp 1+\left(\|x\|_{n}^{k}+\left\|x^{\prime}\right\|_{n^{\prime}}^{k^{\prime}}\right) \cdot g(y)
$$

when x varies in $\mathbb{R}^{n}, x^{\prime} \in \mathbb{R}^{n^{\prime}}$ and y varies in Y. Here, $\|\cdot\|_{n}\left(\right.$ resp. $\|\cdot\|_{n^{\prime}}$) is a norm on \mathbb{R}^{n} (resp. $\mathbb{R}^{n^{\prime}}$). Let $R>0$ be sufficiently large so that

$$
\#\left\{\left(\underline{m}, \underline{m}^{\prime}\right) \in \mathbb{Z}^{n} \times \mathbb{Z}^{n^{\prime}} \mid f\left(\left(\underline{m}, \underline{m}^{\prime}\right), y\right) \leqslant R\right\}>0
$$

Then,

$$
\frac{\#\left\{\left(\underline{m}, \underline{m}^{\prime}\right) \in \mathbb{Z}^{n} \times \mathbb{Z}^{n^{\prime}} \mid f\left(\left(\underline{m}, \underline{m}^{\prime}\right), y\right) \in[R, R+1]\right\}}{\#\left\{\left(\underline{m}, \underline{m}^{\prime}\right) \in \mathbb{Z}^{n} \times \mathbb{Z}^{n^{\prime}} \mid f\left(\left(\underline{m}, \underline{m}^{\prime}\right), y\right) \leqslant R\right\}}
$$

is uniformly bounded in $y \in Y$ and converges uniformly in $y \in Y$ to zero when R tends to ∞.

Proof. Let Y be a topological space and let f, g be as above. Let $n, n^{\prime}, k, k^{\prime}$ be as above and let $y \in Y$. Without loss of generality, we may assume that $\|\cdot\|_{n}=\|\cdot\|_{\infty}$ and that $\|\cdot\|_{n^{\prime}}=\|\cdot\|_{\infty}$. Let $d=\frac{n}{k}+\frac{n^{\prime}}{k^{\prime}}>0$ and let $\varepsilon>0$. Then,

$$
\begin{aligned}
& \#\left\{\left(\underline{m}, \underline{m^{\prime}}\right) \in \mathbb{Z}^{n} \times \mathbb{Z}^{n^{\prime}} \mid\|\underline{m}\|^{k}+\left\|\underline{m}^{\prime}\right\|^{k^{\prime}} \leqslant r\right\} \\
& \asymp \#\left\{\left(\underline{m}, \underline{m^{\prime}}\right) \in \mathbb{Z}^{n} \times \mathbb{Z}^{n^{\prime}} \mid \max \left\{\|\underline{m}\|^{k},\left\|\underline{m^{\prime}}\right\|^{k^{\prime}}\right\} \leqslant r\right\} \asymp r^{d}
\end{aligned}
$$

when r varies in $[\varepsilon, \infty)$. Since moreover g is bounded,

$$
\#\left\{\left(\underline{m}, \underline{m}^{\prime}\right) \in \mathbb{Z}^{n} \times \mathbb{Z}^{n^{\prime}} \mid f\left(\left(\underline{m}, \underline{m}^{\prime}\right), y\right) \leqslant R\right\} \asymp \frac{R^{d}}{g(y)^{d}}
$$

when $R>0$ is sufficiently large so that the left hand side is positive. Hence,

$$
\#\left\{\left(\underline{m}, \underline{m}^{\prime}\right) \in \mathbb{Z}^{n} \times \mathbb{Z}^{n^{\prime}} \mid f\left(\left(\underline{m}, \underline{m}^{\prime}\right), y\right) \in[R, R+1]\right\} \asymp \frac{\left((R+1)^{d}-R^{d}\right)}{g(y)^{d}} .
$$

So,

$$
\frac{\#\left\{\left(\underline{m}, \underline{m^{\prime}}\right) \in \mathbb{Z}^{n} \times \mathbb{Z}^{n^{\prime}} \mid f\left(\left(\underline{m}, \underline{m}^{\prime}\right), y\right) \in[R, R+1]\right\}}{\#\left\{\left(\underline{m}, \underline{m^{\prime}}\right) \in \mathbb{Z}^{n} \times \mathbb{Z}^{n^{\prime}} \mid f\left(\left(\underline{m}, \underline{m^{\prime}}\right), y\right) \leqslant R\right\}} \asymp \frac{\left((R+1)^{d}-R^{d}\right)}{R^{d}}
$$

is uniformly bounded in $y \in Y$ and converges uniformly in $y \in Y$ to zero when R tends to ∞.

For every multi-index $\underline{k}=\left(k_{1}, \ldots, k_{l}\right) \in \mathbb{N}_{0}^{l}$, set $|\underline{k}|=k_{1}+\cdots+k_{l}$ and

$$
D_{\underline{k}}=\frac{\partial^{|\underline{k}|}}{\partial x_{k_{1}} \cdots \partial x_{k_{l}}},
$$

where $\partial_{0}=$ Id by convention.
Lemma 3.6.47. For any $n \in \mathbb{N}$,

$$
\sup _{x \in(1, \infty)}(x-1)^{\frac{2 n-1}{2}} \frac{\partial^{n}}{\partial x^{n}}\left(e^{\operatorname{arccosh}(\sqrt{x})}\right)
$$

is finite.
Proof. One can easily prove by induction that

$$
\lim _{x \rightarrow 1^{+}}(x-1)^{\frac{2 n-1}{2}} \frac{\partial^{n}}{\partial x^{n}}\left(e^{\operatorname{arccosh}(\sqrt{x})}\right)
$$

and

$$
\lim _{x \rightarrow \infty}(x-1)^{\frac{2 n-1}{2}} \frac{\partial^{n}}{\partial x^{n}}\left(e^{\operatorname{arccosh}(\sqrt{x})}\right)
$$

are finite for any $n \in \mathbb{N}$. The lemma follows as

$$
x \in(1, \infty) \mapsto(x-1)^{\frac{2 n-1}{2}} \frac{\partial^{n}}{\partial x^{n}}\left(e^{\operatorname{arccosh}(\sqrt{x})}\right)
$$

is continuous for any $n \in \mathbb{N}$.
Proposition 3.6.48. Let $m=\operatorname{dim}\left(\mathfrak{g}_{\alpha}\right)$ and $n=\operatorname{dim}\left(\mathfrak{g}_{2 \alpha}\right)$. Identify \mathfrak{g}_{α} with \mathbb{R}^{m} and $\mathfrak{g}_{2 \alpha}$ with \mathbb{R}^{n} such that $|X|=\|X\|_{2}$ and $|Y|=\|Y\|_{2}$ for all $X \in \mathfrak{g}_{\alpha}$ and $Y \in \mathfrak{g}_{2 \alpha}$.
Let $f\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}, s\right)$ be defined by

$$
\left(\frac{1}{2}\left(e^{s}+e^{-s}\right)+\frac{1}{4 e^{s}}\left(x_{1}^{2}+\cdots+x_{m}^{2}\right)\right)^{2}+\frac{1}{2 e^{2 s}}\left(y_{1}^{2}+\cdots+y_{n}^{2}\right) .
$$

Let $A(X, Y, s)=a_{\exp (X+Y) a_{e^{s}}}=e^{\operatorname{arccosh}(\sqrt{f(X, Y, s)})}$. Let $\varepsilon>0$. Then, for all $l, l^{\prime}, l^{\prime \prime} \in \mathbb{N}_{0}$,

$$
\begin{equation*}
\frac{e^{\frac{\left(l+2 l^{\prime}\right) s}{2}} A(X, Y, s)^{\frac{l+2 l^{\prime}}{2}}}{A(X, Y, s)} \cdot\left|\frac{\partial^{l}}{\partial X_{k_{1}} \cdots \partial X_{k_{l}}} \frac{\partial^{l^{\prime}}}{\partial Y_{k_{1}^{\prime}} \cdots \partial Y_{k_{l^{\prime}}^{\prime}}} \frac{\partial^{l^{\prime \prime}}}{\partial s^{l^{\prime \prime}}} A(X, Y, s)\right| \tag{3.25}
\end{equation*}
$$

$\left(\underline{k}:|\underline{k}|=l, \underline{k}^{\prime}:\left|\underline{k}^{\prime}\right|=l^{\prime}, X, Y, s: A(X, Y, s)>1+\varepsilon\right)$ is uniformly bounded.
Remark 3.6.49. As $a_{n a} \geqslant a_{a}$ for all $n \in N$ and $a \in A$, we have the estimate

$$
A(X, Y, s) \geqslant \max \left\{e^{s}, e^{-s}\right\} \geqslant 1 \quad\left(X \in \mathfrak{g}_{\alpha}, Y \in \mathfrak{g}_{2 \alpha}, s \in \mathbb{R}\right)
$$

In particular, $e^{ \pm s} A(X, Y, s) \geqslant 1$ for all $X \in \mathfrak{g}_{\alpha}, Y \in \mathfrak{g}_{2 \alpha}, s \in \mathbb{R}$.

Proof. Let $f(x, y, s)=\left(\frac{1}{2}\left(e^{s}+e^{-s}\right)+\frac{\|x\|^{2}}{4 e^{s}}\right)^{2}+\frac{\|y\|^{2}}{2 e^{2 s}}$. Then,

$$
\begin{gathered}
\frac{\partial}{\partial x_{j}} f(x, y, s)=\left(\frac{1}{2}\left(e^{s}+e^{-s}\right)+\frac{\|x\|^{2}}{4 e^{s}}\right) \cdot \frac{x_{j}}{e^{s}}, \\
\frac{\partial}{\partial y_{j}} f(x, y, s)=e^{-2 s} y_{j}
\end{gathered}
$$

and

$$
\frac{\partial}{\partial s} f(x, y, s)=-\left(\frac{1}{2}\left(e^{s}+e^{-s}\right)+\frac{\|x\|^{2}}{4 e^{s}}\right) \cdot \frac{\|x\|^{2}}{2 e^{s}}-\frac{\|y\|^{2}}{e^{2 s}},
$$

Thus,

$$
\begin{gathered}
\left|\frac{\partial}{\partial x_{j}} f(x, y, s)\right| \leqslant \sqrt{f(x, y, s)} \cdot e^{-\frac{s}{2}} \cdot \frac{\left|x_{j}\right|}{e^{\frac{s}{2}}} \prec e^{-\frac{s}{2}} f(x, y, s)^{\frac{3}{4}} \\
\left|\frac{\partial}{\partial y_{j}} f(x, y, s)\right| \leqslant e^{-2 s}(1+|y|) \prec e^{-s} \sqrt{f(x, y, s)}
\end{gathered}
$$

and

$$
\left|\frac{\partial}{\partial s} f(x, y, s)\right| \prec f(x, y, s) .
$$

It follows easily from the above, Lemma 3.6.47 and the fact that $e^{\operatorname{arccosh}(x)} \asymp x$ when x varies in $[1, \infty)$ that (3.25) is uniformly bounded for $l=l^{\prime}=l^{\prime \prime}=1$. The general case is proven similarly. For example,

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x, y, s) & =\frac{\partial}{\partial x_{i}}\left(\frac{1}{2}\left(e^{s}+e^{-s}\right) \cdot \frac{x_{j}}{e^{s}}+\frac{x_{i}^{2}}{4 e^{s}} \cdot \frac{x_{j}}{e^{s}}\right) \\
& =e^{-s}\left(\delta_{i, j}\left(\frac{1}{2}\left(e^{s}+e^{-s}\right)+\frac{x_{i}^{2}}{4 e^{s}}\right)+\frac{x_{i}}{2 e^{\frac{s}{2}}} \cdot \frac{x_{j}}{e^{\frac{s}{2}}}\right) .
\end{aligned}
$$

Thus,

$$
\left|\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x, y, s)\right| \prec e^{-s} \sqrt{f(x, y, s)} .
$$

It follows again easily from this that $\left|\frac{\partial^{2}}{\partial X_{i} \partial X_{j}} A(X, Y, s)\right|$ satisfies the needed estimate.

Lemma 3.6.50. Let $r_{1}, r_{2} \in \mathbb{R} \cup\{ \pm \infty\}$ be such that $r_{1}<r_{2}$ (we use the usual convention). Then, there is a smooth function $h_{r_{1}, r_{2}}: \mathbb{R} \rightarrow[0,1]$ such that $h_{r_{1}, r_{2}}(x)=1$ for $x \leqslant r_{1}, 0<h_{r_{1}, r_{2}}(x)<1$ for $x \in\left(r_{1}, r_{2}\right)$ and $h_{r_{1}, r_{2}}(x)=0$ for $x \geqslant r_{2}$.

Remark 3.6.51.

(1) The lemma is a slight generalisation of Lemma 2.21 of [Lee13, p.42].
(2) Let $0<r_{1}<r_{2}\left(r_{2}=+\infty\right.$ is also allowed here). Let $H_{r_{1}, r_{2}}: \mathbb{R}^{k} \rightarrow \mathbb{R}(k \in \mathbb{N})$ be defined by $H_{r_{1}, r_{2}}(x)=h_{r_{1}, r_{2}}\left(\|x\|_{2}\right)$. Then, this is also a smooth function by the proof of Lemma 2.22 of [Lee13, p.42].
(3) $\sup _{x \in \mathbb{R}}\left|h_{r_{1}, r_{2}}^{(n)}(x)\right|$ is finite for all $n \in \mathbb{N}_{0}$.

Indeed, for $n=0$, this is trivial. Let $n \in \mathbb{N}$. As $h_{r_{1}, r_{2}}^{(n)}$ is a continuous function with compact support, $\sup _{x \in \mathbb{R}}\left|h_{r_{1}, r_{2}}^{(n)}(x)\right|$ is finite, too.

Proof. Define $f: \mathbb{R} \cup\{ \pm \infty\} \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{ll}
1 & \text { if } x=\infty \\
e^{-\frac{1}{x}} & \text { if } x>0 \\
0 & \text { if } x \leqslant 0
\end{array} .\right.
$$

This function is smooth on \mathbb{R} by Lemma 2.20 of [Lee13, p.41].
Let $r_{1}, r_{2} \in \mathbb{R} \cup\{ \pm \infty\}$ be such that $r_{1}<r_{2}$. For $x \in \mathbb{R}$, define

$$
h_{r_{1}, r_{2}}(x)=\frac{f\left(r_{2}-x\right)}{f\left(r_{2}-x\right)+f\left(x-r_{1}\right)} .
$$

Then, $h_{r_{1}, r_{2}}: \mathbb{R} \rightarrow \mathbb{R}$ is a well-defined, smooth function such that $h_{r_{1}, r_{2}}(x)=1$ for $x \leqslant r_{1}, 0<h_{r_{1}, r_{2}}(x)<1$ for $x \in\left(r_{1}, r_{2}\right)$ and $h_{r_{1}, r_{2}}(x)=0$ for $x \geqslant r_{2}$.

Lemma 3.6.52. For $n \in N$ and $a \in A$, set $F(n a K)=a a_{n a}$ and $F(n w P)=$ $a(n w)$. Then, F is analytic on $(X \backslash\{e K\}) \cup\{n w P \mid n \in N\}$.

Proof. Let $n \in N$ and $a \in A$. Write $n \in N$ as $n=\exp (X+Y)\left(X \in \mathfrak{g}_{\alpha}, Y \in \mathfrak{g}_{2 \alpha}\right)$ and $a=a_{t}(t>0)$. Then,

$$
a_{n a}=e^{\operatorname{arccosh}\left(\sqrt{\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{4 t}|X|^{2}\right)^{2}+\frac{|Y|^{2}}{2 t^{2}}}\right)}
$$

by Theorem 3.6.30. Since $\operatorname{arccosh}(x)=\log \left(x+\sqrt{x^{2}-1}\right)$ for all $x \geqslant 1$, $a a_{n a}$ is again equal to

$$
\sqrt{\left(\frac{1}{2}\left(t^{2}+1\right)+\frac{1}{4}|X|^{2}\right)^{2}+\frac{|Y|^{2}}{2}}+\sqrt{\left(\frac{1}{2}\left(t^{2}+1\right)+\frac{1}{4}|X|^{2}\right)^{2}+\frac{|Y|^{2}}{2}-t^{2}} .
$$

This function extends analytically to $(\mathbb{R} \times N) \backslash\{(1, e)\}$. At $t=0$, it is equal to

$$
2 \sqrt{\left(\frac{1}{2}+\frac{1}{4}|X|^{2}\right)^{2}+\frac{|Y|^{2}}{2}}=\sqrt{\left(1+\frac{1}{2}|X|^{2}\right)^{2}+2|Y|^{2}}
$$

By Theorem 2.1.7, this is again equal to $a(\theta n)=a(n w)$. The lemma follows.

Let Δ_{X} be the Laplace-Beltrami operator of X.
Theorem 3.6.53. There exists a cut-off function $\chi \in C^{\infty}(X \cup \Omega,[0,1])$ with the following properties:
(1) $\sum_{\gamma \in \Gamma} L_{\gamma} \chi$ is locally finite;
(2) $\sum_{\gamma \in \Gamma} L_{\gamma} \chi=1$;
(3) $\sup _{g \in G}\left|L_{X} R_{Y} \chi(g)\right|<\infty$ for all $X \in \mathcal{U}\left(\mathfrak{n}_{P_{i}}\right)(i \in\{1, \ldots, m\}), Y \in \mathcal{U}(\mathfrak{g})$;
(4) $\sup _{g K \in U}\left|L_{X} R_{Y} \chi(g)\right|<\infty$ for all $X, Y \in \mathcal{U}(\mathfrak{g})$ and all $U \in \mathcal{U}_{\Gamma}$;
(5) $\sup _{g K \in U} a_{g}|d \chi(g K)|<\infty$ for every $U \in \mathcal{U}_{\Gamma}$;
(6) $\sup _{g K \in U} a_{g}\left|\Delta_{X} \chi(g K)\right|<\infty$ for every $U \in \mathcal{U}_{\Gamma}$;
(7) $\left\{\gamma \in \Gamma \mid \gamma^{-1} U \cap \operatorname{supp} \chi \neq \varnothing\right\}$ is finite for every $U \in \mathcal{U}_{\Gamma}$;
(8) $\left\{\gamma \Gamma_{P_{i}} \in \Gamma / \Gamma_{P_{i}} \mid\left(\bigcup_{\gamma^{\prime} \in \Gamma_{P_{i}}} \gamma^{\prime-1} \gamma^{-1} \mathfrak{S}_{X, s t d, i}^{\prime}\right) \cap \operatorname{supp} \chi \neq \varnothing\right\}$ is finite for all i;
(9) there is a constant $C>0$ such that

$$
a_{\gamma^{\prime}-1} g \leqslant C a_{g}
$$

for all $g K \in \bigcup_{\gamma \in \Gamma} \gamma \mathfrak{S}_{X, s t d, i}^{\prime}(i \in\{1, \ldots, m\}), \gamma^{\prime} \in \Gamma_{P_{i}}$ such that $\gamma^{\prime-1} g K \in$ $\operatorname{supp} \chi$.

We denote the restriction of χ to Ω by χ_{∞}.
Remark 3.6.54. Compare this χ-function with the χ-function from Lemma 2.3.19 (convex-cocompact case).

Proof. Since the theorem follows from Lemma 2.3.19 if $\Gamma \backslash X$ has no cusp, we may assume without loss of generality that $\Gamma \backslash X$ has a cusp. Then, (4) follows from (3) by Lemma 3.6.7.

Let us show now that the properties (5) and (6) hold if we have constructed a cut-off function $\chi \in C^{\infty}(X \cup \Omega,[0,1])$ satisfying Property (7).
Let $U \in \mathcal{U}_{\Gamma}$. Then, $E:=\left\{\gamma \in \Gamma \mid \gamma^{-1} U \cap \operatorname{supp} \chi \neq \varnothing\right\}$ is finite by Property (7). Then, by using a cut-off function which is identically one on $\bigcup_{\gamma \in E} \gamma^{-1} U$ (relatively compact subset of $X \cup \Omega)$ that χ is equal to a cut-off function in $C^{\infty}(\bar{X},[0,1])$ on $\bigcup_{\gamma \in E} \gamma^{-1} U$. The properties (5) and (6) follow now from the proof of Lemma 2.3.19.

We use the following convention: If f is a function on \bar{X}, then $f(g)(g \in G)$ is by definition equal to $f(g K)$ (and in general not equal to $f(g P)$).
Let $\omega_{i, R}=\left\{n \in N_{\Gamma, P_{i}} \mid a_{n} \leqslant R\right\}$ and $\omega_{i, R^{\prime}}^{\prime}=\left\{n \in N^{\Gamma, P_{i}} \mid a_{n}<R^{\prime}\right\}$.
For $t, s, s^{\prime}>0$, set $\mathfrak{S}_{i, t, s, s^{\prime}}=\omega_{i, s} N^{\Gamma, P_{i}} A_{i} K_{i} \backslash \omega_{i, s} \omega_{i, s^{\prime}}^{\prime} A_{i,<t} K_{i}$.
Recall that $w_{i} \in N_{K_{i}}\left(\mathfrak{a}_{P_{i}}\right)$ denotes a representative of the nontrivial Weyl group element.
Let $\lambda_{i} \geqslant 1$ be such that $\frac{a_{P_{i}}\left(n w_{i}\right)}{a_{P_{i}}\left(p_{N} \Gamma, P_{i}(n) w_{i}\right)} \leqslant \lambda_{i} \cdot \frac{a_{n}}{a_{p_{N} \Gamma, P_{i}(n)}}$ for all $n \in N_{i}$.
Let $\lambda=\max _{i} \lambda_{i}$. Choose $t>2, R>1, R^{\prime}>2$ sufficiently large so that
(1) $\omega_{i} \subsetneq \omega_{i, \frac{R}{\lambda}}, \omega_{s t d, i}^{\prime} \subsetneq \omega_{i, R^{\prime}-1}^{\prime}$ for all $i \in\{1, \ldots, m\}$
(recall that $\left.\mathfrak{S}_{s t d, i}:=\omega_{s t d, i} N^{\Gamma, P_{i}} A_{i} K_{i} \backslash \omega_{s t d, i} \omega_{s t d, i}^{\prime}\left(A_{i}\right)_{<1} K_{i}\right)$;
(2) $\left\{\gamma \in \Gamma \mid \gamma \operatorname{clo}\left(\mathfrak{S}_{X, i, t-1, R, R^{\prime}-1}^{\prime}\right) \cap \operatorname{clo}\left(\mathfrak{S}_{X, i, t-1, R, R^{\prime}-1}^{\prime}\right) \neq \varnothing\right\}$ is finite and contained in $\Gamma_{P_{i}}$ for all i and $\Gamma \operatorname{clo}\left(\mathfrak{S}_{X, i, t-1, R, R^{\prime}-1}^{\prime}\right) \cap \operatorname{clo}\left(\mathfrak{S}_{X, j, t-1, R, R^{\prime}-1}^{\prime}\right)=\varnothing$ for all $i \neq j$. It follows from the proof of Proposition 3.4.7 that this is possible.

Then, there is $U \in \mathcal{U}_{\Gamma}$ such that

$$
\begin{equation*}
\mathfrak{S}_{X, s t d, i}^{\prime} \subset \mathfrak{S}_{X, i, t-1, R, R^{\prime}-1}^{\prime} \cup U \tag{3.26}
\end{equation*}
$$

for all i. By Corollary 3.4.8, there is $V \in \mathcal{U}_{\Gamma}$ such that

$$
\begin{equation*}
\Gamma \backslash X=\Gamma V \cup \bigcup_{i=1}^{m} \Gamma \mathfrak{S}_{X, i, t, R, R^{\prime}}^{\prime} \tag{3.27}
\end{equation*}
$$

Let W_{0} be the closure of V in $X \cup \Omega$. Let \tilde{W}_{0} be an open, relatively compact subset of $X \cup \Omega$ which contains W_{0}.
By Lemma 2.26 of [Lee13, p.55], there exists a smooth cut-off function $\psi_{0} \in$ $C^{\infty}(\bar{X},[0,1])$ such that ψ_{0} is identically one on W_{0} and identically zero on $X \backslash \tilde{W}_{0}$. So, $\operatorname{supp} \psi_{0}$ is contained in $X \cup \Omega$. Thus, $\sup _{g K \in X}\left|L_{X} \psi_{0}(g K)\right|$ is finite for all $X \in \mathcal{U}(\mathfrak{g})$. It follows from Lemma 2.3.18 that $\sup _{g \in G}\left|L_{X} R_{Y} \psi_{0}(g)\right|$ is also finite for all $X, Y \in \mathcal{U}(\mathfrak{g})$.
Let $i \in\{1, \ldots, m\}$. By the proof of Lemma 2.26 of [Lee13, p.45], there is a cut-off function $\phi_{i} \in C^{\infty}\left(G / K_{i} \cup G / P_{i},[0,1]\right)$ such that
(1) $\phi_{i}=0$ on $\omega_{s t d, i} \omega_{i, R^{\prime}-1}^{\prime} A_{i, \leqslant t-1} K_{i}$,
(2) $\phi_{i}=1$ on $\omega_{i, R} \omega_{i, R^{\prime}}^{\prime} A_{i, \geqslant t} K_{i}$, and
(3) ϕ_{i} takes values in $(0,1)$ otherwise, on G / K_{i}.

Claim 3.6.55. $\prod_{\gamma \in \Gamma_{P_{i}}} L_{\gamma} \phi_{i}$ is a well-defined function in

$$
C^{\infty}\left(G / K_{i} \cup\left\{n w_{i} P_{i} \mid n \in N_{i}\right\},[0,1]\right) .
$$

Moreover, on G / K_{i}, it has support on

$$
G / K_{i} \backslash N_{\Gamma, P_{i}} \omega_{i, R^{\prime}-1}^{\prime} A_{i,<t-1} K_{i}=\bigcup_{\gamma \in \Gamma_{P_{i}}} \gamma \mathfrak{S}_{i, t-1, R, R^{\prime}-1}^{\prime}
$$

Proof. Note that the last assertion holds.
Let U be an open subset of G / K_{i} which is relatively compact in $G / K_{i} \cup\left\{n w_{i} P_{i} \mid\right.$ $\left.n \in N_{i}\right\}$. Then, $\prod_{\gamma \in \Gamma_{P_{i}}} \phi_{i}\left(\gamma^{-1} g K_{i}\right)=\prod_{\gamma \in \Gamma_{P_{i}}} \phi_{i}\left(\gamma g K_{i}\right)$ has only finitely many factors which are not equal to 1 when $g K_{i}$ varies in U. Indeed, if $\phi_{i}\left(\gamma g K_{i}\right) \neq 1$ for some $\gamma \in \Gamma_{P_{i}}$ and some $g K_{i} \in U$, then

$$
n_{\gamma} m_{\gamma} p_{N_{\Gamma, P_{i}}}\left(\nu_{P_{i}}(g)\right) m_{\gamma}^{-1}=p_{N_{\Gamma, P_{i}}}\left(\nu_{P_{i}}(\gamma g)\right) \in \omega_{i, R}
$$

But as U is relatively compact in $G / K_{i} \cup\left\{n w_{i} P_{i} \mid n \in N_{i}\right\}$,

$$
\left\{p_{N_{\Gamma}, P_{i}}\left(\nu_{P_{i}}(h)\right) \mid h K_{i} \in U\right\}
$$

is a relatively compact subset of $N_{\Gamma, P_{i}}$. Hence, γ is contained in a compact subset of $N_{\Gamma, P_{i}} M_{\Gamma, P_{i}}$ (independently of the choice of γ and g). Since moreover $\Gamma_{P_{i}}$ is discrete,

$$
\left\{\gamma \in \Gamma_{P_{i}} \mid \phi_{i}\left(\gamma g K_{i}\right) \neq 1 \text { for some } g K_{i} \in U\right\}
$$

is finite. Similarly, one shows that $\prod_{\gamma \in \Gamma_{P_{i}}} \phi_{i}\left(\gamma^{-1} g P_{i}\right)$ has only finitely many factors which are not equal to 1 when $g P_{i}$ varies in a relatively compact subset of $\left\{n w_{i} P_{i} \mid\right.$ $\left.n \in N_{i}\right\}$. The claim follows.

For $n \in N_{i}$ and $a \in A_{i}$, set $F_{i}\left(n a K_{i}\right)=a a_{n a}$ and $F_{i}\left(n w_{i} P_{i}\right)=a_{P_{i}}\left(n w_{i}\right)$. Then, F_{i} is analytic on $\left(G / K_{i} \backslash e K_{i}\right) \cup\left\{n w_{i} P_{i} \mid n \in N_{i}\right\}$ by Lemma 3.6.52.
For $g \in G$, set $a_{g}^{(i)}=\left.a_{h}\right|_{h=p_{N} \Gamma, P_{i}\left(\nu_{P_{i}}(g)\right) h_{P_{i}}(g)}$.
For $n \in N_{i}$ and $a \in A_{i}$, set $G_{i}\left(n a K_{i}\right)=a a_{n a}^{(i)}$ and $G_{i}\left(n w_{i} P_{i}\right)=a_{P_{i}}\left(p_{N^{\Gamma, P_{i}}}(n) w_{i}\right)$. Then, G_{i} is analytic on $G / K_{i} \cup\left\{n w_{i} P_{i} \mid n \in N_{i}\right\}$ by the proof of Lemma 3.6.52 and as $p_{N^{\mathrm{r}, P_{i}}}$ is analytic.
Let $R_{i}=h_{R, R+1}\left(\frac{F_{i}}{G_{i}}\right)$. Note that there is a neighbourhood of $e K_{i}$ in G / K_{i} on which R_{i} vanishes. So, R_{i} belongs to $C^{\infty}\left(G / K_{i} \cup\left\{n w_{i} P_{i} \mid n \in N_{i}\right\},[0,1]\right)$.
Define $\psi_{i} \in C^{\infty}\left(G / K_{i} \cup\left\{n w_{i} P_{i} \mid n \in N_{i}\right\},[0,1]\right)$ by

$$
\psi_{i}=\left(\prod_{\gamma \in \Gamma_{P_{i}}} L_{\gamma} \phi_{i}\right) h_{R, R+1}\left(\frac{F_{i}}{G_{i}}\right) .
$$

Let $g \in G$. Then,

$$
\psi_{i}\left(g K_{i}\right)=\prod_{\gamma \in \Gamma_{P_{i}}} \phi_{i}\left(\gamma^{-1} g K_{i}\right) h_{R, R+1}\left(\frac{a_{g}}{a_{g}^{(i)}}\right) \in[0,1] .
$$

On $G / K_{i}, \psi_{i}$ has support on $G / K_{i} \backslash N_{\Gamma, P_{i}} \omega_{i, R^{\prime}-1}^{\prime} A_{i,\langle t-1} K_{i}=\bigcup_{\gamma \in \Gamma_{P_{i}}} \gamma \mathfrak{S}_{i, t-1, R, R^{\prime}-1}^{\prime}$. Let $h_{i} \in N_{i} A_{i}$ be such that $K_{i}=h_{i} K h_{i}^{-1}$. Then, there is $k_{i} \in K$ such that $P_{i}=h_{i} k_{i} P k_{i}^{-1} h_{i}^{-1}$ by Lemma 3.1.4. Set $h_{0}=e, k_{0}=e, K_{0}=K$ and $P_{0}=P$. For $g \in G$, set

$$
\tilde{\psi}_{j}(g K)=\psi_{j}\left(g h_{j}^{-1} K_{j}\right) \quad \text { and } \quad \tilde{\psi}_{j}(g P)=\psi_{j}\left(g k_{j}^{-1} h_{j}^{-1} P_{j}\right) .
$$

Let $\Gamma_{i}^{\prime}(i \in\{1, \ldots, m\})$ be the subgroup of finite index of $\Gamma_{P_{i}}$ which is provided by Auslander's theorem.
We have:
(1) Let $g \in \bigcup_{\gamma \in \Gamma} \gamma \mathfrak{S}_{i, t, R, R^{\prime}}$. Then, $\psi_{i}\left(\gamma g K_{i}\right)=1$ for some $\gamma \in \Gamma$.

Indeed,

$$
\begin{aligned}
& \#\left\{\gamma \in \Gamma \mid \psi_{i}\left(\gamma^{-1} g K_{i}\right)=1\right\} \geqslant \#\left\{\gamma \in \Gamma_{i}^{\prime} \mid a_{p_{N_{\Gamma}, P_{i}}\left(\nu_{P_{i}}\left(\gamma^{-1} g\right)\right)} \leqslant R\right\} \\
& =\#\left\{\gamma \in \Gamma_{i}^{\prime} \mid p_{N_{\Gamma, P_{i}}}\left(\nu_{P_{i}}\left(\gamma^{-1} g\right)\right) \in \omega_{i, R}\right\}
\end{aligned}
$$

as $\frac{a_{g}}{a_{g}^{(i)}} \leqslant a_{p_{N_{\Gamma, P_{i}}}\left(\nu_{P_{i}}(g)\right) \text {. This is greater or equal than } 1 \text { since }}$

$$
a_{p_{N_{\Gamma, P_{i}}}\left(\nu_{P_{i}}\left(\gamma^{-1} g\right)\right)}=a_{n_{\gamma}^{-1} p_{N_{\Gamma, P}}}\left(\nu_{P_{i}}(g)\right)
$$

for all $\gamma \in \Gamma_{P_{i}}$ and since $\bigcup_{\gamma \in \Gamma_{i}^{\prime}} n_{\gamma} \omega_{s t d, i}=N_{\Gamma, P_{i}}$.
(2) Let $n w_{i} P_{i} \in \bigcup_{\gamma \in \Gamma} \gamma\left(\operatorname{clo}\left(\mathfrak{S}_{i, t, R, R^{\prime}}^{\prime}\right) \cap\left\{g P_{i} \mid g h_{i} k_{i} P \in \Omega_{\Gamma}\right\}\right)$.

Then, $\psi_{i}\left(\gamma n w_{i} P_{i}\right)=1$ for some $\gamma \in \Gamma$.
Indeed, $\psi_{i}\left(n w_{i} P_{i}\right)=\frac{a_{P_{i}}\left(n w_{i}\right)}{a_{P_{i}}\left(p_{N} \Gamma, P_{i}(n) w_{i}\right)} \leqslant \lambda \cdot \frac{a_{n}}{a_{p_{N} \Gamma, P_{i}(n)}} \leqslant \lambda a_{p_{N_{\Gamma}, P_{i}}(n)}$.
Now we can show the rest similarly as above (use that $\omega_{s t d, i}$ is contained in $\left.\omega_{i, \frac{R}{\lambda}}\right)$.
(3) $\operatorname{supp}\left(\tilde{\psi}_{j}\right) \cap \operatorname{supp}\left(\tilde{\psi}_{k}\right)=\varnothing$ for all j, k such that $1 \leqslant j<k \leqslant m$.
(4) $\left\{\gamma \in \Gamma \mid \operatorname{supp}\left(\tilde{\psi}_{i}\right) \cap \gamma \operatorname{clo}\left(\mathfrak{S}_{X, i, t-1, R, R^{\prime}-1}^{\prime}\right) \neq \varnothing\right\} \subset \Gamma_{P_{i}}$:

As $\operatorname{supp}\left(\tilde{\psi}_{i}\right) \subset \Gamma_{P_{i}} \operatorname{clo}\left(\mathfrak{S}_{i, t-1, R, R^{\prime}-1}^{\prime}\right)$,

$$
\left\{\gamma \in \Gamma \mid \operatorname{supp}\left(\tilde{\psi}_{i}\right) \cap \gamma \operatorname{clo}\left(\mathfrak{S}_{X, i, t-1, R, R^{\prime}-1}^{\prime}\right) \neq \varnothing\right\} \subset \Gamma_{P_{i}}
$$

(5) $\left\{\gamma \in \Gamma \mid \operatorname{supp}\left(\tilde{\psi}_{i}\right) \cap \gamma \operatorname{supp}\left(\tilde{\psi}_{i}\right) \neq \varnothing\right\} \subset \Gamma_{P_{i}}$.

Let $g \in G$ be such that $\psi_{0}(g) \neq 0$. By the above, there is at most one $j \in$ $\{1, \ldots, m\}$ such that $\tilde{\psi}_{j}(g) \neq 0$.
Set $\psi=\sum_{j=0}^{m} \tilde{\psi}_{j}$. Then, $\psi \in C^{\infty}\left(X \cup\left(\partial X \backslash \bigcup_{j=1}^{m}\left\{e P_{j}\right\}\right),[0,1]\right)$.
Define $\chi=\frac{\psi}{\sum_{\gamma \in \Gamma} L_{\gamma} \psi}$ on $X \cup \Omega$. It follows from (3.27), the construction of our maps, Proposition 3.4.9, Proposition 3.4.7 and (3.26) that χ is well-defined, that the first two and the last three properties hold. Moreover, $\chi \in C^{\infty}(X,[0,1])$.
Let us prove now that (3) holds.
(1) Let $\varepsilon>0$. It follows from Proposition 2.3.15 that for all $X, Y \in \mathcal{U}(g)$, there is $c_{X, Y}>0$ such that

$$
\begin{equation*}
\left|L_{X} R_{Y} a_{g}\right| \leqslant c_{X, Y} a_{g} \quad\left(g \in G: a_{g}>1+\varepsilon\right) . \tag{3.28}
\end{equation*}
$$

(2) If $g \in G$ belongs to

$$
\begin{equation*}
D_{i}:=\left\{g \in G \left\lvert\, \frac{a_{g}}{a_{g}^{(i)}} \leqslant R+1\right.\right\} \tag{3.29}
\end{equation*}
$$

(e.g. if $g \in \mathfrak{S}_{i, t, R, R^{\prime}}$) then it follows from the proof of Proposition 3.6.36 that there is a constant $c_{R}>0$ such that

$$
\begin{equation*}
1+\left|\log p_{1}\left(p_{N_{\Gamma, P_{i}}}\left(\nu_{P_{i}}(g)\right)\right)\right| \leqslant c_{R} \sqrt{h_{P_{i}}(g)} a_{p_{N} \mathrm{\Gamma}, P_{i}\left(\nu_{P_{i}}(g)\right) h_{P_{i}}(g)}^{\frac{1}{2}} . \tag{3.30}
\end{equation*}
$$

(3) For $k \in \mathbb{N}_{0}$, set $\mathcal{U}^{k}\left(\mathfrak{n}_{P_{i}}\right)=\left\{X \in \mathcal{U}\left(\mathfrak{n}_{P_{i}}\right) \mid \operatorname{ad}(H) X=k X \quad \forall H \in \mathfrak{a}_{P_{i}}\right\}$. Then,

$$
\mathcal{U}\left(\mathfrak{n}_{P_{i}}\right)=\bigoplus_{k=0}^{\infty} \mathcal{U}^{k}\left(\mathfrak{n}_{P_{i}}\right)
$$

Claim 3.6.56. Let $l \in \mathbb{N}_{0}$. For any $X \in \mathcal{U}^{l}\left(\mathfrak{n}_{P_{i}}\right), Y \in \mathcal{U}(\mathfrak{g})$ and any $\varepsilon>0$,

$$
\underbrace{h_{P_{i}}(g)^{\frac{l}{2}}\left(a_{g}^{(i)}\right)^{\frac{l}{2}}}_{\geqslant 1} \cdot \frac{\left|L_{X} R_{Y} a_{g}^{(i)}\right|}{a_{g}^{(i)}}
$$

is uniformly bounded when g varies in

$$
\begin{equation*}
\left\{g \in G \mid a_{g}>1+\varepsilon, \frac{a_{g}}{a_{g}^{(i)}} \leqslant R+1\right\} \tag{3.31}
\end{equation*}
$$

Proof. Without loss of generality, we may assume that $k_{i}(g)=e$.
For $X \in \mathfrak{g}_{\alpha_{i}}, Y \in \mathfrak{g}_{2 \alpha_{i}}$ and $s \in \mathbb{R}$, set $A(X, Y, s)=a_{\exp (X+Y) a_{e} s}$.
Let now $X \in \mathcal{U}^{l}\left(\mathfrak{n}_{P_{i}}\right), Y \in \mathcal{U}(\mathfrak{g})$.
Since the function is right K_{i}-invariant, we may also assume without loss of generality that $Y \in \mathcal{U}\left(\mathfrak{n}_{P_{i}}\right) \mathcal{U}\left(\mathfrak{a}_{P_{i}}\right)$. Let $Z \in \mathcal{U}^{l^{\prime}}\left(\mathfrak{n}_{P_{i}}\right)$ and $H \in \mathcal{U}\left(\mathfrak{a}_{P_{i}}\right)$.
Note that there are finitely many $X_{j, g} \in \mathcal{U}^{l}\left(\mathfrak{n}_{P_{i}}\right), Z_{k, g} \in \mathcal{U}^{l^{\prime}}\left(\mathfrak{n}_{P_{i}}\right)$ such that

$$
\begin{aligned}
& L_{X} R_{Z} R_{H} a_{g}^{(i)} \\
& \quad=\sum_{j, k} D_{X_{j, g}} D_{Z_{k, g}} D_{H} A\left(\log p_{N_{1}^{\Gamma, P_{i}}}\left(\nu_{P_{i}}(g)\right), \log p_{N_{2}^{\Gamma,} P_{i}}\left(\nu_{P_{i}}(g)\right), \log h_{P_{i}}(g)\right)
\end{aligned}
$$

(the notations are self-explaining) with

$$
\left|X_{j, g}\right| \leqslant c_{1}\left(1+\left|\log p_{1}\left(p_{N_{\Gamma, P_{i}}}(g)\right)\right|\right)^{l}+c_{2}\left(1+\left|\log p_{N_{1}^{\Gamma, P_{i}}}(g)\right|\right)^{l}
$$

and

$$
\left|Z_{k, g}\right| \leqslant c_{1} h_{P_{i}}(g)^{l^{\prime}}\left(1+\left|\log p_{1}\left(p_{N_{\Gamma, P_{i}}}(g)\right)\right|\right)^{l^{\prime}}+c_{2} h_{P_{i}}(g)^{l^{\prime}}\left(1+\left|\log p_{N_{1}^{\Gamma, P_{i}}}(g)\right|\right)^{l^{\prime}}
$$

for some constants $c_{1}, c_{2}>0$.
Since $a(\bar{n}) \leqslant a_{n a} a$ for all $n \in N_{i}$ and $a \in A_{i}$,

$$
1+\left|\log p_{N_{1}^{\Gamma, P}}(g)\right| \prec a_{p_{N^{\Gamma}, P_{i}}(g)}^{\frac{1}{2}} \leqslant\left(a_{g}^{(i)}\right)^{\frac{1}{2}} h_{P_{i}}(g)^{\frac{1}{2}}
$$

Thus,

$$
\left|X_{j, g}\right| \prec h_{P_{i}}(g)^{\frac{l}{2}}\left(a_{g}^{(i)}\right)^{\frac{l}{2}}
$$

and

$$
\left|Z_{k, g}\right| \prec h_{P_{i}}(g)^{\frac{3 l^{\prime}}{2}}\left(a_{g}^{(i)}\right)^{\frac{l^{\prime}}{2}} \prec h_{P_{i}}(g)^{l^{\prime}}\left(a_{g}^{(i)}\right)^{l^{\prime}} .
$$

The claim follows now from Proposition 3.6.48 and Remark 3.6.49.
(4) We can now easily conclude from the above that for all $X \in \mathcal{U}\left(\mathfrak{n}_{P_{i}}\right), Y \in$ $\mathcal{U}(\mathfrak{g})$, there is $c_{X, Y}^{\prime}>0$ such that

$$
\left|L_{X} R_{Y} \frac{a_{g}}{a_{g}^{(i)}}\right| \leqslant c_{X, Y}^{\prime} \cdot \frac{a_{g}}{a_{g}^{(i)}}
$$

when g varies in (3.31).

Since moreover $\sup _{x \in \mathbb{R}}\left|h_{r_{1}, r_{2}}^{(n)}(x)\right|$ is finite for all $n \in \mathbb{N}_{0}$, it follows from the Leibniz rule and the chain rule that $\sup _{g \in G}\left|L_{X} R_{Y} \psi_{i}(g)\right|$ is finite for all $X \in \mathcal{U}\left(\mathfrak{n}_{P_{i}}\right)$ and $Y \in \mathcal{U}(\mathfrak{g})$. Let $l \in \mathbb{N}_{0}$. Then,

$$
\begin{equation*}
\sup _{g \in G} h_{P_{i}}(g)^{\frac{l}{2}}\left(a_{g}^{(i)}\right)^{\frac{l}{2}}\left|L_{X} R_{Y} \psi_{i}(g)\right| \tag{3.32}
\end{equation*}
$$

is even finite for any $X \in \mathcal{U}^{l}\left(\mathfrak{n}_{P_{i}}\right), Y \in \mathcal{U}(\mathfrak{g})$.
By the proof of Proposition 3.6.36, Lemma 3.6.46 and as Γ_{i}^{\prime} has finite index in $\Gamma_{P_{i}}$,

$$
\begin{equation*}
\#\left\{\gamma \in \Gamma_{P_{i}} \mid \psi_{i}\left(\gamma^{-1} g\right) \in(0,1)\right\} \leqslant \#\left\{\gamma \in \Gamma_{P_{i}} \mid \psi_{i}\left(\gamma^{-1} g\right)=1\right\} \quad(g \in G) \tag{3.33}
\end{equation*}
$$

Let $g \in G$. If $X \in \mathfrak{g} \mathcal{U}(\mathfrak{g})$ and if $\psi_{i}(g) \in\{0,1\}$, then $L_{X} \psi_{i}(g)=0$ by construction of ψ_{i}. Thus, $L_{X} \chi(g)=0$ for all $X \in \mathcal{U}(\mathfrak{g})$ if $\psi(g)=0$.
Let $X \in \mathfrak{g}_{\mathbb{C}}$. Then,

$$
\begin{aligned}
L_{X} \chi(g) & =\left.\frac{d}{d t}\right|_{t=0} \frac{\psi(\exp (-t Y) g)}{\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} \exp (-t Y) g\right)} \\
& =\frac{L_{X} \psi(g)\left(\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} g\right)\right)-\sum_{\gamma \in \Gamma} L_{X}\left(L_{\gamma} \psi\right)(g) \cdot \psi(g)}{\left(\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} g\right)\right)^{2}} \\
& =\frac{L_{X} \psi(g)}{\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} g\right)}-\frac{\sum_{\gamma \in \Gamma} L_{X}\left(L_{\gamma} \psi\right)(g)}{\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} g\right)} \cdot \chi(g) .
\end{aligned}
$$

Let $X_{1}, X_{2} \in \mathfrak{g}_{\mathrm{C}}$. Then, $L_{X_{2}} L_{X_{1}} \chi(g)$ is equal to

$$
\begin{aligned}
& \left.\frac{d}{d t}\right|_{t=0}\left(\frac{L_{X_{1}} \psi\left(\exp \left(-t X_{2}\right) g\right)}{\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} \exp \left(-t X_{2}\right) g\right)}-\frac{\sum_{\gamma \in \Gamma} L_{X_{1}}\left(L_{\gamma} \psi\right)\left(\exp \left(-t X_{2}\right) g\right)}{\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} \exp \left(-t X_{2}\right) g\right)} \cdot \chi\left(\exp \left(-t X_{2}\right) g\right)\right) \\
= & \frac{L_{X_{2}} L_{X_{1}} \psi(g)}{\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} g\right)}-\frac{L_{X_{1}} \psi(g)\left(\sum_{\gamma \in \Gamma} L_{X_{2}}\left(L_{\gamma} \psi\right)(g)\right)}{\left(\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} g\right)\right)^{2}} \\
& \left(-\frac{\sum_{\gamma \in \Gamma} L_{X_{2}} L_{X_{1}}\left(L_{\gamma} \psi\right)(g)}{\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} g\right)}+\frac{\left(\sum_{\gamma \in \Gamma} L_{X_{1}}\left(L_{\gamma} \psi\right)(g)\right)\left(\sum_{\gamma \in \Gamma} L_{X_{2}}\left(L_{\gamma} \psi\right)(g)\right)}{\left(\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} g\right)\right)^{2}}\right) \cdot \chi(g) \\
& -\frac{\sum_{\gamma \in \Gamma} L_{X_{1}}\left(L_{\gamma} \psi\right)(g)}{\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} g\right)} \cdot L_{X_{2}} \chi(g) .
\end{aligned}
$$

By induction, one can show that the appearing factors in the terms of $L_{X} R_{Y} \chi(g)$ $(X, Y \in \mathfrak{g} \mathcal{U}(\mathfrak{g}))$ have one of the following forms:

$$
L_{X^{\prime}} R_{Y^{\prime}} \chi(g) \quad \text { or } \quad \frac{L_{X^{\prime}} R_{Y^{\prime}} \psi(g)}{\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} g\right)} \quad \text { or } \quad \frac{\sum_{\gamma \in \Gamma} L_{X^{\prime}} R_{Y^{\prime}}\left(L_{\gamma} \psi\right)(g)}{\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} g\right)}
$$

$\left(X^{\prime}, Y^{\prime} \in \mathfrak{g} \mathcal{U}(\mathfrak{g})\right)$.
Let I_{g} be the subset of $\{0, \ldots, m\}$ such that $j \in I_{g}$ if and only if $\psi_{j}\left(\gamma^{-1} g\right) \neq 0$ for some $\gamma \in \Gamma$. Recall that, by construction, $\# I_{g} \in\{1,2\}$.

Let $N_{i, g K}=\#\left\{\gamma \in \Gamma \mid \psi_{i}\left(\gamma^{-1} g h_{i}^{-1}\right)=1\right\}$ and let $N_{i, g K}^{\prime}=\#\left\{\gamma \in \Gamma \mid \psi_{i}\left(\gamma^{-1} g h_{i}^{-1}\right) \in\right.$ $(0,1)\}$. If $j \in I_{g}$, then $N_{j, g K} \geqslant 1$.
We have the following estimates:

$$
\frac{\left|L_{X^{\prime}} R_{Y^{\prime}} \psi_{i}(g)\right|}{\sum_{\gamma \in \Gamma} \psi_{i}\left(\gamma^{-1} g\right)} \leqslant\left|L_{X^{\prime}} R_{Y^{\prime}} \psi_{i}(g)\right|
$$

and

$$
\begin{aligned}
\frac{\sum_{\gamma \in \Gamma}\left|L_{X^{\prime}} R_{Y^{\prime}}\left(L_{\gamma} \psi\right)(g)\right|}{\sum_{\gamma \in \Gamma} \psi\left(\gamma^{-1} g\right)} \leqslant \sum_{j \in I_{g}} & \frac{\sum_{\gamma \in \Gamma}\left|L_{X^{\prime}} R_{Y^{\prime}}\left(L_{\gamma} \psi_{j}\right)\left(g h_{j}^{-1}\right)\right|}{\sum_{\gamma \in \Gamma} \psi_{j}\left(\gamma^{-1} g h_{j}^{-1}\right)} \\
& \leqslant 2 \sup _{j=0, \ldots, m: j \in I_{g}} \frac{\sum_{\gamma \in \Gamma}\left|L_{X^{\prime}} R_{Y^{\prime}}\left(L_{\gamma} \psi_{j}\right)\left(g h_{j}^{-1}\right)\right|}{\sum_{\gamma \in \Gamma} \psi_{j}\left(\gamma^{-1} g h_{j}^{-1}\right)} .
\end{aligned}
$$

Thus, in order to prove (3), it remains to prove the following assertion:
Claim 3.6.57. For $X \in \mathcal{U}\left(\mathfrak{n}_{P_{j}}\right)$ if $j \in\{1, \ldots, m\}$ (resp. $X \in \mathcal{U}(\mathfrak{g})$ if $j=0$), $Y \in \mathcal{U}(\mathfrak{g})$, we have

$$
\sup _{g K \in X: N_{j, g K} \geqslant 1} \frac{\sum_{\gamma \in \Gamma}\left|L_{X} R_{Y}\left(L_{\gamma} \psi_{j}\right)\left(g h_{j}^{-1}\right)\right|}{\sum_{\gamma \in \Gamma} \psi_{j}\left(\gamma^{-1} g h_{j}^{-1}\right)}<\infty .
$$

Proof. Let $g K \in X$ be such that $N_{j, g K} \geqslant 1$. Then, $\frac{\sum_{\gamma \in \Gamma}\left|L_{X} R_{Y}\left(L_{\gamma} \psi_{j}\right)\left(g h_{j}^{-1}\right)\right|}{\sum_{\gamma \in \Gamma} \psi_{j}\left(\gamma^{-1} g h_{j}^{-1}\right)}$ is less or equal than

$$
\frac{N_{j, g K}^{\prime}}{N_{j, g K}} \cdot \sup _{\gamma \in \Gamma: \psi_{j}\left(\gamma^{-1} g h_{j}^{-1}\right) \in(0,1)}\left|L_{\mathrm{Ad}\left(\gamma^{-1}\right) X} R_{Y} \psi_{j}\left(\gamma^{-1} g h_{j}^{-1}\right)\right| .
$$

Since $N_{j, g K}^{\prime} \leqslant N_{j, g K}$ for all $j \geqslant 1$ by (3.33), and as $\sup _{g \in G} N_{0, g K}^{\prime}$ is finite, there is a constant $c>0$ such that this is again less or equal than

$$
c_{\gamma \in \Gamma: \psi_{j}\left(\gamma^{-1} g h_{j}^{-1}\right) \in(0,1)}\left|L_{\mathrm{Ad}\left(\gamma^{-1}\right) X} R_{Y} \psi_{j}\left(\gamma^{-1} g h_{j}^{-1}\right)\right| .
$$

 $i \in\{1, \ldots, m\}$. Thus, we may assume without loss of generality that

$$
g K \in \bigcup_{\gamma \in \Gamma} \gamma V \cup \bigcup_{\gamma \in \Gamma_{j}} \gamma \mathfrak{S}_{X, j, t, R, R^{\prime}}^{\prime}
$$

Let $S=\left\{\gamma \in \Gamma \mid \gamma V \cap\left(V \cup \mathfrak{S}_{X, i, t, R, R^{\prime}}^{\prime}\right) \neq \varnothing \quad\right.$ for some $\left.i \in\{1, \ldots, m\}\right\}$ (finite set) and let $V^{\prime}=\bigcup_{\gamma \in S} \gamma V \in \mathcal{U}_{\Gamma}$. Then, $\sup _{g K \in V^{\prime}}\left(N_{j, g K}+N_{j, g K}^{\prime}\right)$ is finite.
Since moreover $\sup _{g \in G}\left|L_{X} R_{Y} \psi_{j}(g)\right|(j \in\{0, \ldots, m\})$ is finite for all $X \in \mathcal{U}\left(\mathfrak{n}_{P_{j}}\right)$ and $Y \in \mathcal{U}(\mathfrak{g})$, it remains to show that

$$
\sup _{\gamma^{\prime} \in \Gamma_{P_{i}} g K \in \mathfrak{S}_{x, i, t, R, R^{\prime}}^{\prime}, \gamma \in \Gamma_{P_{i}}^{\prime}: \psi_{i}\left(\gamma^{-1} \gamma^{\prime} g h_{i}^{-1}\right) \in(0,1)} \sup _{\mathrm{Ad}\left(\gamma^{-1}\right) X} R_{Y} \psi_{i}\left(\gamma^{-1} \gamma^{\prime} g h_{i}^{-1}\right) \mid
$$

is finite for all $X \in \mathcal{U}\left(\mathfrak{n}_{P_{i}}\right)(i \in\{1, \ldots, m\})$ and $Y \in \mathcal{U}(\mathfrak{g})$. It follows from (3.30) that

$$
\begin{equation*}
1+\left|\log p_{1}\left(\nu_{P_{i}}(\gamma)\right)\right| \prec \sqrt{h_{P_{i}}\left(g h_{i}^{-1}\right)} a_{p_{N^{\mathrm{\Gamma}}, P_{i}}\left(\nu_{P_{i}}\left(g h_{i}^{-1}\right)\right) h_{P_{i}}\left(g h_{i}^{-1}\right)}^{\frac{1}{2}} \tag{3.34}
\end{equation*}
$$

for all $\gamma \in \Gamma_{P_{i}}$ and all $g \in D_{i}$ (in particular for all $g K \in \mathfrak{S}_{X, i, t, R, R^{\prime}}^{\prime}$). The claim follows now from Lemma 3.6.42, (3.34), (3.32) and the fact that the right-hand side of (3.34) is left $\Gamma_{P_{i}}$-invariant.

This completes the proof of the theorem.
We also have a partition of unity of $\Gamma \backslash X$ having nice properties:
Proposition 3.6.58. There exist $\phi_{i} \in C^{\infty}\left(\Gamma \backslash\left(X \cup \Omega_{\Gamma}\right),[0,1]\right)(i \in\{0, \ldots, m\})$ and $U \in \mathcal{U}_{\Gamma}$ such that
(1) $\sum_{i=0}^{m} \phi_{i}=1$,
(2) $\Gamma g K=\Gamma h K$ implies $\Gamma_{P_{i}} g K=\Gamma_{P_{i}} h K$ on $\operatorname{supp}\left(\phi_{i}\right)(i \in\{1, \ldots, m\})$,
(3) $\operatorname{supp}\left(\phi_{0}\right) \subset \Gamma U, \operatorname{supp}\left(\phi_{i}\right) \subset \Gamma \mathfrak{S}_{X, s t d, i}^{\prime}(i \in\{1, \ldots, m\})$,
(4) $\sup _{g K \in X}\left|L_{X} R_{Y} \phi_{0}(g)\right|<\infty$ for all $X, Y \in \mathcal{U}(\mathfrak{g})$,
(5) $\sup _{g K \in X}\left|L_{X} R_{Y} \phi_{i}(g)\right|<\infty$ for all $X \in \mathcal{U}\left(\mathfrak{n}_{P_{i}}\right)(i \in\{1, \ldots, m\})$ and $Y \in$ $\mathcal{U}(\mathfrak{g})$.

Thus, $\phi_{0} f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and $\phi_{i} f \in \mathscr{C}\left(\Gamma_{P_{i}} \backslash G, \varphi\right)(i \in\{1, \ldots, m\})$ for all $f \in$ $\mathscr{C}(\Gamma \backslash G, \varphi)$.

Remark 3.6.59.

(1) Let $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$. Then, $f=\sum_{i=0}^{m} \phi_{i} f$ with $\phi_{0} f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ and $\phi_{i} f \in$ $\mathscr{C}\left(\Gamma_{P_{i}} \backslash G, \varphi\right)(i \in\{1, \ldots, m\})$.
(2) The proposition can be used to construct Schwartz functions:
(a) Let $f \in \mathscr{C}\left(G, V_{\varphi}\right)$ be such that $\operatorname{supp}(f)$ is contained in some $U \in \mathcal{U}_{\Gamma}$ (e.g. $f=\frac{\psi_{0}}{\sum_{\gamma} L_{\gamma} \psi} \cdot g$ for some $\left.g \in \mathscr{C}\left(G, V_{\varphi}\right)\right)$. Then,

$$
\sum_{\gamma \in \Gamma} \varphi(\gamma) L_{\gamma} f \in \mathscr{C}(\Gamma \backslash G, \varphi)
$$

(b) Let $f_{i} \in \mathscr{C}\left(\Gamma_{P_{i}} \backslash G, \varphi\right)(i \in\{1, \ldots, m\})$. Then, $\sum_{i=1}^{m} \phi_{i} f \in \mathscr{C}(\Gamma \backslash G, \varphi)$.

Proof. We use the notation of the proof of the previous theorem. For $g \in G$, set $\phi_{i}=\frac{\sum_{\gamma \in \Gamma} L_{\gamma} \psi_{i}}{\sum_{\gamma \in \Gamma} L_{\gamma} \psi}$. Then, the proposition follows from the proof of the mentioned theorem. The two last properties follow in particular from Claim 3.6.57.

3.6.8 Density of $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$ in $\mathscr{C}(\Gamma \backslash G, \varphi)$

Proposition 3.6.60. The inclusion of $C_{c}^{\infty}(\Gamma \backslash G, \varphi)$ into $\mathscr{C}(\Gamma \backslash G, \varphi)$ is continuous with dense image.

Proof. The proof of this proposition is similar to the one of Proposition 2.3.21 (use Theorem 3.6.53 instead of Lemma 2.3.19).

3.6.9 Examples of noncompactly supported Schwartz functions

Let $G=\operatorname{SO}(1, n)^{0}, n \geqslant 2$, and let M, A, N, K be the subgroups of G induced by the corresponding one of $\operatorname{Sp}(1, n)$ computed in Appendix B (then $N \subset \exp \left(\mathfrak{g}_{\alpha}\right)$). Let $P=M A N$. Assume that $\Gamma=\Gamma_{P}$.
We have: $\frac{k}{2}=\rho_{\Gamma}$ and $\frac{n-k-1}{2}=\rho^{\Gamma}$.
Let φ be a Γ-invariant smooth function on N_{Γ}. Set $V_{\varphi}=\mathbb{C}$.
We denote by $\mathcal{S}\left(\mathrm{SO}(1, n-k)^{0}\right)$ the space of rapidly decreasing functions on $\mathrm{SO}(1, n-k)^{0}$ (cf. [Wal88, p.230]).
Fix $\gamma \in \hat{K}$. For $f \in \mathcal{S}\left(\mathrm{SO}(1, n-k)^{0}\right), n_{1} \in N_{\Gamma}, n_{2} \in N^{\Gamma}, a \in A$ and $h \in K$, define

$$
F\left(n_{1} n_{2} a h\right)=\varphi\left(n_{1}\right) \gamma(h)^{-1} f\left(n_{2} a\right)
$$

Claim 3.6.61. The function F belongs to $\mathscr{C}\left(Y, V_{Y}(\gamma)\right)$, where $Y:=\Gamma \backslash X$.
Proof. Let $g \in G$, let $\varepsilon>0, d \geqslant \frac{n-1}{2}+\varepsilon$ and $r \geqslant 0$. As $a_{n a}^{\alpha} \geqslant a_{a}^{\alpha}=\max \left\{a^{\alpha}, a^{-\alpha}\right\}$ for all $n \in N$ and $a \in A$ by Lemma 2.1.4,

$$
|F(g)|=\left|f\left(p_{N^{\Gamma}}(\nu(g)) h(g)\right)\right|
$$

is less or equal than

$$
c_{d} h(g)^{\frac{k}{2}} a_{p_{N^{\Gamma}} \Gamma}^{\left.-\frac{n-k-1}{2}-\varepsilon(g)\right) h(g)}
$$

for some constant $c_{d}>0$. Let \mathfrak{S} be a generalised standard Siegel set with respect to P. Then, ${ }_{\mathfrak{G}^{\prime}} p_{r, 1,1}(f)$ is finite.
Let $X \in \mathcal{U}(\mathfrak{n})=\mathcal{U}\left(\mathfrak{n}_{\Gamma}\right) \mathcal{U}\left(\mathfrak{n}^{\Gamma}\right)$ and $Y \in \mathcal{U}(\mathfrak{g})$. Without loss of generality, we may assume that $k(g)$ is trivial and that $Y \in \mathcal{U}\left(\mathfrak{n}_{\Gamma}\right) \mathcal{U}\left(\mathfrak{n}^{\Gamma}\right) \mathcal{U}(\mathfrak{a})$.
We have
(1) $R_{H}\left(h(g)^{m}\right)=m \alpha(H) h(g)^{m}$ for all $H \in \mathfrak{a}$ and $m \in \mathbb{Z}$;
(2) $\sup _{n \in N_{\Gamma}}\left|R_{Z} \varphi(n)\right|<\infty$ for all $Z \in \mathcal{U}\left(\mathfrak{n}_{\Gamma}\right)$;
(3) $L_{Y_{1}} R_{Y_{2}} f\left(p_{N^{\Gamma}}(\nu(\cdot)) h(\cdot)\right)(g)=0$ for all $Y_{1}, Y_{2} \in \mathcal{U}\left(\mathfrak{n}_{\Gamma}\right)$.

Let \mathfrak{l} be a Lie algebra over \mathbb{R}. For $m \in \mathbb{N}_{0}$, set $\mathcal{U}^{m}(\mathfrak{l})=\{X \in \mathcal{U}(\mathfrak{l}) \mid \operatorname{ad}(H) X=$ $m X\}$. Then,

$$
\mathcal{U}(\mathfrak{l})=\bigoplus_{m=0}^{\infty} \mathcal{U}^{m}(\mathfrak{l})
$$

Let $X_{1} \in \mathcal{U}\left(\mathfrak{n}_{\Gamma}\right), Z_{1} \in \mathcal{U}^{l}\left(\mathfrak{n}_{\Gamma}\right), X_{2}, Z_{2} \in \mathcal{U}\left(\mathfrak{n}^{\Gamma}\right)$ and $H \in \mathcal{U}(\mathfrak{a})$. Since

$$
n_{1} n_{2} a n_{1}^{\prime} n_{2}^{\prime}=n_{1} n_{2}\left(a n_{1}^{\prime} a^{-1}\right)\left(a n_{2}^{\prime} a^{-1}\right) a=\underbrace{n_{1}\left(a n_{1}^{\prime} a^{-1}\right)}_{\in N_{\Gamma}} \underbrace{n_{2}\left(a n_{2}^{\prime} a^{-1}\right)}_{\in N^{\Gamma}} a
$$

$\left(n_{1}, n_{1}^{\prime} \in N_{\Gamma}, n_{2}, n_{2}^{\prime} \in N^{\Gamma}\right), L_{X_{1}} L_{X_{2}} R_{Z_{1}} R_{Z_{2}} F(g)$ is equal to

$$
\begin{equation*}
h(g)^{-l}\left(L_{X_{1}} R_{Z_{1}} \varphi\left(p_{N_{\Gamma}}(\nu(g))\right)\right) L_{X_{2}} R_{Z_{2}} f\left(p_{N^{\Gamma}}(\nu(g)) h(g)\right) . \tag{3.35}
\end{equation*}
$$

Let now $d \geqslant \frac{n-1}{2}+l+\varepsilon$. As moreover $f \in \mathcal{S}\left(\mathrm{SO}(1, n-k)^{0}\right)$, it follows from (1), (2) and (3.35) that $\left|L_{X_{1}} L_{X_{2}} R_{Z_{1}} R_{Z_{2}} R_{H} F(g)\right|$ is less or equal than

$$
c_{d} h(g)^{-l} a_{p_{N^{\Gamma}}(\nu(g)) h(g)}^{-d}
$$

for some constant $c_{d}>0$. This is again less or equal than

$$
c_{d} h(g)^{\frac{k}{2}} a_{p_{N \Gamma} \Gamma(\nu(g)) h(g)}^{-\frac{n-k-1}{-\frac{1}{2}}-\varepsilon}
$$

as $a_{n a} \geqslant a_{a}$ for all $n \in N$ and $a \in A$. The claim follows.

3.6.10 Examples of cusp forms

In this section, we determine the cusp forms on $\Gamma \backslash G$ which are induced from cusp forms on G.

Lemma 3.6.62. Let $U \in \mathcal{U}_{\Gamma}$. If $\lambda>\delta_{\Gamma}$, then there is $c>0$ such that

$$
\sum_{\gamma \in \Gamma} a_{\gamma^{-1} g}^{-(\lambda+\rho)} \leqslant c a_{g}^{-(\lambda+\rho)}
$$

for all $g K \in U$.
Proof. Let $U \in \mathcal{U}_{\Gamma}$. Assume that $\lambda>\delta_{\Gamma}$. Since the assertion of the lemma is trivial when U is relatively compact in X, we may assume without loss of generality that there is an open relatively compact subset V of Ω such that

$$
U=\left\{k a K \mid k M \in V, a \in A_{+}\right\} .
$$

Let W be a compact subset of $(\partial X \backslash \operatorname{clo}(V) M) M$ which contains a neighbourhood of Λ. Since Γ acts properly discontinuously on $X \cup \Omega, S:=\left\{\gamma \in \Gamma \mid k_{\gamma} M \notin W\right\}$ is finite. Thus, we may also assume without loss of generality that we sum over $\Gamma \backslash S$. By Corollary 2.4 of [BO00, p.85], there is $c>0$ such that

$$
a_{\gamma^{-1} g}=a_{\gamma^{-1} k_{g} a_{g}} \geqslant c a_{\gamma} a_{g}
$$

for all $\gamma \in \Gamma \backslash S\left(k_{\gamma} M \in W\right)$ and $g \in U(k M \in V)$. The lemma follows now from the definition of the critical exponent.

Define $\mathscr{C}_{\text {weak }}(\Gamma \backslash G, \varphi)$ by

$$
\begin{aligned}
\left\{f \in C^{\infty}(\Gamma \backslash G, \varphi) \mid\right. & { }^{U} p_{r, 1, Y}(f)<\infty \forall r \geqslant 0, Y \in \mathcal{U}(\mathfrak{g}) \\
& \left.\mathfrak{S}_{Q}^{\prime} p_{r, 1, Y}(f)<\infty \forall U \in \mathcal{U}_{\Gamma}, \mathfrak{S}_{Q}^{\prime} \in \mathcal{V}_{s t d, \Gamma}, Y \in \mathcal{U}(\mathfrak{g}), r \geqslant 0\right\}
\end{aligned}
$$

Then, $\mathscr{C}_{\text {weak }}(\Gamma \backslash G, \varphi)$ is a Fréchet space when we equip it with the topology induced by the seminorms. Moreover,

$$
\mathscr{C}(\Gamma \backslash G, \varphi) \subset \mathscr{C}_{\text {weak }}(\Gamma \backslash G, \varphi) \subset L^{2}(\Gamma \backslash G, \varphi)
$$

If $f \in \mathscr{C}_{\text {weak }}(\Gamma \backslash G, \varphi)$, then f^{Ω} and f^{Q} are well-defined for all $[Q] \in \mathcal{P}_{\Gamma}$. Set

$$
{ }^{\circ} \mathscr{C}_{\text {weak }}(\Gamma \backslash G, \varphi)=\left\{f \in \mathscr{C}_{\text {weak }}(\Gamma \backslash G, \varphi) \mid f^{\Omega}=0, f^{Q}=0 \quad \forall[Q]_{\Gamma} \in \mathcal{P}_{\Gamma}\right\} .
$$

We believe that

$$
\begin{equation*}
\overline{{ }^{\mathscr{C}_{\text {weak }}(\Gamma \backslash G, \varphi)}}=\overline{{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)} . \tag{3.36}
\end{equation*}
$$

Proposition 3.6.63. Assume that $\delta_{\Gamma}<0$. Let $f \in \mathscr{C}\left(G, V_{\varphi}\right)$. For $g \in G$, set

$$
F_{f}(g)=\sum_{\gamma \in \Gamma} \varphi(\gamma) f\left(\gamma^{-1} g\right)
$$

Then, F_{f} is well-defined and belongs to $\mathscr{C}_{\text {weak }}(\Gamma \backslash G, \varphi)$. If $f \in{ }^{\circ} \mathscr{C}\left(G, V_{\varphi}\right)$, then $F_{f} \in{ }^{\circ} \mathscr{C}_{\text {weak }}(\Gamma \backslash G, \varphi)$.
If $G=\mathrm{SO}(1, n)^{0}(n \geqslant 2)$ and if $\Gamma \backslash X$ has at least one cusp, then $F_{f} \in \mathscr{C}(\Gamma \backslash G, \varphi)$ for all $f \in \mathscr{C}\left(G, V_{\varphi}\right)$ and $F_{f} \in{ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi)$ for all $f \in{ }^{\circ} \mathscr{C}\left(G, V_{\varphi}\right)$.

Remark 3.6.64. The proof shows that we can also take smooth matrix coefficients

$$
c_{v, \tilde{v}} \quad\left(v \in V_{\pi, \infty} \otimes V_{\varphi}, \tilde{v} \in V_{\pi^{\prime}, K}\right)
$$

of an integrable discrete series representation π for f when $\delta_{\Gamma} \geqslant 0$.
Proof. Assume that $\delta_{\Gamma}<0$. Let $f \in \mathscr{C}\left(G, V_{\varphi}\right)$ and let F_{f} be defined as above. Note that F_{f} is left Γ-equivariant.
Let $U \in \mathcal{U}_{\Gamma}, Y \in \mathcal{U}(\mathfrak{g})$ and $r \geqslant 0$. Since $f \in \mathscr{C}\left(G, V_{\varphi}\right), \sum_{\gamma \in \Gamma}\left|R_{Y} f\left(\gamma^{-1} g\right)\right|$ is less or equal than

$$
c \sum_{\gamma \in \Gamma} a_{\gamma^{-1} g}^{-\rho}\left(1+\log a_{\gamma^{-1} g}\right)^{-r}
$$

for some constant $c>0$. By Lemma 3.6.62 and as $\delta_{\Gamma}<0$, there is $c^{\prime}>0$ such that this is less or equal than

$$
c^{\prime} a_{g}^{-\rho}\left(1+\log a_{g}\right)^{-r}
$$

for all $g \in G$ such that $g K \in U$. Thus, ${ }^{U} p_{r, 1, Y}\left(F_{f}\right)$ is finite and F_{f} is well-defined on $\{g \in G \mid g K \in U\}$. Moreover, F_{f} is smooth on this set.
Let Q be a Γ-cuspidal parabolic subgroup of G. Let \mathfrak{S} be a generalised standard Siegel set in G with respect to Q.
Let $X, Y \in \mathcal{U}(\mathfrak{g})$ and $r \geqslant 0$. Without loss of generality, we may assume that $r \geqslant 1$. Since $f \in \mathscr{C}\left(G, V_{\varphi}\right), \sum_{\gamma \in \Gamma_{Q}}\left|L_{X} R_{Y} f\left(\gamma^{-1} g\right)\right|$ is less or equal than

$$
\begin{equation*}
c^{\prime \prime} \sum_{\gamma \in \Gamma_{Q}} a_{\gamma^{-1} g}^{-\rho}\left(1+\log a_{\gamma^{-1} g}\right)^{-2 r} \tag{3.37}
\end{equation*}
$$

for some constant $c^{\prime \prime}>0$. By Proposition 3.6.36,

$$
\begin{equation*}
a_{n_{1} n_{2} a} \succ a_{n_{2} a} \quad \text { and } \quad a_{n_{1} n_{2} a} \succ a_{n_{1} a} \tag{3.38}
\end{equation*}
$$

for all $n_{1} \in N_{\Gamma, Q}, n_{2} \in N^{\Gamma, Q}$ and $a \in A_{Q}$. As moreover $a_{n a} \geqslant a(\bar{n}) a^{-1} \succ a_{n} a^{-1}$ for all $n \in N$ and $a \in A$,

$$
\begin{equation*}
a_{\gamma^{-1} g}^{-1} \prec a_{\gamma^{-1} \nu_{Q}(g)}^{-1} h_{Q}(g) \prec a_{\gamma}^{-1} a_{Q}\left(g^{-1}\right)^{-1} \quad(g \in \mathfrak{S}) . \tag{3.39}
\end{equation*}
$$

It follows also from (3.38) that

$$
\begin{equation*}
a_{\gamma^{-1} g} \succ a_{g} \tag{3.40}
\end{equation*}
$$

for all $\gamma \in \Gamma_{Q}$ and $g \in \mathfrak{S}$ and it follows from (3.38) and the estimate $a_{n a}^{2} \geqslant a_{n}$ (see Lemma 2.1.4) that

$$
a_{n_{1} n_{2} a} \succ \sqrt{a_{n_{1}}}
$$

for all $n_{1} \in N_{\Gamma, Q}, n_{2} \in N^{\Gamma, Q}$ and $a \in A_{Q}$. Thus,

$$
\begin{equation*}
\left(1+\log a_{\gamma^{-1} g}\right)^{-r} \prec\left(1+\log a_{\gamma}\right)^{-r} \tag{3.41}
\end{equation*}
$$

for all $\gamma \in \Gamma_{Q}$ and $g \in \mathfrak{S}$. Since $\rho_{\Gamma_{Q}}=\delta_{\Gamma_{Q}}$ by Lemma 3.5.4,

$$
\begin{equation*}
\sum_{\gamma \in \Gamma_{Q}} a_{\gamma}^{-\rho_{\Gamma}}\left(1+\log a_{\gamma}\right)^{-r} \tag{3.42}
\end{equation*}
$$

is finite for all $r \geqslant 1$.
Let $g \in \mathfrak{S}$. It follows from (3.39), (3.40), (3.41) and (3.42) that there is $c^{\prime \prime \prime}>0$ such that (3.37) is less or equal than

$$
c^{\prime \prime \prime} a_{g}^{-\rho^{\Gamma} Q}\left(1+\log a_{g}\right)^{-r} \sum_{\gamma \in \Gamma_{Q}} a_{\gamma^{-1} g}^{-\rho_{\Gamma}}\left(1+\log a_{\gamma}\right)^{-r} \prec a_{Q}\left(g^{-1}\right)^{-\rho_{\Gamma} Q} a_{g}^{-\rho^{\Gamma} Q}\left(1+\log a_{g}\right)^{-r}
$$

as moreover $\rho^{\Gamma Q}+\rho_{\Gamma_{Q}}=\rho$. Thus, $\sum_{\gamma \in \Gamma_{Q}}\left|L_{X} R_{Y} f\left(\gamma^{-1} g\right)\right|$ is finite for all $g \in G$. Assume from now on that $X \in \mathcal{U}\left(\mathfrak{n}_{Q}\right)$ if $G=\mathrm{SO}(1, n)^{0}$ and that $X=1$ otherwise. Then, $\operatorname{Ad}(\gamma)^{-1} X=X$ for all $\gamma \in \Gamma_{Q}$. Hence, $g \in G \mapsto \sum_{\gamma \in \Gamma_{Q}} L_{X} R_{Y} f\left(\gamma^{-1} g\right)$ is smooth and is equal to $L_{X} R_{Y} F_{f}$. So, ${ }_{\mathfrak{S}^{\prime}} p_{r, X, Y}\left(F_{f}\right)$ is finite.
The part of the proposition, where we assume only that f is a Schwartz function, follows now from Proposition 3.6.58. Consequently, F_{f}^{Ω} and F_{f}^{Q} are well-defined. Assume from now on that $f \in{ }^{\circ} \mathscr{C}\left(G, V_{\varphi}\right)$. Then,

$$
F_{f}^{\Omega}(g, h)=\sum_{\gamma \in \Gamma} \varphi(\gamma) \int_{N} f\left(\gamma^{-1} g n h\right) d n=0
$$

for all $g \in G(\Omega), h \in G$ and $F_{f}^{Q}(g)$ is, up to a positive multiplicative constant, equal to

$$
\sum_{\Gamma / \Gamma_{Q}} p_{Q}\left(\varphi(\gamma) \int_{N_{Q} M_{\Gamma, Q}} f\left(\gamma^{-1} n m g\right) d n d m\right)=0
$$

for all $g \in G$. This completes the proof of the proposition.

3.6.11 Series expansion of f

Let $G=\operatorname{SO}(1, n)^{0}, n \geqslant 2$, and let M, A, N, K be the subgroups of G induced by the corresponding one of $\operatorname{Sp}(1, n)$ computed in Appendix B (then $N \subset \exp \left(\mathfrak{g}_{\alpha}\right)$). Let Q be a Γ-cuspidal parabolic subgroup of G. Without loss of generality, we may assume that $Q=P:=M A N$.
Let $N_{\Gamma}=N_{\Gamma, P}, M_{\Gamma}=M_{\Gamma, P}, N^{\Gamma}=N^{\Gamma, P}$ and $k=\operatorname{dim}\left(N_{\Gamma}\right) \geqslant 1$.
Let Γ^{\prime} be the normal subgroup of finite index of Γ_{P} provided by Auslander's theorem (see Section 3.2 - also for what follows).
Let $\phi:\left\{n_{\gamma} \mid \gamma \in \Gamma^{\prime}\right\} \rightarrow M_{\Gamma^{\prime}}, n_{\gamma} \mapsto m_{\gamma}$. This defines a group homomorphism from $\left\{n_{\gamma} \mid \gamma \in \Gamma^{\prime}\right\}$ to $M_{\Gamma^{\prime}}$.
By Lemma 3.2 of [BO07, p.26], there exists a subgroup V of finite index in $\left\{n_{\gamma} \mid\right.$ $\left.\gamma \in \Gamma^{\prime}\right\}$ such that the restriction of ϕ to V extends to a group homomorphism from N_{Γ} to M_{Γ}, which we denote by abuse of notation also by ϕ.
By 3.1.5 of [BO07, p.26], we can choose Γ^{\prime} with the following properties:
(1) $\left\{n_{\gamma} \mid \gamma \in \Gamma^{\prime}\right\}$ is contained in V;
(2) $M_{\Gamma^{\prime}}$ coincides with $\overline{\phi\left(N_{\Gamma}\right)}$;
(3) $M_{\Gamma^{\prime}}$ has finite index in M_{Γ}.

Let Z_{1}, \ldots, Z_{k} be a basis of \mathfrak{n}_{Γ} such that

$$
\left\{n_{\gamma} \mid \gamma \in \Gamma^{\prime}\right\}=\left\{\exp \left(n_{1} Z_{1}+\cdots+n_{k} Z_{k}\right) \mid n_{1}, \ldots, n_{k} \in \mathbb{Z}\right\}
$$

For $z \in \mathbb{R}^{k}$, set $n_{z}^{N_{\Gamma},\left\{Z_{j}\right\}}=\exp \left(z_{1} Z_{1}+\cdots+z_{k} Z_{k}\right)$.
Let $\underline{n} \in \mathbb{Z}^{k}$. Then, $n_{\underline{n}}^{N_{\mathrm{r}},\left\{Z_{j}\right\}} \phi\left(n_{\underline{n}}^{N_{\mathrm{r}},\left\{Z_{j}\right\}}\right) \in \Gamma^{\prime}$. Set $\tau(\underline{n})=\varphi\left(n_{\underline{n}}^{N_{\Gamma},\left\{Z_{j}\right\}} \phi\left(n_{\underline{n}}^{N_{\mathrm{F}},\left\{Z_{j}\right\}}\right)\right)$. Then, τ is a unitary representation of \mathbb{Z}^{k} on V_{φ} since

$$
\underline{n} \in \mathbb{Z}^{k} \mapsto n_{\underline{\underline{\Gamma}}}^{N_{\mathrm{\Gamma}},\left\{Z_{j}\right\}} \phi\left(n_{\underline{n}}^{N_{\mathrm{\Gamma}},\left\{Z_{j}\right\}}\right) \in \Gamma^{\prime}
$$

is a group isomorphism. If we identify Γ^{\prime} as a group with \mathbb{Z}^{k}, then τ is equal to φ. Since Γ^{\prime} is isomorphic to \mathbb{Z}^{k} (abelian) as a group and since every unitary finitedimensional representation on an abelian group can be written as a direct sum of 1dimensional representations, it suffices to have a series expansion for $\operatorname{dim}_{\mathbb{C}} V_{\varphi}=1$. So, let us assume that we can identify V_{φ} with \mathbb{C}.
Then, there exist $\lambda_{j} \in[0,1)$ such that $\tau(v)=e^{2 \pi i \lambda_{1} v_{1}} \cdots e^{2 \pi i \lambda_{k} v_{k}}$ for all $v \in \mathbb{Z}^{k}$. Thus, we can extend τ to a representation of \mathbb{R}^{k}, which we denote by abuse of notation also by τ.
Set $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)^{t}$. Let $g \in G$ and let $f \in C^{\infty}(\Gamma \backslash G, \varphi)$.
Since $z \in \mathbb{R}^{k} \mapsto \tau(-z) f\left(n_{z}^{N_{\Gamma},\left\{Z_{j}\right\}} \phi\left(n_{z}^{N_{\Gamma},\left\{Z_{j}\right\}}\right) g\right)$ belongs to $C^{\infty}\left(\mathbb{Z}^{k} \backslash \mathbb{R}^{k}\right)$, we have

$$
e^{-2 \pi i\langle z, \lambda\rangle} f\left(n_{z}^{N_{\mathrm{\Gamma}},\left\{Z_{j}\right\}} \phi\left(n_{z}^{N_{\mathrm{\Gamma}},\left\{Z_{j}\right\}}\right) g\right)=\sum_{x \in \mathbb{Z}^{k}} c_{x, g}(f) e^{2 \pi i\langle z, x\rangle} \quad\left(z \in \mathbb{R}^{k}\right),
$$

where $c_{x, g}(f):=\int_{\mathbb{Z}^{k} \backslash \mathbb{R}^{k}} f\left(n_{u}^{N_{\Gamma},\left\{Z_{j}\right\}} \phi\left(n_{u}^{N_{\Gamma},\left\{Z_{j}\right\}}\right) g\right) e^{-2 \pi i\langle u, \lambda+x\rangle} d u$. Thus,

$$
f\left(n_{z}^{N_{\Gamma},\left\{Z_{j}\right\}} \phi\left(n_{z}^{N_{\Gamma},\left\{Z_{j}\right\}}\right) g\right)=\sum_{x \in \mathbb{Z}^{k}} c_{x, g}(f) e^{2 \pi i\langle z, \lambda+x\rangle} \quad\left(z \in \mathbb{R}^{k}\right)
$$

and

$$
f(g)=\sum_{x \in \mathbb{Z}^{k}} c_{x, g}(f) .
$$

Since $\operatorname{vol}\left(\Gamma^{\prime} \backslash N_{\Gamma} M_{\Gamma^{\prime}}\right)=\#\left(\Gamma^{\prime} \backslash \Gamma_{P}\right) \operatorname{vol}\left(\Gamma_{P} \backslash N_{\Gamma} M_{\Gamma}\right) \#\left(M_{\Gamma} / M_{\Gamma^{\prime}}\right)$ and since

$$
\int_{\Gamma^{\prime} \backslash N_{\Gamma} M_{\Gamma^{\prime}}} f^{0}(n m g) d n d m=\#\left(\Gamma^{\prime} \backslash \Gamma_{P}\right) \#\left(M_{\Gamma} / M_{\Gamma^{\prime}}\right) \int_{\Gamma_{P} \backslash N_{\Gamma} M_{\Gamma}} f^{0}(n m g) d n d m
$$

for all $g \in G$,

$$
\frac{1}{\operatorname{vol}\left(\Gamma^{\prime} \backslash N_{\Gamma} M_{\Gamma^{\prime}}\right)} \int_{\Gamma^{\prime} \backslash N_{\Gamma} M_{\Gamma^{\prime}}} f^{0}(n m g) d n d m=f^{P, l c}(g) .
$$

It follows that

$$
\left(f-f^{P, l c}\right)(g)=\sum_{x \in \mathbb{Z}^{k}: \lambda+x \neq 0} c_{x, g}(f) .
$$

Indeed:
(1) If λ is zero, then $f=f^{0}$ and $f^{P, l c}(g)=c_{0, g}(f)$.
(2) If λ is nonzero, then $\lambda+x \neq 0$ for all $x \in \mathbb{Z}^{k}, f^{0}=0$ and $\left(f-f^{P, l c}\right)(g)$ is equal to $f(g)$.

Moreover, $\operatorname{vol}\left(\mathbb{Z}^{k} \backslash \mathbb{R}^{k}\right)=1$.

3.6.12 Rapid decay on Siegel sets

Lemma 3.6.65. Let $k \in \mathbb{N}$, let $\lambda \in \mathbb{R}^{k}$ and let $\|\cdot\|$ be a norm on \mathbb{R}^{k}. Then,

$$
\sum_{x \in \mathbb{Z}^{k}: x \neq-\lambda} \frac{1}{\|\lambda+x\|^{N+1}}
$$

converges if $N \geqslant k$.
Proof. Without loss of generality, $\|\cdot\|=\|\cdot\|_{2}$ and $\lambda_{j} \in[0,1)$. Then, $x_{j}+\lambda_{j}=0$ if and only if $x_{j}=0$ and $\lambda_{j}=0$.
Then, $x \neq-\lambda$ for all $x \in \mathbb{Z}^{k} \backslash\{0\}$. Moreover, there are constants $c_{1}, c_{2}>0$ such that

$$
c_{1}\|x\|_{2} \leqslant\|\lambda+x\|_{2} \leqslant c_{2}\|x\|_{2}
$$

for all $x \in \mathbb{Z}^{k} \backslash\{0\}$. So, the above series converges if and only if $\sum_{0 \neq x \in \mathbb{Z}^{k}} \frac{1}{\|x\|_{2}^{N+1}}$ converges.
Let $N \geqslant k$. Since $0 \neq x \in \mathbb{R}^{k} \mapsto \frac{1}{\|x\|_{2}^{N+1}}$ continuous, nonnegative function that is decreasing in each variable,

$$
\sum_{x \in \mathbb{Z}^{k}: x_{j} \neq 0} \frac{1}{\|x\|_{2}^{N+1}}=\sum_{x \in \mathbb{Z}^{k}:\left|x_{j}\right| \geqslant 1} \frac{1}{\|x\|_{2}^{N+1}}
$$

converges by the integral test for convergence applied repeatedly as

$$
\begin{aligned}
\int_{\left\{x \in \mathbb{R}^{n}:\left|x_{j}\right| \geqslant 1\right\}} & \frac{1}{\|y\|_{2}^{m+1}} d y \leqslant \int_{\left\{x \in \mathbb{R}^{n}:\|x\|_{2} \geq 1\right\}} \frac{1}{\|y\|_{2}^{n+1}} d y \\
& =\operatorname{vol}\left(S^{n-1}\right) \int_{1}^{\infty} \frac{1}{r^{n+1}} \cdot r^{n-1} d r=\operatorname{vol}\left(S^{n-1}\right) \int_{1}^{\infty} \frac{1}{r^{2}} d r<\infty
\end{aligned}
$$

for all $m \geqslant n \geqslant 1$. This shows in particular that the lemma holds for $k=1$.
Let $E_{k}=\mathbb{Z}^{k} \backslash\{0\}$ and let

$$
E_{k, i}=\left\{\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right) \in \mathbb{R}^{k-1} \mid\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right) \neq 0\right\}
$$

Since

$$
\sum_{x \in E_{k}} \frac{1}{\|x\|_{2}^{N+1}}=\sum_{x \in \mathbb{Z}^{k}: x_{j} \neq 0} \frac{1}{\|x\|_{2}^{N+1}}+\sum_{i=1}^{k} \sum_{x \in E_{k, i}} \frac{1}{\left\|\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right)\right\|_{2}^{N+1}}
$$

the lemma follows by induction.
Definition 3.6.66. Let f be a Γ-equivariant smooth function from G to V_{φ} and let \mathfrak{S} be a (nongeneralised) Siegel set in G with respect to Q. We say that f is rapidly decreasing on \mathfrak{S} if for all $r \geqslant 0, X \in \mathcal{U}\left(\mathfrak{n}_{Q}\right), Y \in \mathcal{U}(\mathfrak{g})$ and all $N \in \mathbb{N}$ there exists a constant $C>0$ such that

$$
\left|L_{X} R_{Y} f(g)\right| \leqslant C h_{Q}(g)^{-N \alpha_{Q}} a_{g}^{-\rho^{\Gamma} Q}\left(1+\log a_{g}\right)^{-r}
$$

for all $g \in \mathbb{S}$.

Remark 3.6.67. We restrict ourselves here to Siegel sets as the estimate is only interesting when $h_{Q}(g)$ is big.

Theorem 3.6.68. Let Q be a Γ-cuspidal parabolic subgroup of G and let f be a Schwartz function near eQ. Let \mathfrak{S} be an admissible (nongeneralised) standard Siegel set in G with respect to Q. If $\mathfrak{n}_{\Gamma, Q}$ is an ideal in \mathfrak{n}_{Q}, then $f-f^{Q, l c}$ is rapidly decreasing on \mathfrak{S}.

Remark 3.6.69.

(1) $\mathfrak{n}_{\Gamma, Q}$ is an ideal in \mathfrak{n}_{Q} if and only if $\mathfrak{g}_{2 \alpha_{Q}}$ is contained in $\mathfrak{n}_{\Gamma, Q}$ or $\mathfrak{n}_{\Gamma, Q}$ is contained in $\mathfrak{g}_{2 \alpha_{Q}}$.
(2) If $e Q$ has full rank or if we are in the real hyperbolic case, then $\mathfrak{n}_{\Gamma, Q}$ is an ideal in \mathfrak{n}_{Q}.
(3) Compare with, e.g., Theorem 7.5 of [Bor97, p.72] and Theorem 6.9 of [Bor07, p.27].

Proof. Let $Y \in \mathcal{U}\left(\mathfrak{n}_{Q}\right)$ and $Y^{\prime} \in \mathcal{U}(\mathfrak{g})$. Without loss of generality, we may assume that $Y^{\prime}=1$. Without loss of generality, we may assume that Q is equal to P. Let us consider first the real hyperbolic case: $G=\operatorname{SO}(1, n)^{0}(n \geqslant 2)$. Let $k=\operatorname{dim}\left(N_{\Gamma, P}\right)$.
Since Γ^{\prime} is isomorphic to \mathbb{Z}^{k} (abelian) as a group and since every unitary finitedimensional representation on an abelian group can be written as a direct sum of one-dimensional representations, we may assume without loss of generality that $\operatorname{dim}_{\mathbb{C}} V_{\varphi}=1$. Let us identify V_{φ} with \mathbb{C}.
In the following, we use the notations seen in Section 3.6.11. Then,

$$
f(g)=\sum_{x \in \mathbb{Z}^{k}} c_{x, g}(f) .
$$

Let $x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{k}$. Let $j \in\{1, \ldots, k\}$ be such that $\left|x_{j}\right|=\max _{i}\left|x_{i}\right|$. By doing integration by parts repeatedly, we have

$$
\begin{align*}
& \text { 43) } \int_{[0,1]^{k}}\left(L_{Y} f\right)\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}} \phi\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}}\right) \cdot\right)(g) e^{-2 \pi i\langle u, \lambda+x\rangle} d u \tag{3.43}\\
& = \\
& =\left(\frac{-1}{2 \pi i\left(\lambda_{j}+x_{j}\right)}\right)^{p} \int_{[0,1]^{k}} \frac{\partial^{p}}{\partial u_{j}^{p}}\left(\left(L_{Y} f\right)\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}} \phi\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}}\right) \cdot\right)(g)\right) e^{-2 \pi i\langle u, \lambda+x\rangle} d u .
\end{align*}
$$

To simplify notations, we continue the proof with the assumption $Y=1$. Without this further assumption, one must use at some moment that we can write $\operatorname{Ad}(n m) X\left(n \in \omega, m \in M_{\Gamma}\right)$ as finite linear combination of elements in $\mathcal{U}(\mathfrak{n})$ with bounded coefficients.
Let $\left\{X_{l}\right\}_{l=1, \ldots, \operatorname{dim}(\mathfrak{g})}$ be a basis of \mathfrak{g}. Then, there exist smooth functions $c_{j, l}$ on K such that

$$
\operatorname{Ad}\left(k(g)^{-1}\right)\left(Z_{j}\right)=\sum_{l=1}^{\operatorname{dim}(\mathfrak{g})} c_{j, l}\left(k(g)^{-1}\right) X_{l}
$$

Assume that either λ or x is nonzero. Since $\frac{\partial^{p} f}{\partial u_{j}^{i}}\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}} \phi\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}}\right) g\right)$ is equal to

$$
R_{Z_{j}}^{p}\left(R_{g} f\right)\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}} \phi\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}}\right)\right)
$$

by the chain rule. This is again equal to

$$
\begin{aligned}
& \left.\quad \frac{\partial^{p}}{\partial s_{1} \cdots \partial s_{p}}\right|_{s_{1}=\cdots=s_{p}=0} f\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}} \phi\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}}\right) g\right. \\
& \quad \exp \left(h(g)^{-\alpha_{P}}\left(s_{1} \operatorname{Ad}\left(k(g)^{-1}\right)\left(Z_{j}\right)+\cdots+s_{p} \operatorname{Ad}\left(k(g)^{-1}\right)\left(Z_{j}\right)\right)\right) \\
& =h(g)^{-p \alpha_{P}} \sum_{m=1}^{p} \sum_{l_{m}=1}^{\operatorname{dim}(\mathfrak{g})} \prod_{i=1}^{p} c_{j, l_{i}}\left(k(g)^{-1}\right)\left(R_{X_{l_{1}} \cdots X_{l_{p}}} f\right)\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}} \phi\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}}\right) g\right),
\end{aligned}
$$

(3.43) is equal to

$$
\begin{aligned}
\left(\frac{-1}{2 \pi i\left(\lambda_{j}+x_{j}\right)}\right)^{p} h(g)^{-p \alpha_{P}} & \sum_{m=1}^{p} \sum_{l_{m}=1}^{\operatorname{dim}(\mathfrak{g})} c_{j, l_{m}}\left(k(g)^{-1}\right) \\
& \int_{[0,1]^{k}} R_{X_{l_{1}} \cdots X_{l_{p}}} f\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}} \phi\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}}\right) g\right) e^{-2 \pi i\langle u, \lambda+x\rangle} d u .
\end{aligned}
$$

As f is a Schwartz function near $e P$ and as $\sup _{k \in K, j, l}\left|c_{j, l}(k)\right|$ is finite, the absolute value of this is less or equal than

$$
C \sum_{m=1}^{p} \sum_{l_{m}=1}^{\operatorname{dim}(\mathfrak{g})}{ }_{\mathfrak{S}^{\prime}} p_{r, 1, X_{l_{1}} \cdots X_{l_{p}}}(f) \cdot \frac{1}{\left(\max _{i}\left|\lambda_{i}+x_{i}\right|\right)^{p}} \cdot h(g)^{\rho_{\Gamma_{P}}-p \alpha_{P}} a_{g}^{-\rho^{\Gamma_{P}}}\left(1+\log a_{g}\right)^{-r}
$$

for some constant $C>0$. The theorem follows in the real hyperbolic case as

$$
\left(f-f^{P, l c}\right)(g)=\sum_{x \in \mathbb{Z}^{k}: x \neq-\lambda} c_{x, g}(f)
$$

is equal to

$$
\begin{aligned}
& \sum_{x \in \mathbb{Z}^{k}: x \neq-\lambda} \int_{[0,1]^{k}} f\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}} \phi\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}}\right) g\right) e^{-2 \pi i\langle u, \lambda+x\rangle} d u \\
= & \sum_{x \in \mathbb{Z}^{k}: x \neq-\lambda}\left(\frac{-1}{2 \pi i\left(\lambda_{j}+x_{j}\right)}\right)^{p} h(g)^{-p \alpha_{P}} \sum_{m=1}^{p} \sum_{l_{m}=1}^{\operatorname{dim}(\mathfrak{g})} c_{j, l_{m}}\left(k(g)^{-1}\right) \\
& \quad \int_{[0,1]^{k}}\left(R_{X_{l_{1}} \cdots X_{l_{p}}} f\right)\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}} \phi\left(n_{u}^{N_{\Gamma},\left\{Z_{i}\right\}}\right) g\right) e^{-2 \pi i\langle u, \lambda+x\rangle} d u
\end{aligned}
$$

and as $\sum_{x \in \mathbb{Z}^{k}: x \neq-\lambda} \frac{1}{\|\lambda+x\|_{\infty}^{p}}$ converges for p sufficiently large by Lemma 3.6.65.

Let us consider now the general case. To simplify notations, we still assume that $Y=1$.
Since $\Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}}$ is abelian, V_{φ} can be decomposed into an orthogonal direct sum of 1-dimensional ($\Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}}$)-invariant spaces.
Without loss of generality, we may assume that f takes values in such a 1 dimensional space $W_{\varphi} \equiv \mathbb{C}$.
As $L:=\left\{n_{\gamma} \mid \gamma \in \Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}}\right\}$ is a cocompact lattice of $N_{\Gamma} \cap N_{2 \alpha}$ (abelian), L is isomorphic to some \mathbb{Z}^{l}.
Let now Z_{1}, \ldots, Z_{l} be a basis of $\mathfrak{n}_{\Gamma} \cap \mathfrak{g}_{2 \alpha}$ such that

$$
L=\left\{\exp \left(n_{1} Z_{1}+\cdots+n_{l} Z_{l}\right) \mid n_{1}, \ldots, n_{l} \in \mathbb{Z}\right\} .
$$

For $z \in \mathbb{R}^{l}$, set $n_{z}^{N_{\Gamma} \cap N_{2 \alpha},\left\{Z_{j}\right\}}=\exp \left(z_{1} Z_{1}+\cdots+z_{l} Z_{l}\right)$.
Let p the orthogonal projection from W_{φ} to $W_{\varphi}^{\Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}}}$.
Similarly as before, one can show that f has a series expansion:

$$
f(g)=\sum_{x \in \mathbb{Z}^{l}} c_{x, g}(f),
$$

where $c_{x, g}(f):=\int_{[0,1]^{l}} f\left(n_{u}^{N_{\Gamma} \cap N_{2 \alpha},\left\{Z_{i}\right\}} g\right) e^{-2 \pi i\langle u, \lambda+x\rangle} d u$.
Let $M_{L}=\left\{m_{\gamma} \mid \gamma \in \Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}}\right\}$.
Let $c_{1}=\frac{1}{\operatorname{vol}\left(\left(\Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}}\right) \backslash\left(N_{\Gamma} \cap N_{2 \alpha}\right) M_{L}\right)}$ and $c_{2}=\frac{1}{\operatorname{vol}\left(\left(\Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}} \backslash \Gamma^{\prime}\right) \backslash\left(\left(N_{\Gamma} \cap N_{2 \alpha}\right) M_{L} \backslash N_{\Gamma} M_{\Gamma^{\prime}}\right)\right)}$. Then,

$$
c_{1} c_{2}=\frac{1}{\operatorname{vol}\left(\Gamma^{\prime} \backslash N_{\Gamma} M_{\Gamma^{\prime}}\right)} .
$$

Let

$$
f^{P, l c, 1}(g)=c_{1} \int_{\left(\Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}}\right) \backslash\left(N_{\Gamma} \cap N_{2 \alpha}\right) M_{L}}(p(f))(n m g) d n d m
$$

(called "partial little constant term").
If $W_{\varphi}=W_{\varphi}^{\Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}}}$, then $\lambda=0$. Otherwise, $W_{\varphi}^{\Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}}}=0$ and then $\lambda \neq 0$. Hence, $\lambda+x \neq 0$ for all $x \in \mathbb{Z}^{l}$. Moreover, $f^{P, l c, 1}=0$ as $p(f)=0$ and therefore $f^{P, l c}$ vanishes, too.
As previously, one can show that

$$
f(g)-f^{P, l c, 1}(g)=\sum_{x \in \mathbb{Z}^{l}: x \neq-\lambda} c_{x, g}(f)
$$

has rapid decay. Thus, $f=f-f^{P, l c, 1}=f-f^{P, l c}$ decays rapidly if $W_{\varphi}^{\Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}}}=0$. It remains to consider the case $W_{\varphi}=W_{\varphi}^{\Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}}}$. Then, φ induces a representation of $\Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}} \backslash \Gamma^{\prime}$ on $W_{\varphi}^{\Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}}}$.
Since $f(g)-f^{P, l c}(g)=f(g)-c_{1} c_{2} \int_{\Gamma^{\prime} \backslash N_{\Gamma} M_{\Gamma^{\prime}}} f^{0}(n m g) d n d m$ is equal to

$$
\begin{aligned}
&\left(f(g)-f^{P, l c, 1}(g)\right)+\left(f^{P, l c, 1}(g)-c_{1} c_{2} \int_{\Gamma^{\prime} \backslash N_{\Gamma} M_{\Gamma^{\prime}}} f^{0}(n m g) d n d m\right) \\
&=\left(f(g)-f^{P, l c, 1}(g)\right) \\
&+\left(f^{P, l c, 1}(g)-c_{2} \int_{\left(\Gamma^{\prime} \cap N_{2 \alpha} \backslash \Gamma^{\prime} \backslash \backslash\left(N_{\Gamma} \cap N_{2 \alpha} \backslash N_{\Gamma} M_{\Gamma^{\prime}}\right)\right.}\left(f^{P, l c, 1}\right)^{0}(n m g) d n d m\right),
\end{aligned}
$$

it remains to show that the last two terms decay rapidly.
The group $N_{\Gamma} \cap N_{2 \alpha} \backslash N_{\Gamma}$ is abelian ($\left[N_{\Gamma}, N_{\Gamma}\right] \subset N_{\Gamma} \cap N_{2 \alpha}$) and can be identified with $\mathbb{R}^{l^{\prime}}$, where

$$
l^{\prime}:=\operatorname{dim}_{\mathbb{R}}\left(N_{\Gamma} \cap N_{2 \alpha} \backslash N_{\Gamma}\right)=\operatorname{dim}_{\mathbb{R}}\left(\left(\mathfrak{n}_{\Gamma} \cap \mathfrak{g}_{2 \alpha}\right) \backslash \mathfrak{n}_{\Gamma}\right) .
$$

Let C be the orthogonal complement of $\mathfrak{n}_{\Gamma} \cap \mathfrak{g}_{2 \alpha}$ in \mathfrak{n}_{Γ}.
Since $\left\{n_{\gamma} \mid \gamma \in \Gamma^{\prime}\right\}$ is a cocompact lattice in N_{Γ} and since L is a cocompact lattice in $N_{\Gamma} \cap N_{2 \alpha}, L \backslash\left\{n_{\gamma} \mid \gamma \in \Gamma^{\prime}\right\}$ is a cocompact lattice in $\left(N_{\Gamma} \cap N_{2 \alpha}\right) \backslash N_{\Gamma}$.
Let $Z_{1}^{\prime}, \ldots, Z_{l^{\prime}}^{\prime}$ be a basis of C such that

$$
\left\{L n_{\gamma} \mid \gamma \in \Gamma^{\prime}\right\}=\left\{L \exp \left(n_{1} Z_{1}^{\prime}+\cdots+n_{l^{\prime}} Z_{l^{\prime}}^{\prime}\right) \mid n_{1}, \ldots, n_{l^{\prime}} \in \mathbb{Z}\right\}
$$

For $z \in \mathbb{R}^{l^{\prime}}$, set $n_{z}^{\left(N_{\Gamma} \cap N_{2 \alpha}\right) \backslash N_{\Gamma},\left\{Z_{j}^{\prime}\right\}}=\exp \left(z_{1} Z_{1}^{\prime}+\cdots+z_{l^{\prime}} Z_{l^{\prime}}^{\prime}\right)$.
Hence, we have a series expansion for $c_{0, g}(f)=f^{P, l c, 1}(g)(\lambda=0)$:

$$
f^{P, l c, 1}(g)=\sum_{x \in \mathbb{Z}^{\prime \prime}} c_{x, g}^{\prime}(f)
$$

where $c_{x, g}^{\prime}(f)$ is given by

$$
\int_{[0,1]^{\prime}} f^{P, l c, 1}\left(n_{u}^{\left(N_{\Gamma} \cap N_{2 \alpha}\right) \backslash N_{\Gamma},\left\{Z_{i}^{\prime}\right\}} \phi\left(n_{u}^{\left(N_{\Gamma} \cap N_{2 \alpha}\right) \backslash N_{\Gamma},\left\{Z_{i}^{\prime}\right\}}\right) g\right) e^{-2 \pi i\left\langle u, \lambda^{\prime}+x\right\rangle} d u
$$

Again, one can show similarly as in the real hyperbolic case that

$$
\begin{aligned}
& f^{P, l c, 1}(g)-f^{P, l c}(g) \\
= & f^{P, l c, 1}(g)-c_{2} \int_{\left(\left(\Gamma^{\prime} \cap N_{2 \alpha} M_{\Gamma^{\prime}}\right) \backslash \Gamma^{\prime}\right) \backslash\left(\left(N_{\Gamma} \cap N_{2 \alpha}\right) M_{L} \backslash N_{\Gamma} M_{\Gamma^{\prime}}\right)}\left(f^{P, l c, 1}\right)^{0}(n m g) d n d m \\
= & \sum_{x \in \mathbb{Z}^{\prime}: x \neq-\lambda^{\prime}} c_{x, g}^{\prime}(f)
\end{aligned}
$$

has rapid decay. Indeed, as $\left[\mathfrak{n}^{\Gamma}, \mathfrak{n}_{\Gamma}\right] \subset \mathfrak{n}_{\Gamma}\left(\right.$ recall that \mathfrak{n}_{Γ} is an ideal in $\left.\mathfrak{n}\right)$, there is $Z^{\prime} \in U\left(\mathfrak{n}_{\Gamma} \cap \mathfrak{g}_{2 \alpha}\right)$ such that

$$
\operatorname{Ad}\left(p_{N^{\Gamma}}\left(\nu(g)^{-1}\right)\right) Z=Z+Z^{\prime}
$$

for every $g \in \mathfrak{S}$ and every $Z \in \mathcal{U}\left(\mathfrak{n}_{\Gamma}\right)$. The theorem follows.

3.7 Relation between the constant term along Ω and the one along a smaller rank cusp

Since we can approach a cusp of smaller rank by ordinary points, the question whether one can relate also the constant terms at these points by a limit formula rises naturally. We show in this section that this is indeed possible in the real hyperbolic case. The formula is given in Theorem 3.7.20 on p.231. With the help of this formula we can then show that the constant terms of a Schwartz function f along a cusp of smaller rank vanishes if the constant term of f along Ω is zero (Theorem 3.7.21, p.232).
Let $G=\operatorname{SO}(1, n)^{0}, n \geqslant 2$, and let M, A, N, K be the subgroups of G induced by the corresponding one of $\operatorname{Sp}(1, n)$ computed in Appendix B (then $N \subset \exp \left(\mathfrak{g}_{\alpha}\right)$). Let Γ be a geometrically finite subgroup of G. Recall that

$$
\begin{gathered}
w=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & I_{n-2}
\end{array}\right), \\
h\left(w n_{v}\right)=a_{\frac{1}{1+\|v\|^{2}}} \quad\left(v \in \mathbb{R}^{n-1}\right)
\end{gathered}
$$

and that

$$
\nu\left(w n_{v}\right)=n_{\frac{1}{1+\|v\|^{2}}\left(-v_{1}, v_{2}, \ldots, v_{n-1}\right)} \quad\left(v \in \mathbb{R}^{n-1}\right) .
$$

Let Q be a Γ-cuspidal parabolic subgroup of G with associated cusp of smaller rank. Without loss of generality, we may assume that $Q=P:=$ MAN.
Let $N_{\Gamma}=N_{\Gamma, P}, M_{\Gamma}=M_{\Gamma, P}, N^{\Gamma}=N^{\Gamma, P}$ and $k=\operatorname{dim}\left(N_{\Gamma}\right) \geqslant 1$.
Since $e P$ is not of full rank, $n-k-1 \geqslant 1$. This is only possible if $n \geqslant 3$.
Let $M_{k}=\left\{m \in M \mid m n m^{-1}=n \quad \forall n \in N^{\Gamma}, m n^{\prime} m^{-1} \in N_{\Gamma} \quad \forall n^{\prime} \in N_{\Gamma}\right\}$.
As $m_{A} n_{v} m_{A}^{-1}=n_{A v}$, we may assume without loss of generality that

$$
N_{\Gamma}=\left\{n_{\left(v_{n-k}, \ldots, v_{n-1}\right)}^{N_{\Gamma}}:=n_{\left(0_{1, n-k-1}, v_{n-k}, \ldots, v_{n-1}\right)} \mid v_{i} \in \mathbb{R}\right\}
$$

(by replacing Γ_{P} by $m \Gamma_{P} m^{-1}$ if necessary). Then,

$$
N^{\Gamma}=\left\{n_{\left(v_{1}, \ldots, v_{n-k-1}\right)}^{N^{\Gamma}}:=n_{\left(v_{1}, \ldots, v_{n-k-1}, 0_{1, k}\right)} \mid v_{i} \in \mathbb{R}\right\}
$$

and

$$
M_{k}=\left\{m_{\left.\left.\left(\begin{array}{cc}
I_{n-k+1} & 0_{n-k+1, k} \\
0_{k, n-k+1} & A
\end{array}\right) \right\rvert\, A \in \mathrm{SO}(k)\right\} . . .}\right.
$$

Define

$$
\Phi_{2}\left(\psi_{0}\right)=\left(\cos \psi_{0}, \sin \psi_{0}\right)
$$

and

$$
\Phi_{d}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)=\left(\cos \psi_{d-2} \cdot \Phi_{d-1}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{d-3}\right), \sin \psi_{d-2}\right)
$$

3.7.1 Several small results

Let $d \in \mathbb{N}, d \geqslant 2$. Let us show now how the spherical coordinates and $\mathfrak{s o}(d)$ are related.

Lemma 3.7.1. There exist elements $Y_{0}, Y_{1}, \ldots, Y_{d-2} \in \mathfrak{s o}(d)$ such that

$$
\left(\Phi_{d}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)\right)^{t}=\prod_{j=0}^{d-2} \exp \left(-\psi_{j} Y_{j}\right)\left(1,0_{1, d-1}\right)^{t}
$$

for all $\psi_{j} \in \mathbb{R}$.
Proof. Let $d \in \mathbb{N}, d \geqslant 2$. For $j \in\{0, \ldots, d-2\}$, define

$$
Y_{j}=\left(\begin{array}{cccc}
0 & 0_{1, j} & 1 & 0_{1, d-j-2} \\
0_{j, 1} & 0_{j, j} & 0_{j, 1} & 0_{j, d-j-2} \\
-1 & 0_{1, j} & 0 & 0_{1, d-j-2} \\
0_{d-j-2,1} & 0_{d-j-2, j} & 0_{d-j-2,1} & 0_{d-j-2, d-j-2}
\end{array}\right) \in \mathfrak{s o l}(d) .
$$

The lemma follows easily by induction on d.
Let us denote the partial derivative with respect to the j-th Cartesian coordinate in \mathbb{R}^{d} by ∂_{j} and the partial derivatives relative to the spherical coordinates in \mathbb{R}^{d} by $\partial_{r}, \partial_{\psi_{0}}, \ldots, \partial_{\psi_{d-2}}$.
The following lemma shows how $\partial_{j}(j \in\{1, \ldots, d\})$ is expressed in spherical coordinates.

Lemma 3.7.2. There exist continuous functions $p_{i, j}^{(d)}:(0,2 \pi) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)^{d-2} \rightarrow \mathbb{R}$ such that

$$
\cos \psi_{1}\left(\cos \psi_{2}\right)^{2} \cdots\left(\cos \psi_{d-2}\right)^{d-2} p_{i, j}^{(d)}\left(\psi_{0}, \ldots, \psi_{d-2}\right)
$$

are polynomials in

$$
\cos \left(\psi_{0}\right), \ldots, \cos \left(\psi_{d-2}\right), \sin \left(\psi_{0}\right), \ldots, \sin \left(\psi_{d-2}\right)
$$

for all $i \in\{0, \ldots, d-2\}, j \in\{1, \ldots, d\}$ and

$$
\partial_{j}=\Phi_{d}\left(\psi_{0}, \ldots, \psi_{d-2}\right)_{j} \partial_{r}+\frac{1}{r} \sum_{i=0}^{d-2} p_{i, j}^{(d)}\left(\psi_{0}, \ldots, \psi_{d-2}\right) \partial_{\psi_{i}} .
$$

Proof. By induction, one can show that

$$
\begin{equation*}
\operatorname{det}\left(\mathrm{d}\left(r \Phi_{d}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)\right)\right)=r^{d-1} \cos \psi_{1}\left(\cos \psi_{2}\right)^{2} \cdots\left(\cos \psi_{d-2}\right)^{d-2} \tag{3.44}
\end{equation*}
$$

Let A_{j} be the matrix formed by replacing the j-th column of

$$
\mathrm{d}\left(r \Phi_{d}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)\right)^{t}
$$

by the column vector $\left(\partial_{r}, \partial_{\psi_{0}}, \partial_{\psi_{1}}, \ldots, \partial_{\psi_{d-2}}\right)$. By the chain rule, we have

$$
\left(\begin{array}{c}
\partial_{r} \\
\partial_{\psi_{0}} \\
\partial_{\psi_{1}} \\
\vdots \\
\partial_{\psi_{d-2}}
\end{array}\right)=\left(\mathrm{d}\left(r \Phi_{d}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)\right)\right)^{t}\left(\begin{array}{c}
\partial_{1} \\
\partial_{2} \\
\vdots \\
\partial_{d}
\end{array}\right)
$$

By Cramer's rule and (3.44), we get

$$
\partial_{j}=\frac{\operatorname{det}\left(A_{j}\right)}{r^{d-1} \cos \psi_{1}\left(\cos \psi_{2}\right)^{2} \cdots\left(\cos \psi_{d-2}\right)^{d-2}} \quad(j \in\{1, \ldots, d\}) .
$$

Let $q_{i, j}^{(d)}\left(r, \psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)$ be the ∂_{r}-coordinate, (resp. $\partial_{\psi_{i-2}}$-coordinate) if $i=-1$ (resp. $i \in\{0, \ldots, d-2\}$) of $\frac{\operatorname{det}\left(A_{j}\right)}{r^{d-1} \cos \psi_{1}\left(\cos \psi_{2}\right)^{2} \ldots\left(\cos \psi_{d-2}\right)^{d-2}}$.
Note that $q_{-1, j}^{(d)}\left(r, \psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)$ and $r q_{i, j}^{(d)}\left(r, \psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)(i \in\{0, \ldots, d-2\})$ are independent of r for all j. For $j \in\{1, \ldots, d\}$, set

$$
p_{-1, j}^{(d)}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)=q_{-1, j}^{(d)}\left(r, \psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)
$$

and

$$
p_{i, j}^{(d)}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)=r q_{i, j}^{(d)}\left(r, \psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right) \quad(i \in\{0, \ldots, d-2\})
$$

Then, the functions $p_{i, j}^{(d)}:(0,2 \pi) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)^{d-2} \rightarrow \mathbb{R}$ are as required.
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, v \mapsto\|v\|_{2}$. Then, $\partial_{r} f=1$ and $\partial_{\psi_{0}} f=\partial_{\psi_{1}} f=\cdots=\partial_{\psi_{d-2}} f=0$. If $v=r \Phi_{d}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)$, then

$$
p_{-1, j}^{(d)}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)=\partial_{j}\left(\|v\|_{2}\right)=\frac{v_{j}}{\|v\|_{2}}=\Phi_{d}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{d-2}\right)_{j}
$$

for all $j \in\{1, \ldots, d\}$. The lemma follows.
Lemma 3.7.3. Let f be a continuous function on $S^{d-1}(d \geqslant 2)$. Then,

$$
\int_{\mathrm{SO}(d)} f\left(A\left(1,0_{1, d-1}\right)^{t}\right) d A=\frac{1}{\operatorname{vol}\left(S^{d-1}\right)} \int_{S^{d-1}} f(x) d x
$$

Remark 3.7.4. If f is a function on $S^{0}=\{-1,1\}$, then

$$
\int_{S^{0}} f(x) d x=\frac{1}{2}(f(1)+f(-1)) .
$$

Proof. Let $d \geqslant 2$. Let $g: \mathrm{SO}(d) / \mathrm{SO}(d-1) \rightarrow S^{d-1}, A \mathrm{SO}(d-1) \mapsto A\left(1,0_{1, d-1}\right)^{t}$. Then, g is a diffeomorphism which identifies these two spaces.
Since $\mathrm{SO}(d) / \mathrm{SO}(d-1)$ has up to a multiplicative constant a unique invariant measure, the push-forward of the spherical measure on S^{d-1} by g divided by $\operatorname{vol}\left(S^{d-1}\right)$ is equal to the normalised invariant measure on $\mathrm{SO}(d) / \mathrm{SO}(d-1)$.
Let f be a continuous function on S^{d-1}. Then, $\int_{\mathrm{SO}(d)} f\left(A\left(1,0_{1, d-1}\right)^{t}\right) d A$ is equal to

$$
\int_{\mathrm{SO}(d) / \mathrm{SO}(d-1)} f\left(A\left(1,0_{1, d-1}\right)^{t}\right) d A=\frac{1}{\operatorname{vol}\left(S^{d-1}\right)} \int_{S^{d-1}} f(x) d x
$$

as $\operatorname{vol}(\operatorname{SO}(d-1))=1$.

Let $n \geqslant 3$. For $A=\left(a_{i, j}\right)_{i, j} \in \operatorname{SO}(n-1)$, we have

$$
w m_{A} w=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & a_{1,1} & -a_{1,2} & \cdots & -a_{1, n-1} \\
0 & 0 & -a_{2,1} & a_{2,2} & \cdots & a_{2, n-1} \\
0 & 0 & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & -a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1, n-1}
\end{array}\right) .
$$

In particular, $w m_{A} w=m_{A}$ if $A=\left(\begin{array}{cc}1 & 0_{1, n-2} \\ 0_{n-2,1} & B\end{array}\right)$ for some $B \in \operatorname{SO}(n-2)$.
Thus, $w m w=m$ for all $m \in M_{k}$.
Lemma 3.7.5. For all $n \in N$ and $m \in M$, we have
(1) $h\left(w m n m^{-1}\right)=h(w n)$;
(2) $\nu\left(w m n m^{-1}\right)=\left(w m w^{-1}\right) \nu(w n)\left(w m w^{-1}\right)^{-1}$;
(3) $k\left(w m n m^{-1}\right)=w m w^{-1} k(w n) m^{-1}$.

Proof. Let $n \in N$ and $m \in M$. As $w M w^{-1} \subset M$,

$$
\begin{aligned}
w m n m^{-1} & =\left(w m w^{-1}\right) w n m^{-1} \\
& =\left(w m w^{-1}\right) \nu(w n) h(w n) k(w n) m^{-1} \\
& =\left(\left(w m w^{-1}\right) \nu(w n)\left(w m w^{-1}\right)\right) h(w n)\left(w m w^{-1} k(w n) m^{-1}\right) .
\end{aligned}
$$

The lemma follows.
Let $\bar{n}_{v}=\theta\left(n_{v}\right) \in \bar{N}$.
Lemma 3.7.6. For $n \in N$, we have

$$
\begin{gathered}
n(\theta n)=\nu(\theta n), \\
a(\theta n)=h(\theta n)^{-1}
\end{gathered}
$$

and

$$
\kappa(\theta n)=k(\theta n)=w k(w n) .
$$

Moreover, for any $v \in \mathbb{R}^{n-1}(n \geqslant 2)$, we have

$$
k\left(\bar{n}_{v}\right)=n_{v} a \frac{1}{1+\|v\|^{2}} \bar{n}_{v}=\bar{n}_{v} a_{1+\|v\|^{2}} n_{v} .
$$

Proof. For $v \in \mathbb{R}^{n-1}$, we have

$$
\begin{gathered}
n\left(\bar{n}_{v}\right)=\nu\left(\bar{n}_{-v}\right)^{-1}=n_{-\frac{1}{1+\|v\|^{2}} v}=\nu\left(\bar{n}_{v}\right), \\
a\left(\bar{n}_{v}\right)=h\left(\bar{n}_{-v}\right)^{-1}=a_{1+\|v\|^{2}}=h\left(\bar{n}_{v}\right)^{-1}
\end{gathered}
$$

and

$$
k\left(\bar{n}_{v}\right)=h\left(\bar{n}_{v}\right)^{-1} \nu\left(\bar{n}_{v}\right)^{-1} \bar{n}_{v}=a_{1+\|v\|^{2} n} \frac{1}{1+\|v\|^{2}} v^{v} \bar{n}_{v}=n_{v} a \frac{1}{1+\|v\|^{2}} \bar{n}_{v} .
$$

Thus, $k\left(\bar{n}_{v}\right)$ is also equal to

$$
\theta\left(k\left(\bar{n}_{v}\right)\right)=\bar{n}_{v} a_{1+\|v\|^{2}} n_{v}
$$

and $\kappa\left(\bar{n}_{v}\right)$ is equal to

$$
k\left(\bar{n}_{-v}\right)^{-1}=\theta\left(k\left(\bar{n}_{-v}\right)^{-1}\right)=\theta\left(\bar{n}_{v} a_{1+\|v\|^{2}} n_{v}\right)=n_{v} a \frac{1}{1+\|v\|^{2}} \bar{n}_{v}=k\left(\bar{n}_{v}\right) .
$$

Hence,

$$
\begin{aligned}
w k\left(w n_{v}\right) & =w k\left(\bar{n}_{\left(v_{1},-v_{2}, \ldots,-v_{n-1}\right)}\right) w \\
& =w n_{\left(v_{1},-v_{2}, \ldots,-v_{n-1}\right)} a \frac{1}{1+\|v\|^{2}} \bar{n}_{\left(v_{1},-v_{2}, \ldots,-v_{n-1}\right)} w \\
& =\bar{n}_{v} a_{1+\|v\|^{2}} n_{v}=k\left(\bar{n}_{v}\right) .
\end{aligned}
$$

This completes the proof of the lemma.
Corollary 3.7.7. We have
(1) $k\left(w n_{v}\right)^{-1}=k\left(w n_{\left(-v_{1}, v_{2}, \ldots, v_{n-1}\right)}\right)$;
(2) $w k\left(w n_{v}\right) w=k\left(w n_{\left(v_{1},-v_{2}, \ldots,-v_{n-1}\right)}\right)$.

Proof. This corollary follows immediately from the previous lemma.

Lemma 3.7.8. Let $v \in \mathbb{R}^{n-1}(n \geqslant 2)$. Then,

$$
\bar{n}_{v} n_{v} \bar{n}_{v}=k\left(\bar{n}_{v}\right) n_{\left(\|v\|^{2}-1\right) v} k\left(\bar{n}_{v}\right) .
$$

If $\|v\|=1$, then

$$
\bar{n}_{v} n_{v} \bar{n}_{v}=k\left(\bar{n}_{v}\right)^{2}=n_{v} \bar{n}_{v} n_{v} .
$$

Proof. For $v \in \mathbb{R}^{n-1}$, we have

$$
\bar{n}_{v} n_{v} \bar{n}_{v}=\kappa\left(\bar{n}_{v}\right) a\left(\bar{n}_{v}\right) n\left(\bar{n}_{v}\right) n_{v} \nu\left(\bar{n}_{v}\right) h(\bar{n}) k\left(\bar{n}_{v}\right) .
$$

By Lemma 3.7.6, this is equal to

$$
\begin{aligned}
k\left(\bar{n}_{v}\right) h(\bar{n})^{-1} \nu\left(\bar{n}_{v}\right) n_{v} \nu\left(\bar{n}_{v}\right) h(\bar{n}) k\left(\bar{n}_{v}\right) & =k\left(\bar{n}_{v}\right) a_{1+\|v\|^{2}} n_{v-\frac{2}{1+\|v\|^{2}} v} a_{1+\|v\|^{2}}^{-1} k\left(\bar{n}_{v}\right) \\
& =k\left(\bar{n}_{v}\right) n_{\left(\|v\|^{2}-1\right) v} k\left(\bar{n}_{v}\right) .
\end{aligned}
$$

The lemma follows.
Lemma 3.7.9. Let $n \geqslant 2$ and let $v \in \mathbb{R}^{n-1}$ be of norm 1. Let $A \in \operatorname{SO}(n-1)$ be such that $A\left(1,0_{1, n-2}\right)^{t}=v$. Then,

$$
k\left(w n_{v}\right) w k\left(w n_{v}\right)=w n_{v} w n_{\left(v_{1},-v_{2}, \ldots,-v_{n-1}\right)} w n_{v}=w m_{A} w m_{A}^{-1} \in M .
$$

Proof. Let v and A be as above. Then,

$$
w n_{v} w n_{\left(v_{1},-v_{2}, \ldots,-v_{n-1}\right)} w n_{v}
$$

is equal to

$$
\begin{aligned}
w n_{v} \bar{n}_{v} n_{v} & =w\left(m_{A} n_{e_{1}} m_{A}^{-1}\right)\left(m_{A} \bar{n}_{e_{1}} m_{A}^{-1}\right)\left(m_{A} n_{e_{1}} m_{A}^{-1}\right) \\
& =w m_{A} n_{e_{1}} \bar{n}_{e_{1}} n_{e_{1}} m_{A}^{-1} .
\end{aligned}
$$

A direct computation shows that $n_{e_{1}} \bar{n}_{e_{1}} n_{e_{1}}$ is equal to w. Thus, the above is equal to $w m_{A} w m_{A}^{-1}$. The lemma follows now from Lemma 3.7.8.

Lemma 3.7.10. Let $n \geqslant 3$ and $v(t) \in \mathbb{R}^{n-1}$ be such that $\|v(t)\|$ converges to ∞ when t tends to ∞. Assume that $v^{\prime}:=\lim _{t \rightarrow \infty} \frac{v(t)}{\|v(t)\|}$ exists and has norm 1. Let $A \in \mathrm{SO}(n-1)$ be such that $A\left(1,0_{1, n-2}\right)^{t}=v^{\prime}$. Then, $\lim _{t \rightarrow \infty} k\left(w n_{v(t)}\right)$ exists and is equal to

$$
\begin{aligned}
& k\left(w n_{v^{\prime}}\right) w k\left(w n_{v^{\prime}}\right) \\
= & w n_{\left(v_{1}^{\prime}, \ldots, v_{n-1}^{\prime}\right)} w n_{\left(v_{1}^{\prime},-v_{2}^{\prime}, \ldots,-v_{n-1}^{\prime}\right)} w n_{\left(v_{1}^{\prime}, \ldots, v_{n-1}^{\prime}\right)} \\
= & w m_{A} w m_{A}^{-1} .
\end{aligned}
$$

In particular, $\lim _{t \rightarrow \infty} k\left(w n_{t\left(1,0_{1, n-1}\right)}\right)=e$.
Remark 3.7.11. Let $v(t)$ be as above. Assume that there exists $c(t) \in(0,+\infty)$ such that $v^{\prime}:=\lim _{t \rightarrow \infty} \frac{v(t)}{c(t)}$ exists and has norm 1. Then,

$$
\lim _{t \rightarrow \infty} \frac{v(t)}{\|v(t)\|}=\lim _{t \rightarrow \infty} \frac{v(t)}{c(t)} \frac{c(t)}{\|v(t)\|}
$$

exists also, is equal to v^{\prime} and has norm 1 .
Proof. Let $v(t), v^{\prime}$ and A be as above. Let $\tilde{v}(t)=\frac{v(t)}{\|v(t)\|}$.
Since $w n_{\tilde{v}(t)} w n_{\left(\tilde{v}_{1}(t),-\tilde{v}_{2}(t), \ldots,-\tilde{v}_{n-1}(t)\right)} w n_{\tilde{v}(t)}$ belongs to M by the previous lemma,

$$
k\left(w n_{v(t)}\right)=k\left(w n_{\tilde{v}(t)} a_{\|v(t)\|}^{-1}\right)
$$

is equal to

$$
\begin{aligned}
& k\left(n_{\left(-\tilde{v}_{1}(t), \tilde{v}_{2}(t), \ldots, \tilde{v}_{n-1}(t)\right)} w n_{-\tilde{v}(t)} w a_{\|v(t)\|}^{-1}\right) w n_{\tilde{v}(t)} w n_{\left(\tilde{v}_{1}(t),-\tilde{v}_{2}(t), \ldots,-\tilde{v}_{n-1}(t)\right)} w n_{\tilde{v}(t)} \\
= & k\left(a_{\|v(t)\|}\left(w n_{-\tilde{v}(t)} w\right) a_{\|v(t)\|}^{-1}\right) w n_{\tilde{v}(t)} w n_{\left(\tilde{v}_{1}(t),-\tilde{v}_{2}(t), \ldots, \tilde{v}_{n-1}(t)\right)} w n_{\tilde{v}(t)} .
\end{aligned}
$$

Since $w n_{-\tilde{v}(t)} w \in \bar{N}$, since $\lim _{t \rightarrow \infty}\|\tilde{v}(t)\|=1<\infty$ and since $\lim _{t \rightarrow \infty}\|v(t)\|=+\infty$, $a_{\|v(t)\|}\left(w n_{-\tilde{v}(t)} w\right) a_{\|v(t)\|}^{-1}$ converges to e when t tends to ∞, the above converges to

$$
w n_{v^{\prime}} w n_{\left(v_{1}^{\prime},-v_{2}^{\prime}, \ldots,-v_{n-1}^{\prime}\right)} w n_{v^{\prime}}
$$

when t tends to ∞. The lemma follows by the previous one.

3.7.2 The diffeomorphism $\Upsilon_{1, t, s}$

The map $\Upsilon_{1, t, s}^{G}: N \rightarrow N^{\Gamma} A$, which we define in this section, will satisfy

$$
\kappa\left(n_{t} w\right) n_{-t} n=n^{\prime} \Upsilon_{1, t, s}^{G}(n) k^{\prime} \quad(n \in N)
$$

for some $n^{\prime} \in N_{\Gamma}$ and $k^{\prime} \in K$ depending on t and n. Moreover, we show that it induces a diffeomorphism.

As $w=w^{-1}$, we have

$$
\begin{equation*}
\kappa\left(n_{t} w\right)=n_{t} w a\left(n_{t} w\right)^{-1}\left(a\left(n_{t} w\right) n\left(n_{t} w\right)^{-1} a\left(n_{t} w\right)^{-1}\right)=n_{t} w h\left(w n_{-t}\right) n_{t} . \tag{3.45}
\end{equation*}
$$

For $n \in N$, we have

$$
\begin{aligned}
n_{t} w h\left(w n_{-t}\right) n a_{s} & =n_{t} h\left(w n_{-t}\right)^{-1} a_{s}^{-1} w n^{a_{\frac{1}{s}}} \\
& =n_{t} h\left(w n_{-t}\right)^{-1} a_{s}^{-1} \nu\left(w n^{a_{\frac{1}{s}}}\right) h\left(w n^{a_{\frac{1}{s}}}\right) k\left(w n^{a_{\frac{1}{s}}}\right) \\
& =n_{t} \nu\left(w n^{a_{1}}\right)^{h\left(w n_{-t}\right)^{-1} a_{s}^{-1}} h\left(w n_{-t}\right)^{-1} a_{s}^{-1} h\left(w n^{a_{1}}\right) k\left(w n^{a_{\frac{1}{s}}}\right) .
\end{aligned}
$$

The canonical projection of the horosphere

$$
\left(\kappa\left(n_{t} w\right) N \kappa\left(n_{t} w\right)^{-1}\right) \kappa\left(n_{t} w\right) a_{s} K
$$

on $N^{\Gamma} A$ gives the preimage of a horoball under the natural map from $N^{\Gamma} A$ to $N^{\Gamma} A K$ which we denote by $B_{t, s}^{G}$.
Let us now look at an example: When X is the upper half-space, then the projection of the 3-dimensional sphere on the upper half-plane gives us a disc (the hatched area):

The disc in the upper half-plane converges to the area $\{x+i y \mid x \in \mathbb{R}, y>1\}$.
For $g \in G$, set $\nu_{N_{\Gamma}}(g)=p_{N_{\Gamma}}(\nu(g))$ and $\nu_{N^{\Gamma}}(g)=p_{N^{\Gamma}}(\nu(g))$.
Define

$$
\begin{aligned}
\Upsilon_{1, t, s}^{G}: & N \rightarrow N^{\Gamma} A, \\
n \mapsto & \nu_{N^{\Gamma}}\left(n_{t} w h\left(w n_{-t}\right) n a_{s}\right) h\left(n_{t} w h\left(w n_{-t}\right) n a_{s}\right) \\
& =\nu_{N^{\Gamma}}\left(n_{t} \nu\left(w n^{a_{1}}\right)^{h\left(w n_{-t}\right)^{-1} a_{s}^{-1}}\right) h\left(w n_{-t}\right)^{-1} a_{s}^{-1} h\left(w n^{a_{1}}\right) .
\end{aligned}
$$

By construction, $\operatorname{im}\left(\Upsilon_{1, t, s}^{G}\right)=B_{t, s}^{G}$.
Set $\Upsilon_{1, t, s}=(n . a .)^{-1} \circ \Upsilon_{1, t, s}^{G} \circ n .: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-k-1} \times(0,+\infty)$.
Set $B_{t, s}=(\text { n.a. })^{-1}\left(B_{t, s}^{G}\right)$. So, $B_{t, s}=\operatorname{im}\left(\Upsilon_{1, t, s}\right)$.
Since $n_{t} w h\left(w n_{-t}\right) a_{s}=n_{t} a_{\frac{1}{s}\left(1+t^{2}\right)} w,\left(t, 0_{1, n-k-2}, \frac{1}{s}\left(1+t^{2}\right)\right) \in B_{t, s}$.
$B_{t, s}$ is the ball in $\mathbb{R}^{n-k-1} \times(0,+\infty)$ whose boundary contains $\left(t, 0_{1, n-k-1}\right)$ and is tangent to $\mathbb{R}^{n-k-1} \times\{0\}$. Thus, the center $C_{t, s}$ of $B_{t, s}$ is given by $C_{t, s}=$ $\left(t, 0_{1, n-k-2}, c_{t, s}\right)$, where $c_{t, s}:=\frac{1}{2 s}\left(1+t^{2}\right)$. Since

$$
\left.\begin{array}{rl}
& \nu_{N^{\Gamma}}\left(n_{t} \nu\left(w n_{v}^{a^{\frac{1}{s}}}\right)^{h\left(w n_{-t}\right.}\right)^{-1} a_{s}^{-1}
\end{array}\right)
$$

and

$$
h\left(w n_{-t}\right)^{-1} a_{s}^{-1} h\left(w n_{v}^{a^{\frac{1}{s}}}\right)=a_{t^{2}+1} a_{\frac{1}{s}} h\left(w n_{\frac{1}{s} v}\right)=a_{\frac{t^{2}+1}{s} a_{\frac{1}{1+\frac{1}{s^{2}}\|v\|^{2}}}=a_{\frac{t^{2}+1}{s+\frac{1}{s}\|v\|^{2}}}, ., ~}^{\text {. }} \text {, }
$$

we have

$$
\Upsilon_{1, t, s}(v)=\left(\left(t-\frac{t^{2}+1}{s^{2}+\|v\|^{2}} v_{1}, \frac{t^{2}+1}{s^{2}+\|v\|^{2}} v_{2 . n-k-1}\right), \frac{t^{2}+1}{s+\frac{1}{s}\|v\|^{2}}\right) .
$$

Define

$$
S^{k-1} \times \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}, \quad u \cdot\left(v_{1}, \ldots, v_{n-1}\right) \mapsto\left(v_{1}, \ldots, v_{n-k-1}, \sqrt{\sum_{j=n-k}^{n-1} v_{j}^{2}} u\right)
$$

As $\Upsilon_{1, t, s}$ is uniquely defined if we know v_{1}, \ldots, v_{n-k-1} and $\sqrt{\sum_{j=n-k}^{n-1} v_{j}^{2}}$,

$$
\Upsilon_{1, t, s}(u . v)=\Upsilon_{1, t, s}(v)
$$

for all $u \in S^{k-1}$ and $v \in \mathbb{R}^{n-1}$. Let $x \in \mathbb{R}^{n-1} \backslash\{0\}$. Then, there is a unique $u \in S^{k-1}$ such that $u . x \in \mathbb{R}^{n-k-1} \times\left\{\left(r, 0_{1, k-1}\right) \mid r \in(0, \infty)\right\}$. By abuse of notation, we will denote the map

$$
\mathbb{R}^{n-k-1} \times(0, \infty) \rightarrow \mathbb{R}^{n-k-1} \times(0, \infty),(v, r) \mapsto \Upsilon_{1, t, s}\left(\left(v, r, 0_{1, k-1}\right)\right)
$$

also by $\Upsilon_{1, t, s}$. It is given by $\Upsilon_{1, t, s}(v, r)=\left(\left(t-\frac{t^{2}+1}{s^{2}+\|v\|^{2}+r^{2}} v_{1}, \frac{t^{2}+1}{s^{2}+\|v\|^{2}+r^{2}} v_{2 . n-k-1}\right), \frac{t^{2}+1}{s+\frac{1}{s}\left(\|v\|^{2}+r^{2}\right)}\right)$.

Let us now try to compute the inverse of $\Upsilon_{1, t, s}$. We have

$$
\begin{aligned}
q:=\frac{t^{2}+1}{s+\frac{1}{s}\left(\|v\|^{2}+r^{2}\right)} \in(0,+\infty) & \Longleftrightarrow q\left(s+\frac{1}{s}\left(\|v\|^{2}+r^{2}\right)\right)=t^{2}+1 \\
& \Longleftrightarrow\|v\|^{2}+r^{2}=\frac{s\left(t^{2}+1-q s\right)}{q}
\end{aligned}
$$

Thus,

$$
z_{1}:=t-\frac{t^{2}+1}{s^{2}+\|v\|^{2}+r^{2}} v_{1} \Longleftrightarrow t-z_{1}=\frac{q}{s} \cdot v_{1} \Longleftrightarrow v_{1}=\frac{s\left(t-z_{1}\right)}{q}
$$

and, for $j=2, \ldots, n-k-1$,

$$
z_{j}:=\frac{t^{2}+1}{s^{2}+\|v\|^{2}+r^{2}} v_{j} \Longleftrightarrow z_{j}=\frac{q}{s} \cdot v_{j} \Longleftrightarrow v_{j}=\frac{s z_{j}}{q}
$$

Hence,

$$
r=\sqrt{\frac{s\left(t^{2}+1-q s\right)}{q}-\|v\|^{2}}=\sqrt{-s^{2}+\frac{s\left(t^{2}+1\right)}{q}-\frac{s^{2}}{q^{2}}\left(t-z_{1}\right)^{2}-\frac{s^{2}}{q^{2}} \sum_{j=2}^{n-k-1} z_{j}^{2}} .
$$

Note that this is equal to

$$
\frac{s}{q} \cdot \sqrt{c_{t, s}^{2}-\left(q-c_{t, s}\right)^{2}-\left(t-z_{1}\right)^{2}-\sum_{j=2}^{n-k-1} z_{j}^{2}} .
$$

For $(z, q) \in \operatorname{im}\left(\Upsilon_{1, t, s}\right)=B_{t, s}$, define

$$
\begin{aligned}
& \Psi_{1, t, s}(z, q)=\left(\frac{s\left(t-z_{1}\right)}{q}, \frac{s z_{2}}{q}, \ldots, \frac{s z_{n-k-1}}{q}\right. \\
& \sqrt{\left.-s^{2}+\frac{s\left(t^{2}+1\right)}{q}-\frac{s^{2}}{q^{2}}\left(t-z_{1}\right)^{2}-\frac{s^{2}}{q^{2}} \sum_{j=2}^{n-k-1} z_{j}^{2}\right) \in \mathbb{R}^{n-k-1} \times(0,+\infty) .}
\end{aligned}
$$

Thus, $\Upsilon_{1, t, s}: \mathbb{R}^{n-k-1} \times(0, \infty) \rightarrow B_{t, s}$ is bijective and $\Psi_{1, t, s}$ is its inverse. As $\Upsilon_{1, t, s}$ and $\Psi_{1, t, s}$ are smooth, $\Upsilon_{1, t, s}$ is a diffeomorphism.

3.7.3 The diffeomorphism $\Upsilon_{2, t, s}$

The diffeomorphism $\Upsilon_{2, t}^{G}: N^{\Gamma} A \rightarrow N^{\Gamma} A$ (inducing a diffeomorphism $\Upsilon_{2, t}: \mathbb{R}^{n-k-1} \times$ $\left.(0,+\infty) \rightarrow \mathbb{R}^{n-k-1} \times(0,+\infty)\right)$, which we define in this section, will satisfy

$$
n a=\kappa\left(n_{t} w\right) n_{-t}\left(\Upsilon_{2, t}^{G}\right)^{-1}(n a) k^{\prime} \quad\left(n \in N^{\Gamma}, a \in A\right)
$$

for some $k^{\prime} \in K$ depending on t and n.
As $w=w^{-1}$, we have

$$
\kappa\left(n_{t} w\right)=n_{t} w a\left(n_{t} w\right)^{-1}\left(a\left(n_{t} w\right) n\left(n_{t} w\right)^{-1} a\left(n_{t} w\right)^{-1}\right)=n_{t} w h\left(w n_{-t}\right) n_{t} .
$$

For $n \in N^{\Gamma}$, we have

$$
\begin{aligned}
n_{t} w h\left(w n_{-t}\right) n a_{q} & =n_{t} h\left(w n_{-t}\right)^{-1} a_{q}^{-1} w n^{a_{\frac{1}{q}}^{q}} \\
& =n_{t} h\left(w n_{-t}\right)^{-1} a_{q}^{-1} \nu\left(w n^{a_{\frac{1}{q}}}\right) h\left(w n^{a_{\frac{1}{q}}}\right) k\left(w n^{a_{\frac{1}{q}}}\right) \\
& =n_{t} \nu\left(w n^{\frac{1}{q}}\right)^{h\left(w n_{-t}\right)^{-1} a_{q}^{-1}} h\left(w n_{-t}\right)^{-1} a_{q}^{-1} h\left(w n^{a_{1}}\right) k\left(w n^{a_{\frac{1}{q}}}\right) .
\end{aligned}
$$

Let

$$
\Upsilon_{2, t}^{G}: N^{\Gamma} A \rightarrow N^{\Gamma} A, \quad n a \mapsto \nu\left(n_{t} w h\left(w n_{-t}\right) n a\right) h\left(n_{t} w h\left(w n_{-t}\right) n a\right) .
$$

Set $\Upsilon_{2, t}=\left(n . .^{N^{\Gamma}} a .\right)^{-1} \circ \Upsilon_{2, t}^{G} \circ\left(n^{N^{\Gamma}} a.\right): \mathbb{R}^{n-k-1} \times(0,+\infty) \rightarrow \mathbb{R}^{n-k-1} \times(0,+\infty)$. Since

$$
\nu\left(n_{t} \nu\left(w n_{z}^{a_{\frac{1}{q}}}\right)^{h\left(w n_{-t}\right)^{-1} a_{q}^{-1}}\right)=n_{\left(t-\frac{t^{2}+1}{q^{2}+\|z\|^{2}} z_{1}, \frac{t^{2}+1}{q^{2}+\|z\|^{2}} z_{2 . . n-k-1}\right)}^{N^{\Gamma}}
$$

and

$$
h\left(w n_{-t}\right)^{-1} a_{q}^{-1} h\left(w n_{z}^{a^{\frac{1}{q}}}\right)=a_{\frac{t^{2}+1}{q+\frac{1}{q}\| \|^{2}}},
$$

we have

$$
\Upsilon_{2, t}(z, q)=\left(\left(t-\frac{t^{2}+1}{q^{2}+\|z\|^{2}} z_{1}, \frac{t^{2}+1}{q^{2}+\|z\|^{2}} z_{2 . . n-k-1}\right), \frac{t^{2}+1}{q+\frac{1}{q}\|z\|^{2}}\right) .
$$

Let us now try to compute the inverse of $\Upsilon_{2, t}$. We have

$$
q^{\prime}:=\frac{t^{2}+1}{q+\frac{1}{q}\|z\|^{2}} \Longleftrightarrow q^{\prime}\left(q+\frac{1}{q}\|z\|^{2}\right)=t^{2}+1 \Longleftrightarrow\|z\|^{2}=\frac{q\left(t^{2}+1-q^{\prime} q\right)}{q^{\prime}} .
$$

Thus,

$$
z_{1}^{\prime}:=t-\frac{t^{2}+1}{q^{2}+\|z\|^{2}} z_{1} \Longleftrightarrow t-z_{1}^{\prime}=\frac{q^{\prime}}{q} \cdot z_{1} \Longleftrightarrow z_{1}=\frac{q\left(t-z_{1}^{\prime}\right)}{q^{\prime}}
$$

and, for $j=2, \ldots, n-k-1$,

$$
z_{j}^{\prime}:=\frac{t^{2}+1}{q^{2}+\|z\|^{2}} z_{j} \Longleftrightarrow z_{j}^{\prime}=\frac{q^{\prime}}{q} \cdot z_{j} \Longleftrightarrow z_{j}=\frac{q z_{j}^{\prime}}{q^{\prime}} .
$$

Hence,

$$
\begin{aligned}
& \frac{q\left(t^{2}+1-q^{\prime} q\right)}{q^{\prime}}=\frac{q^{2}\left(t-z_{1}^{\prime}\right)^{2}}{q^{\prime 2}}+\sum_{j=2}^{n-k-1} \frac{q^{2} z_{j}^{\prime 2}}{q^{\prime 2}} \\
\Longleftrightarrow & q^{\prime}\left(\frac{t^{2}+1}{q}-q^{\prime}\right)=t^{2}-2 t z_{1}^{\prime}+\left\|z^{\prime}\right\|^{2} \\
\Longleftrightarrow & q=\frac{q^{\prime}\left(t^{2}+1\right)}{t^{2}-2 t z_{1}^{\prime}+\left\|z^{\prime}\right\|^{2}+q^{\prime 2}} \\
\Longleftrightarrow & q=\frac{q^{\prime}\left(t^{2}+1\right)}{\left(t-z_{1}^{\prime}\right)^{2}+\sum_{j=2}^{n-k-1} z_{j}^{\prime 2}+q^{\prime 2}} .
\end{aligned}
$$

So,

$$
z_{1}=\frac{\left(t-z_{1}^{\prime}\right)\left(t^{2}+1\right)}{\left(t-z_{1}^{\prime}\right)^{2}+\sum_{j=2}^{n-k-1}{z_{j}^{\prime}}^{2}+{q^{\prime}}^{2}}
$$

and, for $j=2, \ldots, n-k-1$,

$$
z_{j}=\frac{z_{j}^{\prime}\left(t^{2}+1\right)}{\left(t-z_{1}^{\prime}\right)^{2}+\sum_{j=2}^{n-k-1} z_{j}^{\prime 2}+q^{\prime 2}} .
$$

For $\left(z^{\prime}, q^{\prime}\right) \in \operatorname{im}\left(\Upsilon_{2, t}\right)$, define $\Psi_{2, t}\left(z^{\prime}, q^{\prime}\right)$ by $(z, q) \in \mathbb{R}^{n-k-1} \times(0,+\infty)$.
Thus, $\Upsilon_{2, t}: \mathbb{R}^{n-k-1} \times(0,+\infty) \rightarrow \mathbb{R}^{n-k-1} \times(0,+\infty)$ is a bijective map and $\Psi_{2, t}$ is its inverse. As $\Upsilon_{2, t}$ and $\Psi_{2, t}$ are smooth, $\Upsilon_{2, t}$ is a diffeomorphism.
Since

$$
\begin{aligned}
& \left(z^{\prime}, q^{\prime}\right)=\Upsilon_{2, t}(z, q) \in B_{t, s} \\
\Longleftrightarrow & \left(z_{1}^{\prime}-t\right)^{2}+\sum_{j=1}^{n-k-1} z_{j}^{\prime 2}+\left(q^{\prime}-c_{t, s}\right)^{2}<c_{t, s}^{2} \\
\Longleftrightarrow & \left(\frac{t^{2}+1}{q^{2}+\|z\|^{2}}\right)^{2}\|z\|^{2}+\left(\frac{t^{2}+1}{q+\frac{1}{q}\|z\|^{2}}-c_{t, s}\right)^{2}<c_{t, s}^{2} \\
\Longleftrightarrow & \frac{\|z\|^{2}}{\left(q^{2}+\|z\|^{2}\right)^{2}}+\left(\frac{q}{q^{2}+\|z\|^{2}}-\frac{1}{2 s}\right)^{2}<\frac{1}{4 s^{2}} \\
\Longleftrightarrow & \frac{\|z\|^{2}+q^{2}}{\left(q^{2}+\|z\|^{2}\right)^{2}}<\frac{q}{s\left(q^{2}+\|z\|^{2}\right)} \\
\Longleftrightarrow & q>s
\end{aligned}
$$

$\Upsilon_{2, t, s}:=\left.\Upsilon_{2, t}\right|_{\mathbb{R}^{n-k-1} \times(s,+\infty)}: \mathbb{R}^{n-k-1} \times(s,+\infty) \rightarrow B_{t, s}$ is also a diffeomorphism. Thus, $\Upsilon_{2, t, s}^{G}:=\left.\Upsilon_{2, t}^{G}\right|_{N^{\Gamma} A_{>s}}$ is a diffeomorphism from $N^{\Gamma} A_{>s}$ to $B_{t, s}^{G}$.

3.7.4 The diffeomorphism $\Upsilon_{t, s}$

For $\tilde{z} \in \mathbb{R}^{n-k-1}$, define $T_{\tilde{z}}: \mathbb{R}^{n-k-1} \times(0,+\infty) \rightarrow \mathbb{R}^{n-k-1} \times(0,+\infty), \quad(z, q) \mapsto$ $(z+\tilde{z}, q)$ (diffeomorphism). Since $\Upsilon_{1, t, s}$ is a diffeomorphism from $\mathbb{R}^{n-k-1} \times(0,+\infty)$ to $B_{t, s}$ and $\left.\Upsilon_{2, t, s}\right|_{\mathbb{R}^{n-k-1} \times(s,+\infty)}$ is a diffeomorphism from $\mathbb{R}^{n-k-1} \times(s,+\infty)$ to $B_{t, s}$,

$$
\Upsilon_{t, s}:=\left.T_{\left(-t, 0_{1, n-k-2)}\right.} \circ \Upsilon_{1, t, s}^{-1} \circ \Upsilon_{2, t, s} \circ T_{(t, 0, n-k-2)}\right|_{\mathbb{R}^{n-k-1} \times(s,+\infty)}
$$

is a diffeomorphism from $\mathbb{R}^{n-k-1} \times(s,+\infty)$ to $\mathbb{R}^{n-k-1} \times(0,+\infty)$.
Let $\left(v_{1}, \ldots, v_{n-k-1}, r\right)=\Upsilon_{t, s}(z, q)\left(z \in \mathbb{R}^{n-k-1}, q>s\right)$. Direct computation shows that $\left(v_{1}, \ldots, v_{n-k-1}, r\right)$ is equal to

$$
\left(-t+\frac{s\left(z_{1}+t\right)}{q}, \ldots, \frac{s z_{n-k-1}}{q}, \sqrt{s} \cdot \sqrt{1-\frac{s}{q}} \cdot \sqrt{q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}}\right) .
$$

Put $r(t, s, z, q)=\sqrt{s} \cdot \sqrt{1-\frac{s}{q}} \cdot \sqrt{q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}}$.
Let $\left(z^{\prime}, q^{\prime}\right)=\Upsilon_{1, t, s}\left(T_{(t, 0, n-k-2)}((v, r))\right)$. Let us treat now first the case when $k \geqslant 2$. Then,

$$
\kappa\left(n_{t} w\right) n_{\left(v_{1}, \ldots, v_{n-k-1}, r \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}
$$

is equal to

$$
\begin{aligned}
& \nu_{N_{\Gamma}}\left(w n_{\left(v_{1}-t, \ldots, v_{n-k-1}, r \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}^{a_{\frac{1}{s}}}\right)^{h\left(w n_{-t}\right)^{-1} a_{s}^{-1}} n_{z^{\prime}} a_{q^{\prime}} \\
& k\left(w n_{\left(v_{1}-t, \ldots, v_{n-k-1}, r \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}^{a_{1}}\right) \\
& =\nu_{N_{\Gamma}}\left(w n_{\left(v_{1}-t, \ldots, v_{n-k-1}, r \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}^{a_{\frac{1}{s}}}\right)^{h\left(w n_{-t}\right)^{-1} a_{s}^{-1}} \kappa\left(n_{t} w\right) n_{z} a_{q} \\
& k\left(w n_{\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)}^{a_{\frac{1}{q}}}\right)^{-1} k\left(w n_{\left(v_{1}, \ldots, v_{n-k-1}, r \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}^{a_{\frac{1}{s}}}\right) \\
& =n^{N_{\Gamma}}\left(\frac{t^{2}+1}{s\left(q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}\right)} \cdot r(t, s, z, q) \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)^{\kappa\left(n_{t} w\right) n_{z} a_{q} k\left(w n_{\frac{\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)}{q}}\right)^{-1}} \\
& k\left(w n_{\left(\frac{z_{1}+t}{q}, \frac{z_{2}}{q}, \ldots, \frac{z_{n-k-1}}{q}, \frac{1}{\sqrt{s}} \cdot \sqrt{1-\frac{s}{q}} \cdot \sqrt{q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}} \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}\right)
\end{aligned}
$$

as

$$
\begin{aligned}
& \nu_{N_{\Gamma}}\left(w n_{\left(v_{1}-t, v_{2}, \ldots, v_{n-k-1}, r \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}^{a_{1}}\right)^{h\left(w n_{-t}\right)^{-1} a_{s}^{-1}} \\
= & n^{N_{\Gamma}}\left(\frac{t^{2}+1}{s\left(q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}\right)} \cdot r(t, s, z, q) \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)
\end{aligned}
$$

and as

$$
\begin{aligned}
& k\left(w n_{\left(v_{1}-t, v_{2}, \ldots, v_{n-k-1}, r \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}\right) \\
= & k\left(w n_{\left(\frac{z_{1}+t}{q}, \frac{z_{2}}{q}, \ldots, \frac{z_{n-k-1}}{q}, \frac{1}{s} r(t, s, z, q) \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}\right) \\
= & k\left(w n_{\left(\frac{z_{1}+t}{q}, \frac{z_{2}}{q}, \ldots, \frac{z_{n-k}}{q}, \frac{1}{\sqrt{s}} \cdot \sqrt{1-\frac{s}{q}} \cdot \sqrt{q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}} \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}\right) .
\end{aligned}
$$

For $u \in[0,1]$, set

$$
\begin{aligned}
m_{u} & :=\lim _{t \rightarrow \infty} k\left(w n_{t\left(\sqrt{u}, 0_{1, n-k-2}, \sqrt{1-u}, 0_{1, k-1}\right)}\right) \\
& =w n_{\left(\sqrt{u}, 0_{1, n-k-2}, \sqrt{1-u}, 0_{k-1}\right)} w n_{\left(\sqrt{u}, 0_{1, n-k-2},-\sqrt{1-u}, 0_{1, k-1}\right)} w n_{\left(\sqrt{u}, 0_{1, n-k-2}, \sqrt{1-u}, 0_{1, k-1}\right)} \\
& =\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0_{1, k-1} \\
0 & 1 & 0 & 0 & 0 & 0_{1, k-1} \\
0 & 0 & 2 u-1 & 0_{1, n-k-2} & 2 \sqrt{u(1-u)} & 0_{1, k-1} \\
0_{n-k-2,1} & 0_{n-k-2,1} & 0_{n-k-2,1} & I_{n-k-2} & 0_{n-k-2,1} & 0_{1, k-1} \\
0 & 0 & -2 \sqrt{u(1-u)} & 0_{1, n-k-2} & 2 u-1 & 0_{1, k-1} \\
0_{k-1,1} & 0_{k-1,1} & 0_{k-1,1} & 0_{k-1,1} & 0_{k-1,1} & I_{k-1, k-1}
\end{array}\right) .
\end{aligned}
$$

Note that $\lim _{t \rightarrow \infty} k\left(w n_{t\left(\sqrt{u}, 0_{1, n-k-2},-\sqrt{1-u}, 0_{1, k-1}\right)}\right)$ is equal to m_{u}^{-1}.
Let $Y_{0}, Y_{1}, \ldots, Y_{k-2} \in \mathfrak{s o}(k)$ be as in the proof of Lemma 3.7.1 (with $d=k$).
Set $A\left(\psi_{0}, \ldots, \psi_{k-2}\right)=\prod_{j=0}^{k-2} \exp \left(-\psi_{j} Y_{j}\right) \in \operatorname{SO}(k)$. For $A \in \operatorname{SO}(k)$, set

$$
m_{A}^{M_{k}}=m_{\operatorname{diag}\left(I_{n-k-1}, A\right)} .
$$

By Lemma 3.7.10 and as $w m w=m$ for all $m \in M_{k}$,

$$
\begin{aligned}
& k\left(w n_{\frac{\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1)}\right.}{q}}\right)^{-1} \\
& k\left(w n_{\left(\frac{z_{1}+t}{q}, \frac{z_{2}}{q}, \ldots, \frac{z_{n-k-1}}{q}, \frac{1}{\sqrt{s}} \cdot \sqrt{1-\frac{s}{q}} \cdot \sqrt{q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}} \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}\right) \\
&= k\left(w n_{\frac{\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)}{q}}\right)^{-1} m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}} \\
& \quad k\left(w n_{\left(\frac{z_{1}+t}{q}, \frac{z_{2}}{q}, \ldots, \frac{z_{n-k-1}}{q}, \frac{1}{\sqrt{s}} \cdot \sqrt{1-\frac{s}{q}} \cdot \sqrt{q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}}\right)}\right)\left(m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}}\right)^{-1}
\end{aligned}
$$

converges to $m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}} m_{\frac{s}{q}}\left(m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}}\right)^{-1}$.
If $k=1$, then $\kappa\left(n_{t} w\right) n_{\left(v_{1}, \ldots, v_{n-k-1}, \pm r\right)}$ is equal to

$$
\begin{aligned}
& \left.n_{ \pm}^{N_{\Gamma}} \frac{t^{2}+1}{s\left(q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}\right)} \cdot r(t, s, z, q)\right) \\
& k\left(w n_{\left(\frac{z_{1}+t}{q}, \frac{z_{2}}{q}, \ldots, \frac{z_{n-k-1}}{q}, \pm \frac{1}{\sqrt{s}} \cdot \sqrt{1-\frac{s}{q}} \cdot \sqrt{q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}}\right)}\right)
\end{aligned}
$$

and

$$
k\left(w_{\left(\frac{z_{1}+t}{q}, \frac{z_{2}}{q}, \ldots, \frac{z_{n-k-1}}{q}, \pm \frac{1}{\sqrt{s}} \cdot \sqrt{1-\frac{s}{q}} \cdot \sqrt{q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}}\right)}\right)
$$

converges to $m_{\frac{s}{q}}$ respectively to $m_{\frac{s}{q}}^{-1}$.
Let us compute now $\left|\operatorname{det}\left(\mathrm{d}\left(\Upsilon_{1, t, s}^{-1} \circ \Upsilon_{2, t, s}\right)(z, q)\right)\right|=\left|\operatorname{det}\left(\mathrm{d}\left(\Psi_{1, t, s} \circ \Upsilon_{2, t, s}\right)(z, q)\right)\right|$ for $z \in \mathbb{R}^{n-k-1}$ and $q \in(s,+\infty)$:
$\left|\operatorname{det}\left(\begin{array}{cc}\operatorname{diag}\left(\frac{s}{q}, \ldots, \frac{s}{q}\right) & \left(-\frac{s z_{1}}{q^{2}}, \ldots,-\frac{s z_{n-k-1}}{q^{2}}\right)^{t} \\ \left(\sqrt{s} \cdot \sqrt{1-\frac{s}{q}} \cdot \frac{\frac{2 z_{1}}{q}}{2 \sqrt{q+\frac{1}{q}\|z\|^{2}}}, \ldots, \sqrt{s} \cdot \sqrt{1-\frac{s}{q}} \cdot \frac{\frac{2 z_{n-k-1}}{q}}{2 \sqrt{q+\frac{1}{q}\|z\|^{2}}}\right) & \frac{s-\frac{s}{q^{2}}\|z\|^{2}+\frac{2 s^{2}}{q^{3}} \cdot\|z\|^{2}}{2 \sqrt{s} \cdot \sqrt{1-\frac{s}{q}} \cdot \sqrt{q+\frac{1}{q}\|z\|^{2}}}\end{array}\right)\right|$.

This is again equal to

$$
\begin{aligned}
& \left(\frac{s}{q}\right)^{n-k-1} \cdot \frac{\sqrt{s}}{2 \sqrt{1-\frac{s}{q}} \cdot \sqrt{q+\frac{1}{q}\|z\|^{2}}} \cdot \\
& \quad \left\lvert\, \operatorname{det}\left(\begin{array}{cc}
\left(\left(1-\frac{s}{q}\right) \cdot \frac{2 z_{1}}{q}, \ldots,\left(1-\frac{s}{q}\right) \cdot \frac{2 z_{n-k-1}}{q}\right) & \left(-\frac{z_{1}}{q}, \ldots,-\frac{z_{n-k-1}}{q^{2}}\right)^{t} \\
\left.\left(z\left\|^{2}+\frac{2 s}{q^{3}} \cdot\right\| z \|^{2}\right) \right\rvert\, .
\end{array}\right.\right.
\end{aligned}
$$

Set

$$
d_{2}=\operatorname{det}\left(\begin{array}{cc}
1 & -\frac{z_{1}}{q} \\
\left(1-\frac{s}{q}\right) \cdot \frac{2 z_{1}}{q} & 1-\frac{1}{q^{2}}\|z\|^{2}+\frac{2 s}{q^{3}} \cdot\|z\|^{2}
\end{array}\right)
$$

and

$$
d_{m}=\operatorname{det}\left(\begin{array}{cc}
I_{m-1} & \left(-\frac{z_{1}}{q}, \ldots,-\frac{z_{m-1}}{q}\right)^{t} \\
\left(\left(1-\frac{s}{q}\right) \cdot \frac{2 z_{1}}{q}, \ldots,\left(1-\frac{s}{q}\right) \cdot \frac{2 z_{m-1}}{q}\right) & 1-\frac{1}{q^{2}}\|z\|^{2}+\frac{2 s}{q^{3}} \cdot\|z\|^{2}
\end{array}\right)
$$

for $m=3, \ldots, n-k$. Then,

$$
\begin{aligned}
d_{2} & =1-\frac{1}{q^{2}}\|z\|^{2}+\frac{2 s}{q^{3}} \cdot\|z\|^{2}+\frac{2 z_{1}^{2}}{q^{2}} \cdot\left(1-\frac{s}{q}\right) \\
& =1-\frac{\|z\|^{2}}{q^{2}}+\frac{2 s}{q^{3}} \cdot\left(\|z\|^{2}-z_{1}^{2}\right)+\frac{2 z_{1}^{2}}{q^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
d_{m} & =d_{m-1}-\left(1-\frac{s}{q}\right) \cdot \frac{2 z_{m-1}}{q} \cdot \operatorname{det}\left(\begin{array}{cc}
I_{m-2} & \left(-\frac{z_{1}}{q}, \ldots,-\frac{z_{m-2}}{q}\right)^{t} \\
0_{1, m-2} & -\frac{z_{m-1}}{q}
\end{array}\right) \\
& =d_{m-1}+\left(1-\frac{s}{q}\right) \cdot \frac{2 z_{m-1}^{2}}{q^{2}} \\
& =\cdots=d_{2}+\frac{2 \cdot\left(1-\frac{s}{q}\right)}{q^{2}} \cdot \sum_{j=2}^{m-1} z_{j}^{2} \\
& =1-\frac{\|z\|^{2}}{q^{2}}+\frac{2 s}{q^{3}} \cdot\left(\|z\|^{2}-z_{1}^{2}\right)+\frac{2 z_{1}^{2}}{q^{2}}+\frac{2\left(1-\frac{s}{q}\right)}{q^{2}} \cdot \sum_{j=2}^{m-1} z_{j}^{2} \\
& =1+\frac{\|z\|^{2}}{q^{2}}+\frac{2 s}{q^{3}}\left(\|z\|^{2}-\sum_{j=1}^{m-1} z_{j}^{2}\right) .
\end{aligned}
$$

Thus, $\left|\operatorname{det}\left(\mathrm{d}_{t, s}(z, q)\right)\right|$ is equal to

$$
\begin{aligned}
&\left(\frac{s}{q}\right)^{n-k-1} \cdot \frac{\sqrt{s}}{2 \sqrt{1-\frac{s}{q}} \cdot \sqrt{q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}}} \cdot\left|d_{n-k}\right| \\
&=s^{n-k-\frac{1}{2}} q^{-n+k} \cdot \frac{\sqrt{q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}}}{2 \sqrt{1-\frac{s}{q}}} .
\end{aligned}
$$

Put

$$
\mu(t, s, z, q)=r(t, s, z, q)^{k-1} \cdot\left|\operatorname{det}\left(\mathrm{~d}_{t, s}(z, q)\right)\right|
$$

This is equal to

$$
\frac{s^{n-\frac{k}{2}-1}\left(q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}\right)^{\frac{k}{2}}}{2 q^{n-k}} \cdot\left(1-\frac{s}{q}\right)^{\frac{k}{2}-1}
$$

Thus,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{\mu(t, s, z, q)}{t^{k}}=\frac{1}{2 s}\left(\frac{s}{q}\right)^{n-\frac{k}{2}}\left(1-\frac{s}{q}\right)^{\frac{k}{2}-1} \tag{3.46}
\end{equation*}
$$

for all $z \in \mathbb{R}^{n-k-1}$ and $q>s$ fixed.

3.7.5 The formula for left $N_{\Gamma} M_{\Gamma}$-invariant Schwartz functions

Let $g \in G$ and let f be a left $N_{\Gamma} M_{\Gamma}$-invariant Schwartz function near $e P$. Let T (depending on g) be sufficiently large so that for all $t \geqslant T$ there exists an admissible generalised standard Siegel set \mathfrak{S} with respect to P (depending on g and t) in G such that $U_{\kappa\left(n_{t} w\right), g}$ (see Definition 2.3.29) is contained in \mathfrak{S}^{\prime}. Thus, $f^{\Omega}\left(\kappa\left(n_{t} w\right), g\right)$ for t sufficiently large is well-defined by Proposition 3.6.6 and by the proof of Proposition 2.3.30.

Lemma 3.7.12. Let f be a Schwartz function near $e P$ and let $d>1$. Then, there exists a constant $C>0$ such that $\left|f\left(n^{\prime} \kappa\left(n_{t} w\right) n_{z} a_{q} h\right)\right| \cdot \frac{\mu(t, s, z, q)}{t^{k}}$ is less or equal than

$$
\begin{equation*}
C s^{n-\frac{k}{2}-1} a\left(\theta n_{z}\right)^{-\frac{n-k-1}{2}}\left(1+\log a_{\theta n_{z}}\right)^{-d} q^{-\frac{n-k+1}{2}}\left(1-\frac{s}{q}\right)^{\frac{k}{2}-1}(1+|\log (q)|)^{-d} \tag{3.47}
\end{equation*}
$$

for all $n^{\prime} \in N_{\Gamma}$ and $h \in K$.
Remark 3.7.13. (3.47) is integrable over $\mathbb{R}^{n-k-1} \times\{q \in \mathbb{R} \mid q>s\}$ by Proposition 2.3.26.

Proof. Let $\xi=\xi_{P, N^{\Gamma}}$. Let $d>1$. By the proof of Lemma 2.3.28 applied to $E=N^{\Gamma}$ and as

$$
h\left(\kappa\left(n_{t} w\right) n_{z} a_{q}\right)^{(1-\xi) \rho_{P}}=\frac{\left(t^{2}+1\right)^{\frac{k}{2}}}{\left(q+\frac{1}{q} \cdot\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}\right)^{\frac{k}{2}}},
$$

there exist $C>0$ and $T>0$ such that

$$
\begin{aligned}
\left|f\left(n^{\prime} \kappa\left(n_{t} w\right) n_{z} a_{q} h\right)\right| \leqslant C a\left(\theta n_{z}\right)^{-\xi \rho_{P}} & \cdot \frac{\left(t^{2}+1\right)^{\frac{k}{2}}}{\left(q+\frac{1}{q} \cdot\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}\right)^{\frac{k}{2}}} \\
& \cdot q^{\frac{n-k-1}{2}}\left(1+\log a_{\theta n_{z}}\right)^{-d}(1+|\log (q)|)^{-d}
\end{aligned}
$$

for all $n^{\prime} \in N_{\Gamma}, z \in \mathbb{R}^{n-k-1}$ and $q>s$ with $t \geqslant T$. Since moreover $\sup _{t \geqslant T} \frac{\left(t^{2}+1\right)^{\frac{k}{2}}}{2 t^{k}}$ is finite, there exists a constant $C^{\prime}>0$ such that

$$
\begin{aligned}
& \left|f\left(n^{\prime} \kappa\left(n_{t} w\right) n_{z} a_{q} h\right)\right| \cdot \frac{\mu(t, s, z, q)}{t^{k}} \\
= & \left|f\left(n^{\prime} \kappa\left(n_{t} w\right) n_{z} a_{q} h\right)\right| \cdot \frac{s^{n-\frac{k}{2}-1}\left(q+\frac{1}{q} \cdot\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}\right)^{\frac{k}{2}}}{2 t^{k} q^{n-k}} \cdot\left(1-\frac{s}{q}\right)^{\frac{k}{2}-1}
\end{aligned}
$$

is less or equal than

$$
C^{\prime} s^{n-\frac{k}{2}-1} a\left(\theta n_{z}\right)^{-\xi \rho_{P}}\left(1+\log a_{\theta n_{z}}\right)^{-d} q^{-\frac{n-k+1}{2}}\left(1-\frac{s}{q}\right)^{\frac{k}{2}-1}(1+|\log (q)|)^{-d}
$$

Proposition 3.7.14. Let f be a left $N_{\Gamma} M_{\Gamma}$-invariant Schwartz function near eP and let $h \in K$. If $k \geqslant 2$, then $\lim _{t \rightarrow \infty} \frac{1}{t^{k}} \int_{N} f\left(\kappa\left(n_{t} w\right) n a_{s} h\right) d n$ is equal to

$$
\frac{\operatorname{vol}\left(S^{k-1}\right)}{2} \cdot \int_{0}^{1} u^{n-\frac{k}{2}-2}(1-u)^{\frac{k}{2}-1} \int_{M_{k}} \int_{N_{\Gamma} \backslash N} f\left(n a_{\frac{s}{u}} m m_{u} m^{-1} h\right) d n d m d u
$$

where m_{u} is defined as in Section 3.7.4.
If $k=1$, then $\lim _{t \rightarrow \infty} \frac{1}{t^{k}} \int_{N} f\left(\kappa\left(n_{t} w\right) n a_{s} h\right) d n$ is equal to

$$
\left.\begin{array}{l}
\frac{1}{2}\left(\int_{0}^{1} u^{n-\frac{k}{2}-2}(1-u)^{\frac{k}{2}-1}\right.
\end{array} \int_{N_{\Gamma} \backslash N} f\left(n a_{\frac{s}{u}} m_{u} h\right) d n d u \text {. } \quad+\int_{0}^{1} u^{n-\frac{k}{2}-2}(1-u)^{\frac{k}{2}-1} \int_{N_{\Gamma} \backslash N} f\left(n a_{\frac{s}{u}} m_{u}^{-1} h\right) d n d u\right) .
$$

Remark 3.7.15. Let \mathfrak{S}^{\prime} be an admissible generalised standard Siegel set with respect to P such that

$$
n^{\prime} \kappa\left(n_{t} w\right) n a K \in \Gamma_{P} \mathfrak{S}^{\prime}
$$

for all $n^{\prime} \in N_{\Gamma}, n \in N^{\Gamma}, a \in A_{>s}$ and all t greater or equal than some $T>0$. Let $f \in C^{\infty}(\Gamma \backslash G, \varphi)$ be a Schwartz function near $e P$. Then, the proof of the proposition, combined with Proposition 3.6.36, shows that there exists a nonnegative integrable function g_{s} on $\mathbb{R}^{n-k-1} \times(s,+\infty)$ such that

$$
\sup _{n^{\prime} \in N_{\Gamma}, h \in K}\left|f\left(n^{\prime} \kappa\left(n_{t} w\right) n_{z} a_{q} h\right)\right| \cdot \frac{\mu(t, s, z, q)}{t^{k}}
$$

is less or equal than

$$
\mathfrak{s}^{\prime} p_{2 d, 1,1}(f) g_{s}(z, q)
$$

for all $t \geqslant T, z \in \mathbb{R}^{n-k-1}$ and $q \in(s,+\infty)$.
Proof. Let f be as above and let $h \in K$. Without loss of generality we may assume that $h=e$. To simplify notations we assume further that f is right K-invariant. The general case works analogously. The limit of the K-part has already been computed in Section 3.7.4. To get the integral over M_{k}, one has to use Lemma 3.7.3.

By (3.45),

$$
\frac{1}{t^{k}} \int_{N} f\left(\kappa\left(n_{t} w\right) n a_{s}\right) d n=\frac{1}{t^{k}} \int_{\mathbb{R}^{n-1}} f\left(n_{t} w h\left(w n_{-t}\right) n_{t} n_{v} a_{s}\right) d v
$$

for all $t>0$. As f is left N_{Γ}-invariant and right K-invariant, this is equal to

$$
\frac{1}{t^{k}} \int_{\mathbb{R}^{n-k-1} \times \mathbb{R}^{k}} f\left(\kappa\left(n_{t} w\right) n_{-t}(n . a .)\left(\Upsilon_{2, t, s}^{-1}\left(\Upsilon_{1, t, s}\left(\left(v_{1}+t, v_{2}, \ldots, v_{n-1}\right)\right)\right)\right) d v\right.
$$

By passing to spherical coordinates, we get

$$
\begin{align*}
& \frac{\operatorname{vol}\left(S^{k-1}\right)}{t^{k}} \int_{\mathbb{R}^{n-k-1}} \int_{0}^{\infty} f\left(\kappa\left(n_{t} w\right)(n . a .)\left(\Upsilon_{t, s}^{-1}(v, r)\right)\right) r^{k-1} d r d v \tag{3.48}\\
= & \operatorname{vol}\left(S^{k-1}\right) \int_{s}^{+\infty} \int_{\mathbb{R}^{n-k-1}} f\left(\kappa\left(n_{t} w\right) n_{z} a_{q}\right) r(t, s, z, q)^{k-1} \cdot \frac{\left|\operatorname{det}\left(\mathrm{~d} \Upsilon_{t, s}\right)(z, q)\right|}{t^{k}} d z d q \\
= & \operatorname{vol}\left(S^{k-1}\right) \int_{s}^{+\infty} \int_{\mathbb{R}^{n-k-1}} f\left(\kappa\left(n_{t} w\right) n_{z} a_{q}\right) \cdot \frac{\mu(t, s, z, q)}{t^{k}} d z d q .
\end{align*}
$$

It follows from Lemma 3.7.12 that

$$
\left|f\left(\kappa\left(n_{t} w\right) n_{z} a_{q}\right)\right| \cdot \frac{\mu(t, s, z, q)}{t^{k}}
$$

is dominated by an integrable function on $\mathbb{R}^{n-k-1} \times\{q \in \mathbb{R} \mid q>s\}$. Since moreover

$$
\lim _{t \rightarrow \infty} \frac{\mu(t, s, z, q)}{t^{k}}=\frac{1}{2 s}\left(\frac{s}{q}\right)^{n-\frac{k}{2}}\left(1-\frac{s}{q}\right)^{\frac{k}{2}-1}
$$

for all $z \in \mathbb{R}^{n-k-1}$ and $q>s$ fixed, by (3.46), (3.48) converges to

$$
\frac{\operatorname{vol}\left(S^{k-1}\right)}{2 s} \int_{s}^{\infty}\left(\frac{s}{q}\right)^{n-\frac{k}{2}}\left(1-\frac{s}{q}\right)^{\frac{k}{2}-1} \int_{N_{\Gamma} \backslash N} f\left(n a_{q}\right) d n d q
$$

when t tends to $+\infty$, by Lebesgue's theorem of dominated convergence and as $\mathbb{R}^{n-k-1} \equiv N^{\Gamma} \equiv N_{\Gamma} \backslash N$ (as groups).
Put $u=\frac{s}{q}$. Then, $q=\frac{s}{u}$ and $d q=-\frac{s}{u^{2}} d u$. Thus, the above is equal to

$$
\frac{\operatorname{vol}\left(S^{k-1}\right)}{2} \cdot \int_{0}^{1} u^{n-\frac{k}{2}-2}(1-u)^{\frac{k}{2}-1} \int_{N_{\Gamma} \backslash N} f\left(n a \frac{s}{u}\right) d n d u
$$

The proposition follows.

3.7.6 The formula for derivatives of Schwartz functions in the $\mathfrak{n}_{\Gamma^{-}}$ direction

The following, including the next lemma, is a preparation for Proposition 3.7.17, which says that the constant term along Ω divided by t^{k} converges to zero for derivatives of Schwartz functions in the \mathfrak{n}_{Γ}-direction when we approach a cusp of smaller rank.

Let $t \geqslant 1$ and let

$$
R(t, s, z, q)=\frac{t^{2}+1}{s\left(q+\frac{1}{q}\left\|\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)\right\|^{2}\right)} \cdot r(t, s, z, q) .
$$

By Section 3.7.4, R is the Euclidean norm of

$$
\log \left(\nu_{N_{\Gamma}}\left(\kappa\left(n_{t} w\right) n_{\left(v_{1}, \ldots, v_{n-k-1}, r \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}\right)\right) \in \mathfrak{n}_{\Gamma} \equiv \mathbb{R}^{k}
$$

for $\left(v_{1}, \ldots, v_{n-k-1}, r\right)=\Upsilon_{t, s}(z, q)$. Let $z(t)=\left(z_{1}+t, z_{2}, \ldots, z_{n-k-1}\right)$.
Since $r(t, s, z, q)=\sqrt{s} \cdot \sqrt{1-\frac{s}{q}} \cdot \sqrt{q+\frac{1}{q}\|z(t)\|^{2}}, R(t, s, z, q)$ is equal to

$$
\frac{\left(t^{2}+1\right) \cdot \sqrt{1-\frac{s}{q}}}{\sqrt{s} \sqrt{q+\frac{1}{q}\|z(t)\|^{2}}} .
$$

Direct computation shows that $\frac{\partial R}{\partial q}(t, s, z, q)$ is equal to

$$
\frac{t^{2}+1}{2 \sqrt{s}} \cdot \frac{q+\frac{1}{q}\|z(t)\|^{2}-2 q\left(1-\frac{s}{q}\right)}{q \sqrt{1-\frac{s}{q}}\left(q+\frac{1}{q}\|z(t)\|^{2}\right)^{\frac{3}{2}}} .
$$

If $q \in\left(s, \frac{1}{2} t\right]$ and $\|z(t)\| \in[t, 2 t]$, then this is greater or equal than

$$
\frac{t^{2}+1}{2 \sqrt{s}} \cdot \frac{\|z(t)\|^{2}-q^{2}}{\sqrt{q} \sqrt{1-\frac{s}{q}}\left(q^{2}+\|z(t)\|^{2}\right)^{\frac{3}{2}}} \geqslant \frac{t}{2 \sqrt{s}} \cdot \frac{\frac{3}{4}}{\sqrt{q} \sqrt{1-\frac{s}{q}}\left(\frac{1}{4}+4\right)^{\frac{3}{2}}} .
$$

Let $c=\left(\frac{3}{8\left(\frac{1}{4}+4\right)^{\frac{3}{2}}}\right)^{-1}>0$. Then, this is again greater or equal than

$$
\frac{t}{c \sqrt{s} \sqrt{q} \sqrt{1-\frac{s}{q}}}>0 .
$$

Since

$$
\mu(t, s, z, q)=\frac{s^{n-\frac{k}{2}-1}\left(q+\frac{1}{q}\|z(t)\|^{2}\right)^{\frac{k}{2}}}{2 q^{n-k}} \cdot\left(1-\frac{s}{q}\right)^{\frac{k}{2}-1},
$$

$\mu_{1}(t, s, z, q):=\left(\frac{\partial R}{\partial q}(t, s, z, q)\right)^{-1} \mu(t, s, z, q)$ is equal to

$$
\frac{s^{n-\frac{k+1}{2}}}{t^{2}+1} \cdot \frac{1}{q+\frac{1}{q}\|z(t)\|^{2}-2 q\left(1-\frac{s}{q}\right)} \cdot q^{-n+k+1}\left(q+\frac{1}{q}\|z(t)\|^{2}\right)^{\frac{k+3}{2}} \cdot\left(1-\frac{s}{q}\right)^{\frac{k-1}{2}} .
$$

Hence, $\frac{\partial}{\partial q} \mu_{1}(t, s, z, q)$ is equal to

$$
\begin{aligned}
& \left(\frac{\partial R}{\partial q}(t, s, z, q)\right)^{-1} \mu(t, s, z, q)\left(\frac{1+\frac{1}{q^{2}}\|z(t)\|^{2}}{q+\frac{1}{q}\|z(t)\|^{2}-2 q\left(1-\frac{s}{q}\right)}+\frac{-n+k+1}{q}\right. \\
& \left.\quad+\frac{k+3}{2} \cdot \frac{1-\frac{1}{q^{2}}\|z(t)\|^{2}}{q+\frac{1}{q}\|z(t)\|^{2}}+\frac{k-1}{2} \cdot \frac{s}{q^{2}\left(1-\frac{s}{q}\right)}\right) .
\end{aligned}
$$

Set $\mu_{2}(t, s, z, q)=\frac{1}{R(t, s, z q)} \cdot \mu(t, s, z, q)$.
The following lemma allows us to compare the measure $\mu(t, s, z, q) d z d q$ with other measures that will arise in the proof of Proposition 3.7.17.

Lemma 3.7.16. Let $k \geqslant 1$ and let $t \geqslant 1$. Let $c>0$ be as above, $q \in\left(s, \frac{1}{2} t\right]$ and $z \in \mathbb{R}^{n-k-1}$ be such that $\|z(t)\| \in[t, 2 t]$. Then:
(1) $\left(\frac{\partial R}{\partial q}(t, s, z, q)\right)^{-1}$ is less or equal than $\frac{c}{t} \sqrt{s} \sqrt{q} \sqrt{1-\frac{s}{q}}$.
(2) $\left|\frac{\partial}{\partial q} \mu_{1}(t, s, z, q)\right|$ is less or equal than

$$
\frac{c}{t} \sqrt{s} \sqrt{q} \sqrt{1-\frac{s}{q}}\left(\frac{n-\frac{k}{2}+\frac{13}{2}}{q}+\frac{k-1}{2} \cdot \frac{s}{q^{2}\left(1-\frac{s}{q}\right)}\right) .
$$

(3) $\frac{1}{R(t, s, z, q)}$ is less or equal than $\frac{3 \sqrt{s}}{\sqrt[t]{\bar{q}} \sqrt{1-\frac{s}{q}}}$.

Proof. Let $t \geqslant 1, q, z$ be as above.
(1) By the above, $\left(\frac{\partial R}{\partial q}(t, s, z, q)\right)^{-1} \leqslant \frac{c}{t} \sqrt{s} \sqrt{q} \sqrt{1-\frac{s}{q}}$. The first assertion of the lemma follows.
(2) As $\left(\frac{\partial R}{\partial q}(t, s, z, q)\right)^{-1} \leqslant \frac{c}{t} \sqrt{s} \sqrt{q} \sqrt{1-\frac{s}{q}},\left|\frac{1+\frac{1}{q^{2}}\|z(t)\|^{2}}{q+\frac{1}{q}\|z(t)\|^{2}-2 q\left(1-\frac{s}{q}\right)}\right| \leqslant \frac{\frac{1}{4}+4}{1-\frac{1}{4}} \cdot \frac{1}{q} \leqslant \frac{6}{q}$ and as $\left|\frac{1-\frac{1}{q^{2}}\|z(t)\|^{2}}{q+\frac{1}{q}\|z(t)\|^{2}}\right| \leqslant \frac{1}{q}$,

$$
\left|\frac{\frac{\partial}{\partial q} \mu_{1}(t, s, z, q)}{\mu(t, s, z, q)}\right|
$$

is less or equal than

$$
\frac{c}{t} \sqrt{s} \sqrt{q} \sqrt{1-\frac{s}{q}}\left(\frac{n-\frac{k}{2}+\frac{13}{2}}{q}+\frac{k-1}{2} \cdot \frac{s}{q^{2}\left(1-\frac{s}{q}\right)}\right) .
$$

This shows the second assertion of the lemma.
(3) Note that $\frac{1}{R(t, s, z, q)}$ is less or equal than $\frac{\sqrt{4+\frac{1}{4}}}{t} \cdot \frac{\sqrt{s}}{\sqrt{q} \sqrt{1-\frac{s}{q}}}$. So, the third assertion of the lemma holds, too.

Let $D=\left\{\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right) \in \mathbb{R}^{k-1} \mid \psi_{0} \in(0,2 \pi)\right.$ and $\psi_{l} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for all $\left.l \geqslant 1\right\}$ and let

$$
E_{t}=\left\{z \in \mathbb{R}^{n-k-1} \mid\|z(t)\| \in[t, 2 t]\right\} .
$$

Proposition 3.7.17. Let f be a Schwartz function near $e P, h \in K$ and let $X \in \mathfrak{n}_{\Gamma}$. Then,

$$
\frac{1}{t^{k}} \int_{N} L_{X} f\left(\kappa\left(n_{t} w\right) n a_{s} h\right) d n
$$

converges to zero when t tends to ∞.
Proof. Let f be as above and let $X \in \mathfrak{n}_{\Gamma}$. Without loss of generality, we may assume that $h=e$ and that $X=\log \left(n_{e_{n-k-1+j}}\right)$ for some $j \in\{1, \ldots, k\}$. Assume that $k \geqslant 2$.
Let $Y_{0}, Y_{1}, \ldots, Y_{k-2} \in \mathfrak{s o}(k)$ be as in the proof of Lemma 3.7.1 (with $d=k$).
Set $A\left(\psi_{0}, \ldots, \psi_{k-2}\right)=\prod_{j=0}^{k-2} \exp \left(-\psi_{j} Y_{j}\right) \in \mathrm{SO}(k)$. For $A \in \mathrm{SO}(k)$, set $m_{A}^{M_{k}}=$ $m_{\text {diag }\left(I_{n-k-1}, A\right)}$.
It follows from Remark 3.7.15, Section 3.7.4, Proposition 3.6.43 and the fact that the indicator functions $1_{q \notin\left(s, \frac{1}{2} t\right]}, 1_{\|z(t)\| \notin[t, 2 t]}$ converge pointwise to zero when t tends to ∞ that it suffices to show that

$$
\begin{aligned}
& \int_{D} \int_{s}^{\frac{1}{2} t} \int_{E_{t}} \\
& L_{X} f\left(n_{\left(R(t, s, z, q) \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}^{N_{\Gamma}} \kappa\left(n_{t} w\right) n_{z} a_{q} m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}} m_{\frac{s}{q}}\left(m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}}\right)^{-1}\right) \\
& \quad \cdot \frac{\mu(t, s, z, q)}{t^{k}} d z d q \cos \psi_{1}\left(\cos \psi_{2}\right)^{2} \cdots\left(\cos \psi_{k-2}\right)^{k-2} d\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)
\end{aligned}
$$

converges to zero when t tends to ∞. Let

$$
Z_{t}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0_{1, k-1} \\
0 & 0 & 0 & 0 & 0 & 0_{1, k-1} \\
0 & 0 & 0 & 0_{1, n-k-2} & t & 0_{1, k-1} \\
0_{n-k-2,1} & 0_{n-k-2,1} & 0_{n-k-2,1} & I_{n-k-2} & 0_{n-k-2,1} & 0_{1, k-1} \\
0 & 0 & -t & 0_{1, n-k-2} & 0 & 0_{1, k-1} \\
0_{k-1,1} & 0_{k-1,1} & 0_{k-1,1} & 0_{k-1,1} & 0_{k-1,1} & 0_{k-1, k-1}
\end{array}\right) \in \mathfrak{m} .
$$

Then, $\exp \left(Z_{\arccos (2 u-1)}\right)=m_{u}$. Let

$$
\begin{aligned}
& \tilde{f}_{t}\left(R, \psi_{0}, \psi_{1}, \ldots, \psi_{k-2}, z, q, \tilde{q}, x, y\right) \\
& \quad=f\left(n_{R \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)}^{N_{\Gamma}} \kappa\left(n_{t} w\right) n_{z} a_{q} m_{A\left(x_{0}, \ldots, x_{k-2}\right)}^{M_{k}} \exp \left(Z_{\tilde{q}}\right)\left(m_{A\left(y_{0}, \ldots, y_{k-2}\right)}^{M_{k}}\right)^{-1}\right)
\end{aligned}
$$

Define $\phi\left(t, s, \psi_{0}, \ldots, \psi_{k-2}, z, q\right)$ by

$$
\left(R(t, s, z, q), z, q, m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}} \exp \left(Z_{\arccos \left(2 \cdot \frac{s}{q}-1\right)}\right)\left(m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}}\right)^{-1}\right) .
$$

Then,

$$
L_{X} f\left(n_{\left(R(t, s, z, q) \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}^{N_{\Gamma}} \kappa\left(n_{t} w\right) n_{z} a_{q} m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}} m_{\frac{s}{q}}\left(m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}}\right)^{-1}\right)
$$

is equal to

$$
\partial_{n-k-1+j} \tilde{f}_{t}\left(\phi\left(t, s, \psi_{0}, \ldots, \psi_{k-2}, z, q\right)\right) .
$$

Let $p_{i, j}^{(k)}:(0,2 \pi) \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)^{k-2} \rightarrow \mathbb{R}$ be as in Lemma 3.7 .2 when we apply it to $\left\{0_{1, n-k-1}\right\} \times \mathbb{R}^{k} \equiv \mathbb{R}^{k}$. Then,

$$
\begin{equation*}
\partial_{n-k-1+j}=\Phi_{k}\left(\psi_{0}, \ldots, \psi_{k-2}\right)_{j} \partial_{R}+\frac{1}{R} \sum_{i=0}^{k-2} p_{i, j}^{(k)}\left(\psi_{0}, \ldots, \psi_{k-2}\right) \partial_{\psi_{i}} \tag{3.49}
\end{equation*}
$$

Let $H_{t}=\log \left(a_{t}\right)$. Since $m a=a m$ for all $a \in A$ and $m \in M$,

$$
\left(\frac{\partial \tilde{f}_{t}}{\partial q} \circ \phi\right)\left(t, s, \psi_{0}, \ldots, \psi_{k-2}, z, q\right)
$$

is equal to

$$
\begin{align*}
& R_{H_{1}} f\left(n_{\left(R(t, s, z, q) \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}^{N_{\Gamma}}\right. \tag{3.50}\\
& \left.\qquad \kappa\left(n_{t} w\right) n_{z} a_{q} m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}} m_{\frac{s}{q}}\left(m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}}\right)^{-1}\right)
\end{align*}
$$

and $\left(\frac{\partial \tilde{f}_{t}}{\partial \tilde{q}} \circ \phi\right)\left(t, s, \psi_{0}, \ldots, \psi_{k-2}, z, q\right)$ is equal to

$$
\begin{align*}
& \left.R_{m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)^{M_{k}}} Z_{1}\left(m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}}\right)^{-1} f\left(n_{\left(R(t, s, z, q) \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}^{N_{\Gamma}}\right.} \quad \kappa\left(n_{t} w\right) n_{z} a_{q} m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}} m_{\frac{s}{q}}\left(m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}}\right)^{-1}\right) . \tag{3.51}
\end{align*}
$$

When one estimates the absolute value of these functions, one has to use that $\operatorname{Ad}\left(x^{-1}\right) Z_{1}$ depends smoothly on x and that M is compact.
By the chain rule and as $\frac{\partial}{\partial q} \arccos \left(\frac{2 s}{q}-1\right)=\frac{\sqrt{s}}{q^{\frac{3}{2}} \sqrt{1-\frac{s}{q}}}$, we have

$$
\frac{\partial\left(\tilde{f}_{t} \circ \phi\right)}{\partial q}=\left(\frac{\partial \tilde{f}_{t}}{\partial R} \circ \phi\right) \frac{\partial R}{\partial q}+\left(\frac{\partial \tilde{f}_{t}}{\partial \tilde{q}} \circ \phi\right) \cdot \frac{\sqrt{s}}{q^{\frac{3}{2}} \sqrt{1-\frac{s}{q}}}+\frac{\partial \tilde{f}_{t}}{\partial q} \circ \phi .
$$

Thus,

$$
\begin{equation*}
\frac{\partial \tilde{f}_{t}}{\partial R} \circ \phi=\left(\frac{\partial\left(\tilde{f}_{t} \circ \phi\right)}{\partial q}-\left(\frac{\partial \tilde{f}_{t}}{\partial \tilde{q}} \circ \phi\right) \cdot \frac{\sqrt{s}}{q^{\frac{3}{2}} \sqrt{1-\frac{s}{q}}}-\frac{\partial \tilde{f}_{t}}{\partial q} \circ \phi\right)\left(\frac{\partial R}{\partial q}\right)^{-1} \tag{3.52}
\end{equation*}
$$

Hence, it follows from Lemma 3.7.12 and Lemma 3.7.16, partial integration and Fubini that

$$
\begin{aligned}
& \int_{D} \int_{s}^{\frac{1}{2} t} \int_{E_{t}} \frac{\partial\left(\tilde{f}_{t} \circ \phi\right)}{\partial q}\left(t, s, \psi_{0}, \ldots, \psi_{k-2}, z, q\right) \cdot \frac{\mu_{1}(t, s, z, q)}{t^{k}} d z d q \\
& \Phi_{k}\left(\psi_{0}, \ldots, \psi_{k-2}\right)_{j} \cos \psi_{1}\left(\cos \psi_{2}\right)^{2} \cdots\left(\cos \psi_{k-2}\right)^{k-2} d\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)
\end{aligned}
$$

converges to zero when t tends to ∞. Because of Lemma 3.7.12 and Lemma 3.7.16, the boundary term appearing from partial integration converges to zero.

It follows from this, (3.50), (3.51), (3.52), Lemma 3.7.12 and Lemma 3.7.16 that

$$
\begin{aligned}
& \int_{D} \int_{s}^{\frac{1}{2} t} \int_{E_{t}}\left(\frac{\partial \tilde{f}_{t}}{\partial R} \circ \phi\right)\left(t, s, \psi_{0}, \ldots, \psi_{k-2}, z, q\right) \cdot \frac{\mu(t, s, z, q)}{t^{k}} d z d q \\
& \Phi_{k}\left(\psi_{0}, \ldots, \psi_{k-2}\right)_{j} \cos \psi_{1}\left(\cos \psi_{2}\right)^{2} \cdots\left(\cos \psi_{k-2}\right)^{k-2} d\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)
\end{aligned}
$$

converges also to zero when t tends to ∞.
By the chain rule, we have

$$
\frac{\partial\left(\tilde{f}_{t} \circ \phi\right)}{\partial \psi_{i}}=\frac{\partial \tilde{f}_{t}}{\partial \psi_{i}} \circ \phi+\sum_{j=0}^{k-2}\left(\frac{\partial \tilde{f}_{t}}{\partial x_{j}} \circ \phi\right)+\sum_{j=0}^{k-2}\left(\frac{\partial \tilde{f}_{t}}{\partial y_{j}} \circ \phi\right) .
$$

Thus,

$$
\frac{\partial \tilde{f}_{t}}{\partial \psi_{i}} \circ \phi=\frac{\partial\left(\tilde{f}_{t} \circ \phi\right)}{\partial \psi_{i}}-\sum_{j=0}^{k-2}\left(\frac{\partial \tilde{f}_{t}}{\partial x_{j}} \circ \phi\right)-\sum_{j=0}^{k-2}\left(\frac{\partial \tilde{f}_{t}}{\partial y_{j}} \circ \phi\right) .
$$

Note that $\left(\frac{\partial \tilde{f}_{t}}{\partial y_{i}} \circ \phi\right)\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}, z, q\right)$ is equal to

$$
\begin{aligned}
& R_{-\operatorname{Ad}\left(\left(\prod_{j=i+1}^{k-2} m_{\operatorname{expp}\left(-\psi_{j} Y_{j}\right)}^{M_{k}}\right)^{-1}\right)_{Y_{i}}} f\left(n_{\left(R(t, s, z, q) \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}^{N_{\Gamma}}\right. \\
&\left.\kappa\left(n_{t} w\right) n_{z} a_{q} m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}} m_{\frac{s}{q}}\left(m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}}\right)^{-1}\right) .
\end{aligned}
$$

and that $\left(\frac{\partial \tilde{f}_{t}}{\partial x_{i}} \circ \phi\right)\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}, z, q\right)$ is equal to

$$
\begin{aligned}
& R_{-\operatorname{Ad}\left(\left(\prod_{j=i+1}^{k-2} m_{\exp \left(-\psi_{j} Y_{j}\right)}^{M_{k}} m_{s}^{s} \prod_{j=1}^{k-2} m_{\exp \left(-\psi_{j} Y_{j}\right)}^{M_{k}}\right)^{-1}\right) Y_{i}} f\left(n_{\left(R(t, s, z, q) \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)}^{N_{\Gamma}}\right. \\
&\left.\kappa\left(n_{t} w\right) n_{z} a_{q} m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{s}} m_{\frac{s}{q}}\left(m_{A\left(\psi_{0}, \ldots, \psi_{k-2}\right)}^{M_{k}}\right)^{-1}\right) .
\end{aligned}
$$

When one estimates the absolute value of these functions, one has to use as above that $\operatorname{Ad}\left(x^{-1}\right) Y_{i}$ depends smoothly on x and that M is compact. Similar as above, one shows that

$$
\begin{aligned}
& \int_{D} \int_{s}^{\frac{1}{2} t} \int_{E_{t}}\left(\frac{\partial \tilde{f}_{t}}{\partial \psi_{i}} \circ \phi\right)\left(t, s, \psi_{0}, \ldots, \psi_{k-2}, z, q\right) \cdot \frac{\mu(t, s, z, q)}{t^{k}} d z d q \\
& \quad p_{i, j}^{(k)}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right) \cos \psi_{1}\left(\cos \psi_{2}\right)^{2} \cdots\left(\cos \psi_{k-2}\right)^{k-2} d\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)
\end{aligned}
$$

converges to zero when t tends to ∞. To show this, one needs of course also Lemma 3.7.2. Let us check now that indeed no boundary term appears from partial integration.
Note first that $\mathrm{d}\left(R \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)^{t}$ is given by

$$
\left(\begin{array}{c|c}
\cos \psi_{k-2} \mathrm{~d}\left(R \Phi_{k-1}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-3}\right)\right)^{t} & \sin \psi_{k-2} \\
\hline-\sin \psi_{k-2} R \Phi_{k-1}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-3}\right) & R \cos \psi_{k-2}
\end{array}\right) .
$$

Thus, if $\psi_{0} \in\{0,2 \pi\}$ and $\psi_{l} \in\left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}$ for all $l \geqslant 1$, then $\mathrm{d}\left(R \Phi_{k}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)\right)^{t}$ is equal to

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & R
\end{array}\right) \quad \text { if } k=2 \quad \text { and } \quad\left(\begin{array}{c|c}
0_{k-1, k-1} & \left(\pm 1,0_{1, k-2}\right)^{t} \\
\hline\left(0_{1, k-2},-R\right) & 0_{1, k-1}
\end{array} \quad \text { if } k>2 .\right.
$$

It follows now from the proof of Lemma 3.7.2 that

$$
\cos \psi_{1}\left(\cos \psi_{2}\right)^{2} \cdots\left(\cos \psi_{k-2}\right)^{k-2} p_{i, j}^{(k)}\left(\psi_{0}, \psi_{1}, \ldots, \psi_{k-2}\right)
$$

is equal to zero for all $i \in\{0, \ldots, k-2\}, j \in\{1, \ldots, k\})$ if $\psi_{0} \in\{0,2 \pi\}$ and $\psi_{l} \in\left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}$ for all $l \geqslant 1$ such that $k \neq 2$ or $j \neq 2$. Moreover, $p_{0,2}^{(2)}\left(\psi_{0}\right)$ is equal to 1 if $\psi_{0} \in\{0,2 \pi\}$. Thus, $p_{0,2}^{(2)}(2 \pi)-p_{0,2}^{(2)}(0)=0$. Hence, no boundary term appears. We leave the case $k=1$, which can be proven similarly, to the reader. The proposition follows from (3.49).

3.7.7 The general formula

We use here the notations seen in Section 3.6.11.
Lemma 3.7.18. If f is a Schwartz function near eP with $f^{P, l c}=0$, then there exists a Schwartz function F near eP such that

$$
f=\Delta F
$$

where $\Delta:=\sum_{j=1}^{k} L_{Z_{j}}^{2}$.
Proof. Let f be as above. Let $g \in N^{\Gamma} A K$.
As in the proof of Theorem 3.6.68, we may assume without loss of generality that $\operatorname{dim}_{\mathbb{C}} V_{\varphi}=1$. Using the notations seen in Section 3.6.11, we have

$$
f\left(n_{z}^{N_{\Gamma},\left\{Z_{j}\right\}} g\right)=\sum_{-\lambda \neq x \in \mathbb{Z}^{k}} c_{x, g}(f) e^{2 \pi i\langle z, \lambda+x\rangle} \quad\left(z \in \mathbb{R}^{k}\right) .
$$

Set

$$
F\left(n_{z}^{N_{\mathrm{\Gamma}},\left\{Z_{j}\right\}} g\right)=-\sum_{-\lambda \neq x \in \mathbb{Z}^{k}} \frac{c_{x, g}(f)}{4 \pi^{2}\|\lambda+x\|_{2}^{2}} e^{2 \pi i\langle z, \lambda+x\rangle} \quad\left(z \in \mathbb{R}^{k}, g \in N^{\Gamma} A K\right)
$$

Then,

$$
(\Delta F)\left(n_{z}^{N_{\Gamma},\left\{Z_{j}\right\}} g\right)=\sum_{-\lambda \neq x \in \mathbb{Z}^{k}} c_{x, g}(f) e^{2 \pi i\langle z, \lambda+x\rangle}=f\left(n_{z}^{N_{\Gamma},\left\{Z_{j}\right\}} g\right)
$$

since $\frac{\partial^{2}}{\partial z_{l}^{2}} e^{2 \pi i\langle z, \lambda+x\rangle}=-4 \pi^{2}\left(\lambda_{l}+x_{l}\right)^{2} e^{2 \pi i\langle z, \lambda+x\rangle}$.
Let \mathfrak{S} be an admissible generalised Siegel set relative to P. Let $r \geqslant 0, X \in \mathcal{U}(\mathfrak{n})$ and $Y \in \mathcal{U}(\mathfrak{g})$. Let $g \in \mathfrak{S}$. Then,

$$
F(g)=-\sum_{-\lambda \neq x \in \mathbb{Z}^{k}} \frac{c_{x, g}(f)}{4 \pi^{2}\|\lambda+x\|_{2}^{2}} .
$$

Since f is a Schwartz function near $e P$, there exists $c^{\prime}>0$ such that

$$
\begin{aligned}
&\left|\int_{[0,1]^{k}}\left(\left(L_{X} R_{Y} f\right)\left(n_{u}^{N_{\mathrm{\Gamma}},\left\{Z_{j}\right\}} \phi\left(n_{u}^{N_{\mathrm{\Gamma}},\left\{Z_{j}\right\}}\right) \cdot\right)\right)(g) e^{-2 \pi i\langle u, \lambda+x\rangle} d u\right| \\
& \leqslant c^{\prime} h(g)^{(1-\xi) \rho_{P}} a_{g}^{-\xi \rho_{P}}\left(1+\log a_{g}\right)^{-r} \quad\left(x \in \mathbb{Z}^{k}, g \in \mathfrak{S}\right),
\end{aligned}
$$

where $\xi:=\xi_{P, N^{\Gamma}}$. Since $\sum_{-\lambda \neq x \in \mathbb{Z}^{k}} \frac{1}{4 \pi^{2}\|\lambda+x\|_{2}^{2}}$ converges by Lemma 3.6.65, there is a constant $c^{\prime \prime}>0$ such that $\left|L_{X} R_{Y} F(g)\right|$ is less or equal than

$$
c^{\prime \prime} h(g)^{(1-\xi) \rho_{P}} a_{g}^{-\xi \rho_{P}}\left(1+\log a_{g}\right)^{-r} \quad(g \in \mathfrak{S}) .
$$

Hence, ${ }_{\mathfrak{G}^{\prime}} p_{r, X, Y}(F)$ is finite. The lemma follows.
Proposition 3.7.19. Let $f \in C^{\infty}(\Gamma \backslash G, \varphi)$ be a Schwartz function near eP with $f^{P, l c}=0$ and let $h \in K$. Then, $\lim _{t \rightarrow \infty} \frac{1}{t^{k}} \int_{N} f\left(\kappa\left(n_{t} w\right) n a_{s} h\right) d n$ is zero.

Proof. Let $h \in K, f$ be as above and let F be as in Lemma 3.7.18. Then,

$$
\frac{1}{t^{k}} \int_{N} f\left(\kappa\left(n_{t} w\right) n a_{s}\right) d n=\sum_{j=1}^{k} \frac{1}{t^{k}} \int_{N}\left(\sum_{j=1}^{k} L_{Z_{j}} L_{Z_{j}} F\right)\left(\kappa\left(n_{t} w\right) n a_{s}\right) d n .
$$

This converges to zero by Proposition 3.7.17 applied to $L_{Z_{j}} F$ (Schwartz function near $e P$).

Theorem 3.7.20. Let $f \in C^{\infty}(\Gamma \backslash G, \varphi)$ be a Schwartz function near eP and let $h \in K$. If $k \geqslant 2$, then

$$
\lim _{t \rightarrow \infty} \frac{1}{t^{k}} f^{\Omega}\left(\kappa\left(n_{t} w\right), a_{s} h\right) \quad(s \in(0,+\infty))
$$

is up to a constant equal to

$$
\int_{0}^{1} u^{n-\frac{k}{2}-2}(1-u)^{\frac{k}{2}-1} \int_{M_{k}} f^{P}\left(a_{\frac{s}{u}} m^{\prime} m_{u} m^{\prime-1} h\right) d m^{\prime} d u
$$

where

$$
\begin{aligned}
m_{u} & :=\lim _{t \rightarrow \infty} k\left(w n_{t\left(\sqrt{u}, 0_{1, n-k-2}, \sqrt{1-u}, 0_{1, k-1}\right)}\right) \\
& =w n_{\left(\sqrt{u}, 0_{1, n-k-2}, \sqrt{1-u}, 0_{k-1}\right)} w n_{\left(\sqrt{u}, 0_{1, n-k-2},-\sqrt{1-u}, 0_{1, k-1}\right)} w n_{\left(\sqrt{u}, 0_{1, n-k-2}, \sqrt{1-u}, 0_{1, k-1}\right)} \\
& =\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0_{1, k-1} \\
0 & 1 & 0 & 0 & 0 & 0_{1, k-1} \\
0 & 0 & 2 u-1 & 0_{1, n-k-2} & 2 \sqrt{u(1-u)} & 0_{1, k-1} \\
0_{n-k-2,1} & 0_{n-k-2,1} & 0_{n-k-2,1} & I_{n-k-2} & 0_{n-k-2,1} & 0_{1, k-1} \\
0 & 0 & -2 \sqrt{u(1-u)} & 0_{1, n-k-2} & 2 u-1 & 0_{1, k-1} \\
0_{k-1,1} & 0_{k-1,1} & 0_{k-1,1} & 0_{k-1,1} & 0_{k-1,1} & I_{k-1, k-1}
\end{array}\right) .
\end{aligned}
$$

If $k=1$, then

$$
\lim _{t \rightarrow \infty} \frac{1}{t^{k}} f^{\Omega}\left(\kappa\left(n_{t} w\right), a_{s} h\right) \quad(s \in(0,+\infty))
$$

is up to a constant equal to

$$
\int_{0}^{1} u^{n-\frac{k}{2}-2}(1-u)^{\frac{k}{2}-1}\left(f^{P}\left(a_{\frac{s}{u}} m_{u} h\right)+f^{P}\left(a_{\frac{s}{u}} m_{u}^{-1} h\right)\right) d u
$$

Proof. Let f be as above. Then, $f^{P, l c}$ is a $N_{\Gamma} M_{\Gamma}$-invariant Schwartz function near $e P$ and $\left(f-f^{P, l c}\right)^{P, l c}=0$ by Proposition 3.6.24 and Lemma 3.6.28.
The theorem follows now directly from Proposition 3.7.14 applied to $f^{P, l c}$ and Proposition 3.7.19 applied to $f-f^{P, l c}$.

3.7.8 The main theorem

Let $\left(\gamma, V_{\gamma}\right) \in \hat{K}$. Let I be the canonical isomorphism from $\mathrm{SO}(2)$ to $S:=\left\{m_{u} \mid\right.$ $u \in[0,1]\}$.
Since all irreducible, unitary representations of $\mathrm{SO}(2)$ are one-dimensional and since V_{γ} is finite-dimensional, there exist $v_{j} \in V_{\gamma}$ such that

$$
V_{\gamma}=\bigoplus_{j=1}^{l} \mathbb{C} v_{j}
$$

as representation spaces of S. We identify V_{γ} with \mathbb{C}^{l} via this basis.
For $\varphi \in \mathbb{R}$, set $k_{\varphi}=\left(\begin{array}{cc}\cos (\varphi) & \sin (\varphi) \\ -\sin (\varphi) & \cos (\varphi)\end{array}\right) \in \mathrm{SO}(2)$. Let π be an irreducible representation of $\mathrm{SO}(2)$. Then, there exists $m \in \mathbb{Z}$ such that $\pi\left(k_{\varphi}\right)=e^{i m \varphi}$ for all $\varphi \in \mathbb{R}$. Thus, there are $m_{j} \in \mathbb{Z}$ such that

$$
\gamma\left(I\left(k_{\varphi}\right)\right)=D_{m_{1}, \ldots, m_{l}}(\varphi),
$$

where $D_{m_{1}, \ldots, m_{l}}(\varphi):=\left(\begin{array}{cccc}e^{i m_{1} \varphi} & 0 & \cdots & 0 \\ 0 & e^{i m_{2} \varphi} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & e^{i m_{l \varphi}}\end{array}\right)$.
Let $Y \in \mathfrak{s o}(k)$ be such that $m_{x}=m_{\text {diag }\left(I_{n-k-1}, \exp (\arccos (2 x-1) Y)\right)}$.
Then, $\gamma\left(m_{x}\right)^{ \pm 1}=\gamma\left(I\left(k_{ \pm \arccos (2 x-1)}\right)\right)$.

Theorem 3.7.21. If $f \in \mathscr{C}(\Gamma \backslash G, \varphi)$ with $f^{\Omega}=0$, then $f^{Q}=0$ for all Γ-cuspidal parabolic subgroups Q of G with associated cusp of smaller rank.

Proof. Assume that $k \geqslant 2$. We leave the proof for $k=1$ to the reader.
For a measurable function ϕ on $(0,+\infty)$ and $z \in \mathbb{C}$ such that $\phi(x) x^{z} \in L^{1}((0,+\infty))$, set $M(\phi)(z)=\int_{0}^{\infty} \phi(x) x^{z-1} d x$. The function $M(\phi)$ is called the Mellin transform of ϕ.
The Mellin convolution operator of two measurable functions on $(0,+\infty), \phi_{1}$ and ϕ_{2}, is defined by

$$
\left(\phi_{1} * \phi_{2}\right)(x):=\int_{0}^{\infty} \phi_{1}\left(\frac{x}{y}\right) \phi_{2}(y) \frac{d y}{y}
$$

whenever the integral exists.
Let Q be a Γ-cuspidal parabolic subgroups of G with associated of smaller rank. Without loss of generality, $Q=P$.
Since the space $\mathscr{C}(\Gamma \backslash G, \varphi)_{K}$ of K-finite Schwartz function is dense in $\mathscr{C}(\Gamma \backslash G, \varphi)$, it suffices to show that $f^{Q}=0$ for all Γ-cuspidal parabolic subgroups of G with associated cusp of smaller rank if $f \in \mathscr{C}\left(Y, V_{Y}(\gamma, \varphi)\right)(\gamma \in \hat{K})$ with $f^{\Omega}=0$.
Let $\gamma \in \hat{K}$, let $f \in \mathscr{C}\left(Y, V_{Y}(\gamma, \varphi)\right)$ with $f^{\Omega}=0$.
Let $\varepsilon>0$. Choose a function $\chi_{\varepsilon} \in C_{c}^{\infty}((0,+\infty),[0,1])$ such that

$$
(\varepsilon,+\infty) \subset \operatorname{supp}\left(\chi_{\varepsilon}\right) .
$$

Define

$$
g_{1, \varepsilon}: x \in(0,+\infty) \mapsto \chi_{\varepsilon}(x) \int_{\Gamma_{P} \backslash N M_{\Gamma}} f^{0}\left(n m a_{x}\right) d n d m
$$

and

$$
g_{2}: x \in(0,+\infty) \mapsto 1_{(0,1)}(x) x^{n-\frac{k}{2}-1}(1-x)^{\frac{k}{2}-1} \int_{M_{k}} \gamma\left(m^{\prime}\right) \gamma\left(m_{x}\right)^{-1} \gamma\left(m^{\prime}\right)^{-1} d m^{\prime} .
$$

It follows from Proposition 3.6.14 that $x \in(0,+\infty) \mapsto\left|g_{1, \varepsilon}(x)\right| x^{-\frac{n-1}{2}}$ belongs to $L^{1}((0,+\infty))$. So, the Mellin transform of $g_{1, \varepsilon}$ at $-\frac{n-1}{2}+\operatorname{ir}(r \in \mathbb{R})$ is well-defined. Since $n-\frac{k}{2}-1-\frac{n-1}{2}-1=\frac{n-k-1}{2}-1$, the integral $\int_{0}^{\infty}\left|g_{2}(x)\right| x^{-\frac{n-1}{2}} \frac{d x}{x}$ is less or equal than

$$
\int_{0}^{1} x^{\frac{n-k-1}{2}-1}(1-x)^{\frac{k}{2}-1} d x=B\left(\frac{n-k-1}{2}, \frac{k}{2}\right)
$$

where $B(x, y)=\int_{0}^{1} u^{x-1}(1-u)^{y-1} d u(\operatorname{Re}(x)>0, \operatorname{Re}(y)>0)$ denotes the β function. Since $e P$ is not of full rank, $k<n-1$. Thus, $\frac{n-k-1}{2}>0$. Hence, the above integral is finite. So, $x \in(0,+\infty) \mapsto\left|g_{2}(x)\right| x^{-\frac{n-1}{2}}$ belongs to $L^{1}((0,+\infty))$. Consequently, the Mellin transform of g_{2} at $-\frac{n-1}{2}+\operatorname{ir}(r \in \mathbb{R})$ is well-defined. Thus, the Mellin transform

$$
M\left(g_{1, \varepsilon} * g_{2}\right)\left(-\frac{n-1}{2}+i r\right):=\int_{0}^{\infty} g_{2}(y) g_{1, \varepsilon}\left(\frac{x}{y}\right) \frac{d y}{y}
$$

of $g_{1, \varepsilon} * g_{2}$ at $-\frac{n-1}{2}+i r(r \in \mathbb{R})$ is well-defined and equal to

$$
M\left(g_{2}\right)\left(-\frac{n-1}{2}+i r\right) M\left(g_{1, \varepsilon}\right)\left(-\frac{n-1}{2}+i r\right) .
$$

Let $D=\left\{z \in \mathbb{C} \left\lvert\, \operatorname{Re}(z)>-\frac{n-k-1}{2}\right.\right\}$ (connected, open subset of \mathbb{C}). Note that the function

$$
\begin{aligned}
\Phi: z \in D \mapsto M & \left(g_{2}\right)\left(-\frac{n-1}{2}+z\right) \\
& =\int_{M_{k}} \int_{0}^{1} \gamma\left(m^{\prime}\right) x^{\frac{n-k-1}{2}-1+z}(1-x)^{\frac{k}{2}-1} \gamma\left(m_{x}\right)^{-1} \gamma\left(m^{\prime}\right)^{-1} d x d m^{\prime}
\end{aligned}
$$

is complex analytic. Indeed, since Φ is measurable, since $B\left(\cdot, \frac{k}{2}\right)$ satisfies the assumptions of the theorem about complex differentiation of parameter dependent integrals on $\{z \in \mathbb{C} \mid 0<r<\operatorname{Re}(z)<R\}$ for every $R>r>0$ and since

$$
\begin{aligned}
\int_{M_{k}} \int_{0}^{1}\left|\gamma\left(m^{\prime}\right) x^{\frac{n-k-1}{2}-1+z}(1-x)^{\frac{k}{2}-1} \gamma\left(m_{x}\right)^{-1} \gamma\left(m^{\prime}\right)^{-1}\right| & d x d m^{\prime} \\
& =B\left(\frac{n-k-1}{2}+\operatorname{Re}(z), \frac{k}{2}\right),
\end{aligned}
$$

Φ satisfies also the assumptions of that theorem on

$$
\left\{z \in \mathbb{C} \left\lvert\, R>\operatorname{Re}(z)>-\frac{n-k-1}{2}+r\right.\right\}
$$

for every $R>r>0$. Thus, Φ is holomorphic and hence complex analytic.
Let $\left\{v_{j}\right\}$ be a basis of $V_{\varphi}^{\Gamma_{P}}$ and let p_{j} be the orthogonal projection on $\mathbb{C} v_{j} \equiv \mathbb{C}$. By abuse of notation, we denote $\operatorname{Id} \otimes p_{j}: V_{\gamma} \otimes V_{\varphi} \rightarrow V_{\gamma} \otimes V_{\varphi}$ also by p_{j}.
As by assumption $f^{\Omega}=0$,

$$
M\left(p_{j}\left(g_{1, \varepsilon}\right) * g_{2}\right)=M\left(g_{2}\right) M\left(p_{j}\left(g_{1, \varepsilon}\right)\right)
$$

vanishes for all j, by Proposition 3.7.14.
For all $x \in[0,1],\left|\gamma\left(m_{x}\right)^{-1}-\mathrm{Id}\right| \leqslant 2$. Let $\delta \in(0,1]$ be such that $\left|\gamma\left(m_{x}\right)^{-1}-\mathrm{Id}\right| \leqslant \frac{1}{2}$ for all $x \in[0, \delta]$. For $z \in D$, set $\psi(z)=\int_{0}^{1} x^{\frac{n-k-1}{2}-1+z}(1-x)^{\frac{k}{2}-1} d x$. Then, ψ is real and positive on $D \cap \mathbb{R}$. For $z \in D \cap \mathbb{R}$, consider

$$
\begin{aligned}
& \frac{1}{\psi(z)} \Phi(z)-\mathrm{Id} \\
= & \frac{1}{\psi(z)} \int_{M_{k}} \int_{0}^{1} \gamma\left(m^{\prime}\right) x^{\frac{n-k-1}{2}-1+z}(1-x)^{\frac{k}{2}-1}\left(\gamma\left(m_{x}\right)^{-1}-\mathrm{Id}\right) \gamma\left(m^{\prime}\right)^{-1} d x d m^{\prime} .
\end{aligned}
$$

In absolute values, this is less or equal than

$$
\frac{1}{2}+\frac{2}{\psi(z)} \int_{\delta}^{1} x^{\frac{n-k-1}{2}-1+z}(1-x)^{\frac{k}{2}-1} d x .
$$

Choose $z \in D \cap \mathbb{R}$ sufficiently close to $-\frac{n-k-1}{2}$ so that this is less than 1 . This is indeed possible as $\psi(z)$ tends to ∞ when $z \in D \cap \mathbb{R}$ tends to $-\frac{n-k-1}{2}$ and as $\sup _{z \in\left[-\frac{n-k-1}{2},-\frac{n-k-1}{2}+1\right]} \int_{\delta}^{1} x^{\frac{n-k-1}{2}-1+z}(1-x)^{\frac{k}{2}-1} d x$ is finite.
It follows that $\frac{1^{2}}{\psi(z)} \Phi(z)$ and hence $\Phi(z)$ are invertible for every $z \in D \cap \mathbb{R}$ sufficiently close to $-\frac{n-k-1}{2}$. Consequently, $\operatorname{det}(\Phi(z))$ is a nonzero complex analytic function. It follows from the Identity theorem that $\{z \in D \mid \operatorname{det}(\Phi(z))=0\}$ has no accumulation point in D.
Hence, $M\left(g_{2}\right)\left(-\frac{n-1}{2}+i r\right)$ is invertible for almost all $r \in \mathbb{R}$. So, $M\left(p_{j}\left(g_{1, \varepsilon}\right)\right)\left(-\frac{n-1}{2}+\right.$ $i r)$ vanishes for all j and almost all $r \in \mathbb{R}$. Since $g_{1, \varepsilon}$ is smooth and since the Mellin transform is injective on $L^{1}\left((0,+\infty), V_{\gamma} \otimes V_{\varphi}^{\Gamma_{P}}\right)$, it follows that $g_{1, \varepsilon}$ is identically zero. As this holds for every $\varepsilon>0$, we conclude that $f^{P}(a)=0$ for all $a \in A$. Since f^{P} is left N-invariant and right K-equivariant, f^{P} vanishes, too. The theorem follows.

Appendices

A Some results about direct sum decompositions

Lemma A.1. Let X be a locally convex space and let $Y \subset X$ be a closed finitecodimensional subspace. Let F be a finite-dimensional subspace complementing Y. Then,

$$
X=Y \oplus F
$$

as topological vector spaces.
Proof. For a proof, see Lemma B. 1 of [Wur04, p.179].
Lemma A.2. Let H be a Hilbert space and let $V \subset H$ be a Fréchet space such that the injection $V \hookrightarrow H$ is continuous. Let S be a closed subspace of H. Then, $S \cap V$ and $S^{\perp} \cap V$ are closed in V and hence also Fréchet spaces. We denote the canonical projection on S by p_{S}. If $p_{S}(V)$ is contained in V, then

$$
V=(S \cap V) \oplus\left(S^{\perp} \cap V\right)
$$

as topological direct sum.
Proof. Let H, V be as above. Let S be a closed subspace of H. As $\iota: V \hookrightarrow H$ is continuous and as S and S^{\perp} are closed in $H, S \cap V=\iota^{-1}(S)$ and $S^{\perp} \cap V=\iota^{-1}\left(S^{\perp}\right)$ are closed in V.
Assume moreover that $p_{S}(V)$ is contained in V. Then, $p_{S \perp}(V)$ is also contained in V. Furthermore, $p_{S}(V)=S \cap V$ and $p_{S^{\perp}}(V)=S^{\perp} \cap V$. The lemma follows now by the open mapping theorem.

Lemma A.3. Let H be a Hilbert space and let $V \subset H$ be a Fréchet space that can be continuously injected into H. Let S_{1}, \ldots, S_{d} be closed subspaces of H such that $H=\bigoplus_{j=1}^{d} S_{d}$ (Hilbert direct sum). Then, $S_{j} \cap V$ is closed in V for all j and hence also a Fréchet space. We denote the canonical projection on S_{j} by $p_{S_{j}}$. If $p_{S_{j}}(V)$ is contained in V for all j, then

$$
V=\bigoplus_{j=1}^{d}\left(S_{j} \cap V\right)
$$

as topological direct sum.
Proof. The proof works completely similarly to the one of Lemma A.2.

Lemma A.4. Let V and W be topological vector spaces and let $u: V \rightarrow W$ be a continuous linear map. Let V^{\prime} (resp. W^{\prime}) be (conjugate-)linear strong dual of V (resp. W). Then, the dual map $u^{\prime}: W^{\prime} \rightarrow V^{\prime}$ is continuous.

Proof. This can easily be checked. In the case where V and W are locally convex, one can find the proof (for the linear strong duals) of this statement for example in Yosida's book "Functional Analysis" (see Theorem 2 of Chapter VII in [Yos95, p.194]).

Lemma A.5. Let V be a topological vector space. Let $V_{1}, \ldots, V_{d}(d \geqslant 2)$ be subspaces of V such that $V=\bigoplus_{j=1}^{d} V_{j}$ is a topological direct sum. Let V^{\prime} (resp. V_{j}^{\prime}) be the (conjugate-)linear strong dual of $V\left(\right.$ resp. $\left.V_{j}\right)$. For $j=1, \ldots, d$, let $\iota_{j}: V_{j}^{\prime} \rightarrow V^{\prime}$ denote the natural topological embedding. Then,

$$
V^{\prime}=\bigoplus_{j=1}^{d} \iota_{j}\left(V_{j}^{\prime}\right)
$$

(topological direct sum).
Proof. This lemma can easily be proven with the help of Lemma A.4.

B The group $\operatorname{Sp}(1, n)$

In the following, we do some explicit computations in the group $\operatorname{Sp}(1, n)(n \geqslant 1)$.
Let $n \geqslant 2$. We denote the standard norm on \mathbb{H} by $|\cdot|$ and the 2 -norm on \mathbb{H}^{n-1} by $\|\cdot\|$. We identify \mathbb{H} with \mathbb{R}^{4} as vector spaces. The quaternionic hyperbolic space is defined by

$$
X=\mathbb{H} H^{n}:=\left\{\left.\left[1: x_{1}: \ldots: x_{n}\right]\left|\sum_{i=1}^{n}\right| x_{i}\right|^{2}<1\right\}
$$

Put $z_{0}=[1: 0: \ldots: 0]$. Put $G=\operatorname{Sp}(1, n)$ and $K=G_{z_{0}}=\operatorname{Sp}(n)$ (compact symplectic group). Then, $X=G / K$. Define

$$
\begin{gathered}
N=\left\{n_{v, r}: \left.=\left(\begin{array}{ccc}
1+r+\frac{1}{2}\|v\|^{2} & -r-\frac{1}{2}\|v\|^{2} & \bar{v}^{t} \\
r+\frac{1}{2}\|v\|^{2} & 1-r-\frac{1}{2}\|v\|^{2} & \bar{v}^{t} \\
v & -v & I_{n-1}
\end{array}\right) \right\rvert\, v \in \mathbb{H}^{n-1}, r \in \operatorname{Im}(\mathbb{H})\right\}, \\
n_{v}=n_{v, 0} \quad\left(v \in \mathbb{H}^{n-1}\right) .
\end{gathered}
$$

Put $n_{v^{t}, r^{t}}=n_{v, r}\left(v \in \mathbb{H}^{n-1}, r \in \operatorname{Im}(\mathbb{H})\right)$. We use similar conventions for all the functions that are defined with the help of $n_{v, r}$ as for example n_{v}.
Set

$$
A=\left\{a_{t}: \left.=\left(\begin{array}{ccc}
\frac{1}{2}\left(t+\frac{1}{t}\right) & \frac{1}{2}\left(t-\frac{1}{t}\right) & 0 \\
\frac{1}{2}\left(t-\frac{1}{t}\right) & \frac{1}{2}\left(t+\frac{1}{t}\right) & 0 \\
0 & 0 & I_{n-1}
\end{array}\right) \right\rvert\, t>0\right\}
$$

We have

$$
a_{t} n_{v, 0} a_{t}^{-1}=n_{t v, 0} \quad \text { and } \quad a_{t} n_{0, r} a_{t}^{-1}=n_{0, t^{2} r}
$$

Thus, $a_{t}^{\alpha}=t$. Then, $n_{v, r} a_{t} z_{0}$ is equal to

$$
\begin{aligned}
&\left(\begin{array}{ccc}
1+r+\frac{1}{2}\|v\|^{2} & -r-\frac{1}{2}\|v\|^{2} & \bar{v}^{t} \\
r+\frac{1}{2}\|v\|^{2} & 1-r-\frac{1}{2}\|v\|^{2} & \bar{v}^{t} \\
v & -v & I_{n-1}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{2}\left(t+\frac{1}{t}\right) & \frac{1}{2}\left(t-\frac{1}{t}\right) & 0 \\
\frac{1}{2}\left(t-\frac{1}{t}\right) & \frac{1}{2}\left(t+\frac{1}{t}\right) & 0 \\
0 & 0 & I_{n-1}
\end{array}\right)[1: 0: \ldots: 0] \\
&=\left(\begin{array}{ccc}
1+r+\frac{1}{2}\|v\|^{2} & -r-\frac{1}{2}\|v\|^{2} & \bar{v}^{t} \\
r+\frac{1}{2}\|v\|^{2} & 1-r-\frac{1}{2}\|v\|^{2} & \bar{v}^{t} \\
v & -v & I_{n-1}
\end{array}\right)\left[\begin{array}{c}
\left.\frac{1}{2}\left(t+\frac{1}{t}\right): \frac{1}{2}\left(t-\frac{1}{t}\right): 0: \ldots: 0\right] \\
=
\end{array}\right]\left[\frac{1}{2}\left(t+\frac{1}{t}\right)\left(1+r+\frac{1}{2}\|v\|^{2}\right)-\frac{1}{2}\left(t-\frac{1}{t}\right)\left(r+\frac{1}{2}\|v\|^{2}\right):\right. \\
&\left.\frac{1}{2}\left(t+\frac{1}{t}\right)\left(r+\frac{1}{2}\|v\|^{2}\right)+\frac{1}{2}\left(t-\frac{1}{t}\right)\left(1-r-\frac{1}{2}\|v\|^{2}\right): \frac{1}{2}\left(t+\frac{1}{t}\right) v^{t}-\frac{1}{2}\left(t-\frac{1}{t}\right) v^{t}\right] \\
&= {\left[\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{t}\left(r+\frac{1}{2}\|v\|^{2}\right): \frac{1}{2}\left(t-\frac{1}{t}\right)+\frac{1}{t}\left(r+\frac{1}{2}\|v\|^{2}\right): \frac{1}{t} v^{t}\right] . }
\end{aligned}
$$

For $g \in \operatorname{Sp}(1, n)$, write

$$
g z_{0}=\left[a_{0}: a_{1}: \ldots: a_{n}\right]=\left[1: a_{1} a_{0}^{-1}: \ldots: a_{n} a_{0}^{-1}\right] .
$$

Then,

$$
\begin{aligned}
& a_{1} a_{0}^{-1}=\frac{1}{2}\left(t-\frac{1}{t}\right)+\frac{1}{t}\left(r+\frac{1}{2}\|v\|^{2}\right)\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{t}\left(r+\frac{1}{2}\|v\|^{2}\right)\right)^{-1} \\
\Longleftrightarrow & a_{1} a_{0}^{-1} \cdot \frac{1}{2}\left(t+\frac{1}{t}\right)+a_{1} a_{0}^{-1} \cdot \frac{1}{t}\left(r+\frac{1}{2}\|v\|^{2}\right)=\frac{1}{2}\left(t-\frac{1}{t}\right)+\frac{1}{t}\left(r+\frac{1}{2}\|v\|^{2}\right) \\
\Longleftrightarrow & \left(a_{1} a_{0}^{-1}-1\right) \cdot \frac{1}{2 t}\|v\|^{2}=\frac{1}{2}\left(t-\frac{1}{t}\right)+\left(1-a_{1} a_{0}^{-1}\right) \frac{r}{t}-a_{1} a_{0}^{-1} \cdot \frac{1}{2}\left(t+\frac{1}{t}\right) .
\end{aligned}
$$

Thus,
(B.1) $\|v\|^{2}=2 t\left(a_{1} a_{0}^{-1}-1\right)^{-1}\left(\frac{1}{2}\left(t-\frac{1}{t}\right)+\left(1-a_{1} a_{0}^{-1}\right) \frac{r}{t}-a_{1} a_{0}^{-1} \cdot \frac{1}{2}\left(t+\frac{1}{t}\right)\right)$.

For $j=2, \ldots, n$, we have

$$
a_{j} a_{0}^{-1}=\frac{1}{t} v_{j-1} \cdot\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{t}\left(r+\frac{1}{2}\|v\|^{2}\right)\right)^{-1}
$$

Thus,

$$
\begin{aligned}
v_{j-1}= & t a_{j} a_{0}^{-1} \cdot\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{t}\left(r+\frac{1}{2}\|v\|^{2}\right)\right) \\
= & a_{j} a_{0}^{-1}\left(\frac{1}{2}\left(t^{2}+1\right)+r+\left(a_{1} a_{0}^{-1}-1\right)^{-1}\right. \\
& \left.\quad \cdot\left(\frac{1}{2}\left(t^{2}-1\right)+\left(1-a_{1} a_{0}^{-1}\right) r-a_{1} a_{0}^{-1} \cdot \frac{1}{2}\left(t^{2}+1\right)\right)\right) \\
= & a_{j} a_{0}^{-1}\left(a_{1} a_{0}^{-1}-1\right)^{-1}\left(\left(a_{1} a_{0}^{-1}-1\right)\left(\frac{1}{2}\left(t^{2}+1\right)+r\right)+\frac{1}{2}\left(t^{2}-1\right)\right. \\
& \left.\quad+\left(1-a_{1} a_{0}^{-1}\right) r-a_{1} a_{0}^{-1} \cdot \frac{1}{2}\left(t^{2}+1\right)\right) \\
= & -a_{j} a_{0}^{-1}\left(a_{1} a_{0}^{-1}-1\right)^{-1}=a_{j}\left(a_{0}-a_{1}\right)^{-1}
\end{aligned}
$$

By (B.1), we have

$$
\begin{aligned}
\left(a_{1} a_{0}^{-1}-1\right)\|v\|^{2} & =t^{2}-1+\left(1-a_{1} a_{0}^{-1}\right) \cdot 2 r-a_{1} a_{0}^{-1} \cdot\left(t^{2}+1\right) \\
& =\left(1-a_{1} a_{0}^{-1}\right) t^{2}-1-a_{1} a_{0}^{-1}+\left(1-a_{1} a_{0}^{-1}\right) \cdot 2 r
\end{aligned}
$$

Hence,

$$
\begin{aligned}
t^{2} & =\left(1-a_{1} a_{0}^{-1}\right)^{-1}\left(1+a_{1} a_{0}^{-1}-\left(1-a_{1} a_{0}^{-1}\right) \cdot 2 r+\left(a_{1} a_{0}^{-1}-1\right)\|v\|^{2}\right) \\
& =\left(1-a_{1} a_{0}^{-1}\right)^{-1}\left(1+a_{1} a_{0}^{-1}-\left(1-a_{1} a_{0}^{-1}\right) \cdot 2 r+\left(a_{1} a_{0}^{-1}-1\right)\left(\sum_{j=2}^{n} \frac{\left|a_{j}\right|^{2}}{\left|a_{0}-a_{1}\right|^{2}}\right)\right) \\
& =a_{0}\left(a_{0}-a_{1}\right)^{-1}\left(a_{0}+a_{1}\right) a_{0}^{-1}-2 r-\sum_{j=2}^{n} \frac{\left|a_{j}\right|^{2}}{\left|a_{0}-a_{1}\right|^{2}}
\end{aligned}
$$

Since this belongs to \mathbb{R} and since $\operatorname{Im}\left(x y x^{-1}\right)=x \operatorname{Im}(y) x^{-1}$ for all $x, y \in \mathbb{H}$,

$$
r=\frac{1}{2} a_{0} \operatorname{Im}\left(\left(a_{0}-a_{1}\right)^{-1}\left(a_{0}+a_{1}\right)\right) a_{0}^{-1}
$$

So,

$$
h(g)=a \sqrt{\operatorname{Re}\left(\left(a_{0}-a_{1}\right)^{-1}\left(a_{0}+a_{1}\right)\right)-\sum_{j=2}^{n} \frac{\left|a_{j}\right|^{2}}{\left|a_{0}-a_{1}\right|^{2}}}
$$

as $\operatorname{Re}\left(x y x^{-1}\right)=x \operatorname{Re}(y) x^{-1}=\operatorname{Re}(y)$ for all $x, y \in \mathbb{H}$, and

$$
\nu(g)=n_{\left(a_{2}\left(a_{0}-a_{1}\right)^{-1}, \ldots, a_{n}\left(a_{0}-a_{1}\right)^{-1}, \frac{1}{2} a_{0} \operatorname{Im}\left(\left(a_{0}-a_{1}\right)^{-1}\left(a_{0}+a_{1}\right)\right) a_{0}^{-1}\right) .} .
$$

Let $m \in M=\left\{m_{A, q}: \left.=\left(\begin{array}{ccc}q & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & A\end{array}\right) \right\rvert\, A \in \operatorname{Sp}(n-1), q \in \operatorname{Sp}(1)\right\}$.
Set $m_{A}=m_{A, 1}$. Then,

$$
\begin{equation*}
m_{A, q} n_{v, r} m_{A, q}^{-1}=n_{A v \bar{q}, q r \bar{q}} \tag{B.2}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{A} n_{v} m_{A}^{-1}=n_{A v} . \tag{B.3}
\end{equation*}
$$

For $g \in \operatorname{Sp}(1, n)$ (resp. $X \in \mathfrak{s p}(1, n)$), define

$$
\theta(g)=\left(\bar{g}^{t}\right)^{-1} \quad\left(\text { resp. } \theta(X)=-\bar{X}^{t}\right)
$$

Let $\bar{n}_{v, r}=\theta\left(n_{v, r}\right) \in \bar{N}\left(v \in \mathbb{H}^{n-1}, r \in \operatorname{Im}(\mathbb{H})\right)$. Since $\bar{r}=-r$,

$$
g:=\bar{n}_{v, r}=\left(\begin{array}{ccc}
1+r+\frac{1}{2}\|v\|^{2} & r+\frac{1}{2}\|v\|^{2} & -\bar{v}^{t} \\
-r-\frac{1}{2}\|v\|^{2} & 1-r-\frac{1}{2}\|v\|^{2} & \bar{v}^{t} \\
-v & -v & I_{n-1}
\end{array}\right) .
$$

Thus,

$$
\left(a_{0}-a_{1}\right)^{-1}=\left(1+2 r+\|v\|^{2}\right)^{-1}=\frac{1+\|v\|^{2}-2 r}{\left(1+\|v\|^{2}\right)^{2}+4|r|^{2}} .
$$

As $a_{0}+a_{1}=1$, we have

$$
\begin{aligned}
h\left(\bar{n}_{v, r}\right) & =a \sqrt{\operatorname{Re}\left(\left(a_{0}-a_{1}\right)^{-1}\right)-\sum_{j=1}^{n-1} \frac{\left|v_{j}\right|^{2}}{\left|a_{0}-a_{1}\right|^{2}}} \\
& =a \sqrt{\frac{1+\|v\|^{2}}{\left(1+\|v\|^{2}\right)^{2}+4|r|^{2}}-\frac{\|v\| \|^{2}}{\left(1+\|v\|^{2}\right)^{2}+4|r|^{2}}}
\end{aligned}=a \frac{1}{\sqrt{\left(1+\|v\|^{2}\right)^{2}+4|r|^{2}}}
$$

and, as in addition a_{0} and $\operatorname{Im}\left(\left(a_{0}-a_{1}\right)^{-1}\right)=\operatorname{Im}\left(\left(2 a_{0}-1\right)^{-1}\right)$ commute,

$$
\begin{aligned}
\nu\left(\bar{n}_{v, r}\right) & =n_{\left(-v_{1}\left(a_{0}-a_{1}\right)^{-1}, \ldots,-v_{n-1}\left(a_{0}-a_{1}\right)^{-1}, \frac{1}{2} \operatorname{Im}\left(\left(a_{0}-a_{1}\right)^{-1}\right)\right)} \\
& =n_{\left(-\left(v_{1}, v_{2}, \ldots, v_{n-1}\right) \frac{1+\|v\|^{2}-2 r}{\left(1+\| v v^{2}\right)^{2}+4|r|^{2}},-\frac{r}{\left(1+\|v\|^{2}\right)^{2}+4|r|^{2}}\right)} .
\end{aligned}
$$

The formula for $h\left(\bar{n}_{v, r}\right)$ follows also from Proposition 2.1.7.
Put $w=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & I_{n-2}\end{array}\right)$. Then,

$$
w n_{v, r}=\left(w n_{v, r} w\right) w=\bar{n}_{\left(v_{1},-v_{2}, \ldots,-v_{n-1}\right),-r} w .
$$

Thus,

$$
h\left(w n_{v, r}\right)=a_{\frac{1}{\sqrt{\left(1+\|v\|^{2}\right)^{2}+4|r|^{2}}}}
$$

and

$$
\nu\left(w n_{v, r}\right)=n_{\left(\left(-v_{1}, v_{2}, \ldots, v_{n-1}\right) \frac{1+\| v v)^{2}+2 r}{\left(1+\|v\|^{2}\right)^{2}+4|r|^{2}}, \frac{r}{\left(1+\|v\|^{2}\right)^{2}+4|r|^{2}}\right)} .
$$

Let $b: \mathbb{H}^{n+1} \times \mathbb{H}^{n+1} \rightarrow \mathbb{H}$ be the following \mathbb{H}-Hermitian form

$$
b(x, y)=\overline{x_{0}} y_{0}-\sum_{i=1}^{n} \overline{x_{i}} y_{i} \quad\left(x=\left(x_{0}, \ldots, x_{n}\right), y=\left(y_{0}, \ldots, y_{n}\right) \in \mathbb{H}^{n+1}\right) .
$$

Note that $b(y, x)=\overline{b(x, y)}$. Define a metric on $\mathbb{H} H^{n}$ by the formula

$$
\cosh ^{2}(d(x, y))=\frac{b(x, y) b(y, x)}{b(x, x) b(y, y)} \quad\left(x, y \in \mathbb{H} H^{n}\right)
$$

For $g \in \operatorname{Sp}(1, n)$, write

$$
g z_{0}=\left[a_{0}: a_{1}: \ldots: a_{n}\right] .
$$

Since $b\left(z_{0}, z_{0}\right)=1, b\left(z_{0}, g z_{0}\right)=a_{0}$ and $b\left(g z_{0}, g z_{0}\right)=\left|a_{0}\right|^{2}-\sum_{i=1}^{n}\left|a_{i}\right|^{2}$,

$$
a_{g}=e^{d\left(z_{0}, g z_{0}\right)}=e^{\operatorname{arccosh}\left(\sqrt{\frac{\left|a_{0}\right|^{2}}{\left|a_{0}\right|^{2}-\sum_{i=1}\left|a_{i}\right|^{2}}}\right)} .
$$

Since

$$
\begin{aligned}
\cosh ^{2}\left(d\left(z_{0}, a_{t} z_{0}\right)\right)=\frac{\left(t^{2}+1\right)^{2}}{\left(t^{2}+1\right)^{2}-\left(t^{2}-1\right)^{2}} & =\frac{\left(t^{2}+1\right)^{2}}{4 t^{2}} \\
= & \left(\frac{t^{2}+1}{2 t}\right)^{2}=\left(\frac{t+\frac{1}{t}}{2}\right)^{2}=\cosh ^{2}(\log t),
\end{aligned}
$$

$a_{a_{t}}=t$ for all $t \geqslant 1$. Moreover,

$$
a_{g}=e^{\operatorname{arccosh}\left(\sqrt{\frac{\left|a_{0}\right|^{2}}{\left|a_{0}\right|^{2}-\sum_{i=1}^{n}\left|a_{i}\right|^{2}}}\right)} .
$$

Recall that $n_{v, r} a_{t} z_{0}$ is equal to $\left[\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{t}\left(r+\frac{1}{2}\|v\|^{2}\right): \frac{1}{2}\left(t-\frac{1}{t}\right)+\frac{1}{t}\left(r+\frac{1}{2}\|v\|^{2}\right): \frac{1}{t} v^{t}\right]$.
Since $\left|\frac{1}{2}\left(t \pm \frac{1}{t}\right)+\frac{1}{t}\left(r+\frac{1}{2}\|v\|^{2}\right)\right|^{2}=\left(\frac{1}{2}\left(t \pm \frac{1}{t}\right)+\frac{1}{2 t}\|v\|^{2}\right)^{2}+\frac{|r|^{2}}{t^{2}}, \cosh \left(\log \left(a_{n_{v, r}} a_{t}\right)\right)^{2}$ is equal to

$$
\begin{aligned}
& \frac{\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{2 t}\|v\|^{2}\right)^{2}+\frac{|r|^{2}}{t^{2}}}{\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{2 t}\|v\|^{2}\right)^{2}-\left(\frac{1}{2}\left(t-\frac{1}{t}\right)+\frac{1}{2 t}\|v\|^{2}\right)^{2}-\frac{1}{t^{2}}\|v\|^{2}} \\
& \quad=\frac{\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{2 t}\|v\|^{2}\right)^{2}+\frac{|r|^{2}}{t^{2}}}{\frac{1}{t}\left(t+\frac{1}{t}\|v\|^{2}\right)-\frac{1}{t^{2}}\|v\|^{2}}=\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{2 t}\|v\|^{2}\right)^{2}+\frac{|r|^{2}}{t^{2}} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\left.a_{n_{v, r} a_{t}}=e^{\operatorname{arccosh}}\left(\sqrt{\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{2 t}\|v\|^{2}\right.}\right)^{2}+\frac{|r|^{2}}{t^{2}}\right) . \tag{B.4}
\end{equation*}
$$

In particular, $a_{n_{v} a_{t}}$ is equal to

$$
e^{\operatorname{arccosh}\left(\frac{1}{2}\left(t+\frac{1}{t}\right)+\frac{1}{2 t}\|v\|^{2}\right)} .
$$

For $v \in \mathbb{H}^{n-1}$ and $r \in \operatorname{Im}(\mathbb{H})$, set $X_{v, r}=\left(\begin{array}{ccc}r & -r & \bar{v}^{t} \\ r & -r & \bar{v}^{t} \\ v & -v & 0_{n-1}\end{array}\right)$.
Then, $\exp \left(X_{v, r}\right)=n_{v, r}$.
For $X, Y \in \mathfrak{g}, B_{0}(X, Y)=\operatorname{tr}(X Y)$. This defines an $\operatorname{Ad}(G)$-invariant inner product on \mathfrak{g}. As these are unique up to a constant for simple groups and as both are positive defined on $\mathfrak{s}:=\{X \in \mathfrak{g} \mid \theta(X)=-X\}$, there exists a positive constant c such that $B_{0}(X, Y)=c B(X, Y)$. For $X \in \mathfrak{g}$, set $\|X\|=B_{0}(X, \theta(X))$.
Let us compute now the value of c.
Let $H \in \mathfrak{a}$. Then, $\|H\|^{2}=B_{0}(H, H)=c B(H, H)=c \operatorname{tr}(\operatorname{ad}(H) \operatorname{ad}(H))$.
Since $[H, Y]=0$ for all $Y \in \mathfrak{m} \oplus \mathfrak{a}$ and $[H, X]=\mu(H) X$ for all $X \in \mathfrak{g}_{\mu}$,

$$
\operatorname{tr}(\operatorname{ad}(H) \operatorname{ad}(H))=2 m_{\alpha} \alpha(H)^{2}+2 m_{2 \alpha}(2 \alpha(H))^{2}=2\left(m_{\alpha}+4 m_{2 \alpha}\right) \alpha(H)^{2}
$$

Let $H_{1} \in \mathfrak{a}$ be such that $\alpha\left(H_{1}\right)=1$. Then, $H_{1}=\log \left(a_{e}\right)$ as $a_{t}^{\alpha}=t$. Since

$$
\left\|\log \left(a_{t}\right)\right\|^{2}=\operatorname{tr}\left(\log \left(a_{t}\right) \log \left(a_{t}\right)\right)=2(\log t)^{2},
$$

$\left\|H_{1}\right\|^{2}=2$. Thus,

$$
2=\left\|H_{1}\right\|^{2}=c \operatorname{tr}\left(\operatorname{ad}\left(H_{1}\right) \operatorname{ad}\left(H_{1}\right)\right)=2 c\left(m_{\alpha}+4 m_{2 \alpha}\right)
$$

as $\alpha\left(H_{1}\right)=1$. Hence, $c=\frac{1}{m_{\alpha}+4 m_{2 \alpha}}$. So,

$$
\left|X_{v, r}\right|=\frac{\sqrt{c_{d_{X}}}}{\sqrt{c}}\left\|X_{v, r}\right\|=\frac{\sqrt{2}}{2}\left\|X_{v, r}\right\|
$$

Let us check now that

$$
\left\|X_{v, r}\right\|=\left\|\log n_{v, r}\right\|=2 \sqrt{\|v\|^{2}+|r|^{2}} \quad\left(v \in \mathbb{H}^{n-1}, r \in \operatorname{Im}(\mathbb{H})\right) .
$$

Since

$$
\begin{aligned}
& X_{v, r} \theta\left(X_{v, r}\right)=\left(\begin{array}{ccc}
r & -r & \bar{v}^{t} \\
r & -r & \bar{v}^{t} \\
v & -v & 0_{n-1}
\end{array}\right)\left(\begin{array}{ccc}
\bar{r} & \bar{r} & \bar{v}^{t} \\
-\bar{r} & -\bar{r} & -\bar{v}^{t} \\
v & v & 0_{n-1}
\end{array}\right) \\
&=\left(\begin{array}{ccc}
\|v\|^{2}+2|r|^{2} & \|v\|^{2}+2|r|^{2} & 2 r \bar{v}^{t} \\
\|v\|^{2}+2|r|^{2} & \|v\|^{2}+2|r|^{2} & 2 r \bar{v}^{t} \\
-2 v r & 2 v r & \operatorname{diag}\left(2\left|v_{1}\right|^{2}, \ldots, 2\left|v_{n-1}\right|^{2}\right)
\end{array}\right), \\
&\left\|\log n_{v, r}\right\|^{2}=\left\|X_{v, r}\right\|^{2}=\operatorname{tr}\left(X_{v, r} \theta\left(X_{v, r}\right)\right)=4\|v\|^{2}+4|r|^{2} .
\end{aligned}
$$

C Results of independent interest about discrete series representations

Let Γ be a convex-cocompact, non-cocompact, discrete subgroup of G.
Let $\left(\varphi, V_{\varphi}\right)$ be a finite-dimensional unitary representation of Γ and let $\sigma \in \hat{M}$.
Assume that $X \neq \mathbb{O} H^{2}$ or that $\delta_{\Gamma}<0$ and $\lambda \in\left(0,-\delta_{\Gamma}\right)$.
Let us introduce the following short notations: For $\mu \in \mathfrak{a}_{\mathbb{C}}^{*}$, set

$$
\begin{aligned}
& H_{-\infty}^{\sigma, \mu}=C^{-\infty}\left(\partial X, V\left(\sigma_{\mu}\right)\right), H_{\Omega}^{\sigma, \mu}=C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\mu}\right)\right), \\
& \quad H_{-\infty}^{\sigma, \mu}(\varphi)=C^{-\infty}\left(\partial X, V\left(\sigma_{\mu}, \varphi\right)\right) \text { and } \quad H_{\Omega}^{\sigma, \mu}(\varphi)=C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\mu}, \varphi\right)\right) .
\end{aligned}
$$

Let $\left(\pi, V_{\pi}\right)$ be a discrete series representation. Recall that $\Lambda_{V_{\pi, K}} \in \mathfrak{a}^{*}$ denotes the real part of the highest leading exponent appearing in an asymptotic expansion for $a \rightarrow \infty$ of $c_{v, \tilde{v}}(k a)\left(v \in V_{\pi, \infty}, \tilde{v} \in V_{\pi^{\prime}, K}\right)$.
Let $\lambda \in \mathfrak{a}^{*}$ be such that $-(\lambda+\rho)=\Lambda_{V_{\pi, K}}$. As π is a discrete series representation, $0<\lambda \in \mathfrak{a}^{*}$.
Recall that we defined in Section 2.8 an embedding map β from $V_{\pi,-\infty}$ to $H_{-\infty}^{\sigma,-\lambda}$. With the help of this map, we constructed then a map $A: H_{-\infty}^{\sigma, \lambda} \rightarrow H_{-\infty}^{\sigma,-\lambda}$. By (19) of [BO00, p.100], we have

$$
\hat{J}_{\sigma,-\mu} \hat{J}_{\sigma, \mu}=\hat{J}_{\sigma, \mu} \hat{J}_{\sigma,-\mu}=\frac{1}{p_{\sigma}(\mu)} \mathrm{Id} .
$$

Here p_{σ} is the Plancherel density. Since p_{σ} is meromorphic, it has a pole of finite order at $\mu=\lambda$.
Let $\mu \in \mathfrak{a}_{\mathbb{C}}^{*}$ be such that $\operatorname{Re}(\mu)>0$. Let

$$
J_{-\mu}^{-}:=\hat{J}_{\sigma,-\mu}:=\sigma(w) \hat{J}_{\sigma,-\mu}^{w}: H_{-\infty}^{\sigma,-\mu} \rightarrow H_{-\infty}^{\sigma, \mu},
$$

let $J_{-}=J_{-\lambda}^{-}$and let $I^{\sigma, \lambda}$ denote the image of J_{-}.
Let $J_{\mu}^{+}: H_{-\infty}^{\sigma, \mu} \rightarrow H_{-\infty}^{\sigma,-\mu}$ be the renormalised operator $\sigma(w) \hat{J}_{\sigma, \mu}^{w}$ which is regular and nonzero in $\mu=\lambda$ and which satisfies $J_{\mu}^{+} J_{-\mu}^{-}=(\mu-\lambda)^{k}$ Id for some $k \in \mathbb{N}$. Let $J_{+}=J_{\lambda}^{+}$.
Then, the operators J_{-}and J_{+}induce nonzero intertwining operators

$$
J_{-}: H_{-\infty}^{\sigma,-\lambda}(\varphi) \rightarrow H_{-\infty}^{\sigma, \lambda}(\varphi) \quad \text { and } \quad J_{+}: H_{-\infty}^{\sigma, \lambda}(\varphi) \rightarrow H_{-\infty}^{\sigma,-\lambda}(\varphi) .
$$

Let $V_{ \pm \infty}=\beta\left(V_{\pi, \pm \infty}\right), V=\left(V_{ \pm \infty}\right)_{K}=\beta\left(V_{\pi, K}\right), W_{-\infty}=\operatorname{ker} J_{-}, W_{\infty}=\operatorname{ker}\left(J_{-}\right) \cap$ $H_{\infty}^{\sigma,-\lambda}, W=\left(\operatorname{ker} J_{-}\right)_{K}, V_{\Omega}=V_{-\infty} \cap H_{\Omega}^{\sigma,-\lambda}, V_{\Omega}^{\Gamma}=V_{-\infty}^{\Gamma} \cap H_{\Omega}^{\sigma,-\lambda}, W_{\Omega}=W_{-\infty} \cap H_{\Omega}^{\sigma,-\lambda}$ and $W_{\Omega}^{\Gamma}=W_{-\infty}^{\Gamma} \cap H_{\Omega}^{\sigma,-\lambda}$.
Let J_{-}^{Γ} be the restriction of J_{-}to $\left(H_{-\infty}^{\sigma,-\lambda}\right)^{\Gamma}$. Let $W_{-\infty}^{\Gamma}=\operatorname{ker} J_{-}^{\Gamma}$.
In an obvious manner, we define also $V_{ \pm \infty}(\varphi), V(\varphi), V_{\Omega}^{\Gamma}(\varphi)$ and $W_{\Omega}^{\Gamma}(\varphi)$.

We want to prove the following:
Theorem C.1. The space $V_{\Omega}^{\Gamma}(\varphi)$ is dense in $V_{-\infty}^{\Gamma}(\varphi)$. Moreover, $A\left(\left(H_{\Omega}^{\sigma, \lambda}\right)^{\Gamma}(\varphi)\right)$ (resp. $\left.A\left(\left(H_{-\infty}^{\sigma, \lambda}\right)^{\Gamma}(\varphi)\right)\right)$ has finite codimension in $V_{\Omega}^{\Gamma}(\varphi)\left(\right.$ resp. $\left.V_{-\infty}^{\Gamma}(\varphi)\right)$.

The proof contains several statements of independent interest.
Theorem C.2. There exists a second discrete series module $Z, Z \nsucceq V$, such that $W=V \oplus Z$.

Remark C.3.

(1) It follows that we have the following nonsplit exact sequence:

$$
0 \rightarrow V \oplus Z \rightarrow H_{K}^{\sigma,-\lambda} \rightarrow I^{\sigma, \lambda} \rightarrow 0
$$

where $I^{\sigma, \lambda}$ is the Langlands quotient.
(2) As the proof shows, this result is also always true when $X=\mathbb{O} H^{2}$.

Proposition C.4. The space $W_{ \pm \infty}$ is equal to $J_{+}\left(H_{ \pm \infty}^{\sigma, \lambda}\right)$.
Remark C.5. It follows from the proof that $J_{\mu}^{+} J_{-\mu}^{-}=J_{\mu}^{-} J_{-\mu}^{+}=(\mu-\lambda)$ Id.
Corollary C.6. The map A is up to a constant equal to $p_{V} \circ J_{+}$, where $p_{V}: W_{-\infty} \rightarrow$ $V_{-\infty}$ is the natural projection.

Proposition C.7. The space $W_{\Omega}^{\Gamma}(\varphi)$ is dense in $W_{-\infty}^{\Gamma}(\varphi)$. Moreover,

$$
J_{+}\left(\left(H_{\Omega}^{\sigma, \lambda}\right)^{\Gamma}(\varphi)\right) \quad\left(\text { resp. } J_{+}\left(\left(H_{-\infty}^{\sigma, \lambda}\right)^{\Gamma}(\varphi)\right)\right)
$$

has finite codimension in $W_{\Omega}^{\Gamma}(\varphi)$ (resp. $W_{-\infty}^{\Gamma}(\varphi)$).
Proposition C.8. We have: $p_{V}\left(W_{\Omega}\right)=V_{\Omega}$.
Remark C.9. As $W_{-\infty}=V_{-\infty} \oplus Z_{-\infty}$ by Theorem C.2, it follows from this proposition that $p_{V(\varphi)}\left(W_{\Omega}^{\Gamma}(\varphi)\right)=V_{\Omega}^{\Gamma}(\varphi)$.

Proof of Theorem C. 1 using the other statements.
By Proposition C.7, $W_{\Omega}^{\Gamma}(\varphi)$ is dense in $W_{-\infty}^{\Gamma}(\varphi)$. Moreover, by its proof, there is a finite-dimensional vector space F in $W_{\Omega}^{\Gamma}(\varphi)$ such that $J_{+}\left(\left(H_{\Omega}^{\sigma, \lambda}\right)^{\Gamma}(\varphi)\right) \oplus F=W_{\Omega}^{\Gamma}(\varphi)$ and $J_{+}\left(\left(H_{-\infty}^{\sigma, \lambda}\right)^{\Gamma}(\varphi)\right) \oplus F=W_{-\infty}^{\Gamma}(\varphi)$. By Remark C.9, $V_{\Omega}^{\Gamma}(\varphi)=p_{V(\varphi)}\left(W_{\Omega}^{\Gamma}(\varphi)\right)$. Thus, $V_{\Omega}^{\Gamma}(\varphi)$ is dense in $p_{V(\varphi)}\left(W_{-\infty}^{\Gamma}(\varphi)\right)=V_{-\infty}^{\Gamma}(\varphi)$. Moreover, it follows from Corollary C. 6 that $V_{\Omega}^{\Gamma}(\varphi)=p_{V(\varphi)}\left(W_{\Omega}^{\Gamma}(\varphi)\right)\left(\operatorname{resp} . V_{-\infty}(\varphi)=p_{V(\varphi)}\left(W_{-\infty}(\varphi)\right)\right)$ is equal to $A\left(H_{\Omega}^{\sigma, \lambda}(\varphi)\right)+p_{V(\varphi)}(F)\left(\right.$ resp. $\left.\quad A\left(H_{-\infty}^{\sigma, \lambda}(\varphi)\right)+p_{V(\varphi)}(F)\right)$. The theorem follows.

Theorem C.2 implies Proposition C.8. Since V_{Ω} is contained W_{Ω}, V_{Ω} is also contained in $p_{V}\left(W_{\Omega}\right)$. We have to show that $p_{V}\left(W_{\Omega}\right)$ is also contained in V_{Ω}.
Let $\gamma \in \hat{K}$ and $V_{\gamma} \subset V_{\pi}(\gamma)$ as in Section 2.8 and let $\tilde{t} \in \operatorname{Hom}_{K}\left(V_{\tilde{\gamma}}, V_{\pi^{\prime}}\right)$ (unique up to a constant). We choose the same as in the definition of the embedding β. Set $S(\beta v)={ }^{t} \tilde{t}(v) \in V_{\gamma}$. Then, S is a nonzero element of $\operatorname{Hom}_{K}\left(V, V_{\gamma}\right)$.

By Theorem C.2, we have $W=V \oplus Z$ as K-representations. This decomposition provides us with a projection p_{V} from W to V. So, we can view $S \circ p_{V}$ also as an element of $\operatorname{Hom}_{K}\left(W, V_{\gamma}\right)$ which vanishes on Z but not on V.
Let \tilde{p} be a K-equivariant projection from $H_{K}^{\sigma,-\lambda}$ to W.
Define a K-homomorphism $\tilde{S} \in \operatorname{Hom}_{K}\left(H_{K}^{\sigma,-\lambda}, V_{\gamma}\right)$ by $S \circ p_{V} \circ \tilde{p}$.
By Frobenius reciprocity, we get $T^{\prime} \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$. By construction,

$$
P_{-\lambda}^{T^{\prime}} f=0
$$

for all $f \in Z$. Since $\operatorname{Hom}_{K}\left(V_{\tilde{\gamma}}, V_{\pi^{\prime}}\right)$ is 1-dimensional, the nonzero map $v \in V_{\tilde{\gamma}} \mapsto$ ${ }^{t} \beta v_{T^{\prime}, \lambda} \in V_{\pi^{\prime}}$ is up to a constant equal to \tilde{t}. We choose $T^{\prime} \in \operatorname{Hom}_{K}\left(V_{\tilde{\gamma}}, V_{\pi^{\prime}}\right)$ so that we have equality. Thus, ${ }^{t} A v_{T^{\prime}, \lambda}={ }^{t} q \tilde{t} v=v_{T,-\lambda}$, where $T \in \operatorname{Hom}_{M}\left(V_{\sigma}, V_{\gamma}\right)$ is defined by (2.31) (see p.59). Hence, $P^{T^{\prime}} A f=P^{T} f$ for all $f \in H_{-\infty}^{\sigma, \lambda}$.
Let $t \in \operatorname{Hom}_{M}\left(V_{\gamma}, V_{\sigma}\right)$ be as in the definition of β. For $f \in W_{\infty}$ and $k \in K$, define $p(f)(k)=t \lim _{a \rightarrow \infty} a^{\lambda+\rho} P_{-\lambda}^{T^{\prime}}(f)(k a)$. Since $f \in W_{\infty}$ is smooth, $P_{-\lambda}^{T} f(k a), k \in K$, has an asymptotic expansion for $a \rightarrow \infty$ whose coefficients depend smoothly on $k \in K$ (look at the proof of Lemma 2.8.22). Thus, p is well-defined. Extend p to a map from $W_{-\infty}$ to $V_{-\infty}$.
If $f \in W_{\Omega}$, then $p(f)$ is smooth on Ω and $p(f)(k)(k \in K(\Omega))$ is equal to

$$
t \lim _{a \rightarrow \infty} a^{\lambda+\rho} P_{-\lambda}^{T^{\prime}} f(k a)
$$

$\left(t P_{-\lambda}^{T}{ }^{\prime} f(k a)\right.$ has an asymptotic expansion when $k \in K(\Omega)$ and the leading term depends smoothly on $k \in K(\Omega)$, compare with Corollary 2.8.23). Let $\beta v \in V_{\Omega}$. Then,

$$
p(\beta v)(k)=t \lim _{a \rightarrow \infty} a^{\lambda+\rho} P_{-\lambda}^{T^{\prime}} \beta v(k a)=t(\tilde{\beta} v(k))=(\beta v)(k) .
$$

It follows that p is the identity on $V_{-\infty}$. Thus, $p=p_{V}$ by uniqueness of the projection. Hence, $p_{V}(f)=p(f)$ is smooth on Ω. So, $p_{V}\left(W_{\Omega}\right)$ is contained in V_{Ω}.

Let \star be ∞ (or $-\infty$, resp.) and let \sharp be \varnothing (or Ω, resp.).
Theorem C.2 and Proposition C.4 imply Proposition C.7. Let $E^{1}\left(\sigma_{\mu}, \varphi\right)$ be as in Chapter 4 of [Olb02, p.37] $(k=1)$ and let

$$
E_{\sharp}^{1}\left(\sigma_{\mu}, \varphi\right)=E^{1}\left(\sigma_{\mu}, \varphi\right) \cap C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{\mu}, \varphi\right)\right)^{\Gamma} .
$$

Then, $E_{\sharp}^{1}\left(\sigma_{\mu}, \varphi\right)$ is equal to the space of distributions $f \in C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{\mu}, \varphi\right)\right)^{\Gamma}$ which can be extended to a holomorphic family

$$
\nu \mapsto f_{\nu} \in C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{\nu}, \varphi\right)\right)^{\Gamma}
$$

in a neighbourhood of μ.
Since ext has at most finite-dimensional singularities by Theorem 5.10 of [BO00, p.103] and since $C^{\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right)$ is dense in $C^{-\infty}\left(B, V_{B}\left(\sigma_{-\lambda}, \varphi\right)\right), E^{1}\left(\sigma_{-\lambda}, \varphi\right)$ has finite codimension and there exists a finite-dimensional space F in $\left(H_{\Omega}^{\sigma,-\lambda}\right)^{\Gamma}(\varphi)$ such that

$$
C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}=E_{\sharp}^{1}\left(\sigma_{-\lambda}, \varphi\right) \oplus F .
$$

Claim C.10. The map

$$
\left.\operatorname{res} \circ J_{-}\right|_{E_{\sharp}^{1}\left(\sigma_{-\lambda}, \varphi\right)}: E_{\sharp}^{1}\left(\sigma_{-\lambda}, \varphi\right) \rightarrow C^{-\star}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)
$$

is surjective.
Proof. Let $\phi \in C^{-\star}\left(B, V_{B}\left(\sigma_{\lambda}, \varphi\right)\right)$. Define $\tilde{e} \in E_{\sharp}^{1}\left(\sigma_{-\lambda}, \varphi\right)$ by the evaluation of

$$
\tilde{e}_{-\mu}:=J_{\mu}^{+} \operatorname{ext}\left(\phi_{\mu}\right)
$$

at $\mu=\lambda$. Then,

$$
\operatorname{res}\left(J_{-}(\tilde{e})\right)=\operatorname{res}(\operatorname{ext}(\phi))=\phi
$$

by (2.21), as ext is regular at λ by Lemma 2.8.26 and as $J_{\mu}^{-} J_{-\mu}^{+}=(\mu-\lambda)$ Id by Remark C.5. The claim follows.

Let now $f \in C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$. By the previous claim, there exists $\tilde{e} \in$ $E_{\sharp}^{1}\left(\sigma_{-\lambda}, \varphi\right)$ such that $\operatorname{res}\left(J_{-}(f)\right)=\operatorname{res}\left(J_{-}(\tilde{e})\right)$. Let $e=J_{-}(\tilde{e})$. Thus, there is $g \in C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}$ such that $J_{-}(f)=e+g$. Let $h=f-\tilde{e}$. Then, $f=\tilde{e}+h$ and

$$
J_{-}(h)=J_{-}(f)-J_{-}(\tilde{e})=J_{-}(f)-e=g \in C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma},
$$

i.e. $h \in \operatorname{ker}\left(\right.$ res $\left.\circ J_{-}\right)$. Moreover, $h \in C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$.

It follows that there exists a finite-dimensional subspace of $\operatorname{ker}\left(\right.$ res $\left.\circ J_{-}\right) \cap\left(H_{\Omega}^{\sigma,-\lambda}\right)^{\Gamma}$, which we denote by abuse of notation also by F, such that

$$
C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}=E_{\sharp}^{1}\left(\sigma_{-\lambda}, \varphi\right) \oplus F .
$$

Let $F_{0}=F \cap \operatorname{ker}\left(J_{-}^{\Gamma}\right) \subset W_{-\infty}^{\Gamma}(\varphi)$ and let F_{1} be an algebraic complement of F_{0} in F.
Let now $f \in \operatorname{ker}\left(J_{-}^{\Gamma}\right) \cap C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$. Write $f=\tilde{e}+h_{0}+h_{1}$ with $\tilde{e} \in$ $E_{\sharp}^{1}\left(\sigma_{-\lambda}, \varphi\right), h_{0} \in F_{0}$ and $h_{1} \in F_{1}$. Thus,

$$
J_{-}(\tilde{e})=-J_{-}\left(h_{1}\right) \in E_{\sharp}^{1}\left(\sigma_{\lambda}, \varphi\right) \cap C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}=\{0\}
$$

as res oext $=\mathrm{Id}$ by (2.21). Hence, $J_{-} h_{1}=0$, i.e. $h_{1} \in F_{0}$. So, $h_{1}=0$ and $\tilde{e} \in \operatorname{ker} J_{-}$. Consequently, $f \in\left(E_{\sharp}^{1}\left(\sigma_{-\lambda}, \varphi\right) \cap \operatorname{ker} J_{-}\right) \oplus F_{0}$. We have just proven that $\operatorname{ker}\left(J_{-}^{\Gamma}\right) \cap C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}$ is equal to $\left(E_{\sharp}^{1}\left(\sigma_{-\lambda}, \varphi\right) \cap \operatorname{ker} J_{-}^{\Gamma}\right) \oplus F_{0}$.
Claim C.11. We have

$$
E_{\sharp}^{1}\left(\sigma_{-\lambda}, \varphi\right) \cap W_{-\infty}^{\Gamma}(\varphi)=J_{+}\left(E_{\sharp}^{1}\left(\sigma_{\lambda}, \varphi\right)\right) .
$$

Proof. It follows from Proposition C. 4 that $J_{+}\left(E_{\sharp}^{1}\left(\sigma_{\lambda}, \varphi\right)\right)$ is contained in

$$
E_{\sharp}^{1}\left(\sigma_{-\lambda}, \varphi\right) \cap W_{-\infty}^{\Gamma}(\varphi) .
$$

Let $f \in E_{\sharp}^{1}\left(\sigma_{-\lambda}, \varphi\right) \cap W_{-\infty}^{\Gamma}(\varphi)$. Extend f to a holomorphic family

$$
\mu \mapsto f_{-\mu} \in C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{-\mu}, \varphi\right)\right)^{\Gamma},
$$

defined in a neighbourhood of λ. Since $f \in \operatorname{ker}\left(J_{-}\right), J_{-\mu}^{-} f_{-\mu}$ has a zero in λ. Thus,

$$
g_{\mu}:=\frac{1}{\mu-\lambda} J_{-\mu}^{-} f_{-\mu}
$$

is well-defined and belongs to $C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{\mu}, \varphi\right)\right)^{\Gamma}$. Moreover, $J_{\mu}^{+} g_{\mu}$ evaluated at λ is equal to f as $J_{\mu}^{+} J_{-\mu}^{-}=(\mu-\lambda)$ Id by Remark C.5. The claim follows.

Since $J_{+}\left(C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right)=\{0\}$ and since ext is regular at $\lambda, J_{+}\left(E_{\sharp}^{1}\left(\sigma_{\lambda}, \varphi\right)\right)$ is equal to $J_{+}\left(C_{\sharp}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right)$.
It follows from this and Claim C. 11 that

$$
W_{-\infty}^{\Gamma}(\varphi)=\operatorname{ker}\left(J_{-}^{\Gamma}\right)=J_{+}\left(C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right) \oplus F_{0}
$$

and that

$$
W_{\Omega}^{\Gamma}(\varphi)=\operatorname{ker}\left(J_{-}^{\Gamma}\right) \cap C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{-\lambda}, \varphi\right)\right)^{\Gamma}=J_{+}\left(C_{\Omega}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}\right) \oplus F_{0}
$$

As $J_{+}\left(\left(H_{\Omega}^{\sigma, \lambda}\right)^{\Gamma}(\varphi)\right)$ is dense in $J_{+}\left(\left(H^{\sigma, \lambda}\right)^{\Gamma}(\varphi)\right)$ and as F_{0} is finite-dimensional, the proposition follows.

Theorem C.2 implies Proposition C.4. Let us now introduce certain extensions of the bundles $V\left(\sigma_{\mu}, \varphi\right)$ with itselves (see Chapter 4 of [Olb02] for further details). Let Π be the space of polynomials on \mathfrak{a}. Then, the group A acts on Π by translations and this action extends to a representation $1^{+}: M A N \rightarrow \mathrm{GL}(\Pi)$:
For $f \in \Pi, m \in M, a \in A, n \in N$ and $H \in \mathfrak{a}$, set

$$
1^{+}(\text {man }) f(H)=f(H-\log a) .
$$

For any $k \in \mathbb{N}$, we denote the finite dimensional subspace of polynomials of degree at most $k-1$ by Π^{k}. It is invariant under the above action. Let us denote the restriction of 1^{+}to Π^{k} by 1^{k}. Set $V^{k}\left(\sigma_{ \pm \lambda}\right)=V\left(\sigma_{ \pm \lambda} \otimes 1^{k}\right)$ and set $V^{0}\left(\sigma_{ \pm \lambda}\right)=\{0\}$. Let $H_{\sigma, \pm \lambda}^{(k)}=C^{-\infty}\left(\partial X, V^{k}\left(\sigma_{ \pm \lambda}\right)\right)$. We can identify $H_{\sigma, \pm \lambda}^{(k)}$ with germs at $\pm \lambda$ of holomorphic families $\mu \mapsto f_{\mu} \in H_{-\infty}^{\sigma, \mu}$ modulo families vanishing of order k. In general,

$$
\begin{equation*}
0 \rightarrow H_{-\infty}^{\sigma, \pm \lambda} \hookrightarrow H_{\sigma, \pm \lambda}^{(2)} \rightarrow H_{-\infty}^{\sigma, \pm \lambda} \rightarrow 0 \tag{C.1}
\end{equation*}
$$

is a nonsplitting short exact sequence of G-representations.

In short notation, we write $H_{\sigma, \pm \lambda}^{(2)}=$| $H_{-\infty}^{\sigma, \pm \lambda}$ |
| :---: |
| $H_{-\infty}^{\sigma, \pm \lambda}$ |
| (notation as in [Col85]). The image | of the embedding of $H_{-\infty}^{\sigma, \mu}$ is equal to $H_{\sigma, \mu}^{(1)}$.

By Chapter 4 of [Olb02, p.30], there is a natural operator ρ from $H_{\sigma,-\lambda}^{(2)}$ to $H_{\sigma,-\lambda}^{(1)}$, which is called shift operator. With the above identification, ρ can be identified with the multiplication by $\mu-\lambda$.
The intertwining operator J_{-}(resp. J_{+}) induces an intertwining operator

$$
J_{-}^{(2)}: H_{\sigma,-\lambda}^{(2)} \rightarrow H_{\sigma, \lambda}^{(2)} \quad\left(\text { resp. } J_{+}^{(2)}: H_{\sigma, \lambda}^{(2)} \rightarrow H_{\sigma,-\lambda}^{(2)}\right) .
$$

We have the following commutative diagram:

Recall that $J_{\mu}^{+} J_{-\mu}^{-}=(\mu-\lambda)^{l}$ Id for some $l \in \mathbb{N}$. Hence, $J_{+}^{(2)} J_{-}^{(2)}$ is equal to $(-\rho)^{l}$. This map would be zero if l were greater or equal than 2 .

It follows from Theorem C. 2 that $\left(H_{\sigma,-\lambda}^{(2)}\right)_{K}=$| $\frac{I}{\mid} \frac{I}{\mid}$ |
| :---: |
| $V \oplus Z$ |
| (here every division of | the outer box into two parts corresponds to an exact sequence), where $I:=I^{\sigma, \lambda}$ is the Langlands quotient and Z is a second discrete series module which is not isomorphic to V.

Since moreover $J_{-}^{(2)}$ does not vanish on $I \subset\left(H_{\sigma,-\lambda}^{(1)}\right)_{K},\left(\operatorname{ker} J_{-}^{(2)}\right)_{K}$ has only composition factors V, Z appearing once or twice.
Let M be a Harish-Chandra module having composition factors only discrete series modules (e.g. $M=\left(\operatorname{ker} J_{-}^{(2)}\right)_{K}$), then M is a direct sum of discrete series modules. Indeed, the exponents of $H^{0}(\mathfrak{n}, M)$ (a-weights) are only those that appear in $H^{0}(\mathfrak{n}, V)$ or $H^{0}(\mathfrak{n}, Z)$.
Thus, a suitable matrix coefficient map gives an embedding of M into $L^{2}(G) \oplus \cdots \oplus$ $L^{2}(G)$ which is a unitary representation. Hence, the image can be decomposed.
Consequently, $\left(\operatorname{ker} J_{-}^{(2)}\right)_{K}=V \oplus Z \oplus R$, where $R \cap H_{\sigma,-\lambda}^{(1)}=\{0\}$.
But by the proof of Proposition 4.21 of [Olb02, p.44] and as $\lambda \neq 0$, every nonzero submodule of $\left(H_{\sigma,-\lambda}^{(2)}\right)_{K}$ meets $\left(H_{\sigma,-\lambda}^{(1)}\right)_{K}$ nontrivially. So, $R=\{0\}$.
It follows that $\left(\operatorname{ker} J_{-}^{(2)}\right)_{K}=W \subset\left(H_{\sigma,-\lambda}^{(1)}\right)_{K}$. Let $S=\begin{array}{|c|}\hline W \\ \hline I \\ \hline W \\ \hline\end{array}$ (submodule of $\left.H_{\sigma,-\lambda}^{(2)}\right)$. Then,

$$
\rho J_{-}^{(2)}(S)=J_{-}^{(2)}(\rho S)=J_{-}^{(2)}(W)=\{0\}
$$

by definition of the ρ-shift and as $\left(\operatorname{ker} J_{-}^{(2)}\right)_{K}=W$. Thus, $J_{-}^{(2)}(S)$ is contained in $\operatorname{ker} \rho=H_{\sigma, \lambda}^{(1)}$. It follows that $J_{-}^{(2)}(S)$ is equal to $H_{\sigma, \lambda}^{(1)}$ as $\left(\operatorname{ker} J_{-}^{(2)}\right)_{K}=W$. Hence, $\left(H_{\sigma, \lambda}^{(1)}\right)_{K} \subset \operatorname{im}\left(J_{-}^{(2)}\right)$. Moreover, $J_{+}^{(2)}\left(H_{\sigma, \lambda}^{(1)}\right)_{K} \neq 0$ as $J_{+} H_{K}^{\sigma, \lambda} \neq 0$. So, $J_{+}^{(2)} J_{-}^{(2)} \neq 0$. $\mathrm{So}, l=1$.
Consequently, $J_{-}^{(2)}\left(\rho^{-1}(W)\right) \subset\left(H_{\sigma, \lambda}^{(1)}\right)_{K}$ by definition of the ρ-shift. This implies that $W=J_{+}^{(2)} J_{-}^{(2)}\left(\rho^{-1}(W)\right) \subset J_{+}^{(2)}\left(\left(H_{\sigma, \lambda}^{(1)}\right)_{K}\right)$. Thus, W is contained in $J_{+}\left(\left(H_{\sigma, \lambda}\right)_{K}\right)$.
Since $J_{-\mu}^{-} J_{\mu}^{+}=J_{\mu}^{+} J_{-\mu}^{-}=(\mu-\lambda)$ Id, $J_{+}\left(H_{K}^{\sigma, \lambda}\right)$ is also contained in W. The proposition follows now from the Casselman-Wallach globalisation theory (cf. Chapter

11 in [Wal92]).

Proof of Theorem C.2. The space of distribution vectors $V_{\pi,-\infty}$ can be embedded into some principal series $H_{-\infty}^{\sigma,-\lambda}$ by using the leading terms of asymptotic expansions of matrix coefficients if and only if $V_{\pi, K}$ appears as a submodule of $H_{K}^{\sigma,-\lambda}$ and $\lambda \in \mathfrak{a}^{*}$ is minimal among all $\mu \in \mathfrak{a}^{*}$ with $V_{\pi, K} \hookrightarrow H^{\sigma,-\mu}$.
This is Casselman's subrepresentation theorem combined with Frobenius reciprocity and a theorem of Miličić (stated in [Col85, Theorem 1.5.5, p.32]).
The assumption that G is linear and has a discrete series implies that the set of infinitesimal characters of discrete series representations coincides with the set of infinitesimal characters of all finite-dimensional representations of G (which are of the form $\mu_{\tau}+\rho_{\mathfrak{g}}$, where μ_{τ} is the highest weight of an irreducible finite-dimensional representation and $\rho_{\mathfrak{g}}$ is the half-sum of positive roots (with respect to the positive system Φ^{+}, defined below)). Both are the regular integral infinitesimal characters. The translation functor sending V to $(V \otimes F)^{\chi_{F}}$ gives an equivalence of categories between the category of Harish-Chandra modules with trivial (generalised) infinitesimal characters and the ones with (generalised) infinitesimal characters χ_{F} ([Col85, p.66]).
This functor sends discrete series representations to discrete series representations and principal series representations to principal series representations (see, e.g., Proposition 6.1 of [Olb02, p.57]).
Since G is covered by one of the groups $\operatorname{Spin}(1,2 m), \operatorname{SU}(1, n), \operatorname{Sp}(1, n), F_{4}$ (if it has a discrete series), we may assume that G is one of these groups.
The above discussion reduces the question of embeddings of discrete series representations into principal series representation to the case of trivial infinitesimal character $\chi_{\rho_{\mathrm{g}}}$.
These embeddings have been determined by Collingwood: See Proposition 6.2.76.2.10 in [Col85, pp.140-141]. There the discrete series representations are denoted by π_{i} (only one index i).
We want to show that there exists a second discrete series module $Z, Z \nsucceq V$, such that $W=V \oplus Z$ and that $H_{K}^{\sigma,-\lambda}$ is isomorphic to $\frac{I^{\sigma, \lambda}}{V \oplus Z}$. We say then that $H_{K}^{\sigma,-\lambda}$ "decomposes according to Schmid's character identity" (see 5.1.7 in [Col85, p.107]). We shortly say that the embedding $V_{\pi} \hookrightarrow H^{\sigma,-\lambda}$ is of "Schmid type".

Case $G=\operatorname{Spin}(1,2 m)$:
$\overline{B y}$ Proposition 6.2.7 of [Col85, p.140], each discrete series representation admits only one embedding and the corresponding principal series "decomposes according to Schmid's character identity" by Theorem 5.2 .4 of [Col85, p.114]. (This also holds for $m=1$, i.e. $G \simeq \operatorname{SL}(2, \mathbb{R})$, compare [Wal88, Chapter 5] or [Col85, Remark 5.2.5]). It remains to deal with the other cases.
By Proposition 6.2.8-6.2.10 of [Col85, pp.140-141], some discrete series representations have more than one embedding. We have to show that for every embedding $V_{\pi} \hookrightarrow H^{\sigma_{1},-\mu}$ which is not of "Schmid type" there is one embedding $V_{\pi} \hookrightarrow H^{\sigma_{2},-\lambda}$ of "Schmid type" with $0<\lambda<\mu$. The last condition has to be checked for every infinitesimal character, not only for the trivial one.

We want to parametrise principal series representations for fixed (regular integral) infinitesimal character.
Let $\mathfrak{t} \subset \mathfrak{m}$ be the Lie algebra of a maximal torus. Then, $\mathfrak{a} \oplus \mathfrak{t}$ is a Cartan subalgebra of \mathfrak{g}.
We consider $\mathfrak{h}:=\mathfrak{a} \oplus i \mathfrak{t} \subset \mathfrak{g}_{\mathbb{C}}$. Then, $\mathfrak{h}_{\mathbb{C}}$ is a Cartan subalgebra of $\mathfrak{g}_{\mathbb{C}}$.
Let $\Phi=\Phi\left(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}}\right) \subset \mathfrak{h}^{*}$ be a root system.
Let $|\cdot|$ denote the norm on $\mathfrak{h}_{\mathbb{C}}^{*}$ induced by the Killing form.
Fix $H_{0} \in \mathfrak{a} \backslash\{0\}$ such that $\alpha\left(H_{0}\right)>0$ for the short root α of \mathfrak{a} in \mathfrak{n}. Then,

$$
\Phi=\left\{\mu \in \Phi \mid \mu\left(H_{0}\right) \neq 0\right\} \cup \Phi_{\mathfrak{m}}
$$

where $\Phi_{\mathfrak{m}}:=\left\{\mu \in \Phi \mid \mu\left(H_{0}\right)=0\right\}$. Choose a positive root system $\Phi_{\mathfrak{m}}^{+} \subset \Phi_{\mathfrak{m}}$ and set

$$
\Phi^{+}:=\left\{\mu \in \Phi|\mu|_{\mathfrak{a}} \in \mathfrak{a}_{+}^{*}\right\} \cup \Phi_{\mathfrak{m}}^{+} \subset \Phi
$$

(compatible positive root system).
It follows from Lemma 2.3.5 of [Wal88, p.58] that the existence of a compact Cartan subgroup of G implies that there is a real root $\mu_{\mathbb{R}} \in \Phi^{+}$, i.e. $\left.\mu_{\mathbb{R}}\right|_{i t}=0$ and $\left.\mu_{\mathbb{R}}\right|_{\mathfrak{a}} \in \mathfrak{a}_{+}^{*}$. Moreover, it is unique as G is of real rank one. Observe that $\mu_{\mathbb{R}}$ is a dominant root.
Let $\Lambda \in \mathfrak{h}^{*}$ be dominant, regular and integral: $\frac{2\langle\Lambda, \mu\rangle}{\langle\mu, \mu\rangle} \in \mathbb{N}$ for all $\mu \in \Phi^{+}$.
Let $W_{\mathfrak{m}}$ be the Weyl group of $\Phi_{\mathfrak{m}}$ and $W:=W_{\mathfrak{g}}$ be the Weyl group of Φ. The set of principal series representations with infinitesimal character $\chi_{\Lambda}=\chi_{F}$ is in one-toone correspondence with the quotient of Weyl groups $W^{\mathfrak{m}}:=W_{\mathfrak{m}} \backslash W$ via the map $[w] \mapsto(\sigma,-\lambda)$ (see [Col85, p.48]), where $\lambda=\left.w \Lambda\right|_{\mathfrak{a}}$ and σ is a finite-dimensional irreducible representation of M with infinitesimal character $\left.w \Lambda\right|_{i t}$. Since M is connected $(G \neq \mathrm{SL}(2, \mathbb{R}))$) σ is uniquely determined.
We are only interested in those $[w] \in W^{\mathfrak{m}}$ with $\left.w \Lambda\right|_{\mathfrak{a}} \in \mathfrak{a}_{+}^{*}\left(\lambda \in \mathfrak{a}_{+}^{*}\right)$ - this condition is in fact independent of Λ as it is equivalent to

$$
\begin{aligned}
\left\langle\left.\Lambda\right|_{\mathfrak{a}},\left.w^{-1} \mu_{\mathbb{R}}\right|_{\mathfrak{a}}\right\rangle>0 \Longleftrightarrow\left\langle\alpha,\left.w^{-1} \mu_{\mathbb{R}}\right|_{\mathfrak{a}}\right\rangle & >0 \\
& \left.\Longleftrightarrow w^{-1} \mu_{\mathbb{R}}\right|_{\mathfrak{a}} \in \mathfrak{a}_{+}^{*} \Longleftrightarrow w^{-1} \mu_{\mathbb{R}} \in \Phi^{+} .
\end{aligned}
$$

This defines a subset $W_{+}^{\mathfrak{m}} \subset W^{\mathrm{m}}$.
By Theorem 2.4 of [Pro07, p.321], the stabiliser of a dominant element ν is generated by the simple reflections s_{μ} for which $\langle\mu, \nu\rangle=0$.
Applying this result for $\nu=\mu_{\mathbb{R}}$ (dominant root) yields that $\operatorname{Stab}_{W}\left(\mu_{\mathbb{R}}\right)=W_{\mathfrak{m}}$ since $\left\langle\mu, \mu_{\mathbb{R}}\right\rangle=0(\mu \in \Phi)$ if and only if $\mu \in \Phi_{\mathfrak{m}}$.
Thus, we can identify $W^{\mathfrak{m}}$ with $\left\{w^{-1} \mu_{\mathbb{R}} \mid w \in W\right\} \subset \Phi$ and $W_{+}^{\mathfrak{m}}$ with $\left\{w^{-1} \mu_{\mathbb{R}} \mid\right.$ $w \in W\} \cap \Phi^{+}$.
Moreover, W acts transitively (for \mathfrak{g} simple) on roots of equal lengths. We obtain an identification of $W_{+}^{\mathfrak{m}}$ with $\left\{\mu \in \Phi^{+}| | \mu\left|=\left|\mu_{\mathbb{R}}\right|\right\}\right.$.
Let $\left[w_{1}\right],\left[w_{2}\right] \in W_{+}^{\mathrm{m}}$. We say that $\left[w_{1}\right] \leqslant\left[w_{2}\right]$ if $w_{1}^{-1} \mu_{\mathbb{R}}-w_{2}^{-1} \mu_{\mathbb{R}}$ is a nonnegative linear combination of positive roots.
Let $\mu, \tau \in \mathfrak{a}^{*}$. Then, we write $\mu>\tau$ if $\mu-\tau \in \mathfrak{a}_{+}^{*} \Longleftrightarrow \mu\left(H_{0}\right)>\tau\left(H_{0}\right)$.
Lemma C.12. $\left[w_{1}\right]<\left.\left[w_{2}\right] \Rightarrow w_{1} \Lambda\right|_{\mathfrak{a}}>\left.w_{2} \Lambda\right|_{\mathfrak{a}}$ for all regular, dominant Λ.

Proof. Let $\left[w_{1}\right],\left[w_{2}\right] \in W_{+}^{\mathfrak{m}}$. Write $w_{1}^{-1} \mu_{\mathbb{R}}-w_{2}^{-1} \mu_{\mathbb{R}}=\sum_{\mu \in \Phi^{+}} n_{\mu} \mu$. Then,

$$
\left\langle w_{1} \Lambda-w_{2} \Lambda, \mu_{\mathbb{R}}\right\rangle=\left\langle\Lambda, w_{1}^{-1} \mu_{\mathbb{R}}-w_{2}^{-1} \mu_{\mathbb{R}}\right\rangle=\sum_{\mu \in \Phi^{+}} n_{\mu} \underbrace{\langle\Lambda, \mu\rangle}_{>0}
$$

If $\left[w_{1}\right]<\left[w_{2}\right]$, then $n_{\mu} \geqslant 0$ and they are not all zero. Thus,

$$
\left\langle w_{1} \Lambda-w_{2} \Lambda, \mu_{\mathbb{R}}\right\rangle>0
$$

Let us now discuss the cases
(1) $\frac{G=\mathrm{SU}(1, n)}{\mathrm{Writ}} \mathfrak{h}^{*}$

Write $\mathfrak{h}^{*}=\left\{\sum_{i=0}^{n} x_{i} e_{i} \mid \sum_{i=0}^{n} x_{i}=0\right\}, \Phi^{+}=\left\{e_{i}-e_{j} \mid 0 \leqslant i<j \leqslant n\right\}$ and $\mu_{\mathbb{R}}=e_{0}-e_{n}($ compare with [Col85, p.14]).
We parametrise $W^{\mathfrak{m}}$ by $\left\{w_{i j} \mid 0 \leqslant i, j \leqslant n-1, i+j \leqslant n-1\right\}$, where the $w_{i j}$'s are determined by $w_{i j}^{-1} \mu_{\mathbb{R}}=e_{i}-e_{n-j}$.
Here $w_{i j}$ corresponds to $\gamma_{i, j+1}$ in [Col85, p.83] $\left(\gamma_{i, j+1}=w_{i j} \rho_{\mathfrak{g}}, \rho_{\mathfrak{g}}\right.$ is the half-sum over Φ^{+}).

As $e_{a}-e_{b} \in \Phi^{+} \cup\{0\}$ for all $a, b \in \mathbb{N}_{0}$ such that $0 \leqslant a \leqslant b \leqslant n, i \leqslant k$ implies that $e_{i}-e_{k} \in \Phi^{+} \cup\{0\}$ and $j \leqslant l$ implies that $e_{n-l}-e_{n-j} \in \Phi^{+} \cup\{0\}$. It follows that

$$
i \leqslant k, j \leqslant l \Rightarrow w_{i j} \leqslant w_{k l}
$$

By Theorem 5.3.1 of [Col85, p.115], the Schmid type principal series are parametrised by $w_{i j}$ with $i+j=n-1$.
By Proposition 6.2 .8 of [Col85, p.140], the discrete series representations with infinitesimal character χ_{Λ}, indexed by $\pi_{0}, \pi_{1}, \ldots, \pi_{n}$ embed as follows
(a) $\pi_{0} \rightarrow w_{0, n-1}$ (of Schmid type)
(b) $\pi_{n} \rightarrow w_{n-1,0}$ (of Schmid type)
(c) $\pi_{l}(0<l<n) \rightarrow w_{l, n-1-l}$ (of Schmid type), $w_{l-1, n-l}$ (of Schmid type), $w_{l-1, n-1-l}$ (not of Schmid type)

By (*) and the above lemma, we are done.
(2) $G=\operatorname{Sp}(1, n)$

Write $\mathfrak{h}^{*}=\left\{\sum_{i=0}^{n} x_{i} e_{i} \mid x_{i} \in \mathbb{R}\right\}$,

$$
\Phi^{+}=\left\{e_{i} \pm e_{j} \mid \underset{\text { short roots }}{0} \leqslant i<j \leqslant n\right\} \cup\left\{2 e_{i} \mid \underset{\text { long roots }}{i=0, \ldots}, n\right\}
$$

and $\mu_{\mathbb{R}}=e_{0}+e_{1}$ (short root). Compare with [Col85, p.14].
We parametrise $W^{\mathfrak{m}}$ by $\left\{w_{i j} \mid 0 \leqslant i \leqslant j, i+j \leqslant 2 n-1\right\}$, where the $w_{i j}$'s are determined by $w_{i j}^{-1} \mu_{\mathbb{R}}=\left\{\begin{array}{ll}e_{i}+e_{j+1} & \text { if } j \leqslant n-1 \\ e_{i}-e_{2 n-j} & \text { if } j \geqslant n\end{array}\right.$.
Here $w_{i j}$ corresponds to $\gamma_{i, j+1}$ in [Col85, p.85].

For all $a, b \in \mathbb{N}_{0}$ such that $0 \leqslant a \leqslant b \leqslant n, e_{a} \pm e_{b} \in \Phi^{+} \cup\{0\}$. It follows that

$$
i \leqslant k, j \leqslant l \Rightarrow w_{i j} \leqslant w_{k l} \quad(* *) .
$$

By Theorem 5.4.1 of [Col85, p.120], the Schmid type principal series arise if and only if $i+j=2 n-1$.

The discrete series are parametrised by π_{0}, \ldots, π_{n}. By Proposition 6.2.9 of [Col85, p.141], we have
(a) $\pi_{0} \rightarrow w_{0,2 n-1}$ (of Schmid type)
(b) $\pi_{n} \rightarrow w_{n-1, n}$ (of Schmid type), $w_{n-2, n-2}$ (not of Schmid type)
(c) $\pi_{l}(0<l<n) \rightarrow w_{l, 2 n-1-l}$ (of Schmid type), $w_{l-1,2 n-l}$ (of Schmid type), $w_{l-1,2 n-1-l}$ (not of Schmid type).

The assertion follows by ($* *$) and Lemma C.12.
(3) $G=F_{4}$:
$\overline{\text { Write } \mathfrak{h}^{*}}=\left\{\sum_{i=0}^{3} x_{i} e_{i} \mid x_{i} \in \mathbb{R}\right\}$,

$$
\begin{aligned}
& \Phi^{+}=\left\{e_{i} \pm e_{j} \mid 0 \leqslant i<j \leqslant 3\right\} \cup\left\{e_{i} \mid i=0, \ldots, 3\right\} \\
& \text { long roots } \\
& \text { short roots }
\end{aligned}
$$

and $\mu_{\mathbb{R}}=e_{0}$ (short root). Compare with [Col85, p.14]. The \pm signs are taken here independent.

Thus, W_{+}^{m} is in bijection with the short positive roots:

$$
W_{+}^{\mathfrak{m}} \simeq\left\{w^{-1} \mu_{\mathbb{R}} \mid w \in W_{+}^{\mathfrak{m}}\right\} \simeq\{\text { short positive roots }\} .
$$

We want to compare this parametrisation with the one in [Col85, p.87]:

$$
\left\{w \rho_{\mathfrak{g}} \mid[w] \in W_{+}^{\mathfrak{m}}\right\}=\left\{\gamma_{i j}\right\} .
$$

Define a map from $W_{+}^{\mathfrak{m}}$ to \mathfrak{h}^{*} by

$$
[w] \mapsto w \rho_{\mathfrak{g}}
$$

where w is chosen such that $\left.w \rho_{\mathfrak{g}}\right|_{i t}$ is dominant with respect to $\Phi_{\mathfrak{m}}^{+}$. We have $\rho_{\mathfrak{g}}=\frac{1}{2}(11,5,3,1) \in \mathfrak{h}^{*} \equiv \mathbb{R} \oplus \mathbb{R}^{3}$. For every short root $\mu=w^{-1} \mu_{\mathbb{R}}$, we compute

$$
\left\langle\mu, 2 \rho_{\mathfrak{g}}\right\rangle=\left\langle\mu_{\mathbb{R}}, 2 w \rho_{\mathfrak{g}}\right\rangle=\left\langle e_{0}, 2 w \rho_{\mathfrak{g}}\right\rangle .
$$

Using this and the values of $\left\langle e_{0}, 2 \gamma_{i j}\right\rangle$ provided by [Col85, p.87], we are able to construct most of the following tables:

			μ	$\left\langle\mu, 2 \rho_{\mathfrak{g}}\right\rangle$	$\gamma_{i j}$
			$\frac{1}{2}\left(e_{0}+e_{1}+e_{2}+e_{3}\right)$	10	γ_{02}
μ	$\left\langle\mu, 2 \rho_{\mathfrak{g}}\right\rangle$	$\gamma_{i j}$	$\frac{1}{2}\left(e_{0}+e_{1}+e_{2}-e_{3}\right)$	9	γ_{03}
e_{0}	11		$\frac{1}{2}\left(e_{0}+e_{1}-e_{2}+e_{3}\right)$	7	γ_{04}
e_{1}	5		$\frac{1}{2}\left(e_{0}+e_{1}-e_{2}-e_{3}\right)$	6	γ_{14}
${ }_{2}$	3		$\frac{1}{2}\left(e_{0}-e_{1}+e_{2}+e_{3}\right)$	5	$\gamma_{05}{ }^{\text {b }}$
3	1	γ_{26}	$\left.\frac{1}{2}\left(e_{0}-e_{1}+e_{2}-e_{3}\right)\right)^{2}$	4	γ_{15}
			$\frac{1}{2}\left(e_{0}-e_{1}-e_{2}+e_{3}\right)$	2	γ_{16}
			$\frac{1}{2}\left(e_{0}-e_{1}-e_{2}-e_{3}\right)$	1	γ_{17}

Only two values (1 and 5) of $\left\langle\mu, 2 \rho_{\mathfrak{g}}\right\rangle$ appear twice. For these we need in an additional argument. Since we have in the left table precisely those roots for which w can be represented by a permutation, we distinguish roots for the values 1 and 5 by looking at w.
Again one checks (check the arrows above) that

$$
i \leqslant k, j \leqslant l \Longrightarrow \gamma_{i j} \leqslant \gamma_{k l} \quad(* * *)
$$

In fact not all of these implications are actually needed.
By Theorem 5.5.12 of [Col85, pp.130-131], γ_{26} and γ_{17} are the Schmid type principal series.
Denote the discrete series representations by $\pi_{1}, \pi_{2}, \pi_{3}$. By Proposition 6.2.9 of [Col85, p.141], we have
(a) $\pi_{1} \rightarrow \gamma_{26}$ (of Schmid type), γ_{05} (not of Schmid type)
(b) $\pi_{2} \rightarrow \gamma_{26}$ (of Schmid type), γ_{17} (of Schmid type), γ_{16} (not of Schmid type)
(c) $\pi_{3} \rightarrow \gamma_{17}$ (of Schmid type), γ_{01} (not of Schmid type).

The assertion follows by $(* * *)$ and Lemma C.12.

Index of notation

$(\cdot, \cdot),\langle\cdot, \cdot\rangle, 42$
$\prec, \succ, \asymp, 14$
$C^{-\infty}\left(B, V_{B}\left(\sigma_{\lambda}\right)\right), 42$
$C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right), 42$
$C^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}\right)\right)^{\Gamma}, 42$
$C_{U}^{-\infty}\left(\partial X, V\left(\sigma_{\lambda}, \varphi\right)\right), 46$
$C^{-\infty}\left(\Lambda, V\left(\sigma_{\lambda}, \varphi\right)\right)^{\Gamma}, 42$
$c_{d_{X}}, 11$
$c_{f, v}, 36$
$c_{\gamma}(\lambda), 120$
$\mathscr{C}(\Gamma \backslash G, \varphi), 16,155$
$\mathscr{C}^{\prime}(\Gamma \backslash G, \varphi), 36$
${ }^{\circ} \mathscr{C}(\Gamma \backslash G, \varphi), 31,161$
$\mathscr{C}(\Gamma \backslash G, \varphi)_{d s}(\gamma), 85$
$C^{K}\left(\partial X, V\left(\sigma_{\lambda}\right)\right), 42$
clo, int, 17
$c_{\pi}, 38$
$\mathscr{C}\left(Y, V_{Y}(\gamma, \varphi)\right), 41$
$D_{1}, D_{2}, 74$
$D_{1,-\infty}, 74$
$\delta_{\Gamma}, 47$
$E_{\gamma}, 118$
$E_{\gamma, \tau, \sigma, \lambda, A}, 118$
$E_{\Lambda}\left(\sigma_{\lambda}, \varphi\right), 49$
$E(\lambda, \phi, v), 108$
$E(\phi, v), 114$
ext, 48
$\mathcal{F}, \mathcal{F}_{\pi}, 38$
$f^{0}, 157$
$f^{\Omega}, 26$
$f^{Q}, 158$
$f^{Q, l c}, 162$
$\Gamma_{Q}, 134$
$\hat{G}_{d}, \hat{G}_{u}, \hat{G}_{c}, 39$
$G(U), K(U), 26$
$\mathrm{HS}_{g K, k M}, 11$
$\mathcal{H}_{0}^{\sigma}(\varphi), \mathcal{H}^{\tilde{\sigma}, K}, 114$
$\hat{J}_{\sigma, \lambda}^{w}, \hat{J}_{\sigma, \lambda}, 42$
$K_{i}, M_{i}, A_{i}, N_{i}, 152$
$L^{2}(\Gamma \backslash G, \varphi)_{a c / d s / r e s / U}, 39$
$L^{p}(\Gamma \backslash G, \varphi), 16$
$L_{g} f, R_{g} f, 32$
$N^{\Gamma, Q}, 138$
$N_{\alpha}, N_{2 \alpha}, 174$
$N_{\Gamma, Q}, M_{\Gamma, Q}, 134$
$\Omega_{\Gamma}, \Lambda_{\Gamma}, 15$
$p_{\text {ac }} p_{\text {res }}, p_{U}, p_{d s}, 39$
$\mathcal{P}_{\Gamma}, 134$
$\pi_{*}, 47$
$p_{Q}, 157$
${ }^{U} p_{r, X, Y}(f), 16$
${ }_{\mathfrak{S}^{\prime}}{ }^{\prime} p_{r, X, Y}(f), 152$
$P_{\lambda}^{T} f, 57$
res, res $_{\Omega}, 48$
$\rho^{\Gamma Q}, \rho_{\Gamma_{Q}}, 150$
$\mathfrak{S}, 140,141$
$\mathfrak{S}_{s t d, i}, 143$
$\sigma_{M N}, 91$
$\sigma^{w}, 41$
$T^{w}, 123$
$\mathcal{U}_{\Gamma}, 16$
$U_{g, h}, 29$
$\mathcal{U}(\mathfrak{l}), 9$
$U_{\Lambda}\left(\sigma_{\lambda}, \varphi\right), 49$
$V(\gamma), V_{Y}(\gamma), V_{B}\left(\sigma_{\lambda}\right), 41$
$\mathcal{V}_{\Gamma}, \mathcal{V}_{s t d, \Gamma}, 152$
$V_{\varphi}^{\Gamma Q}, 157$
$V_{\pi,-\infty}, V_{\pi, \infty}, V_{\pi, K}, 36$
$\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\mathscr{C}}^{\Gamma}, 37$
$\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{{ }_{\mathscr{C}}}^{\Gamma}, 37$
$\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{d}^{\Gamma}, 36$
$\left(V_{\pi,-\infty} \otimes V_{\varphi}\right)_{\text {temp }}^{\Gamma}, 36$
$V(\sigma), 105$
$V\left(\sigma_{\lambda}\right), 42$
$v_{T, \mu}, 58$
$W^{K}, 41$
$\xi_{i}, 152$
$\xi_{Q, E}, 151$

Index of terminology

abstract Plancherel theorem, 38
admissible generalised standard
Siegel set, 163
annihilator, 74
at most k-to-one map, 140
Bunke-Olbrich extension map, 48
compactly supported wave packet, 114
constant term, 26, 158, 161
convex-cocompact, 15
critical exponent, 47
cuspidal Schwartz vector, 37
Dirac sequence, 61
Eisenstein integrals, 118
Eisenstein series, 108
「-cuspidal parabolic subgroup, 134
generalised Siegel set, 140
generalised standard Siegel set, 141
geometrically finite, 136
Knapp-Stein intertwining operator, 42

Langlands decomposition, 129
little constant term, 162
matrix coefficient, 36
parabolic subgroup, 9, 129
Poisson transform, 57
rank of a cusp, 149
rapidly decreasing, 201
restriction map, 48
Schwartz function near a cusp, 163
Schwartz space, 16, 155
Schwartz vector, 37
space of cusp forms, 31, 161
square-integrable distribution vector, 36
tempered distribution vector, 36
topological embedding, 58
torsion-free, 15
Weyl-invariant, 41

References

[Ada96] J. F. Adams, Lectures on Exceptional Lie Groups edited by Z. Mahmud and M. Mimura, Chicago Lectures in Mathematics, The University of Chicago Press (1996).
[Bor97] A. Borel, Automorphic forms on $\mathrm{SL}(2, \mathbb{R})$, Cambridge tracts in mathematics, vol. 130, Cambridge University Press (1997).
[Bor07] A. Borel, Automorphic Forms on Reductive Groups in Automorphic Forms and Applications edited by P. Sarnak and F. Shahidi, IAS Park City Mathematics, vol. 12, American Mathematical Society (2007), 5-40.
[BT82] R. Bott, L. W. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, vol. 82, Springer (1982).
[Bou71] N. Bourbaki, Topologie générale I, nouvelle édition, Hermann (1971).
[Bou06] N. Bourbaki, Groupes et algèbres de Lie: Chapitres 2 et 3, Springer (2006).
[Bow95] B. H. Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. Journal, vol. 77 (1995), 229-274.
[BO95] U. Bunke and M. Olbrich, Selberg Zeta and Theta Functions, Akademie Verlag (1995).
[BO00] U. Bunke and M. Olbrich, The Spectrum of Kleinian Manifolds, Journal of Functional Analysis, vol. 172 (2000), 76-164.
[BO07] U. Bunke and M. Olbrich, Scattering theory for geometrically finite groups in Geometry, analysis and topology of discrete groups, Advanced Lectures in Mathematics (ALM), International Press, vol. 6 (2008), 40-136; arXiv:math/9904137v2 [math.DG] (2007).
[Col85] D. H. Collingwood, Representations of Rank One Lie Groups, Research Notes in Mathematics, vol. 137, Pitman (1985).
[Cor90] K. Corlette, Hausdorff dimensions of limit sets, Inventiones mathematicae, vol. 102 (1990), 521-542.
[Dij09] G. van Dijk, Introduction to Harmonic Analysis and Generalized Gelfand Pairs, Walter de Gruyter (2009).
[EO73] P. Eberlein and B. O’Neil, Visibility manifolds, Pacific J. Math., vol. 46 (1973), 45-109.
[EMM91] C. L. Epstein, R. B. Melrose, and G. A. Mendoza, Resolvent of the Laplacian on strictly pseudoconvex domains, Acta Math., vol. 167 (1991), 1-106.
[Fu05] H. Führ, Abstract Harmonic Analysis of Continuous Wavelet Transforms, Lecture Notes in Mathematics, vol. 1863, Springer (2005).
[GM12] C. Guillarmou, R. Mazzeo, Resolvent of the Laplacian on geometrically finite hyperbolic manifolds, Inventiones mathematicae, vol. 187 (2012), 99144.
[HC66] Harish-Chandra, Discrete series for semisimple Lie groups. II, Acta Mathematica, vol. 116 (1966), 1-111.
[HC76] Harish-Chandra, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula, Annals of Mathematics (second series), vol. 104 (1976), 117-201.
[Hel78] S. Helgason, Differential Geometry, Lie Groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press (1978).
[Kna86] A. W. Knapp, Representation Theory of Semisimple Lie Groups: An Overview Based on Examples, Princeton University Press (1986).
[Kna05] A. W. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics, vol. 140, Birkhäuser (2005).
[KS71] A. W. Knapp and E. M. Stein, Intertwining operators for semisimple Lie groups, Annals of Mathematics, vol. 93 (1971), 489-578.
[LP82] P. D. Lax and R. S. Phillips, The asymptotic distribution of lattice points in Euclidian and non-Euclidian spaces, Journal of Functional Analysis, vol. 46 (1982), 280-350.
[LP84-1] P. D. Lax and R. S. Phillips, Translation representation for automorphic solutions of the wave equations in non-Euclidean spaces, I, Comm. Pure Appl. Math., vol. 37 (1984), 303-324.
[LP84-2] P. D. Lax and R. S. Phillips, Translation representation for automorphic solutions of the wave equations in non-Euclidean spaces, II Comm. Pure Appl. Math., vol. 37 (1984), 779-813.
[LP85] P. D. Lax and R. S. Phillips, Translation representation for automorphic solutions of the wave equations in non-Euclidean spaces, III, Comm. Pure Appl. Math., vol. 38 (1985), 197-208.
[Lee13] J. M. Lee, Introduction to Smooth Manifolds (Second Edition), Graduate Texts in Mathematics, vol. 218, Springer (2013).
[MP90] R. Mazzeo and R. Phillips, Hodge theory on hyperbolic manifolds, Duke Math. Journal, vol. 60 (1990), 509-559.
[Olb94] M. Olbrich, Die Poisson-Transformation für homogene Vektorbündel, Ph.D. thesis, Humboldt-Universität zu Berlin (1994).
[Olb02] M. Olbrich, Cohomology of convex cocompact groups and invariant distributions on limit sets, arXiv:math/0207301v1 [math.DG] (2002).
[Osh86] T. Oshima, A realization of semisimple symmetric spaces and construction of boundary value maps, Advanced Studies in Pure Mathematics, vol. 14 (1988), Representations of Lie groups, Academic Press (1986), 603-650.
[Pat75] S. Patterson, The Laplace operator on a Riemann surface I, Compositio Mathematica, vol. 31 (1975), 83-107.
[Per87] P. Perry, The Laplace operator on a hyperbolic manifold I. Spectral and scattering theory, Journal of Functional Analysis, vol. 75 (1987), 161-187.
[Pro07] C. Procesi, Lie Groups: An Approach through Invariants and Representations, Universitext, Springer (2007).
[Rha73] G. de Rham, Variétés différentiables: formes, courants, formes harmoniques, Actualités scientifiques et industrielles, vol. 1222b, Hermann (1973).
[Rud91] W. Rudin, Functional Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill (1995).
[Schl84] H. Schlichtkrull, Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Birkhäuser (1984).
[Wal88] N. R. Wallach, Real Reductive Groups I, Pure and Applied Mathematics, vol. 132, Academic Press (1988).
[Wal92] N. R. Wallach, Real Reductive Groups II, Pure and Applied Mathematics, vol. 132-II, Academic Press (1992).
[Wol75] J. A. Wolf, Representations of Certain Semidirect Product Groups, Journal of Functional Analysis, vol. 19 (1975), 339-372.
[Wur04] T. Wurzbacher, Infinite Dimensional Groups and Manifolds, IRMA Lectures in Mathematics and Theoretical Physics, vol. 5, Walter de Gruyter (2004).
[Yos95] K. Yosida, Functional Analysis, Classics in Mathematics, vol. 123, Springer (1995).

